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Operational Characteristics of SSDs in Enterprise Storage Systems:
A Large-Scale Field Study

Stathis Maneas
University of Toronto

Abstract

As we increasingly rely on SSDs for our storage needs, it is
important to understand their operational characteristics in the
field, in particular since they vary from HDDs. This includes
operational aspects, such as the level of write amplification
experienced by SSDs in production systems and how it is
affected by various factors; the effectiveness of wear leveling;
or the rate at which drives in the field use up their program-
erase (PE) cycle limit and what that means for the transition to
future generations of flash with lower endurance. This paper
presents the first large-scale field study of key operational
characteristics of SSDs in production use based on a large
population of enterprise storage systems covering almost 2
million SSDs of a major storage vendor (NetApp).

1 Introduction

Solid state drives (SSDs) have become a popular choice for
storage systems over the past decade, increasingly replacing
hard disk drives (HDDs). The performance and expected
lifespan of an SSD are affected by operational characteris-
tics in ways that are fundamentally different than for HDDs.
For example, the lifespan is affected by write rates, as flash
wears out, while performance is affected by the workload’s
read/write ratio due to the big differences between read and
write latencies. Moreover, SSDs require background work,
such as garbage collection and wear leveling, which gener-
ates write amplification and affects a drive’s performance and
lifespan. Usage characteristics, such as workload intensity
(in particular write rates), the read/write ratio, and how full
a drive is, affect how effectively a drive can manage these
housekeeping tasks. Finally, drive specific details, such as
whether a drive supports multi-stream writes or the amount of
over-provisioned space, are expected to impact lifetime and
performance as well.

As we increasingly rely on SSDs for our storage needs, it is
important to understand what these operational characteristics
look like for drives in the field and how they impact drives.
Unfortunately, there are no large-scale field studies providing
a comprehensive view of these characteristics for SSDs in
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the field. While there are a few recent field studies involving
large-scale deployments, these have a different focus studying
failure characteristics [30,33,36,41,46], fail-slow faults [13,
38], and performance instabilities [16] associated with SSDs
in production.

In this paper, we present the first large-scale field study
of several key operational characteristics of NAND-based
SSDs in the field, based on NetApp’s enterprise storage sys-
tems. Our study is based on telemetry data collected over a
period of 4+ years for a sample of NetApp’s total SSD popu-
lation, which covers more than one billion drive days in total.
Specifically, our study’s SSD population comprises almost
2 million drives, which span 3 manufacturers, 20 different
families (product batches, see detailed definition in §2), 2
interfaces (i.e., SAS and NVMe), and 4 major flash technolo-
gies, i.e., cMLC (consumer-class), eMLC (enterprise-class),
3D-TLC, and 3D-eTLC. Our data set is very rich, and in-
cludes information on usage, such as host reads and writes,
total physical device writes, along with information on each
drive’s wear leveling and write amplification. Furthermore,
our data contains each system’s configuration, including all
its RAID groups and the role of every drive within a RAID
group (i.e., data or parity), among a number of other things.

We use this rich data set to answer questions, such as:

e What are the write rates that drives experience in production
systems, and how close do drives get to reaching wear-out?
What does this mean for future generations of flash with lower
endurance limits?

e What are the write amplification factors that drives experi-
ence in production systems? How do those numbers compare
to those reported in academic work?

e How effective are SSDs in production environments at wear
leveling?

e How is write amplification affected by various factors, in-
cluding FTL-related factors (e.g., drive model, firmware ver-
sions, over-provisioned space, support of multi-stream writes)
and workload factors (e.g., write rates and read/write ratios,
whether the drive is used as a cache or for persistent storage,
whether the drive’s role is data, parity or partitioned)?
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2 Methodology
2.1 System Description

Our study is based on a rich collection of telemetry data from
a large population of enterprise storage systems in produc-
tion, comprising almost 2 million SSDs. The systems employ
the WAFL file system [17] and NetApp’s ONTAP operat-
ing system [37], while they run on custom Fabric-Attached
Storage (FAS) hardware and use drives from multiple manu-
facturers. The systems are general-purpose, multi-tenant, and
multi-protocol (NFS, FCP, iSCSI, NVMe_oF, S3), used by
thousands of customers for very different applications (some-
times on the same node. In contrast to cloud data centers,
which use mostly block- and object-based protocols, the ma-
jority of the systems in our data set use NFS (i.e., a file-based
protocol). Applications running on our systems include file
services, (enterprise) databases, financial technologies (fin-
techs), retail, electronic design automation (EDA) workloads,
media entertainment, data analytics, artificial intelligence,
and machine learning. Note though that storage vendors (e.g.,
NetApp) have no direct insight into what applications a cus-
tomer is running on their systems, or who are the individual
users of each system. Therefore, it is not trivial to break down
our analysis by the type of application a system is running.

The operating system uses software RAID to protect
against drive failures. Table 2 shows the breakdown of RAID
group sizes in our systems, along with the breakdown of
RAID schemes per range of RAID group sizes. As we ob-
serve, SSDs widely adopt RAID schemes protecting beyond
single-device failures, especially with AFFs and larger arrays.

Our data set comprises systems with a wide range of hard-
ware configurations, concerning CPU, memory, and total
SSDs. Each system contains a large dynamic random access
memory (DRAM) cache. Incoming write data is first buffered
into the system’s DRAM and then logged to non-volatile
memory (NVRAM). Once the buffered (dirty) data is stored
into persistent storage, during a consistency point (CP), it is
then cleared from NVRAM and is (safely) retained in DRAM
until it is overwritten by new data. We refer the reader to prior
work for more information on the design and implementation
details of NetApp systems [22,23,30,31].

According to their usage, systems are divided into two
different rypes: one that uses SSDs as a write-back cache layer
on top of HDDs (referred to as WBC), and another consisting
of flash-only systems, called AFF (All Flash Fabric-Attached-
Storage (FAS)). An AFF system uses either SAS or NVMe
SSDs, and is an enterprise end-to-end all-flash storage array.
In WBC systems, SSDs are used as an additional caching
layer that aims to provide low read latency and increased
system throughput. Still, not all reads and writes are served
from the SSD cache. Depending on the cache replacement
policy, reads and writes can bypass the SSD cache and get
served directly from the underlying HDD layer. For example,
sequential user writes will typically get stored from DRAM

Drive characteristics Usage Characts.
Drive | Cap. Flash DWPD PE OP | First Drive
Family| (GB) Tech. Cycles Deploy- Power
Limit ment Years
200 Apr’l4  5.69
I-A ggg eMLC 10 10K 44% ﬁ‘:‘; ,111 g:g?
1600 Mar ’14 5.49
400 Dec ’15 4.44
1-B 800 eMLC 10 10K 44%| Jan’16 4.15
1600 Jan’16 4.25
400 Jan’17 3.37
I-C ?ggo eMLC 3 10K 28% ;\Z‘I 1177 g:gg
3800 Dec’16  2.87
1-D 3800 eMLC 1 10K 7% | Jul’17 2.82
800 Dec ’18 1.67
960 3D- Dec ’18 1.45
1-E 3800 TLC 1 7K 20%| Dec 18 1.12
7600 Jan’19 1.32
15000 Jan’19 1.26
Im-A | 3840 3D-TLC 1 10K 7% | Jan’16 4.39
II-B | 3800 3D-TLC 1 10K 7% | Oct’16 3.58
8000 Sep ’17 2.89
II-C 15300 3D-TLC 1 10K 7% Sep’16 2.9
960 Oct ’16 3.37
II-D 3800 3D-TLC 1 10K 7% Oct’16 357
400 28%| Dec’16  3.81
II-E 800 3D-TLC 3 10K 28%]| Jan’17 3.45
3800 7% | Dec’16  3.75
960 Dec’19  0.40
II-F 3800 3D-TLC 1 10K 7% Mar *20 0.46
400 Jan’16 4.17
-G | 800 3D-TLC 3 10K 28%| Feb’16 4.32
1600 Jan’16 4.58
800 3 28%| Apr’18 1.91
960 1 7% | Jan’18 1.77
II-H 3800 3D-TLC 1 10K 7% | Jan’18 1.69
8000 1 7% | May’18  1.63
15000 1 7% | May’18 1.44
30000 1 7% | Jul’18 143
Im-I 800 cMLC 3 10K 28%| Sep’13 6.48
200 Sep ’13 6.92
m-J 400 eMLC 10 30K 28%| Sep’13 6.47
800 Oct’13 6.74
400 May’15 5.07
II-K | 800 eMLC 3 30K 28%]| Jul’l5 4.98
1600 Jun’15 5.11
960 3D- Oct ’19 0.69
I1-A 3800 1 7K 20%| Oct’19 0.54
7600 CTHC Oct’19  0.57
3800 Aug’18  1.83
m-Xx 7600 TLC 1 10K 7% Jul°18 207
3800 Jan’19 0.78
I-Y | 7600 TLC 1 10K 7% | May’19 1.05
15000 Dec ’18 1.08
3800 Jul °20 0.25
-7 | 7600 TLC 1 10K 7% | Jun’20 0.40
15000 Jun ’20 0.35

Table 1: Summary statistics describing the key characteristics
of the different drive families in our data set. The last three
rows involve SSDs with an NVMe storage interface, whereas
all the other rows involve SAS drives. The standard deviation
in the drives’ power-on years ranges from 0.05 to 0.98 for
most drive families.
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Distribution of RAID Group Sizes

Range AFF WBC
[3,9] 16.21% 56.49%
[10,19] | 36.21% 28.98%
[20,29] | 47.58% 14.53%
Distribution of RAID schemes for AFF systems
Range
Scheme [3,9] [10,19] [20,29]
RAID-4 [39] 11.55% 0.99% 0.95%
RAID-DP [8] 88.43% 98.62%  98.21%

RAID-TEC [11] 0.02% 0.39% 0.84%
Distribution of RAID schemes for WBC systems

Range
Scheme [3, 9] [10,19] [20,29]
RAID-4 [39] 61.65%  21.50% 0.62%
RAID-DP [8] 38.18%  77.45%  97.55%

RAID-TEC [11] 0.17% 1.05% 1.83%

Table 2: The top table shows the breakdown of RAID group
sizes per system type, while the bottom table shows the break-
down of RAID schemes per range of RAID group sizes.

directly to HDDs (as these can be executed efficiently on the
HDDs and are also likely to pollute the SSD cache). Similarly,
reads that result in an SSD cache miss are brought into DRAM
and will be written to the SSD cache as well only if the cache
replacement policy determines that the chance of reuse is high
and it is worth evicting another block from the SSD cache.
In the remainder of the paper, we make use of the following
terms (adapted from [3]):
e Drive family: A particular drive product, which may be
shipped in various capacities, from one manufacturer, using a
specific generation of SSD controller and NAND. Our data
set contains 20 different families (denoted by a capital letter
A-7Z) from three different manufacturers (denoted as I, II, and
IIT). We prepend the manufacturer’s symbol to each drive
family in order to explicitly associate each family with its
manufacturer (e.g., [-A, II-C).
e Drive model: The combination of a drive family and a
particular capacity. For instance, the I-B drive family comes in
three models whose capacity is equal to 400, 800 or 1600GB.
e Drive age: The amount of time a drive has been in produc-
tion since its ship date, rather than its manufacturing date.
The first six columns in Table 1 describe the key charac-
teristics associated with the different drive families in our
data set. Specifically, for each drive family, Table | includes
all the corresponding drive models (in an anonymized form),
along with the capacity, flash technology, endurance (speci-
fied in Drive Writes Per Day (DWPD) and the program-erase
(PE) cycles limit), and over-provisioning (OP) associated with
each model. As shown in Table 1, the SSD population in our
study spans a large number of configurations that have been
common in production settings over the last several years.

2.2 Data Collection and Description

Most systems in the field send telemetry data in the form of
NetApp Active IQ® (previously called AutoSupport) bundles,
which track a large set of system and device parameters (with-
out containing copies of the customers’ actual data). These

Device and System Metrics Sections
Host Write Rates/Read Rates §3.1.1, §5
Annualized NAND Usage Rate §3.1.2
Write Amplification Factor (WAF) §3.2, §4
Avg/Max Erase Operations §3.3
System Fullness §3.4

Table 3: The list of metrics analyzed in this study.

bundles are collected and used for detecting potential issues.

Our study is based on mining and analyzing this rich col-
lection of messages. Specifically, our data set is organized
into 21 snapshots, each of which is generated after parsing the
corresponding support messages collected at the following 21
points in time: Jan/Jun *17, Jan/May/Aug/Dec ’ 18, Feb—Dec
’19, Jan/Jul/Nov 20, and Mar ’21. Each snapshot contains
monitoring data for every system (and its drives). Table 3
shows all the metrics that are analyzed in this study.

3 What does SSD overall usage look like?

The performance and endurance of an SSD depend signif-
icantly on a number of operational characteristics. In this
section, we use our field data to study four of the most im-
portant characteristics (described below). To the best of our
knowledge, our work is the first to present details on these
characteristics for a large-scale population of flash-based pro-
duction systems.

e We begin by studying write rates (§3.1), as experienced by
enterprise drives in the field (including both host and physical
writes), as they significantly impact the lifetime of an SSD.
e We then examine the write amplification factors (WAF) ob-
served by the SSDs in our study (§3.2), as write amplification
is another major factor that can reduce a drive’s endurance.
e Next, we look at how efficient drives are at wear leveling
(83.3), as it is a key mechanism that prolongs a drive’s lifetime
by preventing heavily used blocks from premature wear-out.
e Finally, we look at the fullness of systems (§3.4), i.e., what
fraction of a system’s total storage capacity is actually used.
Fullness can significantly affect SSD operations, as a full
system will trigger garbage collection more frequently and
also has less free space to facilitate wear leveling and other
housekeeping tasks.

3.1 Host Write Rates and NAND Usage Rates

A major concern when deploying SSDs are the write rates
these devices will experience in the field, as erase operations
wear out flash cells; therefore, the write intensity of a work-
load significantly affects the lifetime of flash-based SSDs.
This is a particular concern looking forward since future gen-
erations of flash are expected to have an order of magnitude
lower endurance than today’s drives.

The goal of this section is to study a number of important
aspects associated with write rates, as experienced by drives
in enterprise systems, including how close drives get to their
point of wear-out, how write rates vary across systems, dif-
ferences between host and physical writes seen by a drive,
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(a) Per System Type.

(b) Per Drive Capacity.

(c) Per Drive Family.

Figure 1: Distribution of the drives’ (normalized) host writes broken down by system type (1a), drive capacity (1b), and drive
family (Ic). In Figure Ic only, each line type corresponds to a different manufacturer.

and an analysis of how feasible it would be to migrate work-
loads observed on today’s systems to future generations of
flash with lower program-erase (PE) cycle limits (i.e., the
maximum number of PE cycles each SSD is rated for by its
manufacturer).

3.1.1 Host Write Rates

We first look at write rates from the angle of host writes, i.e.,
the writes as they are generated by the applications and the
storage stack running on top of the SSDs and measured and
collected by the operating system (in contrast to physical
NAND writes, which we examine in §3.1.2).

Because of the significance of write rates in the context of
SSD endurance, drive manufacturers specify for each model
its Drive Writes Per Day (DWPD), which is defined as the
average number of times a drive’s entire capacity can be writ-
ten per day over its lifetime without wearing out prematurely.
Typical DWPD numbers in drive datasheets are 1 and 3, and
our population also includes some models with a DWPD of
10 (see Table | for all drive models in our study). However,
trends associated with recent technologies suggest DWPD
will drop below 1 in the future [34].

Understanding host writes is also important in other con-
texts. For example, when setting up workload generators or
benchmarks for experimental system research, it is important
to understand what realistic workloads one wants to emulate
look like, and write rates are an important aspect of that.

Despite the significance of host writes and the fact that
flash-drives have been routinely deployed at large scale for the
past decade, we are not aware of any study reporting on host
write rates in such systems. The goal of our measurements is
to close this gap.

We present our results in Figure 1a. The black solid line in
Figure 1a (left) shows the Cumulative Distribution Function
(CDF) of the DWPD experienced by the drives across our
entire population. In addition, the graph also breaks the results
down into AFF (all flash) systems and WBC systems (where
the flash is used as a write-back cache).

We make a number of high-order observations:
e The DWPD varies widely across drives: the median DWPD
of the population is only 0.36, well below the limit that today’s
drives can sustain. However, there is a significant fraction
of drives that experiences much higher DWPD. More than
7% of drives see DWPD above 3, higher than what many of
today’s drive models guarantee to support. Finally, 2% of
drives see DWPD above 10, pushing the limits even of today’s
drive models with the highest endurance.
e When separating the data into AFF and WBC systems,
we observe (probably not surprisingly) that WBC systems
experience significantly higher DWPD. Only 1.8% of AFF
drives see DWPD above 3 compared to a quarter of all WBC
drives. The median DWPD is 3.4x higher for WBC than
AFF, while the the 99th percentile is 10.6x higher.
e We note vast differences in DWPD across the WBC systems,
including a long tail in the distribution. While the median
is equal to 1, the drives in the 99th and the 99.9th %-ile
experience DWPD of 40 and 79, respectively. What that
means is that designers and operators of WBC systems need to
be prepared for their systems to handle a vast range of DWPD
values, including very high ones. It also means that optimally
provisioning the drive endurance for a WBC system is much
harder due to the huge range of DWPD in such systems.

Next, we perform a more fine-grained analysis of the
DWPD experienced by different SSDs, by grouping drives
based on their capacity (Figure 1b) and by drive family (Fig-
ure 1c). The reasoning is that different customers will pur-
chase drives of different capacities depending on their ap-
plications’ needs, so drives of different capacities likely see
different types of workloads. Similarly, different drive fami-
lies might be deployed in different types of systems that differ
in the workloads that run on them.

e Turning to Figure 1b, we were surprised to see how signifi-
cantly DWPDs vary depending on drive capacity. In partic-
ular, there is a very clear trend that smaller capacity drives
see larger DWPD. While this trend is consistent for both
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Figure 2: Distribution of the drives’ Annualized NAND Usage
Rates broken down by drive family and system type. Each line
type corresponds to a different manufacturer.

AFF and WBC systems, the effect is particularly pronounced
for WBC systems: here, the median DWPD for the smallest
capacity drives is more than 100 higher than for the largest
capacity drives (DWPD of 0.05 compared to 6). We note that
this trend also holds when comparing the DWPD of different
capacity drives within the same drive family, so the effect can
be clearly attributed to drive capacity rather than family.

o Interestingly, we also observe significant differences in
DWPD across drive families (Figure Ic). For example, for
WBC systems, the median DWPD ranges from 0.04 to 3.75
across drive families. We also observe that for both AFF and
WBC systems, it is the same drive families that experience
higher DWPD than the average population.

3.1.2 NAND Usage Rates

The second metric associated with write operations focuses
on physical NAND device writes. Physical device writes are
typically higher than the raw host writes due to the device’s
background operations (e.g., garbage collection, wear level-
ing). For each drive model, manufacturers specify a limit
on the number of physical writes it can tolerate before wear-
ing out, in terms of the program-erase (PE) cycle limit (see
Table 1 for the PE cycle limit of the drives in our population).

We are interested in studying the rate at which drives in
the field approach their PE cycle limit, a question that is of
particular concern as future generations of flash are expected
to have significantly lower PE cycle limits [32]. Towards this
end, for each drive, we determine the percentage of its PE
cycle limit that it uses up per year, on average, a metric that
we refer to as Annualized NAND Usage Rate:

% of PE Cycle Limit Used So Far
Power-On Years

Ann. NAND Usage Rate =
M

Figure 2 shows the NAND usage rates for AFF and WBC
systems. The black solid line in each graph shows the CDF
of the NAND usage rates across all the drives, irrespective
of drive family. Since physical writes depend heavily on a
drive’s FTL (unlike host writes which are mostly driven by

the applications), the figure also shows the CDF of NAND
usage rates separately for each drive family.

We make the following key observations:

e Annualized NAND Usage Rates are generally low. The
majority of drives (60% across the entire population) report
a NAND usage rate of zero', indicating that they use less
than 1% of their PE cycle limit per year. At this rate, these
SSDs will last for more than 100 years in production without
wearing out.

e There is a huge difference in NAND Usage Rates across
drive families. In particular, drive families I-C, I-D, and
I-E experience much higher NAND usage rates compared
to the remaining population. These drive families do not
report higher numbers of host writes (recall Figure 1c), so
the difference in NAND usage rates cannot be explained by
higher application write rates for those models.

We therefore attribute the extremely high NAND usage

rates reported by I-C/I-D drives to other housekeeping op-
erations which take place within the device (e.g., garbage
collection, wear leveling, and data rewrite mechanisms to
prevent retention errors [6]). We study this aspect in more
detail in Section 3.2 and in Section 4, where we consider
Write Amplification Factors (WAF).
e There is little difference in NAND usage rates of AFF sys-
tems and WBC systems. This is surprising given that we have
seen significantly higher host write rates for WBC systems
than for AFF systems. At first, we hypothesized that WBC
systems more commonly use drives with higher PE cycle
limits, so higher DWPD could still correspond to a smaller
fraction of the PE cycle limit. However, we observe similar
NAND usage rates for WBC systems and AFF systems, even
when comparing specific drive families and models with the
same PE cycle limit. Interestingly, as we will see in Sec-
tion 3.2, the reason is that WBC systems experience lower
WAF, which compensates for the higher host write rates.

Projections for next generation drives: We can use NAND
usage rates to make projections for next generation QLC
drives. Considering that endurance is estimated to be reduced
for QLC drives [32], we are interested in determining how
many SSDs in our data set could be replaced by a QLC SSD
without wearing out within a typical drive lifetime of 5 years.
o If we assume that the PE cycle limit of QLC drives drops
to 1K, then we find that the vast majority of our population
(~95% of drives when excluding the two outlier models I-C
and I-D) could have used QLC drives without wearing them
out prematurely.

3.2 Write Amplification Factor (WAF)

The write amplification factor (WAF) plays a critical role, as
the added writes due to garbage collection, wear leveling, and
other SSD-internal housekeeping tasks, can negatively impact

Unfortunately, the % of PE cycle limit used per SSD is reported as a
truncated integer.
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Figure 3: Distribution of the drives’ WAF broken down by drive family (left), along with both drive family and system type
(middle and right). Each line type corresponds to a different manufacturer.

both the endurance and performance of an SSD. It is therefore
not surprising that a large body of work has been dedicated
to reducing WAF and its impact, for example by optimizing
FTLs in different ways [7, 14,15, 18,20, 25, 44,47-49] or by
making use of Multi-stream SSDs [4,21,40].

Unfortunately, despite the large body of work in industry
and academia on WAF, we do not have a good understand-
ing of how effective real drives in production systems are in
controlling WAF. To the best of our knowledge, there is no
large-scale field study reporting and analyzing WAF in pro-
duction systems. The existing field studies that mention WAF
for production systems are either limited to one particular
type of application (financial services) [29] or are based on a
small population of one flash technology (3D-TLC) [28]; both
studies simply report an average WAF across their systems of
1.3 and 1.5, respectively (without any further analysis).

One goal of this paper is to improve our understanding of
WATF in production systems. We begin in this section with
some high-level statistics on WAF and then later in Section 4
study in more detail the impact of various factors on WAF.

The black solid line in Figure 3 (left) shows the distribution
of WAF across all the drives in our population. In the same
graph, we also show WAF broken down by drive family, as a
drive’s FTL affects WAF.

We make a number of high-level observations:

o For the vast majority of our SSDs, the WAF they experience
is higher than the WAF of 1.3 observed in [29] (a field study
reporting WAF numbers, but only in the context of financial
services applications) and the WAF of 1.5 observed in [28]
(based on a sample of 3D-TLC SSDs from Huawei’s storage
systems). Specifically, 98.8% and 96% of our SSDs observe
a WAF larger than 1.3 and 1.5, respectively. This observation
underlines the importance of field studies spanning a large
range of systems with different applications and devices.

e The drives in our population span a huge range of WAF
values. While the 10th percentile is only 2, the 99th percentile
is 480. This motivates us to study the effect of several different
factors on WAF. We start below with a high-level study of
the role of the FTL and workloads, and continue with a more

detailed study of factors impacting WAF in Section 4.

WAF and the FTL: As different drive families vary in their
firmware, comparing the WAF across drive families provides
insights into the relationship between the FTL and WAF.

e Figure 3 (left) shows that some drive families have drasti-
cally higher WAF than others. In particular, the I-C, I-D, and
I-E families experience WAF that is an order of magnitude
higher than that for most of the other drive families, with me-
dian WAF values of around 100 (!) in the case of I-C and I-D.
Note that these drive families do not experience a different
host write rate and we have no indication that they are being
deployed in systems that tend to run different types of appli-
cations, so there is no obvious explanation due to workload
characteristics. Also, differences in WAF persist even when
we compare with drive families of the same age and capacity.

Upon closer inspection, we found that these particular mod-
els perform background work every time the SSD has idle
cycles to spare, thereby consuming their PE cycles as a side
effect. Interestingly, it seems that this background work is
not due to garbage collection or wear leveling (the best stud-
ied contributors to WAF), but due to aggressive rewriting
of blocks to avoid retention problems, where stored data is
(periodically) remapped before the corresponding flash cells
accumulate more retention errors than what can be corrected
by error correction codes (ECC) [6].

We note that this unexpected effect drives up WAF not
only for drives with extremely low utilization, but also for the
busiest drives (e.g., top 5%) of the two outlier families.

In summary, the FTL has a huge impact on WAF.

WAF and workload: Our data also provides evidence of the
impact of workload characteristics on WAF:

o First, we observe that there is significant variation in WAF
even when comparing only drives within the same drive fam-
ily (rather than across families). The 95th percentile of a
drive family’s WAF is often 9 larger than the corresponding
median. These differences are likely due to different drives
within a family being exposed to different workloads.

e Second, when we compare the WAF for AFF and WBC
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Figure 4: Distribution of metrics associated with wear level-
ing, calculated based on the number of erase operations per
block. Each line type corresponds to a different manufacturer.

systems in Figure 3 (two right-most figures), we observe
that for the same drive families, WBC systems experience
significantly lower WAF than AFF systems, indicating that
WBC workloads are more flash friendly. This results in an
another interesting observation:

e Thanks to their lower WAF, WBC drives in our systems
do not see a higher NAND usage rate than AFF systems, de-
spite their higher DWPD (recall Figure 1c). This observation
is significant, because the application of SSDs in caches is
considered the most demanding, in terms of endurance re-
quirements, and widely accepted best practices recommend
to use only drives with the highest endurance for these appli-
cations. Our observations indicate that this might not always
be necessary.

Comparison with simulation studies: Due to the dearth of
field data on WAF, a number of authors have resorted to
trace-driven simulation studies to explore WAF and how it
is affected by various factors; therefore, it is interesting to
compare the numbers we observe against those studies.

e The values reported for WAF in trace-driven simulation
studies [5,9, 10, 19,42, 45] are at the low end of the WAF
range we observe for AFF production systems, and even
the maximum values reported in these studies fall only into
the mid range (often below median) of the WAF values we
observe. For example, the highest WAF in [45] is 2, in [42]
itis 7, and in [5,9, 10, 19] it is 12, which correspond to the
9th, 49th, and 62th percentile respectively, of the WAFs in
our AFF population.

We draw two possible conclusions from this differences:

o A significant challenge that researchers in our community
face is the lack of publicly available I/O traces from SSD-
based storage systems. As a result, existing experimental
work, including the simulation studies cited above, is based
on traces that are i) based on HDD systems and ii) mostly
relatively old (more than a decade for some popular traces).
These traces might not be representative of today’s workloads
running on SSD-based systems and also do not cover aspects
relevant to SSD-based systems (e.g., the TRIM command).

As a community, it is important that we find more relevant
traces to use as base to our work.

e The differences in WAF between our production systems
and existing simulation studies also indicate that it is very dif-
ficult to reproduce all complexities and subtleties of modern
FTLs in simulation.

3.3 Wear Leveling

A critical job of an SSD controllers is wear leveling, which
aims to spread the erase operations evenly over all blocks on
the device. This is important for multiple reasons. First of
all, it serves to increase the device’s lifetime by preventing
frequently used blocks from wearing out prematurely. Sec-
ond, it can help avoid performance problems, since blocks
with higher erasure cycles are associated with higher error
rates [12], and retries and other error-correction efforts can
significantly add to latency.

Wear leveling is a difficult problem because real-world
workloads are rarely uniform and commonly exhibit strong
skew in per-block update frequencies. An ideal wear leveling
mechanism distributes write operations in such a way so that
all blocks within an SSD wear out at the same rate. At the
same time, there is a delicate trade-off, as aggressive wear
leveling will increase the number of write operations, thereby
increasing WAF and overall drive wear-out.

In this section, we explore how effective modern FTLs are
at wear leveling. Specifically, our data set contains the average
number of times the blocks in a drive have been erased, along
with the corresponding maximum value. Based on these
values, we calculate two different metrics that characterize
how evenly erase operations are distributed across all blocks:

The Erase Ratio is the ratio between the maximum and
average number of erase operations per SSD:

Max. E o
Erase Ratio = Zax. Zrase 7ps )
Avg. Erase Ops

The Erase Difference is the absolute difference between
maximum and the average number of erase operations nor-
malized by the PE cycle limit:

Max. Erase Ops — Avg. Erase Ops

PE Cycle Limit (%) 3)

Erase Dif ference =

Figure 4 shows the Erase Difference and Erase Ratio across
our entire population (black solid line) and broken down by
drive family. The ideal value of the Erase Ratio is 1, whereas
the ideal value of the Erase Difference is 0. We make the
following observations:

e Not surprisingly, wear leveling is not perfect. The median
Erase Ratio is 1.55, indicating that the maximum block under-
goes 55% more erase operations than the average block. 5%
of the drives have an erase ratio larger than 6 meaning their
maximum block wears out 6x faster than the average - that
means when the maximum block has reached end of life the
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Figure 5: Distribution of AFF systems’ fullness.

average block has only used 16% of its PE cycle limit.”.

e There is a striking difference in the wear leveling metrics
across drive families. The fact that I-C and I-D drives, for
example, report significantly higher wear leveling metrics
(despite having similar age, capacity, and DWPD to some
other families) indicates that different firmware implementa-
tions take vastly different approaches to wear leveling. More
generally, it seems that different manufacturers follow very
different philosophies with respect to wear leveling: when
looking at the Erase Difference metric, we see that the four
families with the largest Erase Difference all belong to the
same manufacturer (i.e., I).

e It is surprising that drive models I-C and I-D do a signif-
icantly worse job at wear leveling than other drive models,
despite the fact that these two models experience higher WAF
(recall §3.2). This means that the additional background work
that these drives are performing is not contributing towards
better wear leveling. Instead, we believe that the additional
background work of those two drive families is because they
rewrite data more aggressively than others in order to avoid
retention errors. This is a very interesting observation, since
data rewrite for retention errors has received much less at-
tention than other sources of WAF (e.g., garbage collection,
wear leveling). In fact, current SSD simulators and emulators
(e.g., FEMU [26]) do not implement data rewrite for retention
errors, and therefore do not capture this source of WAF.

3.4 Fullness

Another critical factor in the operation of an SSD-based stor-
age is the system’s fullness. We define fullness as the fraction
of the drives’ nominal capacity that is filled with valid data,
i.e., the fraction of the Logical Block Address (LBA) space
currently allocated. Fullness can affect the overall perfor-
mance of a system, as it can impact the frequency of garbage
collections, and also determines how much free room there is
for operations like wear leveling. Also, fullness is of practical
importance for capacity planning, as systems that run out of
available space before the end of their lifetime need to be
expanded with additional storage.

On the other hand, from the garbage collection’s point

2We do not have data on the minimum number of erase operations of a
drive’s blocks — naturally the difference between the minimum and maximum
block would be even more pronounced.

of view, fullness denotes what fraction of blocks inside the
drive are currently not programmable. This includes blocks
containing valid data, but also blocks containing invalidated
data which have not been erased yet. In our analysis, we focus
only on the (allocated) LBA space.

In this section, we are interested in exploring what fullness
looks like for enterprise storage systems, how it changes over
a drive’s lifetime, and how it varies as a function of factors
such as drive capacity. Our study is the first to characterize
this important system aspect for flash-based storage systems.

We begin with a high-level view of fullness by consider-
ing the CDF of fullness across the entire population of AFF
systems, as shown in Figure 5 (left); we consider only AFF
systems in our study of fullness, as the concept of fullness
does not apply in the same way to WBC systems, which use
SSDs only as a cache on top of HDDs.

e We observe that the average system is around 45% full, and
the median is also around 45%, i.e., more than half of the
storage capacity is free.

e The distribution of fullness across systems is roughly uni-
form. The CDF flattens only above 80%, i.e., values below
80% are all roughly equally likely, while values above 80%
are relatively less common.

Next, in Figure 5 (middle), we look at how fullness changes
over a system’s lifetime. Understanding this aspect of fullness
is relevant, for example, in the context of capacity planning.
e Maybe not surprisingly, system fullness increases with age.
(Consider for example the median over time, as indicated by
the dark link in the center of each box plot). However, the
rate of increase is not uniform: fullness grows relatively fast
over the first two years and stabilizes after that.

e Interestingly, despite the fact that generally fullness in-
creases over time, there are some very young systems that are
quite full and some old systems that are quite empty: slightly
more than 5% of young systems (less than 1 year old) are
more than 80% full, whereas 19% of old systems (more than
4 years old) are less than 25% full.

e An interesting observation from a capacity planning point
of view is that systems who end up being full at the end of
their life are also among the fullest systems early in their
life. In other words, if a system has not used a significant
amount of its physical space after its first couple of years in
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production, its fullness will most probably remain (relatively)
low in the future.

Given that systems vary hugely in their total capacity, rang-

ing from tens of TBs to a couple of PBs, another interesting
question is whether users of larger capacity systems actually
make use of the additional capacity of their systems. Towards
this end, Figure 5 (right) presents boxplots of system fullness,
broken down by system capacity.
o Interestingly, we observe that system with larger total ca-
pacity tend to be more full: the largest systems are 1.7 x fuller
(in terms of median) than the other systems. This seems to
indicate that customers who purchase larger capacity systems
do indeed have larger capacity needs and are also better at
predicting how much storage capacity they need.

Comparison with fullness reported for other types of sys-
tems: A seminal work by Agrawal et al. [1], published more
than a decade ago, studied file system characteristics, includ-
ing fullness, for personal desktop computers at Microsoft.
They observed average fullness values ranging from 45-49%
and a uniform distribution. This is quite similar to our ob-
servations — which is surprising given that their study looks
at completely different types of systems (personal desktop
computers using HDDs).

The only other work we found that reports on fullness in
production systems is by Stokely et al. [43], which studies
the usage characteristics of an HDD-based distributed file
systems within a private cloud environment. Their results
indicate that the fraction of the quota used by an average
user of those systems is significantly larger than the levels
of fullness we observe: on average users use 55% of their
purchased quota; for the largest quota requests this number
increases to 69%. The reason might be that it is easier for a
user to increase their individual quota in a distributed storage
system when running out of space, compared to increasing the
physical capacity of an enterprise storage system. Therefore
capacity planning for an enterprise storage system has to be
more conservative.

4 Which factors impact WAF?

There are a number of factors that are commonly assumed to
impact a drive’s WAF, including the design of a drive’s FTL,
usage characteristics, how full the system is, along with the

size of the drive’s over-provisioned space. In this section, we
try to shed more light on the impact of each of these factors
on WAF, as experienced in production systems.

4.1 Flash Translation Layer (FTL)

This points to the importance of different design choices made
by different FTL implementations. In Section 3.2, we have
observed huge differences in WAFs across different drive
families, even when controlling for other factors, such as
drive capacity and DWPD.

In this section, we attempt a more fine-grained look at the
impact of FTLs on WAF. Instead of comparing WAF across
different drive families, we now look at different firmware
versions within a given drive family.

Firmware version and WAF: We performed this study for
several drive families, and discuss the results for drive family
III-A, as a representative sample. The most common firmware
versions for this drive family are versions FV2 and FV3. We
see consistently across all capacities of this drive model that
the more recent firmware version FV3 is associated with lower
WAF than the earlier FV2 version.

For illustration, we present the CDF of WAFs for firmware
versions FV2 and FV3 for the 7.6TB capacity model of drive
family III-A in Figure 6. We chose this particular capacity
because it offers the cleanest comparison, as the population of
FV2 drives and the population of FV3 drives are quite similar
with respect to other factors, such as DWPD, deployment
time, and system type.

We observe a clear difference between the WAF of drives
on firmware version FV2 versus version FV3. For example,
both the median and the 90th percentile of WAF are around
2x larger for FV2 than the more recent FV3 version.

4.2 Workload Characteristics

Many aspects of workload characteristics can impact a drive’s
WAF. Unfortunately, the analysis of many of these aspects
(e.g., sequentiality of writes and deletes, skewness of updates
across blocks) would require block-level IO-traces, whose
collection for production systems at large scale is infeasible.

Instead, we focus on the following five aspects of workload
characteristics for which we were able to collect data: the first
is write intensity as measured by drive writes per day (DWPD)
seen by a drive. The second is the role of a drive within a
RAID group’; we distinguish among data and partitioned
drives, where each partition of the drive is part of a different
RAID group and different partitions can play different roles
in their RAID groups. We exclude parity drives due to insuffi-
cient data. The third and fourth factors are the drive capacity
and drive interface (SAS vs. NVMe), respectively, as drives
of different capacities and different interfaces will be used in
different types of systems, which might be used for different
types of workloads. The fifth factor is the read/write ratio of

3In our data set’s RAID systems, parity blocks are not rotated.
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on different roles within a single drive family.

the workload.

Figure 7 shows WAF broken down by the first three aspects

described above. We describe our observations below.
Drive Writes Per Day (DWPD) and WAF: We observe that
consistently across different capacities and drive roles, WAF
decreases as the number of DWPD increases. Median WAF
is up to 4.4 x higher for the drive populations with the lowest
DWPD (left-most group of bars in Figure 7) than the group
with the highest DWPD (right-most group of bars). This
could suggest that SSDs operate more efficiently (in terms of
background tasks and WAF) under higher write rates. It could
also mean that some FTL background work is constant, i.e.,
not strongly dependent on DWPD; therefore, higher DWPD
will reduce the effect of this constant work on the WAF ratio.
Drive role and WAF: We observe a significant difference
in WAF depending on the drive role. In particular, the me-
dian WAF associated with partitioned SSDs is significantly
higher (by up to 3X) than that for data SSDs. One possible
explanation for the higher WAF of partitioned SSDs might
be that they are forced to handle requests coming from differ-
ent workloads with potentially different characteristics, thus
experiencing a mixture of write patterns.

We do note that the difference across roles decreases as the
number of (normalized) total host writes increases, suggesting
that write rates have a stronger impact on WAF than its role.
Drive capacity and WAF: When we explore the impact of
capacity, we observe that higher-capacity SSDs (i.e., 8TB and
15TB) experience lower WAF compared to the two smaller-
capacities, for the same range of total host writes and the
same drive role. In particular, their median WAF can be up
to 2-3x smaller, with the difference being more pronounced
when the amount of total host writes is low. Still, 3.8TB
SSDs experience slightly higher WAF compared to 960GB
SSDs, suggesting that smaller-capacity SSDs do not necessar-
ily experience higher WAF (i.e., other factors have a stronger
impact on WAF).

Drive interface and WAF: The workloads that customers
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Figure 8: WAF comparison between SAS and NVMe SSDs for
different drive capacities.

choose to run on NVMe drives tend to experience slightly
smaller WAF than those on SAS drives. Results are shown in
Figure 8, which compares the distribution of WAF as experi-
enced by SAS and NVMe drives respectively, broken down
by three different drive capacities. The populations of SAS
and NVMe drives were chosen in such a way as to control for
other factors, such as DWPD, total time in production, drive
role, and system fullness. We removed the outlier drive fami-
lies, for which we observed earlier an extremely high WAF,
from the SAS population, so they do not bias our results.

Considering that NVMe SSDs make use of a similar FTL
compared to SAS drives, we expect differences in WAF to
come mostly from them being used differently. For instance,
the NVMe technology is still relatively new and as a result,
in our data set, the population of NVMe-based systems is
smaller than the SAS-based population. The NVMe systems
are mostly used by (a small set of) customers who are early
adopters of this new technology. These customers, and their
workloads, might be different from the average customers
across the whole population. Therefore, the workloads expe-
rienced by NVMe and SAS drives can be quite different (for
now); the difference will likely become less pronounced over
time, as more customers move to NVMe-based systems.
Read/write ratios and WAF: We observe a positive cor-
relation between a workload’s R/W ratio and WAF. More
precisely, we used the buckets of drives we created for Fig-
ure 7 (so that we control for capacity, write rates and drive
role), and computed for each bucket the Spearman correlation
coefficient between the R/W ratio and WAF for the drives in
the bucket. The correlation coefficient is between 0.2 and 0.4
for most buckets, indicating a positive correlation.

4.3 Fullness

The fullness of a drive can affect how effectively it can man-
age its internal housekeeping tasks, such as garbage collec-
tion and wear leveling, especially when its total free space
becomes (too) low.

We study the effect of fullness on WAF by dividing our
population into drives that are more than 80% full and those
that are less than 80% full, and comparing their WAF.

Interestingly, we observe no significant differences in the
WAF experienced by the two sub-populations; in fact, SSDs
which are more full experience (slightly) smaller WAF overall,
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Figure 9: Distribution of the drives’ R/W ratios per system
type. Each line type corresponds to a different manufacturer.

suggesting that the drives’ WAF is dominated by other factors
than fullness, such as their firmware.

4.4 Over-provisioning (OP)

Another interesting question is whether WAF varies depend-
ing on the drives’ amount of over-provisioning (OP). OP
refers to the fraction of a drive’s capacity that is reserved as
spare capacity to improve a drive’s wear leveling, garbage
collection, and random write performance; thus, it is expected
to help reduce WAF. In fact, prior work uses simulations to
demonstrate the positive effect of higher OP on WAF [10, 19].
Common OP percentages for real drives are 7% and 28%
and our SSD population includes drives with both OP percent-
ages, allowing us to compare their effect on WAF.
Surprisingly, we observe that the drives with the higher
OP (i.e., 28%) actually experience higher, rather than lower
WAF. One possible explanation could be that many of the
drives in our population are not very full (§3.4), and therefore
the extra capacity in the OP space does not make much of a
difference. We therefore look at the effect of OP for only those
drives that are full (more than 80% of capacity in use) and
still observe slightly higher WAF for SSDs with higher OP.
This suggests that there are likely other factors (e.g., workload
characteristics and firmware) that are more dominant than OP.
For example, the drives with 7% OP have support for multi-
stream writes, which might help lower their WAF. Finally,
7% OP is a younger technology and thus, the corresponding
systems can be (potentially) adopted by a different set of
customers, whose workload characteristics might be different
from the average customers across the 28% OP population.

4.5 Multi-stream Writes

Several drive models in our data set support multi-stream
writes (MSW) [21], which can help reduce WAF by allowing
the host to dictate the data placement on the SSD’s physical
blocks. In fact, our analysis of OP showed that drives with
7% OP, all of which have MSW support, report lower WAF.
Therefore, we perform a detailed analysis on the impact of
MSW, while controlling for other factors (e.g., DWPD, role).

We observe relatively clear trends for data drives, where
populations with MSW have 30-40% lower WAF than com-
parable populations without MSW.

However, the trend is not clear, and in fact sometimes
reversed for partitioned drives. It’s possible that workload
factors (which we previously saw are strong for partitioned
drives) dominate those populations. It’s also possible that for
partitioned drives the streams are mostly used for performance
isolation of different partitions, rather than for reducing WAF.

5 Read/Write (R/W) Ratios

In this section, we characterize the read/write (R/W) ratios
exhibited by the workloads in our systems. R/W ratios are an
interesting aspect of SSD-based systems for multiple reasons:

First, the combination of reads and writes can significantly
impact the observed performance of reads in SSDs, as read
operations compete internally with (slower) write operations.
Second, newer generation of SSDs, such as QLC SSDs, are
targeted for read-intensive workloads, as their PE cycle lim-
its are much smaller than previous generations (up to 10x
compared to TLC [32]). Therefore, exploring the trends in
existing workloads is interesting. Third, providing data on
R/W ratios in production systems helps researchers and prac-
titioners to set up more realistic testbeds, as a workload’s R/'W
ratio is a key configuration parameter of existing benchmark
tools, such as FIO [2]. The results of our study can be used to
parameterize simulation and experimental testbeds with R/W
ratios that are representative of production workloads. Fi-
nally, in WBC systems, where the SSDs are used as a caching
layer on top of HDDs, the read/write ratio can be viewed as a
measure of the cache’s effectiveness in caching reads.

In this section, we perform the analysis of read/write ratios
separately for WBC systems and AFF systems, as read/write
ratios have a different interpretation for these two systems.
We distinguish between the two system fypes, as customers
who buy HDD-based systems tend to use them differently
from those who buy SSD-based systems; in our analysis, we
characterize the differences.

5.1 R/W ratios and AFF systems

Figure 9 (left) shows the distribution of R/W ratios associated
with the SSDs in AFF systems, computed based on host reads
and host writes reported by our systems. We begin with a few
high-level observations based on this figure:

e We observe that the vast majority of drives, around 94%,
experience more reads than writes. The median R/W ratio is
3.6:1 and the 95th percentile is 61:1.

e These R/W ratios are in stark contrast to trace analysis
results from HDD-based storage systems, which generally
have more writes than reads. For example, the FIU traces [24],
the majority of volumes in the Microsoft traces [35], and the
recent block I/0 traces from Alibaba data centers [27], all
experience more writes than reads.

o The significant difference between the R/W rates of SSD-
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Figure 10: Evolution of the drives’ R/W ratios over time, for
WBC (top) and AFF (bottom) systems.

and HDD-based systems underlines the importance of our
earlier observation that replaying traces from HDD systems
for experiments or simulations of SSD systems is problematic.
Our community needs to find a way to collect and make
publicly available block traces from SSD-based systems.

R/W ratios over time: The next question we look at is
whether R/W ratios remain stable over time. Towards this end,
we group SSDs into cohorts based on their age and monitor
each cohort of drives over time. Each cohort spans a 6-month
time frame (e.g., months 12—18, representing the first six
months of the 2nd year in production). Note that there is no
overlap between cohorts; for instance, if an SSD is placed into
the cohort corresponding to total deployment time up to 18
months, it is not placed into any other cohort before that, even
though at some point in its lifetime it had been deployed for
that amount of time. For each cohort, we report its (median)
R/W ratio at different points in time.

The results for R/W ratios over time are shown in Figure 10

(bottom). Each line segment in the graph corresponds to one
of the cohorts described above. We make two observations:
e R/W ratios in AFF systems remain rather stable over time,
suggesting that the characteristics of the corresponding work-
loads do not drastically change over time.
o The only time in a drive’s lifetime when R/W ratios tend to
change is towards their end of life. In particular, we see ratios
increasing after around 4.5 years in production. This might
likely be due to systems being drained before being retired.

R/W ratios and system capacity and fullness: Next, we
explore whether R/W ratios look different based on system
capacity and system fullness.

We find that systems with smaller capacities are associated
with higher R/W ratios; the 50th and 90th percentiles of the
R/W rates associated with smaller systems are up to 2 higher
than those for larger systems.

When we examine how R/W ratios look like for different
levels of fullness, we interestingly observe no significant
differences in the R/W ratios among systems which use more
than 25% of their total space, suggesting that systems which

_§ 10000+ -NetApp
g H ,1;4:1‘—#‘,
© =+ -+ -
o + .
H .
€ 1000-
= .
S (FBs] -
2 AB1
e mMsS1). (FB4)] e
8 1001 < X ! -
< AB3
= ] _(FB2
oy FB1
2 10 .-~
10 100 1000

Avg. Data Written (GB) per device per day

e 160 * 400 = 720 e 960 1600 3800
e 200 = 480 800 1200 3200

Figure 11: Comparison of the daily workload experienced by
SSDs in data centers versus enterprise storage systems. The

dotted line represents equal amount of daily data reads and
writes; read-dominant workloads are above the line.

are more full do not necessarily experience read-dominant
workloads only.

Comparison with data center drives: Three recent field
studies on data center drives at Facebook, Microsoft, and
Alibaba, which mainly focus on failure characteristics, also
report some aggregate statistics on the read and write rates
associated with these drives [33, 36, 46].

Figure 11 plots the physical NAND read and write rates
for those data center drives (except for Alibaba drives which
involve host reads/writes), as well as the (host) read and write
rates of the SSDs in our enterprise storage systems (which
do not involve any requests served from the DRAM cache);
we have selected only those SSDs from our data set with a
capacity comparable to the data center drives.

We make two observations:

o First, the workloads associated with the SSDs in our data set
are significantly more intensive: the corresponding read and
write rates are at least one order of magnitude higher than the
ones in the other two studies (note the log scale on both axes).
Keeping in mind that our rates involve host reads and writes,
while those of the two data center studies report physical reads
and writes, the actual differences are even larger.

e Second, in contrast to the drives at Facebook [33] and
Alibaba [46], which report a comparable number of reads and
writes, our systems see a larger number of reads than writes.
Still, concerning drives at Facebook, the difference might
be due to the fact the we report host writes while that study
reports physical writes (which include WAF writes).

The R/W rates of Microsoft drives [36] look comparable
to ours in Figure 11, however given that their write rates are
physical NAND writes, while our write rates are host writes
(not accounting for WAF), the R/W ratios of their applications
are likely much higher than the average across our systems.

In summary, the read and write rates and the read/write
ratios experienced by SSDs in enterprise storage systems vary
significantly from those reported for data center drives, high-
lighting the differences (in terms of workload characteristics)
between enterprise storage systems and data centers.
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5.2 R/W ratios and Write-back cache systems

R/W ratios in WBC systems have a different significance than
for AFF systems (where they mostly characterize the differ-
ence in reads and writes generated by applications running
on the systems). SSDs in WBC systems are used as a cache
layer that aims to increase performance, while persistent stor-
age is provided by another layer consisting of HDDs. The
R/W ratio of accesses to the SSDs can therefore be viewed as
one measure of the effectiveness of the cache: the R/W ratio
provides some indication of how many cache reads (hits) we
get for one write to the cache”.

As we observe in Figure 9, WBC systems experience higher
R/W ratios than AFF systems. Specifically, the median R/'W
ratio across the entire population is 4.1:1 and the 95th per-
centile is 150:1 (4.4 x higher than for AFF). The high R/'W
ratios associated with WBC systems suggest that the cache
layer is used effectively.

We make some interesting observations regarding R/W
ratios of WBC systems over time. Figure 10 (top) again fixes
cohorts of drives of similar age and monitors them over time.
e When following an individual cohort of drives over time
(i.e., one specific line segment in the graph), we observe a
clear drop in R/W ratio over time, particularly in the first
half of a drive’s life. This indicates the cache is becoming
less effective as a read cache over time, likely because the
total amount of data stored on the system increases over time
and as a result, the (fixed-size) cache can cache increasingly
smaller fractions of the total data. In particular, towards the
end of a drive’s life R/W ratios are quite low, with only two
reads for every write.

o We make another interesting observation when comparing
the R/W ratios for different line segments against each other,
in particular in areas of the x-axis where they overlap. More
recently deployed systems tend to have higher R/W ratios,
even when comparing them with older systems at the same
age. This might either indicate a trend of workloads changing
over time towards higher R/W ratios, or customers configuring
their storage systems differently (with a larger cache size
relative to the amount of data stored for more recent systems).

6 Conclusions
We briefly summarize the key findings of our study in Table 4.
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4Note that the R/W ratio is not exactly a cache hit rate, as we do not know
how many reads bypass the cache and read straight from the HDD layer.

Most Important Findings

§3.1.2: The majority of SSDs in our data set consume PE cycles
at a very slow rate. Our projections indicate that the vast major-
ity of the population (~95%) could move toward QLC without
wearing out prematurely.

§3.1, 3.2: The host write rates for SSDs used as caches are signif-
icantly higher than for SSDs used as persistent storage. Yet, they
do not see higher NAND write rates as they also experience lower
WAPF. It is thus not necessarily required to use higher endurance
drives for cache workloads (which is a common practice).

§3.2: WAF varies significantly (orders of magnitude) across
drive families and manufacturers. We conclude that the degree
to which a drive’s firmware affects its WAF can be surprisingly
high, compared to other factors also known to affect WAF.

§3.2: We identify as the main contributor to WAF, for those drive
families with the highest WAF, the aggressive rewriting of blocks
to avoid retention issues. This is surprising, as other maintenance
tasks (e.g., garbage collection, wear-leveling) generally receive
more attention; common flash simulators and emulators (e.g.,
FEMU) do not even model rewriting to avoid retention issues.

§3.2: The WAF of our drives is higher than values reported in
various academic studies based on trace-driven simulation. This
demonstrates that it is challenging to recreate the real-world
complexities of SSD internals and workloads in simulation.

§3.3: Wear leveling is not perfect. For instance, 5% of all SSDs
report an erase ratio above 6, i.e., there are blocks in the drive
which will wear out six times as fast as the average block. This
is a concern not only because of early wear-out, but also be-
cause those blocks are more likely to experience errors and error
correction contributes to tail latencies.

§3.4: AFF systems are on average 43% full. System fullness
increases faster during the first couple of years in production,
and after that increases only slowly. Systems with the largest
capacity are fuller than smaller systems.

§4.3, §4.4: We find that over-provisioning and fullness have little
impact on WAF in practice, unlike commonly assumed.

§5: The vast majority of workloads (94%) associated with SSDs
in our systems are read-dominant, with a median R/W ratio of
3.62:1, highlighting the differences in usage between SSD-based
and HDD-based systems. Many widely-used traces from HDD-
based systems see more writes than reads, raising concerns when
using these traces for SSD research, as is common in practice.

§5: The read and write rates for the drives in our enterprise
storage systems are an order of magnitude higher than those
reported for data center drives (comparing same-capacity drives).

§5: The read/write ratio reported by SSDs that act as caches
decreases significantly over their lifetime. This might indicate a
decreasing effectiveness of the SSD cache over time.

§3.2, §5: The differences between some of our results and those
reported based on the analysis of widely used HDD-based storage
traces emphasize the importance for us as a community to bring
some representative SSD-based traces into the public domain.

Table 4: The most important findings per section.
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