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Abstract

Preventing exfiltration of sensitive data is a cen-
tral challenge facing many modern networking environ-
ments. In this paper, we propose a network-wide method
of confining and controlling the flow of sensitive data
within a network. Our approach is based on black-box
differencing — we run two logical copies of the network,
one with private data scrubbed, and compare outputs of
the two to determine if and when private data is be-
ing leaked. To ensure outputs of the two copies match,
we build upon recent advances that enable computing
systems to execute deterministically at scale and with
low overheads. We believe our approach could be a
useful building block towards building general-purpose
schemes that leverage black-box differencing to mitigate
leakage of private data.

1 Introduction

Many modern networks contain highly sensitive and pri-
vate data. Health care companies must securely store and
protect private health records, and enterprise networks
contain large amounts of corporate intellectual property
that should not be leaked outside their network. Software
on these networks may suffer from vulnerabilities that an
attacker can exploit to exfiltrate, or leak, sensitive data.
In protecting against such malicious or accidental leak-
ages of private data, the ability to confine data within a
network can be a powerful tool. However, confining data
to a single machine on a network is not sufficient for the
design of many corporate networks. These networks may
contain file servers or content management systems that
require data to be accessible inside—but not susceptible
to leakage outside—the network. A solution that only
protects a single node may also severely limit the usabil-
ity of applications that depend on the sharing of private
data.

In addition to the threat of external attacks, companies
must also train and trust users to understand and obey
policies regarding these types of sensitive data. A recent

ISACA survey [1] revealed 35% of corporate employees
have knowingly violated corporate information flow poli-
cies at least once, and 22% have transferred sensitive in-
ternal information using external storage devices. While
operators of these networks invest in high levels of se-
curity to prevent intrusions (unauthorized access that can
alter internal network state) and extrusions (unauthorized
leakage of private information externally), several recent
high-profile events indicate that we need new approaches
to deal with these problems [8, 21, 25].

While previous work has explored the problem of in-
formation leakage, most recent research [17, 20, 26, 28]
has focused only on protecting a single-node—where
data is completely confined to one machine—and not the
larger problem of network extrusion. The latter problem
is more complex; here, private data can be transmitted
within the network, but must be prevented from leaving
the network. Hence, simply tagging and tracking private
data within a single machine is insufficient. In addition,
these systems typically rely on information flow and taint
tracking [16, 17, 18, 26], which incur significant perfor-
mance and memory overhead (a factor of 20 slowdown
or more in some cases). While there are commercial
solutions [2, 4, 5] that perform deep packet inspection,
these systems may not be able to monitor encrypted traf-
fic without encryption keys or information flows that are
intentionally obfuscated by attackers.

An alternate promising direction is the use of black-
box differencing to detect information leakage [12, 20,
27], in which a process’s dependence on private data
is determined by duplicating the process and supplying
different input to the copy. In order for the two copies
to be comparable in the absence of private data leak-
age, their runtime behavior needs to match. To achieve
this, these works require deterministic execution, a col-
lection of techniques (e.g., a software layer) which elim-
inate randomness (nondeterministic behavior) during ex-
ecution of the process. Solutions based on black-box dif-
ferencing have lower overhead than information flow and
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Figure 1: An enterprise network (denoted by dashed
lines) containing various servers storing sensitive infor-
mation and client machines requesting data. Green ar-
rows depict flows of sensitive data flowing within the
network to trusted machines, and red arrows show leaks
of this data outside the network.

taint tracking techniques [16, 17, 18, 26] by more than
an order of magnitude. However, existing solutions fo-
cus on single-machine scenarios—and hence are not di-
rectly applicable to network-wide confinement—and as-
sume processes execute determinstically.

To address this, we propose a network-wide method
of confining and controlling the flow of sensitive data,
by extending black-box differencing techniques. While
such an approach seems challenging, given recent break-
throughs in performing deterministic execution with low
overheads and in distributed settings [10, 14, 22], we be-
lieve this approach is worth revisiting. Instead of copy-
ing (and scrubbing data from) a single machine, our ap-
proach creates a logical shadow copy of the entire net-
work under consideration, and private data is scrubbed
from the shadow copy. In practice, this is done by having
each machine in the network create and maintain shadow
processes in a coordinated fashion. Output from both the
original and shadow processes is sent onto the network.
If this data is destined for a machine on the network (i.e.,
a trusted node), the output from both processes is prop-
agated to the original and shadow processes at the next-
hop machine. Output from the processes is “paired” and
sent within the same grouping of network packets, then
parsed by the receiving machine. If the data is destined
for an address outside the network, output is compared
for divergence. When output diverges, only the output
from the shadow process is sent outside the network.

Limitations: We make several assumptions in our de-
sign. First, we assume all machines within the enterprise
network are trusted. That is, we do not attempt to protect
a machine from being accessed by another local machine
that should not have access, but assume another form of
access control is in place to protect sensitive data from
clients within the network. For example, consider a revi-

sion control repository. If a user has checked out a copy
of the code, our design will protect against malware at-
tempting to leak data from the user’s machine or from the
server hosting the repository. It will not protect against
a user on the network trying to gain access to the code
who should not have access, but would protect from this
user attempting to exfiltrate this data outside the network
once she has access. Second, we assume all communicat-
ing machines within the network support our modifica-
tions to the Linux kernel. Data from original and shadow
processes are grouped together, and a machine running a
standard kernel would not understand how to parse such
a packet. We are currently investigating methods for our
design to be more incrementally deployable and support
machines that may not run our modifications.

2 Related Work

Most recent research in information leakage has focused
only on confining sensitive data to a single node within
a network. This prohibits the sharing of sensitive data
within an enterprise network and adversely affects many
applications that require such sharing of data. From
Tightlip [27] we borrow the idea of forking a copy of
a process reading private data and scrubbing the data to
remove the sensitive input to the copy. Output from the
two processes is examined to detect dependence on the
private data and signal warnings of potential leaks. How-
ever, Tightlip’s design only confines data within a sin-
gle machine—upon detecting divergent output the ker-
nel either blocks the network output or allows the non-
sensitive copy to send data. Capizzi et al. confine data
in a similar manner, but remove sensitive input and com-
pare output from two copies of the same VM rather than
individual processes [12]. Privacy Oracle [20] also em-
ploys a similar technique, which the authors term differ-
ential black-box fuzz testing, to monitor perturbations in
network traffic from different inputs. However, the sys-
tem requires executing the application and rolling back to
re-execute with different input—providing no real-time
protection—and the algorithm to detect divergent output
in network is highly sensitive to reordering of packets.
Another recently common approach to mitigating in-
formation leakage is information flow tracking [15, 23].
However, static information flow techniques require ac-
cess to source code and therefore cannot support legacy
software. To address this limitation, dynamic taint anal-
ysis has been employed to track the propagation of pri-
vate information throughout a system, at the cost of high
overhead [13, 17, 16]. However, techniques such as
those in [16, 17, 26, 28], cannot allow sharing of private
data within a confined network, and incur slowdowns of
20X or more. Ermolinskiy et al.’s practical taint-tracking
(PTT) [18] improves on some prior taint tracking ap-
proaches, but nevertheless has a slowdown of a factor
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Commercial solutions to “data loss prevention”, such
as those by RSA [4], McAfee [2], and Symantec [5],
rely on deep packet inspection to match regular expres-
sions or keywords for known sensitive data (e.g., credit
card or social security numbers), and may not be able to
monitor encrypted traffic without encryption keys or ob-
fuscated information flows. Web content filters such as
Websense [6] limit where hosts can send data, but can
be circumvented by attackers by using public sites (e.g.,
Wikipedia to post and retrieve sensitive data. Borders
improve on some of these limitations by computing the
expected content of HTTP requests using external infor-
mation, including previous network requests, server re-
sponses, and protocol specifications, to measure leakage
capacity [11].

In addition, Mandatory Access Control (MAC) can be
used to control flow of sensitive information using poli-
cies to prevent subjects with access to sensitive data from
communicating over a network. However, these policies
can be difficult to set and can limit the functionality of
many applications [19]. Borders et al. use storage cap-
sules to provide a similar level of security as MAC us-
ing snapshots taken before sensitive, encrypted data is
accessed, and reverting all changes within the system ex-
cept those within the data capsule. However, switching
between two states—one where secure data is accessed
and edited, and one where it is not—can have lengthy
transitions of up to 20s.

3 Motivation

3.1 Lack of Network-Wide Protection

In previous (single-machine) approaches to black-box
differencing, data cannot be easily shared within the net-
work. This can severely limit the usability of applica-
tions and prevent sharing of private data where sharing
might be necessary (e.g., a source code repository). A
network-wide solution to confining data leaks requires
more control of the flow of information with respect to
the data’s destination. Output from both original and
shadow processes must be preserved across machines to
prevent additional leaks of data.

For example, consider a process P» executing on a
machine Mp that outputs the size of a string in bits,
as shown in Figure 2. Suppose in each case a simple
scrubbing mechanism is used that replaces private data
with random data of the same length, and P, reads a file
whose size is considered sensitive data. Another pro-
cess P; on machine M4 reads a private file containing
the bits 11, applies some transformation, and sends the
data to P,. M4’s kernel will spawn a shadow process
and pass some scrubbed input to this shadow process,
such as 00. Suppose the output of P; is 110 for the

original process and 00 for the shadow process. If P;
were to receive only the output of P;’s original process
and then scrub the input itself, transforming 110 to 000,
the output from P; and its shadow process will both be
3. However, if we envision the processes across the two
machines as a single process on a single machine, the
output of P,’s shadow process should be 2. Thus, if the
output of the shadow process is discarded and the out-
put of the original is naively re-scrubbed at the receiver,
data could be leaked. An attacker knowing this limitation
could easily contrive a malicious program to leak these
small amounts of data and perhaps reconstruct part of the
original sensitive file.

3.2 Deterministic Execution

Our work is also motivated by recent advances in de-
terministic execution [7, 9, 10, 14]. Though not neces-
sarily required for our design to be effective, leveraging
techniques providing deterministic execution can reduce
false positives in detecting divergent output. This ensures
differences in output to the same program are solely the
result of different inputs.

dOS [10] introduces a new OS abstraction termed de-
terministic process groups (DPG) and ensures all com-
munication between processes in these groups are deter-
ministic. A shim layer interposes on communication that
crosses the boundary between the DPG and the rest of
the system. DPGs are implemented within the Linux ker-
nel, therefore integrating these abstractions with our im-
plementation may be possible. Other designs providing
system enforced deterministic execution include Deter-
minator [7] and TERN [14].

The overheads of these three systems vary between
1.1X and 10X, which we believe is not yet fast and ef-
ficient enough in the worse case for deployment in enter-
prise networks. However, in the near future as these over-
heads continue to decrease, we can leverage these tech-
niques in our system. By applying these mechanisms for
system-enforced determinism, we can reduce the number
of falsely detected information leaks from nondetermin-
isitic execution.

4 Design

4.1 Shadow Processes

Our design adopts a black-box approach to detecting out-
put from a process that may contain sensitive data. It per-
forms this detection by removing the sensitive output to a
copy of the process and comparing output to the original.
We cannot simply check output for the original sensitive
data, as the process may encrypt, transform, or obfuscate
the data. Therefore, upon reading sensitive data from
disk or over the network, the process is forked and the
input is changed. The original process receives the sen-
sitive input while the copy, or shadow process, receives
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Figure 2: An example illustrating the need for shadow processes to send data within the network, as opposed to re-
scrubbing input at the receiver. On Machine A, process P; applies a transformation to the private file containing the
bits 11, and on Machine B, process P, outputs the length of the output in bits. In (i) the shadow process P sends its
output the shadow process P; on B, and the outputs across P, and Pj diverge. In (ii), the output of P; is discarded,
and the output from P; received at B is re-scrubbed. P, and P do not diverge, causing a false negative where data is

leaked.

input where the sensitive data is removed, or scrubbed.
Both processes then execute semi-independently of each
other—in certain cases, the two processes must align to
ensure any divergence in output results only from dif-
ferent input. For example, if both processes execute a
system call to retrieve the time of day, the same result
should be returned to both. To limit unintended sources
of divergence (e.g., acall to get t imeofday) or obtain-
ing a seed for a sequence of pseudo-random numbers, we
utilize a similar technique to Tightlip, in which the result-
ing value from one processes is shared with the other to
ensure both receive the same result from the system call.

In Tightlip, a shadow process is spawned and the ker-
nel forces the original and shadow process to align at
each system call. Should the control flow of the two
processes diverge (e.g., due to input) then Tightlip will
either kill one of the processes or swap the shadow with
the original process so that no information can be leaked.
However, a malicious attacker knowing this limitation
could craft a process to circumvent this to leak data based
on whether or not the process finished or was killed. In-
stead, our design allows processes to diverge and forces
alignment only at system calls that may cause unintended
divergence.

4.2 Sensitive Data

Sensitive files stored on disk must be marked sensitive,
so the kernel can determine if a shadow process must
be spawned each time a process accesses a file. A file’s
sensitivity must be a boolean value—either it is sensitive
or not. We implement a file’s sensitivity as an inode flag,
which must be set manually by the user—a process that
can be automated via policies or scripts (e.g., based on
file extension).

Upon reading a sensitive file from disk, the kernel will
spawn a shadow processes for the reading process. Prior
to forking the processes, a buffer is set up to share be-
tween the two processes and the result of the read call
is scrubbed and copied to the shared buffer. Our cur-
rent implementation uses random scrubbing—that is, the

sensitive data is replaced with random, junk data of the
same size. We use data of the same size to prevent odd
behavior or crashes in applications due to unexpected in-
put size.

In future work, we will investigate more advanced
methods of scrubbing sensitive data to limit false pos-
itives and possible corruption of applications receiving
scrubbed input. One caveat to our current scrubbing
method is that input to the shadow process may crash or
corrupt applications that serialize and store data to disk.
For example, if a file contains phone numbers, scrubbing
the input to the shadow process may cause it to diverge
or crash if the scrubbed data is not a valid phone number.

4.3 Detecting Divergence

Network output between the two processes is compared
for divergence and checked against the destination. If di-
vergent output is destined for an address outside the net-
work, only the output from the shadow process is sent.
As this process has no access to the sensitive data, no
data is leaked outside the network, thus confining sensi-
tive data within the network. If divergent output is des-
tined for an address within the network, output from the
two packets is paired together and tagged to denote the
packet containing data from both an original and shadow
process. The packet can then be parsed by the receiver
and the respective data can be delivered to the original
and shadow processes, ensuring the state of both pro-
cesses is maintained across the network.

While pairing packets incurs overhead on each ma-
chine within a network, this design has the benefit of
reducing the complexity of additional network support
(e.g., special software on border routers to compare
flows) and overhead on border routers. If both processes
send data onto a network independently of each other, a
mechanism is needed to guarantee no data from an orig-
inal process is sent outside the network. This could be
implemented on border routers by comparing flows be-
tween original and shadow processes to detect divergent
output, and blocking the original’s output. However, in



an enterprise network, border routers may need to sup-
port throughput of a gigabit per second or more. With
such high rates, comparing flows may be infeasible and
large queues would be needed to store packets in cases
where the flows between an original and shadow process
are misaligned, perhaps due to reordering of packets on
the network or delays.

Instead, we opt to offload the computation to compare
output on client machines where processing power is
higher than on border routers and less sensitive to minor
increases in processing time for packets. For example,
consider an enterprise network containing a remotely-
accessible web server and a file server than can only be
accessed internally. Our design allows the web server
and file server—both trusted nodes within the network—
to freely share sensitive data. When the data reaches a
machine where the next hop is outside the network, the
output from the original process is blocked in place of
output from the shadow process.

4.4 Pairing Packets

Previous approaches to black-box differencing do not
target support for sharing data within a network. These
systems do not differentiate between data sent inside or
outside the enterprise network, and there is no method
of maintaining the state of shadow processes over a net-
work. As we have shown in §3, maintaining the state of
a shadow processes is needed to prevent leaks of data.

Therefore, we introduce the concept of pairing net-
work output from an original and shadow process for
data destined within the local network. We assume pairs
of communicating machines support such paired pack-
ets, but do not expect such compatibility on remote ma-
chines, so data destined outside the network is sent only
by shadow processes without any pairing. Since shadow
processes have no access to private data, as it has been
removed from the process’s input, no sensitive data can
be leaked outside the network. Processes that have no
shadow process (i.e., ones that have not accessed private
data) can freely communicate outside the network and
execute as though no changes to the underlying OS have
been made.

Packets must be marked as containing data from mul-
tiple processes so a receiving process knows to split the
data and deliver to two separate processes. Only a sin-
gle bit is required and these paired packets are never sent
outside the network. Therefore, there is some flexibility
as we need not be concerned about all Internet routers
supporting a change or dropping packets due to some in-
valid or reserved field being set. As such, in our current
implementation we use the high-order bit of the IP frag-
ment offset field since it is the only unused bit in the IP
header. Thus, the first bit of the control flags in the IP
header could be set to 1 for a paired packet, while the
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Figure 3: An original and shadow process execute and
must align at a call to gettimeofday to prevent an
unintended source of divergence. The shadow diverges
in control flow, and the original waits until the shadow
reaches the same system call. The original executes the
system call and shares the result with the shadow, ensur-
ing both receive the same result.

other two remain unchanged to denote if a packet can
or cannot be fragmented and if it contains more frag-
ments [3].

Figure 4 illustrates the pairing of output from two pro-
cesses with output of the same length. In this scenario,
equal sized chunks of data from each process are com-
bined into a single IP packet, as well as the header for
each process. The first 16 bits after the IP header, before
the original packet’s header, are reserved for the offset
of the start of the second process’s header. Should the
size of the output from the two processes differ, and data
from one process cannot be paired with output from an-
other process, the packet is marked as a paired packet but
with only the output from the one process inserted into
the packet. The offset is set to O if there is no output
from the original, or to the size of the original’s header
and data if there is no output from the shadow.

Preserving the output of shadow processes adds over-
head in the number of packets that must be sent within
the local network. For a process that is not sending
or leaking any data outside the network (i.e., the origi-
nal and shadow processes do not diverge), the overhead
is bounded at a factor of 2. If the shadow process di-
verges, and the divergent execution results in additional
output compared to the original, overhead could exceed
2. This additional traffic should not significantly affect
enterprise networks (data centers are a separate situation)
as Pang et al. [24] have shown enterprise network traf-
fic to be 2-3 orders of magnitude less than the capacity
of the network. Therefore, doubling packet size or the
number of packets that need to be sent should not have a
significant effect on local network congestion.
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Figure 4: An original and shadow process execute a
send system call. The data in their respective send
buffers are placed in a TCP packet, and then both are
combined within a single IP packet.

5 Conclusion

Threats of leaks of sensitive data are a growing threat to
networks that store sensitive data, such as source code
or customer information. To this end, this paper pro-
poses a network-wide method of data confinement that
detects information leaks by forking copies of processes
consuming private data and removing the sensitive data
from the input to the copy. We introduced the concept
of a paired packet to allow both copies of the process to
send data onto the network to allow the sharing of sensi-
tive data within the confines of the network.

In future work, exploring more complex methods of
scrubbing beyond simple replacement with random data
would be interesting. Incorporating multiple levels of
privacy (rather than the binary approach of private vs.
non-private considered in this paper) may be worth ex-
ploring. In addition, though we do not believe our choice
to implement our design as a modified Linux kernel
would be an intrusive solution for network with high
demands for security, a more system transparent design
would be ideal. We plan to investigate methods of vir-
tualization, beyond those discussed in [12], as possible
starting points. Finally, we would like to investigate al-
ternative approaches to deterministic execution to further
reduce overheads of our design.
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