
Proceedings of FREENIX Track:
2000 USENIX Annual Technical Conference

San Diego, California, USA, June 18–23, 2000

T R AF F I C D ATA R E P O S I T O R Y
AT T H E W I D E P R O J E C T

Kenjiro Cho, Koushirou Mitsuya, and Akira Kato

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Traffic Data Repository at the WIDE Project

Kenjiro Cho
Sony CSL

kjc@csl.sony.co.jp

Koushirou Mitsuya
Keio University

mitsuya@sfc.wide.ad.jp

Akira Kato
The University of Tokyo

kato@wide.ad.jp

Abstract

It becomes increasingly important for both network re-
searchers and operators to know the trend of network
traffic and to find anomaly in their network traffic. This
paper describes an on-going effort within the WIDE
project to collect a set of free tools to build a traffic data
repository containing detailed information of our back-
bone traffic. Traffic traces are collected by tcpdump and,
after removing privacy information, the traces are made
open to the public. We review the issues on user privacy,
and then, the tools used to build the WIDE traffic reposi-
tory. We will report the current status and findings in the
early stage of our IPv6 deployment.

1 Introduction

In this paper, we introduce an on-going effort within the
WIDE project to collect a set of free tools to build a traf-
fic data repository containing detailed information of our
backbone traffic. The WIDE project makes the result-
ing data sets publicly accessible so that this project is not
only on freely-redistributable software but also on freely-
redistributable traffic data sets.

The WIDE project is a research consortium in Japan
established in 1987. The members of the project include
network researchers, engineers and students of universi-
ties, industries and government. The focus of the project
is empirical study on a live large-scale internet. Thus,
WIDE runs its own internet testbed carrying both com-
modity traffic and research experiments. WIDE is also
responsible for various Internet operations including the
M-root name server, NSPIXP(Network Service Provider
Internet eXchange Point), AI3(Asian Internet Intercon-
nection Initiatives), and 6Bone in Japan.

The goals of our traffic repository are to promote traf-
fic analysis research as well as to promote development
of tools. Traffic characteristics in a backbone network are
considerably different from those in a local area network
but few people have access to traffic traces from back-

bone networks. Obtaining details of backbone traffic is
getting harder as more backbone networks are shifting
to commercial ISPs, which motivate us to build a traf-
fic repository [KMKA99]. Traffic traces from the 6Bone
is also made available to promote development of IPv6-
ready tools.

Traffic traces are collected at several points within the
WIDE backbone. Traces are in the tcpdump raw format
so that all header information is available and can be used
for detailed analysis.

We use commodity hardware and the existing freely-
available tools for building our traffic repository so that
it has nothing technically fancy. Our focus is rather con-
tinuity in making the latest traces available. At this writ-
ing, daily traces at one sample point have added up to the
record of more than a year.

2 Related Work

Packet Monitoring

Packet capturing was brought with the advent of Ether-
net. The first personal computer, Xerox Alto, already had
programs to monitor Ethernet. As Ethernet came into
wide use, dedicated network monitors became indispens-
able to developers and operators. The CMU/Stanford
enet packet filter is the first UNIX based packet filter de-
veloped in 1980 [MRA87]. It eventually evolved into the
Ultrix Packet Filter at DEC, NIT under SunOS, and BPF.

Userland programs that prints the headers of packets
appeared with UNIX workstation. Sun implemented NIT
(Network Interface Tap) to capture packets and etherfind
to print packet headers. The advantage of UNIX-based
monitoring tools is that users can use other software
tools available on UNIX for manipulating and analyzing
packet traces.

tcpdump [JLM89] is probably the most popular packet
capturing tool in the UNIX community. tcpdump first
appeared in 1989 and merged into BSD Net Release2 in
1991. tcpdump is based on a powerful filtering mecha-

nism, the BSD packet filter (BPF) [MJ93]. The packet
capturing and filtering facilities of tcpdump are imple-
mented in a separate library, pcap [JLM94]. The pcap
library became independent from tcpdump in 1994, and
there are a wide range of network monitoring or analy-
sis tools which integrate the pcap library. In 1999, tcp-
dump.org [tcp99] was organized by volunteers to main-
tain the tcpdump code.

High-performance monitoring systems are explored
by OC3MON [ACTW96] and its successors that are
based on a PC hardware but exclusively for ATM . Coral-
Reef [CAI99] is a package developed at CAIDA to ana-
lyze the output of OCxMON.

Packet monitoring techniques have been used to gather
long-term statistics. A pioneering work is statspy
[Bra88] in the NNStat package developed at ISI. As
SNMP becomes widely available, network statistics tools
are geared toward SNMP. MRTG [Oet96] and its suc-
cessor RRDtool [Oet99] are popular tools to collect traf-
fic counters from routers through SNMP. More recently,
cflowd [McR99] is developed at CAIDA to make use of
Cisco’s NetFlow [Cis98] that exports statistics of flow
cache entries.

Traffic Archive

The Internet Traffic Archive (ITA) [DMPS95] was cre-
ated in 1995 by Danzig et al. to promote research on
network analysis. ITA has several traces studied in pub-
lished papers as well as unstudied traces. ITA is an im-
portant step towards open traffic data sets because re-
search based on open data sets can be confirmed or fur-
ther analyzed by someone else, which leads to deeper
studies.

There are several different formats in the ITA archives
but the majority of the available traces are in the tcpdump
ascii output format. A set of shell scripts, called sanitize,
are written by Paxson and used to scramble addresses in
the tcpdump ascii output format to provide anonymity to
network users.

Our traffic repository was motivated in part by the ef-
fort at ITA. We employ automatic traffic sampling at reg-
ular intervals since the archives at ITA are not updated
much. We also thought that the tcpdump raw format
is preferable to the ascii format because the raw format
has more information, and powerful tools are available to
manipulate the raw format. Also, it would be useful for
developers of tools which handle traces in the tcpdump
raw format.

3 Motivation

WIDE installed several traffic sampling points within the
backbone since traffic data has been essential to both

network research and operation. However, traffic infor-
mation tend to be confined to a small set of members,
and it is difficult to share detailed information without a
framework to support sharing. This leads to the idea of a
traffic trace repository in which detailed traffic traces are
archived and easily accessible to everyone.

In order to build a traffic trace repository and make
good use of traces, we had to solve two problems. One is
to create a safety measure for handling traces that include
privacy information. The other is automation of the trace
acquisition process.

Traffic traces include private information of the net-
work users. Special care is needed to handle traces, and
thus, only limited members are allowed to handle raw
traces. Still, there is always a risk of accidents when we
handle raw traces. Hence, even if traces are available
only for limited members, it is important to make traces
safe enough to prevent possible accidents. On the other
hand, if traces are made free from user privacy, we can
make the traces open to the public since WIDE does not
need to worry about its impact to stock prices.

Automation of the maintenance process is the other
important factor. Collecting traffic traces in a long term
needs perseverance, and cannot be achieved unless most
of the work are automated. Not only automation of ac-
quisition but also automation of summarization and visu-
alization are essential to maintaining the repository be-
cause, if no feedback is given, people tend to run out of
energy.

There are strong concerns about security and privacy
with regard to making traces publicly available. After a
long discussion, we have reached a conclusion that the
benefits outweigh the risks. Or, at least, it is worth a
challenge.

4 Privacy Issues

Traffic traces contain privacy information including net-
work addresses and application payload so that it is im-
portant to understand issues involved in user privacy.

There are two major issues involving user privacy.

Removing user data: User private data must be re-
moved from traces. Traffic traces should have only
protocol headers, Protocol payload which contains
user data should be removed.

Providing anonymity: IP address is unique and can be
used to identify a user, and thus, addresses should
be scrambled to provide anonymity to users.

There are a wide variety of research purposes that have
different requirements for traces. No single method will
satisfy all the requirements and still keep user privacy.
We are trying to provide traces which can be used for a
wide range of research. For research which has specific

requirements, our traces will provide a starting point, and
can be used to narrow down its requirements. Once spe-
cific requirements become clear, it is easy to find a spe-
cific method to meet the requirements.

4.1 Removal of Payload
As a general rule, we should remove the payload of TCP
or UDP that contains users’ private information. If an-
other protocol header exists on top of a TCP or UDP
header and the inner header does not contain user pri-
vate information, the inner header may be maintained. If
it is difficult to judge whether a header contains user pri-
vate information or not, the header should be removed as
a precaution.

Once protocol payload is removed, the risk of jeopar-
dizing user privacy is considerably reduced. It would be
safe enough for use within a closed group. However, in
order to make traces open to the public, we need a further
level of security. That is, we need to provide anonymity
to network users.

4.2 Address Scrambling
We should provide anonymity to individuals and organi-
zations by scrambling source and destination addresses
in IP headers. IP addresses, however, have hierarchical
structures and special addresses such as broadcast ad-
dresses, multicast addresses and private addresses. It is
not easy to provide anonymity but still keeping the struc-
tures and special meanings. We should chose an appro-
priate method according to the importance of anonymity
in traces and the purpose of the data set.

Address Scrambling Methods

Address scrambling maps one IP address to another IP
address. There are a number of methods to scramble ad-
dresses.

1. the sequential numbering method maps each IP ad-
dress occurrence to a sequential number. Although
this method is easy to understand, it is difficult to
preserve other meanings of addresses.

2. the hash method maps an IP address to another IP
address using a hash function in order to provide
random mapping. It is also possible to preserve
the common address prefix between 2 addresses by
maintaining an ordered tree of addresses similar to a
routing table. In this method, if 2 IP addresses have
a common address prefix, they are mapped to ad-
dresses with a common address prefix of the same
length. Note that, although it preserves routing in-
formation, this method has a risk of being reverse-
engineered. For example, one can use a well-known
server’s address as a clue to de-scramble the address

prefix [Ylo96]. The impact of this threat, however,
depends on the importance of hiding the network
topology.

There are several choices regarding address consis-
tency between two or more data sets.

1. all occurrences of an address are to be mapped to a
single address within a data set.

2. all occurrences of an address are to be mapped to a
single address across different data sets.

Longer consistency is convenient for analysis but it also
makes reverse-engineering easier.

Address Issues

non-unique addresses Addresses not containing user
identifiers may be left without scrambling. Those
addresses include broadcast addresses, multicast
addresses, and private addresses. In the case of
IPv6, link-local addresses and site-local addresses
could contain unique interface identifier (e.g., MAC
address). A solicited-node multicast address con-
tain lower bits of the global address. Therefore,
these IPv6 addresses should be scrambled as well.

addresses in upper layers IP addresses could be con-
tained in an upper protocol message. For instance,
ICMP and DNS contain IP addresses in their proto-
col payload. These addresses must be scrambled in
the same manner, or removed.

MAC addresses Link-layer headers (e.g., Ethernet
headers) contain MAC addresses. A MAC address
contains vendor and model information which could
be part of user privacy or lead to a security hole.
However, traces from backbone networks do not
contain MAC addresses of user nodes since MAC
addresses recorded in the trace are only from local
nodes on the same segment.

IP/TCP options IP options can contain IP addresses.
Addresses in IP options should be scrambled in the
same manner. Otherwise, IP options should be re-
placed by NOP options, or removed.

On the other hand, TCP options do not contain pri-
vacy information. TCP options carry useful infor-
mation to analyze TCP behaviors so that TCP op-
tions may be preserved.

5 Methods

We use several tools to automatically maintain the traffic
repository. The details of these tools are described later
in this section. New trace data is collected from sampling

32-bit captured data length

MAC header

IP Header (20 bytes)

32-bit packet length

64-bit timestamp

IP options (if any)

TCP Header + TCP options (if any)
or UDP Header ot ICMP Header or ...

Figure 1: Pcap header format

points to the repository during the night. A web page for
the new trace is automatically created.

At a sampling node, a script is invoked from cron to
run tcpdump and compress the trace. The obtained raw
trace file is placed under a certain directory.

At the repository node, another script is invoked from
cron to fetch the raw trace and process it. The script
copies the compressed raw trace from the sampling point
over a secure session using scp. Then, the script uncom-
presses the trace and invokes tcpdpriv to remove privacy
information from the trace. The trace is fed into tcpdstat
to get a summary output. The script creates a web page
for the trace, and updates the index page to include the
newly created page. Finally, the script compresses the
trace data again, and place it for the ftp service.

5.1 tcpdump

We use tcpdump to obtain traffic traces because tcpdump
is widely used, and installed as part of the default tools
on many systems. In addition, there are many tools that
integrates the pcap library and be able to read tcpdump
output files. Those tools include tcptrace, tcpslice, tcpd-
stat and ttt.

tcpdump, by default, puts the network interface into
promiscuous mode to capture every packet going across
the wire. In the BSD-derived kernel, BPF is implemented
as a packet capture mechanism. When BPF is enabled,
the network driver in the kernel passes both sending and
receiving data-link level frames to BPF. BPF performs
packet filtering if necessary, adds timestamp, and copies
the fixed length from the head of the frame into the
store buffer. tcpdump in the user space can read multi-
ple frames in a single read from the store buffer in the
kernel in an efficient manner. tcpdump, by default, prints
the header information of each packet in a text format.
With -w option, tcpdump writes out the packet frames
into a specified file. With -r option, tcpdump reads from a
saved file instead of a network interface to replay a saved
file. The pcap library is used to read or write data in the

raw format. Thus, it is easy to write a program to read or
write packets in the tcpdump format.

Figure 1 shows the format of raw tcpdump output. In
the BSD systems, the kernel uses microtime() for times-
tamp; the precision of the timestamp is 1 usec on the PC
architecture. Timestamp is taken when a packet is passed
to BPF from the network driver so that it is the time that
the driver sees that packet.

5.2 tcpdpriv

We use tcpdpriv to remove user data and scramble ad-
dresses. tcpdpriv was developed by Greg Minshall at Ip-
silon Networks in 1996. tcpdpriv removes privacy infor-
mation in a raw tcpdump output. tcpdpriv uses the pcap
library to read and write tcpdump output files. tcpdpriv
removes the payload of TCP and UDP, and the entire IP
payload for other protocols. tcpdpriv implements several
address scrambling methods; the sequential numbering
method and its variants, and a hash method with preserv-
ing address prefix.

However, the original tcpdpriv lacks several features
we need:

� it does not support IPv6.

� it does not preserve TCP options that are essential
to analyzing TCP behaviors.

� we also want to preserve other protocols such as
ICMP, ARP and DNS.

Thus, we have modified the original tcpdpriv to support
these features. The default settings are also changed to
meet our requirements since the options seem to be too
complex and a mistake of option selection could be fatal
to user privacy.

5.3 tcpdstat

We developed tcpdstat to get summary information of
a tcpdump file. tcpdstat reads a tcpdump file using the
pcap library and prints the statistics of a trace. The out-
put includes the number of packets, the average rate and
its standard deviation, the number of unique source and
destination address pairs, and the breakdown of proto-
cols.

tcpdstat is intended to provide a rough idea of the
trace content. The output can be easily converted to a
HTTP format. It also provides helpful information to find
anomaly in a trace. For example, if the traffic volume of
ICMP is unusually large, or if the traffic volume of a spe-
cific address pair is unusually large, it could be a sign of
some form of a DoS attack.

5.4 Other Tools
There are other tools that are not used to create the traf-
fic repository but can read tcpdump files and useful for
analyzing traces afterwards.

tcpslice by Vern Paxon extracts portions of a trace.
tcptrace by Shawn Ostermann produces detailed infor-
mation about each TCP connection in a trace. tracelook
by Greg Minshall provides xgraph plots of TCP connec-
tions in a trace. flstats also by Minshall prints flow statis-
tics. ethereal by Gerald Combs is a traffic analyzer with
a graphical user interface. ethereal uses the pcap library,
and thus, can replay a tcpdump file. Our ttt (Tele Traf-
fic Tapper) tool displays composition graphs of protocols
and host addresses in real time. ttt can replay a trace file
at a given speed so that it is possible to replay a 1-hour
trace in 1 minute.

6 Current Status

Currently, we are collecting daily-traces from the follow-
ing sampling points.

trans-pacific is a 1.5Mbps T1 line, one of the several
international links of WIDE. The sampling point is
on an Ethernet segment one hop before the T1 line.
The incoming traffic (from U.S. to Japan) of this
link is fairly congested.

6Bone is located on a FastEthernet segment connected
to NXPIXP-6 (An IPv6 internet exchange point in
Tokyo) [WID99]. The segment located at an AS
boundary, and the traffic includes only native IPv6
and does not include IPv4 except tunneled IPv4 over
IPv6. Because NXPIXP-6 is built on a FastEthernet
switch, only the traffic crossing a single port of the
switch can be captured.

Traces are sampled at a fixed time of day. This is obvi-
ously not desirable and we need to find a better sampling
method.

We started daily data collection at the trans-pacific
point in February 1999. Since WIDE has a number of
connections to the Internet exchange points, the return
path of a session does not necessarily go through the
same link.

The maximum size of each trace file is limited to about
100M bytes (about 40MB when compressed). We be-
lieve 100MB is an appropriate size for handling on a
commodity PC as well as for fetching over the network,
still it has enough information for statistical analysis.

Figure 2 is a sample output of tcpdstat from the trans-
pacific point on February 12, 2000. This 1-hour-long
trace contains about 2 million packets, the number of
unique address pairs is about 56K. HTTP is dominant in
the trace, 70% of the total packets and 62% of the total
bytes.

Among the collected traces, some data sets contain
traces of DoS attacks such as portscan and smurf. These
traces could be useful for developing tools to detect such
attacks.

The 6bone point has been added in January 2000. The
traffic volume of the 6bone point is still low; the aver-
age rate is around 100Kbps and the majority of traffic is
BGP and ICMPv6. However, we expect IPv6 traffic will
increase in a few years as major router and OS vendors
have started shipping IPv6 support in their base systems.
Our intention is to record the evolution of IPv6 traffic in
a long term.

Figure 3 is the output of tcpdstat from the 6Bone point
on the same day. This 3.5-hour long trace contains about
200K packets, the number of unique address pairs is
about 270.

We expect that IPv6 traces will be useful for develop-
ing tools to support IPv6 since IPv6 traffic traces, espe-
cially on a backbone link, are not widely available.

Although we started collecting traces and made them
available, we have not studied the traces thoroughly.
Rather, one of the purposes of our open traffic repository
is to leave analysis to those who are interested in doing
it.

If other organizations start building similar but pos-
sibly closed traffic repositories, it would be possible to
share experiences and development of tools. Especially,
there are demands to develop a counter measure against
the ever-growing threat of DoS attacks.

7 Future Work

Our focus at this moment is long-term data collection.
So far, we have set sampling points only on relatively
slow connections. Data collection from faster links is an
obvious direction, but we have limited storage capacity
and network capacity.

As for high-performance packet capturing, we can
benefit from advanced research such as OC3MON
[ACTW96]. OC3MON uses a DOS-based capturing tool
to monopolize CPU, and takes advantage of the proces-
sor on the ATM card for offloading.

However, today’s commodity PC is already quite pow-
erful: Gigabit Ethernet is about 125MB/sec. The bus
bandwidth of 32bit PCI at 33MHz is 132MB/sec, and
64bit PCI at 66MHz is 528MB/sec. The disk inter-
face is getting faster as well. Ultra160 SCSI provides
160MB/sec. A single high-end disk has sustained rate
of about 30MB/sec but disks can be used in parallel so
that 4 disks provide about 120MB/sec. CPU power itself
seems to be catching up.

There are also issues to run tcpdump on non-realtime
UNIX; preemption could affect reliable data collection,
resource contention and kernel-user data copy could af-

fect performance, network cards and drivers are not de-
signed to obtain precise timestamp. Still, if the system is
correctly tuned, a commodity PC seems to be capable of
capturing packets even at a gigabit network.

8 Conclusion

We have presented the WIDE traffic repository, an on-
going effort to create archives of tcpdump files collected
at several points within the WIDE backbone. Our at-
tempt is a challenge to the legitimacy of concerns about
revealing detailed traces for privacy and security reasons.
We hope our repository will be useful for traffic analysis
and for development of tools.

9 Availability

The WIDE traffic repository is at http://tracer.csl.sony.
co.jp/mawi/. The traffic traces along with the tools we
use can be downloaded from there. The traffic traces can
be used only for research purposes. Actions that trespass
upon users’ privacy are prohibited.

References

[ACTW96] J. Apisdorf, K. Claffy, K. Thompson, and
R. Wilder. Oc3mon: Flexible, afford-
able, high performance statistics collection.
In Proceedings of LISA X, pages 97–112,
Chicago, IL, September 1996.

[Bra88] R. T. Braden. A pseudo-machine for packet
monitoring and statistics. In Proceedings
of SIGCOMM ’88 Symposium, pages 200–
209, Stanford, California, August 1988.

[CAI99] Coralreef. http://www.caida.org/Tools/
CoralReef/, 1999.

[Cis98] Cisco NetFlow. http://www.cisco.com/
warp/public/732/netflow/, 1998.

[DMPS95] Peter Danzig, Jeff Mogul, Vern Paxson,
and Mike Schwartz. The Internet Traffic
Archive. http://ita.ee.lbl.gov/, 1995.

[JLM89] Van Jacobson, Craig Leres, and Steve Mc-
Canne. tcpdump. ftp://ftp.ee.lbl.gov/, 1989.

[JLM94] Van Jacobson, Craig Leres, and Steve Mc-
Canne. libpcap. ftp://ftp.ee.lbl.gov/, 1994.

[KMKA99] Akira KATO, Jun MURAI, Satoshi KAT-
SUNO, and Tohru ASAMI. An internet
traffic data repository: The architecture and
the design policy. In Proceedings of SOSP,
San Jose, CA, June 1999.

[McR99] Daniel McRobb. cflowd. http://www.caida.
org/Tools/Cflowd/, 1999.

[MJ93] Steven McCanne and Van Jacobson. A
BSD packet filter: A new architecture for
user-level packet capture. In Proceedings
of USENIX Winter Conference, pages 259–
269, San Diego, California, January 1993.
Usenix.

[MRA87] J. C. Mogul, R. F. Rashid, and M. J. Ac-
cetta. The packet filter: An efficient mecha-
nism for user-level network code. In Pro-
ceedings of SOSP, pages 39–51, Austin,
TX, November 1987.

[Oet96] Tobias Oetiker. MRTG: Multi Router Traf-
fic Grapher. http://ee-staff.ethz.ch/�oetiker/
webtools/mrtg/mrtg.html, 1996.

[Oet99] Tobias Oetiker. RRDtool. http://www.
caida.org/tools/utilities/rrdtool/, 1999.

[tcp99] tcpdump.org. http://www.tcpdump.org/,
1999.

[WID99] WIDE IPv6 Internet Exchange Point in
Tokyo. http://www.wide.ad.jp/nspixp6/,
1999.

[Ylo96] Tatu Ylonen. Thoughts on how to mount
an attack on tcpdpriv’s “-a50” option... in-
cluded with the tcpdpriv source distribu-
tion, 1996.

DumpFile: 200002121359.dump
FileSize: 140.35MB
Id: 200002121359
StartTime: Sat Feb 12 13:59:00 2000
EndTime: Sat Feb 12 15:06:29 2000
TotalTime: 4048.47 seconds
TotalCapSize: 108.37MB CapLen: 76 bytes
of packets: 2095754 (449.89MB)
AvgRate: 932.21Kbps stddev:312.68K

Packet Size Histogram (including MAC headers)
[32- 63]: 1315693
[64- 127]: 258761
[128- 255]: 121532
[256- 511]: 113037
[512- 1023]: 137300
[1024- 2047]: 149431

IP flow (unique src/dst pair) Information
of flows: 56157 (avg. 37.32 pkts/flow)
Top 10 big flow size (bytes/total in %):
8.0% 6.0% 4.8% 2.8% 2.6% 2.0% 1.4% 1.2% 0.8% 0.7%

Protocol Breakdown
protocol packets bytes bytes/pkt

--
total 2095754 (100.00%) 471744043 (100.00%) 225.10
ip 2095736 (100.00%) 471743089 (100.00%) 225.10
tcp 1768533 (84.39%) 400258906 (84.85%) 226.32
http 1474686 (70.37%) 292981631 (62.11%) 198.67
squid 42778 (2.04%) 36118457 (7.66%) 844.32
smtp 74280 (3.54%) 29130167 (6.17%) 392.17
nntp 1270 (0.06%) 101659 (0.02%) 80.05
ftp 23779 (1.13%) 7180413 (1.52%) 301.96
pop3 5601 (0.27%) 2537763 (0.54%) 453.09
telnet 995 (0.05%) 88678 (0.02%) 89.12
ssh 1950 (0.09%) 230243 (0.05%) 118.07
dns 1169 (0.06%) 94179 (0.02%) 80.56
bgp 6090 (0.29%) 419164 (0.09%) 68.83
other 135935 (6.49%) 31376552 (6.65%) 230.82

udp 264967 (12.64%) 62915121 (13.34%) 237.45
dns 187377 (8.94%) 29884111 (6.33%) 159.49
rip 135 (0.01%) 8910 (0.00%) 66.00
other 77455 (3.70%) 33022100 (7.00%) 426.34

icmp 51228 (2.44%) 5609707 (1.19%) 109.50
igmp 801 (0.04%) 48060 (0.01%) 60.00
ospf 8909 (0.43%) 2283318 (0.48%) 256.29
ipip 3 (0.00%) 246 (0.00%) 82.00
ip6 1295 (0.06%) 627731 (0.13%) 484.73
frag 112 (0.01%) 157111 (0.03%) 1402.78

tcpdump file: 200002121359.dump.gz (45.94 MB)

Figure 2: sample output of tcpdstat at trans-pacific

DumpFile: 200002120900.dump
FileSize: 17.64MB
Id: 200002120900
StartTime: Sat Feb 12 09:00:00 2000
EndTime: Sat Feb 12 12:33:45 2000
TotalTime: 12825.20 seconds
TotalCapSize: 14.69MB CapLen: 94 bytes
of packets: 193424 (48.84MB)
AvgRate: 40.31Kbps stddev:63.46K

Packet Size Histogram (including MAC headers)
[64- 127]: 100654
[128- 255]: 66924
[256- 511]: 1179
[512- 1023]: 2322
[1024- 2047]: 22345

IP flow (unique src/dst pair) Information
of flows: 270 (avg. 716.39 pkts/flow)
Top 10 big flow size (bytes/total in %):
53.9% 4.0% 3.8% 3.7% 3.6% 3.6% 3.1% 2.9% 2.9% 2.9%

Protocol Breakdown
protocol packets bytes bytes/pkt

--
total 193424 (100.00%) 51210692 (100.00%) 264.76
ip6 193424 (100.00%) 51210692 (100.00%) 264.76
tcp6 184430 (95.35%) 49453242 (96.57%) 268.14
smtp 402 (0.21%) 54893 (0.11%) 136.55
ftp 51229 (26.49%) 29569720 (57.74%) 577.21
ssh 53 (0.03%) 6820 (0.01%) 128.68
bgp 132476 (68.49%) 19798783 (38.66%) 149.45
other 270 (0.14%) 23026 (0.04%) 85.28

udp6 469 (0.24%) 36610 (0.07%) 78.06
other 469 (0.24%) 36610 (0.07%) 78.06

icmp6 7346 (3.80%) 1489628 (2.91%) 202.78
ip4 1179 (0.61%) 231212 (0.45%) 196.11

tcpdump file: 200002120900.dump.gz (2.99 MB)

Figure 3: sample output of tcpdstat at 6bone

