
USENIX Association

Proceedings of the
FREENIX Track:

2001 USENIX Annual
Technical Conference

Boston, Massachusetts, USA
June 25–30, 2001

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2001 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Predictable Management of System Resources for Linux

Mansoor Alicherry� K Gopinathy

Department of Computer Science & Automation
Indian Institute of Science, Bangalore

Abstract

In current operating systems, a process acts both as a pro-
tection domain and as a resource principal. This may not
be the right model as a user may like to see a set of pro-
cesses or a sub activity in a process as a resource principal.
Another problem is that much of the processing may hap-
pen in the interrupt context, and they will not be accounted
for properly. Resource Containers[1] have been introduced
to solve such problems in the large-scale server systems
context by separating out the protection domain from the
resource principal by associating and charging all the pro-
cessing to the correct container. This paper tries to investi-
gate how this model fits into a Linux framework, especially,
in the soft real time context. We show that this model al-
lows us to allocate resources in a predictable manner and
hence can be used for scheduling soft real-time tasks like
multimedia. We also provide a framework in Linux which
allows privileged users to have their own schedulers for
scheduling a group of activities so that they can make use
of the domain knowledge about the applications. We also
extend this model to allow multiple scheduling classes.

1 Introduction

A general purpose operating system has to manage the un-
derlying hardware resources (CPU, memory, disk etc) to
provide a satisfactory performance for a mix of interactive,
batch and, possibly, real time jobs. The system may be
acting as a server providing specialized services to other
computers. For many users perceived speed of computing
is governed by server performance.

Modern high performance servers (eg. Squid) use a
single process to perform different independent activities.
However an activity may constitute more than one process.
This may be for fault isolation and modularity. An exam-
ple of this is CGI processing in http servers. In these cases,

�The author is currently with Bell labs, Murray Hill, NJ. The author
can be reached at mansoor@research.bell-labs.com

yThe author can be reached at gopi@csa.iisc.ernet.in

the user may wish to control the scheduling and resource
allocation for a group of processes together.

In current general purpose operating systems, scheduling
and resource management do not extend to significant parts
of the kernel[1]. An application has no control over the
consumption of many resources that the kernel consumes
on the behalf of the application. Whatever control it has
is tied to assumption that each process is an independent
activity.

In summary, in current general purpose operating sys-
tems, processes have the dual role of acting as a protec-
tion domain and as a resource principal. Hence, the no-
tion of resource principal has to be separated from pro-
tection domain for better resource management. Resource
containers[1], proposed by Banga, Druschel and Mogul, al-
low for fine-grained resource management by removing the
role of resource principal from processes. Their work pri-
marily concentrates on accounting correctly the overhead
of network processing inside the kernel to the right resource
container.

A resource container encompasses all system resources
that a process or group of processes uses to perform an in-
dependent activity. All user and kernel processing for that
activity is charged to the resource container and scheduled
at the priority of the container.

In this paper, we study the management of system re-
sources for Linux using resource containers. Though our
design has many aspects similar to [1], our emphasis has
been on the use of resource containers for scheduling soft
real-time tasks1 like multimedia. We extend the model of
resource containers to support multiple scheduling classes.
We also provide a framework in Linux for allowing differ-
ent scheduling functions for different sets of applications.
We also extend the APIs provided in the original model on
resource containers. We also provide a /proc interface to
resource containers so that its parameters are easily acces-
sible.

We have implemented RCLinux, a resource container

1Soft real-time tasks do not have “strict” deadline requirements,
though some timeliness requirements still exist.

implementation for Linux version 2.2.5-15 (Red Hat 6.0).
The patch and detailed documentation is available at
http://casl.csa.iisc.ernet.in/˜mansoor/proj.

1.1 Scheduling Anomalies in Current Oper-
ating Systems

Traditional schedulers have evolved along a path that has
emphasized throughput and fairness. Their goal has been
to effectively time-multiplex resources among conventional
interactive and batch applications. But today, there is a
growth of applications like multimedia audio and video,
virtual reality, transaction processing etc. whose resource
requirements are real-time in nature. Unlike conventional
requests, real-time resource request need to be completed
within application specific delay bounds, called deadlines,
in order to be of maximum value to the application. For
conventional and real-time tasks to co-exist, a scheduler has
to allocate resources in such a way that real-time processes
should be able to meet their deadlines, interactive jobs get
good responsiveness and batch jobs should be able to make
some progress. This is a very challenging problem.

Unix provides the “nice” system call to reduce/increase
the base priority of processes so that there is forward
progress in an application mix. But the values for these nice
calls are often non-intuitive and many experiments have to
be done to come up with the correct values. And these val-
ues are highly dependent on the application mix and have
to changed every time the application mix changes.

Another problem in the current general purpose operat-
ing system is that scheduling is done on a per process basis
or on a per thread basis. A user having more number of
processes/threads gets more CPU time than another user
running a lesser number of threads. A malicious user can
hog the CPU by creating lot of processes and hence pre-
venting the progress of other users’ processes. We need a
mechanism for preventing these types of “denials of ser-
vice” by guaranteeing a fixed percentage of CPU for the
users if required.

Yet another problem in the current general purpose op-
erating systems is that network-intensive applications do
most of the processing in interrupt context. Processing in
interrupt context is either charged to the process that was
running when the interrupt occurred or it is not charged at
all. This can lead to inaccurate accounting and hence inac-
curate scheduling.

Network servers have become one of the most important
applications of large computer systems. Network process-
ing in UNIX is mostly interrupt driven. Interrupt process-
ing has strictly higher priority than user level code. This
leads to interrupt live-lock or starvation when there is a
high network activity.

Another problem in current general purpose operating
system is in the lack of support for real time processes.
Unix SVR4[2] supports static priority real-time classes, but

it has been shown to be of not much use[3]. Real time
classes are supported by having a global priority range for
each class, and real the time class has higher priority value
than the system class, which in turn have higher priority
than the time shared class. Scheduling is done based on
this priority. So when there is a process in the real time
class, none of the system and time shared class processes
are allowed to run. This model is fine for hard real time
tasks, where the cost of missing a deadline is really high
and efficiency is not of much concern. But this is not the
right model for soft real time applications like multimedia,
where the results are not catastrophic when the deadlines
are not met. Also real time processes may depend on the
system processes for some system services, but they are not
able to get those services because of their own presence.

Nieh et al[3] studied the scheduling in SVR4 in the con-
text of an application mix of typing, video and compute
jobs. They found that no combination of assignment of
different priority and classes to these applications gives a
satisfactory performance to all the applications. They also
found that the existence of a real time static priority process
scheduler in no way allows a user to deal with problems of
scheduling this application mix. They found that when us-
ing the real time class, not only do application latencies be-
come much worse than desired, but pathologies can occur
due to the scheduler such that the system no longer accepts
user input.

For example, when the time shared class was used for all
of the three type of application, compute bound (batch job)
tasks performed well. This was due to the fact that the batch
application forks many small programs to perform work,
and then waits for them to finish. Since this job sleeps,
the TS scheduler assumes it as an I/O intensive “interactive
job” and provides it repeated priority boosts for sleeping.

1.2 What Useful Scheduling Models Exist?

Three useful concepts have been identified independently
for their effectiveness in scheduling for applications in re-
stricted domains[4]: best-effort real-time decision making,
exploiting the ability of batch applications to tolerate la-
tency and proportional sharing.

Best-effort decision making combines earliest-deadline
scheduling with a unique priority for each request to
provide optimal performance in under-load and graceful
degradation in overload. Multilevel feed-back schedulers,
as typified by UNIX time-sharing, take advantage of the
ability of long running batch applications to tolerate longer
and more varied service delays to deliver better response
time to short interactive requests while attempting to en-
sure that batch applications make reasonable progress. Pro-
portional sharing, also known as weighted fairness, has
long been advocated as an effective basis for allocating
resources among competing applications. Here each ap-
plication is allocated resources proportional to its relative
weighting.

1.3 Brief Overview of the Linux Scheduler

Linux supports 3 scheduling policies: SCHED FIFO,
SCHED RR, and SCHED OTHER. SCHED OTHER is
the default universal time-sharing scheduler policy used
by most processes; SCHED FIFO and SCHED RR are in-
tended for special time-critical applications that need pre-
cise control over the way in which runnable processes are
selected for execution.

A static priority value is assigned to each process and
scheduling depends on this static priority. Processes sched-
uled with SCHED OTHER have static priority 0; processes
scheduled under SCHED FIFO or SCHED RR can have a
static priority in the range 1 to 99.

All scheduling is preemptive: If a process with a higher
static priority gets ready to run, the current process will be
preempted and returned to its wait list. The scheduling pol-
icy only determines the ordering within the list of runnable
processes with equal static priority.

There is a single run-queue. The scheduler goes through
each process in the queue and selects the task with the high-
est static priority. In case of SCHED OTHER, each task
may be assigned a priority or “niceness” which will de-
termine how long a time-slice it gets. The “counter” at-
tribute of each task determines how much time it has left in
its time-slice. The scheduler selects the task with highest
counter value as the next task to run. After every task on
the run-queue has used up its time-slice (counter = 0), the
counter for each task is set to the original priority + half
the counter. In this way “interactive tasks” (tasks which
were not in run-queue but whose counter was not zero) get
a priority boost.

1.4 Related Work

Lazy Receive Processing (LRP)[5], proposed by Druschel
and Banga, solves the problem of inaccurate accounting
and interrupt live-lock due to network processing in in-
terrupt context by identifying the process that caused the
traffic and doing the network processing in the context
of that process. In LRP, network processing is integrated
into the system’s global resource management. Resources
spent in processing the network traffic are associated with
and charged to the process that caused the traffic. Incom-
ing network traffic is processed at the scheduling prior-
ity of the process that receive the traffic and excess traf-
fic is discarded early. Later on, the concept of resource
containers[6], proposed by Banga, Druschel and Mogul,
was introduced as a means of resource management in
large-scale server systems. A prototype implementation
was reported for Digital UNIX. A FreeBSD implementa-
tion of it is available in [7].

Goyal, Guo and Vin [8] propose an operating system
framework that can be used to support a variety of hard
and soft real-time applications in the system. This frame-
work allows hierarchical partitioning of CPU bandwidth:

the OS partitions the CPU bandwidth among various appli-
cation classes, and each application class, in turn, partitions
its allocation (potentially using a different scheduling algo-
rithm) among its sub-classes or applications. They used
Start-time Fair Queuing (SFQ) algorithm for such a parti-
tioning.

SMART[4], proposed by Nieh and Lam, a Scheduler
for Multimedia And Real-Time applications, supports both
real time and conventional computations and provides flex-
ible and accurate control over sharing of processor time.
SMART is able to satisfy real-time constraints in an ef-
ficient manner and provides proportional sharing across
all real-time and conventional tasks. When not all real-
time constraints are met, SMART satisfies each real time
task’s proportional share, and adjusts its execution rate dy-
namically. SMART achieves this by combining the con-
cepts of proportional sharing, latency tolerance, and best-
effort real-time decision making. SMART uses an algo-
rithm based on weighted fair queueing (WFQ) to imple-
ment weighted fairness. The concept of virtual time, biased
with notion of latency tolerance, is used to measure the re-
source usage of the applications. The biased virtual time is
then used as priority in the best-effort scheduling algorithm
so as to satisfy as many real-time requirements as possible.

Resource Kernel[9], proposed by Rajkumar, Juvva,
Molano and Oikawa, is another approach to real-time
scheduling. A resource kernel is one which provides
timely, guaranteed and enforced access to physical re-
sources for applications. With resource kernel, an appli-
cation can request the reservation of a certain amount of a
resource, and the kernel can guarantee that the requested
amount is available to the application. A reservation can be
time-multiplexed or dedicated. Time-multiplexed reserva-
tion is represented by parameters C, D & T, where T rep-
resents recurrence period, C represents processing time re-
quired within T, and D is the deadline within which the C
units of processing time must be available within T. Oikawa
et al[10] have an implementation of resource kernel for
Linux.

RTLinux (RealTime Linux)[11] is an extension to Linux
that handles time-critical tasks. In RTLinux, a small hard-
realtime kernel and standard Linux share one or more pro-
cessors, so that the system can be used for applications like
data acquisition, control, and robotics while still serving as
a standard Linux workstation.

KURT (KU Real-Time Linux)[12] is another approach
to support real-time in Linux. KURT Linux allows for ex-
plicit scheduling of any real-time events rather than just
processes. It has two modes of operation, the normal mode
and the real-time mode. In normal mode, the system acts
as a generic Linux system. When the kernel is running in
real-time mode, it only executes real-time processes.

2 The RCLinux Resource Container Model

Resource containers[1] encapsulate all the resources con-
sumed by an activity or a group of activities. Resources in-
clude CPU time, memory, network bandwidth, disk band-
width etc. Our focus in this paper has been on CPU time.
2

Scheduling and resource allocation is done via resource
containers3. Processes are bound to resource containers
to obtain resources. This resource binding between a pro-
cess and a resource container is dynamic. All the resource
consumption of a process is charged to the associated re-
source container. Multiple processes may simultaneously
have their resource bindings set to a given container.

A task starts with a default resource container binding
(inherited from its creator). The application can rebind the
task to another container as the need arises. For example,
a task time-multiplexed between several network connec-
tions can change its resource binding as it switches from
handling one connection to another, to ensure correct ac-
counting of the resource consumption.

Tasks identify resource containers through file descrip-
tors. The semantics of these descriptors are the same as
that of file descriptors: the child inherits the descriptors
from the parent, and it can be passed between unrelated
processes through the Unix-domain socket file descriptor
passing mechanisms. APIs are provided for operations on
resource containers. Security is enforced as an application
can access only those resource containers that it can refer-
ence through its file descriptors.

We have added a new name space corresponding to the
resource container: the resource container id, similar to the
pid for processes, as it was not possible to access some
of the resource containers through the existing APIs (e.g.
a container that has no processes directly associated with
it). This name space is available to users having the right
privilege through the /proc interface.

Resource containers form an hierarchy (figure 1). A re-
source container can have tasks or other resource containers
(called child containers) in its scheduler bindings (i.e. the
set of schedulable entities). The resource usage of a child
container is constrained by the scheduling parameters of its
parent container. On the top of the hierarchy is the root
container. This encapsulates all the resources available in
the system.

Hierarchical resource containers make it possible to con-
trol the resource consumption of an entire subsystem with-
out constraining how the subsystem allocates and schedules
resources among it various independent activities. This al-

2We collect the resource usage of resource containers for CPU time,
network bandwidth and disk usage. This can be used for computing the
priority of the resource container if appropriate weights are assigned to
each of the resource usage. Also the network bandwidth usage will re-
flect on the CPU usage since the protocol processing for the packets are
significant and we account for the network processing properly.

3The descriptions in this section closely follow those in [1] & [6].

kswapd shellshell

httpd CGI

X server mpeg_play

init getty nfsd

pgm 1 pgm 2

100%

50%20%16 20 20

16 16 10%

rc_root

idle_task

rc_system

100%

w%

w Shared container
Having w weight

Fixed share container
Having w % of CPU Process

Double pointer

to run
Next task/container

Figure 1: Resource container hierarchy

lows a rich set of scheduling policies to be implemented.
Our Linux implementation allows the scheduling policies
to be changed dynamically through APIs. It also allows
these policies to be in dynamically loadable modules. This
allows privileged users to try out various scheduling algo-
rithms and to use better ones with a specific application
mix.

The CPU resources allocated to a container may be either
a fixed share of the resource its parent container is entitled
to (called fixed share child container), or it may be shared
with other children of the parent (called shared child con-
tainer). In the case of shared children, the amount of CPU
time it is entitled to is proportional to the weight of the con-
tainer relative to other shared child containers of parent.

Along with fixed and shared child containers, our imple-
mentation support multiple scheduling classes. Scheduling
classes have strict priorities, i.e. a container in the lower
priority class will not be scheduled in the presence of con-
tainer with a higher priority class.

For scheduling soft real-time processes, we need to at-
tach them to fixed share containers. The CPU reservation
of these containers have to be at least the amount of pro-
cessing required for those processes. Unlike hard real-time
scheduling, this will allow other time shared processes to
have reasonable progress if the CPU reservation of soft-
real time process is not 100%. Higher scheduling classes
should be used only when absolutely necessary (eg. hard
real-time) as this can possibly make all the processes in the
lower class starve.

Our design does not take care of any interrupt live-locks
that can occur due to high network activity. It has been
shown that LRP[5] gives stable throughput under high load,
hence we plan to incorporate it at a later time.

cpu_alloted
cpu_used

ref_count

runnable

net_packets
disk_sectors

schedule[0]
schedule[1]
schedule[2]

rc_func

rc_func structure

Resource Container Structure

data

private data

parent

left sibl

right sibl

fixed shared task

left
child

next
run left next

run
left

next
run

child

cpu rsrv/weight

child rsrv
child weight

schedule[3]
update
init
delete

child

cpu_total

nr_threads

Figure 2: Resource container structure

2.1 Resource Container Data Structures

Resource containers are first-class kernel objects. They
have various attributes that are required for scheduling and
resource accounting along with functions for various op-
erations on containers (figure 2). Some of the important
attributes are:

1. Mechanism Data: This contains the necessary data of
the container mechanism. This includes reference count,
the list of runnable threads and next thread to run in the
scheduler binding of the container, the list of child con-
tainers and next container to run in the fixed share children
list and shared children list, and the parent container. The
resource container hierarchy is implemented using a left-
child, right/left sibling data structure, with each container
having a pointer to its parent. The reference count keeps
track of the number of references to the resource container.
A reference to a resource container can be from a child con-
tainer, from a task as its resource binding or from the global
file table.

2. Scheduler Data: This contains data necessary for the
scheduler. This includes the weight or CPU reservation that
this container is entitled to from parent, sum of the CPU
reservations and weights of the child containers, CPU time
allocated to this container and CPU time used by this con-
tainer if this container is in the current path (i.e. the path
from root to the current container in the container hierar-
chy), number of runnable threads in the scheduler bind-
ing of the container, and a runnable bit mask. Each bit
in the runnable bit mask indicates whether the container is
runnable for the scheduling class corresponding to the bit.
A container is said to be runnable for a class if there is a
task in its scheduler bindings which belongs to that class or
if it has a child container which is runnable for that class.

3. Container specific functions: Each resource container
can have its own scheduler function for each of the schedul-
ing classes and its own update, init and delete functions.
The update function is used to update the scheduler data.

This is called by the scheduling routine of the child con-
tainer before it gives the control of the CPU back to its
parent (subsection 2.3). The init routine is called when a
resource container is created or when the container specific
function is changed by calling set rc functions() (section
2.5). This function may be used to initialise the resource
container variables or to allocate space for container’s pri-
vate data. The delete function is called when the resource
container is destroyed. This may be used to free the space
allocated for private data. Each resource container has a
pointer to a structure containing these function pointers.

4. Statistics: Statistics includes the total CPU usage of
the container, the number of disk reads and writes, the num-
ber of network packets sent etc. Statistics will be prop-
agated to the parent container, when the container is de-
stroyed, if a flag RCPROPSTAT (i.e. propagate statistics
flag) is set in the container.

5. Private Data: This can be used by the container spe-
cific scheduler and update routines.

2.2 Global Data Structures

To fully characterise a system-level resource container ab-
straction, we need additional global variables such as:

1. rc root: This is the root container. All the resources
in the system are allocated to the root container and hence
to the hierarchy rooted here. Any container or task that has
to get a resource has to be in the tree rooted here.

2. rc system: This container is used to charge all the
processing that could not be directly associated with any
container (eg. network processing for a packet that is not
destined to any of the processes). This container is not part
of the hierarchy rooted at rc root. The statistics information
in this container can be used by the system administrators
to monitor the system.

3. rc pool: Pool of resource containers from where a
resource container structure is allocated. When a resource
container is freed, the resource container structure is re-
turned to the pool.

4. class lastrun: When a task of higher class becomes
runnable, it preempts the currently running task. When
the task of higher class is no longer runnable, then we
have to restart the scheduling with the container where we
had left off. This value is stored in class lastrun array. If
the element of class lastrun that corresponds to the highest
runnable class is NULL, the scheduling starts from root.

5. rc current: This points to the currently chargeable
container. This cannot be taken as the container to which
the currently running task is bound, since we are provid-
ing a facility for the task to change its binding on the fly
through a system call and during the call there is a change.

2.3 Resource Container Scheduler Frame-
work

Each resource container has its own scheduling function
(rc scheduler) for each scheduling class. This can be
in a loadable module and can be set on the fly using
the set rc functions() system call (see section 2.5). The
rc scheduler function is passed the resource container and
the class as the arguments. It returns the task that is to
be scheduled next. The class is passed as an argument
since it can use the same scheduling function for each of
the classes. Similar is the reason for passing the resource
container.

When rc scheduler is called, the resource container
structure will have two of its variables cpu allotted and
cpu used set. This invocation of the scheduler is allowed
to allocate (cpu allotted - cpu used) amount of CPU time
to its child containers which are marked runnable for that
particular class or to tasks in its scheduler binding belong-
ing to that class. When it is allocating a CPU for a child
container, it sets the cpu allotted value of that container to
the required amount and returns by calling the class spe-
cific scheduler routine of child container. If it is allocating
CPU for a task, then it sets cpu allotted in the task structure
of that process and returns the process. When cpu used is
greater than cpu allotted it first calls the update function of
parent, with this container as the argument, and then returns
by calling the class specific scheduler function of the par-
ent. The update routine updates the cpu used of the parent
by adding to it cpu used of the child and sets cpu allotted
and cpu used of the child to 0. Any priority re-computation
that has to be done is also done in the update routine.

2.4 rc schedule() routine

This is the default scheduler function for all classes for
all resource containers. This is written conforming to the
scheduler framework given above. The scheduling starts
with root.

The resource container allocates CPU for the contain-
ers having fixed CPU share, by an amount proportional to
the CPU reservation of the children. Any remaining CPU
time is allocated to the tasks in the scheduler bindings of
the container. After that it will allocate the remaining CPU
time for the time shared child containers, by an amount
proportional to their weights. At anytime, if the CPU us-
age of the container exceeds the allocated time, or all the
runnable containers and tasks are given the CPU then the
control is passed to parent container by calling the class
specific scheduling function of the parent.

The root has a different scheduler function; it returns
NULL. This is because once all the child containers and
tasks are scheduled by the resource container, it will call
the schedule function of the parent to give back the con-
trol of the CPU. But for root, this cannot be the case as we
have to restart the scheduling of the whole tree. One way

to achieve this is to check whether the container is root ev-
ery time before calling the scheduler function of the parent
container and restart the scheduling of the tree if it is root.

Another solution to this problem, which is cleaner and
what we follow, is to have a different scheduler function
for root. When the scheduler function for the container re-
turns NULL, the schedule() function calls another routine
rc root schedule() which restarts the scheduling of the tree,
and returns the next thread to run.

rc root schedule() checks for the runnable flag of the
root. If it is zero, then there are no processes in the system
and it returns the idle task. Otherwise it calls rc schedule()
with root and the highest runnable flag as the argument. If
this function returns a task, that task is returned to sched-
ule(). Otherwise it calls rc schedule() again. This is be-
cause the root may be looking at some part of the tree (to-
wards right) where there may not be any task in the highest
class, so the first call to rc schedule() will return NULL.
The second call to rc schedule() will restart the scheduling
from the left most child and it will eventually find a task to
run.

Similarly the update function for root is slightly different
from update function of other resource containers, since the
parent of root is root itself.

One important implementation issue that has a bearing
on the design is that even if we are using regular tree traver-
sal for scheduling, we cannot use any information on the
stack between two context switches since the kernel stack
changes for each context switch. So any information that
is needed across context switches has to be kept in the re-
source container data structures itself. That is why sched-
ule() calls rc schedule() to find the next thread, rather than
rc schedule() itself acting as the sole scheduler function.

2.5 RCLinux Resource Container APIs

Resource containers can be accessed either through system
calls or through the /proc interface.

2.5.1 System Calls

System calls are provided for the users to make use of re-
source containers. Most of these system calls take the re-
source container descriptor as one of the arguments.

All the APIs except set rc functions were defined in
[6]. But we have added the pid argument to get rc and
set res binding to make them more useful. pid was re-
quired as the argument to control the resources allocated
to the processes which do not use the APIs (eg. an already
existing application). This also gives the system adminis-
trator more control.

1. int rc create(void)

This creates a new resource container and associates
a file descriptor for the process with it. It returns the
descriptor.

2. int get rc(int pid)

This returns a descriptor for the resource container to
which the process pid is bound. If pid is zero, the de-
scriptor of the container of the calling process is re-
turned. The permissions for obtaining the resource
container descriptor of a process is the same as that
of sending a signal to the process (ie. the calling pro-
cess must either have root privileges, or the real or ef-
fective user ID of the sending process must equal the
real or saved set-user-ID of the target process). This
will return a new descriptor every time this function is
called.

3. int set rc parent(int rcd1, int rcd2)

Sets the parent of the resource container correspond-
ing to rcd1 to that of rcd2. It also checks whether the
resources can be allocated to the child container from
the new parent before changing the parent. It changes
the scheduling parameters of the old parent, the new
parent and the child container to reflect the change.
The child container is removed from the binding list
of the old parent and added to that of the new parent.
This is used to add a newly created container to the re-
source container hierarchy, or to change the structure
of the hierarchy.

4. int set res binding(int rcd, int pid)

Sets the resource binding of the process pid to the
resource container corresponding to rcd. If pid is
zero, the scheduler binding of the calling process is
changed. Any future processing done by the process
task will be charged to the new container. The task
is removed from the scheduler bindings of the old
container and inserted into that of the new container.
Scheduling parameters of the containers are changed.
The need resched attribute of the task structure is set
so that the task is preempted at the earliest safe point.
The permissions to change the scheduler binding is the
same as that of sending a signal.

5. int set fd rc(int fd, int rcd)

This binds the open file or socket corresponding to fd
to the resource container corresponding to rcd. All
the future processing for the file will be charged to the
new container.

6. int set rc opt(int rcd, struct rcopt *rco), int
get rc opt(int rcd, struct rcopt *rco)

Sets/gets the options of a resource container. Op-
tions includes scheduling parameters, statistics flags
etc. rcopt is a structure that contains attribute type and
attribute value as the fields.

7. int set rc functions(int rcd, struct rcfunc *rcfp)

Sets the class specific scheduler functions and update
function of a resource container. rcfunc is a structure

.

.
struct file struct dentry

struct socket

sk
file

struct sock

sk

sk_buffsk_buff

recv_q
write_q

rc

is_rc
rc

task structure

resource
container

structure

cpu_alloted
cpu_used

fd[0]
fd[1]

inode

socket

f_dentry

Figure 3: Kernel data structures (those dotted are new in
RCLinux)

containing the function names. This allows a privi-
leged user to load a module containing the functions
and call this system call to use these functions.

3 RCLinux Kernel Modifications and Re-
design

The RCLinux task structure task struct contains a pointer
to the resource container it is bound to (figure 3). Whatever
resources are allocated to the resource container, it allo-
cates for the processes in its scheduler binding and to its
child containers.

Processes can access the resource containers through file
descriptors (resource container descriptors). A pointer to
the resource container and a flag was added to the file struc-
ture. If the flag is 1, then the file structure corresponds to
a resource container. Otherwise, it has the normal Linux
semantics (i.e. file, socket etc).

3.1 Changes to the File Management Subsys-
tem

When a file is open, the resource container pointer of the
file structure is set to the container to which current task
is bound. The reference count of the resource container
is incremented for each reference of the file structure (this
is different from the reference count of the file descriptor
since two file descriptors may point to the same file struc-
ture). Similar processing happens for the socket() call also.

In the close routine, the reference count of the associ-
ated resource container is decremented if there are no more
references to the file structure.

3.2 Changes to Network Subsystem

Most of the protocol processing for incoming packets and
for the outgoing packets during retransmission happens in
the bottom-half handler net bh(). In the current Linux ker-
nel, proper accounting of this processing is not done. The
network subsystem has been modified to do proper ac-
counting. The Linux kernel already allows us to work out
which socket file descriptor a network buffer (skbuff) struc-
ture belongs to, so we can always find the resource con-
tainer for a packet by looking up the correct socket file.
The accounting has been done by recording the timestamp
counter (subsection 3.7) at the beginning and end of the
bottom-half handler.

If the resource container corresponding to a network
packet cannot be identified (eg. a packet to a port which no
process is bound to), then it is charged to a separate con-
tainer rc system which is not part of the hierarchy rooted
at rc root (subsection 2.2). The number of bytes sent and
received is also kept in the resource container as part of
statistics.

3.3 Changes toschedule()

Whenever a process has to be preempted, Linux sets a flag
in the task structure of the currently running process. When
control reaches one of the safe points (eg. return from a
system call), the schedule() function is called to determine
the next process to be scheduled and to context switch to
that process. The schedule() function has been changed to
support the resource container framework.

The schedule() routine updates the CPU usage of the cur-
rent resource container by adding to it the CPU usage of
the currently running process. Then it checks whether any
process has become runnable in any higher class than that
of the current container. If there is any, the highest class
runnable resource container is the next resource container
to be scheduled. Otherwise the current container is sched-
uled.

Once the next resource container is found, the class spe-
cific scheduler function of that container is called to decide
on the next task to be run. This function need not necessar-
ily return a task in its own scheduler binding since it could
allocate the CPU to a child container and call its scheduler
function, or its CPU time allotted could have expired by
this time, in which case it calls the scheduler function of
the parent to give back the control of the CPU (subsection
2.3).

If the class specific scheduler function of the next re-
source container to run returns NULL, then scheduling
restarts from the root container.

After finding out which task to schedule next, the con-
tainer to which this task is bound is saved. If the next task
to be scheduled is not the currently running one, a context
switch is effected.

3.4 Changes tofork() and exit()

Linux supports a clone system call that an user can use to
create a clone of a process. A flag is passed as an argument
to the clone call that specifies the type of the objects (eg
virtual memory, signal mask etc) that are to be shared. Both
fork and clone system call make use of the same function
but use different flags. A new flag CLONE RC has been
added to the clone flags. If CLONE RC is set then this
function allocates a new resource container for the child
process and makes it the child of the resource container
of the parent process. Otherwise the resource container of
child process is set to that of the parent process. When the
child process is made runnable, it is added to the scheduler
bindings of the resource container to which it is bound to.

When a process exits, Linux frees most of the resources
(eg. virtual memory, file tables etc). This cannot free the
complete task structure since some of the information is
required later (eg. exit code for the parent, fields in task
structure used by the scheduler, and the kernel stack since
the process is still the “currently running” process). These
fields are freed when the parent calls wait. A resource con-
tainer which is bound to the exiting task cannot be freed
during exit as it is needed by the scheduler. It is freed when
parent calls the wait.

3.5 System Initialization

During system initialization the resource container initial-
ization routine rc init() is called. This initializes the root
container. It allocates RCMAXCPU to the root container,
which is the value that is used to schedule all the processes
system wide in one traversal of the hierarchy. It sets the
cpu reservation of the container as the maximum reserva-
tion possible. The resource container for “idle task” is set to
root, but the task is not added to the scheduler bindings of
the root since we do not want it to be scheduled when there
is some other task in the system. The parent container of
the root is set to root itself. Current running container is set
to the root container.

Process 0 creates init process with the CLONE RC flag
set so that a new container is created for init task. The
scheduling parameters of this new container is set so that
it is entitled to all the resources root can have. Init process
spawns other kernel threads with CLONE RC flag set.

3.6 /proc Interface

Linux provides, in a portable way, information on the cur-
rent status of the kernel and running processes through the
/proc interface. We have changed /proc to support resource
containers.

Resource containers are represented as directories in
/proc, named rc<resource container id>. The files in this
directory are a read only file status and a write only file
cmd.

0

100

200

300

400

500

600

0 10 20 30 40 50 60 70 80 90 100

T
im

e
 in

 m
ic

ro
se

co
n
d
s

Processes

0 k

4 k

8 k

16 k

32 k

64 k
RCLinux

Unmodified Linux

Figure 4: Context switch time for RCLinux and Unmodi-
fied Linux for processes of various sizes

We can get various attributes of a resource container like
the list of child containers, the list of child processes, re-
source usages etc by reading the corresponding status file.
This information can be used for debugging and system ad-
ministrative purposes.

The file cmd is used for giving various commands to the
resource container. Here the name of the API and its argu-
ment is directly written to the file. This helps in easy use of
resource container functions.

3.7 Other Changes

One of the important requirements for the success of proper
accounting and scheduling is the ability to keep track of
time accurately. Linux uses a clock which ticks HZ times
per second with HZ set as 100. This will not help us to
do proper accounting of the activities since we get only a
resolution of 10ms. Modern CPUs provide a timestamp
counter which is incremented for every CPU clock. We
have used the timestamp counter for accurately measuring
the time.

Another change we have made to the Linux kernel is
to the routines which insert or delete a process on the run
queue. A process is inserted/deleted to/from the run-queue
of the resource container to which it is bound, rather than
to a global run-queue. Also whenever a process is inserted
to (or deleted from) a run-queue, the runnable flag of the
associated resource container is updated and this updating
is propagated till the root.

Whenever a resource container is freed, the last run array
is examined and all the elements of the array pointing to the
container is set to NULL.

operation RCLinux Linux
Simple syscall 0.71 0.71
Simple read/write 1.04 1.05
Simple stat 5.94 5.88
Simple open/close 7.66 7.54
Select on 100 tcp fd’s 35.95 35.32
Signal handler installation 2.18 2.23
Signal handler overhead 2.92 2.92
Protection fault 1.48 1.48
Pipe latency 7.95 9.30
Process fork+exit 394.57 440.46
Process fork+execve 4109.00 4139.00
Process fork+/bin/sh 15023.00 14977.00

Table 1: Time taken for various operations(in micro sec-
onds)

4 Experimental Evaluation

4.1 Performance overhead

We ran lmbench[13] to evaluate the performance of
RCLinux compared to an unmodified version of Linux.
The tests were performed on a 400 MHz Celeron with
128MB memory. We found that the overhead was very
minimal. The results are summerized in table 1.

Figure 4 shows the context switch time for different
number of processes for different sizes. The processes are
connected in a ring of Unix pipes. Each process reads a to-
ken from its pipe, possibly does some work, and then writes
the token to the next process. A size of zero is the baseline
process that does nothing except pass the token on to the
next process. A process size of greater than zero means
that the process does some work before passing on the to-
ken. The work is simulated as the summing up of an array
of the specified size. The graph shows that RCLinux per-
forms slightly better when number of processes is large.

4.2 Use of fixed CPU share

In this experiment, we create three child containers C1, C2
and C3 for the resource container to which init is bound,
having a fixed CPU share of 16%, 32% and 48% respec-
tively. We also create three CPU bound jobs R1, R2 and
R3. The cumulative execution time of these jobs are shown
in figure 5.

The figure shows that when all the processes are running,
R1, R2 and R3 get 14.3%, 28.6% and 42.9% of the CPU
respectively. There is a proportional decrease in the CPU
allotted than what has been specified and may be due to
the lower resolution of the CPU timer4, pre-emption being
done only at safe points and the non-accounting of some of
the activities in the system (eg. network activities that are

4Eventhough we use CPU time stamp counter for keeping track of
time, we get timer interrupts only in 10ms intervals.

0

2

4

6

8

10

12

14

16

0 10 20 30 40 50 60

cu
m

u
la

ti
v
e

ex
ec

u
ti

o
n
 t

im
e

(s
)

elapsed wall clock time (s)

R1
R2
R3

Figure 5: Proportional allocation of CPU for fixed share
containers

0

2

4

6

8

10

12

14

0 10 20 30 40 50 60

cu
m

u
la

ti
v
e

ex
ec

u
ti

o
n
 t

im
e

(s
)

elapsed wall clock time (s)

R1
R2
R3
R4

Figure 6: Proportional allocation of CPU for fixed share
and shared containers

charged to rc system, the time taken for scheduling etc.).
Once R3 exits, R1 and R2 get 25.2% and 50.1% of the
CPU respectively and the remaining CPU power is used by
various system activities and other processes in the system.
This is more than what has been specified as there are not
many other activities in the system. Once R2 also exits, R1
gets 50.0% of the CPU.

4.3 Allocation of CPU in presence of fixed
share and shared containers

Another experiment was conducted in which three fixed
share containers and a shared container were created. Fixed
containers had a CPU share of 48%, 16% and 16%. CPU
bound jobs R1, R2 and R3 were bound to these contain-
ers. Another CPU bound job R4 was bound to a shared
container. All the four jobs were same. The cumulative
execution time of these containers are shown in figure 6.

When all the processes were running, R1, R2, R3 and

R4 got 54.2%, 20.9%, 20.9% and 8.7% of CPU time re-
spectively. When R1 exited, the shared container got most
of the CPU that R1 was using. R2 and R3 got 25.2% and
R4 got 48.9% of the CPU. R4 completed before R2 and R4.
When R4 exited, R2 and R3 got 49.5% of the CPU.

4.4 Scheduling for Multimedia

Multimedia applications often perform poorly under Linux
when there are some CPU bound processes running. For
this experiment, we have run a multimedia application in
the presence of CPU bound processes - each being a dis-
tributed genetic algorithm client5. mpeg play was used for
viewing the mpeg file. Frame rate was noted for different
number of genetic algorithm clients. The frame rate ob-
served under Linux was 15.5, 9.8, 7.0 and 5.6 for 1, 3, 5
and 7 clients respectively.

Even if the frame rate was 15.5 with one client, the
movie was jerky. This was because of the way Linux sched-
ules processes. Initially both mpeg play and the client
will be allocated 200ms (ie count = 20) CPU time. Once
mpeg play is scheduled, it will require service from the X
server and it will sleep. Next the client is scheduled, and
it will use up its 200ms since it does not sleep in between.
Again, mpeg play is scheduled and it will again sleep for
service from X server. So the X server and mpeg play will
be scheduled alternately till their remaining CPU quanta is
exhausted (ie count becomes 0). After this, the whole cy-
cle repeats. The movie is jerky as the client runs once per
this major cycle.

Next, we ran mpeg play by creating two resource con-
tainers with fixed cpu share and binding the mpeg play and
X server processes to those containers. We tried various
amounts of CPU shares from 10% to 60%. We also allo-
cated 30% to 50% of the CPU to X server. But the maxi-
mum frame rate went only up to 7.0.

The problem in this case was that even if the scheduler
was allocating enough CPU time to both mpeg play and X
server, they were not able to use it since one needed the
service of the other. After mpeg play generated a frame,
it required the service of the X server to display it. After
displaying the frame, the X server needed mpeg play to be
scheduled to generate the next frame.

Now we ran mpeg play by creating a single resource
container with fixed cpu share and binding both mpeg play
and X server processes to that container. We tested it by
allocating different amount of CPUs to this resource con-
tainer and running distributed genetic algorithm with dif-
ferent number of clients.

With this arrangement for binding processes, we ob-
tained significant performance for CPU shares more than
60%. Also the picture was very smooth (no jerks) even for

5This application recognizes digits using a number of computational
nodes (clients) with the server using many clients. Most of the time server
sleeps. We have run all the clients on the same machine.

No. of CPU share
clients 10% 20% 30% 40% 50% 60% 70% 80% 90%
1 4.7 5.2 10.0 10.4 15.1 15.5 19.9 20.7 25.3
3 4.7 5.2 9.9 10.4 15.0 15.6 19.9 20.7 25.3
5 4.7 5.2 10.0 10.3 15.0 15.6 19.9 20.7 25.3

Table 2: Frame rate using resource containers

lower frame rates. The resulting framerates are shown in
Table 1. The output shows that the frame rate is indepen-
dent of number of clients running in the system and de-
pends only on the CPU allocated to the resource container.

5 Conclusions and Future Work

The concept of resource container was introduced to ad-
dress the lack of appropriate support for server applica-
tions in existing operating systems. We have extended it by
introducing multiple scheduling classes and by using con-
tainer specific schedulers. We have shown that we can use
resource container mechanism for predictable performance
of applications and for scheduling multimedia applications.

We have implemented resource containers for Linux by
making minimal changes to the existing kernel which is
designed under the assumption that a process is a resource
principal. We have modified only two kernel data struc-
tures, task struct and file. We have changed a total of 12 .c
files, 3 .h files and 1 .S file in the kernel, fs, net, init and
arch directories.

The statistics information that is maintained for disk ac-
cesses and network packets can be used for taking better
CPU and I/O scheduling decisions. A detailed study has
to be conducted to find out the influence these have on the
priority computations.

We have not looked into memory management subsys-
tem in this resource container framework. When a group
of processes are performing related activities, the working
set of each process may depend on the working set of the
other processes in the group. So better paging decisions
may be possible if resource container framework is added
to the memory management subsystem. We have also not
looked into multiprocessor related issues in our design.

Acknowledgements:We thank N.Ganesh for his help in
running lmbench on RCLinux and Linux-2.2.5 and Stephen
Tweedie, our shepherd, for his many suggestions on im-
proving the paper. Financial support from Veritas Software,
Pune is also gratefully acknowledged.

References

[1] Gaurav Banga, Peter Druschel, and Jeffery C. Mogul.
Resource containers: A new facility for resource
management in server systems. In Proc. of Third

Symp. on OS Design and Implementation, New Or-
leans, Feb 1999.

[2] Berny Goodheart and James Cox. The Magic Garden
Explained: The Internals of UNIX System V Release
4. Prentice Hall of Australia Pty Ltd, 1994.

[3] Jason Nieh, James G. Hanko, J. Duane Northcutt, and
Gerard A. Wall. SVR4 UNIX schedular unacceptable
for multimedia applications. In Proc. of Fourth Inter-
national Workshop on Network and OS Support for
Digital Audio and Video, Nov 1993.

[4] Jason Nieh and Monica S. Lam. The design of
SMART: A scheduler for multimedia applications.
CSL-TR-96-697, Stanford University, Jun 1996.

[5] Peter Druschel and Gaurav Banga. Lazy receiver pro-
cessing (LRP): A network subsystem architecture for
server systems. In Proc. of Second Symp. on OS De-
sign and Implementation, Seattle, WA, Oct 1996.

[6] Gaurav Banga. Operating System Support fo Server
Applications. PhD thesis, Rice University, May 1999.

[7] Resource containers and LRP for FreeBSD.
http://www.cs.rice.edu/CS/Systems/ScalaServer/
code/rescon-lrp/README.html.

[8] Pawan Goyal, Xingang Guo, and Harrick M. Vin. A
hierarchical cpu scheduler for multimedia operating
systems. In Proc. of Second Symp. on OS Design and
Implementation, Seattle, WA, Oct 1996.

[9] Raj Rajkumar, Kanaka Juvva, Anastasio Molano, and
Shui Oikawa. Resource kernels: A resource-centric
approach to RT systems. In Proc. of SPIE/ACM Conf.
on Multimedia Computing & Networking, Jan 1998.

[10] Shui Oikawa and Raj Rajkumar. Linux/RK: A
portable resource kernel in Linux. In IEEE Real-Time
Systems Symp. Work-In-Progress, Dec 1998.

[11] RTLinux. http://luz.cs.nmt.edu/ rtlinux.

[12] KURT: The KU Real-Time Linux.
http://hegel.ittc.ukans.edu/projects/kurt.

[13] Larry McVoy and Carl Staelin. lmbench: Portable
tools for performance analysis. In Proc. of 1996
USENIX Technical Conf., San Diego, CA, Jan 1996.

