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Abstract 

The response time of a WWW service often plays an important role in its success or demise. From a user’s 
perspective, the response time is the time elapsed from when a request is initiated at a client to the time that the 
response is fully loaded by the client. This paper presents a framework for accurately measuring the client-perceived 
response time in a WWW service. Our framework provides feedback to the service provider and eliminates the 
uncertainties that are common in existing methods. This feedback can be used to determine whether performance 
expectations are met, and whether additional resources (e.g. more powerful server or better network connection) are 
needed. The framework can also be used when a consolidator provides Web hosting service, in which case the 
framework provides quantitative measures to verify the consolidator’s compliance to a specified Service Level 
Agreement. Our approach assumes the existing infrastructure of the Internet with its current technologies and 
protocols. No modification is necessary to existing browsers or servers, and we accommodate intermediate proxies 
that cache documents. The only requirement is to instrument the documents to be measured, which can be done 
automatically using a tool we provide. 

1. Introduction 

  Businesses increasingly use the World Wide Web 
(WWW) to supply information such as news and movie 
reviews, and perform services such as stock and 
banking transactions for their customers. Responsive 
service plays a critical role in determining end-user 
satisfaction. In fact a customer who experiences a large 
delay after placing a request at a business’s web server 
often switches to a competitor who provides faster 
service. Two factors contribute to the response time as 
perceived by a client: the network delay and the server-
side latency (the time it takes to generate a response 
from the time the request reaches the web server). There 
are many established techniques for reducing the 
response time over the Web, including the use of 
powerful servers, reverse proxies at the server, Web 
caches, and clever load balancing among clustered or 
geographically dispersed servers. The services that 
Akamai [1], Digital Island [2], and Inktomi [3] provide 
are examples of how these techniques could work 
together. 

Given the vital role played by response times in 
determining end-user satisfaction, businesses need to 
have quantitative information about the perceived 
response times of their services.  This information 
guides the reaction of the business if the performance is 
below expectations. Server latency, i.e., the time it takes 
to service a request once it enters a web site, is an oft-
used metric for infrastructure planning. However, server 
latency measures do not include network interactions 

and cannot represent user-perceived response times. For 
instance, server latency data sheds no light on potential 
problems within the network such as that caused by a 
slow Internet connection.  

A number of companies today offer to periodically poll 
Web services using a geographically distributed set of 
clients. At best, polling can generate an approximation 
of the response time perceived by actual customers. At 
worst, the geographic and temporal distribution of the 
polls may be completely different from that of a web 
site’s actual customers, leading to useless response time 
data. Ultimately, the only reliable way to obtain client-
perceived response time is to actually measure it. 
Examples of such polling services include 
ServerCheck[4], GoldTest [5], and eValid [6].  

This paper presents a novel framework for measuring 
the actual response time perceived by customers as they 
access a Web service. It does not require a third party, 
statistical polling, or extra workload. It is applicable to 
any business, whether they run their services “in-house” 
or in a consolidated server, and whether the content 
they serve is statically or dynamically generated. Our 
framework also works with the existing technology 
restrictions and limitations. In particular, it does not 
require any changes to the Hyper Text Transfer 
Protocol [7], client browsers, or any existing 
technology. The framework leverages the scripting and 
event notification mechanisms in HTML 4.01 [8] and 
uses scripting languages such as JavaScript 1.1 [9] to 
measure and collect client-perceived response times 
without any browser modifications. Both HTML 4.0 



   

and JavaScript 1.1 are fairly de facto standards and are 
supported by the popular Netscape Navigator and 
Internet Explorer browsers. Finally, our methods do not 
depend on the use of Java applets [10] and cookies [11], 
support for which could be disabled by users. 

The response time data that we collect can be used in a 
variety of ways, some of which we describe here. A 
Web service may use the data to determine whether it is 
in danger of losing its customers due to intolerable 
response times. It may also use the data to decide 
whether a proxy caching service will be useful, and if 
so, where to place the proxy caches. Web hosting IDCs 
contract with businesses through Service Level 
Agreements (SLA), which specify the quality of service 
that the IDC will provide. The ability to collect accurate 
client-perceived response time values also enables the 
creation of a new class of SLAs in which an IDC can 
contract to serve some fraction of the site’s visitors 
within a specified amount of time. Finally, accurate 
response time values can be used to differentiate 
between different proxy caching services. 

We begin by providing some background in Section 2 
and describe the framework implementation in Section 
3. In Section 4, we analyze real response time data we 
have obtained by instrumenting “The Wondering 
Minstrels” web site. We describe related work in 
Section 5 and our conclusions in Section 6. 

2. Background and Overview 

We begin by defining some basic terms used through 
the following discussion. A bundle is a set of web pages 
that have been instrumented to measure client-perceived 
response times. These may be HTML or non-HTML 
pages, and could be static files or dynamically 
generated content. The HTML pages in the bundle may 
contain links to each other, enabling users to traverse 
the bundle by dereferencing hyperlinks. There can be 
two kinds of links: instrumented and uninstrumented. 
An instrumented link points to a page whose response 
time we want to measure when the link is dereferenced. 
A page pointed to by an instrumented link is itself 
instrumented. An uninstrumented link points to a page 
for which we do not want to know the response time. 

Users arrive at a specific page within a bundle in one of 
two ways, causing it to be loaded in their browser. First, 
the user may have dereferenced an instrumented link 
from another page within the bundle. We call this an 
instrumented entry into the page. Alternatively, they 
may have directly entered the page’s URL into the 
browser, or may have followed a link from a page 

outside the bundle. We term this an outside entry into 
the page.  

The framework introduced here allows accurate 
measurements of all instrumented entries to HTML 
pages in a bundle. Furthermore, it calculates the 
response times of each embedded object such as images 
or Flash animations [12] within a web page. 

2.1. HTML Scripts and Event Handlers 

The HTML standard specifies that a HTML page can 
contain embedded client-side scripts, which are 
executed as the page is parsed by the browser1. 
Furthermore, HTML link elements can contain a script 
snippet instead of a URI. When a link containing a 
script snippet is dereferenced, the script is executed. 
The following paraphrases the HTML standard’s script 
description [8]. 

A client-side script is a program that may 
accompany an HTML document or be embedded 
directly in it. The program executes on the client's 
machine when the document loads, or at some other 
time such as when a link is activated. Authors may 
attach a script to a HTML document such that it gets 
executed every time a specific event occurs. Such 
scripts may be assigned to a number of elements via 
the intrinsic event attributes. Script support in 
HTML is independent of the scripting language. 

Browsers today support a wide variety of scripting 
languages. JavaScript [9], VBScript [13], and Tcl [14] 
are three examples of popular scripting languages. 
JavaScript is by far the most popular scripting language, 
and is supported by virtually all browsers that allow 
scripting [15].  

The HTML standard also specifies several intrinsic 
events and the interfaces through which a client-side 
scripts can be invoked when different events occur. The 
Timekeeper uses three specific events that can invoke a 
script attached to a document: 

• onclick(): In the context of a link, the onclick 
handler is invoked when the user clicks on a link. 
The link is de-referenced based on the handler’s 
return value. 

• onload(): In the context of a document, the onload 
handler is triggered when a document and its 
embedded elements have been fully loaded. In the 

                                                 
1 A browser can defer script parsing only if the “defer” 
attribute of the SCRIPT tag is set true. In it absence, 
scripts must be parsed as they are encountered. 



   

context of an OBJECT element, the onload handler 
is triggered when the object is fully loaded. 

• onunload(): Triggered when a document is about to 
be unloaded to make room for a new document, or 
when the browser is being closed.  

2.1. Overview 

Abstractly, our scheme consists of the following four 
basic steps. We describe the details of each step later in 
the paper.  

1. Before sending a request to a web server, the client 
browser is made to determine and remember the 
current time. This action is performed using a 
client-side script embedded within the currently 
displayed page.  

2. The normal browser actions cause the requested 
page and its embedded elements to be loaded and 
displayed. 

3. After the response is fully received, the client 
browser computes the response time as the 
difference between the current time and the start 
time remembered from step 1. We again use a 
client-side script to carry out the computation, 
initiating this step through an onload event handler 
that triggers when the page fully loads. Note that 
since both the start and end times are computed on 
the client, no clock synchronization is required.  

4. Once a response time value is determined, client-
side script action transmits it to a “record keeper” 
web site based on an established policy. Several 
policies may be implemented. For instance, 
response time samples could be submitted when 
they are collected, submitted in bulk, or submitted 
only when they are above a particular threshold 
value. The record keeper could be any web server 
on the WWW, enabling an agent other than the 
origin web server to collect and maintain response 
time values. 

Steps 1, 3, and 4 are divided between two agents within 
the browser called the Timekeeper and the Librarian: 

• The Timekeeper is responsible for computing the 
response time values. In doing so, it uses the 
Librarian to save and retrieve state values. 
Depending on a prespecified policy, the Timekeeper 
also communicates the computed response time 
samples along with other information to a record 
keeping web site.  

• The Librarian stores and retrieves state values upon 
request. It provides the Timekeeper with a well-
defined interface for performing these actions. 

The following sections discuss these mechanisms in 
detail. We use JavaScript as the scripting language in 
our prototype implementation. Originally introduced by 
Netscape, JavaScript has become the de facto scripting 
language on the WWW, supported by most popular 
browsers including Navigator and Explorer. However, 
our approach is equally valid with other scripting 
languages such as VBScript[13] or Tcl [14]. 

3. Implementation 

3.1. Timekeeper 

The Timekeeper determines the current time and 
computes time deltas. It occasionally uses the Librarian 
to check in new time samples and to check them out 
later. It carries out these actions using HTML events 
and scripts. The Timekeeper can also be made to record 
the identity of each instrumented page or image along 
with the corresponding response time sample. 

Several policies may be implemented. For instance, 
response time samples could be submitted when they 
are collected, submitted in bulk, or submitted only when 
they are above a particular threshold value. Under some 
conditions, the record keeper can be any computer on 
the WWW. This could serve having a third party verify 
Service Level Agreements. 

Consider an instrumented link in a web page. By 
definition, the link points to a page that is itself 
instrumented. When a user clicks on the link, a 
Timekeeper script is invoked. The script determines the 
current time, records it using the Librarian, and then 
permits the link to be dereferenced. After this page is 
fully loaded, it’s onload handler is invoked. The handler 
obtains the time at which the page request was made by 
querying the Librarian. It then calculates the response 
time as the difference between the current time and the 
“send-time”. If the measured response time is to be 
transmitted later, the handler records it using the 
Librarian. Figure 1 summarizes these actions. 

When the user directly types the location of a document 
in the address bar of a browser, the currently displayed 
document in the browser window is replaced with the 
one requested by the user. Before loading the new 
document, the browser invokes an onunload handler, if 
one has been specified. The Timekeeper performs 
cleanup operations on this event, communicating the 
collected response time values to a record keeper. A 
cleanup operation is also initiated when the user closes 
the browser window. 



   

The cleanup operations performed by the Timekeeper 
and its actions for informing the record keeper are 
summarized in Figure 2. There are two points of entry 
shown in the figure, corresponding to the unexplained 
actions in Figure 1. The left hand side depicts the 
Timekeeper actions on individual response time 
samples. The right hand side shows the Timekeeper 
actions if the browser window is closed or if the user 
directly loads a new page. 

The Timekeeper may implement any desired policy to 
communicate the response time samples. For instance, 
in order to amortize the cost of communicating the 
response time samples to the record keeper, a policy to 
collect some number of samples before communicating 
them could be implemented. Alternately, the policy may 
be to communicate only response times greater than an 
upper bound. The Timekeeper actions in Figure 2 

implement the former (“communicate samples in bulk”) 
policy. The next section describes the Timekeeper 
actions to communicate the collected response time 
samples in greater detail. 

3.2 Transmitting Response Time Values 

The response time samples collected by the Timekeeper 
and saved by the Librarian must be communicated to a 
record keeper in order to be of use. Our framework 
permits the record keeper can be the source web server 
itself, or any other web server on the Internet. Several 
policies could be established for communicating the 
samples. Some examples are: 

• Communicate on every sample 

• Communicate after accumulating a prescribed 
number of samples 

Figure 1: Timekeeper actions 

END: Browser exits 
OR 

new page loads 

Script 1 

 now = current time 
 delta  = now – sendtime 
                    (from Librarian) 
 Record delta (see Figure 2) 

Script 2: onload event handler  

Perform cleanup operations 
(see Figure 2) 

Script 3 

START: User clicks on link 

END: User views page 

START: User exits browser  or 
 Loads new page 

       sendtime = current time 
       Save sendtime (use Librarian)  
       Load page indicated by link 

Figure 2: Timekeeper operations contd. (implements “communicate samples in bulk” policy) 

Accumulate 
sample? 

Save sample using 
Librarian 

END 

Retrieve saved samples 
from Librarian 

Compose record keeper 
URL, access record keeper 

(see Section 3.2) 

END 

YES 

NO 

START 
(new response time sample) 

START 
(cleanup operation) 



   

• Communicate only those samples that exceed a pre-
established threshold value. 

• Communicate only samples from favored customers 
(as determined by a cookie). 

For any established policy, we assume that the source 
web server provides the Timekeeper with a JavaScript 
function to determine when and what samples to 
communicate. 

The Timekeeper uses a JavaScript Image object in order 
to perform the communication.  Image objects were 
introduced in client—side JavaScript 1.1 and are 
primarily used to preload images [9]. By setting the src 
attribute of an image object to a desired URL, the 
specified content is loaded and placed in the browser’s 
cache. By initiating actions such as image replacement 
and animation only after all the desired images are 
preloaded, the quality of visual effects in the browser 
can be enhanced. Image loading does not block 
JavaScript execution. Instead, the image content is 
loaded asynchronously alongside other browser actions.  

When the Timekeeper needs to communicate with the 
record keeper, it composes a special URL containing 
the data. This URL accesses a script on the record 
keeper site. The record keeper extracts information 
from the URL, and replies with a response. The 
response is set to be non-cacheable in order to prevent 
intervening proxies from squelching record keeper 
communication. 

HTML specifications stipulate that if the currently 
loaded document has an unload event handler 
specified, that handler must be invoked before a new 
document is loaded. The unload handler is also invoked 
if the user closes the browser window. The Timekeeper 
uses this event handler to communicate with the record 
keeper when the user visits an uninstrumented page or 
makes an outside entry to a page in the bundle. 

Using the image preload technique to communicate with 
the record keeper on a browser close is problematic. 
Consider a case where the user has closed the browser, 
and the unload handler has initiated the record keeper 
image load. Since image loading is done 
asynchronously, the browser may die even before the 
TCP connection to the record keeper is fully open. 
Unfortunately, to the best of our knowledge, neither 
Navigator nor Explorer support UDP URL schemes. 
Consequently, we use a different method for record 
keeper communication on a browser close. 

In both Navigator and Explorer, a new browser window 
can be reliably opened from an unload handler. A new 
window is opened by using the open method of the 

current window object2. We use this feature to 
communicate with the record keeper by opening a new 
window with the response time URL. The record keeper 
is set up to respond with a page that closes the window. 
This is done with a page with an onload handler that 
performs a “window.close( )” operation. 

Since the unload handler is invoked when each 
document is displaced from the browser window, the 
Timekeeper needs to distinguish between the unload 
handler invocations on an instrumented entry to the next 
page, or on an outside entry to an arbitrary page that 
may be inside or outside the bundle. We make the 
distinction by setting a variable in the window object 
before carrying out an instrumented entry to the next 
page. The unload handler checks whether this variable 
is set in the window object. If it finds the variable set, 
we know that the current page is being displaced to 
make room for an instrumented page in the bundle. 
Otherwise, the Timekeeper performs the cleanup 
operations from within the unload handler. We reset this 
variable in readiness for the next unload within the 
onload handler that is invoked after an instrumented 
page has fully loaded. 

Since opening a separate communication window could 
detract from the end-user experience, the Timekeeper 
has two choices. First, it can make the communication 
window small (but see Section 3.3.2). Second, it can 
decide that losing the last few collected samples is 
better than opening a new window. 

Yet another option is to use a cookie. If the client 
browser has cookies enabled, the Timekeeper could also 
save the information in a cookie for transmission at a 
later date. This cookie could be expired as soon as a 
request carrying it is sent to the source web server, 
causing it to no longer be sent out on future requests. 
Due to JavaScript security restrictions that control 
access to cookies from scripts, the record keeper will 
have to be the same as the source web server in this 
case. 

3.3. The Librarian 

The Librarian is responsible for storing and retrieving 
time samples on behalf of the Timekeeper. At present, 
to the best of our knowledge, there is no straightforward 
mechanism in a browser to maintain state across page 
loads. In particular, for security reasons, browsers do 
not permit client-side scripts to maintain state across 

                                                 
2 For example, enable JavaScript in your browser and 
visit http://www.cs.rice.edu/~rrk/neverclose.html. Many 
web sites use this annoying technique to make it 
difficult for users to leave their site.  



   

page loads. When a new document is loaded, all of the 
scripts and variables associated with a page are cleared. 
In this section, we present three approaches for 
implementing the Librarian without resorting to browser 
modifications. 

3.3.1 Saving State in a Cookie 

HTTP, the protocol used for retrieving web pages, is 
inherently stateless [7]. Cookies were introduced as a 
mechanism to enable clients to build stateful sessions on 
top of HTTP [11]. Simply stated, a cookie is a tag 
created by the server and delivered to the client along 
with an HTTP response. On subsequent requests to the 
same server, the client presents the tag along with its 
request. Cookies permit a session to be built using 
individual HTTP transactions. 

Cookies can be subverted for maintaining state. While it 
is the server that typically sets cookies, client-side 
scripts also have the ability to set, modify, and retrieve 
cookies. Thus, the Librarian could use cookies to 
maintain state across page loads. The Librarian could 
use JavaScript when state needs to be saved, and 
retrieve it again using JavaScript. 

The naïve approach described above has a severe 
drawback. Today, the WWW is dotted with caches and 
proxies. The idea behind caching is to place an object 
“closer” to the user, reducing the demands placed by a 
request on both the network and the origin web server, 
enabling it to be serviced quickly. However, since 
cookies are used to create sessions out of HTTP, a 
cache that observes a request with an attached cookie 
typically does not service the request forwarding it 
instead to the origin web server [7]. This is the correct 
approach since two requests for the same URL with 
different cookies could potentially lead to different 
responses. Consequently, using cookies to maintain 
state would cause each request to be sent to the origin 
web server, negating the usefulness of proxies and 
caches. The cookie approach is therefore practical only 
when the content being delivered is itself dynamic, with 
no intervening proxy caching it. 

function OpenStateWindow( ) 
{ // Open a state window if needed 
    var h = self.open (“”, “statewin”, 
     “width=100,height=100,location=no”); 
    if (typeof h.valid == “undefined”) { 
  h.document.write (“Benign msg for user”); 
  h.document.close ( ); 
  h.valid = true;  // Don’t write next time 
 } 
 return h; 
} 
 
function SaveSendtime ( )  { 
    var h = OpenStateWindow ( ); 
 h.sendtime = (new Date( )).getTime ( ); 
} 
 
function GetSendtime ( )  { 
 var h = OpenStateWindow ( ); 
 return h.sendtime;    // can be undefined 
} 
 
function RTonload ( )  {  // onload handler 
    var sendtime = GetSendtime ( ); 
 if (typeof sendtime != “undefined”)  { 
  var now = new Date ( ); 
  var delta = now.getTime ( ) – sendtime; 
  // Accumulate delta, or transmit now 
 } 
} 
  
function RTonclick ( )  {  // link onclick handler 
 SaveSendtime ( ); 
 return true;  // Permit link to be dereferenced 
} 

Figure 3: Timekeeper operation with Separate Window 
Librarian 

Response Time Frame: INVISIBLE to user 
Frame name = “RTFrame” 
Contains no document 

Main Frame: VISIBLE to user 
        Sized to full browser window 

Displays documents loaded by user 

Browser window on desktop 

Figure 4: Timekeeper and Librarian operations 
when using frames 

function SaveSendtime ( ) { 
   var now = new Date ( ); 
   top.RTFrame.sendtime = now.getTime ( ); 
} 
 
function GetSendtime ( ) { 
   if (top.frames.length == 0 || 

top.frames[0].name != “RTFrame”) 
      top.location = Frameset page URL; 
   else 
      return top.RTFrame.sendtime; 
} 
 
function RTonload is same as in Figure 3 
function RTonclick is same as in Figure 3 



   

3.3.2 Using a Separate Window 

Since client-side JavaScript enables state to be stored in 
a window object, the simplest approach is to open a new 
window on the first outside entry to a web page in the 
bundle and to save the state there. For as long as this 
window stays open and until a different URL is loaded 
in it, state stored in its context can be recovered. Figure 
3 shows sample JavaScript code that achieves this goal. 

One limitation of this approach is the presence of the 
state window on the user’s desktop. Even though this 
window is small and can be made to contain a benign 
message, a user may arbitrarily close the window. 
Furthermore, JavaScript security restrictions prevent a 
script from opening a window in a minimized state, or 
with a size smaller than a prescribed minimum, unless 
the script has the UniversalBrowserWrite privilege. 
While this privilege can be obtained by involving the 
user, the process is fairly awkward and cumbersome. 

3.3.3 The Frame Approach 

In the previous section we described how a separate 
browser window on the user’s desktop could be used to 
save state. However, in client-side JavaScript, the 
window object does not have a one-to-one correlation 
with a browser window. More specifically, each HTML 
frame within a browser window corresponds to a 
separate window object. This correspondence paves the 
way for us to save state in the window object context of 
a frame within the same browser window as that 
displaying the document being loaded by the user. 

The window object is the global object and execution 
context in client-side JavaScript. There is no direct 
correlation between a window as viewed in a desktop 
environment, and the window object. A window object 
is created for each desktop-level window or frame 
within a browser desktop window that displays a HTML 
document. From our perspective, the interesting 
property of client-side JavaScript is that it permits 
scripts executing in the context of one window object to 
access variables and scripts executing in another 
window object’s context [9].  

The HTML standard describes frames as follows, 
permitting frames to be created with zero size [8]. Such 
frames will be invisible to the user. 

HTML frames allow authors to present documents 
in multiple views, which may be independent 
windows or subwindows. Multiple views offer 
designers a way to keep certain information visible, 
while other views are scrolled or replaced. For 
example, within the same window, one frame might 
display a static banner, a second a navigation menu, 
and a third the main document that can be scrolled 

through or replaced by navigating in the second 
frame.  

The Librarian can use frames to save state by placing 
each instrumented page in the bundle within a frameset 
document that divides the top-level browser window 
into two frames: the response-time frame and the main 
frame. The response-time frame is set to zero size and is 
therefore not visible to the user. The main frame holds 
the instrumented content.  

There are two ways a user can make an uninstrumented 
entry to a page. First, a user could directly enter the 
URL of the frameset document. This causes both the 
response-time frame and the data frame to be loaded 
within the browser. Alternately, the user could directly 
enter the URL of the data frame in the browser’s 
location bar. To force the browser to load the 
corresponding frameset document, each instrumented 
page in the bundle contains JavaScript to check for the 
existence of the response-time frame. The existence 
check is made after the main frame has loaded. If the 
response time frame does not exist, the JavaScript 
forces the corresponding frameset document to be 
loaded in the top-level browser window.  

State saving is accomplished exactly as in the case with 
the separate window. Figure 4 explains the approach, 
showing how the Timekeeper and the Librarian interact 
together to determine the response time values.  

Visiting the site through a browser window causes the 
following actions to take place. On the first outside 
entry to an uninstrumented page, the JavaScript actions 
in Figure 4 cause the corresponding frameset document 
to be loaded. As long as the user makes instrumented 
entries to the other pages in the bundle, the response 
time frame stays in the top-level browser window. The 
response-time frame needs to be reloaded only if the 
user makes an uninstrumented entry to a page in the 
bundle. 

The main limitation of this approach is the need for 
loading the frameset document on uninstrumented 
entries to pages in the bundle. When encountering a 
page with frames, the browser first obtains the 
“container” frameset document. Only after receiving the 
container frameset can the browser determine what 
documents to obtain and render in the internal frames. 
This could give rise to extra client-server transactions 
and delays for the user. 

Three factors mitigate the problem caused by the 
frameset document. First, the web site might already 
have a frame that exists on all pages, enabling the 
Librarian to simply use that frame. Second, the extra 
client-server transactions (when the Librarian uses a 
dedicated frame) are encountered only during the initial 



   

uninstrumented entry to a web page. Subsequent 
instrumented browsing occurs at full speed. Finally, it 
may be possible to avoid the extra transactions by 
setting a long lifetime for the frameset documents. 
HTTP permits content to be delivered with explicit 
expiration times, allowing intervening caches and the 
client to cache content and use it without checking for 
validity against the origin web server. By providing the 
frameset document with a long lifetime, the browser 
needs to fetch the container frameset only when it is 
absent from the local browser cache. Consequently, 
when the user revisits a bundle at periodic intervals, as 
often happens since people are creatures of habit, the 
browser will be able to use a cached copy of the 
frameset document. Only the main frame’s content will 
need to be fetched in such cases.  

3.3.4 Using the Window Name 

In Section 3.3.3 we described the window object in 
client-side JavaScript. Every window object has a 
name property. This property exists primarily for use 
as the value of a HTML TARGET attribute in the <A> 
or <FORM> tags. In essence, the TARGET attribute 
enables an anchor or form to display its results (when 
the linked document is dereferenced or the form is 
submitted) in the window with the supplied name. 

The initial window and all new browser windows 
opened by most versions of both Explorer and 
Navigator have no pre-defined name property. 
Consequently, these windows cannot be addressed with 
a TARGET attribute. The name property is read-only 
in JavaScript 1.0, creating a problem when the initial 
window has to be addressed. JavaScript 1.1 resolves 
this problem by enabling the name attribute to be 
modified from within a script [9]. 

When a new page is loaded in a window, all of the 
scripts and variables associated with the window object 
are cleared. However, a window’s name property 
persists across page loads. Thus a web page loaded into 
a window can be the target of actions in another 
window, even if the loaded content does not explicitly 
set the window name. This feature enables the same 
content to be loaded in the main browser window or in a 
popup window, depending on the context from where it 
is referenced.  

We can leverage the persistence of the name property 
to store state. The idea is to append the desired state to 
the window name and to retrieve it from there, restoring 

the name after the retrieval3. Figure 5 illustrates the 
details of this approach. 

An obvious limitation of using the window name is the 
race condition it introduces. In order to compute 
response times, the window name is changed just prior 
to a new document being loaded in a window. The 
saved state is retrieved and the window name restored 
only when the document has fully loaded. During this 
interval, the window cannot be referred to by its original 
name. 

The race condition causes a problem partly due to the 
awkward interface that client-side JavaScript provides 
for referring to a window. Given a window name, the 
only way to obtain a reference to the window is by 
using the window.open method. The name supplied to 
the method must be exact, with no wildcards allowed. 
Furthermore, if a window with the supplied name does 
not exist, the method simply opens a new window with 
that name. These properties of the open interface imply 
that if a window with an ongoing instrumented page 
load is targeted, a new window with the supplied name 
is opened. This may distract and confuse the user. 

In the next section, we describe how the window name 
approach can be combined with the use of separate 
windows to yield a practical, useful solution. 

3.3.5. Separate Windows  + Window Names  

Taken individually, the separate window and window 
name schemes suffer from limitations when used to 
implement the Librarian. The separate window could be 
a distraction for the user, since it must remain open for 

                                                 
3 We have empirically determined that both Navigator 
and Explorer support names over 1000 characters. 

function SaveSendtime ( )  { 
    var s = (new Date( )).getTime ( ); 
    window.name += ‘_RT_’ + s; 
} 
 
function GetSendtime ( ) { 
    var n = window.name; 
    var rt = n.indexOf (‘_RT_’); 
    var s = n.substring (rt+4, n.length); 
    window.name = n.substring (0, rt); 
    return s; 
} 
 
function RTonload is same as in Figure 3 
function RTonclick is same as in Figure 3 

Figure 5: Timekeeper and Librarian operations 
when using window names 



   

as long as there are instrumented entries to the bundle. 
The window name scheme exposes a race condition that 
could open a new browser window on the user’s 
desktop, contrary to the content developer’s intent. 

However, the separate window and the window name 
schemes can be combined together to yield a practical 
solution that does not suffer from these limitations. The 
idea is to divide the windows in which the instrumented 
pages will be displayed into two sets: the main windows 
and the child windows. Main windows are those that are 
not targets for any content. Child windows are those in 
which content is loaded by actions in both main and 
child windows. 

For a page that is loaded in a main window, the 
Librarian saves state in that window’s name. For a page 
that is loaded in a child window, the Librarian saves 
state as a property in the context of the child window’s 
ancestor. The ancestor can be determined by following 
the opener property of the child window, which is a 
reference to the window object that opened the child 
window. State saving and retrieving will be 
accomplished by using a combination of the scripts 
shown in Figures 4 and 5. Note that it is totally safe to 
change a main window’s name, since by definition, a 
main window can never be the target for any content. 

3.4. Limitations 

Our schemes have the following limitations: 

1. We cannot compute response times for outside 
entries to instrumented web pages. For example, we 
cannot compute response times for pages loaded by 
directly entering a URL into a browser’s location 
bar. 

2. Our scheme handles instrumented entries to HTML 
pages and objects embedded within HTML pages. 
We cannot compute response times for other 
MIME types. For instance, we cannot compute the 
response times for pure images (outside of a HTML 
document) directly loaded by a browser, or for PDF 
documents loaded and displayed by the Adobe 
plugin. In order to handle such MIME types, we 
need plugin support in the form of a public method 
that can be used to determine the load status of the 
content. Flash animations are an example of a 
MIME type we can handle even when the 
animation is loaded outside of an <OBJECT> 

context, by using the PercentLoaded public 
method of the MacroMedia Flash plugin [16].  

3. Our implementation uses client-side JavaScript 1.1. 
Consequently, it will not work with browsers that 
do not support JavaScript 1.1, or that have disabled 
JavaScript. In particular, our implementation 
requires Navigator versions above 3.x, and 
Explorer versions above 4.0. 

4. Status and Evaluation 
We have implemented our scheme on “The Wondering 
Minstrels,” a poem-of-the-day web site that receives 
several hundred hits a day. The site can be accessed at 
http://www.cs.rice.edu/~rrk/minstrels.html, and has over 
650 poems (now) that range in size from 2.6KBytes to 
30 Kbytes. A few files that index all the poems take up 
about 230Kbytes. We instrumented this site using an 
automated tool we have developed, setting the record 
keeper to be www.cs.utexas.edu. Note that the origin 
web server and the record keeper are different servers. 

 
Any 
time 

00:00 
to 

07:59 

08:00 
to 

15:59 

16:00 
to 

23:59 

All 971 161 411 399 

Unknown TLD 92 25 44 23 

TLD: .us, .com, 
.org, .net, .edu, .ca 

685 72 285 328 

All other TLDs 194 64 82 48 

Table 1 shows the distribution of the response time 
values we have collected from real visitors to the site 
for files between 4400 and 4900 bytes in size. As of Jan 
21, 2001, these were the most frequently accessed files 
from the site. The actual web server response is larger 
by about 260 bytes, which is the approximate size of the 
HTTP header for these responses. We have broken 
down the collected values by the time when the request 
was serviced, and by the top-level domain (TLD) of the 
client making the request. All times listed are behind 
UTC by 6 hours. We were unable to resolve hostnames 
for a number of clients accessing the site. These 
unresolved hostnames are listed as “Unknown” and 
account for 9.5% of the collected values.  

Table 1: Distribution of collected response time values 



   

Figure 6 shows a histogram of the normalized response 
time values, irrespective of the TLD from where or the 
time the request was made. Each data point in the figure 
indicates the number of response time values that fall 
into a 200 ms bin to the right of that point. All response 
times exceeding 10.8 seconds are aggregated and placed 
into the bin at 11 seconds. There are several interesting 
points to note about the figure. First, a small fraction of 
the requests (about 1.8%) were satisfied within 200ms. 
This is probably due to a cache hit in the client itself, or 
in a proxy very close to it. Second, by considering the 
average attention span window to be 4 seconds (i.e., “I 
want my page to load in 4 seconds or I get bored”), we 
see that 16% of the responses were served outside the 
average attention span window. 

Breaking down the response time values by time period 
illustrates the variation in response times over the 
course of a day. Figures 7, 8, and 9 show the response 
time values for the midnight–8AM, 8AM–4PM, and 
4PM-Midnight time windows respectively. These 
figures show that the fraction of pages that take longer 
than 4 seconds to load decreases from 22% in the night, 
to 19% during the morning, and to 11% during the 
afternoon.  

Figures 10 and 11 break up the response time values by 
top-level domain. We group together all com, org, edu, 
net, us, and ca domains into one group, and all other 
known TLDs into another. We realize that com, org, 
and net clients could be spread throughout the world. 
However, this crude division allows us to focus on the 
response times faced by visitors located far away from 
the Minstrels web site. 

Figure 11 clearly shows the larger response times seen 
by far-away visitors. About 26% of the users in this 
group faced delays of more than 4 seconds. Further 
analysis reveals that the two largest set of visitors in this 

group are from the United Kingdom and Argentina. 
While only 12.5% of the English faced response times 
larger than 4 seconds, fully 58% of the Argentines fell 
into the same category. Interestingly, if the Argentine 
visitors were all served within 4 seconds, only 15% of 
the far-away visitors would have waited for more than 4 
seconds. These results indicate that if the Minstrels site 

Figure 6: Distribution of collected response time values 
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were to contract with a proxy caching service, placing 
just one cache in close proximity to the Argentine 
visitors would provide the most benefit. 

The nature of analysis presented here is similar to what 
a commercial site would want to conduct on its visitors. 
Our framework enables such an analysis and shows how 
a site appears to different user groups accessing it. We 
would like to stress here that such an analysis would not 
be possible using information gathered at the server 
only, as it would lack the actual networking effects. 
Also, we would like to stress that traditional approaches 
such as pinging the server would have a prohibitive cost 
emulating all possible users and their geographic 
distribution. Our experience with measuring actual 
response times seen by real visitors to the Minstrels site 
illustrates the need for a measurement framework such 
as ours. The analysis we describe here is one of many 
that can be carried out with real response-time data. 

5. Related Work 
A number of web sites contract with third party 
companies to poll their servers at periodic intervals. 
Typically, a battery of geographically distributed clients 
“ping” the server with fictitious transactions. The site 
owner specifies the frequency of polling and the 
geographic distribution. Examples of such polling 
services include ServerCheckTM [4], GoldTestTM [5], 
and eValidTM [6]. Polling suffers from several 
drawbacks. First, the data obtained through polling is a 
statistical approximation to the response time seen by 
real visitors to the web site. Polling can also increase 
the load generated on a site’s servers. Ensuring accurate 
or complete geographic coverage using polling is also 
difficult. Finally, some services such as financial 
transactions may be cumbersome to measure using 
fictitious requests. 

Candle’s eBusiness Assurance (eBATM) product [17] 
provides an accurate breakdown of the time spent by a 
user on a web page. eBA uses an applet to store state on 
the client browser between page loads. The time at 
which the user clicks on a link is stored in the applet's 
context and the response time computed after the page 
fully loads within the browser. eBA appears to have 
been introduced around September 2000. In comparison 
to our work, eBA’s main difference is its dependence on 
a Java applet in order to save state. Since applets are 
still not widely used owing to their (as perceived) 
heavyweight nature, this is a fairly significant drawback. 
In contrast, our scheme requires only JavaScript support 
in order to compute response times. A significant 
fraction of the sites on the web today (IBM, CNN, 
ETrade, CNBC, Disney, etc.) use JavaScript, greatly 
reducing the barrier to using a scheme such as ours. 

Tivoli has also introduced a product around September 
2000 called Quality of Service Monitor (QoS), as part 
of their Web Management Solutions package [18]. QoS 
uses a proxy that sits inside the web site firewall to 
intercept responses as they leave the site. The proxy 
adds a small amount of JavaScript code to the content 
and also remembers the time at which the response is 
sent back. The added script contacts the QoS proxy 
when the page has finished rendering. QoS then 
approximates the response time seen by the client as the 
delta between when the response is sent to the client, 
and when the proxy hears back from the client. There 
are two main differences between the QoS work and 
ours. First, in order to avoid clock synchronization 
problems, the record keeper must be the QoS proxy. 
Second, QoS calculates the response time from the 
point of view of the proxy, giving rise to three important 
implications. First, response times can be computed 
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only if the client contacts the proxy after each page is 
rendered, adding an extra client--proxy communication 
to every transaction. Second, the client most likely does 
not have to create a new TCP connection to 
communicate with the proxy after rendering the page. 
Consequently, the measured response time does not take 
TCP connection setup times into account. Third, QoS 
cannot determine response times for requests fulfilled 
by intermediate proxy caches. QoS is more suited for 
environments such as e-commerce transactions, where 
the origin server is likely to be involved in every 
response. Furthermore, QoS also measures the back-end 
transaction service time (by tagging requests as the 
enter the site), and the page render time (measured by 
the added script), both of which are very valuable. 

6. Conclusions 

On the World Wide Web, the response time seen by a 
client is a key metric that determines end-user 
satisfaction. Most schemes in existence today rely on 
polling the web server using a set of geographically 
dispersed clients in order to obtain a representative set 
of response time samples. Polling yields data that is at 
worst inaccurate, and at best, statistical in nature. 

In this paper, we have presented a framework for 
accurately measuring the response time perceived by a 
client browser. We are able to measure response times 
for all visits to pages instrumented using our 
framework, through hyperlinks that have been 
instrumented. We can also measure response times for 
all objects embedded within a web page. Our 
framework imposes very little overhead on the client 
computer, and fits the needs of various existing 
commercial web sites. 

We divide the work in collecting response time samples 
between a Timekeeper, who computes all time values, 
and a Librarian, who provides the Timekeeper with 
services for saving and retrieving state. The Timekeeper 
implementation is fairly straightforward. On the other 
hand, implementing the Librarian is challenging owing 
to the difficulty in persisting state across page loads in 
existing browsers. We present several solutions to this 
problem, which are well suited for use in existing 
commercial web sites. 
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