
Using TCP/IP traffic shaping to achieve iSCSI service predictability

J. Bjørgeengen
IT operations dept
University of Oslo

0373 Oslo
jarle.bjorgeengen@usit.uio.no

H. Haugerud
Faculty of Engineering
Oslo University College

0130 Oslo
Harek.Haugerud@iu.hio.no

Abstract

This paper addresses the unpredictable service availabil-
ity of large centralized storage solutions. Fibre Chan-
nel is a common connection type for storage area net-
works (SANs) in enterprise storage and currently there
are no standard mechanisms for prioritizing workloads
using this technology. However, the increasing use of
TCP/IP based network communication in SANs has in-
troduced the possibility of employing well known tech-
niques and tools for prioritizing IP-traffic. A method
for throttling traffic to an iSCSI target server is devised:
the packet delay throttle, using common TCP/IP traffic
shaping techniques. It enables close-to-linear rate reduc-
tion for both read and write operations. All throttling
is achieved without triggering TCP retransmit timeout
and subsequent slow start caused by packet loss. A con-
trol mechanism for dynamically adapting throttling val-
ues to rapidly changing workloads is implemented us-
ing a modified proportional integral derivative (PID) con-
troller. An example prototype of an autonomic resource
prioritization framework is designed. The framework
identifies and maintains information about resources,
their consumers, response time for active consumers and
their set of throttleable consumers. The framework is
exposed to extreme workload changes and demonstrates
high ability to keep read response time below a prede-
fined threshold. It exhibits low overhead and resource
consumption, promising suitability for large scale opera-
tion in production environments.

1 Introduction

Large scale consolidation of storage has been an increas-
ing trend over the last years. There are two main rea-
sons for this: rapid growth in the need for data-storage
and economy of scale savings. Also, centralized stor-
age solutions are essential to realize most of the cluster
and server virtualization products existing today. In the

last few years the storage market has shifted its focus
from expensive fibre channel (FC) technology towards
common-off-the shelf TCP/IP based technology. Storage
networking is converging into familiar TCP/IP network-
ing as performance of TCP/IP equipment increasingly
gets more competitive with respect to performance. The
times when dedicated storage administrators took care of
storage area networks (SANs) are about to disappear as
the underlying technology used to build SANs is shifting
towards less specialized technology. iSCSI is an exam-
ple of a technology enabling TCP/IP networks to con-
nect hosts to their virtual disks in the theirs SANs. The
growth in networked storage and the complexity in con-
junction with large scale virtualization increase the de-
mand for system administrators to understand and mas-
ter complex infrastructures of which storage devices are
a central part. Understanding the effects of performance
and resource utilization in TCP/IP based SANs is vital
in order to make keepable promises about storage per-
formance. Predictable storage performance is a vital re-
quirement for promising performance of the applications
utilizing it, and it is the system administrator’s job to en-
sure that storage performance meets the requirements of
the applications. Figure 1 gives a simple overview of
how several hosts share resources in an iSCSI storage ap-
pliance. Physical resource pools are colored, and virtual
disks from those pools share the available I/O resources
in the pool.

The advantages of storage consolidation/centralization
are duly recognized. However, there is a major differ-
ence between performance attributes of a virtual disk in a
centralized pool of storage and a dedicated local storage
unit: sharing of the underlying hardware resources. A lo-
cal disk may exhibit low total performance compared to
SAN devices with a pool of many striped disks, but the
performance of the local drive is predictable. The vir-
tual disk in the storage pool usually has a much higher
performance depending on the available capacity of the
underlying hardware resources. The key point is the de-

1



Figure 1: Concept of centralized storage pools

pendence on available capacity, and that available ca-
pacity is dependent on the activity towards other virtual
disks sharing the same resource pool. A host may sat-
urate the underlying resources of a storage pool causing
poor performance of all hosts utilizing virtual disks from
that pool. A host utilizing a virtual disk in a shared stor-
age pool has no means to predict the behavior of other
hosts utilizing other virtual disks sharing the same pool
of resources. Hence, the performance experienced by
any host utilizing a virtual disk served by a shared pool
is unpredictable by the nature of resource sharing.

Addressing this issue requires a mechanism to priori-
tize workloads (Quality of Service,QoS) based on some
kind of policy defining important and less important
workload types. Most storage solutions are able to vir-
tualize the amount of storage presented to the host in a
flexible way, but the same storage devices seldom have
QoS features. Storage service level agreements (SLAs)
presupposes predictability in service delivery, but pre-
dictability is not present because of the nature of re-
source sharing and the absence of prioritization (QoS)
mechanisms in storage devices. Application SLAs de-
pend on individual components providing the application
with sufficient resources, thus, contributing to the appli-
cations’ SLA. The disk system is the component satu-
rated first in any computer infrastructure, because it is
the slowest one. This condition makes it hard, or im-
possible, to make keepable promises about performance,
and ultimately increases the risk for application SLA vi-
olations. Clearly this is sub-optimal situation for system
administrators whose mission is to keep applications and
their infrastructure running.

The work presented in this paper is motivated by one
of the author’s experiences with unpredictable service
availability of SAN devices at the University of Oslo.

2 System model and design

The goal of this work was to design a working prioritiza-
tion framework containing throttling, measurements and
decision making. The main idea was to utilize common
tools in novel ways in order to obtain more predictable
service availability of storage devices. The objective was
to demonstrate the ability to mend adverse effects of in-
terference between loads using a throttling mechanism
for reducing resource contention, thereby improving ser-
vice availability for important consumers. iSCSI utilizes
TCP for transportation and Linux Traffic Control (tc)
has advanced features for network traffic shaping, hence,
the decision to usetc for the purpose of throttling was
easy.

The amount of consumers that need to be throttled
could become large. Also, workloads may rapidly
change. Thus, a method to rapidly adapt throttling
schemes is a necessary requirement. Traditionally, TCP
traffic shaping with Linux Traffic Control is used with
static rules targeted only at the network itself, for in-
stance by limiting the network bandwith of traffic to spe-
cific IPs. This work utilizes feedback from resources out-
side of the network layer in order to adapt traffic throt-
tling rules inside the networking layer in a dynamic man-
ner.

In order to have sufficient control of the consumers’
resource utilization, both read and write requests must
be throttled. It is straightforward to shape outgoing TCP
traffic from a server since the rate of transmissions is
directly controlled. To the iSCSI server outgoing data
translates to delivery of the answer to initiator read re-
quests. Hence, controlling read requests are trivial but
controlling write requests is a challenge. iSCSI write re-
quests translates to inbound TCP traffic. Different ap-
proaches for dealing with the shaping of inbound traffic
are known. The easiest method to achieve this is ingress
policing. The concept of ingress policing is to drop pack-
ets from the sender when a certain bandwidth threshold
is crossed. The congestion control mechanisms of TCP
will then adjust the sender rate to a level that can be main-
tained without packet drops. There are clearly disadvan-
tages to this approach:

• Packet loss which leads to inefficient network link
utilization due to packet retransmits.

• The time it takes for the sender to adapt when the
receiver decides to change the allowed bandwidth.

Ingress policing might be sufficient for a small number
of senders and seldom changes in the receivers’ accepted
bandwidth. However, the ability to change bandwidth
limitations fast is needed for rapid adaption to workload
changes. When the number of consumers and bandwidth

2



Figure 2: Principle of throttling by delaying packets

limits changes rapidly, this method does not scale, and
adapts slowly and inefficiently.

2.1 Dynamic throttling

This paper suggests a novel method of throttling de-
signed to address the limitations just described. The
method implies introducing a variable additional delay
to packets sent back to initiators, the clients in SCSI ter-
minology. Read requests are simply throttled by delay-
ing all outbound packets containing payload. Outbound
ACK packets containing no payload are delayed in order
to throttle write request without dropping packets. This
method is illustrated in Figure 2. The actual delay is ob-
tained using thenetem module of Linux Traffic Con-
trol, and packets are assigned different delays based on
Iptables marks.

In section 5 we propose an array agnostic version of
this throttle by implementing it in a standalone bridge.
The method of delaying packets makes this an attractive
idea because of the delay method. Using packet delay
rate instant rate reduction is achieved without dropping
packets.

As previously argued, the need for a dynamic selec-
tion method for throttling packets is needed.Iptables
provides this dynamic behavior with its many available
criteria for matching packets. Combined with themark
target, which can be detected by the use oftc’s fw fil-
ters, it is possible to set up a predefined set of delays that
covers the needed throttling range with sufficient granu-
larity.

The entities that consume resources in this context are
the iSCSI initiators. The entity that provides the re-

sources of interest to the initiators is the iSCSI target.
Both initiators and targets have IP addresses. IP ad-
dresses can be used for throttling selections. The IP ad-
dress of the iSCSI initiator will be chosen as the entity to
which throttling will apply. Differing priorities for con-
sumers will translate into different throttling schemes of
those consumers’ IP addresses. The underlying idea is
to apply throttling to less important requests in order for
important requests to have enough resources available to
meet their requirements.

Packet delay throttling makes it possible to influence
rates in both directions on a per initiator basis. In produc-
tion environments the amount of initiators to keep track
of quickly becomes overwhelming if throttling is based
on individual consumer basis. Moreover, it is likely that
the same throttling decisions should be applied to large
groups of initiator IP addresses. Applying the same rules,
over and over again, on lists of IP addresses is inefficient.
To avoid this inefficiency theIpset tool is needed [1].
It is a patch to the Linux kernel that enables creation of
sets, and a companion patch toIptables that makes
Iptables able to match against those sets. This is a
fast and efficient method of matching large groups of IP
addresses in a singleIptables rule: the set of throt-
tleable initiator IP addresses.

2.2 Throttling decision

As pointed out by previous research, remaining capacity
is not constant, it is dependent on both rate, direction and
pattern of the workloads. Hence, an exact measure of re-
maining capacity is hard to maintain. However, it is pos-
sible to indirectly relate how close the resource is to satu-
ration by measuring individual consumer response times
without any knowledge about the cause. In previous re-
search virtual disk response time has successfully been
utilized as a saturation level measure [2, 3, 4]. This work
uses a similar approach. An Exponentially Weighted
Moving Average (EWMA) of the response time is ap-
plied before it is used as the input signal to the control
mechanism. EWMA is widely adopted as a successful
method in the process control field for smoothing sen-
sor input signals. In the process control field, this filter
is commonly named a time constant low pass filter. The
standard moving average is susceptible for spikes in the
data. It is not desirable to trigger large throttling impacts
caused by transient spikes in the average wait time, throt-
tling should only occur as a result of persistent problems.
The utilization of EWMA enables this behavior.

Interference from less important read or write jobs
may lead the measured consumer response time to ex-
ceed the desired threshold. The framework should then
respond by adding a throttling delay to the packets of
the interfering loads, but it is difficult to determine the

3



exact size of this delay. The idea of using a Propor-
tional Integral Derivative (PID) controller as decision en-
gine emerged from the observations of the relation be-
tween interfering workloads, the interference by other
consumers and the efficient operation of the packet de-
lay throttle. This behavior is similar to the control organs
used to control industrial processes operated by PID con-
trollers in the field of control engineering where they are
widely used in order to keep process variables close to
their set points and ensure stability for complete industry
plants [5].

The purpose of our PID controller is to control throt-
tling such that the consumer wait time of important re-
quests stays below or equal to a preset value even when
the load interference changes rapidly. The given value of
maximum wait time for storage resources is likely to be
constant, and close to the saturation point of the underly-
ing resource. However there is nothing that prevents im-
plementation of dynamically adjustable thresholds. The
main purpose of the controller in this work is to keep re-
sponse time of important requests from violating a given
threshold in spite of rapidly changing amounts of inter-
ference from less important requests. The appendix con-
tains a more detailed description of the PID controller.

2.3 Automated PID control approach

The ultimate goal of this work was the design of a fully
automated per-resource read-response-time-controller as
an example technique to utilize the throttle and the con-
troller in order to ensure maximum read response times.
Other prioritization schemes are equally possible. This
section describes experimental results where the auto-
mated framework is exposed to the same loads as in the
previous section. However, the selection of throttleable
consumers are automatically inferred by the framework
by the use of simple workload profiling: write activity of
a certain amount.

Most I/O schedulers, and those parts of an entity re-
sponsible for servicing application I/O requests, gener-
ally have a preference for satisfaction of read requests
over write requests. This is because waiting for read
requests is blocking applications from continuing their
work. Thus, read-over-write prioritization demonstrated
here comprises a relevant use case for the throttle and the
controller.

Usually, write requests are written to cache, at several
levels in the I/O path, for later de-staging to permanent
storage without blocking the application from further op-
eration. Hence, throttling write requests can be done to a
certain limit without affecting application performance.
Nevertheless, it has been demonstrated through earlier
experimental results that write requests are able to ad-
versely influence the more important read requests. The

design goal of the final prototype is the utilization of ear-
lier results to automatically prevent write requests from
adversely impacting read requests, thus contributing to
improved application service predictability without the
need for user input.

In the previous section the saturation level indicator
and the set of throttleable consumers where predefined
in order to influence the wait time of the important con-
sumers. This section will describe the design of a pro-
totype that completely automates the detection of sat-
uration level and the identification of throttleable con-
sumers, on a per resource basis. Instead of the proto-
type of the previous section’s reliance on user determined
list of important consumers, this prototype uses the read-
over-write prioritization to automatically find out what
to monitor and which consumers are eligible for write
throttling.

In most storage devices, the disk group from which
virtual disks are allocated, is bound to become the re-
source first saturated. This is the reason that LVM was
chosen to reproduce a similar environment in the lab
setup. In the lab setup, volume groups represent the
shared resource that logical volumes are striped across.
The objective of the prototype is to control the saturation
level caused by write activity on a per-resource basis,
thereby indirectly controlling the read response time of
the resource. This translates to per volume group in the
lab setup. In order to achieve this in the lab prototype,
the following requirements will be met:

• An entity that maintains sets of IP addresses that are
known to be doing write activity at a certain level:
eligible throttlers.

– Each set should have name of the resource of
which its members are consumers.

– Each set should be immediately throttleable
by using its name.

• An entity that maintains a value representing the
saturation level on a per-resource basis.

• An entity that spawns a PID controller for each re-
source and:

– Uses the resource’ saturation level as input.

– Throttles the set of throttleable consumers for
that particular resource so that the saturation
level is kept below a set threshold.

The requirements are fulfilled by three perl pro-
grams working together withIptables, Ipset and
Traffic Control, utilizing shared memory for in-
formation exchange and perl threads for spawning paral-
lel PID controllers. Figure 2.3 illustrates the concept of
the framework implemented by the three scripts.

4



Figure 3: Automated controller framework overview

2.3.1 Automatic population of throttling sets

The Perl program set_maintainer.pl reads
information about active iSCSI connections from
/proc/net/iet/*, where information about each
iSCSI target id is found: the connected consumer IP
and servicing device. For all active iSCSI sessions, the
device-mapper (dm) name and consumer IP address
is recorded. Thelvs command is used to record the
logical volume name and volume group membership of
each device-mapper device detected to participate in an
active iSCSI session. The information found for each of
the device-mapper device is recorded in a data structure
and mapped into a shared memory segment with the key
ISCSIMAP. For each of the volume groups involved in
active iSCSI sessions, an empty IP-set is created with
the same name as the volume group. When iSCSI device
maps are exported to shared memory and the necessary
IP-sets are created, the program enters maintenance
mode. This is a loop that continuously monitors ex-
ponentially weighted averages (EWMAs) of the write
sector rates of alldm devices involved in active iSCSI
sessions. For each of the previously created IP-sets, it
then determines the set of consumers that have a write
sector rate exceeding a preset configurable threshold.
The generated set is compared with the in-kernel IP-set
for that resource, and any differences are converged to
match the current set of eligible consumes for throttling
that were detected. The IP-sets are converged once every
second, yielding continuously updated per resource
IP-sets known to contain consumers exhibiting write
activity at certain level. These sets are immediately
throttleable byIptables matching against them.

2.3.2 Automatic determination of saturation moni-
tors

The ewma_maintainer.pl program reads
the shared memory information exported by the
set_maintainer.pl program. For each resource,
it continuously calculates an exponentially moving
average of the read response time using information
obtained from/proc/diskstats. Only consumers
having read activity are included in the calculation. The
data structure containing the resources’ read response
time EWMAs is tied to a shared memory segment with
key AVEWMAS and updated every100ms. The read
response time EWMAs serve as per resource saturation
indicators which will be used as input values to the
subsequently described PID controller threads.

2.3.3 Per resource PID control

The pid_control.pl program attaches to the
shared memory segment with the keyAVEWMAS,
and reads the saturation indicators maintained by the
ewma_maintainer.pl program. For each of the re-
sources (volume groups) found in theAVEWMAS shared
memory segment, a PID controller thread is created with
the resource name and its accepted read response time
threshold as parameters. Each PID control thread mon-
itors the saturation level of its designated resource and
directly controls the delay throttle of the set containing
current consumers exhibiting write activity towards that
resource. Thepid_control.pl then detaches from
the worker threads and enters an infinite sleep loop, let-
ting the workers control resource saturation levels in par-
allel until aSIGINT signal is received.

3 Results

Experiments are executed using a Linux based iSCSI
appliance using striped logical volume manager (LVM)
volumes as virtual disks. Each of four striped logical vol-
umes are presented to the blade servers using iSCSI en-
terprise daemon [6, 7]. The blade servers act as iSCSI
initiators and are physically connected to the external
iSCSI target server using a gigabit internal blade center
switch. Figure 4 shows the architecture of the lab setup.

3.1 Without throttling

When there is no throttling mechanism in place, there is
free competition for available resources. Figure 5 shows
how four equal read loads, run on each of the equally
powerful blade servers, share the total bandwidth of the
disk resources, serving each of the logical volumes to

5



Figure 4: Concept sketch of the lab setup

which the blade servers’ iSCSI block devices are at-
tached. The plotted read rates show what each of the
consuming blade servers achieve individually.

3.2 Throttling by packet delay

Throttling of workloads has been utilized as a means to
influence remaining capacity by many previous works,
and it is normally carried out by some kind of rate limi-
tation applied to the workloads. Utilization of the iSCSI
protocol comes with the additional benefit of utilizing
TCP traffic shaping tools to enforce rate limitation. In
order to examine the effects on consumers by throttling
taking place in the TCP layer, a number of experiments
were executed. The first throttling approach involved
bandwidth limitations by using hierarchical token bucket
filters (HTB). The expected effect of throttling individual
consumers was achieved, but the pure bandwidth throt-
tler had a few practical limitations: the need for con-
stantly calculating the bandwidth to be applied and, more
important, the inefficient way of controlling write re-
quests. Controlling write rates was not possible without
packet loss, resulting in slow and inefficient convergence
towards bandwidth target.

The shortcomings of the bandwidth shaping method,
especially with respect to writing, inspired the idea of
using packet delay for throttling. Thenetem module
of Linux Traffic control was used to add delay to pack-
ets in a dynamic way in conjunction withIptables
packet marks. The concept is to add a small wait time to
outgoing ACK packets containing no payload, thus slow-
ing down the packet rate of the sender: the iSCSI writer.
The main outcome of the design and subsequent exper-

Figure 5: Equal sequential read load from four identi-
cally equipped blade servers without throttling

iments is an efficient way of throttling individual iSCSI
consumers’ traffic in both directions, with close-to-linear
rate reduction and without packet loss. The experiments
show that it is possible to throttle write and read activity
using the same set of delay queueing disciplines (qdiscs)
in Linux Traffic Control (tc). For writes, the outgoing
ACK packets containing no payload are delayed, and for
reads all other packets are delayed.

Figure 6 shows the effect of packet delay based throt-
tling on the same workload as in Figure 5, and Figure
7 shows the effect when writing the same load that was
previously read.

The shaping is done in usingIptables’ packet
marking abilities to place packets from individual con-
sumers in different predefined delay qdiscs at different
points in time. In this experiment, a shaping script on
the target server is throttling down blade servers b2, b3
and b4 at predefined time offsets from the start time of
the experiment and releasing them at later points in time.
Throttling of blade server b2 frees up resources to the re-
maining consumers. Next, throttling of b3 and b4 gives
increased resources to the remaining consumers. When
b2 is freed, b5 is already done with its job, and most re-
sources are available to b2 which increases its through-
put dramatically. When b3 is freed, b2 and b3 share the
resources again and stabilize at approximately 14 MB/s
each. Finally b4 is freed, and b2, b3 and b4 share the re-
sources, each having a throughput of ca. 10 MB/s. When
b4 finishes its job, there are two machines left to share
the resources, and when b3 finishes, only b2 is left to
consume all resources.

Figures 6 and 7 shows a drop in throughput for un-

6



Figure 6: Throttling of initiator’s sequential read activity
using delayed ACK packets in tc(1).

throttled consumers when throttling starts. No plausible
explanation was found for this, and additional research is
necessary to identify the cause of this.

3.3 Introduced delay vs throughput

Previous results suggest that the method of introducing
artificial delay to outgoing packets could be an efficient
way of throttling iSCSI initiators in order to decrease the
pressure on shared resources like disk groups. To find
out the predictability of throttling as an effect of artificial
delay, 200 MB of data was repeatedly read and written
from the iSCSI initiator device of one blade server, mea-
suring the time it took to complete each job. Each job
were repeated 20 times for each value of artificial delay.
Figures 9 and 8 show the results with error indicators,
representing the standard error, on top of the bars. The
precision of the means is so high that it is hard to see the
error indicators at all.

The plots show that variation of artificial delay be-
tween 0 and 9.6 ms is consistently able to throttle reads
between 22 MB/s and 5 MB/s and writes between 15
MB/s and 2.5 MB/s. There is no absolute relationship
between artificial delay and throughput. Rather, the in-
troduced delay has an immediate rate reducing effect
regardless of what the throughput was when throttling
started. Figures 9 and 8 suggests that there is a close-to-
linear functional relationship between introduced delay,
the start rate and the resulting rate after throttling.

Figure 7: Throttling of initiator’s sequential write activ-
ity using delayed ACK packets in tc(1).

Figure 8: Repeated measurements of the time used to
read 200 MB with stepwise increase in artificial delay of
outgoing packets from target server.

7



Figure 9: Repeated measurements of the time used to
write 200 MB with stepwise increase in artificial delay
of outgoing packets (ACK packets) from target server.

3.4 Interference between loads

Figure 10 demonstrates that a small random read job, that
causes negligible I/O load by itself, has its response time
increased with the amount of load caused by threads run-
ning on other hosts. The graphs in the figure is from 4
different runs of the sram random read job, but with dif-
ferent degree of interference in the form of write activity
to other logical volumes residing on the same striped vol-
ume group. This picture comprises the essence of load
interference. The consumer executing the small random
read job is unable to get predictable response times from
its virtual disk because of activity from other storage con-
sumers.

3.5 Effect of throttling on wait time

Figure 11 shows the effect on a small read job’s average
wait time when throttling the 12 interfering sequential
writers. Packet delay throttling is done in the periods
100s − 190s and280s − 370s, using4.6ms and9.6ms

packet delay respectively. Clearly the throttling of in-
terference contributes to wait time improvement. The
magnitude of improvement is higher if the wait time is
high before throttling (i.e. level of saturation is high).
It means that the throttling cost for improving response
time from terrible to acceptable can be very low, but the
cost of throttling increases as the response time improves
(decreases).

Figure 10: The effect on average wait time for a rate lim-
ited (256kB/s) random read job running on one server
during interfering write activity from 1 and 3 other
machines respectively. The interference is started one
minute into the timeline.

Figure 11: The effect on a small read job’s wait time
when throttling interfering loads with delays of 4.6 ms
and 9.6 ms respectively.

8



Figure 12: The average wait time of a rate limited
(256kB/s) random read job with 12 interfering write
threads started simultaneously and repeated with 5 sec-
onds pause in between. The black plot shows the effect
with free resource competition. The colored plots show
how the PID regulator keeps different latency thresholds
by regulating interfering workloads.

3.6 PID control of response time

Figure 12 demonstrates the PID controller’s ability to
keep the actual wait time below or equal to the desired
threshold. The black plot shows how latency is af-
fected by various changing interfering workloads when
no throttling is enabled. The colored plots show the ef-
fect of the same interfering workloads, but now with the
PID regulator enabled having thresholds set to 20,15 and
10 ms respectively. Figure 13 shows the throttling ef-
fect on the corresponding interfering workloads (aggre-
gated throughput). Notable is the relatively higher la-
tency improvement for the random read job by throt-
tling aggregate write throughput from its maximum of
39 MB/s down to 33 MB/s, yielding an improvement of
25 ms lower latency. Taking the latency down another
five milliseconds costs another seven MB/s of throttling
to achieve. Clearly the throttling cost for each step of
improved latency increases as latency improves.

3.6.1 Automated PID results

Figure 14 shows that the results with per resource satu-
ration level auto-detection, and dynamically maintained
throttleable consumer sets, is close to the results in the
previous section where throttleable consumers and re-
sponse time monitors where defined manually. Figure
15 shows the resulting aggregated write rates as a conse-

Figure 13: The aggregated throughput caused by throt-
tling to keep latencies at the set thresholds in Figure 12.

quence of the automated throttling carried out to keep
read response time below the set thresholds in Figure
14. Again, the black plot depicts response-time/write-
rate without regulation, and the colored ones depicts the
same but with regulation at different threshold values.

The results shows that the automated per resource PID
control framework is able to closely reproduce the previ-
ous results where throttleable consumer sets and resource
saturation indicators were manually given as parameters
to the PID regulators.

There is a slight delay in the throttle response com-
pared to the previous section, giving a slightly larger
magnitude and duration of the overshoot created by the
simultaneous starting of 12 interfering threads. It is rea-
sonable to speculate that this is caused by the additional
time required to populate the sets of throttleable con-
sumers.

During experiment execution, the OUT-
PUT chain of the Netfilter mangle ta-
ble was monitored with the command
watch iptables -L OUTPUT -t mangle.
As expected, the rule that marks the outbound ACK
packets of all consumers in the set of throttleable
consumers appeared as soon as the response time thresh-
old was violated. Further observation revealed rapid
increase of themark value as the write interference
increased in magnitude, thus directly inhibiting write
activity to a level that does not cause write-threshold
violation. The commandwatch ipset -L was used
to observe that an empty set with the same name as the
active resources (the vgaic volumgroup) were created
upon startup of theset_maintainer.pl program.
Furthermore, the set was populated with the correct IP

9



Figure 14: The average wait time of a rate limited
(256kB/s) random read job interfered by 12 write threads
started simultaneously and repeated with 5 seconds
pause in between. The black plot shows the effect with
free resource competition. The colored plots show how
the PID regulator keeps different response time thresh-
olds by regulating interfering workloads. In this plot, the
resource saturation indicator and the set of throttleable
host are maintained automatically.

Figure 15: The aggregated throughput caused by throt-
tling to keep latencies at the set thresholds in Figure 14

Figure 16: The resource average wait time, the throttling
delay and the aggregated write rate with a set resource-
wait-time-threshold of 15ms

addresses as the write activity of consumers violated the
set threshold, and the IP addresses were removed from
the set when consumers ceased/reduced write activity.

Before creating the workload used in this experiment,
various smaller workloads were tested while plotting av-
erage wait time in realtime during experiments. By ap-
plying various increasing and decreasing write interfer-
ence, the PID controller’s behavior was observed in real
time. The controller exhibited remarkable stability when
gradually increasing interference. Hence, it was decided
to produce the most extreme workload variation possible
in the lab for the plotted results by turning on and off 12
writer threads (powered by three machines) simultane-
ously.

It is interesting to examine how the throttle-produced
packet delay changes as the the PID controller decides
throttle values. Thus, the experiments were run again,
capturing the packet delay applied to the set of throt-
tleable hosts along the duration of the experiment. Figure
16 shows the monitored resource’s (vgaic) actual wait
time, the throttle value (packet delay) produced by the
PID controller and the actual resource’s aggregated write
rate. The 12 writer threads want as much I/O bandwidth
as they can get (37 MB/s without regulation), however,
they get throttled by introducing the packet delay seen in
the red plot. The decreased write rate caused by packet
delay prevents resource saturation, which again prevents
read response time of the resource from exceeding the set
threshold of 15 ms.

10



3.7 Measuring overhead

This work introduces new features to prioritize work-
loads sharing a common resource. It is timely to ask if
this new feature comes with an added overhead. When
no throttling occurs overhead is unwanted. Since no
Iptables rules are active when no throttling occurs,
there is no overhead introduced byIptables. The
only possible source of overhead in this situation is the
statictc queueing disciplines (qdiscs) and/or the static
filters attached to the root qdisc. All outgoing packets
are checked for marks by the static filters and there is
a risk that this checking introduce overhead. To investi-
gate if the existence of static delay queues and their filters
add overhead, the difference in throughput was measured
with static qdiscs present and absent.

Throttling only occurs when response time of a re-
source violates the preset threshold. When no throttling
occurs, there is a negligible worst case overhead of 0.4%
for reads and 1.7% for writes caused by the static traffic
control filters which are always present and ready to de-
tect packet marks. After the experiments where finalized
we discovered thatIptables is able to classify packets
directly totc qdiscs making the check forIptables
marks superfluous and there will be no overhead at all
when the treshold is not violated. This was confirmed by
experiment.

4 Background and previous work

The challenges regarding storage QoS are well recog-
nized and there has been numerous approaches to design
of such systems like Stonehenge [8, 9, 10], Cello [11],
Façade [12], Triage [13], Argon [14], Chameleon [15]
and Aqua [16, 17].

Despite all the research done in the field, specifica-
tions regarding QoS functionality are seldom found in
the specification sheets of storage devices.

The ability to specify service level objectives (re-
sponse time and bandwidth), among other data manage-
ment features, has been the subject of a decade long re-
search at HP Labs Storage Systems department. Looking
back in retrospect, Wilkes [18] points out the challenges
of incorporating the research results into real production
implementations. The challenge is to persuade users to
trust the systems to do the right thing. This is a human
challenge, one perhaps rooted in general healthy skepti-
cism to new technology and bad experiences from earlier
implementations that turned out to not fully take all real
life parameters into account. Wilkes points out the need
to remember that systems are built to serve people, and
the success of technical accomplishments is dictated by
how comfortable people ultimately are with them [18].

iSCSI based storage devices are the major competi-

tor to FC based storage devices at the moment. With its
lower cost, easier configuration and maintenance and in-
creasingly competitive performance, iSCSI seems to be
the enabler of large scale adoption of IP based SAN de-
vices. The introduction of IP as a transportation layer
introduces an additional, well known and well trusted
toolbox for enforcing policy and fairness amongst stor-
age consumers. Tools for traffic shaping in the TCP/IP
layer have been around for many years. The combi-
nation of well known and trustworthy throttling mech-
anisms and an extended knowledge about storage sys-
tem internals makes an appealing, pragmatic and non-
intrusive approach to the problem of QoS in storage sys-
tems. Instead of introducing the need to build trust to-
wards new interposed scheduling algorithms, bound to
add uncertainty and overhead, this work suggests uti-
lization of previously known and trusted tools to obtain
workload prioritization in case of resource saturation.
Lumb and coworkers point out the lack of a traffic shaper
in storage systems [12] (presumably FC based storage
systems). However, when utilizing TCP/IP as transport
mechanisms, traffic shapers are available.

The work described in this paper takes a different ap-
proach to the problem by utilizing well known tools, with
a high level of trust from other fields, and applying them
to the storage QoS problem for iSCSI storage devices.
The market for iSCSI based storage devices is growing
rapidly, making it an interesting target for QoS research.
The need for a throttling mechanism, as a means to con-
trol storage consumers, has been recognized by previ-
ous works [12, 15, 13, 2, 4, 3, 16, 17], and they inter-
pose their own throttlers/schedulers in the critical data
path. However, since iSCSI uses TCP for transportation,
it is possible to use well known network traffic shaping
tools for the purpose of this throttling. With the grow-
ing amount of virtual appliances utilizing iSCSI targets
as their disk storage, our approach enables global stor-
age QoS directly contributing to application SLAs using
well known tools with established trust in the networking
field.

5 Future work

This work opens several interesting paths for further re-
search and applications. By using the fundamental ideas
explored, it should be possible to create QoS modules
to be used as external bridges in front of iSCSI appli-
ances or integrated into Linux based iSCSI appliances
similar to the lab prototype. By utilizing the ideas from
this work, system administrators and vendors can offer
QoS for iSCSI storage. Hence, they can offer differenti-
ated SLAs to storage consumers with a confidence previ-
ously very difficult to achieve and contribute their share
to overall application SLAs.

11



Figure 17: Illustration of how the framework could be
utilized as an independent black box with limited array
knowledge.

Figure 17 illustrates an approach for moving the con-
troller to an external bridge. Information about con-
sumer/resource mapping and virtual disk read latencies
would be necessary in order to directly utilize the tech-
niques demonstrated here. In the figure, usage of SNMP
GET requests towards the array is suggested as an easy
method for this purpose. However, the ultimate black
box approach would be to infer this information from
packet inspection. If achievable, this approach could
serve as a self contained, non-intrusive, iSCSI QoS ma-
chine applicable to all iSCSI solutions regardless of their
make and the feedback loop to the storage device would
not be necessary. But it is unlikely that the actual con-
sumer/resource mapping can be detected by packet in-
spection since this is internal storage device knowledge.
However, it could be indirectly inferred by using a pre-
defined initiator naming convention that contain resource
membership.

Even with high sampling rate, and convergence rate of
throttleable consumer sets, the PID controller framework
consumes little resources. Small resource consumption
and overhead are important attributes to enable high scal-
ability. The small resource consumption and overhead
seen in the lab prototype makes it reasonable to project
high scalability in a production environment with large
amounts of resources and consumers per resource. Com-
bined with the suggested PID controller tuning and rear-
rangement oftc filters an even smaller footprint can be
achieved.

The measuring point where virtual disk response time
is measured must be moved in order to detect bottlenecks
that occur before the local disks of the target server. An
approach using agents on iSCSI initiators would be the
best way of considering all bottlenecks along the data
path by providing the initiator-experienced wait time to
the throttling bridge. The advantage of this approach is

its simplicity, and how efficiently it will capture all bot-
tlenecks along the iSCSI data path. The disadvantage is
its reliance on initiator host modifications. A viable ap-
proach could be to use the attributehas agent installed
to infer relative higher importance to the set of initia-
tor that has agents, and automatically use the set of con-
sumers not having agents as a first attempt of throttling
before resorting to prioritization between initiators with
agents installed. Using this approach, the action of in-
stalling an agent serves both the purpose of making per-
formance metrics available to the controller and telling
about the membership in the set of hosts with the least
importance.

Previously developed algorithms other than the PID
algorithm can be combined with the throttling techniques
from this work to create even more efficient and/or gen-
eral purpose QoS mechanisms for iSCSI or even other
IP/Ethernet based storage technologies. Furthermore, the
PID control algorithm could be evaluated as a means to
create stability and predictability in other infrastructure
components than just iSCSI devices. It is likely that the
problem of controlling iSCSI consumers is not the only
one where a PID controller can contribute.

There is always a persistent and large interest in work-
load classification/modeling techniques in various re-
search areas, not only in the storage field. Together with
the ever-evolving efforts to model storage devices, this
research can be combined with the ideas and results in
this paper in order to add improved and even more gener-
alized frameworks. For example, these techniques could
be used to elect candidates for the different sets of throt-
tleable consumers in more sophisticated ways. Also,
more advanced algorithms could be combined with re-
sponse time measurements in order to more accurately
detect and/or predict if there is a real problem about to
occur.

6 Conclusion

Resource sharing is widely used in storage devices for
the purpose of flexibility and maximum utilization of the
underlying hardware. Sharing resources like this intro-
duces a considerable risk of violating application service
level agreements caused by the unpredictable amount of
I/O capacity available to individual storage consumers.
The difficulties experienced by system administrators in
making keepable promise about storage performance and
the amount of previous research in the storage QoS field
clearly emphasizes the need for practical and real-world-
usable QoS mechanisms for storage systems.

iSCSI based storage solutions are capturing increased
market share from FC based storage solutions due to in-
creased performance and low cost. Thus, iSCSI is an in-
teresting target technology for devolpment of QoS mech-

12



anisms for wide industry and system administrator adop-
tion. The fact that iSCSI utilizes TCP for transporta-
tion makes it possible, and very interesting, to adapt well
known network traffic shaping tools for the purpose of
QoS in iSCSI environments.

This work reproduces and demonstrates the nature of
resource sharing, the effect of resource saturation on
throughput and consumer response time, and the result-
ing interference caused by load interaction. Using a
Linux based iSCSI storage appliance, experiments repro-
duce the varying performance of individual consumers
caused by other consumers’ activity. The lab environ-
ment, verified to exhibit similar properties to problem-
atic real-world storage solutions, is then used to design
methods to solve some relevant aspects of load interfer-
ence. The methods involve using a network packet delay
method, available in thenetem module of Linux Traffic
Control, in novel ways and a modified proportional inte-
gral derivative (PID) controller. By combining the fea-
tures of thenetem module with Iptables’ ability to dy-
namically mark packets, an efficient bidirectional mecha-
nism for throttling individual iSCSI initiators consumers
is created. The created packet delay throttle is utilized
by a modified PID controller implemented in software.
The PID controller utilizes the packet delay throttle as
a means to influence its input value: the average wait
time of the resource being controlled. The resource be-
ing controlled in the lab setup is LVM volume groups,
but the methods are generally adaptable to any kind of
resource exhibiting similar attributes.

The effect of packet delay throttling and the PID con-
trollers’ suitability as decision engine is thoroughly ex-
amined through experimental results. Finally, all pre-
viously designed and tested elements used in single as-
pect experiments are tied together in a prototype for a
autonomous resource control framework that is able to
keep resource read response time below a configurable
threshold by throttling write activity to the resource au-
tomatically. In spite of rapidly varying write workloads,
the framework is able to keep a resource read response
time below the set threshold. The set of throttleable
write consumers is automatically maintained and ready
to be used by the PID controller monitoring read re-
sponse time. The framework spawns a PID controller
per resource, using per resource sets of throttleable con-
sumers and per resource response time measurements.
The sets of throttleable consumers are automatically pop-
ulated using simple workload profiling.

This work opens several interesting paths for further
research and applications. By using the fundamental
ideas explored, it is possible to create QoS modules to
be used as an external bridge in front of iSCSI appli-
ances or integrated into Linux based iSCSI appliances
similar to the lab environment. Previously developed al-

gorithms can be combined with the throttling techniques
from this paper to create even more efficient and/or gen-
eral purpose QoS mechanisms for iSCSI or even other
IP/Ethernet based storage technologies. Furthermore, the
PID control algorithm could be evaluated as a means to
create stability and predictability in other infrastructure
components than just iSCSI devices.

By using the basic building blocks of this work it
is possible to create a vast amount of prioritization
schemes. The few examples given serves as a demon-
stration of the inherent opportunities. With the modular
design of the different programs it should be trivial to
reimplement the framework in similar setups with minor
adjustments only.

With the small resource consumption footprint of the
prototype, and room for further improvement of it, this
concept should scale to enterprise level production en-
vironments with large amounts of resources and storage
consumers.

By utilizing the ideas from this work, system admin-
istrators and vendors can offer QoS for iSCSI storage,
thereby making it possible to offer differentiated SLAs
to storage consumers supporting application SLAs with
a confidence previously very difficult to achieve.

References

[1] Home page of ipset. URLhttp://ipset.netfilter.
org/.

[2] A. Gulati and I. Ahmad. Towards distributed storage resource
management using flow control.ACM SIGOPS Operating Sys-
tems Review, 42(6):10–16, 2008.

[3] Ajay Gulati, Irfan Ahmad, and Carl A. Waldspurger. Parda: pro-
portional allocation of resources for distributed storageaccess. In
FAST ’09: Proccedings of the 7th conference on File and storage
technologies, pages 85–98, Berkeley, CA, USA, 2009. USENIX
Association.

[4] Ajay Gulati, Chethan Kumar, and Irfan Ahmad. Modeling work-
loads and devices for io load balancing in virtualized environ-
ments. SIGMETRICS Perform. Eval. Rev., 37(3):61–66, 2009.
ISSN 0163-5999. doi: http://doi.acm.org/10.1145/1710115.
1710127.

[5] F. Haugen.PID control. Tapir Academic Press, 2004.

[6] Home page of lvm. URLhttp://sourceware.org/
lvm2/.

[7] iscsi enterprise target project homepage. URLhttp://
iscsitarget.sourceforge.net/.

[8] L. Huang, G. Peng, and T. Chiueh. Multi-dimensional storage
virtualization. ACM SIGMETRICS Performance Evaluation Re-
view, 32(1):14–24, 2004.

[9] Lan Huang. Stonehenge: A high performance virtualized storage
cluster with qos guarantees. Technical report, 2003.

[10] G. Peng.Availability, fairness, and performance optimization in
storage virtualization systems. PhD thesis, Stony Brook Univer-
sity, 2006.

13



[11] P. Shenoy and H.M. Vin. Cello: A Disk Scheduling Framework
for Next Generation Operating Systems*.Real-Time Systems, 22
(1):9–48, 2002.

[12] C.R. Lumb, A. Merchant, and G.A. Alvarez. Façade: Virtual
storage devices with performance guarantees. InProceedings of
the 2nd USENIX Conference on File and Storage Technologies,
page 144. USENIX Association, 2003.

[13] M. Karlsson, C. Karamanolis, and X. Zhu. Triage: Performance
differentiation for storage systems using adaptive control. ACM
Transactions on Storage (TOS), 1(4):480, 2005.

[14] M. Wachs, M. Abd-El-Malek, E. Thereska, and G.R. Ganger. Ar-
gon: performance insulation for shared storage servers. InPro-
ceedings of the 5th USENIX conference on File and Storage Tech-
nologies, pages 5–5. USENIX Association, 2007.

[15] S. Uttamchandani, L. Yin, G.A. Alvarez, J. Palmer, and G. Agha.
CHAMELEON: a self-evolving, fully-adaptive resource arbitra-
tor for storage systems. URLhttps://www.usenix.org/
events/usenix05/tech/general/full papers/
uttamchandani/uttamchandani html/paper.html.

[16] J.C. Wu and S.A. Brandt. The design and implementation of
AQuA: an adaptive quality of service aware object-based storage
device. InProceedings of the 23rd IEEE/14th NASA Goddard
Conference on Mass Storage Systems and Technologies, pages
209–218. Citeseer.

[17] S.A. Weil, S.A. Brandt, E.L. Miller, D.D.E. Long, and
C. Maltzahn. Ceph: A scalable, high-performance distributed
file system. InProceedings of the 7th Symposium on Operating
Systems Design and Implementation (OSDI), 2006.

[18] W. John. Traveling To Rome: A Retrospective On The Journey.
Operating systems review, 43(1):10–15, 2009.

[19] F. Haugen.Anvendt reguleringsteknikk. Tapir, 1992.

A The PID controller

The problem investigated in this paper is similar to a pro-
cess control problem solved by PID controllers. Figure
11 demonstrates the instant rate reducing throttling effect
freeing capacity, which again influences read response
time. Section 3.3 describes a stepwise close-to-linear re-
lationship similar to what a PID controller needs in or-
der to work. Figure 18 shows the concept of a PID con-
troller 1.

PID controllers can be implemented in software us-
ing a numerical approximation method. This work uses
a numerical implementation of the PID controller with
virtual disk wait-time as input signal and packet delay as
output signal.

The packet delay throttle is implemented as a range of
integers representing a stepwise proportional throttling
mechanism. Each integer step represents an increased
packet delay, thus, a decreased rate. Figures 8 and 9
suggest that steps of0.5ms is a suitable granularity. At
0.5ms granularity, the amount of steps is determined
from maximum allowed artificial packet delay: i.e. zero

Figure 18: Block diagram of a PID controller. Licensed
under the terms of Creative Commons Attribution 2.5
Generic .

rate reduction plus 21 increasing steps of rate reduction
with a maximum delay of20ms.

u(t) = Kpe(t)
︸ ︷︷ ︸

Proportional

+
Kp

Ti

t∫

0

e(τ)dτ

︸ ︷︷ ︸

Integral

+ KpTde
′(t)

︸ ︷︷ ︸

Derivative

(1)

Equation 1 represents the continuous function for out-
putting throttling amount as a function of the set-point
errore(t), the difference between the set value (thresh-
old) and real value. Hence, the PID controller is an error
driven controller. The proportional part is the first part
of the function and is parameterized by the proportional
gainKp. The second part is the integral part. It is pro-
portional to both the error and the duration of it and is pa-
rameterized by the integral timeTi. The purpose of the
integrating part is to eliminate the residual steady state
error that occurs with a proportional-only controller. The
third part of the equation is the differential part. It is pa-
rameterized by the derivative gain tuning parameterTd.
The purpose of the derivative part is to slow down the
rate of change of the controller output, thereby reducing
the magnitude of overshoot created by the integral part.

When computer based controllers replaced older ana-
logue PID controllers, the PID function was discretized
using Euler’s backward method and became the basic
discrete function shown in equation 2 yielding the so-
called discrete PID algorithm on incremental form. The
function is used as the basis for most discrete PID con-
trollers in the industry [5, 19]. This paper implements
a variation of equation 2 that takes the distance above
preset response time threshold as input error signal and
computes an output throttling value. The modified algo-
rithm is named a single sided PID controller because it
only throttles when the error is positive, that is, when the
real value is higher than the set threshold.

The PID control algorithm is a direct implementation
of equation 2 below with two exceptions: the negative

14



throttling value is capped to the maximum throttling step
corresponding to the integer value of the packet delay
class with the highest delay, and the positive throttling
value capped to zero. This is done to prevent integral
windup: the integral part accumulating too high values
that takes a long time to wind down again, and to dis-
able throttling completely when the error is negative: real
value is below the threshold. The output value of the PID
controller is rounded up to the next integer value, and
that integer becomes theIptablesmark to apply to all
outgoing ACK packets matching destination addresses of
the iSCSI initiator IP addresses in the set of throttleable
consumers.

uk = Kpek
︸ ︷︷ ︸

Proportional

+ uik−1
+

KpT

T i
ek

︸ ︷︷ ︸

Integral

+
KpTd

T
(ek − ek−1)

︸ ︷︷ ︸

Derivative

(2)
The PID controller must be tuned for optimal control

of the process. In control engineering, the best operation
of the controller is when the actual value always is sta-
ble and equal to the set point no matter how fast the set
point changes or environmental forces influence the ac-
tual value. This ideal behavior is never achievable in real
world applications of the PID controller: there are always
physical limitations that makes the ideal case a theoreti-
cal utopia. The tuning process’ concern is finding the pa-
rameters to the controller that makes it behave as close to
the theoretical ideal as possible. There are several known
methods to tune PID controllers. The Ziegler-Nichols
method, the improved̊Astrøm-Hägglund method and the
Skogestad method are some widely used methods in con-
trol engineering [5]. These methods have not been con-
sidered during this paper since a few iterative experi-
ments and according parameter adjustments yielded sta-
ble and good controller performance in short time. Thus,
the process in this paper is easy to tune compared to
many industrial processes. However, thorough tuning
efforts is likely to produce similar controller efficiency
with less less resource usage of the controller loop.

In addition to the PID parameters, the sample interval
influences loop stability and tuning. Generally, the dis-
crete PID controller approaches the behavior of a con-
tinuous PID controller when the sample interval goes to
zero. The reason to keep sample interval short is in-
creased stability and the reason for increasing the sam-
ple interval is minimizing resources utilized by the con-
troller. The sample interval used in this paper was found
by experimenting with values and observing CPU us-
age. A sample interval of100ms yielded very stable
controller behavior and CPU utilization of approximately
1%.

However, lowering the sample frequency more may be
possible without sacrificing stability. Another benefit of

lowering the sampling frequency is calmer operation of
the throttle. It may not be necessary to move the throt-
tled IP addresses around as agilely as in the experiments,
but it must be agile enough to capture rapid workload in-
terference changes. The interval of100ms seems to be
a fair balance between controller resource consumption
and agility.

Notes
1Created by the Silverstar user @ Wikipedia, as required by CC

licensing terms.

15


