
A Binary Rewriting Defense against Stack based Buffer Overflow Attacks

Manish Prasad and Tzi-cker Chiueh
SUNY Stony Brook

{mprasad,chiueh}@cs.sunysb.edu

Abstract
Buffer overflow attack is the most common and ar-
guably the most dangerous attack method used in Inter-
net security breach incidents reported in the public lit-
erature. Various solutions have been developed to ad-
dress the buffer overflow vulnerability problem in both
research and commercial communities. Almost all the
solutions that provide adequate protection against buffer
overflow attacks are implemented as compiler exten-
sions and hence require the source code of the pro-
grams being protected to be available so that they can
be re-compiled. While this requirement is reasonable in
many cases, there are scenarios in which it is not fea-
sible, e.g., legacy applications that are purchased from
an outside vendor. The work reported in this paper ex-
plores application of static binary translation to protect
Internet software from buffer overflow attacks. Specif-
ically, we use a binary rewriting approach to augment
existing Win32/Intel Portable Executable (PE) binary
programs with a return address defense (RAD) mech-
anism [1], which protects the integrity of the return ad-
dress on the stack with a redundant copy. This paper
presents the disassembly and instrumentation issues in-
volved in static binary translation, how our tool achieves
satisfactory disassembly precision in the presence of in-
direct branches, position-independent code sequences,
hand crafted assembly code and arbitrary code/data mix-
ing, and how it ensures safe binary instrumentation in
most practical cases. The paper reports our experiences
with this approach, based on results of applying the re-
sulting prototype to rewriting several commercial grade
Windows applications (Ftp server, Telnet Server, DNS
server, DHCP server, Outlook Express, MS FrontPage,
MS Publisher, Telnet, Ftp, Winhlp, Notepad, CL com-
piler, MS NetMeeting, MS PowerPoint, MS Access,
etc.), as well as experimentation with published buffer
overflow exploits.

1 Introduction
Buffer overflow attacks exploit a particular type of pro-
gram weakness: lack of array/buffer bound check in the
compiler or in the applications. Accordingly, the ideal
solution to the buffer overflow vulnerability problem is
to build a bound checking mechanism into the compiler,
or to require applications to strictly follow a program-

Growth
Stack

Growth
Buffer

copy)
(direction of

High Address

Low Address

Previous Frame Pointer

(pushed by CALL inst)
Return Address

(pushed by callee)

Local Variables

Local Buffer

copy)

Other Local Variables

Function Parameters
(pushed by caller)

*

*

*

*

(target of unbounded *

* Could be potentially overwritten by a stack

based buffer overflow

Figure 1: The typical stack layout of a function when it
is called, and how some of the stack entries, including the
return address could be corrupted by an unsafe copy oper-
ation.

ming guideline that checks the bound of an array/buffer
upon each access. Neither solution is considered practi-
cal at this point. A more promising approach is to trans-
form a given application into a form that is immune from
buffer overflow attack without requiring any modifica-
tion to the compiler or the application itself.

To understand a buffer overflow attack, consider a typ-
ical stack layout when a function is called, as shown in
Figure 1. Lack of bound checking during a buffer copy
operation causes areas adjacent to the buffer (as shown
by * in Figure 1) to be overwritten. A generic buffer
overflow attack [2] involves exploiting such an unsafe
copy to overwrite the return address on the stack with
the address of a piece of malicious code, which is in-
jected by the attacker and most likely reside also on the
stack; when the RET instruction (which pops the return
address from the stack) in the victim function is exe-
cuted, program control is transferred to the injected ma-
licious code.

A less common form of buffer overflow attack in-
volves corrupting memory pointer variables on the stack
instead of return addresses [18]. The requirements for
such an attack to occur are:

1. A pointer variable p that is physically located on
the stack after the buffer a[], to be overflowed,

2. An overflow bug that allows overwriting this
pointer p by overflowing a[] (taking user-specified
data as source), usually with the address of a Global
Offset Table (GOT) entry, which contains the ad-
dress of a dynamic library function,

3. A copy function such as str(n)cpy/memcpy
which takes *p as the destination and user-specified
data as the source, without p being modified be-
tween overflow and copy,

4. A call to a common library function (like
printf), the GOT entry of which is to be over-
written.

So leveraging the unsafe copy, the attacker overflows
a[], thus overwriting p with the address of a GOT entry
of a common library function, say printf(). By pro-
viding the address of the exploit code as input to the safe
copy taking *p as the destination, the attacker has man-
aged to corrupt the GOT entry of printf(). So any
subsequent call to printf() would transfer control to
the exploit code.

Another form of buffer overflow attack overwrites up
to the old base pointer [19] on the stack with the address
of malicious code, so that when the caller function re-
turns, the control is transferred to the exploit code.

A seemingly non-stop stream of buffer overflow at-
tacks [3, 4] has called for an effective and practical so-
lution to protect application programs against such at-
tacks on the Windows platform. Past approaches to pro-
tecting programs against buffer overflow vulnerabilities
relied on compiler extensions, either to perform array
bounds check or to prevent the return address on the
stack from being overwritten. Although fairly success-
ful in preventing most conventional buffer overflow at-
tacks [2], these approaches require access to program
source code. All known systems that take such an ap-
proach require the availability of the protected appli-
cation’s source code. While integrating software pro-
tection into a compiler is technically desirable, this ap-
proach exhibits several practical limitations. First, re-
quiring access to source code makes it difficult to protect
third-party legacy applications whose source code is un-
available for various reasons. Second, because modern
software applications tend to be built on third-party li-
braries, access to the source code of these libraries again
is unlikely. Finally, for those program segments that
are written in assembly code directly, their high-level-
language source code that is amenable to compiler anal-
ysis simply does not exist. The goal of this paper to de-
scribe our experiences and the extent of success that we
have achieved in applying a combination of well known
disassembly techniques to implement a binary rewriting
solution that aims to provide the same level of protection

as its compiler-based counterpart
There are two major technical challenges in applying

binary rewriting to the buffer overflow attack problem.
First, to determine where to insert protection instruc-
tions, the boundary of each function in an input program
needs to be clearly identified, which in turns requires an
accurate disassembler that can correctly decode each in-
struction in an executable binary. Unfortunately, 100%
disassembly accuracy is difficult because the problem of
distinguishing code from data embedded into code re-
gions is fundamentally undecidable. Second, even if the
function boundaries are successfully identified, insert-
ing protection code into a given binary without disturb-
ing the addresses used in its existing instructions is itself
non-trivial. The main problem here is that in many cases
it is possible that the binary does not have enough spare
space to hold a jump instruction to the inserted protec-
tion code, let alone to hold the protection code itself.

Section 2 surveys related work in the areas of static
binary translation and buffer overflow defense. Section
3 discusses the design and implementation of our dis-
assembly engine and the binary instrumentation issues
with emphasis on the approaches we employ to ensure
program safety and to preserve the semantics of input
programs. Section 4 details the software architecture
and implementation of the binary rewriting RAD pro-
totype. Section 5 presents experimental results on the
prototype’s resistance to attacks, ability to preserve the
semantics of applications, space cost and performance
overheads. Finally, section 6 summarizes the main re-
sults of this work and charts out directions for future re-
search.

2 Related Work
Among past efforts in binary rewriting, ATOM [5] and
EEL [6] run on RISC architectures, where the disas-
sembly problem is simplified due to uniform instruction
size. Etch [7] is a tool for rewriting Win32/Intel PE ex-
ecutables primarily for optimization. LEEL [8] works
on Linux/x86 binaries, albeit with limitations with re-
spect to control flow analysis in presence of indirect
control transfer instructions and arbitrary code/data mix-
ing. UQBT [9] is an architecture independent static bi-
nary translation framework for migrating legacy applica-
tions across processor architectures. Galen Hunt’s De-
tours [24], is a system for run-time binary interception
of Win32 functions.

Most buffer overflow defense proposals involve
compile-time analysis and transformation. Stackguard
[10] and Microsoft Compiler Extension [11] place ’ca-
nary words’ on the stack between the local variables and
return address at the function prologue, and monitors the
return address on the stack by checking the integrity of
the ’canary word’, at the epilogue. Both are vulnerable

to attacks based on corrupting old frame pointers [19] on
the stack or local pointer variables [18]. Stackshield [12]
and RAD [1] save a copy of the return address at the pro-
logue and compare it with the return address on the stack
at the epilogue. Our binary rewriting implementation is
based on this model of buffer overflow defense. Both are
resilient to frame pointer based attacks [19] but vulner-
able to memory pointer corruption [18] attacks. IBM’s
gcc extension [14] also does local variable reordering,
placing pointer variables at lower addresses than buffers
in addition to the above, offering some protection against
memory pointer attacks [18], unless the unsafe copy is
from higher to lower indices of the array. CASH [15]
and others [16] perform array bounds check to prevent
overflow of buffers. CASH achieves significant over-
head reduction (4% overhead) by exploiting Intel seg-
mentation hardware as compared to the others in this
category, which typically incur very high overhead (70%
to 140%).

Other proposed approaches to protect programs from
buffer overflow attacks rely on run-time interception and
checking. Lucent Bell Labs’ Libsafe [20] intercepts un-
safe library calls at run-time and performs bounds check-
ing on the arguments e.g. for strcpy(), it would check the
length of the source string and check it against the upper
bound on the length of the destination string based on
the current frame pointer value. Although it prevents
the return address from being modified, it is possible
to corrupt local pointer variables. Libverify [20] per-
forms dynamic binary translation to perform return ad-
dress check. However, we suspect that Libverify might
incur high overhead, since it adds checking code and
performs code instrumentation at run-time. A very re-
cent example of applying optimized run-time interpreta-
tion to security problems is program shepherding [21],
which is built on top of a dynamic optimization frame-
work called RIO. Apart from offering advantages like
complete transparency, it achieves significant overhead
reduction as compared to what one would expect from
an interpretation/emulation system using a variety of op-
timization techniques viz. traces and interpreted code
caching. Another example of dynamic binary transla-
tion (applied to parallel computing) is Paradyn [27]. Jun
Xu et. al [28] suggest a hardware-based solution against
buffer overflow attacks without requiring access to pro-
gram source code.

To the best of our knowledge, the binary-rewriting
RAD system described in this paper is the first attempt
that employs static binary translation to protect existing
binaries against buffer overflow attacks without requir-
ing access to program source code, symbol tables or re-
location information.

3 Binary-Rewriting Return Address De-
fense

A successful binary rewriting RAD system requires
identifying the boundary of every procedure in the in-
put program and inserting a protection instruction se-
quence into every procedure without disturbing the in-
put binary’s internal referencing structure. The follow-
ing two subsections discuss in more detail these two is-
sues and their associated solutions.

3.1 Binary Disassembly

3.1.1 Disassembly Challenges
To accurately locate the procedure boundary, one needs
to identify each instruction in the binary through a dis-
assembler. There are two main classes of disassembly
algorithms [22]. A linear sweep algorithm starts with
the first byte in the code section and proceeds by decod-
ing each byte, including any intermediate data byte, as
code, until an illegal instruction is encountered. A recur-
sive traversal algorithm starts at the program’s main en-
try point and proceeds by following each branch instruc-
tion encountered in a depth-first or breadth-first manner,
essentially a control flow analysis. Neither approach is
100% precise. The chief impediments to accurate disas-
sembly are:

1. Data embedded in the code regions,
2. Variable instruction size,
3. Indirect branch instructions,
4. Functions without explicit CALL sites within the

executable’s code segment,
5. Position independent code (PIC) sequences, and
6. Hand crafted assembly code.

1) and 2) render the linear sweep algorithm less effec-
tive than ideal, whereas 3), 4) and 5) degrade the efficacy
of the control flow analysis used in the recursive traver-
sal algorithm.

Distinguishing code from data in a binary file is a
fundamentally undecidable problem. Because the lin-
ear sweep algorithm decodes each byte as code as long
as it looks like a legitimate code byte, it ends up inter-
preting many data bytes as instructions. The reason for
this behavior is that, in the Intel x86 instruction set, 248
out of 256 possibilities can be a legitimate starting byte
for an instruction, making it more likely to mistake data
for instruction. The fact that the Intel x86 instruction
set allows variable instruction size further aggravates the
problem of code/data distinction. Consider the follow-
ing example sequence of bytes:

0x0F 0x85 0xC0 0x0F 0x85

If we consider 0x0F as a code byte then we’ll end up
with the following disassembly:

jne offset

On the other hand if we consider 0x0F as a data byte
and 0x85 as a code byte, then we get something like:

0x0F // data
test eax, eax
jne offset

Thus a single disassembly error could result in many
subsequent bytes being interpreted incorrectly, with
the extent of error potentially unbounded. In con-
trast, a fixed-instruction-size architecture exhibits a self-
correcting property: an interpretation error for one in-
struction word does not propagate to the next instruction
word.

The recursive traversal algorithms cannot obtain
100% accurate disassembly results, either, because it is
difficult to construct a complete control flow of an in-
put binary in the presence of indirect branch instruc-
tions such as call/jmp reg32 (e.g. call eax) or
call/jmp m32 (e.g. jmp dword[esp + xx]).
One solution to this problem is to perform additional
data flow analysis such as inter-procedural slicing and/or
constant propagation [23] to figure out at compile time
the value of the register or memory location used in indi-
rect control transfer instructions. Apart from being dif-
ficult to implement, such an approach tends to greatly
increase the disassembly time and itself does not guar-
antee 100% accuracy.

Procedures for which no explicit call sites in the in-
put program can be identified include exception or signal
handlers, callback functions, which is rife in GUI appli-
cations, and procedures all calls to which are through
indirect branch instructions. Because there is no identi-
fiable call to these functions, they cannot be discovered
through control flow analysis, and as a result may be
misclassified as data. In practice, signal/exception han-
dlers pose few problems because their entry points are
included in the program header in some cases.

The addressing in position independent code (PIC)
does not rely on any particular position in the program’s
address space. Thus PIC code and jump table never have
absolute address references. Instead the references are
in the form of offsets with respect to a base value that is
known at run time, mostly through the eip value. For
example,

10: call 10
15:

:
25: pop eax // gets the return addr

// value 15 into eax
26: call dword[eax + 20] // call foo

:
:

35: // foo

In this case, in spite of having explicit CALL sites,
standard control flow analysis cannot discover the target
location of the function foo().

Hand crafted assembly code makes it difficult to iden-
tify procedure boundaries because they do not necessar-
ily follow the code conventions established by standard
compilers. These conventions provide useful hints to re-
solve potential ambiguities. As an example of code con-
vention violation, some assembly code programs jump
from one function into another function without going
through the latter’s main entry point.

3.1.2 Disassembly Engine Implementation
Our disassembly engine is built on the x86 instruction
set parsing and disassembly capabilities of an existing
disassembler [13]. We use a combination of well-known
disassembly techniques, viz. recursive traversal and lin-
ear sweep (described briefly in the previous subsection
3.1.1) and complement them with compiler-independent
pattern matching heuristics. We assume that the data
expected in a code section are typically dispatch tables
(address bytes), strings and compiler alignment bytes.
Since the goal of this project is to insert protection code
into every procedure of the input binary, we should iden-
tify as many code bytes as possible; otherwise the trans-
formed binary may have security holes. However, we
place maintenance of original program semantics at a
higher priority than security, so whenever in doubt we
mark bytes as data instead of code, thus avoiding unsafe
binary instrumentation. The following is a step-by-step
description of the disassembly process:

1. Identify potential address bytes for dispatch table
discovery and strings. Dispatch tables typically
contain code section addresses. Since we know
the address range of the code section, we can mark
any sequence of 4 bytes, which have a value that
lies within this address range as ’potential address’
bytes. Sequences of printable characters that have
a certain minimum length and are terminated by a
null character are marked as ’potential strings.’

2. Starting from the program’s main entry point,
which is obtained from the input binary’s PE header
[17], we perform a control flow analysis on the bi-
nary to traverse the paths of the program’s control
flow graph. All code bytes identified in this step are
marked as ’definitely code’ and all associated data
bytes marked as ’definitely data’. We also iden-
tify targets of CALL instructions as function entry
points and targets of conditional and unconditional
jump instructions as jump targets. Since this step
can distinguish data from code with 100% accu-
racy, it overrides analysis results from other steps
whenever there is a conflict. For example, the fol-
lowing byte sequence will be identified as a call
instruction because the result from Step (2) over-

rides that of Step (1).

Identified as instruction
’call dword[0x30001344]’ in Step (2)
<--------------------------->
0xFF 0x15 0x44 0x13 0x00 0x30

<----------------->
Identified as ’potential
address’ (0x30001344) in
Step (1)

3. To identify the entry points of potential callback
functions, for which there are no explicit call sites,
we look for instruction sequences such as:

push imm32
mov reg32, imm32

Typically the target address of a callback func-
tion is usually passed as an argument to some func-
tion, with which the callback function is regis-
tered. Such an argument could be passed through
the stack as an immediate value (push imm32)
or through a register, which contains the address
value (mov reg32, imm32; push reg32). If
the byte at imm32 has not been identified as a ’po-
tential address’ or a ’potential string’ in Step (1),
and if it looks like a legitimate instruction starting
byte, we consider it as a function entry point (al-
though despite being a legitimate code byte it may
not actually be a function entry point) and proceed
disassembling the subsequent bytes as instructions.

4. To identify other types of functions for which there
are no explicit call sites, we next look for bytes in
the code section that have not been identified as
code or data yet. Every time such a byte is located,
we start instruction parsing if it looks like a legit-
imate instruction starting byte. In both Steps (3)
and (4), the point where such instruction parsing
begins is called a ’reset point’. Instruction parsing
continues until an unconditional branch instruction
(ret or jmp) is encountered. If the result of an
instruction parsing procedure is inconsistent with
any previously identified byte or leads to an illegal
instruction byte, the result since the reset point is
revoked and all the bytes from the ’reset point’ to
the current position are marked as data, thus avoid-
ing any potentially unsafe binary rewriting. After
an unconditional branch we look for the next suit-
able ’reset point’ to start the next instruction parsing
attempt.

5. Because any sequence of instruction bytes should
end with an unconditional branch instruction (jmp
or ret), we look for code sequences that end with-
out an unconditional branch (jmp or ret) instruc-
tion and mark such code sequences as data. This
check provides a final line of defense to eliminate
any potentially incorrectly identified instruction se-

quences. For example, in the following code se-
quence, Bytes 1 to 3 will be marked as data.

1: mov eax, ebx
3: push eax
4: data

Also, the byte next to an unconditional branch
has to be either a data byte or if it is a code byte,
it must be a branch target (as the previous instruc-
tion, being an unconditional branch, doesn’t fall
through). Therefore, in the case that the byte next to
an unconditional branch is a code byte and has not
been marked as a function entry point or a jump
target, we mark it as a function entry point, even
though they could just as well be targets of a branch
instruction inside the same function.

The motivation behind this ”optimistic” identifi-
cation of functions, as seen in steps 3) and 5) will
be explained in subsection 4.3.

3.2 Binary Instrumentation
Because it is not always possible to derive the high-level
control flow of an input binary, the process of inserting
additional code to counter buffer overflow attacks must
proceed in a way that does not disturb the memory refer-
ences used in the instructions of the binary program that
is to be protected.

3.2.1 Where to Insert RAD Code
The additional code required by RAD [1] involves

� Saving a copy of the return address on the stack in
the return address repository (RAR) at the function
prologue, and

� Checking the return address on the stack with the
saved copy in the RAR at the function epilogue,
popping it off the RAR in the event we have a
match, or flag an exception otherwise.

Instead of adding function prologues and epilogues to
every function, we choose to do so only for ’interesting’
functions, which are functions that contain a sequence of
instructions for stack frame allocation and deallocation
for local variables. A function without local variables
could never be vulnerable to a stack based buffer over-
flow.

3.2.2 How to Insert RAD Code
So as to not disturb the original binary’s address space,
we choose to create a separate new code section, not
present in the original PE binary (information regard-
ing the PE format is in [25]), appended to the end of
the original binary to hold the additional prologue and
epilogue code for each function. Moreover this new sec-
tion, mapped to a non-interfering portion of the address
space, will be set as read-only. Thus neither the RAD

code is corrupted by the application nor is the applica-
tion corrupted by the RAD code. To redirect control to
the inserted code at a function’s prologue and epilogue,
we need to replace some instructions at the function pro-
logue and epilogue with a JMP to the corresponding
RAD code. When such an instrumented function is in-
voked, the JMP instruction, which replaces the prologue,
transfers control first to the RAD prologue code, then ex-
ecutes the original prologue instructions and then jumps
back to the original function to continue execution from
the instruction immediately after the original function
prologue. Epilogue instructions are replaced in a sim-
ilar manner. However, the execution proceeds first with
a JMP to the epilogue code in the new section, first ex-
ecuting the original epilogue instructions until the RET,
then the RAD epilogue checking code and then return
if there are no problems. Because the size of an uncon-
ditional JMP instruction is 5 bytes, we need at least 5
bytes worth of instruction space to accommodate a JMP
instruction. Instructions that are target of existing branch
instructions cannot be replaced.

A function prologue, which needs to allocate stack
space for local variables, typically comprises 3 instruc-
tions :

1. push ebp // save old frame ptr
// (1 byte instruction)

2. mov ebp, esp // set the top of
// the stack as the
// current frame ptr
// (2 byte inst)

3. sub esp, x // allocate x bytes on
// the stack for local
// variables (3 to 6
// byte instruction)

or
add esp, -x

Alternatively it could also be done using the ENTER
instruction, however most compilers do not use ENTER
for stack frame allocation. Thus, an ’interesting’ func-
tion prologue includes at least 6 bytes worth of instruc-
tions. Hence, we can comfortably instrument an ’inter-
esting’ function prologue to redirect control to the RAD
prologue code using a 5-byte JMP instruction. On the
other hand, a typical stack frame deallocation instruction
sequence looks like one of the following three cases:

1. add esp, x // dealloc. stack
// space, x bytes
// were allocated
// (3-6 byte inst)

pop ebp // restore caller’s
// frame ptr (1 byte)

ret // return (1 byte)
2. mov esp, ebp // dealloc. stack

// space, any
// number of bytes

// allocated on the
// stack (2 byte

// instruction)
pop ebp // restore caller’s

// frame ptr (1
// byte)

ret // return (1 byte)
3. leave // dealloc. stack

// frame & restores
// old frame ptr

// (1 byte)
ret // return (1 byte)

From 2) and 3), we see that stack frame deallocation
could be done with 2 to 4 bytes worth of instructions. So
we need to replace some more instructions in addition to
the stack frame deallocation instructions to hold a JMP
instruction. In most cases, we do find enough space this
way. However, it is possible that the first instruction of
the stack frame deallocation sequence is a jump target,
e.g.:

jne x
:

x: leave
ret

In this case, if we replace instructions prior to LEAVE,
then the jump target x would be disturbed. From our
experiences, the scenario of not being able to find 5 bytes
worth of instructions at a function’s epilogue does occur
in practice but is relatively rare. For such a situation to
occur in practice, two conditions need to be met:

a) Most development environments on Windows, by
default, set certain compilation options which gen-
erate calls to stack checking code, prior to stack
frame deallocation, to check for adherence to cer-
tain calling conventions (which basically dictate
caller and callee duties as regards function frame
initialization and cleanup). Calling convention ad-
herence check is desirable because of functions be-
ing called using function pointers and calls to li-
brary functions. If we disable these options the
compiler won’t generate these stack checking calls
and thus will not generate extra bytes prior to stack
frame deallocation.

b) There should be a high level code sequence like:

goto label;
:
:

label:
return;

So in such rare scenarios (our experiments show typi-
cally 0.03 - 3% of all functions, sec. 5.2.2, table 9), we
use a simple although expensive approach to solve this
problem. When not enough instructions are available,
we replace the first byte of the instruction prior to ret

Input

within our system
Control Flow

Binary
 File

 Disassembler
Core Binary
 Rewrite

 Engine

RAD
PE−specific
component

Input

External Binary Rewriting

RAD component

Initialization

Post−Rewrite

Instruction

Each

Interesting
 Fn. Init

Transfer at
Control

Figure 2: The software architecture of the binary-
rewriting RAD prototype, which consists of a disassembler,
a core binary rewriting engine, a RAD component, and a
PE component.

with an int 3 (breakpoint interrupt) instruction, which
corresponds to a software interrupt, and install a corre-
sponding exception handler. When an int 3 instruc-
tion is executed, it generates a Debugger Breakpoint Ex-
ception, and the handler gains control to perform return
address check. Because this exception handler is exe-
cuting the user space, control transfer to our handler is
similar to an intra-privilege level far call, which means
that there is no stack switching and the exception han-
dler can access the return address on the stack. For de-
tails regarding how the stack evolves during the execu-
tion of a software interrupt handler, please refer to [17].
The reason why we chose the debugger breakpoint ex-
ception is that this exception is not used normally unless
the program is being debugged. However, while being
debugged under a debugger, the control is transferred to
the debugger when an int 3 instruction is executed,
and our exception handler will not executed.

4 Prototype Implementation

4.1 Software Architecture
The binary-rewriting RAD tool comprises the follow-
ing logical components: a disassembler, a core binary
rewrite engine, a RAD component, and a PE (Portable
Executable format specific) component. The disassem-
bler functions in two main phases. In the first phase, it
performs code/data and branch target identification cov-
ering all bytes in the code section, and in the second, it
outputs the assembly instructions starting from the first
byte in the code section. The core binary rewrite en-
gine, independent of the binary format, hooks into the
disassembler in the second phase to gain control at ev-
ery instruction processed to look for ’interesting’ func-
tion prologues and epilogues to instrument. This com-

ponent handles all the issues involved in adding instru-
mentation code outlined in the section 3.2. Since the
instructions that make up an ’interesting’ pattern need
not be contiguous, this component maintains a window
of five instructions (current instruction and four previ-
ous ones), which is flushed whenever a branch target is
encountered, so that we don’t run over any jump target.
The engine attempts to identify ’interesting’ patterns in
the window every time a new instruction is added. All
the RAD code and its associated data are added to a new
section at the end of the input binary. The RAD com-
ponent implements the Return Address Defense mecha-
nism. The prologue stub saves the return address on the
stack to the Return Address Repository (RAR) and the
epilogue stub keeps popping the RAR stack till it finds
the return address currently on the top of the stack or
till the RAR is empty in which case it flags an excep-
tion. This repeated popping ensures that the return from
any of the caller’s ancestors (from the current call stack),
does not generate false security alarms. This scenario
occurs in case of setjmp()/longjmp() as well as
compiler optimizations which cause functions to return
straight to the caller’s caller if the first return is to the
caller’s return section (e.g. tail recursion). The PE com-
ponent initializes the binary rewrite process by adding a
new section header in the section header table and setting
up its fields appropriately; it also aligns the new section
(called the .RAD section) that holds the RAD code, de-
pending on where it should be loaded at run time (page
boundary next to the end of the previous section) and
where it should be stored in the binary file (file align-
ment boundary after the end of the previous section).

4.2 RAR Initialization

The .RAD section is set as read/write/executable. It
needs to be writable since the RAR is also a part of
this section in addition to the RAD code. However, At
run time the non-RAR part of this section needs to be
set to read-only, through a Win32 API call VirtualPro-
tect(). This is to create mine-zones on both the sides
of the RAR to prevent attackers from overflowing the
RAR. The key issue here is how to locate the entry point
of VirtualProtect(). There are several cases to consider.
First, it is possible that the input program also uses Vir-
tualProtect() for some other purpose and thus the pointer
to its entry point can be located by scanning the binary
statically. Otherwise, if the input program does not need
VirtualProtect(), the PE component needs to add code to
locate its entry point at run-time.

For the first case, two PE headers of interest here are
the Import Address Table (IAT) and the Import Name
Table (INT). The two tables can be reached from the im-
port directory, whose location in turn is obtained from
the DataDirectory array in the PE OptionalHeader. Each

entry in the IAT, at run time, contains the address of
an imported function and the on-disk binary file. For
each IAT entry there is a corresponding entry in the INT,
which points to the name of the corresponding imported
function. At load time, the loader overwrites the IAT
entries with the virtual addresses where the correspond-
ing functions are mapped. To locate the entry point of
VirtualProtect(), we look up the INT by its name and re-
trieve the index of the associated IAT entry if there is
a match. If VirtualProtect() is already imported by the
input program, then its entry point is readily available
from its IAT entry. If there is a match in the INT but
the corresponding IAT entry is empty, then we need to
dynamically resolve the entry point of VirtualProtect()
by calling GetModuleHandle(), which gets the base ad-
dress of the DLL containing the API function in ques-
tion, and then calling GetProcAddress(), which gets the
address of the desired API function from the export di-
rectory of its containing DLL. The entry points of Get-
ModuleHandle() and GetProcAddress() themselves are
obtained from the IAT through their containing DLL,
kernel32.dll. In the case that none of these API func-
tions are themselves imported, which is quite rare, then
the PE component needs to emulate the operation of Get-
ModuleHandle() and GetProcAddress(). This emulation
idea is derived from an undocumented virus code and
is based on the following observation: At the program
entry point, the top of the stack contains a return ad-
dress, which points to somewhere inside the function
CreateProcess(), which in turn belongs to the DLL ker-
nel32.dll. With this address, one can scan through the
memory until where kernel32.dll is mapped is found.
Once the base address of kernel32.dll is known, the entry
points of GetModuleHandle() and GetProcAddress() are
available through the DLL’s export table, and in turn the
entry point of any API function can be identified through
these two functions.

Finally, the entry point of the executable in the PE
header should be changed to the new initialization code,
which locates the entry point of VirtualProtect(), and
calls it to protect two pages surrounding the RAR.

4.3 Limitations

4.3.1 Security Weaknesses Due to Disas-
sembly Limitations

Two aspects of disassembly that relate to sources of false
security alarms and security loopholes are:

� Functions Missed by our Disassembly Engine
(False Negatives)

� Falsely Identified Functions (False Positives)

Let’s look at each of these aspects and evaluate when
and how these could result in false alarms or missed
attacks. There is a trade-off between security and

program correctness. While we make every effort to
seal all known security holes, we consider preserving
original program semantics as a more important goal
than attempting perfect security.

False Negatives
These (if any) are mainly callback functions (without
an explicit CALL within the code section) and/or func-
tions invoked using Position-Independent Code (PIC)
sequences (wherein there would be no absolute address
references to a function within the code section). These
are not covered by pure control flow analysis. Despite
this, typically, only a certain fraction of such functions
get missed out. The following ”representative” scenarios
should make this clear. Functions missed by the control
flow analysis step could be:

a) partly/fully misidentified as data
b) identified fully as code

If the start or the end of a function is misidentified as
data, then we might miss out on an interesting prologue
or epilogue respectively. Either cases result in an un-
protected return, which might turn out to be a security
loophole, if that particular function has a buffer over-
flow vulnerability. Ditto is the case when a function is
fully identified as data. If a piece of code somewhere
in the middle of a function is misidentified as data, then
the function is misidentified as data, then the function is
divided into two, and hence all returns in this function
beyond this dividing point would be treated as a part of
an uninteresting function, and hence are left uninstru-
mented and could miss an attack.

A function with its body fully identified as code, could
still be missed out during control flow analysis and have
their unidentified entry points preceded either by data
or an unconditional branch instruction from the previ-
ous function. In either of the cases, we would indeed
mark the function entry point (last step (5) of disassem-
bly engine sec. 3.1.2). When data preceding the entry
point of such a function aligns properly with the code
bytes to form a legitimate instruction sequence, an origi-
nally interesting prologue could become uninteresting,
thus exposing an attack opportunity. In all the cases
presented so far, however, program semantics are not
jeopardized. But if data misidentified as code turns an
uninteresting function prologue to an interesting one, it
might generate a false alarm, if the epilogue happens to
be interesting. Another false alarm scenario is if the
function entry point is preceded by some data and the
first identified code byte happens to be a jump target
(happens with inter-procedural jumps), in which case
the two functions get merged into one. However, inter-
procedural jumps occur only in handcrafted assembly or
as in setjmp()/longjmp() cases.

Apart from functions, jump targets reached by PIC
jump tables could be missed. This could affect pro-
gram correctness, if these targets happen to be within
instrumented prologues or epilogues, a very unlikely
scenario, though.

False Positives
Functions with multiple entry points are treated as two
separate functions. Targets of PIC jump tables, which
cannot be discovered statically could get marked as
function entry points, if they lie immediately after an un-
conditional branch or a sequence of data bytes (last step
(5) of disassembly engine sec. 3.1.2). Code section ad-
dresses which appear as immediate (imm32) operands
to mov r32, imm32 or push imm32, could be
identified as function entry points even if they are tar-
gets of an indirect jump (non-PIC jump table targets are,
however, treated specially and identified).

Function boundary identification helps prevent sce-
narios where the prologue is instrumented, but the epi-
logue is not and vice versa. Since the latter case could
cause false alarms (since the epilogue checking code
would be trying to find a match for the return address
on the stack, but since it was never saved (no pro-
logue instrumentation code), it won’t find it in the Re-
turn Address Repository (RAR), thus flagging a false
exception). We want to avoid that altogether, which
can be achieved by ”optimistic” identification of func-
tions. This false identification, however could result in a
function having an instrumented prologue, but an unin-
strumented epilogue. Such a function, if called too fre-
quently in a manner that it exits from an uninstrumented
epilogue, then the RAR will eventually overflow, since
there is no code to pop the return address off the RAR.
Another potential problem due to false identification is
missed attacks. If false identification causes an ”entry
point” to be inserted within a function body then the sin-
gle function gets divided into two. Here the ”second”
function won’t have an interesting prologue, hence all
subsequent returns in this function will be missed. How-
ever, false identification of functions never jeopardizes
program correctness unless, of course, an entire chunk
of data misidentified as code forms a function, with both
interesting prologue and epilogue, which is an extremely
unlikely scenario.

In summary, PIC, indirect branches and callback func-
tions could cause some security loopholes in the input
programs to be un-protected. Empirical results show that
indirect branches typically are 5-8 % of all branch in-
structions (Section 5.2.1, Table 5). Only a fraction of
this (if at all any) could possibly result in a missed at-
tack.

As for false alarms, they could arise due to hand
crafted assembly code, mostly with inter-procedural

jumps and/or entry and exit points in different functions.
An example of such a case was observed when we in-
strumented Microsoft Access. Here, the control jumps
from Fn1 to label, which is in Fn2 and exits from
Fn2.

Fn1: // no ’interesting’ prologue
:

jne label
:

ret // no ’interesting’ epilogue

Fn2: // ’interesting prologue’
:

label:
:

ret // ’interesting’ epilogue

Fn1 has an uninstrumented prologue, so its return ad-
dress is not saved in the RAR and Fn2’s epilogue is in-
strumented, so a return address check is done on exit
from Fn2. The RAD epilogue of Fn2 will flag an ex-
ception, since it cannot find the on-stack return address
in the RAR, thus a false alarm.

Other recipes for false alarms include data misiden-
tified as code which looks exactly like an interesting
prologue, or an entire chunk of data which appears like
an interesting function, both of which are rather uncom-
mon.

4.3.2 Potential Attacks Due to Limitations
of RAD

As in RAD [1], the current binary-rewriting RAD pro-
totype can protect applications from any kind of buffer
overflow attack that corrupts the return address on the
stack. Thus it can resist conventional stack smashing at-
tacks and frame pointer based attacks [19]. However, it
cannot prevent memory pointer corruption attacks [18],
which do not affect the return address in any way. They
simply modify the contents of the import table (Global
Offset Table - GOT or Import Address Table - IAT),
which makes it impossible for RAD to detect them. For-
tunately, no actual network security breach incidents that
are based on this type of attacks have been reported.

4.3.3 Multi-Threaded Applications
The current implementation doesn’t handle multi-
threaded applications. An idea to implement the solution
for multi-threaded applications, comes from [26]. We
can access the Thread Information Block (TIB) structure
using the FS segment register. Code generated by com-
pilers to set up exception handlers and to allocate storage
for thread local variables, typically reveal this use of the
FS register. The TIB contains an array of slots for thread
local storage. What we could do is have a separate RAR
space for each thread (taking care that RAR spaces of

Step Size
Return Address Repository 16 Kbytes
Exception Handler 130 bytes
Installing Exception Handler 19 bytes
Set up RAD mine-zones 55 bytes
Search for VirtualProtect() 371 bytes
Total 16.2 - 16.6 KBytes

Table 1: The constant space overhead of binary-rewriting
RAD. The last row corresponds to the step that searches the
kernel32.dll export table for the entry point of VirtualProtect().

two threads don’t bump in to each other), and store the
address of the RAR in one of the thread local storage
slots, which can be used by the RAD prologue and epi-
logue code, to figure out which RAR to work with. How-
ever, the use of the FS register, although a well-known
fact in the Windows world, still falls into the category
of undocumented information. There would probably
be Win32 API functions, which do something like this,
however the cost of invoking an API call at every RAD
prologue and epilogue would be prohibitive.

4.3.4 Self-Modifying Code
Self-modifying code, like those missed functions due to
indirect branches, makes control flow analysis difficult.
Moreover, if a piece of code is added only at run-time to
the heap, there is no way RAD can add checks to it.

5 Experimental Results
To validate the correctness of the binary-rewriting RAD
prototype, we need to verify that the RAD code is in-
jected into appropriate places in the input binary AND
the RAD code does protect the input binary from buffer
overflow attacks in a way that does not incur significant
space overhead or run-time performance cost. In the fol-
lowing subsections, we present results that show that the
current binary-rewriting RAD prototype does do a rea-
sonable job in disassembly accuracy and low-overhead
protection against buffer overflow attacks.

5.1 Micro-Benchmark Results
To establish the baseline performance for the binary-
rewriting RAD prototype, we apply it to a set of syn-
thetic programs and measure its space and performance
overhead. Table 1 shows the constant space overhead
associated with binary-rewriting RAD, which excludes
the per-function prologue and epilogue RAD code. Ev-
ery instrumented function needs a prologue and epilogue
checking code, which take 38 and 41 bytes, respectively.

We then measure the performance overhead of an in-
strumented function due to its prologue and epilogue
RAD code. Depending on whether an epilogue RAD
code is triggered by a jump instruction or by a software

exception handler, the measured performance overhead
is different. We tested three different instrumented func-
tions:

� void fn() that does nothing and invokes prologue
and epilogue RAD code through a jump instruction

� void fn() that does nothing and invokes prologue
RAD code through a jump and epilogue RAD code
through a software exception

� void fn() that does some amount of computation
(incrementing a variable 25000 times), without
making any other function calls

The performance penalty of the binary-rewriting RAD
prototype is defined as: ������������	
������

�������������
, and

was measured using the Pentium performance counter,
which has a resolution of 2 nsec.

For the do-nothing test function case, the over-
head of RAD is 34.25%, which is higher than ex-
pected, considering that both the prolog and epi-
logue RAD code size is just about 9 to 11 instruc-
tions, each of which is such a simple instruction
as ’push reg32’, ’pop reg32’, ’mov reg32,
mem32’, ’cmp reg32, mem32’, ’add mem32,
imm32’ ’sub reg32, imm32’ etc., none of which
appear to be costly. We believe this performance over-
head is due to additional instruction cache misses that
arise because the code region of the test function is sep-
arate from that of its prolog and epilogue RAD code. If
a function’s epilogue does not contain enough space to
hold a jump instruction, the epilogue RAD code is im-
plemented inside an exception handler. The additional
performance overhead due to exception delivery and re-
turn, as compared to two jump instructions, is almost
quadrupled, as shown in the second test function case
of Table 2.When the test function is doing something
more computation-intensive, as in the third test function
case, the relative performance overhead of RAD imme-
diately becomes negligible. Compared with the origi-
nal RAD system [1], which works on source code only,
binary-rewriting RAD performs better in all three cases,
because its prolog and epilogue code is implemented in
assembly and is thus more efficient. This result is some-
what surprising as the original RAD system places per-
function prolog and epilogue code together with the as-
sociated function, rather than in a separate code region,
and therefore does not incur additional instruction cache
miss penalty.

5.2 Macro-Benchmark Results

We experimented with a wide variety of commercial
grade Windows applications, including BIND DNS
server, DHCP server, a third-party FTP server, Microsoft
Telnet Server, MS FrontPage, MS Publisher, MS Pow-
erPoint, MS Access, Outlook Express, CL compiler,

Test Function Cycle Counts - Original Cycle Counts - RAD Relative Penalty
Null function 292 392 34.25%
Null function + epilogue 271 641 136.53%
Incrementing function 350,425 350,722 0.085%

Table 2: Per-function performance overhead due to the RAD code injected into an instrumented function. The Null function +
epilogue case is the same as the Null function case except its epilogue is invoked through a software interrupt. The Incrementing
function case corresponds to a function that increments a variable 25000 times. All measurements are in terms of Pentium cycle
counts.

MSDEV.EXE (Visual C++ development environment),
Windows Help (Winhlp), and Notepad. After rewrit-
ing, all the above programs behave exactly the same
as before, except MS Access, which generated a false
alarm due to hand crafted assembly code (described in
Section 4.3), and the third-party FTP server, which has
an internal exception handler that conflicts with the de-
bugger exception handler that binary-rewriting RAD in-
stalls. The initial experiences collected from running
the binary-rewriting RAD prototype against a wide ar-
ray of regular desktop applications and Internet servers,
which are the prime targets for buffer overflow attacks,
convinced us that this prototype is sufficiently mature to
preserve the program semantics of complex production-
grade applications while providing them with protection
against buffer overflow attacks. Of course, more exhaus-
tive tests are required to be absolutely sure about the
accuracy of disassembly and the protection strength of
RAD.

5.2.1 Disassembly Accuracy

The binary-rewriting RAD prototype uses control flow
analysis and a set of other heuristics to distinguish be-
tween code from embedded data. In general, control
flow analysis is quite effective in identifying the code re-
gions for non-interactive applications, which usually do
not have many call-back functions. However, for inter-
active GUI applications, such as those in Microsoft Of-
fice suite, control-flow analysis alone is not quite as ef-
fective because of the hidden call-back functions. There-
fore these applications represent the most challenging
test programs for a disassembler. Table 3 shows the dis-
assembly accuracy of three such programs, MS Power-
point, MS Frontpage, and MS Publisher. The disassem-
bly accuracy of all these programs is above 99%. The
way we measure disassembly accuracy is to manually in-
spect the resulting assembly code and determine whether
the instructions look “reasonable.” From our experi-
ences, instructions that are disassembled from data tend
to appear out of place and thus can be easily detected.

Since the manual inspection method used above may
not seem rigorous enough, to further verify our dis-
assembly results, we experimented with certain Cyg-
win ported Unix applications (with available sources)

on Windows, compiled with gcc’s profiling options and
then analyzed them offline with gprof.

Thus the % of both missed functions and unprotected
returns in interesting functions appear to be reasonable.
The missed functions in Apache were typically func-
tions without any absolute address references in the code
section, which were invoked through a table of function
pointers to which the addresses of those functions were
assigned statically. The table, being a static array vari-
able, is located in the .data section and so were the func-
tion addresses. The static call graph generated by gprof
also shows the parents of these functions as ’unidenti-
fied’.

Because the results obtained from control flow analy-
sis is guaranteed to be correct, it is useful to measure the
percentage of instructions that can be identified through
control flow analysis, which gives an indication of how
useful other heuristics are in identifying instructions, es-
pecially for GUI-intensive interactive applications. Ta-
ble 5 shows the total number of instruction bytes in each
test application and the percentage of them that control
flow analysis can successfully detect. As expected, for
non-interactive applications, which rarely use any call-
back functions, control flow analysis can achieve a very
high detection accuracy, more than 97%. However, for
interactive applications, the percentage is around 80%.
The difference between the coverage percentages in Ta-
ble 3 and 4 for the three programs, MS Powerpoint, MS
Frontpage, and MS Publisher, represent the contribu-
tion of the pattern-based heuristics that binary-rewriting
RAD employs to the total code region coverage.

Finally, because control flow analysis plays such an
important role in the disassembly process, it is instruc-
tive to investigate deeper why it cannot detect all the in-
structions in the program. Other than functions that do
not have explicit call sites, indirect branch instructions
are the main culprit. We measure the percentage of in-
direct control branch instructions in the test applications
and the results are shown in Table 5. Again, interactive
applications such as MS Powerpoint and Access tend to
have a higher percentage of indirect branches than oth-
ers, which reflects the event-driven programming style
of these applications, and correspondingly a more ex-
tensive use of function pointers and switch statements.

Application Code section No. of incorrectly decoded Accuracy
size bytes (approximation)

MS PowerPoint 4.059 MB 2500 99.93%
MS Publisher 2.314 MB 50 99.99%
MS FrontPage 983 KB 900 99.91%

Table 3: Disassembly accuracy achieved as measured through manual inspection of the resulting assembly code. Higher accuracy
means that more bytes are successfully disassembled.

Application No. of functions No. of functions Miss No. of returns % of returns
(source code) (disassembly) % unprotected unprotected

Gzip 234 234 (80) 0 2 0.85
Wget 626 626 (140) 0 3 0.48

Apache 1191 1159 (350) 2.69 38 3.19
Whois 148 148(15) 0 0 0

OpenSSL 2820 2812(780) 0.283 7 0.248

Table 4: Evaluation of disassembly results by comparison with original program sources. The numbers in the parenthesis on the
third column represent the number of falsely identified functions.

In summary, our disassembly results appear to be
better than the previous best reported in the literature
[22], which claims 99.9% precision using binaries with
relocation information, but most of their experiments
were on smaller programs, all of which were plain com-
mand line programs without any GUI callback functions,
which makes disassembly tougher. Furthermore, the
presence of symbol table information in binaries (pos-
sibly inadvertently) eliminates problems regarding func-
tion boundary identification. However, there is a ques-
tion of the symbol table format. It could either be the
generic COFF symbol table, supported by the PE/COFF
binary formats, or it could be a compiler specific format,
like the VC++ .pdb. Apparently, compilers tend to fa-
vor their proprietary formats for symbol table over the
generic COFF format. This is evident since the default
compilation options for generating debug information do
not produce COFF symbol tables, and generate propri-
etary symbol tables instead.

5.2.2 Run-Time Overhead
An important consideration in the design of RAD
is the minimization of performance overhead due to
per-function prologue and epilogue RAD code. The
relative performance overhead of RAD with respect to a
test application is defined as

��������� ��	�
��� �� � ��������� � �	�
�� ��

������	 ��������� � �	�
������ ��

The results are in Table 6, which shows the run-time
performance overhead of binary-rewriting RAD for typ-
ical Internet applications is quite small, around 1%. The
space overhead of binary-rewriting RAD for real appli-

cations is also quite reasonable, as shown in Table 7. The
highest percentage is still smaller than 35%. Both results
demonstrate that the overhead of binary-rewriting RAD
is quite reasonable for practical applications, given the
additional protection it provides.

Because the cost of invoking an epilogue RAD code
through an exception handler is around four times as ex-
pensive as that through a jump instruction, it is important
to find out how frequent epilogue RAD code is invoked
through an exception handling mechanism. If it occurs
frequently, then perhaps a more sophisticated mecha-
nism needs to be developed. Table 7 also shows the
percentage of functions in the test applications whose
epilogue RAD code is triggered via an exception han-
dler. The statistics in Table 7 show that the percentage
of functions that do not have enough instruction space
for a jump instruction is fairly low, less than 3%, which
justifies our design decision of using this expensive solu-
tion in these infrequent cases. Please note that, these are
results of static analysis. It is possible that, at run-time
one of these functions get invoked 50% of the times,
in which case the performance might get seriously hit.
While it is possible to instrument binaries to report the
% of functions called at run-time which need the use of
the INT 3 software interrupt, we are not clear if that
would say much, since at the end of the day, we can still
just say that, since the % of such functions (from our ex-
periments) is typically 0.03% to 2.5%, probabilistically
the % of such functions among those called at run-time
would be of a similar order.

5.3 Resilience to Buffer Overflow Attacks

The Windows help program (Winhlp32.exe) on Win-
dows NT 4.0 with Service Pack 4 has a buffer over-

Application % Covered by Control Flow Analysis % of Indirect Branch Instructions
WFtpd (Ftp server) 97.13% 5.81%
BIND (DNS server) 97.32% 5.42%

MS Access 84.57% 8.29%
Notepad 97.54% 1.73%

MS Powerpoint 80.11% 7.54%
Windows Help 99.67% 1.41%
MS FrontPage 87.20% 8.98%
MS Publisher 93.86% 8.94%

Table 5: Column 2 shows the percentage of a program’s code section bytes that is detected purely through control flow analysis.
Column 3 shows the percentage of indirect branch instructions among all the branch instructions. RET instructions are not included
in this count.

Application Original execution Binary RAD execution % Overhead
time (msec) time (msec)

BIND 122.56 123.85 1.05%
DHCP server 122 123.5 1.23%
PowerPoint 145 150 3.44%

Outlook Express 138.2 140 1.29%

Table 6: Whole program performance overhead due to the insertion of binary-rewriting RAD code. For BIND, the response time
measurement is averaged over 10 queries issued using the client program dig.exe. For the DHCP server, the measurement is
the startup and initialization time averaged over 6 runs. For PowerPoint, the measurement is the time taken to render a 90Kbyte
presentation averaged over 6 runs. For Outlook Express, the measurement is the startup and initialization time averaged over 6
runs.

flow vulnerability, which occurs when it reads a content
file (.CNT) with a very long heading string. We instru-
mented Winhlp32.exe using our binary-rewriting RAD
tool, and the augmented binary successfully resists the
attack mounted by a published exploit code [3].

6 Conclusions and Future Work
We have presented a buffer overflow defense mecha-
nism using static binary translation based on the RAD
[1] model. To the best of our knowledge, this is the first
work reported in the open literature that applies static
binary translation technology to a concrete application
security problem. While a robust binary rewriting in-
frastructure, such as tools like Etch [7], does exist, pub-
lished papers on these systems have never documented
in detail, the design and implementation issues involved,
the solutions adopted to address them and their effective-
ness in a quantitative manner. Our contribution lies, not
in inventing new approaches to static binary translation
but in being the first study to implement state-of-the-art
techniques into a working system and evaluate their ef-
fectiveness on commercial-grade Windows applications.
We believe that this paper exhaustively covers most bi-
nary translation issues in substantial depth and detail
and presents a comprehensive set of experimental results
to demonstrate the efficacy of the design decisions we
have made. Finally, the resulting binary-rewriting RAD
system achieves qualified success as an important tool

to protect legacy applications whose source code is not
available against buffer overflow attacks, and thus signif-
icantly broadens the applicability of buffer overflow de-
fense mechanisms developed in the research literature.
Although, it may not achieve the stated goal of provid-
ing the same level of protection as its compiler-based
counterpart, in a few cases, it is primarily due to a fun-
damental deficiency, one that none of the known works
in the binary translation literature have done better with,
as far as we can tell.

Currently, we are exploring more robust and foolproof
fall-back mechanisms to deal with scenarios of incorrect
disassembly and lack of sufficient space for ’in place’
translation. As an immediate next step, we intend to
experiment our binary translation engine with Dynam-
ically Linked Libraries (DLLs), since a major chunk of
Windows services are implemented as DLLs. Finally,
we aim to apply the lessons from exploring static bi-
nary translation techniques to build copy- and tamper-
resistant software.

7 Acknowledgments

To Sang Cho for his open source disassembler [13] and
to our shepherd, Dawn Song and the anonymous review-
ers for their valuable feedback.

Application % Increase in Size of Executable File % of Functions Using the INT 3 Handler
WFtpd (Ftp server) 34.06% 2.57%
BIND (DNS server) 32.65% 0.00%

MS Access 11.29% 2.61%
MS Powerpoint 9.74% 0.83%
Windows Help 32.79% 0.098%
MS FrontPage 16.45% 0.031%
MS Publisher 10.84% 1.58%

Table 7: Column 2 shows the space overhead of binary-rewriting RAD for different test applications in terms of percentage
increase in size of the executable file after rewriting. Column 3 shows the percentage of functions among those identified that need
to invoke RAD epilogue code through the INT 3 handler

References
[1] Tzi-cker Chiueh and Fu-hau Hsu, RAD: A compile time

solution for buffer overflow attacks, 21st IEEE Interna-
tional Conference on Distributed Computing Systems
(ICDCS), Phoenix, AZ, April 2001

[2] Aleph One, Smashing the stack for fun and profit,
Phrack Magazine 7 (49), November 1996

[3] David Litchfield, Windows NT buffer over-
runs Winhlp32: http://community.core-
sdi.com/ juliano/mnemonix-whlpbo.htm

[4] dark spyrit, Win32 Buffer Overflows - Location, Ex-
ploitation and Defense, Phrack Magazine 55 (15), May
2000

[5] A. Srivastava and A. Eustace, ATOM: A System for
Building Customized Program Analysis Tools, SIG-
PLAN Conference on Programming Language De-
sign and Implementation (PLDI), pages 196–205, June
1994.

[6] James Larus and Eric Schnarr, EEL: Machine-
independent executable editing, SIGPLAN Conference
on Programming Languages, Design and Implementa-
tion, pages 291–300, June 1995.

[7] Ted Romer, Geoff Voelker, Dennis Lee, Alec Wolman,
Wayne Wong, Hank Levy, and Brian Bershad. Instru-
mentation and optimization of win32/intel executables
using Etch. In USENIX Windows NT Workshop, 1997.

[8] LEEL, http://www.geocities.com/fasterlu/leel.htm

[9] C. Cifuentes and M. Van Emmerik, UQBT: Adapt-
able Binary Translation at Low Cost, IEEE Computer,
March 2000.

[10] Crispin Cowan et al., Stackguard: Automatic adaptive
detection and prevention of buffer-overflow attacks, 7th
USENIX Security Symposium, San Antonio, TX, Jan-
uary 1998.

[11] Microsoft compiler extension for buffer overflow de-
fense, http://go.microsoft.com/fwlink/?Linkid=7260

[12] Stackshield, www.angelfire.com/sk/stackshield/

[13] Win32 Disassembler, www.geocities.com/ sangcho

[14] Hiroaki Etoh. GCC extension for protect-
ing applications from stack-smashing attacks.
http://www.trl.ibm.co.jp/projects/security/ssp

[15] CASH: Checking Array Bound Vio-
lation Using Segmentation Hardware,
http://www.ecsl.cs.sunysb.edu/softsecure/project.html

[16] R. Jones and P. Kelly, Backwards-
compatible bounds checking for arrays
and pointers in C programs, http://www-
ala.doc.ic.ac.uk/ phjk/BoundsChecking.html

[17] Intel Architecture Software Developer’s Manual: Vol-
ume 3: System Programmer’s Guide

[18] Bulba and Kil3r. Bypassing StackGuard and Stack-
Shield. Phrack, 5(56), May 2000.

[19] Phrack Magazine 55 (8), May 2000: Klog - The frame
pointer overwrite

[20] Arash Baratloo, Timothy Tsai, and Navjot Singh, Trans-
parent run-time defense against stack smashing attacks,
USENIX Annual Technical Conference, June 2000.

[21] Vladimir Kiriansky, Derek Bruening, Saman Amaras-
inghe, Secure Execution Via Program Shepherding,
11th USENIX Security Symposium, August 2002, San
Francisco, California.

[22] Benjamin Schwarz, Saumya Debray, Gregory Andrews,
Disassembly of executable code revisited, Working
Conference on Reverse Engineering, Oct 2002.

[23] C. Cifuentes, M. Van Emmerik, Recovery of Jump Table
Case Statements from Binary Code, International Work-
shop on Program Comprehension, May 1999

[24] Galen Hunt and Doug Brubacher, Detours: Binary In-
terception of Win32 Functions, 3rd Usenix NT Sympo-
sium, Seattle, July 1999.

[25] Matt Pietrek, An In-Depth Look into the Win32 Portable
Executable File Format, MSDN magazine, Feb 2002

[26] Matt Pietrek, Under the Hood, Microsoft Systems Jour-
nal, 11(5), May 1996.

[27] Barton P. Miller, Mark D. Callaghan, Jonathan M.
Cargille, Jeffrey K. Hollingsworth, R. Bruce Irvin,
Karen L. Karavanic, Krishna Kunchithapadam and Tia
Newhall, The Paradyn Parallel Performance Measure-
ment Tools, IEEE Computer 28, 11, pp.37-46 (Novem-
ber 1995).

[28] Jun Xu, Zbigniew Kalbarczyk, Sanjay Patel and Ravis-
hankar K. Iyer, Compiler and Architecture Support for
Defense against Buffer Overflow Attacks, 2nd Work-
shop on Evaluating and Architecting System Depend-
ability (EASY), San Jose, CA, October, 2002

