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Abstract
We introduce CnC-Python, an implementation of the
Concurrent Collections (CnC) programming model for
Python computations. Python has been gaining popu-
larity in multiple domains because of its expressiveness
and high productivity. However, exploiting multicore
parallelism in Python is comparatively tedious since it
requires the use of low-level threads or multiprocessing
modules. CnC-Python, being implicitly parallel, avoids
the use of these low-level constructs, thereby enabling
Python programmers to achieve task, data and pipeline
parallelism in a declarative fashion while only being re-
quired to describe the program as a coordination graph
with serial Python code for individual steps. The CnC-
Python runtime requires that Python objects communi-
cated between steps be serializable (picklable), but im-
poses no restriction on the Python idioms used within
the serial code. Programs written in CnC-Python are de-
terministic in that they produce the same outputs for the
same inputs regardless of the execution schedules used
by the runtime. Our implementation of CnC-Python uses
the CnC Habanero-Java (HJ) runtime system, the Babel
compiler to generate glue code while invoking Python
from Java, and the multiprocessing module available in
standard distributions of Python. However, the CnC-
Python user need not be aware about Java, Babel, HJ,
or any other component in our runtime to use our sys-
tem. The HJ-based implementation allows us to reuse a
mature CnC runtime for scheduling, and enables us to
bypass the well publicized performance issues with the
Python interpreter’s global interpreter lock.

1 Introduction
In recent times, there is a higher emphasis being placed
on programmer productivity, especially in the scientific
community. Languages like Python and Matlab pro-
vide a high productivity development language for many
domain experts due to their expressive yet simple syn-
tax and semantics. Such programmers have limited ex-
perience with advanced parallel programming concepts
such as threads and locks. With the advent of the multi-
core era, it is clear that improvements in application
performance will primarily come from increased paral-
lelism [19]. The domain experts, who are not trained

to write parallel programs, are faced with the unappeal-
ing task of extracting parallelism from their applications.
The challenge then is how to make parallel programming
more accessible to such programmers.

In this paper, we introduce a Python-based imple-
mentation of Intel’s Concurrent Collections (CnC) [10]
model which we call CnC-Python. CnC-Python allows
domain experts to express their application logic in sim-
ple terms using sequential Python code called steps.
The domain experts also identify control and data de-
pendences in a simple declarative manner. Given these
declarative constraints, it is the responsibility of the com-
piler and a runtime to extract parallelism and perfor-
mance from the application. CnC-Python programs are
also provably deterministic making it easier for program-
mers to debug their applications. To the best of our
knowledge, this is the first implementation of CnC in
an imperative language that guarantees isolation of steps
with respect to shared data access. In addition, the imple-
mentation of CnC-Python lays the foundations to realize
the potential of CnC as a coordination language where
steps are expressed in a combination of languages such
as Python, Matlab, Java, C, C++, and Fortran.

2 Background and Related Work

Python [7] is an interpreted language with support for
multiple programming paradigms. Its emphasis on code
readability and a comprehensive standard library make
it a highly productive language. In recent years, Python
has gained in popularity and, as of January 2012, it is
rated as the eighth most popular language [9]. Python
also has support for extension modules that wrap external
C libraries to deliver performance by running compiled
native code without compromising productivity.

One popular technique for obtaining parallelism in
multicore processors is the use of threads that execute
in a shared memory. However, the default implemen-
tation of Python uses a global interpreter lock (GIL)
that ensures only one bytecode is executed by the inter-
preter at a time, thereby serializing multithreaded com-
putations [18]. Less popular Python interpreters such as
Jython [6] and IronPython [5] do not have the GIL is-
sues that limit multithreading performance, but they do
not support many extension modules.



Some C extension modules, such as NumPy [17, 16]
and SciPy [14], provide some functions that explicitly
release the GIL and run multithreaded versions to gain
parallel performance; however this is not the norm with
most extension modules. Thus, there is no effective way
to obtain multithreaded performance from Python by us-
ing extension modules. An alternate approach to gain
multithreaded performance in Python is by using SE-
JITS [11] which provides a AST wrapper (called spe-
cializer) and compiles the application Python code into
efficient native code, at runtime. However, this approach
is applicable only to existing specializers and not to gen-
eral Python code.

Another solution to obtaining parallel performance
is to launch multiple Python processes and manage
communication between them using the multiprocessing
module from the standard Python distribution. Another
open source module, Parallel Python [22], provides an
abstraction over the multiprocessing module. However,
both these modules are comparatively low-level; par-
allelizing simple operations requires explicitly launch-
ing processes/jobs and managing synchronization of pro-
cesses/jobs and data.

Concurrent Collections (CnC) [10] is a declarative and
implicitly parallel coordination model that builds on pre-
vious work, notably TStreams [15] and Linda [13]. CnC
was developed with the intention of making parallel pro-
gramming accessible to non-expert programmers who
provide serial code for computation called steps and a
declarative description of data and control dependences.
CnC supports combinations of task, data, and pipeline
parallelism while retaining determinism. CnC currently
supports a wide variety of implementations in languages
such as C++ [4], Java [3], Haskell [8] and Scala [1].
CnC-Python is an implementation of the CnC model
which uses serial Python code for individual steps. The
CnC-Python runtime requires that Python objects com-
municated between steps be serializable (picklable), but
places no restriction on the Python idioms used within
the serial step code. Importantly, the programmer is not
exposed to any concurrency constructs, since they are all
abstracted away in the runtime. As discussed in Sec-
tion 4, our implementation bypasses multithreaded per-
formance issues with the Python interpreter’s GIL.

3 CnC-Python Programming Model

CnC relies on Step Collections, Item Collections and
Control Collections, each of which are defined statically.
At runtime, dynamic instances of members of these col-
lections are generated. Each instance is identified by a
tag. Step Collections correspond to the different compu-
tation steps. Each step instance in the collection accepts
a tag as a required input. This input tag is then used to

compute the tags for the data items and control tags con-
sumed and produced by the step.

Item Collections correspond to different partitions of
the data used by the user’s application. Each data item
in an item collection is indexed by tags, once an entry
is placed in the collection corresponding to a tag it can-
not be mutated, thereby ensuring dynamic single assign-
ment. Data items are placed into an item collection using
the put(tag, data) operation and are retrieved us-
ing the get(tag) operation. It is an error to attempt
duplicate puts with the same tag on the same item col-
lection. Control Collections are responsible for manag-
ing the execution of step instances and the control flow.
The only operation allowed on a control collection is the
put(tag) operation causing prescription of step in-
stances with the given tag. Like item collections, it is
an error to attempt a duplicate put of a tag on a control
collection.

If a computational step might read/write data from/to
an item collection, then a data dependence exists be-
tween the step and the item collection. Similarly all
steps prescribed by a control collection for a given tag
are static control dependent on the control collection tag.
The execution order of steps is constrained only by their
data and control dependences. A step is ready to exe-
cute as soon as it is prescribed by a control collection,
but it may not be able to complete until all its input data
dependences are satisfied. As such, synchronization and
coordination in CnC applications come from data items
and are handled by the runtime system. When two step
instances do not share dependences, they can be executed
in parallel.

Figure 1: Block diagram representation of the capitalize odd-
length words application. Step Collections, Item Collections
and Control Collections are represented as ovals, rectangles,
and triangles, respectively.

We now show an example of how a user writes an ap-
plication in CnC-Python. The user needs to identify the
computation steps, the data dependences between these
steps, and control flow among the steps. Consider the ex-
ample where we capitalize all odd length words from in-
put strings (example adapted from [10]). The user iden-
tifies computation steps and item collections as shown in
Figure 1. The two steps split the string into words
and then capitalize the words. The control collec-
tion, called token, prescribes the capitalize steps.
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The split step controls which words get capitalized by
selectively writing tags to token. The squiggly arrows
represent interactions with the environment, the environ-
ment produces and consumes data items and tags [10].
This allows the user to feed inputs to the graph and read
results from the graph when the computation ends.

Next, the user needs to write a textual representation
of the graph. The textual representation includes decla-
ration of the item and control collections, the rules for
prescribing step instances from control collections, and
data dependence relations of steps and the environment
with item and control collections. Figure 2 shows an ex-
ample of such textual representation of the CnC graph of
Figure 1.

/ / d e c l a r a t i o n s , i n c l u d i n g d a t a t y p e s
<s t r i n g data>;
<s t r i n g token>;
[ s t r i n g−>s t r i n g input ] ;
[ s t r i n g−>s t r i n g words ] ;
[ s t r i n g−>s t r i n g result ] ;
/ / p r e s c r i p t i o n s
<data> : : (split ) ;
<token> : : (capitalize ) ;
/ / program i n p u t s and o u t p u t s
env −> [input ] , <data>;
[result ] −> env ;
/ / p r o d u c e r / consumer r e l a t i o n s
[input ] −> (split ) −> <token>, [words ] ;
[words ] −> (capitalize ) −> [result ] ;

Figure 2: Textual representation of the CnC graph of Figure 1.
Declarations identify the Python types of the tags and data
items in different collections. For example, the input item
collections maps string tags to string data items. Arrows
(->) are used to represent producer/consumer relations while
double colons (::) are used to represent prescription relations.

Once the textual description of the graph is ready,
it can be submitted to the CnC-Python translator. The
translator uses the graph and the runtime API to gen-
erate code that initialize the data structures for the
item and control collections. In addition, template
code with the signatures for the step functions is
also generated. Further details on the generated code
will be explained in Section 4. When the transla-
tor completes, the user needs to fill in initialization
logic (Application) and the step computation code
(SplitStep and CapitalizeStep) as shown in
Figure 3. The step code is simple sequential code in
Python and there are no concurrency constructs exposed
to the user.

4 CnC-Python Implementation
Our implementation of CnC-Python is currently targeted
to shared-memory multiprocessors. The implementation
includes a translator that generates supporting code from
the textual description of a CnC graph and a runtime to

c l a s s Application :
@staticmethod d e f onStart (args , input , data ) :

# env p r o d u c e s i n p u t s
input . p u t ( ” f i r s t ” , ” i want odd l e n g t h words ” )
data . p u t ( ” f i r s t ” )

@staticmethod d e f onEnd (res ) :
# env r e a d s r e s u l t s
res . p r i n t C o n t e n t s ( )

c l a s s SplitStep :
@staticmethod
d e f declareDeps (dependences , tag , inInput ) :
dependences . add (inInput , tag )

@staticmethod
d e f compute (tag , inInput , ctrlToken , outWords ) :
inStrVal = inInput . g e t (tag )
wordList = inStrVal .split ( )
f o r i i n range (len (wordList ) ) :
loopTag = tag + ” ” + str (i )
outWords . p u t (loopTag , wordList [i ] )
i f len (wordList [i ] ) % 2 == 1 :
ctrlToken . p u t (loopTag )

# c l a s s C a p i t a l i z e S t e p n o t shown

Figure 3: CnC-Python program for the CnC graph from Fig-
ure 2. All the function signatures are generated by the trans-
lator, the user only fills in the function bodies using regular
Python.

execute the computation steps in parallel when depen-
dences allow. The motivation for the current design is
to allow the CnC runtime to behave as a coordination
layer, and to enable (in the future) the user to express
computation steps in any combination of languages such
as Python, Matlab, Java, C, C++, and Fortran. Figure 4
summarizes the design of our runtime and shows how
the generated code is used by the runtime while execut-
ing the application. The main components of the imple-
mentation are a layer to handle concurrency in Habanero-
Java (HJ) [12], a language interoperability layer using
Babel [21], and a layer in Python to actually execute the
computation steps in parallel. The CnC-Python user need
not know anything about HJ or Babel to use our system.

Core CnC Runtime HJ is a parallel programming
extension of Java which implements a variant of the
Fork/Join Model called the Async/Finish Model to sup-
port lightweight dynamic task creation and termination.
HJ also supports Data-Driven Tasks (DDTs) [20], an
extension to futures inspired by dataflow programming
models, to allow efficient expression of arbitrary task
graph structures. The HJ task manager supervises the
scheduling and execution of tasks in an internal thread
pool. Implementing the core CnC runtime in HJ allows
us to avoid serializing of concurrent operations by the
Python interpreter (as explained in Section 2). Our CnC
runtime implementation uses DDTs to wrap execution of
prescribed step instances inside lightweight tasks.

In CnC, control collections determine which steps are
executed. Control collections are application specific
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Figure 4: The CnC-Python Runtime implementation highlight-
ing the component runtime boundaries. Fragments in dashed
boxes are generated by the translator. It also displays the one-
to-one mapping between threads and child processes.

and hence need to be generated by the translator. When
a put operation is performed on a control collection,
the runtime identifies the data dependences for each pre-
scribed step. These dependences are used to create DDTs
whose execution is delayed until all their data depen-
dences are available. Thus, DDTs enforce control syn-
chronization and coordination in CnC applications by de-
laying execution of the tasks. Since they are operated on
concurrently, item collections are implemented using in-
stances of ConcurrentHashMap [2]. When a data
item is put into an item collection, relevant awaiting
tasks are notified that the data item is available. Note that
the item collections in the HJ layer only store informa-
tion on whether a data item is available, the actual data
item is stored in an accompanying data structure man-
aged by the Python interpreter.

Language Interoperability We require a language in-
teroperability layer to invoke steps written in Python
from the core CnC runtime implemented in HJ. We
decided to use Babel because it focuses on high-
performance in-process language interoperability within
a single address space and is already widely-used by the
scientific community [21]. In addition, it supports full
bidirectional interoperability among Java, C, C++, For-
tran, and Python code. In our implementation of CnC-
Python, Babel is used to generate glue code to enable
invoking Python steps from Java (HJ) and allow item col-
lections from Python to signal the HJ runtime when data
items become available. Since crossing language bound-
aries involves argument and result conversion which can

hurt performance, we restrict ourselves to use only string
data as arguments and return types when making inter-
language calls. This places the trivial restriction of CnC
tags being only strings in our implementation (strings are
general enough to represent tags in any CnC application).
Similarly, we use a string representation to return the data
dependences from the Python step while creating DDTs.
Note that no such restrictions apply on the data items
since they do not cross language boundaries.

Python Layer Babel manages the initialization of a
single Python interpreter when the application starts and
correctly handles parallel invocations into the interpreter.
Our implementation includes a custom implementation
of a concurrent map (in Python) to store the data items
in item collections. As the standard implementation of
Python prefers spawning processes over use of threads
to achieve true parallelism (Section 2), the user steps ex-
ecute in child processes spawned by our runtime. Both
Java and Python threading models use native threads and
we are guaranteed to be executing on the same thread
even after inter-language calls. This allows us to main-
tain a one-to-one mapping between the main process
threads and the spawned child processes. When the main
Python interpreter needs to execute a user step, it pre-
pares a meta object containing information on which step
to run and all the data used by that step instance (avail-
able from the declareDeps() function). The inter-
preter then passes this meta object along to the child pro-
cess via serialization. The child process executes the cor-
responding step code and serializes back the results, as
shown in Figure 5. Executing the user steps in a sepa-
rate address space prohibits the step computation from
mutating its input data thus making our implementation
of CnC capable of ensuring determinism with respect to
shared data accesses.

Figure 5: Steps involved in executing a user step computation
(pun intended). Threads do not hold or compete for the GIL
when waiting for a response from the child process.
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5 Preliminary Experimental Results
We now study two main facets of our implementation:
the runtime overhead introduced by the multi-language
implementation and scalability while serializing data.
We evaluate our runtime overhead by comparing with
Parallel Python (PP) [22] (PP is implemented in pure
Python). We examine scalability using an implementa-
tion of Cholesky [10] which involves (de)serialization
of NumPy arrays and handling of interdependences be-
tween steps. Programmer productivity is achieved since
the user writes unrestricted Python code for her step
computations and a simple textual description of the CnC
graph without being exposed to any concurrency con-
structs.

The applications were run on nodes which have two
quad-core Intel Xeon processors running at 2.83 GHz.
Each processor can access up to 16 GB of RAM. It also
included a Sun Hotspot JDK 1.7, Habanero-Java 1.2.0,
Python 2.7.2, and Babel version 2.0.0-rc7437M. Each
configuration of each application was run five times and
the minimum execution time of each configuration is re-
ported.

# of Workers 2 4 6 8
Parallel Python 125.63 63.61 42.24 32.19
CnC-Python 33.86 11.54 6.88 5.41
Speedup Factor 3.71 5.51 6.14 5.95

Table 1: Comparing the CnC-Python and Parallel Python
(v1.6.1) runtimes for the (embarrassingly parallel) SumPrimes
application using inputs of 101000, 102000, . . . , 299000. Exe-
cution times are reported in seconds.

In PP, the user has to explicitly manage the data de-
pendences for the computations and handle coordination
of executing computations. In CnC-Python such depen-
dencies are handled transparently as they can be deduced
from the CnC graph description. Both PP and CnC-
Python spawn processes to act as workers and manage
serializing/deserializing the data and results. Table 1
shows that the CnC-Python implementation is much
faster than PP on an application called SumPrimes (from
the PP distribution). PP is considerably slower since the
data synchronization is implemented using Python locks
and the runtime is effectively single threaded (due to the
GIL). The CnC-Python runtime overcomes this limita-
tion by handling concurrency issues at the HJ layer where
concurrent multithreaded execution is possible.

Next, we analyze the cost of managing dependences
and serializing data on a dense linear algebra applica-
tion that uses NumPy arrays - Cholesky Decomposition.
Table 2 shows the scalability achieved while running
Cholesky for an array size of 1000×1000 with varying
tile sizes. The tiled Cholesky algorithm consists of three

# of Tile Size
Workers 25 50 100 125 σ

2 230.76 244.71 238.44 237.17 5.72
4 88.36 82.66 82.08 83.28 2.88
6 54.74 50.47 51.61 54.02 2.00
8 39.97 36.51 39.53 42.88 2.60

Table 2: Standard deviation of execution times for Cholesky
Decomposition of a 1000×1000 array with varying tile sizes.
Executions times are reported in seconds and include the time
for initializing the input array from disk serially.

steps: the conventional sequential Cholesky, triangular
solve, and the symmetric rank-k update [10]. These steps
can be overlapped with one another after initial factoriza-
tion of a single block, resulting in both task and pipeline
parallelism. Increasing the tile sizes increases the cost
of serialization, but also increases the computation done
per step and doesn’t adversely affect the execution time
(as the variance is low). In general, the application scales
for the different tile sizes shown as there is enough par-
allelism and the amount of computation performed in
the steps outweighs the cost of serializing data between
processes. In Cholesky, further increasing the tile sizes
would lead to loss in scaling due to the reduced paral-
lelism (fewer independent step instances) and not due to
serialization costs.

6 Conclusion and Future Work
We introduced CnC-Python, an implementation of the
Concurrent Collections (CnC) programming model for
Python computations. CnC-Python allows Python pro-
grammers to achieve task, data and pipeline parallelism
in a declarative fashion while only being required to de-
scribe the program as a coordination graph with serial
Python code for individual steps. Our runtime sepa-
rates the concurrency and coordination issues into sep-
arate layers implementing concurrency issues in a multi-
threaded runtime. We have shown such an implementa-
tion to be more efficient than a pure Python implemen-
tation. We plan to extend our implementation to add
support for other productive languages such as Matlab
allowing the user to write steps in any (supported) lan-
guage of their choice. Another feature we wish to ex-
plore is minimizing the cost of data serialization by intro-
ducing extensions that allow the programmer to express
data locality hints in CnC programs.
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Availability Further documentation on CnC-Python and a
distribution is available at http://cnc-python.rice.
edu/.
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