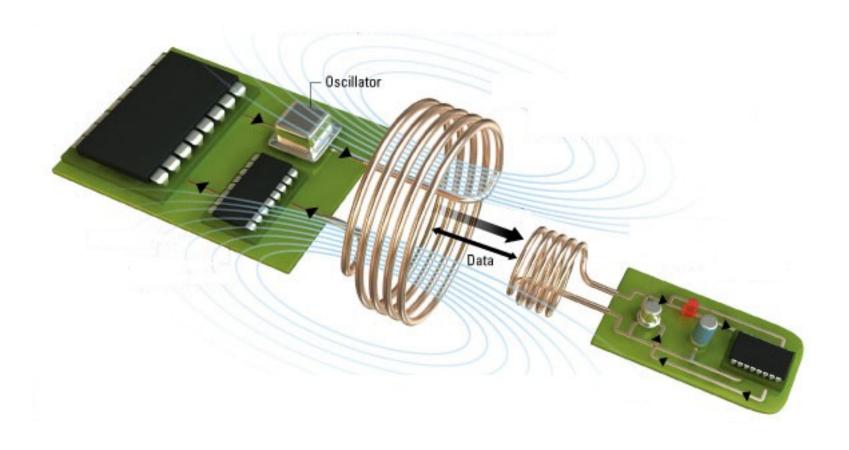


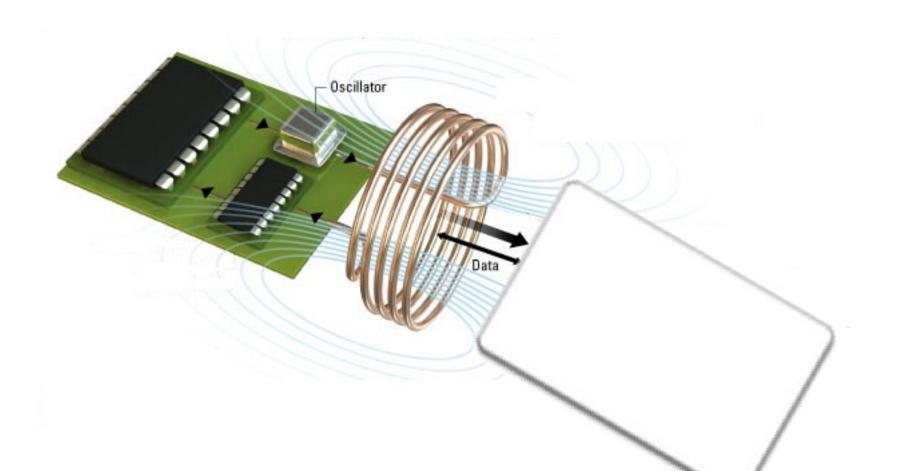
Flavio D. Garcia Gerhard de Koning Gans Roel Verdult

Exposing iClass Key Diversification

Radboud University Nijmegen


Contents

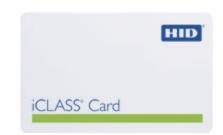
- Introduction
 - RFID
 - iClass and Picopass
 - Key Diversification
- iClass Key Diversification
 - DES and Fortify
 - Reader Control and Key Updates
 - Finding hash0 and hash0⁻¹
- Key Recovery Attack
- Conclusion



Radio Frequency Identification (RFID)

Radio Frequency Identification (RFID)

iClass and PicoPass



iClass (HID Global)

- ISO 15693 compatible smartcard
- Introduced in 2002 as replacement of HID prox
- Over 300 million cards sold (according to HID)

iClass (HID Global)

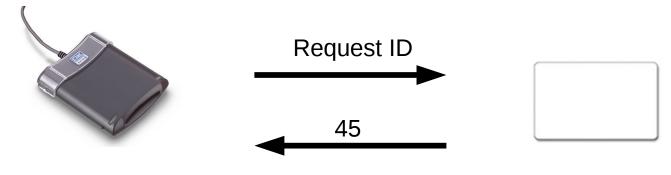
- Widely used in access control (examples from HID)
 - The Bank of America Merrill Lynch
 - Int. Airport of Mexico City
 - Navy base of Pearl Harbor
- Used as secure authentication
 - NaviGO (Dell Latitude and Precision)
 - e-Payment
 - Billing systems

iClass

- One master key for every system
- Built-in Key Diversification

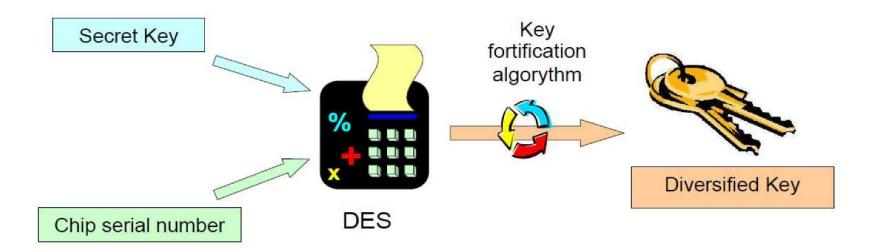
Security by Obscurity?

- We know the examples of
 - Mifare Classic
 - KeeLoq
 - Hitag2
- How is the key diversification implemented?
- Important question since it is **built-in**!

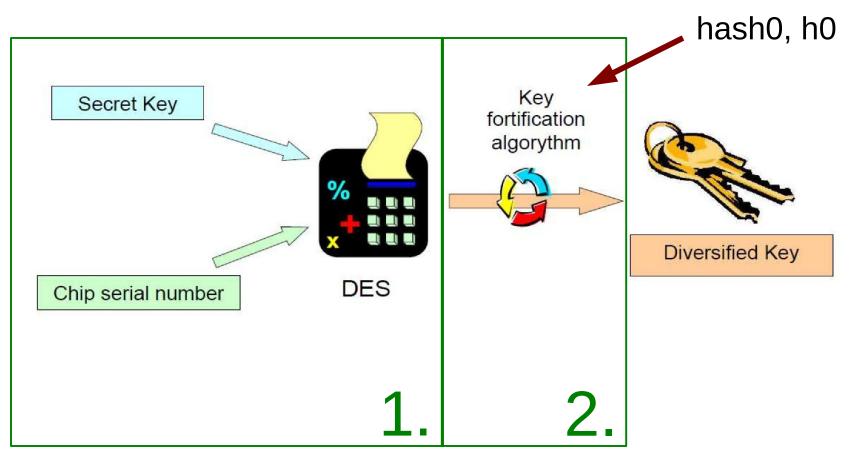


Our Contribution

- Reverse engineering of built-in key diversification
 - Encryption of ID
 - 'Hashing' by hash0
- By-pass encryption mode of Omnikey Secure Mode
 - New library to communicate in Secure Mode
- Custom firmware for Proxmark3 (RFID Tool)
 - To eavesdrop ISO 15693 communication
- Released all of above (proxmark.org)
- We show that **hash0** can be inverted and give an attack to find the **master key!**


Key Diversification

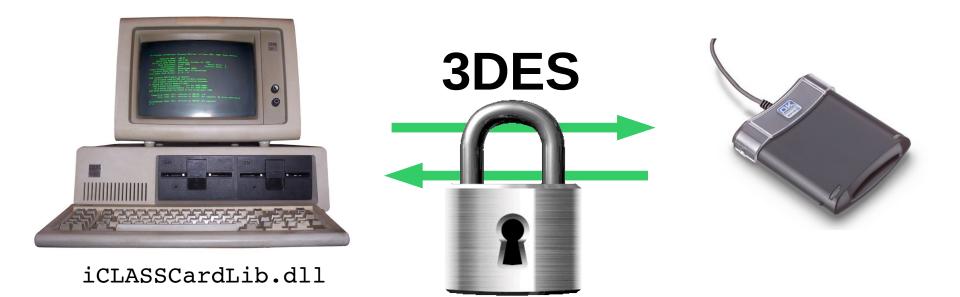
card key = diversify(MK,45)


iClass Key Diversification/Fortification

[Source: PicoPass Datasheets]

iClass Key Diversification/Fortification

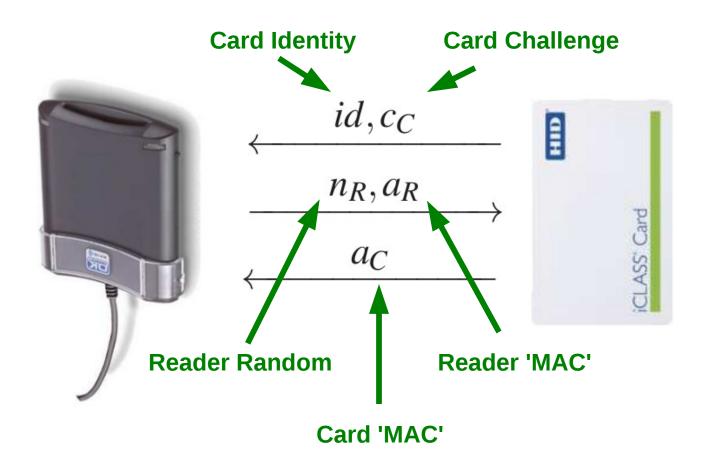
[Source: PicoPass Datasheets]


Omnikey (HID Global)

ISO 24727 requires encryption of USB connection

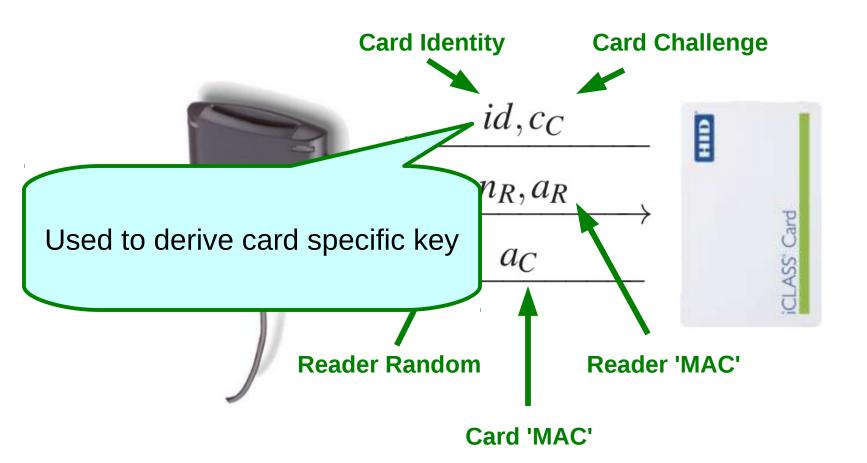
Omnikey <u>Secure Mode</u>

iClass Memory Layout



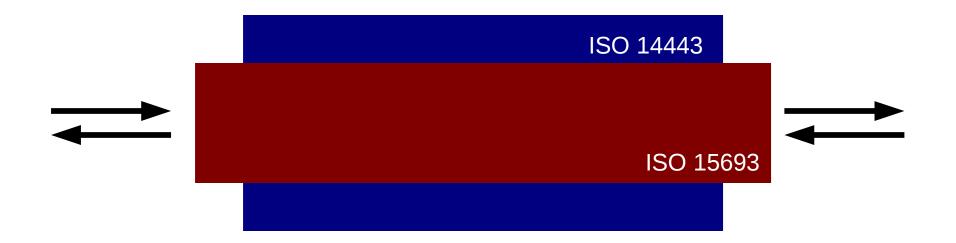
Key Slot	Value
00	
01	
02	

			CLASS by HDD
B	Block	Content	Denoted by
0		Card serial number	Identifier <i>id</i>
1		Configuration	
2	,	e-Purse	Card challenge c_C
3		Key for application 1	Debit key <i>kd_{id}</i>
4		Key for application 2	Credit key kc _{id}
5		Application issuer area	
6	18	Application 1	HID application <i>a_{HID}</i>
1	9 <i>n</i>	Application 2	n = 16x - 1 for xKS



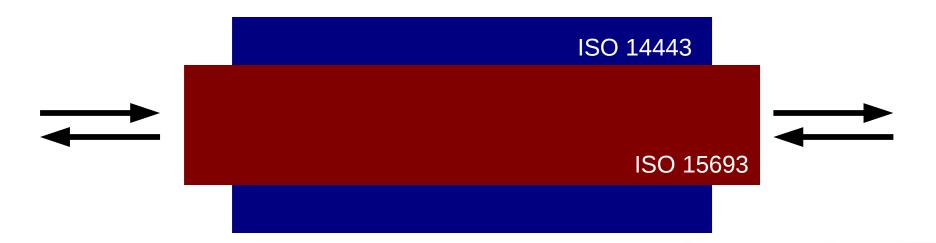
Authentication Protocol

Authentication Protocol


Eavesdropping

Proxmark 3

Supports several HF/LF protocols (ISO 14443a/b) Added eavesdropping for iClass communication



Implementation side effect: "ISO Tunneling"

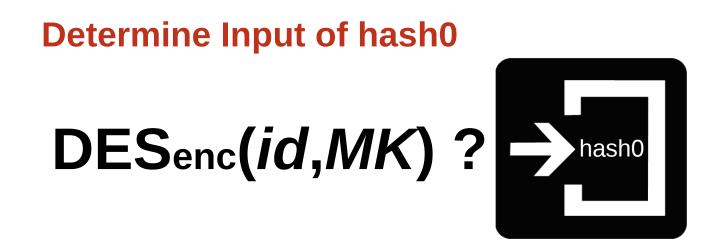
Implementation side effect: "ISO Tunneling"

chotog

Emulate iClass using existing software from **libnfc**

Card Key Update

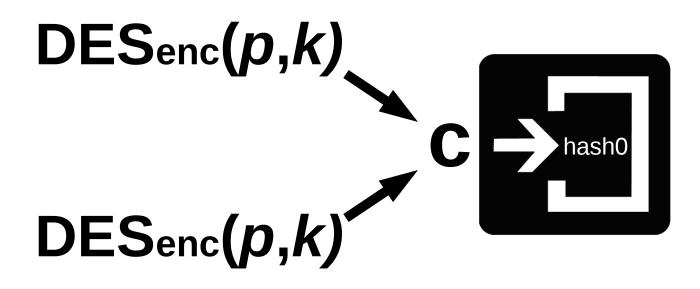
Origin	Message	Description
Reader	0c 00 73 33	Read identifier
Tag	86 ld c1 00 f7 ff 12 e0	Card serial number <i>id</i>
Reader	0c 01 fa 22	Read configuration
Tag	12 ff ff ff 7f 1f ff 3c	iClass 2KS configuration
Reader	18 02	Authenticate with kc_{id}
Tag	fe ff ff ff ff ff ff	Card challenge c_C
Reader	05 00 00 cl d9 7e 99 bb f4	Reader challenge $(05, n_R, a_R)$
Tag	46 3c 62 98	Response (a_C)
Reader	87 04 fc b4 32 3e 6a 86 56 26 8a b5 18 cc	Update kc_{id} (8704, $kc'_{id} \oplus kc_{id}$, 8ab518cc)
Tag	ff ff ff ff ff ff ff	Update succesful
Reader	0c 00 73 33	Read <i>id</i>
Reader	87 04 76 98 db 5d 01 78 0a 8f 67 25 c1 08	Update kc_{id} (8704, $kc''_{id} \oplus kc'_{id}$, 6725c108)
Reader	87 04 8a 2c e9 63 6b fe 5c a9 e2 a5 bc 55	Update kc_{id} (8704, $kc_{id} \oplus kc''_{id}$, e2 a5 bc 55)



Card Key Update

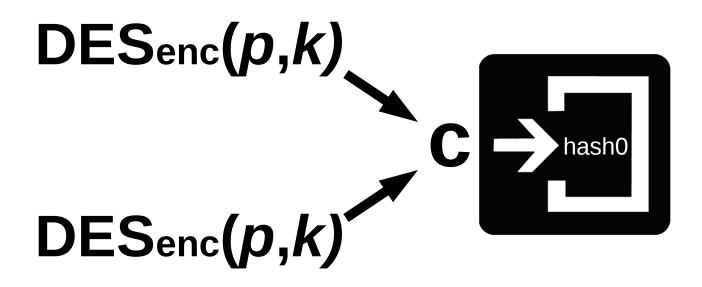
Origin	Message	fcb4323e6a865626	
Reader	0c 00 73 33		
Tag	86 1d c1 00 f7 ff 12 e0	7698db5d01780a8f ⊕	
Reader	0c 01 fa 22		
Tag	12 ff ff ff 7f 1f ff 3c		
Reader	18 02		
Tag	fe ff ff ff ff ff ff ff		
Reader	05 00 00 c1 d9 7e 99 bb f4	8a2ce9636bfe5ca9	
Tag	46 3c 62 98		
Reader	87 04 fc b4 32 3e 6a 86 56	26 8a b5 18 cc Update kc_{id} (8704, $kc'_{id} \oplus kc_{id}$, 8a b5 18 cc)	
Tag	ff ff ff ff ff ff ff ff	Update succesful	
Reader	0c 00 73 33	Read <i>id</i>	
Reader	87 04 76 98 db 5d 01 78 0a	8f 67 25 c1 08 Update kc_{id} (8704, $kc''_{id} \oplus kc'_{id}$, 6725 c1 08)	
Reader	87 04 8a 2c e9 63 6b fe 5c	a9 e2 a5 bc 55 Update kc_{id} (8704, $kc_{id} \oplus kc''_{id}$, e2 a5 bc 55)	

XOR Difference of Card Keys is send over the air



Pick any 64-bit string c and compute with two different keys (k and k'):

 $DES_{dec}(c,k) = p$ $DES_{dec}(c,k') = p'$


Determine Input of hash0

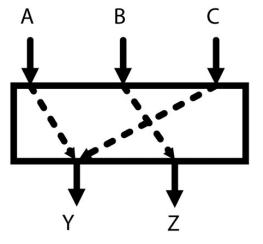
Same XOR difference!

Determine Input of hash0

Same XOR difference!

Card key = hash0(DESenc(id,kc))

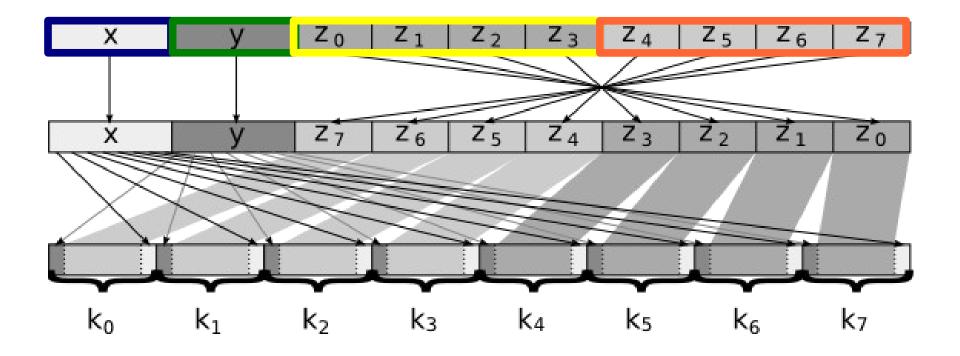
Recovering hash0


- XOR Difference
- Learn Input/Output Relations
- Step-by-step Recovery of Partial Input/Outputs
- Reconstruct hash0

- h0(80000000000000) = 0306050c07060d00h0(40000000000000) = 0306050c04050d00

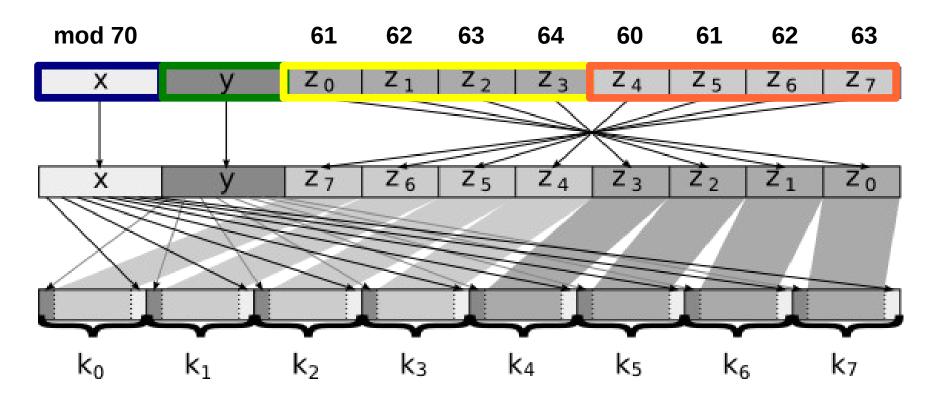
- h0(000000000000000) =
- = **0606**00000000000000

Input/Output Relations


0	7e7e7e7e00000000	24	000000000 027e7e7e
1	7e7e7e7e00000000	25	000000000 047e7e7e
2	7a7e7e7e 000000000	26	000000000 087e7e7e
3	727e7e7e00000000	27	000000000 107e7e7e
4	627e7e7e00000000	28	000000000 207e7e7e
5	427e7e7e00000000	29	000000000 407e7e7e
6	00 7e7e7e 000000000	30	00000000000 7e7e7e
11	00 7e7e7e 000000000	35	00000000000 7e7e7e
12	0000 7e7e 000000000	36	00000000000000 7e7e
17	0000 7e7e 000000000	41	00000000000000 7e7e
18	000000 7e 000000000	42	000000000000000000 7e
23	000000 7e 000000000	47	000000000000000000 7e

or-mask		
48	fc 000000000000000	
49	00 fc 000000000000	
50	0000 fc 0000000000	
51	000000 fc 00000000	
52	00000000 fe 000000	
53	00000000000 fe 0000	
54	00000000000000 fe 00	
55	000000000000000000 fe	
56	7f7f7f7e7e7f7f7f	
57	0000 7f7e7f 000000	
58	7f7e7e7e7f 000000	
59	7f7e7e7e7e7f 0000	
60	0000 7f7e7e7e7f 00	
61	7f7e7f7f7f7f7f00	
62	7f7e7f7e7e7f7f 00	
63	7f7e7f7e7f7e7f00	

or-mask		or-mask	and-mask
	48	fc0000000000000000	80 0000000000000000
Ζ	49	00 fc 000000000000	00 80 000000000000000
0	50	0000 fc 0000000000	0000 80 00000000000
F	51	000000 fc 00000000	000000 80 00000000
GA	52	000000000 fe 000000	00000000 fe 000000
Ш	53	000000000000 fe 0000	000000000000 fe 0000
Ζ	54	000000000000000 fe 00	00000000000000 fe 00
	55	0000000000000000000 fe	000000000000000000 fe
	56	7f7f7f7e7e7f7f7f	0101010000010101
NO	57	0000 7f7e7f 000000	0000 01 00 01 000000
	58	7f7e7e7e7f 000000	01 000000 01 000000
ATI	59	7f7e7e7e7e7f 0000	01 00000000 01 0000
5	60	0000 7f7e7e7e7f 00	0000 01 000000 01 00
Z	61	7f7e7f7f7f7f7f 00	01 00 0101010101 00
ERM	62	7f7e7f7e7e7f7f 00	01 00 01 0000 0101 00
Р	63	7f7e7f7e7f7e7f 00	01 00 01 00 01 00 01 00


Structure of hash0

permute negate

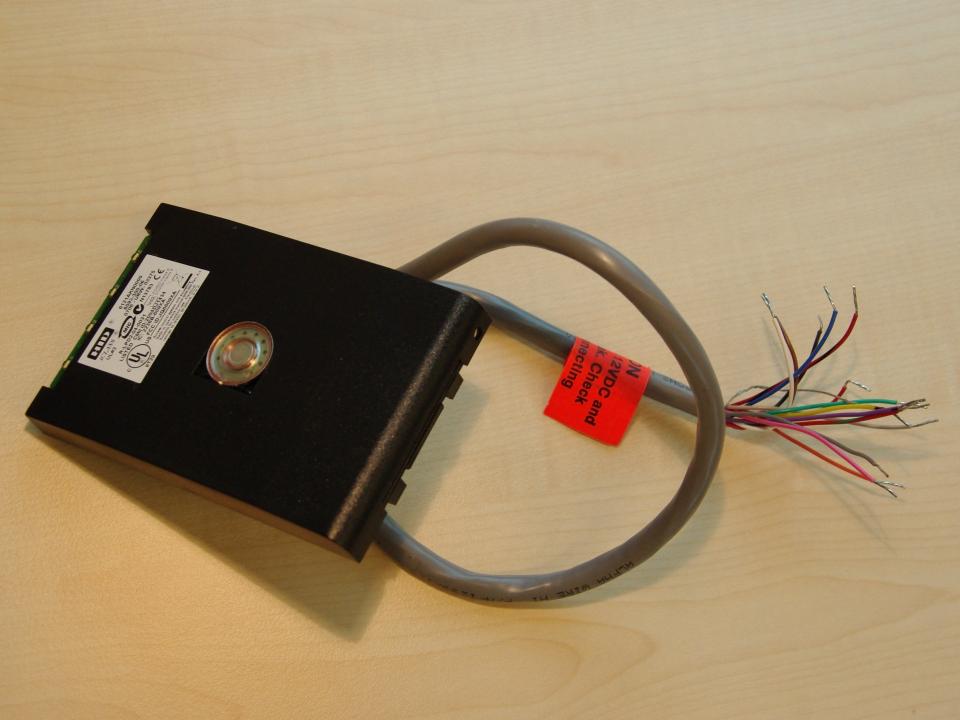
Structure of hash0

permute negate

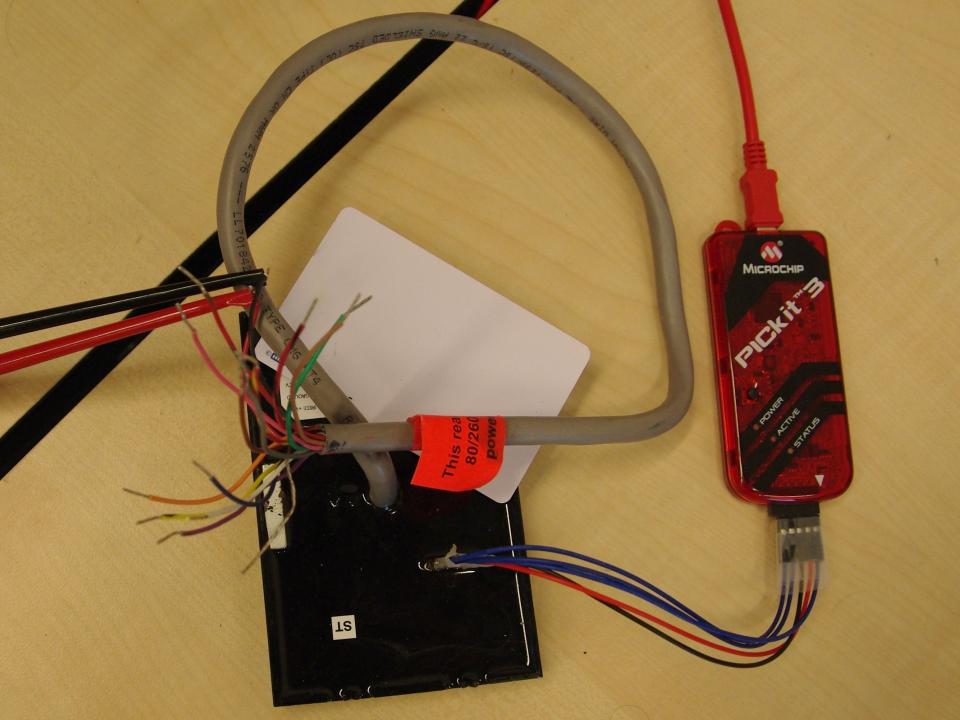
hash0

- We fully recovered hash0
- It is clearly **not**
 - Collision resistant
 - One-way
- We were able to invert hash0
 - On average we have 4 candidate pre-images
- Recovering the master key comes down to a brute force on single DES (Few days on RIVYERA)

Key Recovery Attack (Phase 1)


The attacker knows knew

and therefore learns hash0(DESenc(id, kmaster))



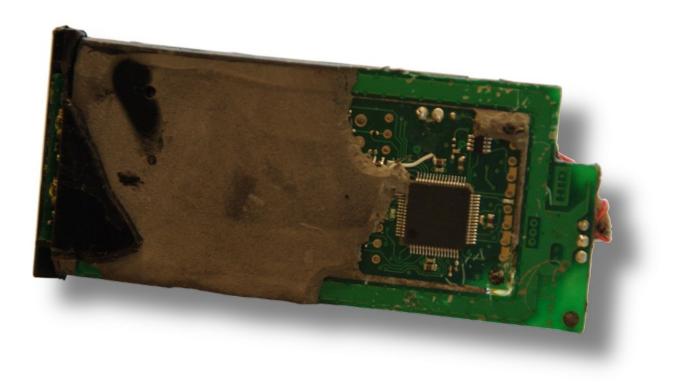
Key Recovery Attack (Phase 2)

- For every DES key **k** check if **DESenc(id,k)** equals one of the pre-images from phase 1.
- When the check above succeeds the corresponding key **k** needs to be verified against another emulated **id**.
- A single DES key can be broken within days. We checked the recovered candidates against the master key that we obtained from the reader firmware.

Verification of Results

- We recovered the master key from firmware as done by Meriac and Plotz in [*HID iClass Demystified*, 27th CCC, Dec 2010]
- This verified that we found the correct key

Conclusion


- Single DES for diversification (broken since 1997)
- The **hash0** function is not:
 - pre-image resistant
 - collision resistant
- **hash0** can be inverted (on average 4 pre-images)
- ...recover the master key from key update message!
- One master key for every iClass system

Next step...

• iClass Authentication Algorithm

Questions?

