Using Hadoop for
Webscale Computing

Ajay Anand
Yahoo!
aanand@yahoo-inc.com
Usenix 2008

9_’ Agenda

* The Problem

 Solution Approach / Introduction to Hadoop
« HDFS File System

 Map Reduce Programming

* Pig

« Hadoop implementation at Yahoo!

« Case Study: Yahoo! Webmap

 Where is Hadoop being used

» Future Directions / How you can participate

9_’ The Problem

* Need massive scalability
— PB'’s of storage, millions of files, 1000’s of nodes

* Need to do this cost effectively
— Use commodity hardware
— Share resources among multiple projects
— Provide scale when needed

* Need reliable infrastructure

— Must be able to deal with failures — hardware, software,
networking

« Failure is expected rather than exceptional

— Transparent to applications
« very expensive to build reliability into each application

9_’ Introduction to Hadoop

« Hadoop: Apache Top Level Project
— Open Source
— Written in Java

— Started in 2005 by Doug Cutting as part of Nutch project,
became Lucene sub-project in Feb 2006, became top-level
project in Jan 2008

« Hadoop Core includes:
— Distributed File System — modeled on GFS

— Distributed Processing Framework — using Map-Reduce
paradigm

« Runs on
— Linux, Mac OS/X, Windows, and Solaris
— Commodity hardware

9_’ Commodity Hardware Cluster

-+— 3-4 gigabit
I.” <+—» 1 gigabit

- :
- T

“J T
- -‘ ", .-"I
...- .. .-_.-'
r l W, F
Mode “/ Mode \‘ Mode Mode » Mode Mode
— — — — — —

« Typically in 2 level architecture
— Nodes are commodity PCs
— 30-40 nodes/rack
— Uplink from rack is 3-4 gigabit
— Rack-internal is 1 gigabit

YaHoO!

9_’ Hadoop Characteristics

« Commodity HW + Horizontal scaling

— Add inexpensive servers with JBODS

— Storage servers and their disks are not assumed to be highly reliable and available
« Use replication across servers to deal with unreliable storage/servers
« Metadata-data separation - simple design

— Storage scales horizontally

— Metadata scales vertically (today)

« Slightly Restricted file semantics
— Focus is mostly sequential access
— Single writers
— No file locking features

« Support for moving computation close to data
— i.e. servers have 2 purposes: data storage and computation

Simplicity of design
why a small team could build such a large system in the first place

9_’ Problem: bandwidth to data

Need to process 100TB datasets

On 1000 node cluster reading from remote storage
(on LAN)

— Scanning @ 10MB/s = 165 min
On 1000 node cluster reading from local storage
— Scanning @ 50-200MB/s = 33-8 min

Moving computation is more efficient than moving
data

— Need visibility into data placement

9! Problem: scaling reliably is hard

* Need to store petabytes of data

— On 1000s of nodes

— MTBF < 1 day

— With so many disks, nodes, switches something is always broken
* Need fault tolerant store

— Handle hardware faults transparently and efficiently

— Provide reasonable availability guarantees

9’ HDFS
|

« Fault tolerant, scalable, distributed storage system

« Designed to reliably store very large files across machines in a
large cluster

« Data Model
— Data is organized into files and directories

— Files are divided into large uniform sized blocks (e.g.128 MB)
and distributed across cluster nodes

— Blocks are replicated to handle hardware failure

— Filesystem keeps checksums of data for corruption detection
and recovery

— HDFS exposes block placement so that computes can be
migrated to data

YaHoO!

9! HDFS API

« Most common file and directory operations supported:

— Create, open, close, read, write, seek, list, delete etc.
 Files are write once and have exclusively one writer

* Append/truncate coming soon
« Some operations peculiar to HDFS:

— set replication, get block locations

9_’ HDFS Architecture

‘- Namenode (Filename, numReplicas, block-ids, ...)
/users/sameerp/data/part-0, r:2, {1,3}, ...
/users/sameerp/data/part-1, r:3, {2,4,5}, ...

_

Datanodes
1 2 1 4 2
2
3
3 4
5 5

9_’ Functions of a NameNode

Manages the File System Namepace
— Maps a file name to a set of blocks
— Maps a block to the DataNodes where it resides

Cluster Configuration Management
Replication Engine for Blocks

NameNode Metadata
— Entire metadata is in main memory
— Types of Metadata

» List of files

» List of Blocks for each file

» List of DataNodes for each block

+ File attributes, e.g. creation time, replication factor

— Transaction log
* Records file creations, file deletions, etc.

9_’ Block Placement

Default is 3 replicas, but settable

Blocks are placed

— On same node

— On different rack

— On same rack

— Others placed randomly

Clients read from closest replica

If the replication for a block drops below target, it is
automatically replicated

9_’ Functions of a DataNode

A Block Server

— Stores data in the local file system (e.g. ext3)
— Stores metadata of a block (e.g. CRC)
— Serves data and metadata to clients

» Block Reports

— Periodically sends a report of all existing blocks to the
NameNode

« Facilitates Pipelining of Data
— Forwards data to other specified DataNodes

9_’ Error Detection and Recovery

« Heartbeats

— DataNodes send a heartbeat to the NameNode once every 3
seconds

— NameNode uses heartbeats to detect DataNode failure

* Resilience to DataNode failure
— Namenode chooses new DataNodes for new replicas
— Balances disk usage
— Balances communication traffic to DataNodes

« Data Correctness
— Use checksums to validate data (CRC32)
— Client receives data and checksum from datanode
— If validation fails, client tries other replicas

9_’ NameNode Failure

« Currently a single point of failure

« Transaction log stored in multiple directories
— A directory on the local file system
— A directory on a remote file system (NFS, CIFS)

« Secondary NameNode

— Copies FSImage and Transaction Log from the Namenode to a
temporary directory

— Merges FSImage and Transaction Log into a new FSImage in
the temporary directory

— Uploads new FSImage to the NameNode
— Transaction Log on the NameNode is purged

9_’ Map/Reduce

Map/Reduce is a programming model for efficient
distributed computing

It works like a Unix pipeline:

— cat* |grep| sort | unig-c | cat > output
— Input | Map | Shuffle & Sort | Reduce | Output
Efficiency from

— Streaming through data, reducing seeks

— Pipelining

Natural for

— Log processing
— Web index building

9! Map/Reduce

 Application writer specifies
— A pair of functions called Map and Reduce and
a set of input files

* Workflow

— Input phase generates a number of FileSplits
from input files (one per Map task)

— The Map phase executes a user function to
transform input kv-pairs into a new set of kv-pairs R / ﬂ
— The framework sorts & Shuffles the kv-pairs to Shuffle

output nodes
— The Reduce phase combines all kv-pairs with
the same key into new kv-pairs
f_IThe output phase writes the resulting pairs to
iles
 All phases are distributed with many tasks doing
the work
— Framework handles scheduling of tasks on
cluster
— Framework handles recovery when a node fails

YAHOD'

Map O Map 1 Map 2

9_’ Word Count Example

Input Map : Shuffle & Sort Reduce : Output

the quick

brown fox

brown, 2
fox, 2
how, 1
now, 1
the, 3

the, 1
quick,1 brown, 1
fox, 1

the fox
ate the
mouse

how, 1
now, 1
brown, 1

ate, 1
cow, 1
mouse, 1
quick, 1

how now
brown cow

Reduce

9! Map/Reduce optimizations

Overlap of maps, shuffle, and sort

Mapper locality

— Map/Reduce queries HDFS for locations of input data
— Schedule mappers close to the data.

Fine grained Map and Reduce tasks

— Improved load balancing

— Faster recovery from failed tasks

Speculative execution
— Some nodes may be slow, causing long tails in computation
— Run duplicates of last few tasks - pick the winners

— Controlled by the configuration variable
mapred.speculative.execution

9’ Compression
n

« Compressing the outputs and intermediate data will often yield
huge performance gains

— (Can be specified via a configuration file or set programatically

— Set mapred.output.compress to true to compress job output
— Set mapred.compress.map.output to true to compress map outputs
« Compression Types (mapred(.map)?.output.compression.type)
— “block” - Group of keys and values are compressed together
— “record” - Each value is compressed individually
— Block compression is almost always best
« Compression Codecs (mapred(.map)?.output.compression.codec)
— Default (zlib) - slower, but more compression
— LZO - faster, but less compression

YaHoO!

9! Hadoop Map/Reduce architecture

« Master-Slave architecture
« Map/Reduce Master “Jobtracker”
— Accepts MR jobs submitted by users
— Assigns Map and Reduce tasks to Tasktrackers

— Monitors task and tasktracker status, re-executes tasks upon
failure

« Map/Reduce Slaves “Taskirackers”

— Run Map and Reduce tasks upon instruction from the
Jobtracker

— Manage storage and transmission of intermediate output

9_’ Jobtracker front page

kry1112 Hadoop Map/Reduce Administration

Started: Mon Aug 27 18:39:15 UTC 2007
VYersion: (0.13.1, r358872
Compiled: Mon Jul 23 22:07:51 UTC 2007 by hadoopga

Cluster Summary

| Maps | Reduces | Tasks/Node | Nodes |

[0 2 2 |79
Running Jobs
Running Jobs
j Jobid 'lUscr . Name l)'f[ap % oomp]c‘tc. _. Map total l)'laps completed | Reduce % complete .Reduoc total | Reduces comp]ctcd.-
iob 0001 | parthas | quArray | 100.00% [22000 22000 [96.34% [10 [8 l
Completed Jobs
- Completed Jobs.:
. none
Failed Jobs
| Failed Jobs |
none
Local logs

Log directory, Job Tracker History

Hadoop, 2006.

9_’ Job counters

Hadoop job_0001 on kryvl112

User: parthas

Job Mame: quirray

Job File: /mapredsystem/kry 11 12/submit 3nldpt/job.xml
Started at: Mon Aug 27 18:40:533 UTC 2007

Status: Running

Kind | % Complete | Num Tasks | Pending |Running | Complete | Killed | 2jlefiRIled
map 100.00% 22000 0 0 22000 0 00
reduce 97.19% 10 0 1 9 0 oro
Counter Map Reduce Total

Map input records 23,680,136,843 Q0 23,680,136,843

Map output records 529,463,712 a 529463712

Map input bytes 1. 447 917 806,993 G| 1,447 917 806,993

Map-Reduce Framework | Map output bytes 15,840,622 445 0 15,840,622 445

Reduce input groups 0] B 02 B 02

Reduce input records 0 || 474 566,962 474 .5366,962

Reduce output records Q 3 00 T A

Go back to JobTracker
Hadoop, 20046.

9_’ Task status

Hadoop reduce task list for job_0001 on kryl1112

Tasks

Task ' Complete Status " Start Time Finish Time Errors Counters
tip 0001 7 000000 32.95% reduce > copy (21750 of 22000 at 0.8 MB/s) > 27-Aug-2007 18:41:06 0 |
1ip 0001 1 000001 32.78% reduce > copy (21640 of 22000 at 0.3 MB/s)> 27-Aug-2007 18:41:06 0
tip 0001 1 000002 32.83% reduce > copy (21671 of 22000 at 2.37 MB/S) > 27-Aug-2007 18:41:06 0
tip_0001_1_000003 32.84% reduce > copy (21675 of 22000 at 1.53 MB/s) > | 27-Aug-2007 18:41:06 0
tip_0001 r 000004 32.83% reduce > copy (21674 of 22000 at 041 MBJs) > 27-Aug-2007 1841:06 0
tip_0001_1_000005 3281% reduce > copy (21638 of 22000 at 0.76 MB/s) > 27-Aug-2007 18:41:06 0
tip 0001 1 000006 32.76% reduce > copy (21627 of 22000 at 0.26 MBJs) > 27-Aug-2007 18:41:06 0
tip_0001 £ 000007 3281% reduce > copy (21636 of 22000 at 0.19 MB/s) > 27-Aug-2007 18:41:06 0
tip_0001 r 000008 32.69% reduce > copy (21578 of 22000 at 0.85 MB/s) > 27-Aug-2007 18:41:06 0
tip_0001_1_000009 32.70% reduce > copy (21585 of 22000 at 0.63 MB/s) > 27-Aug-2007 18:41:06 0

Go back to JobTracker
Hadoop, 2006.

&9/ Drilling down

Job job_0001

All Task Attempts
Task Attempts Machine Status Progress | Start Time Shuffle Finished Sort Finished Finish Time Errors Eg;i Counters
— g — i : Last 4KB
task_0001_r 0000000 | key1110,inkiomisearch.com | SUCCEEDED | 100.00% 2?:Aqg-200? 27-Aug-2007 19:21:09 (40mins, | 27-Aug-2007 19:21:10 27-Aug-2007 19:29:09 (48mins, Last 8K | 3
18:41:06 2sec) (1sec) 2sec) Al

(Go back to the job
Go back to JobTracker

Hadoop, 2006.

| Scaling by input size (on 250

= nodes)

time (mins)

100 -

90
80

70 4
60 -

50
40

30
20

10
0

Scaling by input size on 250 nodes

_+ 90
/
0 10 20 30 40 50 60 70 80 90

input size (in days)

100

YaHoO!

Scaling by increasing number of
=~ nhodes (30 days input)

Scaling by number of nodes
3.5 -
250
n 3 -
3
o 25
c
<
© 2
@ /'4/28 —=— 30 days
s -5 /
° 1 64
o
Q.
® 0.5
O l l l I I !
0 50 100 150 200 250 300
nodes

9.’ Queuing and Scheduling

« Hadoop does not have an advanced scheduling system

— MapReduce JobTracker manages one or more jobs running within a
set of machines

— Works well for “dedicated” applications, but does not work so well for
shared resources

« Hadoop on Demand (HOD)

— (B)ridge between Hadoop and resource managers, such as Torque and
ondor

— Virtual private JobTracker clusters

— Job isolation
» Users create clusters of the size they need
+ Submit jobs to their private JobTracker

— Disadvantages:
» Lose data locality
* Increased complexity
» Lose a node for private JobTracker
» Single reducer doesn’t free unused nodes: ~30% efficiency loss

* Pig: Apache incubator project initiated by Yahoo!

« Pig Latin: High level dataflow language that generates
Map/Reduce jobs

« Simpler for users
— High-level, extensible data processing primitives

« Comparing Pig and Map-Reduce

— Map-Reduce welds together 3 primitives:

» Process records -> create groups -> process groups
— Using Pig:

a = FOREACH input GENERATE flatten(Map(*));

b = GROUP a BY $0;
c = FOREACH b GENERATE Reduce(*)

9_’ Grid Computing at Yahoo!

e Drivers
— 500M unique users per month
— Billions of interesting events per day
— “Data analysis is the inner-loop at Yahoo!”

* Yahoo! Grid Vision and Focus
— On-demand, shared access to vast pool of resources
— Support for massively parallel execution (1000s of processors)
— Data Intensive Super Computing (DISC)
— Centrally provisioned and managed
— Service-oriented, elastic

« What We’re Not

— Not “Grid” in the sense of scientific community (Globus, etc)
— Not focused on public or 3rd-party utility (Amazon EC2/S3, etc)

9_’ Yahoo! / Apache Grid Ecosystem

"¢ Apache Software Foundation

http://www.apache.org/

Open Source Stack
— Commitment to Open Source Development
— Ylis Apache Platinum Sponsor

« Hadoop

— Distributed File System

— MapReduce Framework

— Dynamic Cluster Manager (HOD)
* Pig

— Parallel Programming Language and Runtime
« Zookeeper

— High-Availability Directory and Configuration Service
« Simon

— Cluster and Application Monitoring

9_’ Yahoo! Grid Services

« Operate multiple Grid clusters within
Yahoo!

« 10,000s nodes, 100,000s cores, TBs
RAM, PBs disk

« Support internal user community

— Account management, training, etc

 Manage data needs
— Ingest TBs per day

« Deploy and manage software stack
« 24X/ support

9_’ Case Study: Yahoo! Webmap

 What's a WebMap?

— Gigantic table of information about every web site, page and link
Yahoo knows about

— Directed graph of the web
— Various aggregated views (sites, domains, etc)

— Various algorithms for ranking, duplicate detection, region
classification, spam detection, etc.

« Why port to Hadoop?

— Leverage scalability, load balancing and resilience of Hadoop
infrastructure

— Reduce management overhead

— Provide access to many researchers

— Focus on application vs infrastructure

— Leverage open source, rapidly improving platform

9_’ Webmap Results

33% time savings over previous similarly sized cluster

Largest job:

— 100,000+ maps, ~10,000 reduces
— ~70 hours runtime

— ~300 TB shuffling

— ~200 TB compressed output

Over 10,000 cores in system

Reduced operational cost

Simplified access to researchers

Many opportunities for further improvement

9_’ Who else is using Hadoop?

» Still pre-1.0, but already used by many: http://wiki.apache.org/hadoop/PoweredBy

+ Some examples from this site:

— A9.com — Amazon
* We build Amazon's product search indices using the streaming API and pre-existing C++, Perl, and Python tools.
* We process millions of sessions daily for analytics, using both the Java and streaming APls.
* Our clusters vary from 1 to 100 nodes. .

— Facebook
. IWe use Hadoop to store copies of internal log and dimension data sources and use it as a source for reporting/analytics and machine
earning.
. Cfurrently have a 320 machine cluster with 2,560 cores and about 1.3 PB raw storage. Each (commodity) node has 8 cores and 4 TB
of storage.

* We are heavy users of both streaming as well as the Java apis. We have built a higher level data warehousing framework using
these features called Hive (see the _JIRA ticket). We have also written a read-only FUSE implementation over hdfs.

— Fox Interactive Media
— Google University Initiative
- IBM

— Joost

— Last.fm

— Mahout

— The New York Times
— PARC

— Powerset

— Veoh

— Yahoo!

— Multiple Universities

9_’ Running on Amazon EC2/S3

 Amazon sells cluster services
— EC2: priced per cpu hour
— S3: priced per GB month

Hadoop supports:
— EC2: cluster management scripts included
— S3: file system implementation included

Tested on 400 node cluster
Combination used by several startups

9’ M45 Program -- Open Academic
* Clusters

» Collaboration with Major Research
Universities

— Foster open research
— Focus on large-scale, highly parallel computing

« Seed Facility: Datacenter in a Box (DiB)

— 500 nodes, 4000 cores, 3TB RAM, 1.5PB disk
— High bandwidth connection to Internet

— Located on Yahoo! corporate campus

* Runs Yahoo! / Apache Grid Stack

« (Carnegie Mellon University is Initial
Partner

 Public Announcement 11/12/07 : " .

9_’ Subprojects

Pig (initiated by Yahoo!)

— Programming language and runtime for data analysis

Hbase (initiated by Powerset)
— Table storage for semi-structured data

Zookeeper (initiated by Yahoo!)
— Coordinating distributed systems

Hive (initiated by Facebook, coming soon)
— SQL-like query language and metastore

Mahout
— Machine learning algorithms

Hbase
M Non-Yahoo

™ Yahoo

YaHoO!

80/L/¢

L0/61/0T

£0/02/8

£0/8/9

L0/2/€

£0/2/

L0/S/1

0.10| 0.11] 0.12 | 0.13 | 0.14 | 0.15 | 0.16

90/1/Z1

0.9

90/€/1T

0.8

90/9/0T

0.7

90/8/6

0.6

90/v/8

0.5

90/82/9

0.4

90/2/9

0.3

90/5/s

0.2

90/t/v

9_’ Tracking patches per release

400
350
300
250
200
150
100

Join the Apache Hadoop

9-’ Community

Hosted Hadoop summit in March 08
— Registrants from over 100 organizations
Hadoop is now in universities in several continents

— Yahoo! initiatives in US, India
* M45 Program
» [|nitiative with Tata / CRL in India

— IBM / Google university initiative
http://wiki.apache.org/hadoop/ProjectSuggestions

— Ideas for folks who want to get started
hitp://hadoop/apache.org - the main Apache site

— Mailing lists, the code, documentation and more
http://wiki.apache.org/hadoop/PoweredBy

— A list of users, please add yourself!

9_’ Questions?

Using Hadoop for
Webscale Computing

Ajay Anand
Yahoo!
aanand@yahoo-inc.com
Usenix 2008

