

Configuration ManagementConfiguration Management
SummitSummit

Cfengine
some facts

Mark Burgess

Cfengine AS
Oslo University College

What is cfengineWhat is cfengine?

● An agent-based change management system,
with “convergent” or “self-healing” semantics

● A largely declarative language for describing
desired (or “promised”) states

● A self-learning monitoring framework
● A knowledge management framework
● Cfengine is written in C, with few dependencies

Convergence = self-healingConvergence = self-healing

Baseline and recipe Convergence to end state

HistoryHistory
● 1993 Introduced in at Oslo University as a cross platform interface

that would document desired state, rather than change algorithms

● 1998 Re-interpreted in as a `computer immune system' (self-healing).
Laid out a research programme for system administration.

● 1999-2002 Formalized concept of “convergence” and limits for
system correctness (more than idempotence).

● 2003-2007 Developed Promise Theory to fully understand the issues
of distributed compliance

● 2008 Rewrote Cfengine completely as a “promise engine”,
preserving core technology and principles.

Uncompromised PrinciplesUncompromised Principles

● Autonomy of control – not allowed to send
Cfengine instructions from outside. Local
system always has last word.

● Avoid unnecessary network use
● Pull not push (voluntary cooperation not attack)
● Use network opportunistically, not required
● Run many times – “system never gets worse”

(convergence + idempotence)

ArchitectureArchitecture

● Autonomous agents can work independently or
cooperate by information-sharing on a peer-to-
peer basis. Decentralized.

● Commonly used to implement “single point of
control” while avoiding “single point of failure”.

Comment: scalabilityComment: scalability

● Scalability is limited by network bottlenecks in
● Inter-host communication
● Dependencies and other relationships
● Comprehenisbility of knowledge

● Research shows that hierarchies and inheritance
are a fragile model for scaling so Cfengine avoids
hierarchy, basing all its models on sets and freely
associating networks.

● This is one reason for rejecting Object Oriented
representations of configuration

Cfengine 3 - redesignedCfengine 3 - redesigned

● Promise Theory satisfies the principles and models
constellations of autonomous agents

● PT explains the syntax and grammar needed for
distributed configuration – gives a simple regular model
and best-effort semantics

● Model: configuration = promises + patterns
● Cfengine “promises” these patterns.
● Offers generic idioms that reduce the information

required for system description
● e.g “ACL” idiom – list what you want and what you don't

want, or search and filter.

Solution AreasSolution Areas

● Cover the full system lifecycle:
● Build, Deploy, Manage, Audit

● Cfengine's capabilities currently include
● Promising file attributes and contents, running processes,

software packages, services, virtual entities, distributed
scheduling, nfs devices.

● Reporting of compliance, security monitoring.

● Future areas (no impediment in the model)
● Routing, network management, advanced scheduling.
● Mechanical promises: physical robotic and structural

configurations

Knowledge ManagementKnowledge Management

● The main unsolved problems lie in KM
● KM includes

● Documentation (Write)
● Assimilation / Comprehension (Read)
● Generalizing (abstracting)
● Modelling and X-associating (story-telling)

● Cfengine includes automated documentation and
modelling based on Promise Theory. Generic
mechanisms for abstracting through sets called
“bundles”. Ties in to ISO13250 Topic Maps

Who is using Cfengine?Who is using Cfengine?

● More than 2000 registered organizations
● Estimate a million+ machines (mostly Cf2)
● All platforms:

Registered users 08-10Registered users 08-10

Machine park sizeMachine park size

Comment: AssessmentComment: Assessment

● Many users only use cfengine for its advanced
change capabilities during installation, not for self-
healing or repair

● Many users use the framework but don't use the
tools as intended, embedding shell commands
because they don't see a better way

● Industry sophistication is only slowly catching up
with the tools – old habits dye hard.

● Some “star users” who “get it” … AMD,
eBay/PayPal, JP Morgen etc

Future DevelopmentFuture Development

● We have research we could implement for the
next 10 years.

● Unifying network management with server
management

● Embedded devices
● etc

ConclusionsConclusions

● How has the problem changed?
● Cfengine originally addressed heterogeneity and

consistency
● Still problems for most organizations
● We know how to do convergent self-healing now
● Main problem is one of Knowledge Management

– Tracking state
– Understanding intentions
– Aligning with business goals

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

