V-Cloak: Intelligibility-, Naturalness- & Timbre-Preserving Real-Time Voice Anonymization

Authors: 

Jiangyi Deng, Fei Teng, and Yanjiao Chen, Zhejiang University; Xiaofu Chen and Zhaohui Wang, Wuhan University; Wenyuan Xu, Zhejiang University

Abstract: 

Voice data generated on instant messaging or social media applications contains unique user voiceprints that may be abused by malicious adversaries for identity inference or identity theft. Existing voice anonymization techniques, e.g., signal processing and voice conversion/synthesis, suffer from degradation of perceptual quality. In this paper, we develop a voice anonymization system, named V-Cloak, which attains real-time voice anonymization while preserving the intelligibility, naturalness and timbre of the audio. Our designed anonymizer features a one-shot generative model that modulates the features of the original audio at different frequency levels. We train the anonymizer with a carefully-designed loss function. Apart from the anonymity loss, we further incorporate the intelligibility loss and the psychoacoustics-based naturalness loss. The anonymizer can realize untargeted and targeted anonymization to achieve the anonymity goals of unidentifiability and unlinkability.

We have conducted extensive experiments on four datasets, i.e., LibriSpeech (English), AISHELL (Chinese), CommonVoice (French) and CommonVoice (Italian), five Automatic Speaker Verification (ASV) systems (including two DNN-based, two statistical and one commercial ASV), and eleven Automatic Speech Recognition (ASR) systems (for different languages). Experiment results confirm that V-Cloak outperforms five baselines in terms of anonymity performance. We also demonstrate that V-Cloak trained only on the VoxCeleb1 dataset against ECAPA-TDNN ASV and DeepSpeech2 ASR has transferable anonymity against other ASVs and cross-language intelligibility for other ASRs. Furthermore, we verify the robustness of V-Cloak against various de-noising techniques and adaptive attacks. Hopefully, V-Cloak may provide a cloak for us in a prism world.

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

BibTeX
@inproceedings {285349,
author = {Jiangyi Deng and Fei Teng and Yanjiao Chen and Xiaofu Chen and Zhaohui Wang and Wenyuan Xu},
title = {{V-Cloak}: Intelligibility-, Naturalness- \& {Timbre-Preserving} {Real-Time} Voice Anonymization},
booktitle = {32nd USENIX Security Symposium (USENIX Security 23)},
year = {2023},
isbn = {978-1-939133-37-3},
address = {Anaheim, CA},
pages = {5181--5198},
url = {https://www.usenix.org/conference/usenixsecurity23/presentation/deng-jiangyi-v-cloak},
publisher = {USENIX Association},
month = aug
}

Presentation Video