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Abstract

We consider the problem of using flow-level data for de-
tection of botnet command and control (C&C) activity.
We find that current approaches do not consider timing-
based calibration of the C&C traffic traces prior to us-
ing this traffic to salt a background traffic trace. Thus,
timing-based features of the C&C traffic may be artifi-
cially distinctive, potentially leading to (unrealistically)
optimistic flow classification results. In this paper, we
show that round-trip times (RTT) of the C&C traffic are
significantly smaller than that of the background traffic.
We present a method to calibrate the timing-based fea-
tures of the simulated botnet traffic by estimating eligible
RTT samples from the background traffic. We then salt
C&C traffic, and design flow classifiers under four sce-
narios: with and without calibrating timing-based fea-
tures of C&C traffic, without using timing-based fea-
tures, and calibrating C&C traffic only in the test set. In
the flow classifier, we strive to use features that are not
readily susceptible to obfuscation or tampering such as
port numbers or protocol-specific information in the pay-
load header. We discuss the results for several supervised
classifiers, evaluating botnet C&C traffic precision, re-
call, and overall classification accuracy. Our experiments
reveal to what extent the presence of timing artifacts in
botnet traces leads to changes in classifier results.

1 Introduction
The principal network-based methods of detecting bot-
nets either rely on passive DNS analysis (e.g., [7] target-
ing fast flux activity) used to hide the identities of bot-
master servers, or rely on deep packet inspection target-
ing unencrypted malware in-transit (the latter often part
of a more comprehensive NIDS system,e.g., [9]). Inter-
cepted malware may be quickly inspected to infer behav-
ioral signatures of the botnet. Netflow information has
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also been exploited to detect botnets (e.g., [10, 8, 16]).
Such analysis can lead to rankings or a reputation system
for Internet domains (or individual IP addresses). These
detection methods are imperfect,e.g., they may suffer
from false positive detections with coordinated software
distribution/update systems. So recently, analysts have
proposed jointly using netflow and DNS analytical meth-
ods (e.g., [27]).

Detection based purely on netflows, particularly using
timing information, is the focus of this paper. However,
we consider neither any specific behavioral signatures
that may be given nor use timing information to detect
anomalies that may indicate communication by stepping
stones. Rather, our objective is to study detection of bot-
net C&C activity by flow-based classification and clus-
tering, as in [8].

Flow-based classification and clustering methods ex-
amine traffic statistics of packet flows to identify attacks
and malicious behavior in the network [26]. Recently,
Sperattaet al. [28] presented an extensive survey of state
of the art flow-based IDS with attack classifications and
proposed solutions. Among these attack classifications,
a few botnet detection techniques were adapted using
machine learning (ML) algorithms. These techniques
extensively perform botnet detection using timing-based
flow statistics. [19], [30] and [29] extract duration, aver-
age packet rate, and bit rate per second characteristics of
flows for performing supervised classification. A recent
approach [8] similarly uses the number of flows per hour
and the average bytes per second for performing unsu-
pervised clustering. These techniques use representative
attack traffic for both training and testing their classifiers
to provide confidence in their proposed solutions. How-
ever, there are not many realistic datasets publicly avail-
able with background and attack traffic naturally present
together. For these reasons, researchers often generate
synthetic malicious traffic to salt real enterprise packet
traces for evaluating the effectiveness of the proposed
classifiers. As an example, [19] uses a testbed to obtain



the botnet traces, and [29, 30] use more representative
botnet traces by hosting bots inside the internal network
and a C&C center on an external network. The BotMiner
system [8] salts two IRC and two HTTP botnet traces,
which were captured by running benign versions of bots
in a simulated environment to the background traffic.

In this paper, we explore how the timing-based fea-
tures determined during the salting process may affect
classification performance. Timing-based features may
vary depending on the position of the packet-trace mon-
itor and, of course, on the geographical separation of
communicating points including bots and their masters
(and intermediate stepping stones if any). In both sit-
uations, “directly” salting botnet traces into the back-
ground traffic may introduce timing inconsistencies with
the background traffic which may affect classification
performance. Hence, it is necessary to achieve timing
consistency between the traces to mitigate specific arti-
facts of timing-based features.

Our objective is, before salting simulated botnet traf-
fic traces into background traffic traces, to provide con-
sistency between the timing-based features of the two
traces. We analyze the factors that contribute to the
timing-based features (particularly goodputcf., Section
3.1) of flow classifiers. After simulating a benign ver-
sion of the Kaiten bot to acquire botnet C&C traces, we
estimate eligible RTT samples from the background traf-
fic. We calibrate the simulated botnet traffic timestamps
to provide consistency of timing-based features between
the traces. Then, background traffic is salted to the sim-
ulated botnet traces, and flow features are extracted. We
perform experiments using supervised ML algorithms to
distinguish the botnet C&C traffic from the background
traffic, and discuss the classification results both with and
without calibrating timing-based features of botnet C&C
traffic.

The remainder of this paper is organized as follows:
In Section 2, we begin by describing the LBNL public
packet trace, flow generation procedure, flow features we
extracted, the way ground-truth flow-class labels were
derived, and how the Kaiten bot was simulated. In Sec-
tion 3, RTT calibration and botnet trace timestamp mod-
ification is described. In Section 4, we present detailed
analysis of classification results. Finally, we summarize
in Section 5.

2 Background

2.1 Packet Trace Data

In our experiments, we use publicly available Lawrence
Berkeley National Laboratory (LBNL or now just LBL)
packet traces [4]. According to [23], the LBNL trace rep-
resents internal enterprise traffic recorded at a medium-
sized site. The measurement system at LBNL simulta-
neously monitored the traffic out of two of the (more

than twenty) router ports and collected packet traces that
spanned more than 100 hours of activity from a total
of several thousand internal hosts. Thus, the packet
traces are from a successive sampling of subnets. All to-
gether, 11GB of packet header traces from October 2004
through January 2005 are available for analysis. This
data was publicly released and anonymized by the sys-
tem described in [24, 23]. The authors used a prefix-
preserving scheme to remap the external and internal IP
addresses. Additionally, the subnet and host portions of
the internal addresses were further transformed in a one-
to-one fashion. However, the port numbers in the TCP
headers are intact, which provides information about ap-
plication type at the time the trace was recorded. The
authors also provided meta-data allowing us to obtain
anonymized subnets and gateway addresses which are
used for RTT estimation in our experiments.

The raw trace used in our experiments is a combina-
tion of those recorded on Oct. 4, 2004, router port 19,
and on Dec. 15, 2004, router port 81.

2.2 Flow Generation and Flow-level Features

A typical flow exporter system takes flow metrics (pro-
tocol type, number of packets and flow timeout) as an
input and automatically starts processing the PCAP files.
First, the system analyzes bi-directional session between
endpoints depending on their protocol type, then it auto-
matically collects the set of packets between the two end-
points which have a set of common properties: Source
IP, destination IP, source port, destination port and pro-
tocol (IP 5-tuple) [25]. Since the simulated Kaiten Bot
uses TCP-based attacks, we restrict our attention to TCP
flows. Following [18], we extracted features from first 5
packets after the 3 way handshake with 60 seconds inac-
tive timeout value2 to prevent significant processing load
of capturing and exporting per flow information at the
monitoring device. In addition, the first 5 packets provide
feasibility of detection in early stage of a connection [6].

In [22], the authors describe 248 flow-level fea-
tures. Among these features, we focus on the eight
features: cnt-data-pkt, min-data-size, avg-data-size, init-
win-bytes, RTT-samples, IP-bytes-med and frame-bytes-
var (see Table 1 for definitions). According to [18], these
features were selected from among 248 features after ap-
plying a correlation-based filtering mechanism on each
of the datasets. We also identified the following two “de-
rived” features as promising ones not strongly dependent
on TCP:
• IP-ratio: The ratio of the maximum to the minimum

IP packet size (client to server and server to client),
• Goodput: Total non-duplicate number of frame

bytes divided by total flow time (client to server and
server to client).

Using these twelve features, we extracted a total 7266



Abbreviation Description
cnt-data-pkt The count of all the packets with

at least a byte of TCP data payload
(client to server)

min-data-size The minimum payload size observed
(client to server)

avg-data-size Data bytes divided by number of packets
(server to client)

init-win-bytes The total number of bytes sent in initial
window(server to client & client to server),
see [22]

RTT-samples The total number of round-trip time
(RTT) samples found (client to server),
see [22]

IP-bytes-med Median of total bytes in IP packet
(client to server)

frame-bytes-varVariance of bytes in (Ethernet) packet
(server to client)

IP-ratio Ratio between the maximum packet size
and minimum packet size
(server to client & client to server)

goodput Total number of frame bytes divided
by the flow duration
(server to client & client to server)

Table 1: Flow feature definitions and descriptions

LBNL TCP flows. Note that the twelve features we ex-
tract do not consider fields that can be readily tampered
with, such asport numbers or protocol-specific informa-
tion in the payload header,e.g., count of packets with the
push bit set in the TCP option field [19]. Therefore, a
classifier built based on these features should tend to be
more “tamper-resistent” than one based on highly TCP-
dependent features [34].

2.3 Ground Truth Labels

For supervised classifier training, it is necessary to ascer-
tain ground-truth class labels for both training and test
data. However, LBNL traces have only the anonymized
raw packets publicly available, containing only the
TCP/IP header information without any payload. Fortu-
nately, port numbers were unaffected by the anonymiza-
tion process, with the exception of traffic associated with
one particular port used as an internal security monitor-
ing application. We extracted the client and server port
numbers for each flow, and then applied the Internet As-
signed Numbers Authority (IANA)’s list of registered
ports [3] to determine the application. We observed that
the LBNL trace includes a large variety application types
with different communication patterns. As an example,
web, e-mail and name services include both enterprise
network and wide-area network traffic. Windows ser-
vices and network file services are the only within enter-
prise applications. We labeled every flow in the dataset
with the corresponding application category, following
the same procedure as [21]. While port-based applica-
tion identification might seem ineffective, the use of non-
standard or dynamic port numbers is unusual enough in
the LBNL enterprise traffic that it does not affect our la-

bel definitions significantly [21]. The application cate-
gory breakdown of TCP traffic is shown in Table 2.

Class Protocols
bulk FTP, HPSS
email SMTP, IMAP4, IMAP/S,POP3, POP/S, LDAP
interactive SSH, telnet, rlogin, X11
name-srv DNS, netbios-NS, SrvLoc
net-file NFS, NCP
net-mgnt DHCP, ident, NTP, SNMP, NAV-ping, SAP, NetInfo-local
web HTTP, HTTPS
windows CIFS/SMB,DCE/RPC, Netbios-SSN, Netbios-DGM
misc Steltor, MetaSys, LPD, IPP, ORACLE-SQL, MS-SQL

Table 2: Flow class definitions and sample applications

2.4 Botnet Simulation

In order to obtain traces of actual botnet C&C traffic, an
IRC-based bot Kaiten whose source code was available
on the web [1] was simulated. A virtual network of one
bot controller, three infected machines (bots) and a bot
controller was implemented by reverse engineering the
bot code. We collected C&C flows associated with our
botnet using wireshark [5] at the simulated IRC server.
The complete simulation is described in the technical re-
port [33].

Bots which connect to the IRC server using a predeter-
mined C&C channel, and send a NICK IRC message to
convey that the user is online with a certain ID. The con-
troller then replies to verify that the bot is alive and has
joined the C&C channel. After the verification phase,
the bots wait for commands from the controller. Upon
the arrival of a command, the bots act accordingly. If
no command is received for 20 minutes, a bot reopens a
connection to the controller. Our goal here is to generate
C&C heartbeat traffic of an already established botnet
that isreadily standing for commands. Our goal is not
intrusion prevention or detecting of bots after an overt
attacke.g., denial-of-service (DOS) or email spam has
been launched. Instead, we wish to simulate and de-
tect a botnet that is either in a sleep or “stealth” state
where, as an example of the latter, the botnet could be
slowly/discreetly exfiltrating private data.

3 Methodology

3.1 RTT Calibration

In our flow classifier implementation, we used a timing-
based goodput feature in both directions (client to server
and server to client) defined as the total non-duplicate
number of frame bytes divided by the total flow duration.
From Figure 2, we split bi-directional flows into two uni-
directional flows which containk nonduplicate packet se-
ries,Pcs = (Pi,Pi+1, . . . ,Pk), with a corresponding times-
tamp,ti, of theith packet at the monitoring point. In our
experiments, we calculate the goodput feature after the
3 way handshake. Therefore, we do not include RTT



samples of the SYN-SYNACK segments and the corre-
sponding SYNACK-ACK segments. We can calculate
the goodput feature from client to server as follows (the
goodput feature from server to client can be computed in
a similar way):

Goodputcs =

k

∑
i=1

f rame bytescs

f low duration
(1)

Equation(1) depends on the flow duration which in-
cludes the RTT and inter-packet arrival time of the con-
nections. RTT is the difference between the capture time
of the sending packet with a certain sequence number
(SEQ) and the corresponding follow up acknowledge-
ment (ACK) from the receiver. To avoid the ambiguity
of computing the RTT, retransmitted packets are omitted
in our goodput calculation. The packet inter-arrival time
is the difference between the time of theith packet and
the (i− 1)th packet at the monitoring point. Ideally, it
is characterized by the network, application process time
and the size of the congestion window. In addition, for
specific applications, it includes “thinking” or “reading”
time of the users. In this paper, we only deal with the
differences of the RTT samples between botnet and back-
ground traffic3.

Figure 1: Comparison of background traffic and
simulated C&C RTTs before calibration

Figure 1 shows a logarithmic scale plot of mean and
standard error of the mean4 for botnet and background
traffic RTT samples before calibrating the simulated bot-
net C&C traffic. There is a significant difference be-
tween the mean values of C&C traffic and background
traffic RT T s. This explains that goodput features of
the botnet traces are likely to change significantly af-
ter C&C RTT calibration. RTT samples of the C&C
traffic have less within-group difference, since network
conditions do not have any effect on the virtual simu-
lated environment used to generate C&C traffic. Ad-
ditionally, LBNL traffic RT Tsc values are considerably
smaller than that ofRT Tcs values, because the position
of the LBNL packet-trace monitor is close to the LBNL

clients. Now, we are interested in estimating eligible
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Figure 2: Timestamp modification procedure

RTTs from background traffic to calibrate the botnet traf-
fic ti values before salting. There are various methods
suggested by the research community to estimate pas-
sive RTT values from a packet trace. In [15], the au-
thors proposed SYN-ACK (SA) and Slow-Start (SS) es-
timation techniques for unidirectional flows. In [31],
two different techniques are offered, both of which de-
pend on the TCP timestamp option by adding timestamp
value (TSval) and timestamp echo reply (TSecr) values
[13] to the TCP header option; however, these meth-
ods require apriori deployment, and implementation of
timestamp increment should be consistent across differ-
ent hosts. Other techniques [20, 14] generally depend on
more complex deduction methods based on the sender’s
congestion window size, or maximum-likelihood estima-
tion for matching data segment with ACK segment. In
this study, we measure the RTT samples using provided
timestamp values recorded at the monitoring point. We
will use the following procedure to estimate the RTT
samples from background traffic:

• We take the IP addresses which reside inside the en-
terprise as client and the external IP addresses as
server. We simulate the external destination IP ad-
dresses as a C&C center and IP addresses inside the
enterprise as bots.

• We construct RTT vectors of LBNL background traf-
fic VRT T =< RT T1, . . . ,RT Tn > for both directions
corresponding to the eligible subset of the RTTs used
in flow feature goodput generation.

• We calculate the empirical cumulative distribution
function (CDF) from the RTT samples of the back-
ground traffic and use it to randomly generate the
RT Ti values for the simulated botnet C&C traces.



After RTT estimation, we calibrate 50 conversations
between the bots and the C&C Channel traffic by modi-
fying their timestamp values. From Figure 2, we divide
bi-directional packet flows into two unidirectional flows,
Pcs andPsc, which containk nonduplicate packet series
of C&C traffic. The initial timestamps of the C&C pack-
ets after 3 way handshake,w3, stays same and the re-
maining timestamps,w4, . . . ,wk, of the packets are only
calibrated when the ACK of sending packet is received.
We calibrate the RTT samples (RT Tcs andRT Tsc) of the
C&C traffic from the correspondingVRT T cs and VRT T sc
vectors of the LBNL background traffic. As an example
the timestamp of the first acknowledgement packet of the
C&C traffic, w5, is calibrated by calculatingw4+RT Tcs,
whereRT Tcs is estimated from the LBNL background
traffic. The calibration algorithm can be summarized as
follows:

Algorithm 1 RTT Calibration

k← number o f packets
i← 1
repeat

if (Psc
i and Psc

i+1)||(Pcs
i and Pcs

i+1) then
wnew

i+1 = wi +(wold
i+1−wi)

else if(ACKsc ∈ Pcs) then
Randomly selectRT Tcs, RT Tcs ∈VRT T cs
wi+1 = wi +RT Tcs

else if(ACKcs ∈ Psc) then
Randomly selectRT Tsc, RT Tsc ∈VRT T sc
wi+1 = wi +RT Tsc

end if
i← i+1

until i = k
saltToBackgroundTra f f ic()

Figure 3: Comparison of background traffic and
simulated C&C RTTs after calibration

As a result of application of Algorithm 1 to the RTTs
of the botnet C&C traffic, there is better agreement be-
tween RTTs of simulated botnet traffic and background
traffic as shown in Figure 3.

4 Experimental Results

4.1 ML Algorithms

We now evaluate how sensitive the supervised classifica-
tion results are to timing-based features (good putcs and
good putsc). We use the true positive (TP) rate to show
the percentage of flows correctly classified as C&C traf-
fic, the false positive (FP) rate to represent the percent-
age of legitimate applications flagged as C&C traffic, and
false negative (FN) rate to represent the percentage of
C&C traffic flagged as other legitimate applications. We
calculate the overall accuracy of the classifier, and recall
and precision rate of the C&C traffic.

• Recall, which is the percentage of flows in an appli-
cation class or botnet C&C traffic class,i, that are
correctly identified,is defined asT Pi/(T Pi +FNi).

• Precision, which is the percentage of flows assigned
to the each application class or botnet C&C traffic
class,i, that are correctly, is defined asT Pi/(T Pi +
FPi).

• Overall accuracy, which is the ratio of correctly clas-
sified flows to the total number flows in dataset, de-
fined as∑n

i=1 T Pi / ∑n
i=1(T Pi + FPi + FNi + T Ni)

wheren is the number of classes.

In our experiments, to perform supervised learning we
used a Naive Bayes classifier, decision tree using the
C4.5 algorithm, multinomial logistic regression, and lo-
gistic model trees (LMT). We give a brief description of
these methods and our experimental settings. A Naive
Bayes classifier assumes that the features are condition-
ally independent given the class of origin, and learns a
model for the class conditional probability distribution
of each feature. The Bayes rule is then used to compute
the class posterior probability given the features, which is
used for classification. The C4.5 algorithm creates a de-
cision tree, where at each node of the tree the feature(s)
with largest information gain is used to split the data into
sub-groups, ending at the leaf nodes. A decision tree
should have the property that at each leaf node, a strong
majority of the samples belong to one class, which is
also chosen as the predicted class for samples belonging
to that leaf node. In multinomial logistic regression, we
have a linear discriminant function associated with each
class, and the log ratio of the probability of each class
given the features, to the probability of a reference class
given the features is modeled as a linear function of the
features. The weights of the linear discriminant function
associated with each class are determined using a max-
imum aposteriori (MAP) estimation. A LMT classifier
learns a decision tree using the C4.5 algorithm, but the
class prediction at each leaf node is done with a logis-
tic regression model, unlike the standard decision tree,
which uses voting [17]. The classifiers described above



LMT C4.5 Logistic Regression Naive Bayes

(1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4)

web 4 2 - 4 - - - - 3 2 2 3 - - - -
windows - - - - 2 2 2 2 3 3 2 3 - - - -
email 1 3 1 1 - - - - 13 13 13 13 - - - -
name-srv - 2 - - - - - - 7 1 5 7 - - - -

Table 3: Comparison of the classiffier C&C false positive counts

LMT C4.5 Logistic Regression Naive Bayes

(1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4)

web - - - - - - - - 1 4 2 3 - - - -
email - - - - - - - - - - - - 1 1 - 1
name-srv - 1 - - - - - - - - - - - - - -

Table 4: Comparison of the classiffier C&C false negative counts
(1) C&C traffic timing-based features are not calibrated (2)C&C traffic timing-based features are calibrated

(3) classification does not use timing-based features (4) timing-based features of the C&C traffic are not calibrated in
the training set, but are calibrated in the test set

are suitable for multiclass problems and are commonly
applied to machine learning problems.

4.2 Classifier Evaluation

We investigated flow classification to one of ten classes,
including the nine classes defined in Table 2 and the
C&C class, i.e., the C&C class was treated as a pre-
defined class, with the classifier trained in a supervised
fashion to assign flows to one of these ten classes, based
on labeled training examples from all classes (including
the C&C class). We salt a total of 7266 LBNL TCP flows
of 9 classes described in Table 2 with the 50 botnet C&C
traffic class under the following four scenarios: (1) when
the timing-based features of the botnet C&C traffic are
not calibrated with the background traffic in both training
and test set; (2) when they are calibrated with the back-
ground traffic by the application of Algorithm 1 in both
training and test set; (3) when the timing-based features
are not used for classification, and (4) when the timing-
based features of the C&C traffic are not calibrated in the
training set, but are calibrated in the test set.

Another motivation for scenario (2) is that the attacker
may deliberately arrange the timing-based features to
conceal the C&C activity. Scenario (4) represents a re-
alistic case where C&C traffic in the training set is pro-
vided by the simulated environment and tested with cal-
ibrated botnet traffic, whose timing-based features are
consistent with the background traffic. This scenario
begs other scenarios where the C&C traffic is not cali-
brated to the background traffic in the training set, and
is calibrated differently in the test set in two ways: dif-

ferent from the background traffic or different from the
C&C traffic in the training set.

Algorithm Dataset C&C C&C Overall
Precision (%) Recall (%) Accuracy (%)

LMT
(1) 93.89 100 98.442
(2) 89.99 98 98.057
(3) 98.33 100 99.048
(4) 93.89 100 98.442

C4.5
(1) 96.66 100 99.317
(2) 96.66 100 99.317
(3) 96.66 100 99.289
(4) 96.66 100 99.317

Logistic
Regression

(1) 67.17 98 95.381
(2) 73.4 92 95.434
(3) 70.63 96 95.422
(4) 67.17 94 95.312

Naive
Bayes

(1) 100 98 90.405
(2) 100 98 90.405
(3) 100 100 91.655
(4) 100 98 90.405

Table 5: Comparison of the classiffier C&C precision,
recall and overall accuracy rates

The implementation of the classifiers was obtained
from the open source data mining tool Weka [11]. We
use stratified 10-fold cross-validation by dividing the
dataset into 10 folds of approximately equal size. The
proportion of classes is roughly the same in all 10 folds.
We fit the model on 90% of the training data and then
predict the class labels of the remaining 10% of the test
data. This procedure is repeated 10 times, with each fold
in turn playing the role of the test samples, and the errors



on all 10 folds averaged together to compute the preci-
sion, recall and overall accuracy. Note that in creating
the cross validation folds for the 4 scenarios, we use the
same training and test folds, and modify only the timing-
based features of the C&C traffic, where needed (e.g., in
scenario (4) only the timing-based features of the C&C
traffic in the test folds are modified).

Table 5 shows the precision and recall rates of the
C&C flows, and the average 10-fold cross-validation ac-
curacy of each of the four classifiers. For LMT and Naive
Bayes, when timing-based features are not used for clas-
sification, the C&C precision, recall rates, and the overall
accuracy all increase. For the C4.5 classifier, the results
are the same in all 4 scenarios. A possible explanation
is that the timing-based features are not used by the C4.5
decision tree, or the rules based on the timing-based fea-
tures are not sensitive to the feature calibration5. For the
Naive Bayes classifier, it is interesting to note that even
though the classification accuracy is not as high as the
other classifiers, the C&C precision and recall rates are
almost perfect. Again, the Naive Bayes classifier mod-
els the class conditional distribution of all the features
and uses a Bayes rule to make class predictions. In this
case, it is possible that we have an accurate model for the
C&C class, which results in high precision and recall, but
the model for other application classes may not be very
accurate which results in the relatively low overall accu-
racy. For logistic regression and LMT, the precision and
recall rates are different in all the scenarios. A possible
explanation is that the class posterior probability depends
directly on a linear combination of all the feature values,
making the predictions sensitive to the timing feature cal-
ibration.

In Table 3, the number of false positives (i.e., the num-
ber of legitimate applications that are classified as C&C
traffic) are shown for all the scenarios. Note that for sce-
narios (1) and (4), since the training and test sets are the
same for all application classes, the false positive counts
are identical. For LMT and logistic regression, it is inter-
esting to observe the changes in false positive counts in
scenarios (1), (2), and (3). As an example, for LMT, the
change from 4 to 2 for the web class, and from 1 to 3 for
the email class; for logistic regression, the change from 3
to 2 for web class, and from 7 to 1 for the name-srv class.
For C4.5 and Naive Bayes, the false positive counts are
the same for all the scenarios. In Table 4, the number
of false negatives (i.e., the number of C&C flows clas-
sified as other legitimate applications) are shown. For
example, for logistic regression classifier 4 C&C flows
are classified as web class when timing-based features
are calibrated in both the training and test sets, compared
to only 1 C&C flow classified as web when the timing-
based features are not calibrated.

5 Summary and Discussion

In this paper, we presented a method for saltingtiming-
calibrated simulated C&C botnet traffic to the LBNL
public traces. We experimented using supervised flow
classification algorithms to evaluate the accuracy of de-
tecting C&C traffic in four scenarios: (1) when the
timing-based features of the botnet C&C traffic are not
calibrated with the background traffic in both training
and test set; (2) when they are calibrated with the back-
ground traffic by the application of Algorithm 1 in both
training and test set; (3) when the timing-based features
are not used for classification; and (4) when the timing-
based features of the C&C traffic are not calibrated in
the training set, but are calibrated in the test set. We
demonstrated the changes in overall classification accu-
racy, C&C traffic recall, and precision rates for all sce-
narios. It was found that presence of any timing artifacts
in botnet traces leads to changes in classifier results for
some classifier models, and this could result in a serious
impact on detection and false negative rates. Our experi-
ments yielded several insights:

First, even though we designed a classifier using the
first 5 packet statistics after the 3 way handshake, we
detected misclassification of botnet flows by calibrat-
ing only a few RTT samples of 2 timing-based features.
Methods relying more heavily on timing-based features
of complete flows (that consist of more RTT samples)
may be even more vulnerable, with smaller attack recall
and precision rates. Second, by altering the network traf-
fic patterns over time, a botmaster may change the dis-
tribution of the C&C traffic timing-based features. In
this way, the botmaster may mimic the legitimate ap-
plications to disguise the botnet traffic [32]. So, we
may interpret our detection results are for “worst case”
calibration of timing features. Third, our experiments
showed that the employed feature subset excluding the
timing-based features is well predictive of the application
classes. Using calibrated timing-based features with “ex-
ternal” feature selection procedures for a given classifi-
cation algorithm may result in more classification errors.
Fourth, when porting a flow classifier from one domain
to another, it is possible that domain differences in the
class-conditional timing-based feature distributions may
lead to substantial losses in classification accuracy on the
new domain [34]. Fifth, even if the performance of some
classifiers (e.g., C4.5, in our experiments) are not sensi-
tive to timing-based features, using these classifiers as a
part of ensemble of classifiers with a voting procedure
may worsen the final decision. Finally, to overcome the
site and time dependency of RTTs, new isolated timing-
based features such as application process time may re-
sult in better classification performance [12].
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Notes
1From [4], files lbl-internal.20041004-1458.port019.dump.anon

and lbl-internal.20041215-0510.port008.dump.anon.
2The inactivity timer measures the length of time expired since the

monitor recorded the last datagram for a given flow. When this thresh-
old expires, the monitor exports the flow. As an example, the default
value for NetFlow [2] is 15 seconds.

3Packet inter-arrival time statistics are widely used in network in-
trusion detection systems and Internet application identification. We
leave it as a future work to analyze the effects of differences in packet
of inter-arrival time on flow classifier accuracy.

4Standard error of the mean (SE) is the standard deviation of the
sample mean, and defined asσ/

√
N whereσ is the standard deviation

of samples andN is the sample size.
5According to our results, the C4.5 algorithm is invariant tohow the

timing-based features are handled (whether RTT calibrationis used or
not). A detailed explanation for this is beyond the scope of this paper.


