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papers: in the end, it is your interest in this work that makes all of these efforts worthwhile.

We look forward to seeing you in Boston!
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TrInc: Small Trusted Hardware for Large Distributed Systems

Dave Levin John R. Douceur

Jacob R. Lorch Thomas Moscibroda

University of Maryland  Microsoft Research ~ Microsoft Research ~ Microsoft Research

Abstract

A simple yet remarkably powerful tool of selfish and
malicious participants in a distributed system is “equiv-
ocation”: making conflicting statements to others. We
present Trlnc, a small, trusted component that combats
equivocation in large, distributed systems. Consisting
fundamentally of only a non-decreasing counter and a
key, TrInc provides a new primitive: unique, once-in-a-
lifetime attestations.

We show that Trlnc is practical, versatile, and easily
applicable to a wide range of distributed systems. Its
deployment is viable because it is simple and because
its fundamental components—a trusted counter and a
key—are already deployed in many new personal com-
puters today. We demonstrate TrInc’s versatility with
three detailed case studies: attested append-only mem-
ory (A2M), PeerReview, and BitTorrent.

We have implemented TrInc and our three case stud-
ies using real, currently available trusted hardware.
Our evaluation shows that TrInc eliminates most of
the trusted storage needed to implement A2M, signifi-
cantly reduces communication overhead in PeerReview,
and solves an open incentives issue in BitTorrent. Mi-
crobenchmarks of our TrInc implementation indicate di-
rections for the design of future trusted hardware.

1 Introduction

As wide-area systems grow in scale, so do their ex-
posure to threats. Much of the interesting distributed-
systems research of the past decade has focused on the
issues of security and adversarial incentive that are inher-
ent to large-scale systems. This research has addressed a
wide range of applications, including storage [2, 16, 19,
22, 28], communication [4, 45, 30], databases [40], con-
tent distribution [15, 24, 32, 36], grid computation [12],
and games [3, 10], in addition to generic infrastruc-
ture [1, 5, 9, 18, 23, 43]. Virtually all of this work shares
a common supposition, namely that the individual com-
ponents in the system are completely untrusted.

Recently, the necessity of this supposition has been
called into question. The Attested Append-only Mem-
ory (A2M) system by Chun et al. [7] showed that a small
trusted module in each distributed component can signif-
icantly improve system security. In addition to found-
ing this important new research direction, A2M made
two key contributions: First, they proposed a particu-
lar abstraction for such a module, namely a trusted log.

Second, they showed specifically that their proposed ab-
straction could improve the degree of fault tolerance
to Byzantine faults in the server components of client-
server systems.

Despite our appreciation for this work, we are con-
cerned that distributed-protocol designers may be reluc-
tant to start assuming the availability of such trusted
modules. We have two reasons for this concern: First,
the abstraction of a trusted log may require more stor-
age space and complexity than researchers are comfort-
able assuming, particularly for an embedded module in-
side a potentially hostile component. Second, designers
may have difficulty appreciating how broadly applicable
a trusted module can be to distributed protocols.

In this paper, we continue the research direction begun
by A2M, with an eye toward addressing these two issues.
First, we have developed a significantly smaller abstrac-
tion: Instead of a trusted log, we propose a trusted in-
crementer (Trlnc), which is little more than a monotonic
counter and a key. Second, we demonstrate a more inclu-
sive set of architectures, running a broader range of pro-
tocols, yielding a wider set of benefits: Our architectures
include not only client-server systems but also peer-to-
peer systems. Our protocols include not only Byzantine-
fault-tolerant protocols but also PeerReview [13] and Bit-
Torrent [8]. Our demonstrated benefits include not only
improving fault tolerance but also reducing communica-
tion overhead and solving an open incentive problem.

We show that TrInc has several benefits over A2M.
First, its smaller size and simpler semantics make it
easier to deploy, as we demonstrate by implementing
it on real, currently available trusted hardware. Sec-
ond, we observe that TrInc’s core functional elements
are included in the Trusted Platform Module (TPM) [38]
found on many modern PCs, lending credence to the
idea that such a component could become widespread.
Third, TrInc makes use of a shared symmetric session
key among all participants in a protocol instance, which
significantly decreases the cryptographic overhead.

The rest of this paper is structured as follows. §2 pro-
vides background on the underlying problem addressed
by TrInc (and by A2M), as well as a primer on trusted
hardware. §3 then presents the design of Trlnc, and §4
analyzes its security. §85, 6, and 7 respectively describe
several protocols we modified to use Trlnc, our trusted
hardware implementation, and our evaluation thereof.

USENIX Association
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Accountability layer Trusted module
Property PeerReview [13] | Nysiad [14] | A2M [7] | Trlnc
No centralized trust v v
Easy to deploy v v v
Easy to apply to existing protocols v i Vi
Immediate consistency v v v
No assumptions about protocol’s determinism Ve v v
No additional online assumptions v v
Additional c?omn.lunication ove.rhead per protocol O(W?) O(W?) 0(1) 0(1)
message, with witness sets of size W

Table 1: Summary of the properties of various equivocation-fighting systems. *While PeerReview and Nysiad do not
require centralized trust, they do make use of a PKI. TNysiad deals with nondeterminism by treating nondeterministic
events as inputs; this requires protocol changes for nondeterministic state machines. *We found that, although TrInc
requires a protocol redesign, the modifications are often localized, and vastly simplify security procedures.

2 Background and Related Work

2.1 Equivocation in distributed systems

Since 1982, it has been known that tolerating f Byzan-
tine faults requires at least 3 f + 1 participants [20]. This
stands in marked contrast to the case for f stopping
faults, which more intuitively requires 2f + 1 partici-
pants. A key insight behind A2M [7] was the observation
that a single property of Byzantine faults is responsible
for the difference between these two bounds. That prop-
erty is equivocation, meaning the ability to make con-
flicting statements to different participants. A2M pro-
vides a mechanism that prevents participants from equiv-
ocating, thereby improving the fault tolerance of Byzan-
tine protocols to f out of 2f + 1.

We make the further observation that equivocation is a
necessary property for many forms of cheating and fraud,
not merely for classical Byzantine faults. For instance,
in BitTorrent, recent work [21] has shown an exploit in
which a peer can obtain an unfairly high download rate
by lying about which chunks of a file it has received.
This is equivocation, insofar as the peer acknowledges
receiving a chunk from the peer that provided it, but then
tells another peer that it does not have the chunk.

The following are three more brief examples:

e In a simultaneous-turn game, one can cheat by ob-
serving an opponent’s move before making one’s
own move; this is equivocating about whether one
has yet moved.

e In a distributed electronic currency system, one can
counterfeit money by equivocating to different pay-
ees about whether one has spent a particular bill.

e In an election, the tallier can disrupt the vote by
equivocating to a voter and an official about whether
the voter’s vote was recorded.

In §5.5, we will consider many other cases of mali-
cious behavior that can be interpreted as equivocation.

2.2 Prior solutions to equivocation

Several recent efforts have addressed the problem of
Byzantine faults in distributed systems. Although their
approaches to the problem are very different, they have
all effectively focused on the issue of equivocation. Ta-
ble 1 summarizes our analysis of their properties.

PeerReview [13] is a system that employs witnesses to
collect a tamper-evident record of all messages in a dis-
tributed system for subsequent checking against a refer-
ence implementation. Unlike the remaining approaches
we will discuss, PeerReview does not provide fault toler-
ance. Instead, it provides eventual fault detection and
localization, which the system’s designers argue leads
to fault deterrence. The tamper-evident record is a dis-
tributed collection of logs that are authenticated using
hash chains. The purpose of the tamper-evidence is to
detect equivocation about the messages recorded in a
log. As shown in Table 1, the communication required
to collectively manage the tamper-evident message log
is quadratic in the size of the witness set.

Nysiad [14] is a mechanism that transforms crash-
tolerant distributed systems into Byzantine-fault-tolerant
ones. It does this by assigning a set of guards (compara-
ble to witnesses) to each host in the system. The guards
validate the messages sent by their associated hosts, us-
ing replicas of the hosts’ execution engines. The po-
tential for equivocation in Nysiad is that the host might
send different messages to different guards or order its
messages differently for different guards. To deal with
this equivocation, the guards gossip among each other to
agree on the order and content of messages sent by the
host. As shown in Table 1, this gossip requires a count
of messages that is quadratic in the number of guards.
Relative to PeerReview, Nysiad has the benefit of imme-
diate consistency, rather than eventual detection. Nysiad
is also able to handle nondeterministic state machines,
but doing so requires protocol changes to treat nondeter-
ministic events as inputs.

Attested Append-only Memory, or A2M [7], is a
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trusted module that is embedded in an untrusted ma-
chine, for the purpose of improving the fault tolerance of
a distributed protocol. The A2M module provides the ab-
straction of a trusted log, which the machine can append
to but not otherwise modify. This limitation prevents the
machine from equivocating about whether it performed
a particular action at a particular step, because once the
action is recorded in the log, it cannot be overwritten.
A2M uses cryptography to enforce its properties and to
attest the log’s contents to other machines. Relative to
Nysiad and PeerReview, A2M does not require any addi-
tional online communication between machines beyond
what is required in the base protocol. Consequently, the
communication overhead is merely a constant factor due
to the cryptographic attestations that accompany the pro-
tocol’s messages.

As we will show in §3, Trlnc is significantly smaller
than A2M, making it easier to deploy. TrInc also has
another advantage, namely that its use is less tightly
coupled to the distributed protocol than use of A2M is.
Specifically, because A2M’s trusted log has finite stor-
age, it provides a log-truncation operation, but opportu-
nities to truncate the log may be limited by the protocol.
Conversely, message sequencing in the protocol may be
constrained by the available space in A2M’s log. Perhaps
in part to address this concern, A2M considered various
implementations in addition to hardware, some of which
would likely have plentiful storage for the log. These in-
clude a remote service, a software-isolated process, and
a memory-isolated virtual machine. By contrast, the pro-
tocol modifications required to use TrInc tend to be quite
localized. Furthermore, TrInc’s use of a shared session
key often simplifies the protocol.

2.3 Trusted hardware

There have been many trusted hardware designs that
predate both TrInc and A2M. Perhaps most similar
to Trlnc is the abstraction of virtual monotonic coun-
ters [34]. These are similar to the four increment-
only counters included in the current specification of
the TPM [38]. Van Dijk et al. propose an algorithm
by which to emulate multiple counters with a single
trusted counter [39]. We believe a similar approach
could ease TrInc’s deployment by requiring fewer physi-
cal counters. Further, other systems have been proposed
that make use of trusted hardware, such as for securing
database systems [26] and auctions [31]. To the best of
our knowledge, TrInc is the first trusted component de-
signed to be used in large-scale, distributed systems.

3 TrInc Design
3.1 Design Goals

The fundamental security goal of Trlnc is to remove
participants’ ability to equivocate. Consider the situation
in which Mallory wishes to send conflicting messages
to Alice and Bob. Common approaches to combating

such equivocation require Alice and Bob to communi-
cate with one another [13, 14, 20] or with a third party,
so they can learn of the distinct messages sent to each.
Unfortunately, this additional communication overhead
can become a bottleneck for the overlying system, and
constitutes the super-linear number of messages in Peer-
Review [13].

One goal of TrInc is to therefore minimize both com-
munication overhead and the number of non-faulty par-
ticipants required. With trusted hardware, it is possible to
remove Mallory’s ability to equivocate without any com-
munication between Alice and Bob [7].

The other broad goal of Trlnc is to be practical for dis-
tributed systems today. To be practical, a trusted com-
ponent must be small so that it is feasible to manufacture
and deploy. Arbitrary computation and a large amount of
storage are difficult and costly to make tamper-resistant.
Further, to be a practical primitive in distributed systems,
the trusted component must have an API with which it is
easy to build distributed systems.

3.2 Overview

To gain the benefits of TrInc, a user must attach a
trusted piece of hardware we call a trinket to his com-
puter. Unlike a typical TPM, which must attest to states
of the associated computer, the trinket’s API depends
only on its internal state, so the trinket does not need
access to the state of the computer. All it needs is an un-
trusted channel over which it can receive input and pro-
duce output, so even USB is quite sufficient.

When Mallory wishes to send a message m to Al-
ice, she must include an attestation from her trinket that
(1) binds m to a certain value of a counter, and (2) en-
sures Alice that no other message will ever be bound to
that value of that counter, even messages sent to other
users. A trinket enables such attestation by using a
counter that monotonically increases with each new at-
testation. In this way, once Mallory has bound a message
m to a certain counter value ¢, she will never be able to
bind a different message m’ to that value.

As we show in our case studies in §5, some protocols
benefit from using multiple counters. In theory, any-
thing done with multiple counters can be done with a
single counter, but multiple counters allow certain per-
formance optimizations and simplifications, such as as-
signing semantic meaning to a particular counter value.
Furthermore, the user of a trinket may participate in mul-
tiple protocols, each requiring its own counter or coun-
ters. Therefore, a trinket provides the ability to allo-
cate new counters. However, we must identify each of
them uniquely so that a malicious user cannot create a
new counter with the same identity as an old counter
and thereby attest to a different message with the same
counter identity and value.

As a performance optimization, TrInc allows its attes-
tations to be signed with shared symmetric keys, which
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vastly improves its performance over using asymmetric
cryptography or even secure hashes. To ensure that par-
ticipants cannot generate arbitrary attestations, the sym-
metric key is stored in trusted memory, so that users can-
not read it directly. Symmetric keys are shared among
trinkets using a mechanism that ensures they will not be
exposed to untrusted parties.

3.3 Notation

We use the notation (x) i to mean an attestation of x
that could only be produced by an entity knowing K. If
K is a symmetric key, then this attestation can be verified
only by entities that know K; if K is a private key, then
this attestation can be verified by anyone, or more accu-
rately anyone who knows the corresponding public key.
We use the notation {x} x to mean the value = encrypted
with public key K, so that it can only be decrypted by
entities knowing the corresponding private key.

3.4 Trlnc state

Figure 1 describes the full internal state of a trinket,
which we describe in more detail here. Each trinket is
endowed by its manufacturer with a unique identity I and
a public/private key pair (Kpub, Kpriv). Typically, I will
be the hash of K. The manufacturer also includes in
the trinket an attestation .4 that proves the values I and
Ku1, belong to a valid trusted trinket, and therefore that
the corresponding private key is unknown to untrusted
parties.

We leave open the question of what form .4 will take.
This attestation is meant to be evaluated by users, not by
trinkets, and so can be of various forms. For instance,
it might be a certificate chain leading to a well-known
authority trusted to oversee trinket production and ensure
their secrets are well kept.

Another element of the trinket’s state is the meta-
counter M . Whenever the trinket creates a new counter,
it increments M and gives the new counter identity M.
This allows users to create new counters at will, with-
out sacrificing the non-monotonicity of any particular
counter. Because M only goes up, once a counter has
been created it can never be recreated by a malicious user
attempting to reset it.

Yet another element is ), a limited-size FIFO queue
containing the most recent few counter attestations gen-
erated by the trinket. It is useful for allowing users to
recover from power failures, as we will describe later.

The final part of a trinket’s state is an array of counters,
not all of which have to be in use at a time. For each in-
use counter, the state includes the counter’s identity 4, its
current value ¢, and its associated key K. The identity
1 18, as described before, the value of the meta-counter
when the counter was created. The value c is initialized
to O at creation time and cannot go down. The key K
contains a symmetric key to use for attestations of this
counter; if K = 0, attestations will use the private key
K»iv instead.

Global state:
| Notation | Meaning

Koy Unique private key of this trinket

Kpub Public key corresponding to K iy

ID of this trinket, the hash of K,
Attestation of this trinket’s validity
Meta-counter: the number of counters
this trinket has created so far
Limited-size FIFO queue containing the
most recent few counter attestations gen-
erated by this trinket

o =[x~

Per-counter state:
| Notation | Meaning \

) Identity of this counter, i.e., the value of
M when it was created

c Current value of the counter (starts at 0,
monotonically non-decreasing)

K Key to use for attestations, or 0 if Ky
should be used instead

Figure 1: State of a trinket

3.5 TrInc API

Figure 2 shows the full API of a trinket, described in
more detail in this subsection.
3.5.1 Generating attestations

The core of TrInc’s API is Attest. Attest takes
three parameters: , ¢/, and h. Here, i is the identity of
a counter to use, ¢’ is the requested new value for that
counter, and h is a hash of the message m to which the
user wishes to bind the counter value. Attest works as
follows:

Algorithm 1 Attest(s, ¢, h, n)
1. Assert that 7 is the identity of a valid counter.
2. Let c be the value of that counter, and K be the key.
3. Assert no roll-over: ¢ < ¢'.
4. If K # 0, then let a «— (I,i,¢, ¢, h)k; otherwise
leta — (I,i,¢,c, )k, -
Insert a into @, kicking out oldest value.
Update ¢ « (.
7. Return a.

S

Note that Attest allows calls with ¢/ = ¢. This is
crucial to allowing peers to attest to what their current
counter value is without incrementing it. To allow for
this while still keeping peers from equivocating, TrInc
includes both the prior counter value and the new one.
One can easily differentiate attestations intended to learn
a trinket’s current counter value (¢ = ¢) from attesta-
tions that bind new messages (¢ < ¢’).

3.5.2 Verifying attestations

Suppose a user Alice with trinket A wants to send a

message to user Bob with trinket B. She first invokes
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Function

Operation

Attest(s,c, h)

Verifies that ¢ is a valid counter with some value ¢ and key K. Verifies
that ¢ < ¢/. Creates an attestation a« = (COUNTER, I,14,¢, ¢, h)k; if
K =0, uses K4y instead of K. Adds a to Q). Sets ¢ = c'. Returns a.

GetCertificate()

Returns a certificate of this trinket’s validity: (1, Kpup, A).

CheckAttestation(a, )

with counter 3.

Returns a boolean indicating whether a is the output of invoking
Attest on a trinket using the same symmetric key as the one associated

CreateCounter() Increments M. Creates a new counter with7 = M, ¢ = 0, and K = 0.
Returns 7.
FreeCounter(z) If 7 is the identity of a valid counter, deletes that counter.

ImportSymmetricKey(S,1)

Verifies that S is an encrypted symmetric key decryptable with /(4.
Decrypts it and installs the included key as K for counter .

GetRecentAttestations() | Returns Q.

Figure 2: API of a trinket

Attest on her trinket using the message’s hash, and
thereby obtains an attestation a. Next, she sends the mes-
sage to Bob along with this attestation. However, for Bob
to accept this message, he needs to be convinced that the
attestation was created by a valid trinket. There are two
cases to consider: first, that the attestation used A’s pri-
vate key Kg‘riv, and second, that the attestation used a
shared symmetric key K.

In the first case, the APl call GetCertificate will
be useful. This call returns a certificate C of the form
(I, Kpub, A), where I is the trinket’s identity, Ky, is
its public key, and A is an attestation that I and K,
belong to a valid trinket. Alice can call this API routine
and send the resulting certificate C to Bob. Bob can
then (a) learn Alice’s public key K;?ub’ and (b) verify
that this is a valid trinket’s public key. After this, he can
verify the attestation Alice attached to her message, and
any future attestations she attaches to messages.

In the second case, the API call
CheckAttestation is  useful. When
CheckAttestation(a, 7) is invoked on a trin-

ket, the trinket checks whether a is the output of
invoking At test on a trinket using the same symmetric
key as the one associated with the local counter 7. It
returns a boolean indicating whether this is so. So, if
Alice sends Bob an attestation signed with a shared
symmetric key, Bob can invoke CheckAttestation
on his trinket to learn whether the attestation is valid.

3.5.3 Allocating counters

Since a trinket may contain many counters, another
important component of TrInc’s API is the creation of
these counters. Trlnc creates new logical counters, and
allows counters to be deleted, but never resets an ex-
isting counter. Logical counters are identified by a
unique ID, generated using a non-deletable, monotonic
meta-counter M. Every trinket has precisely one meta-
counter, and when it expires, the trinket can no longer be
used; we compensate for this by making M 64 bits, only
incrementing M, and assigning no semantic meaning to

M’s value. TrInc exports a CreateCounter function
that increments M ; allocates a new counter with identity
1 = M, initial value 0, and initial key K = 0; and re-
turns this new identity <. When the user no longer needs
the counter, she may call FreeCounter to free it and
thereby provide space in the trinket for a new counter.
3.5.4 Using symmetric keys

TrInc allows its attestations to be signed with shared
symmetric keys, which vastly improves its performance
over using asymmetric cryptography or even secure
hashes. When a set of users are willing to use a single
symmetric key for a certain purpose, we call this a ses-
sion. Creating a session requires a session administrator,
a user trusted by all participants to create a session key
and keep it safe, i.e., to not reveal it to any untrusted par-
ties.

To create a session, the session administrator simply
generates a random, fresh symmetric key as the session
key K. To allow a certain user to join the session, he
asks that user for his trinket’s certificate C. If the session
administrator is satisfied that the certificate represents a
valid trinket, he encrypts the key in a way that ensures
it can only be decrypted by that trinket. Specifically, he
creates {KEY, K} i, , Where Ky, is the public key in
C. He then sends this encrypted session key to the user
who wants to join the session.

Upon receipt of an encrypted session key, the user can
join one of his counters to the session by using the API
call ImportSymmetricKey(S,7). This call checks
that S is a valid encrypted symmetric key, meant to be
decrypted by the local private key. If so, it decrypts the
session key and installs it as K for local counter 7. From
this point forward, attestations for this counter will use
the symmetric key. Also, the user will be able to verify
any trinket’s attestation a using this symmetric key by
invoking CheckAttestation(a,?).

3.5.5 Handling power failures

One practical concern is that of power failure. Unlike
A2M, Trnc users need not query the trusted hardware to
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obtain attestations. Instead, TrInc relies on the applica-
tion (or a TrInc driver) to store attestations in untrusted,
persistent storage. If there is a power failure between the
time that the trinket advances its counter and the appli-
cation writes it to disk, then the attestation is lost. This
can be problematic for many protocols, which rely on
the user being able to attest to a message with a particu-
lar counter value. For instance, if Charlie cannot produce
an attestation for counter value v, Alice may suspect this
is because Charlie has already told Bob about some mes-
sage m associated with that counter value. Not wanting
to be fooled about the absence of such a message, Alice
may lose all willingness to trust Charlie.

To alleviate this, a trinket includes a queue ) contain-
ing the most recent attestations it has created. To limit
the storage requirements, this queue only holds a certain
fixed number k of entries, perhaps 10. In the event of
a power failure, after recovery the user can invoke the
API call GetRecentAttestations to retrieve the
contents of (). Thus, all a user must do to protect against
power failure is make sure she writes a needed attestation
to disk before she makes her kth next attestation request.
As long as k is at least 1, the user can safely use the trin-
ket for any application. Higher values of % are useful as
a performance optimization, allowing greater pipelining
between writing to disk and submitting attestations.

So far we have only discussed a power failure affect-
ing the user, but a power failure can also affect the trin-
ket. The Attest algorithm ensures that the attestation
is inserted into the queue before the counter is updated,
so the trinket cannot enter a situation where the counter
has been updated but the attestation is unavailable. It
can, however, enter the dangerous situation in which the
attestation is in (), and thus available to the user, but the
counter has not been incremented. This window of vul-
nerability could potentially be exploited by a user to gen-
erate multiple attestations for the same counter value, if
he could arrange to shut off power at precisely this inter-
vening time. However, we guard against this case by hav-
ing the trinket check () whenever it starts up. At startup,
before handling any requests, it checks all attestations in
(@ and removes any that refer to counter values beyond
the current one.

3.5.6 A TrInc by any other name

The computational demands of a trinket are small. It
must be able to do simple operations such as comparison,
as well as cryptographic operations including hashing
and both symmetric and asymmetric encryption and de-
cryption. Such cryptographic operations are standard in
trusted components such as the TPM [38]. However, we
recognize that hardware manufacturers and users are of-
ten highly cost-conscious and may be willing to do with-
out performance optimization to save hardware costs.

Therefore, we propose three versions of Trlnc that
make different trade-offs between cost and performance,

Persistent | Asym. | Symm. Fast
Memory | Crypto | Crypto | Memory
Bronze Trlnc v v
Silver Trlnc v v v
Gold Trlnc v v v v

Table 2: Versions of TrInc with different performance.

summarized in Table 2. The bronze version simply of-
fers correctness with no performance optimizations, by
leaving out the ability to use symmetric keys. The silver
version is as we have described it. The gold version adds
one additional optimization: the use of fast persistent
memory such as battery-backed RAM. This optimization
makes attestations especially fast since they need not in-
cur the cost of writing to the slow flash memory often
found in modern TPMs.

3.6 Local adversaries

Mutually distrusting principals on a single computer
will share access to a single trinket, creating the potential
for conflict between them. Although they cannot equiv-
ocate to remote parties, they can hurt each other. They
can impersonate each other by using the same counter,
and they can deny service to each other by exhausting
shared resources within the trinket. Resource exhaustion
attacks include allocating all available counters, submit-
ting requests at a high rate, and rapidly filling the queue
@ to prevent the pipelining performance optimization.

The operating system can solve this problem by me-
diating access to the trinket, just as it mediates access to
other devices. In this way, the OS can prevent a princi-
pal from using counters allocated to other principals, and
can use rate limiting and quotas to prevent resource ex-
haustion. Developing a detailed API and policy for such
mediation is beyond the scope of this paper, and is left for
future work. However, note that a remote party need not
care about how or whether such local mediation is done.
Equivocation to remote parties is impossible, even if an
adversary has root access to the machine, since cryptog-
raphy allows the trinket to communicate securely even
over an untrusted channel.

4 Analysis of TrInc

We now present a brief discussion of why TrInc is suf-
ficient for a broad class of distributed protocols and why
it is nearly minimal in size.

4.1 Equivocation

When a trinket creates an attestation with distinct old
and new counter values of ¢ and ¢/, we say that attes-
tation covers the half-open interval (c,c’]. Trlnc pre-
vents equivocation by ensuring that no two attestations
will cover overlapping intervals. This property could be
violated only if:

o the counter is decremented,
o the cryptosystem is broken,
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e more than one counter has the same identity, or
e more than one trinket has the same identifier.

By construction, it is not possible to decrement the
counter nor to assign the same identity to multiple coun-
ters. By hypothesis, cryptographic primitives are effec-
tively unbreakable. Finally, no two trinkets will be cre-
ated with the same identifier, at least not by a trusted
manufacturer; recall that users can verify whether the
trinket comes from a trusted manufacturer by observing
the certificate chain in A.

4.2 Timeliness

When a trinket creates an attestation with the same old
and new counter values, there is no change to the trin-
ket’s state; however, the attestation demonstrates the cur-
rent value of the counter. Thus, if a machine attests to a
value of a remotely supplied nonce, the remote machine
can be certain that the attestation was generated after the
nonce was supplied. Since this attestation carries the cur-
rent counter value, the remote machine can thus also be
sure that the local machine’s counter is no lower than this
value.

Therefore, when the local machine provides attesta-
tions of counter values up to the nonce-attested value,
the remote machine can be certain that these attestations
are timely.

4.3 Minimality

Suppose, during the execution of a protocol, a partic-
ipant sends 7 messages requiring attestation, but her at-
testing module has fewer than log,(n) bits of storage.
The attesting module must be willing to provide all n
attestations, or else it will cause the protocol to halt pre-
maturely. However, since the module can be in fewer
than n distinct states, by the pigeonhole principle it must
be willing to attest to two different messages while in the
same state. Since this state is as it was before the first
message, it cannot reflect the trinket’s having attested to
the first message. This means a malicious user could take
advantage of the trinket’s inability to remember its first
attestation when requesting the second attestation, and
thereby obtain an attestation inconsistent with the ear-
lier one. This is clearly inconsistent with the goals of a
trusted module, so we come to a contradiction, and con-
clude that such a module requires at least log,(n) bits
of storage. In other words, it needs sufficient storage to
accommodate a message counter.

Furthermore, an attesting module needs for its attesta-
tions to be unforgeable. Otherwise, the user could gen-
erate attestations without using the module, and thereby
attest to both sides of an equivocation. TrInc achieves
this unforgeability with simple cryptographic primitives.

In summary, the core components of Trlnc, a counter
and cryptography, seem to be essential for equivocation
prevention.

5 Designing Systems with TrInc

5.1 Overview

When designing a protocol that incorporates Trlnc, we
find it important to address the following questions:
5.1.1 What does TrInc’s counter represent?

In the applications we have considered, TrInc’s
counter represents a natural “progression” of the sys-
tem. In BitTorrent, for instance, the counter represents
the number of blocks a given peer has received, a value
which is naturally monotonically increasing. In Byzan-
tine Fault Tolerance (BFT), the counter represents which
view a replica is in. Ultimately, the choice of what the
counter represents is dependent on what data peers will
need to attest to.

5.1.2 To what data do peers attest?

There are two broad types of attestations that TrInc of-
fers. Advance attestations increase the trinket’s counter,
thus binding a message to a counter. Status attestations
attest to the current counter without advancing it.

Advance attestations Advance attestations are largely
protocol-dependent, including such elements as the set of
pieces received in BitTorrent, or the root of a Merkle tree
of file hashes in a file server. The specific data to which
to attest often requires a careful analysis of the selfish
or malicious ways in which peers could equivocate. It
is important to ensure that the impossibility of equivo-
cating about what was assigned to a particular counter
value translates into the impossibility of equivocating at
the higher desired semantic level.

For instance, suppose an attestation consists solely of
a number n of pieces received in BitTorrent and a list of
n peers. In this case, a participant Mallory can cheat in
the following way. After receiving the first piece a from
Alice, she replies with an attestation that her one-piece
set contains only a. Next, after receiving her next two
pieces b from Bob and ¢ from Charlie, she sends them
both an identical attestation that her two-piece set is b
and c. In this way, Mallory gets away with hiding the
fact that she has received piece a, despite not being able
to get different attestations for the same value of n = 2.
As we will see later, in §5.4, we prevent this by having
an attestation include the last piece received.

Status attestations Most distributed systems do not
have an implicit system-wide “counter.” Rather, peers
progress at varying rates: BitTorrent peers download at
rates largely dependent on their own upload rates, DHT
peers store varying amounts of data, and so on. Sta-
tus attestations enable peers to determine others’ current
counter values. The data in a status attestation is gen-
erally a nonce, to ensure freshness in peers’ reports of
their counters. Coupled with a counter that has semantic
meaning, status attestations can provide peers with up-
to-date information about their neighbors. In BitTorrent,
for instance, knowing how much of a file a neighbor has
downloaded can help determine whether to bootstrap him
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Algorithm 2 Implementation of A2M with Trlnc

Init()

1. Create low and high counters:

Lq « CreateCounter(); Hy « CreateCounter()

2. Return {Lq, Hq}

End(queue g, sequence number n, nonce z)
1. Retrieve the latest entry from the given log:
{a,2} < g.end()

Append(queue g, value x)

1. Bind h(zx) to a unique counter (the current “high counter”):

a «— Attest(Hg.id, Hq.ctr + 1, h(x))

2. Store the attestation in untrusted memory:

g.append(a, )

2. Attest that this is the latest entry with a high-
counter attestation of the supplied nonce:

a' — Attest(Hq.id, Hg.ctr, 2)

3. Return {d’, {a,z}}
Truncate(queue ¢, sequence number 1)

1. Remove the entries from untrusted memory:

Lookup(queue g, sequence number n, nonce z)

g.truncate(n)

1. If n < L4, the entry was truncated. Attest to this by returning an

attestation of the supplied nonce using the low-counter:
Attest(Ly.id, Lq.ctr, h(FORGOTTEN]|2))

2. If n > Hg, the query is too early. Attest to this by returning an

attestation of the supplied nonce using the high-counter:
Attest(Hg.id, Hg.ctr, h(TOOEARLY||2))

3. Otherwise, return the entry in g that spans n, i.e., the one such that
a.c < n < a.c. Note that if n < a.c’, this means n was skipped

by an Advance.

2. Move up the low counter:
a < Attest(Lq.id, n, FORGOTTEN)

Advance(queue g, sequence number n, value x)

1. Append a new item with sequence number 7:
a «— Attest(Hgq.id, n, h(x))

2. Store the attestation in untrusted memory:

g.append(a, r)

with free pieces (because he is new to the swarm) or to
initiate a trade with him (because he has many interesting
pieces of the file).

5.2 Case study 1: A2M

Attested Append-only Memory (A2M) [7] is another
proposed trusted hardware design with the intent of com-
bating equivocation. A2M offers trusted logs, to which
users can only append. The fundamental difference be-
tween the designs of A2M and TrInc are in the amount
of state and computation required from the trusted hard-
ware. To demonstrate that TrInc’s decreased complex-
ity is enough, we present, as our first case study, how to
build A2M using Trlnc.

5.2.1 A2M overview

A2M’s state consists of a set of logs, each contain-
ing entries with monotonically increasing sequence num-
bers. A2M supports operations to add (append and
advance), retrieve (lookup and end), and delete
(truncate)items from its logs. The basis of A2M’s re-
silience to equivocation is append, which binds a mes-
sage to a unique sequence number. For each log ¢, A2M
stores the lowest sequence number, £, and the highest
sequence number, H,, stored in g. A2ZM appends an en-
try to log ¢ by incrementing the sequence number H,
and setting the new entry’s sequence number to be this
incremented value. The low and high sequence numbers
allow A2M to attest to failed lookups; for instance, if a
user requests an item with sequence number s > H,,
A2M returns an attestation of H,,.

5.2.2 Trusted logs with TrInc

In our TrInc-based design of A2M, we store logs in
untrusted memory, as opposed to within a trinket. As in
A2M, we make use of two counters per log, representing
the highest (H,) and lowest (L,) sequence number in the
respective log g.

We present the detailed protocol in Algorithm 2, and
summarize some of its characteristics here. Note the
power of TrInc’s simple API; our design is built predom-
inately on calls to a trinket’s At test function. Our pro-
tocol uses advance attestations for moving the high se-
quence number when appending to the log, and for mov-
ing the low sequence number when deleting from the log.
We perform status attestations of the low counter value to
attest to failed lookups, and of the high counter to attest
to the end of the log. No additional attestations are nec-
essary for a successful 1ookup, even if the 1ookup is
to a skipped entry. Conversely, A2M requires calls to the
trusted hardware even for successful lookups.

5.2.3 Properties of a TrInc-based A2M

Chun et al. [7] demonstrate how to apply A2M to
BFT [20], SUNDR [22], and Q/U [1]. Our implemen-
tation of A2M in TrInc demonstrates that Trlnc, too, can
be applied to these systems.

Implementing trusted logs using TrInc has several
benefits over a completely in-hardware design like A2M.
Because TrInc stores the logs in untrusted storage, we
decouple the usage demand of the trusted log from the
amount of available trusted storage. Conversely, lim-
ited by the amount of trusted storage, A2M must make
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more frequent calls to t runcate to keep the logs small.
Some systems, such as PeerReview [13], benefit from
large logs, making TrInc a more suitable addition, which
we consider next.

5.3 Case study 2: PeerReview

Accountability systems, such as PeerReview [13] and
Nysiad [14], strive to augment existing protocols to make
them tolerant to Byzantine faults. This is a powerful ap-
proach, as it allows system designers to focus on the sys-
tem at hand, rather than consider Byzantine faults at all
layers of the system. The general approach is to have par-
ticipants in the system communicate with and audit one
another, resulting in what is sometimes, unfortunately, a
massive amount of additional communication overhead.

Our main observation in this case study is that the
means by which these systems combat equivocation con-
stitutes the bulk of their communication overhead. By
applying TrInc to PeerReview, we are able to vastly re-
duce PeerReview’s communication overhead.

5.3.1 PeerReview review

PeerReview [13] is a system that enables accountabil-
ity in general distributed protocols. Unlike BFT, which
ensures that bad behavior never has an effect, PeerRe-
view allows bad behavior to affect the system but ensures
that the improper act will eventually be detected. This al-
lows a system to correct for bad behavior after the fact,
and also deters bad behavior to begin with.

PeerReview works on any protocol in which each par-
ticipant acts according to a deterministic state machine.
PeerReview assigns each participant a set of witnesses,
machines whose job it is to detect bad behavior by that
participant. The participant is required to log all of the
messages it sends and receives, and report these to the
witnesses. The witnesses then run the participant’s state
machine to ensure the participant’s outgoing messages
were consistent with proper operation.

A participant might try to cheat by sending different
messages to the witnesses than it sends to other partic-
ipants. For this reason, when a participant receives a
message from another, it forwards this message to the
sender’s witnesses, so they can ensure this message actu-
ally appears in the sender’s log.

As a practical matter, full messages do not have to be
transmitted to witnesses thanks to the use of a tamper-
evident log. Bach log entry is associated with a sequence
number, and the log itself is represented by a recursive
hash reflecting all log entries. When a participant sends
a message, it includes a signed statement that this mes-
sage has a particular sequence number and that the log
had a particular recursive hash when this message was
logged. In this way, the receiver only needs to report this
authenticator to the witness.

PeerReview’s tamper-evident log has another impor-
tant use. When a participant or witness discovers bad
behavior in a participant, the authenticators signed by

the malefactor stand as clear proof of the misbehavior.
Thus, a faulty witness cannot improperly accuse a par-
ticipant, and an incompletely trusted witness can be be-
lieved when it presents evidence of a participant’s mis-
behavior.
5.3.2 Simplifying PeerReview with TrInc

By augmenting PeerReview with TrInc, we are able to
simplify much of PeerReview’s protocol. We detail here
the modifications we make to PeerReview in augmenting
it with Trlnc.

Trusted logs As demonstrated with A2M, TrInc can
easily supply a trusted log without the assistance of a
witness set. Our first modification is to include such a
trusted log. Whenever a participant sends or receives a
message, it logs that message with an attestation from
its trinket. A participant should only process a received
message if it is accompanied by an attestation that the
message has been logged by the sender’s trinket.

Audits Each witness w for a participant p keeps track of
n, a log sequence number, and s, the state that p should
have been in after sending or receiving the message in
log entry n. It initializes n to 0 and s to the initial state
of participant p.

Whenever w wants to audit p, it sends it n and a nonce.
The participant returns an attestation of its current log en-
try number n’ using the nonce, and also returns a log en-
try and attestation for every index ¢ such thatn < ¢ < n/'.
Note that witnesses need only obtain these entries di-
rectly from p, and not from other peers with whom p has
communicated. The witness then runs the reference im-
plementation, starting at state s, and progressing through
the log entries between n and n'. If the reference imple-
mentation sends the same messages that are in the log,
then the witness simply updates n to n’ and updates s
to the state of the reference implementation at that point.
If not, then the witness has proof it can present of the
participant’s failure to act properly.

5.3.3 Properties of a TrInc-enabled PeerReview

The benefits from applying TrInc to PeerReview are
evident when considering what the protocol no longer
has to do.

Challenge/response Enabled with TrInc, PeerRe-
view’s challenge/response protocol is no longer needed
for a participant to verify a hash chain of log entries. The
fact that TrInc signs the messages is sufficient. The only
time a participant ¢ has to challenge another participant j
is when it sends participant j a message and receives no
acknowledgment of it. In this case, the challenge works
as in regular PeerReview.

Consistency Trinc further removes the need for
witness-to-witness communication. In PeerReview, if p
receives an authenticator from ¢, then p’s witnesses must
forward it to ¢’s witnesses. This is not necessary in a
TrInc-augmented PeerReview because there would be no
way for those other participants to avoid sending the au-

USENIX Association

NSDI *09: 6th USENIX Symposium on Networked Systems Design and Implementation



thenticators themselves to their witnesses. Another way
to look at it is that it is not necessary for a participant
to pass on authenticators it receives to witnesses, so it is
not necessary for a witness to do this on behalf of partic-
ipants.

To summarize, we find that by applying TrInc to Peer-
Review, we are able to vastly decrease the amount of
communication overhead. We demonstrate this empiri-
cally in Section 7.

5.4 Case study 3: BitTorrent

The previous two systems demonstrate that TrInc is a
minimal counterpart to a related trusted component, and
that it can reduce the overhead of achieving accountabil-
ity in a distributed setting. Our third case study demon-
strates TrInc’s versatility. We show how TrInc can be
applied to solving an open incentive problem [21] in the
immensely popular BitTorrent system [8].

5.4.1 A brief overview of BitTorrent

BitTorrent [8] is a decentralized file swarming system
whose goal is to disseminate large files to a large num-
ber of downloaders. Rather than rely on a highly pro-
visioned server, BitTorrent peers trade small pieces of a
file with one another, thereby contributing to the system
while gaining from it. Bitfields represent which pieces of
a file a peer has. Peers trade bitfields in order to gain one
another’s interest; a peer is interested in peers who have
pieces that it does not. Since peers only upload to peers
in whom they are interested, peers have incentive to be
as interesting to as many others as possible.

5.4.2 Piece under-reporting

BitTorrent peers can sometimes have incentive to
under-report what pieces they have to their neighbors,
since by doing so they can limit the degree to which their
neighbors find interest in one another [21]. For instance,
suppose peer ¢ has neighbors j and k, both of whom want
pieces p and ¢ from 7. If ¢ were to tell them both about
both pieces, one might demand p and the other might de-
mand ¢g. After obtaining them, they might gain interest
in one another and exchange p and ¢ among themselves,
thus decoupling from ¢. Thus, ¢ may prefer to under-
report by sending to 7 and k a bitfield that contains p but
not ¢q. As a result, both neighbors request and obtain p,
gaining no interest in one another; only then does 7 reveal
that he also has piece ¢, forcing j and k to download it
from 3.

Such under-reporting leads to a tragedy of the com-
mons, since although strategic under-reporters’ down-
load times improve, the system as a whole suffers [21].
Since its recent discovery, strategic under-reporting has
yet to be solved; we demonstrate how to solve it with
TrInc.

5.4.3 Solving under-reporting with TrInc

We observe that under-reporting in file swarming sys-
tems is an act of equivocation. Using the above example,
when peer 7 received piece ¢ from peer ¢, ¢ must have

Algorithm 3 Fighting equivocation in BitTorrent
Upon receipt of piece p:

1. Add p to bitfield B

2. Geurr — Attest(i,|B|, h(p, B))

Upon sending piece p to neighbor j:
1. Request an attestation from ;7 with a random nonce.
2. Do not send any piece other than p to j until j ad-
mits to having p.

Periodically, for each neighbor j:
1. Request an attestation of j’s current bitfield with a
random nonce.

Upon receiving an attestation request with nonce z:
l. aymp < Attest(i,|B], 2).
2. Reply with (acurr, Gtmp)-

sent an acknowledgment, stating to £ that he received the
piece. However, by under-reporting ¢ to peers j and k,
1 is effectively contradicting a statement he made earlier
to {.

Our goal is therefore to remove BitTorrent peers’ abil-
ity to undetectably equivocate. We present in Algo-
rithm 3 a TrInc-based protocol for fighting equivocation
in BitTorrent. In this protocol, a peer attests to his bit-
field, incrementing a trinket counter for each piece he
receives. Also, peers periodically request up-to-date at-
testations from their neighbors, to maintain fresh state.

Because they join the swarm at different times and
download at different rates, peers’ counters are not syn-
chronized. In Algorithm 3, the TrInc counter does not
correspond to some system-wide “round” the protocol is
in, as it would in, say, BFT machine replication. Instead,
peer ¢’s counter represents how many pieces ¢ has down-
loaded. This is a natural fit for the counter, because it is a
monotonically increasing number, and because the type
of malicious behavior we want to prevent corresponds to
pretending it is not monotonic.

Algorithm 3 demonstrates the importance of choosing
the correct data to which to attest. Suppose, for instance,
peers were to attest only to their bitfields. Clearly, when
s sends an attested bitfield to neighbor n, s must include
the piece n sent him, p,,, in the bitfield, otherwise n will
observe an under-report. Were s to attest only to the bit-
field, then s could under-report as follows, where B4
represents the bitfield before receiving pieces pg, pp, and
D¢, and & denotes adding a piece to the bitfield:

o Toa: Byig ® p,
e Toband c: Byig @ pp D pe

The problem arises because the data to which s is attest-
ing does not enforce monotonicity at the semantic level
we desire. Specifically, though the counter cannot de-
crease, it does not have to correspond to the number of
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distinct pieces acknowledged, allowing a malicious par-
ticipant to misstate the number of distinct pieces he has
acknowledged.

In our solution, a peer attests not only to the hash of
his bitfield B, but also to the most recent piece he has
received, p. Neighbor n therefore expects an advance at-
testation including both p,, and a bitfield containing p,,.
As a result, every piece must have a unique advance at-
testation, ensuring that s’s counter must be as large as the
number of pieces he has acknowledged receiving.

5.4.4 Properties of a TrInc-augmented BitTorrent

Our TrInc-based solution to equivocation in BitTorrent
solves two difficult incentives-related problems. First,
peers have incentive to truthfully reveal the pieces they
have whenever they are asked to. TrInc removes the abil-
ity to equivocate, and step-omission failures (remaining
silent) result in getting no further pieces from a neighbor.
Peers can therefore obtain long-lived trades with others
only by truthfully reporting their pieces.

Second, our solution adds additional security to Bit-
Torrent’s bootstrapping mechanism. In BitTorrent, peers
optimistically unchoke new participants, sending them
pieces without requiring anything in return, to introduce
them into the system. BitThief [24] exploits this by pre-
tending not to be able to make progress [35]. However,
such artifice is not possible with Trlnc since with it a peer
cannot hide the rate at which he is downloading pieces.

Note, however, that what we propose is not a com-
plete solution to problems with bootstrapping. Even with
TrInc-enabled BitTorrent, a peer can steal a single piece
from each other peer. Our goal of applying TrInc here is
to ensure truthfulness in long-lived peerings, which (sur-
prisingly) does not arise automatically.

5.5 Other applications

We see many other potential applications for Trlnc.
We briefly described three such apps in Section 2.1:
simultaneous-turn games, electronic currency, and elec-
tions. Here, we detail several others:

Secure DNS is intended to protect the integrity of the
Internet domain name system. One identified threat [6]
is that a resolving name server could be compromised
and forge incorrect responses. The official solution to
this threat is data origin identification in the DNS Secu-
rity Extensions (DNSSEC), which uses public-key sig-
natures to authenticate name updates. However, this so-
lution does not address a threat in which the compro-
mised name server replies to a query with out-of-date
data, which would still bear a valid signature. Modify-
ing DNSSEC with TrInc could address this problem by
preventing the resolving name server from equivocating
about whether it has received an update. Once it ac-
knowledges receipt to the authoritative name server, it
can no longer pretend it has not received the update.

Secure Origin BGP (soBGP) [44] is intended to
protect the integrity of Internet routing updates. Like

DNSSEC, soBGP uses public-key signatures to authen-
ticate updates. Also like DNSSEC, soBGP is vulnerable
to a threat in which a compromised router advertises out-
of-date routes, which would still bear valid signatures.
TrInc could address this problem by preventing a router
from equivocating about whether it has received a rout-
ing update.

Distributed hash tables (DHTs), such as Chord [37],
Bamboo [33], and Kademlia [27], are vulnerable to mis-
behaving nodes. In particular, a node can lie about which
region of the keyspace it is responsible for. As nodes
join and leave the DHT, these regions of responsibil-
ity change (sometimes quite rapidly [33]) in response
to reconfiguration messages. A node can equivocate
about whether it has received a particular message, which
may allow it to claim responsibility for a region of the
keyspace it does not own. TrInc could be used to prevent
this equivocation.

Version control systems, such as CVS [41] and Sub-
version [29] are often run on remote servers. Thus, they
are vulnerable to a threat model in which the server
presents different views of the repository to different
clients. Although this threat could be addressed at the
block-store level [22], it might be more efficient to ad-
dress it at the application level, in which case TrInc could
prevent this equivocation.

Distributed auctions [42] are vulnerable to cheating
participants. A bidder can try to manipulate others’ bids
by equivocating about the value of his current bid. An
auctioneer can try to manipulate the bidding by equiv-
ocating about her reserve price for a particular auction.
TrInc could protect against both of these classes of cheat-
ing, by preventing both bidders and auctioneers from
equivocating.

Leader election protocols [25] rely on a quorum of
participants to agree on a choice of leader. For a quo-
rum of size g, it can legitimately happen that two groups
of size ¢ — 1 will nominate different leaders. In this
case, one participant can equivocate about which leader
to nominate, causing the protocol to select two leaders
concurrently. TrInc could be used to prevent this equivo-
cation.

Digital signatures are used in many cryptographic
protocols, but commonly use slow asymmetric key oper-
ations [17]. However, TrInc allows faster symmetric key
operations to be used instead. To do so, a signer merely
has to have his trinket attest to the hash of the message to
be signed using a shared symmetric key. Since this attes-
tation can only be generated by a party with access to the
symmetric key, and since the hardware includes the ID in
any attestation, no other party (except the trusted session
administrator) can have generated the attestation. Thus,
it functions effectively as a digital signature, verifiable
by anyone whose trinket has the same symmetric key in-
stalled.
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] Operation | Time (msec) | Time (msec)
Noop 614 +0.15 Operation TrInc | A2M
(asymmetric, advance > 0) | 230.24 £ 0.28 Noop 6.99 4+ 0.01
Attest (asymmetric, advance = 0) | 198.21 £0.10 Append 187.60 £ 0.15 | 551.93 £ 154
(symmetric, advance > 0) 128.95 + 0.08 Lookup (Successful) | 0.0122 +0.02 | 304.14 + 6.87
(symmetric, advance = 0) | 105.90 £ 0.08 Lookup (TooEarly) 162.24 +0.08 | 289.68 + 2.23
Verify Symmetric Attestation 85.81 £0.11 Lookup (Forgotten) | 162.35 +0.10 | 350.51 £ 1.43
) End 162.31 £ 0.11 | 294.16 + 2.04
Table 3: TrIpc mlcrobenchmark's on a Gemalto .NET Truncate 187.94 £ 0.10 | 28.99 £ 0.02
Smartcard, with 95% confidence intervals. Advance 18781012 | 28820 £ 114

6 TrInc Implementation

The application case studies demonstrate the strong
theoretical properties of TrIncs. In this section, we study
the performance of Trlncs today. To this end, we have
implemented TrInc on Gemalto .NET SmartCards [11],
and present microbenchmarks that measure TrInc’s per-
formance on these widely available pieces of trusted
hardware.

6.1 Microbenchmarks

Our experimental setup consists of an Intel Core 2
Duo 1.6GHz machine with 3GB of RAM, and a smart-
card connected via a USB card reader. We present our
microbenchmarks in Table 3, with results averaged over
1,000 runs. In addition to TrInc’s API, we include a noop
to essentially measure the round-trip time between PC
and smartcard.

Compare the Attest results on the card to those
on the untrusted PC, where 3-DES took 0.017 £ 0.008
msec, and RSA took 8.6 + 0.67 msec. It is no surprise
that a smartcard does not perform as well, but the dif-
ference in relative performance between symmetric and
asymmetric encryption is striking. On the PC, they dif-
fer by a factor of over 500, while on the card they differ
by less than a factor of 2. While using symmetric instead
of asymmetric operations improves TrInc’s performance,
we were surprised to see it was by this small a factor.

6.2 Why so slow?

The conclusion is clear: today’s trusted hardware is
slow! Indeed, it is much slower than would be allowed
by most components of a distributed system. But why is
it slow, and why do current applications that use trusted
hardware not suffer as a result?

We believe this is attributable to the fact that Trinc uses
trusted hardware in a fundamentally different way than
that for which the hardware is currently designed. To-
day’s trusted hardware is designed to bootstrap software,
generally performing few operations during a machine’s
boot cycle. Conversely, TrInc makes use of trusted hard-
ware during operation, in some cases multiple times for
each message sent.

We proposed several versions in §3.5.6 that we believe
would be viable directions for future designs of trusted
hardware to take. In the interim, a logical solution is

Table 4: TrInc-A2M microbenchmarks, with 95% confi-
dence intervals.

to design protocols that limit the number of necessary
attestations, but such approaches are beyond the scope
of this paper. Nevertheless, our empirical results in the
following section indicate that making trusted hardware
more suitable for use in distributed systems foday is a
valuable area of future work.

7 Application Evaluation

We now turn to macrobenchmarks, evaluating TrInc
as it applies to our three case studies: A2M, PeerReview,
and BitTorrent.

7.1 TrInc-A2M

In Section 5.2, we proposed a way to build A2M
using TrInc. While demonstrating TrInc’s ease of use
and versatility, it also allows us to compare the two
trusted-component designs. To this end, we have im-
plemented A2M in the Gemalto .NET SmartCard, and
a TrInc library—run on an untrusted machine—that ac-
cesses TrInc as prescribed in Algorithm 2.

We present microbenchmark comparisons in Table 4.
As expected, TrInc performs Appends much more
quickly, as it does not require as many writes to trusted
storage. Where TrInc offers vast speed improvements
over A2M is in successful Lookups; since these do not
have to be either stored in trusted hardware or attested,
they are merely local operations. Interestingly, A2M im-
proves with Truncate, since A2M simply increases the
log’s low counter and postpones the attestation of the op-
eration until a lookup that needs to return FORGOTTEN.
TrInc amortizes this cost, in the expectation that there
will be more FORGOTTEN lookups than truncations.

These results demonstrate that TrInc performs better
on foday’s trusted hardware. As trusted components im-
prove, particularly in terms of memory writes and cryp-
tographic operations, it is likely that A2M and TrInc will
perform comparably well. However, the slowness of to-
day’s trusted hardware brings to light the difference in
complexity between A2M and TrInc. We believe TrInc’s
relative simplicity makes it a more suitable candidate
even with future designs of trusted hardware.
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Figure 3: Reduction in PeerReview’s message overhead
due to Trlnc.

7.2 TrInc-PeerReview

In Section 5.3, we demonstrated how including TrInc
into the design of an accountability system such as Peer-
Review can decrease the amount of communication re-
quired between participants. This represents one of the
fundamental strengths of including a small, trusted com-
ponent into an otherwise untrusted system.

Applying TrInc to PeerReview removes the require-
ment for a peer p to communicate with the witness set
of any other peer g, unless, of course, p happens in ¢’s
witness set. Using data from the original PeerReview
study [13], we demonstrate in Figure 3 the extent to
which TrInc reduces PeerReview’s communication over-
head. TrInc effectively removes the O(W?2) witness-set-
to-witness-set communication, for reasons described in
Section 5.3. As a result, the amount of additional com-
munication overhead scales linearly rather than quadrat-
ically with the size of the witness sets.

7.3 TrlInc-BitTorrent

To evaluate our TrInc-based solution for BitTorrent,
we simulated using a “gold-standard” trinket in the
Azureus BitTorrent client. To do so, we modified Bit-
Torrent’s Have messages to include attestations to coun-
ters. We observed that Have messages, originally in-
tended simply to inform others when a peer receives a
piece, come frequently enough in practice to also satisfy
peers’ continual need for fresh attestations.

We modified the BitTorrent code to recognize these
new messages, and to cut off peers thereby discovered to
be under-reporting. However, we never have the seeder
punish a peer in this way. It seems reasonable to have
such a forgiving seeder since otherwise peers who suf-
fer failures—for example, from a corrupted disk—could
never request blocks after they have attested to them.

We ran our experiments on a local cluster consisting
of 23 leechers, each with upload bandwidth capped at
50Kbps, and one seeder, with upload bandwidth capped

300
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Time into the download (sec)

50

Cumulative number of blocks obtained

Figure 4: Rate of progress for various BitTorrent clients
when Trlnc is used.

at 80Kbps. We chose one host to act as a strategic piece
revealer using an algorithm from a prior study [21]. We
chose this host arbitrarily since, on the local cluster, we
found them to be virtually indistinguishable in terms of
performance.

Our experiments demonstrated a clear loss in perfor-
mance from under-reporting. In a representative run, the
under-reporting peer took 27% longer to download the
file than the other peers did on average, and 33% longer
than the median.

The under-reporter’s download times would have been
much worse if not for the forgiving seeder. We show in
Figure 4 the total number of blocks the under-reporter re-
ceived over time, compared to the number of blocks he
received from the seeder. We plot a representative, truth-
ful peer from the swarm as a point of comparison. Be-
cause other peers refused to send to the under-reporter
until he revealed all the pieces in his possession, the
seeder became the under-reporter’s only remaining op-
tion. Indeed, the under-reporting peer obtained more
pieces (73%) from the seeder than any other peer in the
swarm (11% on average, 6% median).

These results indicate the power of applying a small
amount of trust, and small attestations piggybacked on
existing protocol messages, to a large-scale decentralized
system.

8 Conclusions

In this paper, we presented Trlnc, a simple yet power-
ful abstraction for improving security in distributed sys-
tems. Trlnc is a trusted hardware module that holds a
non-decreasing counter and a hidden cryptographic key.
This combination, along with the computational machin-
ery to support it, yields an abstraction that significantly
improves various aspects of security in distributed sys-
tems.

TrInc was inspired by the seminal work of A2M,
which introduced the idea of a trusted log for improv-
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ing system security. Relative to A2M, Trlnc has a sig-
nificantly simpler abstraction: a counter instead of a log.
We have also demonstrated a wider range of applications
for, and benefits from, a trusted module than previously
shown.

We have implemented Trlnc on real, currently avail-
able trusted hardware. We have performed three detailed
case studies of TrInc as applied to different distributed
protocols. Our results show that this abstraction is easy
to deploy, powerful, and versatile.
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Abstract

Obtaining user opinion (using votes) is essential to rank-
ing user-generated online content. However, any content
voting system is susceptible to the Sybil attack where ad-
versaries can out-vote real users by creating many Sybil
identities. In this paper, we present SumUp, a Sybil-
resilient vote aggregation system that leverages the trust
network among users to defend against Sybil attacks.
SumUp uses the technique of adaptive vote flow aggre-
gation to limit the number of bogus votes cast by adver-
saries to no more than the number of attack edges in the
trust network (with high probability). Using user feed-
back on votes, SumUp further restricts the voting power
of adversaries who continuously misbehave to below the
number of their attack edges. Using detailed evaluation
of several existing social networks (YouTube, Flickr), we
show SumUp’s ability to handle Sybil attacks. By apply-
ing SumUp on the voting trace of Digg, a popular news
voting site, we have found strong evidence of attack on
many articles marked “popular” by Digg.

1 Introduction

The Web 2.0 revolution has fueled a massive prolifera-
tion of user-generated content. While allowing users to
publish information has led to democratization of Web
content and promoted diversity, it has also made the Web
increasingly vulnerable to content pollution from spam-
mers, advertisers and adversarial users misusing the sys-
tem. Therefore, the ability to rank content accurately is
key to the survival and the popularity of many user-
content hosting sites. Similarly, content rating is also in-
dispensable in peer-to-peer file sharing systems to help
users avoid mislabeled or low quality content [7, 16,25].

People have long realized the importance of incorpo-
rating user opinion in rating online content. Traditional
ranking algorithms such as PageRank [2] and HITS [12]
rely on implicit user opinions reflected in the link struc-
tures of hypertext documents. For arbitrary content types,
user opinion can be obtained in the form of explicit
votes. Many popular websites today rely on user votes to
rank news (Digg, Reddit), videos (YouTube), documents
(Scribd) and consumer reviews (Yelp, Amazon).

Content rating based on users’ votes is prone to vote
manipulation by malicious users. Defending against vote
manipulation is difficult due to the Sybil attack where
the attacker can out-vote real users by creating many

Sybil identities. The popularity of content-hosting sites
has made such attacks very profitable as malicious enti-
ties can promote low-quality content to a wide audience.
Successful Sybil attacks have been observed in the wild.
For example, online polling on the best computer science
school motivated students to deploy automatic scripts to
vote for their schools repeatedly [9]. There are even com-
mercial services that help paying clients promote their
content to the top spot on popular sites such as YouTube
by voting from a large number of Sybil accounts [22].

In this paper, we present SumUp, a Sybil-resilient on-
line content voting system that prevents adversaries from
arbitrarily distorting voting results. SumUp leverages the
trust relationships that already exist among users (e.g. in
the form of social relationships). Since it takes human ef-
forts to establish a trust link, the attacker is unlikely to
possess many attack edges (links from honest users to an
adversarial identity). Nevertheless, he may create many
links among Sybil identities themselves.

SumUp addresses the vote aggregation problem which
can be stated as follows: Given m votes on a given object,
of which an arbitrary fraction may be from Sybil iden-
tities created by an attacker, how do we collect votes in
a Sybil resilient manner? A Sybil-resilient vote aggrega-
tion solution should satisfy three properties. First, the so-
lution should collect a significant fraction of votes from
honest users. Second, if the attacker has e 4 attack edges,
the maximum number of bogus votes should be bounded
by e, independent of the attacker’s ability to create many
Sybil identities behind him. Third, if the attacker repeat-
edly casts bogus votes, his ability to vote in the future
should be diminished. SumUp achieves all three proper-
ties with high probability in the face of Sybil attacks. The
key idea in SumUp is the adaptive vote flow technique
that appropriately assigns and adjusts link capacities in
the trust graph to collect the net vote for an object.

Previous works have also exploited the use of trust net-
works to limit Sybil attacks [3,15,18,26,27,30], but none
directly addresses the vote aggregation problem. Sybil-
Limit [26] performs admission control so that at most
O(logn) Sybil identities are accepted per attack edge
among n honest identities. As SybilLimit results in 10~30
bogus votes per attack edge in a million-user system [26],
SumUp provides notable improvement by limiting bogus
votes to one per attack edge. Additionally, SumUp lever-
ages user feedback to further diminish the voting power
of adversaries that repeatedly vote maliciously.
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In SumUp, each vote collector assigns capacities to
links in the trust graph and computes a set of approx-
imate max-flow paths from itself to all voters. Because
only votes on paths with non-zero flows are counted, the
number of bogus votes collected is limited by the total ca-
pacity of attack edges instead of links among Sybil iden-
tities. Typically, the number of voters on a given object
is much smaller than the total user population (n). Based
on this insight, SumUp assigns C, 4, units of capacity in
total, thereby limiting the number of votes that can be col-
lected to be Ciq,. SumUp adjusts C,q, automatically
according to the number of honest voters for each object
so that it can aggregate a large fraction of votes from hon-
est users. As C,, 4z is far less than n, the number of bo-
gus votes collected on a single object (i.e. the attack ca-
pacity) is no more than the number of attack edges (e 4).
SumUp’s security guarantee on bogus votes is probabilis-
tic. If a vote collector happens to be close to an attack
edge (a low probability event), the attack capacity could
be much higher than e 4. By re-assigning link capacities
using feedback, SumUp can restrict the attack capacity to
be below e 4 even if the vote collector happens to be close
to some attack edges.

Using a detailed evaluation of several existing social
networks (YouTube, Flickr), we show that SumUp suc-
cessfully limits the number of bogus votes to the num-
ber of attack edges and is also able to collect > 90% of
votes from honest voters. By applying SumUp to the vot-
ing trace and social network of Digg (an online news vot-
ing site), we have found hundreds of suspicious articles
that have been marked “popular” by Digg. Based on man-
ual sampling, we believe that at least 50% of suspicious
articles exhibit strong evidence of Sybil attacks.

This paper is organized as follows. In Section 2, we dis-
cuss related work and in Section 3 we define the system
model and the vote aggregation problem. Section 4 out-
lines the overall approach of SumUp and Sections 5 and
6 present the detailed design. In Section 7, we describe our
evaluation results. Finally in Section 8, we discuss how to
extend SumUp to decentralize setup and we conclude in
Section 9.

2 Related Work

Ranking content is arguably one of the Web’s most im-
portant problems. As users are the ultimate consumers of
content, incorporating their opinions in the form of either
explicit or implicit votes becomes an essential ingredient
in many ranking systems. This section summarizes related
work in vote-based ranking systems. Specifically, we ex-
amine how existing systems cope with Sybil attacks [6]
and compare their approaches to SumUp.

2.1 Hyperlink-based ranking

PageRank [2] and HITS [12] are two popular ranking al-
gorithms that exploit the implicit human judgment embed-

ded in the hyperlink structure of web pages. A hyperlink
from page A to page B can be viewed as an implicit en-
dorsement (or vote) of page B by the creator of page A. In
both algorithms, a page has a higher ranking if it is linked
to by more pages with high rankings. Both PageRank and
HITS are vulnerable to Sybil attacks. The attacker can
significantly amplify the ranking of a page A by creating
many web pages that link to each other and also to A. To
mitigate this attack, the ranking system must probabilisti-
cally reset its PageRank computation from a small set of
trusted web pages with probability € [20]. Despite proba-
bilistic resets, Sybil attacks can still amplify the PageRank
of an attacker’s page by a factor of 1/¢ [29], resulting in a
big win for the attacker because € is small.

2.2 User Reputation Systems

A user reputation system computes a reputation value for
each identity in order to distinguish well-behaved identi-
ties from misbehaving ones. It is possible to use a user
reputation system for vote aggregation: the voting system
can either count votes only from users whose reputations
are above a threshold or weigh each vote using the voter’s
reputation. Like SumUp, existing reputation systems miti-
gate attacks by exploiting two resources: the trust network
among users and explicit user feedback on others’ behav-
iors. We discuss the strengths and limitations of existing
reputation systems in the context of vote aggregation and
how SumUp builds upon ideas from prior work.

Feedback based reputations In EigenTrust [11] and
Credence [25], each user independently computes person-
alized reputation values for all users based on past trans-
actions or voting histories. In EigenTrust, a user increases
(or decreases) another user’s rating upon a good (or bad)
transaction. In Credence [25], a user gives a high (or low)
rating to another user if their voting records on the same
set of file objects are similar (or dissimilar). Because not
all pairs of users are known to each other based on direct
interaction or votes on overlapping sets of objects, both
Credence and EigenTrust use a PageRank-style algorithm
to propagate the reputations of known users in order to
calculate the reputations of unknown users. As such, both
systems suffer from the same vulnerability as PageRank
where an attacker can amplify the reputation of a Sybil
identity by a factor of 1/e.

Neither EigenTrust nor Credence provide provable
guarantees on the damage of Sybil attacks under arbitrary
attack strategies. In contrast, SumUp bounds the voting
power of an attacker on a single object to be no more than
the number of attack edges he possesses irrespective of the
attack strategies in use. SumUp uses only negative feed-
back as opposed to EigenTrust and Credence that use both
positive and negative feedback. Using only negative feed-
back has the advantage that an attacker cannot boost his
attack capacity easily by casting correct votes on objects
that he does not care about.
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DSybil [28] is a feedback-based recommendation sys-
tem that provides provable guarantees on the damages of
arbitrary attack strategies. DSybil differs from SumUp in
its goals. SumUp is a vote aggregation system which al-
lows for arbitrary ranking algorithms to incorporate col-
lected votes to rank objects. For example, the ranking al-
gorithm can rank objects by the number of votes collected.
In contrast, DSybil’s recommendation algorithm is fixed:
it recommends a random object among all objects whose
sum of the weighted vote count exceeds a certain thresh-
old.

Trust network-based reputations A number of pro-
posals from the semantic web and peer-to-peer literature
rely on the trust network between users to compute repu-
tations [3,8, 15,21, 30]. Like SumUp, these proposals ex-
ploit the fact that it is difficult for an attacker to obtain
many trust edges from honest users because trust links
reflect offline social relationships. Of the existing work,
Advogato [15], Appleseed [30] and Sybilproof [3] are re-
silient to Sybil attacks in the sense that an attacker cannot
boost his reputation by creating a large number of Sybil
identities “behind” him. Unfortunately, a Sybil-resilient
user reputation scheme does not directly translate into a
Sybil-resilient voting system: Advogato only computes a
non-zero reputation for a small set of identities, disallow-
ing a majority of users from being able to vote. Although
an attacker cannot improve his reputation with Sybil iden-
tities in Appleseed and Sybilproof, the reputation of Sybil
identities is almost as good as that of the attacker’s non-
Sybil accounts. Together, these reputable Sybil identities
can cast many bogus votes.

2.3 Sybil Defense using trust networks

Many proposals use trust networks to defend against Sybil
attacks in the context of different applications: Sybil-
Guard [27] and SybilLimit [26] help a node admit an-
other node in a decentralized system such that the ad-
mitted node is likely to be an honest node instead of a
Sybil identity. Ostra [18] limits the rate of unwanted com-
munication that adversaries can inflict on honest nodes.
Sybil-resilient DHTs [5, 14] ensure that DHT routing is
correct in the face of Sybil attacks. Kaleidoscope [23]
distributes proxy identities to honest clients while mini-
mizing the chances of exposing them to the censor with
many Sybil identities. SumUp builds on their insights and
addresses a different problem, namely, aggregating votes
for online content rating. Like SybilLimit, SumUp bounds
the power of attackers according to the number of attack
edges. In SybilLimit, each attack edge results in O(log n)
Sybil identities accepted by honest nodes. In SumUp, each
attack edge leads to at most one vote with high probability.
Additionally, SumUp uses user feedback on bogus votes
to further reduce the attack capacity to below the number
of attack edges. The feedback mechanism of SumUp is
inspired by Ostra [18].

3 The Vote Aggregation Problem

In this section, we outline the system model and formalize
the vote aggregation problem that SumUp addresses.

System model: We describe SumUp in a centralized
setup where a trusted central authority maintains all the
information in the system and performs vote aggregation
using SumUp in order to rate content. This centralized
mode of operation is suitable for web sites such as Digg,
YouTube and Facebook, where all users’ votes and their
trust relationships are collected and maintained by a sin-
gle trusted entity. We describe how SumUp can be applied
in a distributed setting in Section 8.

SumUp leverages the trust network among users to de-
fend against Sybil attacks [3,15,26,27,30]. Each trust link
is directional. However, the creation of each link requires
the consent of both users. Typically, user 7 creates a trust
link to j if ¢ has an offline social relationship to j. Sim-
ilar to previous work [18,26], SumUp requires that links
are difficult to establish. As a result, an attacker only pos-
sesses a small number of attack edges (e4) from honest
users to colluding adversarial identities. Even though e 4
is small, the attacker can create many Sybil identities and
link them to adversarial entities. We refer to votes from
colluding adversaries and their Sybil identities as bogus
votes.

SumUp aggregates votes from one or more trusted vote
collectors. A trusted collector is required in order to break
the symmetry between honest nodes and Sybil nodes [3].
SumUp can operate in two modes depending on the choice
of trusted vote collectors. In personalized vote aggrega-
tion, SumUp uses each user as his own vote collector to
collect the votes of others. As each user collects a differ-
ent number of votes on the same object, she also has a
different (personalized) ranking of content. In global vote
aggregation, SumUp uses one or more pre-selected vote
collectors to collect votes on behalf of all users. Global
vote aggregation has the advantage of allowing for a sin-
gle global ranking of all objects; however, its performance
relies on the proper selection of trusted collectors.

Vote Aggregation Problem: Any identity in the trust
network including Sybils can cast a vote on any object to
express his opinion on that object. In the simplest case,
each vote is either positive or negative (+1 or -1). Alterna-
tively, to make a vote more expressive, its value can vary
within a range with higher values indicating more favor-
able opinions. A vote aggregation system collects votes
on a given object. Based on collected votes and various
other features, a separate ranking system determines the
final ranking of an object. The design of the final rank-
ing system is outside the scope of this paper. However, we
note that many ranking algorithms utilize hoth the number
of votes and the average value of votes to determine an
object’s rank [2, 12]. Therefore, to enable arbitrary rank-
ing algorithms, a vote aggregation system should collect
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Figure 1: SumUp computes a set of approximate max-flow
paths from the vote collector s to all voters (A,B,C,D). Straight
lines denote trust links and curly dotted lines represent the vote
flow paths along multiple links. Vote flow paths to honest vot-
ers are “‘congested” at links close to the collector while paths to
Sybil voters are also congested at far-away attack edges.

a significant fraction of votes from honest voters.

A voting system can also let the vote collector pro-
vide negative feedback on malicious votes. In personal-
ized vote aggregation, each collector gives feedback ac-
cording to his personal taste. In global vote aggregation,
the vote collector(s) should only provide objective feed-
back, e.g. negative feedback for positive votes on cor-
rupted files. Such feedback is available for a very small
subset of objects.

We describe the desired properties of a vote aggregation
system. Let G = (V, E) be a trust network with vote col-
lector s € V. V is comprised of an unknown set of honest
users V;, C V (including s) and the attacker controls all
vertices in V' \ V},, many of which represent Sybil iden-
tities. Let e4 represent the number of attack edges from
honest users in V}, to V' \ V},. Given that nodes in G cast
votes on a specific object, a vote aggregation mechanism
should achieve three properties:

1. Collect a large fraction of votes from honest users.

2. Limit the number of bogus votes from the attacker

by e4 independent of the number of Sybil identities
inV\V,.

3. Eventually ignore votes from nodes that repeatedly

cast bogus votes using feedback.

4 Basic Approach

This section describes the intuition behind adaptive vote
flow that SumUp uses to address the vote aggregation
problem. The key idea of this approach is to appropriately
assign link capacities to bound the attack capacity.

In order to limit the number of votes that Sybil identi-
ties can propagate for an object, SumUp computes a set of
max-flow paths in the trust graph from the vote collector
to all voters on a given object. Each vote flow consumes
one unit of capacity along each link traversed. Figure 1
gives an example of the resulting flows from the collec-
tor s to voters A,B,C,D. When all links are assigned unit

capacity, the attack capacity using the max-flow based ap-
proach is bounded by e 4.

The concept of max-flow has been applied in several
reputation systems based on trust networks [3, 15]. When
applied in the context of vote aggregation, the challenge is
that links close to the vote collector tend to become “con-
gested” (as shown in Figure 1), thereby limiting the total
number of votes collected to be no more than the collec-
tor’s node degree. Since practical trust networks are sparse
with small median node degrees, only a few honest votes
can be collected. We cannot simply enhance the capac-
ity of each link to increase the number of votes collected
since doing so also increases the attack capacity. Hence, a
flow-based vote aggregation system faces the tradeoff be-
tween the maximum number of honest votes it can collect
and the number of potentially bogus votes collected.

The adaptive vote flow technique addresses this trade-
off by exploiting two basic observations. First, the number
of honest users voting for an object, even a popular one,
is significantly smaller than the total number of users. For
example, 99% of popular articles on Digg have fewer than
4000 votes which represents 1% of active users. Second,
vote flow paths to honest voters tend to be only “con-
gested” at links close to the vote collector while paths
to Sybil voters are also congested at a few attack edges.
When e4 is small, attack edges tend to be far away from
the vote collector. As shown in Figure 1, vote flow paths
to honest voters A and B are congested at the link /; while
paths to Sybil identities C and D are congested at both 2
and attack edge [3.

The adaptive vote flow computation uses three key
ideas. First, the algorithm restricts the maximum num-
ber of votes collected on an object to a value Cq5. AS
Cimaz 1s used to assign the overall capacity in the trust
graph, a small C),,, results in less capacity for the at-
tacker. SumUp can adaptively adjust C,,,, to collect a
large fraction of honest votes on any given object. When
the number of honest voters is O(n®) where o < 1, the
expected number of bogus votes is limited to 1 + o(1) per
attack edge (Section 5.4).

The second important aspect of SumUp relates to ca-
pacity assignment, i.e. how to assign capacities to each
trust link in order to collect a large fraction of honest votes
and only a few bogus ones? In SumUp, the vote collec-
tor distributes C,,,. tickets downstream in a breadth-first
search manner within the trust network. The capacity as-
signed to a link is the number of tickets distributed along
the link plus one. As Figure 2 illustrates, the ticket distri-
bution process introduces a vote envelope around the vote
collector s; beyond the envelope all links have capacity
1. The vote envelope contains C,, 4, nodes that can be
viewed as entry points. There is enough capacity within
the envelope to collect C),,4, votes from entry points. On
the other hand, an attack edge beyond the envelope can
propagate at most 1 vote regardless of the number of Sybil
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Figure 2: Through ticket distribution, SumUp creates a vote en-
velope around the collector. The capacities of links beyond the
envelope are assigned to be one, limiting the attack capacity to
be at most one per attack edge for adversaries outside this en-
velope. There is enough capacity within the envelope, such that
nodes inside act like entry points for outside voters.

identities behind that edge. SumUp re-distributes tickets
based on feedback to deal with attack edges within the
envelope.

The final key idea in SumUp is to leverage user feed-
back to penalize attack edges that continuously propa-
gate bogus votes. One cannot penalize individual identi-
ties since the attacker may always propagate bogus votes
using new Sybil identities. Since an attack edge is always
present in the path from the vote collector to a malicious
voter [18], SumUp re-adjusts capacity assignment across
links to reduce the capacity of penalized attack edges.

S SumUp Design

In this section, we present the basic capacity assignment
algorithm that achieves two of the three desired properties
discussed in Section 3: (a) Collect a large fraction of votes
from honest users; (b) Restrict the number of bogus votes
to one per attack edge with high probability. Later in Sec-
tion 6, we show how to adjust capacity based on feedback
to deal with repeatedly misbehaved adversarial nodes.

We describe how link capacities are assigned given a
particular C,,,,, in Section 5.1 and present a fast algo-
rithm to calculate approximate max-flow paths in Sec-
tion 5.2. In Section 5.3, we introduce an additional op-
timization strategy that prunes links in the trust network
so as to reduce the number of attack edges. We formally
analyze the security properties of SumUp in Section 5.4
and show how to adaptively set C),, 4, in Section 5.5.

5.1 Capacity assignment

The goal of capacity assignment is twofold. On the one
hand, the assignment should allow the vote collector to
gather a large fraction of honest votes. On the other hand,
the assignment should minimize the attack capacity such
that C'y ~ e4.

As Figure 2 illustrates, the basic idea of capacity as-
signment is to construct a vote envelope around the vote

SN
SOEA)\E
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- 0
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N

level 0 level 1 level 2

Figure 3: Each link shows the number of tickets distributed to
that link from s (Crez=0). A node consumes one ticket and
distributes the remaining evenly via its outgoing links to the next
level. Tickets are not distributed to links pointing to the same
level (B—A), or to a lower level (E—B). The capacity of each
link is equal to one plus the number of tickets.

collector with at least (4, entry points. The goal is
to minimize the chances of including an attack edge in
the envelope and to ensure that there is enough capacity
within the envelope so that all vote flows from C,,,, en-
try points can reach the collector.

We achieve this goal using a ticket distribution mecha-
nism which results in decreasing capacities for links with
increasing distance from the vote collector. The distri-
bution mechanism is best described using a propagation
model where the vote collector is to spread C),, tickets
across all links in the trust graph. Each ticket corresponds
to a capacity value of 1. We associate each node with a
level according to its shortest path distance from the vote
collector, s. Node s is at level 0. Tickets are distributed to
nodes one level at a time. If a node at level [ has received
tin tickets from nodes at level [ — 1, the node consumes
one ticket and re-distributes the remaining tickets evenly
across all its outgoing links to nodes at level [ + 1, i.e.
tout = tin — 1. The capacity value of each link is set to
be one plus the number of tickets distributed on that link.
Tickets are not distributed to links connecting nodes at
the same level or from a higher to lower level. The set of
nodes with positive incoming tickets fall within the vote
envelope and thus represent the entry points.

Ticket distribution ensures that all C,,,, entry points
have positive vote flows to the vote collector. Therefore,
if there exists an edge-independent path connecting one of
the entry points to an outside voter, the corresponding vote
can be collected. We show in Section 5.4 that such a path
exists with good probability. When C),, .. is much smaller
than the number of honest nodes (n), the vote envelope is
very small. Therefore, all attack edges reside outside the
envelope, resulting in Cy =~ e 4 with high probability.

Figure 3 illustrates an example of the ticket distribution
process. The vote collector (s) is to distribute C),q,=6
tickets among all links. Each node collects tickets from
its lower level neighbors, keeps one to itself and re-
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distributes the rest evenly across all outgoing links to the
next level. In Figure 3, s sends 3 tickets down each of its
outgoing links. Since A has more outgoing links (3) than
its remaining tickets (2), link A—D receives no tickets.
Tickets are not distributed to links between nodes at the
same level (B—A) or to links from a higher to lower level
(E—B). The final number of tickets distributed on each
link is shown in Figure 3. Except for immediate outgoing
edges from the vote collector, the capacity value of each
link is equal to the amount of tickets it receives plus one.

5.2 Approximate Max-flow calculation

Once capacity assignment is done, the task remains to cal-
culate the set of max-flow paths from the vote collector to
all voters on a given object. It is possible to use existing
max-flow algorithms such as Ford-Fulkerson and Preflow
push [4] to compute vote flows. Unfortunately, these ex-
isting algorithms require O(E) running time to find each
vote flow, where E is the number of edges in the graph.
Since vote aggregation only aims to collect a large fraction
of honest votes, it is not necessary to compute exact max-
flow paths. In particular, we can exploit the structure of
capacity assignment to compute a set of approximate vote
flows in O(A) time, where A is the diameter of the graph.
For expander-like networks, A = O(log n). For practical
social networks with a few million users, A =~ 20.

Our approximation algorithm works incrementally by
finding one vote flow for a voter at a time. Unlike the
classic Ford-Fulkerson algorithm, our approximation per-
forms a greedy search from the voter to the collector in
O(A) time instead of a breadth-first-search from the col-
lector which takes O(E) running time. Starting at a voter,
the greedy search strategy attempts to explore a node at
a lower level if there exists an incoming link with posi-
tive capacity. Since it is not always possible to find such
a candidate for exploration, the approximation algorithm
allows a threshold (t) of non-greedy steps which explores
nodes at the same or a higher level. Therefore, the num-
ber of nodes visited by the greedy search is bounded by
(A + 2t). Greedy search works well in practice. For links
within the vote envelope, there is more capacity for lower-
level links and hence greedy search is more likely to find
a non-zero capacity path by exploring lower-level nodes.
For links outside the vote envelope, greedy search results
in short paths to one of the vote entry points.

5.3 Optimization via link pruning

We introduce an optimization strategy that performs link
pruning to reduce the number of attack edges, thereby re-
ducing the attack capacity. Pruning is performed prior to
link capacity assignment and its goal is to bound the in-
degree of each node to a small value, d;,,_tpres- As a re-
sult, the number of attack edges is reduced if some ad-
versarial nodes have more than d;,,_;5,es incoming edges
from honest nodes. We speculate that the more honest

neighbors an adversarial node has, the easier for it to trick
an honest node into trusting it. Therefore, the number of
attack edges in the pruned network is likely to be smaller
than those in the original network. On the other hand,
pruning is unlikely to affect honest users since each honest
node only attempts to cast one vote via one of its incoming
links.

Since it is not possible to accurately discern honest
identities from Sybil identities, we give all identities the
chance to have their votes collected. In other words, prun-
ing should never disconnect a node. The minimally con-
nected network that satisfies this requirement is a tree
rooted at the vote collector. A tree topology minimizes
attack edges but is also overly restrictive for honest nodes
because each node has exactly one path from the collec-
tor: if that path is saturated, a vote cannot be collected.
A better tradeoff is to allow each node to have at most
din_thres > 1 incoming links in the pruned network
so that honest nodes have a large set of diverse paths
while limiting each adversarial node to only d;,,_¢hres at-
tack edges. We examine the specific parameter choice of
din_thres In Section 7.

Pruning each node to have at most d;;,,_¢;res incoming
links is done in several steps. First, we remove all links ex-
cept those connecting nodes at a lower level (/) to neigh-
bors at the next level (I + 1). Next, we remove a subset of
incoming links at each node so that the remaining links do
not exceed djy,_thres- In the third step, we add back links
removed in step one for nodes with fewer than d;y,_¢nyes
incoming links. Finally, we add one outgoing link back
to nodes that have no outgoing links after step three, with
priority given to links going to the next level. By preferen-
tially preserving links from lower to higher levels, pruning
does not interfere with SumUp’s capacity assignment and
flow computation.

5.4 Security Properties

This section provides a formal analysis of the security
properties of SumUp assuming an expander graph. Vari-
ous measurement studies have shown that social networks
are indeed expander-like [13]. The link pruning optimiza-
tion does not destroy a graph’s expander property because
it preserves the level of each node in the original graph.
Our analysis provides bounds on the expected attack
capacity, C'4, and the expected fraction of votes collected
if C)q. honest users vote. The average-case analysis
assumes that each attack edge is a random link in the
graph. For personalized vote aggregation, the expectation
is taken over all vote collectors which include all honest
nodes. In the unfortunate but rare scenario where an ad-
versarial node is close to the vote collector, we can use
feedback to re-adjust link capacities (Section 6).

Theorem 5.1 Given that the trust network G on n nodes
is a bounded degree expander graph, the expected capac-

: . E(C
ity per attack edge is % =1+ O(C’;”‘lam log Crnaz)
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which is 1 + o(1) if Crax = O(n%) for a« < 1. If
ea - Caz < 1, the capacity per attack edge is bounded
by 1 with high probability.

Proof Sketch Let L; represent the number of nodes at
level ¢ with Ly = 1. Let E; be the number of edges point-
ing from level ¢ — 1 to level «. Notice that E/; > L;. Let
T; be the number of tickets propagated from level ¢ — 1
to ¢ with Ty = C),ee- The number of tickets at each level
is reduced by the number of nodes at the previous level
(i.e. T; = T;_1 — L;_1). Therefore, the number of lev-
els with non-zero tickets is at most O(log(Cinaz)) as L;
grows exponentially in an expander graph. For a randomly
placed attack edge, the probability of its being at level  is
at most L; /n. Therefore, the expected capacity of a ran-

dom attack edge can be calculatedas 1 + >, (& - L) <

1+ ZZ(% . Cf—:r) =1 +O(% log C)naz: ). Therefore,
if Crnae = O(n®) for o < 1, the expected attack capacity
per attack edge is 1 + o(1).

Since the number of nodes within the vote envelope is
at most C),qz, the probability of a random attack edge
being located outside the envelope is 1 — % Therefore,
the probability that any of the e 4 attack edges lies within
the vote envelope is 1 — (1 — $maz)ea < €4:Cmas Hence,
if eq - Crae = n® where a < 1, the attack capacity is

bounded by 1 with high probability.

Theorem 5.1 is for expected capacity per attack edge.
In the worse case when the vote collector is adjacent to
some adversarial nodes, the attack capacity can be a sig-
nificant fraction of C,,,,... Such rare worst case scenarios
are addressed in Section 6.

Theorem 5.2 Given that the trust network G on n nodes
is a d-regular expander graph, the expected fraction of
votes that can be collected out of Cypqy honest voters is
d%d’\? (1— %) where o is the second largest eigenvalue
of the adjacency matrix of G.

Proof Sketch SumUp creates a vote envelop consisting
of ()4, entry points via which votes are collected. To
prove that there exists a large fraction of vote flows, we
argue that the minimum cut of the graph between the set
of C),qz entry points and an arbitrary set of C, 4, honest
voters is large.

Expanders are well-connected graphs. In particular, the
Expander mixing lemma [19] states that for any set S and
T in a d-regular expander graph, the expected number of
edges between S and T is (d — A\2)|S| - |T'|/n, where
A2 is the second largest eigenvalue of the adjacency ma-
trix of GG. Let S be a set of nodes containing C,,,4, €n-
try points and 7" be a set of nodes containing C,;,4, hon-
est voters, thus |S| + |T'| = n and |S| > Chaa, [T| >
Cas- Therefore, the min-cut value between S and T is
= (d=X)[S]-|T|/n = (d = A2) - Crmax(n — Caa) /1.
The number of vote flows between S and T is at least 1/d

of the min-cut value because each vote flow only uses one
of an honest voter’s d incoming links. Therefore, the frac-
tion of votes that can be collected is at least (d — \2) -
Cmaz(n - Cmaz)/(n -d - Cmaw) = %(1 - %)
For well-connected graphs like expanders, Ay is well sep-
arated from d, so that a significant fraction of votes can be
collected.

5.5 Setting C,,,. adaptively

When n,, honest users vote on an object, SumUp should
ideally set C, 4, to be n,, in order to collect a large frac-
tion of honest votes on that object. In practice, n,/n is
very small for any object, even a very popular one. Hence,
Chaz = Ny < n and the expected capacity per attack
edge is 1. We note that even if n,, = n, the attack capacity
is still bounded by O(log n) per attack edge.

It is impossible to precisely calculate the number of
honest votes (n,). However, we can use the actual num-
ber of votes collected by SumUp as a lower bound esti-
mate for n,. Based on this intuition, SumUp adaptively
sets Cynqq according to the number of votes collected for
each object. The adaptation works as follows: For a given
object, SumUp starts with a small initial value for C,,,4,,
e.g. Cnazr = 100. Subsequently, if the number of actual
votes collected exceeds pCiy,q Where p is a constant less
than 1, SumUp doubles the ()4, in use and re-runs the
capacity assignment and vote collection procedures. The
doubling of C),,, continues until the number of collected
votes becomes less than pC,q4-

We show that this adaptive strategy is robust, i.e. the
maximum value of the resulting C, 4, will not dramati-
cally exceed n, regardless of the number of bogus votes
cast by adversarial nodes. Since adversarial nodes at-
tempt to cast enough bogus votes to saturate attack ca-
pacity, the number of votes collected is at most n,, + C4
where Cy = ea(1 + % log Cynaz). The doubling of
Cinaz Stops when the number of collected votes is less
than pC,, .. Therefore, the maximum value of C),,,,. that
stops the adaptation is one that satisfies the following in-
equality:

max

ny +ea(l+
n

IOg Cmaw) < pCmam

Since log Ca. < logn, the adaptation terminates with

Clue = (ny +ea)/(p— "B2). As p > 5% we derive
Cl e = % (ny,+e4). The adaptive strategy doubles Cy, 4z

every iteration, hence it overshoots by at most a factor
of two. Therefore, the resulting C,;,4, found is Cqr =
%(nv + e4). As we can see, the attacker can only affect
the C),4, found by an additive factor of e 4. Since ey4 is
small, the attacker has negligible influence on the C), 4
found.

The previous analysis is done for the expected case with
random attack edges. Even in a worst case scenario where
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some attack edges are very close to the vote collector, the
adaptive strategy is still resilient against manipulation. In
the worst case scenario, the attack capacity is proportional
to Chuaa, 1.6. Cag = xChyq,. Since no vote aggregation
scheme can defend against an attacker who controls a ma-
jority of immediate links from the vote collector, we are
only interested in the case where x < 0.5. The adap-
tive strategy stops increasing Cy,q, When n, + xChpgr <
PCrmaq, thus resulting in Chppqp < 2’%; As we can see, p
must be greater than x to prevent tﬁe attacker from caus-
ing SumUp to increase Cy, 4, to infinity. Therefore, we set
p = 0.5 by default.

6 Leveraging user feedback

The basic design presented in Section 5 does not address
the worst case scenario where C'4 could be much higher
than e 4. Furthermore, the basic design only bounds the
number of bogus votes collected on a single object. As
a result, adversaries can still cast up to e4 bogus votes
on every object in the system. In this section, we utilize
feedback to address both problems.

SumUp maintains a penalty value for each link and uses
the penalty in two ways. First, we adjust each link’s ca-
pacity assignment so that links with higher penalties have
lower capacities. This helps reduce C'4 when some attack
edges happen to be close to the vote collector. Second, we
eliminate links whose penalties have exceeded a certain
threshold. Therefore, if adversaries continuously misbe-
have, the attack capacity will drop below e over time.
We describe how SumUp calculates and uses penalty in
the rest of the section.

6.1 Incorporating negative feedback

The vote collector can choose to associate negative feed-
back with voters if he believes their votes are malicious.
Feedback may be performed for a very small set of
objects-for example, when the collector finds out that an
object is a bogus file or a virus.

SumUp keeps track of a penalty value, p;, for each link
7 in the trust network. For each voter receiving negative
feedback, SumUp increments the penalty values for all
links along the path to that voter. Specifically, if the link
being penalized has capacity ¢;, SumUp increments the
link’s penalty by 1/¢;. Scaling the increment by ¢; is intu-
itive; links with high capacities are close to the vote col-
lector and hence are more likely to propagate some bogus
votes even if they are honest links. Therefore, SumUp im-
poses a lesser penalty on high capacity links.

It is necessary to penalize all links along the path in-
stead of just the immediate link to the voter because that
voter might be a Sybil identity created by some other at-
tacker along the path. Punishing a link to a Sybil identity
is useless as adversaries can easily create more such links.
This way of incorporating negative feedback is inspired
by Ostra [18]. Unlike Ostra, SumUp uses a customized

flow network per vote collector and only allows the col-
lector to incorporate feedback for its associated network
in order to ensure that feedback is always trustworthy.

6.2 Capacity adjustment

The capacity assignment in Section 5.1 lets each node dis-
tribute incoming tickets evenly across all outgoing links.
In the absence of feedback, it is reasonable to assume that
all outgoing links are equally trustworthy and hence to
assign them the same number of tickets. When negative
feedback is available, a node should distribute fewer tick-
ets to outgoing links with higher penalty values. Such ad-
justment is particularly useful in circumstances where ad-
versaries are close to the vote collector and hence might
receive a large number of tickets.

The goal of capacity adjustment is to compute a weight,
w(p;), as a function of the link’s penalty. The num-
ber of tickets a node distributes to its outgoing link ¢
is proportional to the link’s weight, i.e. t; = o *
w(pi)/ Y vicnyrs W(Pi). The question then becomes how
to compute w(p; ). Clearly, a link with a high penalty value
should have a smaller weight, i.e. w(p;)<w(p;) if p;>p;.
Another desirable property is that if the penalties on two
links increase by the same amount, the ratio of their
weights remains unchanged. In other words, the weight
function should satisfy: Vp', p;, p;, :ﬁgi J)) = %.
This requirement matches our intuition that if two links
have accumulated the same amount of additional penal-
ties over a period of time, the relative capacities between
them should remain the same. Since the exponential func-
tion satisfies both requirements, we use w(p;) = 0.27¢ by
default.

6.3 Eliminating links using feedback

Capacity adjustment cannot reduce the attack capacity to
below e 4 since each link is assigned a minimum capacity
value of one. To further reduce ¢4, we eliminate those
links that received high amounts of negative feedback.
We use a heuristic for link elimination: we remove a
link if its penalty exceeds a threshold value. We use a de-
fault threshold of five. Since we already prune the trust
network (Section 5.3) before performing capacity assign-
ment, we add back a previously pruned link if one exists
after eliminating an incoming link. The reason why link
elimination is useful can be explained intuitively: if adver-
saries continuously cast bogus votes on different objects
over time, all attack edges will be eliminated eventually.
On the other hand, although an honest user might have
one of its incoming links eliminated because of a down-
stream attacker casting bad votes, he is unlikely to expe-
rience another elimination due to the same attacker since
the attack edge connecting him to that attacker has also
been eliminated. Despite this intuitive argument, there al-
ways exist pathological scenarios where link elimination
affects some honest users, leaving them with no voting
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Network Nodes | Edges | Degree Directed? % 1.6
%1000 | %1000 | 50%(90%) F .l |
YouTube [18] 446 | 3458 | 2(12) No °
Flickr [17] 1,530 | 21,399 | 1(15) Yes 8 I ]
Synthetic [24] 3000 | 24,248 | 6(15) No g 1 1
Table 1: Statistics of the social network traces or synthetic E 0.8 1
model used for evaluating SumUp. All statistics are for the u: 0.6 ]
strongly connected component (SCC). 5 ool |
power. To address such potential drawbacks, we re-enact % 0.2l YouTube —+— |
eliminated links at a slow rate over time. We evaluate the é , ‘ Synthetie e
0 0.01 0.1

effect of link elimination in Section 7.

7 Evaluation

In this section, we demonstrate SumUp’s security prop-
erty using real-world social networks and voting traces.
Our key results are:

1. For all networks under evaluation, SumUp bounds
the average number of bogus votes collected to be no
more than e 4 while being able to collect >90% of
honest votes when less than 1% of honest users vote.

2. By incorporating feedback from the vote collector,
SumUp dramatically cuts down the attack capacity
for adversaries that continuously cast bogus votes.

3. We apply SumUp to the voting trace and social net-
work of Digg [1], a news aggregation site that uses
votes to rank user-submitted news articles. SumUp
has detected hundreds of suspicious articles that have
been marked as “popular” by Digg. Based on man-
ual sampling, we believe at least 50% of suspicious
articles found by SumUp exhibit strong evidence of
Sybil attacks.

7.1 Experimental Setup

For the evaluation, we use a number of network datasets
from different online social networking sites [17] as well
as a synthetic social network [24] as the underlying trust
network. SumUp works for different types of trust net-
works as long as an attacker cannot obtain many attack
edges easily in those networks. Table 1 gives the statis-
tics of various datasets. For undirected networks, we treat
each link as a pair of directed links. Unless explicitly men-
tioned, we use the YouTube network by default.

To evaluate the Sybil-resilience of SumUp, we inject
ea = 100 attack edges by adding 10 adversarial nodes
each with links from 10 random honest nodes in the net-
work. The attacker always casts the maximum bogus votes
to saturate his capacity. Each experimental run involves
a randomly chosen vote collector and a subset of nodes
which serve as honest voters. SumUp adaptively adjusts
Cinaz using an initial value of 100 and p = 0.5. By de-
fault, the threshold of allowed non-greedy steps is 20. We
plot the average statistic across five experimental runs in
all graphs. In Section 7.6, we apply SumUp on the real
world voting trace of Digg to examine how SumUp can
be used to resist Sybil attacks in the wild.

.001
Number of honest voters / total nodes

Figure 4: The average capacity per attack edge as a function

of the fraction of honest nodes that vote. The average capacity

per attack edge remains close to 1, even if 1/10 of honest nodes

vote.

7.2 Sybil-resilience of the basic design

The main goal of SumUp is to limit attack capacity while
allowing honest users to vote. Figure 4 shows that the
average attack capacity per attack edge remains close to
1 even when the number of honest voters approaches
10%. Furthermore, as shown in Figure 5, SumUp man-
ages to collect more than 90% of all honest votes in all
networks. Link pruning is disabled in these experiments.
The three networks under evaluation have very different
sizes and degree distributions (see Table 1). The fact that
all three networks exhibit similar performance suggests
that SumUp is robust against the topological details. Since
SumUp adaptively sets C,, 4, in these experiments, the re-
sults also confirm that adaptation works well in finding a
C\haz that can collect most of the honest votes without
significantly increasing attack capacity. We point out that
the results in Figure 4 correspond to a random vote collec-
tor. For an unlucky vote collector close to an attack edge,
he may experience a much larger than average attack ca-
pacity. In personalized vote collection, there are few un-
Iucky collectors. These unlucky vote collectors need to
use their own feedback on bogus votes to reduce attack
capacity.

Benefits of pruning: The link pruning optimization, in-
troduced in Section 5.3, further reduces the attack capac-
ity by capping the number of attack edges an adversarial
node can have. As Figure 6 shows, pruning does not af-
fect the fraction of honest votes collected if the threshold
din_thres 18 greater than 3. Figure 6 represents data from
the YouTube network and the results for other networks
are similar. SumUp uses the default threshold (d;,_tpres)
of 3. Figure 7 shows that the average attack capacity is
greatly reduced when adversarial nodes have more than 3
attack edges. Since pruning attempts to restrict each node
to at most 3 incoming links, additional attack edges are
excluded from vote flow computation.
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Figure 5: The fraction of votes collected as a function of frac-

tion of honest nodes that vote. SumUp collects more than 80%
votes, even 1/10 honest nodes vote.
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Figure 6: The fraction of votes collected for different d;s,_tnres
(YouTube graph). More than 90% votes are collected when
din,thres = 3.
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Figure 7: Average attack capacity per attack edge decreases as
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Figure 8: The fraction of votes collected for different threshold
for non-greedy steps. More than 70% votes are collected even
with a small threshold (10) for non-greedy steps.
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Figure 9: The running time of one vote collector gathering up

to 1000 votes. The Ford-Fulkerson max-flow algorithm takes 50

seconds to collect 1000 votes for the YouTube graph.

7.3 Effectiveness of greedy search

SumUp uses a fast greedy algorithm to calculate approx-
imate max vote flows to voters. Greedy search enables
SumUp to collect a majority of votes while using a small
threshold () of non-greedy steps. Figure 8 shows the frac-
tion of honest votes collected for the pruned YouTube
graph. As we can see, with a small threshold of 20, the
fraction of votes collected is more than 80%. Even when
disallowing non-greedy steps completely, SumUp man-
ages to collect > 40% of votes.

Figure 9 shows the running time of greedy-search for
different networks. The experiments are performed on
a single machine with an AMD Opteron 2.5GHz CPU
and 8GB memory. SumUp takes around 5ms to collect
1000 votes from a single vote collector on YouTube and
Flickr. The synthetic network incurs more running time as
its links are more congested than those in YouTube and
Flickr. The average non-greedy steps taken in the syn-
thetic network is 6.5 as opposed to 0.8 for the YouTube
graph. Greedy-search dramatically reduces the flow com-
putation time. As a comparison, the Ford-Fulkerson max-
flow algorithm requires 50 seconds to collect 1000 votes

24

NSDI *09: 6th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association



45

T
SybilLimit ——
a0 | SumUp -

35 b

30
25 T
20 b
15 | b
10 T

5 3

Avg capacity per attack edge (Cp/e,)

8.001 0.01 0.1 1
Number of honest voters / total nodes

Figure 10: Average attack capacity per attack edge as a function

of voters. SumUp is better than SybilLimit in the average case.

for the YouTube graph.

7.4 Comparison with SybilLimit

SybilLimit is a node admission protocol that leverages the
trust network to allow an honest node to accept other hon-
est nodes with high probability. It bounds the number of
Sybil nodes accepted to be O(logn). We can apply Sybil-
Limit for vote aggregation by letting each vote collector
compute a fixed set of accepted users based on the trust
network. Subsequently, a vote is collected if and only if it
comes from one of the accepted users. In contrast, SumUp
does not calculate a fixed set of allowed users; rather, it
dynamically determines the set of voters that count toward
each object. Such dynamic calculation allows SumUp to
settle on a small C,,,,, while still collecting most of the
honest votes. A small C,, 4, allows SumUp to bound at-
tack capacity by e 4.

Figure 10 compares the average attack capacity in
SumUp to that of SybilLimit for the un-pruned YouTube
network. The attack capacity in SybilLimit refers to the
number of Sybil nodes that are accepted by the vote col-
lector. Since SybilLimit aims to accept nodes instead of
votes, its attack capacity remains O(logn) regardless of
the number of actual honest voters. Our implementation
of SybilLimit uses the optimal set of parameters (w = 15,
r = 3000) we determined manually. As Figure 10 shows,
while SybilLimit allows 30 bogus votes per attack edge,
SumUp results in approximately 1 vote per attack edge
when the fraction of honest voters is less than 10%. When
all nodes vote, SumUp leads to much lower attack ca-
pacity than SybilLimit even though both have the same
O(logn) asymptotic bound per attack edge. This is due
to two reasons. First, SumUp’s bound of 1 + logn in
Theorem 5.1 is a loose upper bound of the actual aver-
age capacity. Second, since links pointing to lower-level
nodes are not eligible for ticket distribution, many incom-
ing links of an adversarial nodes have zero tickets and thus
are assigned capacity of one.

1000

T T
Attack capacity ——
honest votes collected -

fraction of

Attack capacity (C_A)
frac. of honest votes collected

0 5 10 15 ;0 25 30
Timestep
Figure 11: The change in attack capacity as adversaries contin-
uously cast bogus votes (YouTube graph). Capacity adjustment
and link elimination dramatically reduce C'4 while still allowing
SumUp to collect more than 80% of the honest votes.

7.5 Benefits of incorporating feedback

We evaluate the benefits of capacity adjustment and link
elimination when the vote collector provides feedback
on the bogus votes collected. Figure 11 corresponds to
the worst case scenario where one of the vote collec-
tor’s four outgoing links is an attack edge. At every time
step, there are 400 random honest users voting on an ob-
ject and the attacker also votes with its maximum capac-
ity. When collecting votes on the first object at time step
1, adaption results in Cqr = 2n. - — 3200 because
n, = 400, p = 0.5,z = 1/4. Therefore, the attacker man-
ages to cast iCmM = 800 votes and outvote honest users.
After incorporating the vote collector’s feedback after the
first time step, the adjacent attack edge incurs a penalty
of 1 which results in drastically reduced C'4 (97). If the
vote collector continues to provide feedback on malicious
votes, 90% of attack edges are eliminated after only 12
time steps. After another 10 time steps, all attack edges
are eliminated, reducing C'4 to zero. However, because of
our decision to slowly add back eliminated links, the at-
tack capacity doesn’t remains at zero forever. Figure 11
also shows that link elimination has little effects on hon-
est nodes as the fraction of honest votes collected always
remains above 80%.

7.6 Defending Digg against Sybil attacks

In this section, we ask the following questions: Is there
evidence of Sybil attacks in real world content voting sys-
tems? Can SumUp successfully limit bogus votes from
Sybil identities? We apply SumUp to the voting trace and
social network crawled from Digg to show the real world
benefits of SumUp.

Digg [1] is a popular news aggregation site where any
registered user can submit an article for others to vote on.
A positive vote on an article is called a digg. A negative
vote is called a bury. Digg marks a subset of submitted ar-
ticles as “popular” articles and displays them on its front
page. In subsequent discussions, we use the terms pop-
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Number of Nodes 3,002,907
Number of Edges 5,063,244
Number of Nodes in SCC 466,326
Number of Edges in SCC 4,908,958
Out degree avg(50%, 90%) 10(1, 9)
In degree avg(50%, 90%) 102, 11)
Number of submitted (popular) articles 6,494,987
2004/12/01-2008/09/21 (137,480)
Diggs on all articles

avg(50%, 90%) 24(2, 15)

Diggs on popular articles

avg(50%, 90%)

Hours since submission before a popular
article is marked as popular.

862(650, 1810)

avg (50,%,90%) 16(13,23)
Number of submitted (popular) articles 38,033
with bury data available (5,794)

2008/08/13-2008/09/15

Table 2: Basic statistics of the crawled Digg dataset. The
strongly connected component (SCC) of Digg consists of
466,326 nodes.

CDF

popular articles
all articles -

L L
100 150 200 250 300

Number of diggs
Figure 12: Distribution of diggs for all popular articles before
being marked as popular and for all articles within 24 hours after
submission.

ular or popularity only to refer to the popularity status
of an article as marked by Digg. A Digg user can cre-
ate a “follow” link to another user if he wants to browse
all articles submitted by that user. We have crawled Digg
to obtain the voting trace on all submitted articles since
Digg’s launch (2004/12/01-2008/09/21) as well as the
complete “follow” network between users. Unfortunately,
unlike diggs, bury data is only available as a live stream.
Furthermore, Digg does not reveal the user identity that
cast a bury, preventing us from evaluating SumUp’s feed-
back mechanism. We have been streaming bury data since
2008/08/13. Table 2 shows the basic statistics of the Digg
“follow” network and the two voting traces, one with bury
data and one without. Although the strongly connected
component (SCC) consists of only 15% of total nodes,
88% of votes come from nodes in the SCC.

There is enormous incentive for an attacker to get a sub-
mitted article marked as popular, thus promoting it to the

T
popular articles

CDF
o
o)
T
I

L L L
0 0.2 0.4 0.6 0.8 1

diggs collected by SumUp / diggs before becoming popular

Figure 13: The distribution of the fraction of diggs collected by
SumUp over all diggs before an article is marked as popular.

front page of Digg which has several million page views
per day. Our goal is to apply SumUp on the voting trace
to reduce the number of successful attacks on the popu-
larity marking mechanism of Digg. Unfortunately, unlike
experiments done in Section 7.2 and Section 7.5, there is
no ground truth about which Digg users are adversaries.
Instead, we have to use SumUp itself to find evidence of
attacks and rely on manual sampling and other types of
data to cross check the correctness of results.

Digg’s popularity ranking algorithm is intentionally not
revealed to the public in order to mitigate gaming of the
system. Nevertheless, we speculate that the number of
diggs is a top contributor to an article’s popularity status.
Figure 12 shows the distribution of the number of diggs
an article received before it was marked as popular. Since
more than 90% of popular articles are marked as such
within 24 hours after submission, we also plot the number
of diggs received within 24 hours of submission for all ar-
ticles. The large difference between the two distributions
indicates that the number of diggs plays an important role
in determining an article’s popularity status.

Instead of simply adding up the actual number of diggs,
what if Digg uses SumUp to collect all votes on an article?
We use the identity of Kevin Rose, the founder of Digg,
as the vote collector to aggregate all diggs on an article
before it is marked as popular. Figure 13 shows the distri-
bution of the fraction of votes collected by SumUp over
all diggs before an article is marked as popular. Our pre-
vious evaluation on various network topologies suggests
that SumUp should be able to collect at least 90% of all
votes. However, in Figure 13, there are a fair number of
popular articles with much fewer than the expected frac-
tion of diggs collected. For example, SumUp only man-
ages to collect less than 50% of votes for 0.5% of popu-
lar articles. We hypothesize that the reason for collecting
fewer than the expected votes is due to real world Sybil
attacks.

Since there is no ground truth data to verify whether
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Threshold of the 20% | 30% | 40% | 50%
fraction of collected diggs
# of suspicious articles 41 131 300 800
Advertisement 5 4 2 1
Phishing 1 0 0 0
Obscure political articles 2 2 0 0
Many newly registered voters 11 7 8 10
Fewer than 50 total diggs 1 3 6 4
No obvious attack 10 14 14 15

Table 3: Manual classification of 30 randomly sampled suspi-
cious articles. We use different thresholds of the fraction of col-
lected diggs for marking suspicious articles. An article is labeled
as having many new voters if > 30% of its votes are from users
who registered on the same day as the article’s submission date.

few collected diggs are indeed the result of attacks, we
resort to manual inspection. We classify a popular article
as suspicious if its fraction of diggs collected is less than
a given threshold. Table 3 shows the result of manually
inspecting 30 random articles out of all suspicious arti-
cles. The random samples for different thresholds are cho-
sen independently. There are a number of obvious bogus
articles such as advertisements, phishing articles and ob-
scure political opinions. Of the remaining, we find many
of them have an unusually large fraction (>30%) of new
voters who registered on the same day as the article’s sub-
mission time. Some articles also have very few total diggs
since becoming popular, a rare event since an article typi-
cally receives hundreds of votes after being shown on the
front page of Digg. We find no obvious evidence of at-
tack for roughly half of the sampled articles. Interviews
with Digg attackers [10] reveal that, although there is a
fair amount of attack activities on Digg, attackers do not
usually promote obviously bogus material. This is likely
due to Digg being a highly monitored system with fewer
than a hundred articles becoming popular every day. In-
stead, attackers try to help paid customers promote nor-
mal or even good content or to boost their profiles within
the Digg community.

As further evidence that a lower than expected fraction
of collected diggs signals a possible attack, we examine
Digg’s bury data for articles submitted after 2008/08/13,
of which 5794 are marked as popular. Figure 14 plots the
correlation between the average number of bury votes on
an article after it became popular vs. the fraction of the
diggs SumUp collected before it was marked as popular.
As Figure 14 reveals, the higher the fraction of diggs col-
lected by SumUp, the fewer bury votes an article received
after being marked as popular. Assuming most bury votes
come from honest users that genuinely dislike the article,
a large number of bury votes is a good indicator that the
article is of dubious quality.

What are the voting patterns for suspicious articles?

200 T

150 T

50 | b

Avg buries after becoming popular

# of buries after becoming popular ———
0

0 0.2 0.4 0.6 0.8 1

diggs collected by SumUp / diggs before becoming popular
Figure 14: The average number of buries an article received
after it was marked as popular as a function of the fraction of
diggs collected by SumUp before it is marked as popular. The
Figure covers 5, 794 popular articles with bury data available.

Since 88% diggs come from nodes within the SCC, we
expect only 12% of diggs to originate from the rest of the
network, which mostly consists of nodes with no incom-
ing follow links. For most suspicious articles, the reason
that SumUp collecting fewer than expected diggs is due
to an unusually large fraction of votes coming from out-
side the SCC component. Since Digg’s popularity mark-
ing algorithm is not known, attackers might not bother to
connect their Sybil identities to the SCC or to each other.
Interestingly, we found 5 suspicious articles with sophis-
ticated voting patterns where one voter is linked to many
identities (~ 30) that also vote on the same article. We be-
lieve the many identities behind that single voter are likely
Sybil identities because those identities were all created
on the same day as the article’s submission. Additionally,
those identities all have similar usernames.

8 SumUp in a Decentralized Setting

Even though SumUp is presented in a centralized setup
such as a content-hosting Web site, it can also be imple-
mented in a distributed fashion in order to rank objects
in peer-to-peer systems. We outline one such distributed
design for SumUp. In the peer-to-peer environment, each
node and its corresponding user is identified by a self-
generated public key. A pair of users create a trust link
relationship between them by signing the trust statement
with their private keys. Nodes gossip with each other or
perform a crawl of the network to obtain a complete trust
network between any pair of public keys. This is differ-
ent from Ostra [18] and SybilLimit [26] which address
the harder problem of decentralized routing where each
user only knows about a small neighborhood around him-
self in the trust graph. In the peer-to-peer setup, each user
naturally acts as his own vote collector to aggregate votes
and compute a personalized ranking of objects. To obtain
all votes on an object, a node can either perform flooding
(like in Credence [25]) or retrieve votes stored in a dis-
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tributed hash table. In the latter case, it is important that
the DHT itself be resilient against Sybil attacks. Recent
work on Sybil-resilient DHTs [5, 14] addresses this chal-
lenge.

9 Conclusion

This paper presented SumUp, a content voting system
that leverages the trust network among users to defend
against Sybil attacks. By using the technique of adaptive
vote flow aggregation, SumUp aggregates a collection of
votes with strong security guarantees: with high proba-
bility, the number of bogus votes collected is bounded
by the number of attack edges while the number of hon-
est votes collected is high. We demonstrate the real-world
benefits of SumUp by evaluating it on the voting trace of
Digg: SumUp detected many suspicious articles marked
as “popular” by Digg. We have found strong evidence of
Sybil attacks on many of these suspicious articles.
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Bunker: A Privacy-Oriented Platform for Network Tracing
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Abstract: ISPs are increasingly reluctant to collect
and store raw network traces because they can be used
to compromise their customers’ privacy. Anonymization
techniques mitigate this concern by protecting sensitive
information. Trace anonymization can be performed of-
fline (at a later time) or online (at collection time). Of-
fline anonymization suffers from privacy problems be-
cause raw traces must be stored on disk — until the traces
are deleted, there is the potential for accidental leaks or
exposure by subpoenas. Online anonymization drasti-
cally reduces privacy risks but complicates software en-
gineering efforts because trace processing and anony-
mization must be performed at line speed. This paper
presents Bunker, a network tracing system that combines
the software development benefits of offline anonymiz-
ation with the privacy benefits of online anonymization.
Bunker uses virtualization, encryption, and restricted 1/0O
interfaces to protect the raw network traces and the trac-
ing software, exporting only an anonymized trace. We
present the design and implementation of Bunker, eval-
uate its security properties, and show its ease of use for
developing a complex network tracing application.

1 Introduction

Network tracing is an indispensable tool for many
network management tasks. Operators need network
traces to perform routine network management opera-
tions, such as traffic engineering [19], capacity plan-
ning [38], and customer accounting [15]. Several re-
search projects have proposed using traces for even more
sophisticated network management tasks, such as diag-
nosing faults and anomalies [27], recovering from se-
curity attacks [45], or identifying unwanted traffic [9].
Tracing is also vital to networking researchers. As net-
works and applications grow increasingly complex, un-
derstanding the behavior of such systems is harder than
ever. Gathering network traces helps researchers guide
the design of future networks and applications [42, 49].

Customer privacy is a paramount concern for all on-
line businesses, including ISPs, search engines, and e-
commerce sites. Many ISPs view possessing raw net-
work traces as a liability: such traces sometimes end up
compromising their customers’ privacy through leaks or
subpoenas. These concerns are real: the RIAA has sub-
poenaed ISPs to reveal customer identities when pursu-
ing cases of copyright infringement [16]. Privacy con-
cerns go beyond subpoenas, however. Oversights or er-
rors in preparing and managing network trace and server
log files can seriously compromise users’ privacy by dis-

closing social security numbers, names, addresses, or
telephone numbers [5, 54].

Trace anonymization is the most common technique
for addressing these privacy concerns. A typical imple-
mentation uses a keyed one-way secure hash function to
obfuscate sensitive information contained in the trace.
This could be as simple as transforming a few fields in
the IP headers, or as complex as performing TCP connec-
tion reconstruction and then obfuscating data (e.g., email
addresses) deep within the payload. There are two cur-
rent approaches to anonymizing network traces: offline
and online. Offline anonymization collects and stores
the entire raw trace and then performs anonymization
as a post-processing step. Online anoymization is done
on-the-fly by extracting and anonymizing sensitive infor-
mation before it ever reaches the disk. In practice, both
methods have serious shortcomings that make network
trace collection increasingly difficult for network opera-
tors and researchers.

Offline anonymization poses risks to customer privacy
because of how raw network traces are stored. These
risks are growing more severe because of the need to look
“deeper” into packet payloads, revealing more sensitive
information. Current privacy trends make it unlikely that
ISPs will continue to accept the risks associated with of-
fline anonymization. We have first-hand experience with
tracing Web, P2P, and e-mail traffic at two universities.
In both cases the universities deemed the privacy risks as-
sociated with offline anonymization to be unacceptable.

While online anonymization offers much stronger pri-
vacy benefits, it is very difficult to deploy in practice be-
cause it creates significant software engineering issues.
Any portion of the trace analysis that requires access to
sensitive data must be performed on-the-fly and at a rate
that can handle the network’s peak throughput. This is
practical for simple tracing applications that analyze only
IP and TCP headers; however, it is much more difficult
for tracing applications that require deep packet inspec-
tion. Developing complex online tracing software there-
fore poses a significant challenge. Developers are limited
in their selection of software: adopting garbage-collected
(e.g.,Java, C#) and dynamic scripting (e.g., Python, Perl)
languages can be difficult; reusing existing libraries (e.g.,
HTML parsers or regexp engines) may also be hard if
their implementation choices are incompatible with per-
formance requirements. A network tracing experiment
illustrates the performance challenges of online tracing.
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Our goal was to run hundreds of regular expressions to
identify phishing Web forms. However, an Intel 3.6GHz
processor running just one of these regular expressions
(using the off-the-shelf “libpcre” regexp library) could
only handle less than 50 Mbps of incoming traffic.

This paper presents Bunker, a network tracing sys-
tem built and deployed at the University of Toronto.
Bunker offers the software development benefits of of-
fline anonymization and the privacy benefits of online
anonymization. Our key insight is that we can use the
buffer-on-disk approach of offline anonymization if we
can “lock down” the trace files and trace analysis soft-
ware. This approach lets Bunker avoid all the software
engineering downsides of online trace analysis. To im-
plement Bunker, we use virtual machines, encryption,
and restriction of I/O device configuration to construct a
closed-box environment; Bunker requires no specialized
hardware (e.g., a Trusted Platform Module (TPM) or a
secure co-processor) to provide its security guarantees.
The trace analysis and anonymization software is pre-
loaded into a closed-box VM before any raw trace data
is gathered. Bunker makes it difficult for network opera-
tors to interact with the tracing system or to access its in-
ternal state once it starts running and thereby protects the
anonymization key, the tracing software, and the raw net-
work trace files inside the closed-box environment. The
closed-box environment produces an anonymized trace
as its only output.

To protect against physical attacks (e.g., hardware
tampering), we design Bunker to be safe-on-reboot:
upon a reboot, all sensitive data gathered by the system
is effectively destroyed. This property makes physical
attacks more difficult because the attacker must tamper
with Bunker’s hardware without causing a reboot. While
a small class of physical attacks remains feasible (e.g.,
cold boot attacks [21]), in our experience ISPs find the
privacy benefits offered by a closed-box environment that
is safe-on-reboot a significant step forward. Although the
system cannot stop ISPs from being subject to wiretaps,
Bunker helps protect ISPs against the privacy risks inher-
ent in collecting and storing network traces.

Bunker’s privacy properties come at a cost. Bunker
requires the network operator to pre-plan what data to
collect and how to anonymize it before starting to trace
the network. Bunker prevents anyone from changing the
configuration while tracing; it can be reconfigured only
through a reboot that will erase all sensitive data.

The remainder of this paper describes Bunker’s threat
model (Section 2), design goals and architecture (Sec-
tion 3), as well as the benefits of Bunker’s architecture
(Section 4). It then analyzes Bunker’s security proper-
ties when confronted with a variety of attacks (Section
5), describes operational issues (Section 6), and evalu-
ates Bunker’s software engineering benefits by examin-

ing a tracing application (phishing analysis) built by one
student in two months that leverages off-the-shelf com-
ponents and scripting languages (Section 7). The paper’s
final sections review legal issues posed by Bunker’s ar-
chitecture (Section 8) and related work (Section 9).

2 Threat Model

This section outlines the threat model for network
tracing systems. We present five classes of attacks and
discuss how Bunker addresses each.

2.1 Subpoenas For Network Traces

ISPs are discovering that traces gathered for diagnos-
tic and research purposes can be used in court proceed-
ings against their customers. As a result, they may view
the benefits of collecting network traces as being out-
weighed by the liability of possessing such information.
Once a subpoena has been issued, an ISP must cooperate
and reveal the requested information (e.g., traces or en-
cryption keys) as long as the cooperation does not pose
an undue burden. Consequently, a raw trace is protected
against a subpoena only if no one has access to it or to
the encryption and anonymization keys used to protect it.

Our architecture was designed to collect traces while
preserving user privacy even if a court permits a third
party to have full access to the system. Once a Bunker
trace has been initiated, all sensitive information is pro-
tected from the system administrator in the same way it is
protected from any adversary. Thus, our solution makes
it a hardship for the ISP to surrender sensitive infor-
mation. We eliminate potential downsides to collecting
traces for legitimate purposes but do not prevent those
with legal wiretap authorization from installing their own
trace collection system.

2.2 Accidental Disclosure

ISPs face another risk, that of accidental disclosure of
sensitive information from a network trace. History has
shown that whenever people handle sensitive data, the
danger of accidental disclosure is substantial. For exam-
ple, the British Prime Minister recently had to publicly
apologize when a government agency accidentally lost
25 million child benefit records containing names and
bank details because the agency did not follow the cor-
rect procedure for sending these records by courier [5].
Bunker vastly reduces the risk that sensitive data will be
accidentally released or stolen because no human can ac-
cess the unanonymized trace.

2.3 Remote Attacks Over The Internet

Remote theft of data collected by a tracing machine
presents another threat to network tracing systems. There
are many possible ways to break into a system over the
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network, yet there is one simple solution that eliminates
this entire class of attacks. To collect traces, Bunker uses
a specialized network capture card that is incapable of
sending outgoing data. It also uses firewall rules to limit
access to the tracing machine from the internal private
network. Section 5.3 examines in-depth Bunker’s secu-
rity measures against such attacks.

2.4 Operational Attacks

Attacks that traverse the network link being moni-
tored, such as denial-of-service (DoS) attacks, may also
incidentally affect the tracing system. This is a problem
when tracing networks with direct connections to the In-
ternet: Internet hosts routinely receive attack traffic such
as vulnerability probes, denial-of-service (DoS) attacks,
and back-scatter from attacks occurring elsewhere on the
Internet [36]. Methods exist to reduce the impact of DoS
attacks [31] and adversarial traffic [13]. However, these
methods may have limited effectiveness against a large
enough attack. Both Bunker and offline anonymization
systems are more resilient to such attacks because they
need not process the traffic in real time.

Because many network studies collect traces for rel-
atively long time periods, an attacker with physical ac-
cess could tamper with the monitoring system after it
has started tracing, creating the appearance that the orig-
inal system is still running. For example, the attacker
might reboot the system and then set up a new closed-
box environment that uses anonymization keys known to
the attacker. Section 6 describes a simple modification to
Bunker that addresses this type of attack.

2.5 Attacks On Anonymization

Packet injection attacks attempt to partially learn the
anonymization mapping by injecting traffic and then ana-
lyzing the anonymized trace. To perform such attacks, an
adversary transmits traffic over the network being traced
and later identifies this traffic in the anonymized trace.
These attacks are possible when non-sensitive trace in-
formation (e.g., times or request sizes) is used to cor-
relate entries in the anonymized trace with the specific
traffic being generated by the adversary. Packet injec-
tion attacks do not completely break the anonymization
mapping because they do not let the adversary deduce
the anonymization key. Even without packet injection,
recent work has shown that private information can still
be recovered from data anonymized with state-of-the-art
techniques [10, 34]. These attacks typically make use
of public information and attempt to correlate it with the
obfuscated data. Our tracing system is susceptible to at-
tacks on the anonymization scheme. The best way to de-
fend against this class of attacks is to avoid public release
of anonymized trace data [10].

fAnonymized Data

diSkEj\ Data Analysis
&
Anonymization

Closed-box & Safe-on-reboot
f Raw Traffic

Figure 1. Logical view of Bunker: Raw data enters the
closed-box perimeter and only anonymized data leaves
this perimeter.

Another problem involves ensuring that the anony-
mization policy is specified correctly, and that the
implementation correctly implements the specification.
Bunker does not explicitly address these issues. We rec-
ommend code reviews of the trace analysis and anony-
mization software. However, even a manual audit of this
software can miss certain properties and anomalies that
could be exploited by a determined adversary [34]. Al-
though there is no simple checklist to follow that ensures
a trace does not leak private data, there are tools that can
aid in the design and implementation of sound anony-
mization policies [35].

2.6 Summary

Bunker’s design raises the bar for mounting any of
these attacks successfully. At a high level, our threat
model assumes that: (1) the attacker has physical access
to the tracing infrastructure but no specialized hardware,
such as a bus monitoring tool; (2) the attacker did not
participate in implementing the trace analysis software.
While Bunker’s security design is motivated by the threat
of subpoenas, it also addresses the other four classes of
attacks described in this section. We examine security
attacks against Bunker in Section 5 and we discuss legal
issues in Section 8.

3 The Bunker Architecture

Our main insight when designing Bunker is that a
tracing infrastructure can maintain large caches of sen-
sitive data without compromising user privacy as long
as none of that data leaves the host. Figure 1 illustrates
Bunker’s high-level design, which takes raw traffic as in-
put and generates an anonymized trace.

3.1 Design Goals

1. Privacy. While the system may store sensitive data
such as unanonymized packets, it must not permit an out-
side agent to extract anything other than analysis output.

2. Ease of development. The system should place as
few constraints as possible on implementing the analysis
software. For example, protocol reconstruction and pars-
ing should not have real-time performance requirements.
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3. Robustness. Common bugs found in handling
corner cases in parsing and analysis code should lead to
small errors in the trace rather than crashing the system
or completely corrupting its output.

4. Performance. The proposed system must per-
form as well as today’s network tracers when running on
equivalent hardware. In particular, it should be possible
to trace a high-capacity link with inexpensive hardware.

5. Use commodity hardware and software. The
proposed system should not require specialized hard-
ware, such as a Trusted Platform Module (TPM).

3.2 Privacy Properties

To meet our privacy design goal, we must protect all
gathered trace data even from an attacker who has phys-
ical access to the network tracing platform. To achieve
this high-level of protection, we designed Bunker to have
the following two properties:

1. Closed-box. The tracing infrastructure runs all
software that has direct access to the captured trace data
inside a closed-box environment. Administrators, oper-
ators, and users cannot interact with the tracing system
or access its internal state once it starts running. Input
to the closed-box environment is raw traffic; output is an
anonymized trace.

2. Safe-on-reboot. Upon a reboot, all gathered sensi-
tive data is effectively destroyed. This means that all un-
encrypted data is actually destroyed; the encryption key
is destroyed for all encrypted data placed in stable stor-
age. Bunker uses ECC RAM modules that are zeroed
out by the BIOS before booting [21]. Thus, it is safe-on-
reboot for reboots caused by pressing the RESET button
or by powering off the machine.

The closed-box property prevents an attacker from
gaining access to the data or to the tracing code while
it is running. However, this property is not sufficient.
An attacker could restart the system and boot a different
software image to access data stored on the tracing sys-
tem, or an attacker could tamper with the tracing hard-
ware (e.g., remove a hard drive and plug it in to another
system). To protect sensitive data against such physical
attacks, we use the safe-on-reboot property to erase all
sensitive data upon a reboot. Together, these two proper-
ties prevent an attacker from gaining access to sensitive
data via system tampering.

3.3 The Closed-Box Property

Bunker uses virtual machines to provide the closed-
box property. We now describe the rationale for our de-
sign and implementation.

3.3.1 Design Approach

In debating whether to use virtual or physical ma-
chines (e.g., a sealed appliance) to design our closed-box

Closed-box VM
Open-box VM (Domain0)
(DomainU) _ |+
N iptables
firewall

13 H ” H
Untrusted Software Crippled . e
) (narrow, restricted I/O)
Virtual Interface.
wion || [ Tm==d Bridge

One-Way-Initiation
Interface

| XEN Hypervisor |

| A

— o
Encrypted Capture Open
Raw Trace NIC NIC

Figure 2. Overview of Bunker’s implementation. The
closed-box VM runs a carefully configured Linux kernel.
The shaded area represents the Trusted Computing Base
(TCB) of our system.

environment, we chose the virtual machine option pri-
marily for flexibility and ease of development. We an-
ticipated that our design would undergo small modifica-
tions to accommodate unforeseen problems and worried
that making small changes to a sealed appliance would
be too difficult after the initial system was implemented
and deployed. With VMs, Bunker’s software can be eas-
ily retrofitted to trace different types of traffic. For exam-
ple, we used Bunker to gather a trace of Hotmail e-mails
and to gather flow-level statistics about TCP traffic.

Virtual machine monitors (VMMSs) have been used in
the past for building closed-box VMs [20, 11]. Using
virtual machines to provide isolation is especially ben-
eficial for tasks that require little interaction [6], such
as network tracing. Bunker runs all software that pro-
cesses captured data inside a highly trusted closed-box
VM. Users, administrators, and software in other VMs
cannot interact with the closed-box or access any of its
internal state once it starts running.

3.3.2 Implementation Details

We used the Xen 3.1 VMM to implement Bunker’s
closed-box environment. Xen, an open-source VMM,
provides para-virtualized x86 virtual machines [4]. The
VMM executes at the highest privilege level on the pro-
cessor. Above the VMM are the virtual machines, which
Xen calls domains. Each domain executes a guest oper-
ating system, such as Linux, which runs at a lower privi-
lege level than the VMM.

In Xen, Domain( has a special role: it uses a con-
trol interface provided by the VMM to perform man-
agement functions outside of the VMM, such as creating
other domains and providing access to physical devices
(including the network interfaces). Both its online trace
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iptables -P INPUT DROP
iptables -A INPUT -m state --state ESTABLISHED -j ACCEPT
iptables -A OUTPUT -m state --state NEW,ESTABLISHED -j ACCEPT

Figure 3. iptables firewall rules: An abbreviated list of
the rules that creates a one-way-initiation interface be-
tween the closed-box VM and the open-box VM. These
rules allow connections only if they are initiated by the
closed-box VM. Note that the ESTABLISHED state above
refers to a connection state used by iptables and not to
the ESTABLISHED state in the TCP stack.

collection and offline trace analysis components are im-
plemented as a collection of processes that execute on a
“crippled” Linux kernel that runs in the Domain0 VM,
as shown in Figure 2.

We carefully configured the Linux kernel running in
Domain0 to run as a closed-box VM. To do this, we
severely limited the closed-box VM’s I/O capabilities
and disabled all the kernel functionality (i.e., kernel sub-
systems and modules) not needed to support tracing. We
disabled all drivers (including the monitor, mouse and
keyboard) inside the kernel except for: 1) the network
capture card driver; 2) the hard disk driver; 3) the vir-
tual interface driver, used for closed-box VM to open-
box VM communication, and 4) the standard NIC driver
used to enable networking in the open-box VM. We also
disabled the login functionality; nobody, ourselves in-
cluded, can login to the closed-box VM. Once the kernel
boots, the kernel init process runs a script that launches
the tracer. We provide a publicly downloadable copy of
the kernel configuration file! used to compile the Do-
main0 kernel so that anyone can audit it.

The closed-box VM sends anonymized data and non-
sensitive diagnostic data to the open-box VM via a one-
way-initiation interface, as follows. We setup a layer-
3 firewall (e.g., iptables) that allows only those connec-
tions initiated by the closed-box VM; this firewall drops
any unsolicited traffic from the open-box VM. Figure 3
presents an abbreviated list of the firewall rules used to
configure this interface.

We deliberately crippled the kernel to restrict all other
I/O except that from the four remaining drivers. We con-
figured and examined each driver to eliminate any possi-
bility of an adversary taking advantage of these channels
to attack Bunker. Section 5 describes Bunker’s system
security in greater detail.

3.4 The Safe-on-Reboot Property

To implement the safe-on-reboot property, we need to
ensure that all sensitive data and the anonymization key
are stored in volatile memory only. However, tracing ex-
periments frequently generate more sensitive data than

'http://www.slup.cs.toronto.edu/utmtrace/
config-2.6.18-xen0-noscreen

can fit into memory. For example, a researcher might
need to capture a very large raw packet trace before run-
ning a trace analysis program that makes multiple passes
through the trace. VMM s alone cannot protect data writ-
ten to disk, because an adversary could simply move the
drive to another system to extract the data.

3.4.1 Design Approach

On boot-up, the closed-box VM selects a random key
that will be used to encrypt any data written to the hard
disk. This key (along with the anonymization key) is
stored only in the closed box VM’s volatile memory, en-
suring that it is both inaccessible to other VMs and lost
on reboot. Because data stored on the disk can be read
only with the encryption key, this approach effectively
destroys the data after a reboot. The use of encryption to
make disk storage effectively volatile is not novel; swap
file encryption is used on some systems to ensure that
fragments of an application’s memory space do not per-
sist once the application has terminated or the system has
restarted [39].

3.4.2 Implementation Details

To implement the safe-on-reboot property, we need to
ensure that all sensitive information is either stored only
in volatile memory or on disk using encryption where the
encryption key is stored only in volatile memory. To im-
plement the encrypted store, we use the dm-crypt [41]
device-mapper module from the Linux 2.6.18 kernel.
This module provides a simple abstraction: it adds an
encrypted device on top of any ordinary block device.
As a result, it works with any file system. The dm-crypt
module supports several encryption schemes; we used
the optimized implementation of AES. To ensure that
data in RAM does not accidentally end up on disk, we
disabled the swap partition. If swapping is needed in the
future, we could enable dm-crypt on the swap partition.
The root file system partition that contains the closed-
box operating system is initially mounted read only. Be-
cause most Linux configurations expect the root parti-
tion to be writable, we enable a read-write overlay for
the root partition that is protected by dm-crypt. This also
ensures that the trace analysis software does not acciden-
tally write any sensitive data to disk without encryption.

3.5 Trace Analysis Architecture

Bunker’s tracing software consists of two major
pieces: 1) the online component, independent of the par-
ticular network tracing experiment, and 2) the offline
component, which in our case is a phishing analysis trac-
ing application. Figure 4 shows Bunker’s entire pipeline,
including the online and offline components.

Bunker uses tcpdump version 3.9.5 to collect packet
traces. We fine-tuned tcpdump to increase the size of its
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Figure 4. Flow of trace data through Bunker’s modules. The online part of Bunker consists of tcpdump and the bfr
buffering module. The offline part of Bunker consists of bfr, [ibNids, HITP parser, Hotmail parser, SpamAssassin, and
an anonymizer module. Also, tcpdump, bfr, and libNids are generic components to Bunker, wherease HTTP parser,
Hotmail parser, SpamAssassin, and the anonymized module are specific to our current application: collecting traces

of phishing e-mail.

receive buffers. All output from tcpdump is sent directly
to bfr, a Linux non-blocking pipe buffer that buffers data
between Bunker’s offline and online components. We
use multiple memory mapped files residing on the en-
crypted disks as the bfr buffer and we allocate 380 GB of
disk space to it, sufficient to buffer over 8 hours of HTTP
traffic for our network. Figure 5 shows how bfr’s buffer
size varies over time.

Our Bunker deployment at the University of Toronto
is able to trace continuously, even with an unoptimized
offline component. This is because of the cyclical na-
ture of network traffic (e.g., previous studies showed that
university traffic is 1.5 to 2 times lower on a weekend
day than on a week day [42, 50]). This allows the offline
component to catch up with the online component dur-
ing periods of low load, such as nights and weekends. In
general, Bunker can only trace continuously if the buffer
drains completely at least once during the week. If the
peak buffer size during a week day is p and Bunker’s of-
fline component leaves A unprocessed at the end of a
week day (see Figure 5), Bunker is able to trace continu-
ously if the following two conditions hold:

1. Bunker’s buffer size is larger than 4 x A + p, or the
amount of unprocessed data after four consecutive week
days plus the peak traffic on the fifth week day;

2. During the weekend, Bunker’s offline component
can catch up to the online component by at least 5 x A
of the unprocessed data in the buffer.

The tracing application we built using Bunker gath-
ers traces of phishing e-mails received by Hotmail users
at the University of Toronto. The offline trace analysis
component performs five tasks: 1) reassembling pack-
ets into TCP streams; 2) parsing HTTP; 3) parsing Hot-
mail; 4) running SpamAssassin over the Hotmail e-mails,
and 5) anonymizing output. To implement each of these
tasks, we wrote simple Python and Perl scripts that made
extensive use of existing libraries and tools.

For TCP/IP reconstruction, we used /ibNids [48], a C
library that runs the TCP/IP stack from the Linux 2.0 ker-
nel in user-space. libNids supports reassembly of both

IP fragments and TCP streams. Both the HTTP and the
Hotmail parsers are written in Python version 2.5. We
used a wrapper for libNids in Python to interface with our
HTTP parsing code. Whenever a TCP stream is assem-
bled, libNids calls a Python function that passes on the
content to the HTTP and Hotmail parsers. The Hotmail
parser passes the bodies of the e-mail messages to Spa-
mAssassin (written in Perl) to utilize its spam and phish-
ing detection algorithms. The output of SpamAssassin
is parsed and then added to an internal object that repre-
sents the Hotmail message. This object is then serialized
as a Python “pickled” object before it is transferred to
the anonymization engine. We used an HTTP anonymiz-
ation policy similar to the one described in [35]. We took
two additional steps towards ensuring that the anonymiz-
ation policy is correctly specified and implemented: (1)
we performed a code review of the policy and its im-
plementation, and (2) we made the policy and the code
available to the University of Toronto’s network opera-
tors encouraging them to inspect it.

3.6 Debugging

Debugging a closed-box environment is challenging
because an attacker could use the debugging interface to
extract sensitive internal state from the system. Despite
this restriction, we found the development of Bunker’s
analysis software to be relatively easy. Our experience
found the off-the-shelf analysis code we used in Bunker
to be well tested and debugged. We used two addi-
tional techniques for helping to debug Bunker’s analysis
code. First, we tested our software extensively in the lab
against synthetic traffic sources that do not pose any pri-
vacy risks. To do this, we booted Bunker into a special
diagnostic mode that left I/O devices (such as the key-
board and monitor) enabled. This configuration allowed
us to easily debug the system and patch the analysis soft-
ware without rebooting.

Second, we ensured that every component of our anal-
ysis software produced diagnostic logs. These logs were
sent from the closed-box VM to the open-box VM using
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Figure 5. The size of bfr’s buffer over time. While the
queue size increases during the day, it decreases during
night when there is less traffic. At the end of this partic-
ular day, Bunker’s offline component still had 50GB of
unprocessed raw trace left in the buffer.

the same interface as the anonymized trace. They proved
helpful in shedding light on the “health” of the processes
inside the closed-box VM. We were careful to ensure that
no sensitive data could be written to the log files in order
to preserve trace data privacy.

4 The Benefits of Bunker

This section presents the benefits offered by Bunker’s
architecture.

4.1 Privacy Benefits

Unlike offline anonymization, our approach does not
allow network administrators or researchers to work
directly with sensitive data at any time. Because
unanonymized trace data cannot be directly accessed, it
cannot be produced under a subpoena. Our approach
also greatly reduces the chance that unanonymized data
will be stolen or accidentally released because individu-
als cannot easily extract such data from the system.

The privacy guarantees provided by our tracing sys-
tem are more powerful than those offered by online
anonymization. Bunker’s anonymization key is stored
within the closed-box VM, which prevents anyone from
accessing it. While online anonymization tracing sys-
tems are typically careful to avoid writing unanonymized
data to stable storage, they generally do not protect the
anonymization key against theft by an adversary with the
ability to login to the machine.

4.2 Software Engineering Benefits

When an encrypted disk is used to store the raw net-
work trace for later processing, the trace analysis code is
free to run offline at slower than line speeds. Bunker sup-
ports two models for tracing. In continuous tracing, the
disk acts as a large buffer, smoothing the traffic’s bursts
and its daily cycles. To trace network traffic continu-
ously, Bunker’s offline analysis code needs to run fast
enough for the average traffic rate, but it need not keep

up with the peak traffic rate. Bunker also supports de-
ferred trace analysis, where the length of the tracing pe-
riod is limited by the amount of disk storage, but there
are no constraints on the performance of the offline trace
analysis code. In contrast, online anonymization tracing
systems process data as it arrives and therefore must han-
dle peak traffic in real-time.

Bunker’s flexible performance requirements let the
developer use managed languages and sophisticated li-
braries when creating trace analysis software. As a re-
sult, its code is both easier to write and less likely to
contain bugs. The phishing analysis application using
Bunker was built by one graduate student in less than two
months, including the time spent configuring the closed-
box environment (a one-time cost with Bunker). This
development effort contrasts sharply with our experience
developing tracing systems with online anonymization.
To improve performance, these systems required devel-
opers to write carefully optimized code in low-level lan-
guages using sophisticated data structures. Bunker lets
us use Python scripts to parse HTTP, a TCP/IP reassem-
bly library, and Perl scripts running SpamAssassin.

4.3 Fault Handling Benefits

One serious drawback of most online trace analysis
techniques is their inability to cope gracefully with bugs
in the analysis software. Often, these are “corner-case”
bugs that arise in abnormal traffic patterns. In many cases
researchers and network operators would prefer to ig-
nore these abnormal flows and continue the data gath-
ering process; however, if the tracing software crashes,
all data would be lost until the system can be restarted.
This could result in the loss of megabytes of data even
if the restart process is entirely automated. Worse, this
process introduces systematic bias in the data collection
because crashes are more likely to affect long-lived than
short-lived flows.

Bunker can better cope with bugs because its online
and offline components are fully decoupled. This pro-
vides a number of benefits. First, Bunker’s online trace
collection software is simple because it only captures
packets and loads them in RAM (encryption is handled
automatically at the file system layer). Its simplicity and
size make it easy to test extensively. Second, the on-
line software need not change even when the type of
trace analysis being performed changes. Third, the of-
fline trace analysis software also becomes much simpler
because it need not be heavily optimized to run at line
speed. Unoptimized software tends to have a simpler
program structure and therefore fewer bugs. Simpler
program structure also makes it easier to recover from
bugs when they do arise. Finally, a decoupled architec-
ture makes it possible to identify the flow that caused the
error in the trace analyzer, filter out that flow from the
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buffered raw trace, and restart the trace analyzer so that
it never sees that flow as input and thereby avoids the bug
entirely. Section 7 quantifies the effect of this improved
fault handling on the number of flows that are dropped
due to a parsing bug.

S Security Attacks

Bunker’s design is inspired by Terra, a VM-based
platform for trusted computing [20]. Both Terra and
Bunker protect sensitive data by encapsulating it in a
closed-box VM with deliberately restricted I/O inter-
faces. The security of such architectures does not rest
on the size of the trusted computing base (TCB) but on
whether an attacker can exploit a vulnerability through
the system’s narrow interfaces. Even if there is a vulner-
ability in the OS running in the closed-box VM, Bunker
remains secure as long as attackers cannot exploit the
vulnerability through the restricted channels. In our ex-
perience, ISPs have found Bunker’s security properties a
significant step forward in protecting users privacy when
tracing.

Attacks on Bunker can be categorized into three
classes. The first are those that attempt to subvert the
narrow interfaces of the closed-box VM. A successful
attack on these interfaces exposes the closed-box VM’s
internals. The second class are physical attacks, in which
the attacker tampers with Bunker’s hardware. The third
possibility are attacks whereby Bunker deliberately al-
lows network traffic into the closed-box VM: an attacker
could try to exploit a vulnerability in the trace analysis
software by injecting traffic in the network being moni-
tored. We now examine each attack type in greater detail.

5.1 Attacking the Restricted Interfaces of the
Closed-Box VM

There are three ways to attack the restricted interfaces
of the closed-box VM: 1) subverting the isolation pro-
vided by the VMM to access the memory contents of the
closed-box VM; 2) exploiting a security vulnerability in
one of the system’s drivers; and 3) attacking the closed-
box VM directly using the one-way-initiation interface
between the closed and open-box VMs.

5.1.1 Attacking the VMM

We use a VMM to enforce isolation between soft-
ware components that need access to sensitive data and
those that do not. Bunker’s security rests on the assump-
tion that VMM-based isolation is hard to attack, an as-
sumption made by many in industry [23, 47] and the re-
search community [20, 11, 6, 43]. There are other ap-
proaches we could have used to confine sensitive data
strictly to the pre-loaded analysis software. For exam-
ple, we could have used separate physical machines to

host the closed and open box systems. Alternatively, we
could have relied on a kernel and its associated isola-
tion mechanisms, such as processes and file access con-
trols. However, VM-based isolation is generally thought
to provide stronger security than process-based isolation
because VMMs are small enough to be rigorously ver-
ified and export only a very narrow interface to their
VMs [6, 7, 29]. In contrast, kernels are complex pieces
of software that expose a rich interface to their processes.

5.1.2 Attacking the Drivers

Drivers are among the buggiest components of an
OS [8]. Security vulnerabilities in drivers let attackers
bypass all access restrictions imposed by the OS. Sys-
tems without an IOMMU are especially susceptible to
buggy drivers because they cannot prevent DMA-capable
hardware from accessing arbitrary memory addresses.
Many filesystem drivers can be exploited by carefully
crafted filesystems [53]. Thus, if Bunker were to auto-
mount inserted media, an attacker could compromise the
system by inserting a CDROM or USB memory device
with a carefully crafted filesystem image.

Bunker addresses such threats by disabling all drivers
(including the monitor, mouse, and keyboard) except
these four: 1) the network capture card driver, 2) the
hard disk driver, 3) the driver for the standard NIC used
to enable networking in the open-box VM, and 4) the
driver for the virtual interfaces used between the closed-
box and open-box VMs. In particular, we were careful
to disable external storage device support (i.e. CDROM,
USB mass storage) and USB support.

We examined each of these drivers and believe that
none can be exploited to gain access to the closed-box.
First, the network capture card loads incoming network
traffic via one of the drivers left enabled in Domain0.
This capture card, a special network monitoring card
made by Endace (DAG 4.3GE) [17], cannot be used for
two-way communication. Thus, an attacker cannot gain
remote access to the closed-box solely through this net-
work interface. The second open communication chan-
nel is the SCSI controller driver for our hard disks. This
is a generic Linux driver, and we checked the Linux ker-
nel mailing lists to ensure that it had no known bugs. The
third open communication channel, the NIC used by the
open-box VM, remains in the closed-box VM because
Xen'’s design places all hardware drivers in Domain0. We
considered mapping this driver directly into DomainU,
but doing so would create challenging security issues re-
lated to DMA transfers that are best addressed with spe-
cialized hardware support (SecVisor [43] discusses these
issues in detail). Instead, we use firewall rules to ensure
that all outbound communication on this NIC originates
from the open-box VM. As with the SCSI driver, this is
a generic Linux gigabit NIC driver, and we verified that
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it had no known bugs. The final open communication
channel is constructed by installing a virtual NIC in both
the closed-box and open-box VMs and then building a
virtual network between them. Typical for most Xen
environments, this configuration permits communication
across different Domains. As with the SCSI driver, we
checked that it had no known security vulnerabilities.

5.1.3 Attacking the One-Way-Initiation Interface

Upon startup, Bunker firewalls the interface between
the open-box VM and the closed-box VM using ipta-
bles. The rules used to configure iptables dictate that no
connections are allowed unless they originate from the
closed-box VM (see Figure 3). We re-used a set of rules
from an iptables configuration for firewalling home envi-
ronments found on the Internet.

5.2 Attacking Hardware

Bunker protects the closed-box VM from hardware at-
tacks by making it safe-on-reboot. If an attacker turns off
the machine to tamper with the hardware (e.g. by remov-
ing existing hardware or installing new hardware), the
sensitive data contained in the closed-box VM is effec-
tively destroyed. This is because the encryption keys and
any unencrypted data are only stored in volatile memory
(RAM). Therefore, hardware attacks must be mounted
while the system is running. Section 5.1.2 discusses how
we eliminated all unnecessary drivers from Bunker; this
protects Bunker against attacks relying on adding new
system devices, such as USB devices.

Another class of hardware attacks is one in which the
attacker attempts to extract sensitive data (e.g., the en-
cryption keys) from RAM. Such attacks can be mounted
in many ways. A recent project demonstrated that the
contents of today’s RAM modules may remain readable
even minutes after the system has been powered off [21].
Bunker is vulnerable to such attacks: an attacker could
try to extract the encryption keys from memory by re-
moving the RAM modules from the tracing machine and
placing them into one configured to run key-searching
software over memory on bootup [21]. Another approach
is to attach a bus monitor to observe traffic on the mem-
ory bus. Preventing RAM-based attacks requires special-
ized hardware, which we discuss below. Yet another way
is to attach a specialized device, such as certain Firewire
devices, that can initiate DMA transfers without any sup-
port from software running on the host [37, 14]. Prevent-
ing this attack requires either 1) disabling the Firewire
controller or 2) support from an IOMMU to limit which
memory regions can be accessed by Firewire devices.

Secure Co-processors Can Prevent Hardware At-
tacks: A secure co-processor contains a CPU pack-
aged with a moderate amount of non-volatile memory
enclosed in a tamper-resistant casing [44]. A secure

co-processor would let Bunker store the encryption and
anonymization keys, the unencrypted trace data and the
code in a secure environment. It also allows the code to
be executed within the secure environment.

Trusted Platform Modules (TPMs) Cannot Pre-
vent Hardware Attacks: Unfortunately, the use of
TPMs would not significantly help Bunker survive hard-
ware attacks. The limited storage and execution capa-
bilities of a TPM cannot fully protect encryption keys
and other sensitive data from an adversary with physical
access [21]. This is because symmetric encryption and
decryption are not performed directly by the TPM; these
operations are still handled by the system’s CPU. There-
fore, the encryption keys must be exposed to the OS and
stored in RAM, making them subject to the attack types
mentioned above.

5.3 Attacking the Trace Analysis Software

An attacker could inject carefully crafted network
traffic to exploit a vulnerability in the trace analysis soft-
ware, such as a buffer overflow. Because this software
does not run as root, such attacks cannot disable the nar-
row interfaces of the closed-box; the attacker needs root
privileges to alter the OS drivers or the iptable’s firewall
rules. Nevertheless, such an attack could obtain access
to sensitive data, skip the anonymization step, and send
captured data directly to the open-box VM through the
one-way-initiation interface.

While possible, such attacks are challenging to mount
in practice for two reasons. First, Bunker’s trace anal-
ysis software combines C (e.g., tcpdump plus a TCP/IP
reconstruction library, which is a Linux 2.0 networking
stack running in user-space), Python, and Perl. The C
code is well-known and well-tested, making it less likely
to have bugs that can be remotely exploited by injecting
network traffic. Bunker’s application-level parsing code
is written in Python and Perl, two languages that are re-
sistant to buffer overflows. In contrast, online anonymiz-
ers write all their parsing code in unmanaged languages
(e.g., C or C++) in which it is much harder to handle code
errors and bugs.

Second, a successful attack would send sensitive data
to the open-box VM. The attacker must then find a way
to extract the data from the open-box VM. To mitigate
this possibility, we firewall the open-box’s NIC to re-
ject any traffic unless it originates from our own private
network. Thus, to be successful, an attacker must not
only find an exploitable bug in the trace analysis code
but must also compromise the open-box VM through an
attack that originates from our private network.

6 Operational Issues

At boot time, Bunker’s bootloader asks the user to
choose between two configurations: an ordinary one and
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a restricted one. The ordinary configuration loads a typ-
ical Xen environment with all drivers enabled. We use
this environment only to prepare a tracing experiment
and to configure Bunker; we never gather traces in it
because it offers no privacy benefits. To initiate a trac-
ing experiment, we boot into the restricted environment.
When booting into this environment, Bunker’s display
and keyboard freeze because no drivers are being loaded.
In this configuration, we use the open NIC to log in to
the open-box VM where we can monitor the anonymized
traces received through the one-way-initiation interface.
These traces also contain meta-data about the health of
the closed-box VM, including a variety of counters (such
as packets received, packets lost, usage of memory, and
amount of free space on the encrypted disk).

Network studies often need traces that span weeks,
months, or even years. The closed-box nature of Bunker
and its long-term use raise the possibility of the following
operational attack: an intruder gains physical access to
Bunker, reboots it, and sets it up with a fake restricted en-
vironment that behaves like Bunker’s restricted environ-
ment but uses encryption and anonymization keys known
to the intruder. This attack could remain undetected by
network operators. From the outside, Bunker seems to
have gathered network traces continuously.

To prevent this attack, Bunker could generate a pub-
lic/private key-pair upon starting the closed-box VM.
The public key would be shared with the network op-
erator who saves an offline copy, while the private key
would never be released from the closed-box VM. To
verify that Bunker’s code has not been replaced, the
closed-box VM would periodically send a heartbeat mes-
sage through the one-way-initiation interface to the open-
box. The heartbeat message would contain the experi-
ment’s start time, the current time, and additional coun-
ters, all signed with the private key to let network opera-
tors verify that Bunker’s original closed-box remains the
one currently running. This prevention mechanism is not
currently implemented.

7 Evaluation

This section presents a three-pronged evaluation of
Bunker. First, we measure the performance overhead in-
troduced by virtualization and encryption. Second, we
evaluate Bunker’s software engineering benefits when
compared to online tracing tools. Third, we conduct an
experiment to show Bunker’s fault handling benefits.

7.1 Performance Overhead

To evaluate the performance overhead of virtualiza-
tion and encryption, we ran tcpdump (i.e., Bunker’s on-
line component) to capture all traffic traversing a gigabit
link and store it to disk. We measured the highest rate of
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Figure 6. Performance overhead of virtualization and
encryption: We measured the rate of traffic that tcpdump
can capture on our machine with no packet losses under
four configurations: standalone, running in a Xen VM,
running on top of an encrypted file system, and running
on top of an encrypted file system in a Xen VM. All output
captured by tcpdump was written to the disk.

traffic tcpdump can capture with no packet losses under
four configurations: standalone, running in a Xen VM,
running on top of an encrypted disk with dm-crypt [41],
and running on top of an encrypted disk in a Xen VM.

Our tracing host is a dual Intel Xeon 3.0GHz with
4 GB of RAM, six 150 GB SCSI hard-disk drives, and
a DAG 4.3GE capture card. We ran Linux Debian 4.0
(etch), kernel version 2.6.18-4 and attached the tracer to
a dedicated Dell PowerConnect 2724 gigabit switch with
two other commodity PCs attached. One PC sent con-
stant bit-rate (CBR) traffic at a configurable rate to the
other; the switch was configured to mirror all traffic to
our tracing host. We verified that no packets were being
dropped by the switch.

Figure 6 shows the results of this experiment. The
first bar shows that we capture 925 Mbps when running
tcpdump on the bare machine with no isolation. The lim-
iting factor in this case is the rate at which our commod-
ity PCs can exchange CBR traffic; even after fine tuning,
they can exchange no more than 925 Mbps on our gi-
gabit link. The second bar shows that running tcpdump
inside the closed-box VM has no measurable effect on
the capture rate because the limiting factor remains our
traffic injection rate. When we use the Linux dm-crypt
module for encryption, however, the capture rate drops
to 817 Mbps even when running on the bare hardware:
the CPU becomes the bottleneck when running the en-
cryption module. Combining both virtualization and en-
cryption shows a further drop in the capture rate, to 618
Mbps. Once the CPU is fully utilized by the encryp-
tion module, the additional virtualization costs become
apparent.

Our implementation of Bunker can trace network traf-
fic of up to 618 Mbps with no packet loss. This is suf-
ficiently fast for the tracing scenario that our university
requires. While the costs of encryption and virtualiza-
tion are not negligible, we believe that these overheads
will decrease over time as Linux and Xen incorporate

38

NSDI *09: 6th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association



further optimizations to their block-level encryption and
virtualization software. At the same time, CPU manu-
facturers have started to incorporate hardware accelera-
tion for AES encryption (i.e., similar to what dm-crypt
uses) [46].

7.2 Software Engineering Benefits

As previously discussed, Bunker offers significant
software engineering benefits over online network trac-
ing systems. Figure 7 shows the number of lines of code
for three network tracing systems that perform HTTP
parsing, all developed by this paper’s authors. The first
two systems trace HTTP traffic at line speeds. The first
system was developed from scratch by two graduate stu-
dents over the course of one year. The second system
was developed by one graduate student in nine months;
this system was built on top of CoMo, a packet-level trac-
ing system developed by Intel Research [22]. Bunker is
the third system; it was developed by one student in two
months. As Figure 7 shows, Bunker’s codebase is an or-
der of magnitude smaller than the others. Moreover, we
wrote only about one fifth of Bunker’s code; the remain-
der was re-used from libraries.

Bunker’s smaller and simpler codebase comes at a
cost in terms of its offline component’s performance.
Figure 8 shows the time elapsed for Bunker’s online
and offline components to process a 5 minute trace of
HTTP traffic. The trace contains 4.5 million requests,
or about 15,000 requests per second, that we generated
using httpperf. In practice, very few traces contain that
many HTTP requests per second. While the online com-
ponent runs only tcpdump storing data to the disk, the of-
fline component performs TCP/IP reconstruction, parses
HTTP, and records the HTTP headers before copying the
trace to the open-box VM. The offline component spends
20 minutes and 28 seconds processing this trace. Clearly,
Bunker’s ease of development comes at the cost of per-
formance, as we did not optimize the HTTP parser at all.
The privacy guarantees of our isolated environment grant
us the luxury of re-using existing software components
even though they do not meet the performance demands
of online tracing.

7.3 Fault Handling Evaluation

In addition to supporting fast development of differ-
ent tracing experiments, Bunker handles bugs in the trac-
ing software robustly. Upon encountering a bug, Bunker
marks the offending flow as “erroneous” and continues
processing traffic without having to restart. To illus-
trate the benefits of this fault handling approach, we per-
formed the following experiment. We used Bunker on
a Saturday to gather a 20 hour trace of the HTTP traf-
fic our university exchanges with the Internet. This trace
contained over 5.2 million HTTP flows. We artificially
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Figure 7. Lines of Code in three systems for gather-
ing HTTP traces: The first system was developed from
scratch by two graduate students in one year. The sec-
ond system, an extension of CoMo [22], was developed
by one graduate student in nine months, we included
CoMo’s codebase when counting the size of this system’s
codebase. The third system, Bunker, was developed by
one student in two months.

injected a parsing bug in one packet out of 100,000 (cor-
responding to a parsing error rate of 0.001%). Upon en-
countering this bug, Bunker stops parsing the erroneous
HTTP flow and continues with the remaining flows. We
compare Bunker to an online tracer that would crash
upon encountering a bug and immediately restart. This
would result in the online tracer dropping all concurrent
flows (we refer to this as “collateral damage”). This ex-
periment assumes an idealized version of an online tracer
that restarts instantly; in practice, it takes tens of sec-
onds to restart an online tracer’s environment losing even
more ongoing flows. Figure 9 illustrates the difference in
the fraction of flows affected. While our bug is encoun-
tered in only 0.08% of the flows, it affects an additional
31.72% of the flows for an online tracing system. Not
one of these additional flows is affected by the bug when
Bunker performs the tracing.

8 Legal Background

This section presents legal background concerning the
issuing of subpoenas for network traces in the U.S. and
Canada and discusses legal issues inherent in designing
and deploying data-hiding tracing platforms?.

8.1 Issuing Subpoenas for Data Traces

U.S. law has two sets of requirements for obtaining
a data trace that depend on when the data was gathered.
For data traces gathered in the past 180 days, the govern-
ment needs a mere subpoena. Such subpoenas are ob-
tained from a federal or state court with jurisdiction over
the offense under investigation. Based on our conver-
sations with legal experts, obtaining a subpoena is rel-
atively simple in the context of a lawsuit. A defendant

2 Any mistakes in our characterization of the U.S. or Canadian legal
systems are the sole responsibility of the authors and not the lawyers
we consulted during this research project.
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Figure 8. Online vs. Offline processing speed: The time
spent processing a five minute HTTP trace by Bunker’s
online and offline components, respectively.

(e.g., the ISP) could try to quash the subpoena if compli-
ance would be unreasonable or oppressive.

For data gathered more than 180 days earlier, a gov-
ernment entity needs a warrant under Title 18 United
States Code 2703(d) from a federal or state court with ap-
propriate jurisdiction. The government needs to present
“specific and articulable facts showing that there are rea-
sonable grounds to believe that the contents of a wire
or electronic communication, or the records or other in-
formation sought, are relevant and material to an ongo-
ing criminal investigation.” The defendant can quash the
subpoena if the information requested is “unusually vo-
luminous in nature” or compliance would cause undue
burden. Based on our discussions with legal experts, the
court would issue such a warrant if it determines that
the data is relevant and not duplicative of information
already held by the government entity.

In Canada, a subpoena is sufficient to obtain a data
trace regardless of the data’s age. In 2000, the Cana-
dian government passed the Personal Information Pro-
tection and Electronic Documents Act (PIPEDA) [33],
which enhances the users’ rights to privacy for their data
held by private companies such as ISPs. However, Sec-
tion 7(3)(c.1) of PIPEDA indicates that ISPs must dis-
close personal information (including data traces) if they
are served with a subpoena or even an “order made by
a court, person or body with jurisdiction to compel pro-
duction of information”. In a recent case, a major Cana-
dian ISP released personal information to the local police
based on a letter that stated that “the request was done
under the authority of PIPEDA” [32]. A judge subse-
quently found that prior authorization for this informa-
tion should have been obtained, and the ISP should not
have disclosed this information. This case illustrates the
complexity of the legal issues ISPs face when they store
personal information (e.g., raw network traces).

8.2 Developing Data-Hiding Technology

In our discussions with legal experts, we investigated
whether it is legal to develop and deploy a data-hiding
network tracing infrastructure (such as Bunker). While
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Figure 9. Fraction of flows affected by a bug in an on-
line tracer versus in Bunker: A bug crashing an online
tracer affects all flows running concurrent with the crash.
Instead, Bunker handles bugs using exceptions affecting
only the flows that triggered the bug.

there is no clear answer to this question without legal
precedent, we learned that the way to evaluate this ques-
tion is to consider the purpose and potential uses for the
technology in question. In general, it is legal to deploy
a technology that has many legitimate uses but could
also enable certain illegitimate uses. Clearly, technolo-
gies whose primary use is to enable or encourage users
to evade the law are not legal. A useful example to il-
lustrate this distinction is encryption technology. While
encryption can certainly be used to enable illegal activi-
ties, its many legitimate uses make development and de-
ployment of encryption technologies legal. In the con-
text of network tracing, protecting users’ privacy against
accidental loss or mismanagement of the trace data is a
legitimate purpose.

9 Related Work

Bunker draws on previous work in network tracing
systems, data anonymizing techniques, and virtual ma-
chine usage for securing systems. We summarize this
previous work and then we describe two systems built to
protect access to sensitive data, such as network traces.

9.1 Network Tracing Systems

One of the earliest network tracing systems was Http-
dump [51], a tcpdump extension that constructs a log
of HTTP requests and responses. Windmill [30] devel-
oped a custom packet filter that facilitates the building
of specific network analysis applications; it delivers cap-
tured packets to multiple filters using dynamic code gen-
eration. BLT [18], a network tracing system developed
specifically to study HTTP traffic, supports continuous
online network monitoring. BLT does not use online
anonymization; instead, it records raw packets directly to
disk. More recently, CoMo [22] was designed to allow
independent parties to run multiple ongoing trace anal-
ysis modules by isolating them from each other. With
CoMo, anonymization, whether online or offline, must
be implemented by each module’s owner. Unlike these
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systems, Bunker’s design was motivated by the need to
protect the privacy of network users.

9.2 Anonymization Techniques

Xu et al. [52] implemented a prefix-preserving anony-
mization scheme for IP addresses, i.e., addresses with
the same IP prefix share the same prefix after anonymiz-
ation. Pang et al. [35] designed a high-level language for
specifying anonymization policies, allowing researchers
to write short policy scripts to express trace transforma-
tions. Recent work has shown that traces can still leak
private information even after they are anonymized [34],
prompting the research community to propose a set
of guidelines and etiquette for sharing data traces [1].
Bunker’s goal is to create a tracing system that makes
it easy to develop trace analysis software while ensuring
that no raw data can be exposed from the closed-box VM.
Bunker does not protect against faulty anonymization
policies, nor does it ensure that anonymized data cannot
be subject to the types of attacks described in [34].

9.3 Using VMs for Making Systems Secure

An active research area is designing virtual ma-
chine architectures that are secure in the face of at-
tacks. Several solutions have been proposed, includ-
ing: using tamper-resistant hardware [28, 20]; design-
ing VMMs that are small enough for formal verifica-
tion [25, 40]; using programming language techniques
to provide memory safety and control-flow integrity in
commodity OS’es [26, 12]; and using hardware memory
protection to provide code integrity [43]. While these
systems attempt to secure a general purpose commod-
ity OS, Bunker was designed only to secure tracing soft-
ware. As a result, its interfaces are simple and narrow.

9.4 Protecting Access to Sensitive Data

Packet Vault [3] is a network tracing system that cap-
tures packets, encrypts them, and writes them to a CD.
A newer system design tailored for writing the encrypted
traces to tape appears in [2]. Packet Vault creates a per-
manent record of all network traffic traversing a link. Its
threat model differs from Bunker’s in that there is no at-
tempt to secure the system against physical attacks.

Armored Data Vault [24] is a system that implements
access control to previously collected network traces, by
using a secure co-processor to enforce security in the face
of malicious attackers. Like Bunker, network traces are
encrypted before being stored. The encryption key and
any raw data are stored inside the secure co-processor.
Bunker’s design differs from Armored Data Vault’s in
three important ways. First, Bunker’s goal is limited to
trace anonymization only and not to implementing ac-
cess control policies; this lets us use simple, off-the-shelf

anonymization code to minimize the likelihood of bugs
present in the system. Second, Bunker destroys the raw
data as soon as it is anonymized; the Armored Data Vault
stores its raw traces permanently while enforcing the data
access policy. Finally, Bunker uses commodity hard-
ware that can run unmodified off-the-shelf software. In-
stead, the authors of the Armored Data Vault had to port
their code to accommodate the specifics of the secure co-
processor, a process that required effort and affected the
system’s performance [24].

10 Conclusions

This paper presents Bunker, a network tracing archi-
tecture that combines the performance and software en-
gineering benefits of offline anonymization with the pri-
vacy offered by online anonymization. Bunker uses a
closed-box and safe-on-reboot architecture to protect raw
trace data against a large class of security attacks, includ-
ing physical attacks to the system. In addition to its secu-
rity benefits, our architecture improves ease of develop-
ment: using Bunker, one graduate student implemented a
network tracing system for gathering anonymized traces
of Hotmail e-mail in less than two months.

Our evaluation shows that Bunker has adequate per-
formance. We show that Bunker’s codebase is an order
of magnitude smaller than previous network tracing sys-
tems that perform online anonymization. Because most
of its data processing is performed offline, Bunker also
handles faults more gracefully than previous systems.
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Abstract

WheelFS is a wide-area distributed storage system in-
tended to help multi-site applications share data and gain
fault tolerance. WheelFS takes the form of a distributed
file system with a familiar POSIX interface. Its design al-
lows applications to adjust the tradeoff between prompt
visibility of updates from other sites and the ability for
sites to operate independently despite failures and long
delays. WheelFS allows these adjustments via semantic
cues, which provide application control over consistency,
failure handling, and file and replica placement.

WheelFS is implemented as a user-level file system and
is deployed on PlanetLab and Emulab. Three applications
(a distributed Web cache, an email service and large file
distribution) demonstrate that WheelFS’s file system in-
terface simplifies construction of distributed applications
by allowing reuse of existing software. These applica-
tions would perform poorly with the strict semantics im-
plied by a traditional file system interface, but by pro-
viding cues to WheelFS they are able to achieve good
performance. Measurements show that applications built
on WheelFS deliver comparable performance to services
such as CoralCDN and BitTorrent that use specialized
wide-area storage systems.

1 Introduction

There is a growing set of Internet-based services that are
too big, or too important, to run at a single site. Examples
include Web services for e-mail, video and image hosting,
and social networking. Splitting such services over mul-
tiple sites can increase capacity, improve fault tolerance,
and reduce network delays to clients. These services often
need storage infrastructure to share data among the sites.
This paper explores the use of a new file system specif-
ically designed to be the storage infrastructure for wide-
area distributed services.

A wide-area storage system faces a tension between
sharing and site independence. The system must support
sharing, so that data stored by one site may be retrieved
by others. On the other hand, sharing can be dangerous if
it leads to the unreachability of one site causing blocking
at other sites, since a primary goal of multi-site opera-
tion is fault tolerance. The storage system’s consistency

fNew York University

model affects the sharing/independence tradeoff: stronger
forms of consistency usually involve servers or quorums
of servers that serialize all storage operations, whose un-
reliability may force delays at other sites [23]. The storage
system’s data and meta-data placement decisions also af-
fect site independence, since data placed at a distant site
may be slow to fetch or unavailable.

The wide-area file system introduced in this paper,
WheelFS, allows application control over the sharing/in-
dependence tradeoff, including consistency, failure han-
dling, and replica placement. Each application can choose
a tradeoff between performance and consistency, in the
style of PRACTI [8] and PADS [9], but in the context of a
file system with a POSIX interface.

Central decisions in the design of WheelFS includ-
ing defining the default behavior, choosing which behav-
iors applications can control, and finding a simple way
for applications to specify those behaviors. By default,
WheelFS provides standard file system semantics (close-
to-open consistency) and is implemented similarly to pre-
vious wide-area file systems (e.g., every file or directory
has a primary storage node). Applications can adjust the
default semantics and policies with semantic cues. The set
of cues is small (around 10) and directly addresses the
main challenges of wide-area networks (orders of magni-
tude differences in latency, lower bandwidth between sites
than within a site, and transient failures). WheelFS allows
the cues to be expressed in the pathname, avoiding any
change to the standard POSIX interface. The benefits of
WheelFS providing a file system interface are compatibil-
ity with existing software and programmer ease-of-use.

A prototype of WheelFS runs on FreeBSD, Linux, and
MacOS. The client exports a file system to local applica-
tions using FUSE [21]. WheelFS runs on PlanetLab and
an emulated wide-area Emulab network.

Several distributed applications run on WheelFS and
demonstrate its usefulness, including a distributed Web
cache and a multi-site email service. The applications use
different cues, showing that the control that cues pro-
vide is valuable. All were easy to build by reusing ex-
isting software components, with WheelFS for storage
instead of a local file system. For example, the Apache
caching web proxy can be turned into a distributed, co-
operative Web cache by modifying one pathname in a
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configuration file, specifying that Apache should store
cached data in WheelFS with cues to relax consistency.
Although the other applications require more changes, the
ease of adapting Apache illustrates the value of a file sys-
tem interface; the extent to which we could reuse non-
distributed software in distributed applications came as a
surprise [38].

Measurements show that WheelFS offers more scal-
able performance on PlanetLab than an implementation of
NFSv4, and that for applications that use cues to indicate
they can tolerate relaxed consistency, WheelFS continues
to provide high performance in the face of network and
server failures. For example, by using the cues .Eventu-
alConsistency, .MaxTime, and .Hotspot, the distributed
Web cache quickly reduces the load on the origin Web
server, and the system hardly pauses serving pages when
WheelFS nodes fail; experiments on PlanetLab show that
the WheelFS-based distributed Web cache reduces origin
Web server load to zero. Further experiments on Emu-
lab show that WheelFS can offer better file downloads
times than BitTorrent [14] by using network coordinates
to download from the caches of nearby clients.

The main contributions of this paper are a new file
system that assists in the construction of wide-area dis-
tributed applications, a set of cues that allows applications
to control the file system’s consistency and availability
tradeoffs, and a demonstration that wide-area applications
can achieve good performance and failure behavior by us-
ing WheelFS.

The rest of the paper is organized as follows. Sections 2
and 3 outline the goals of WheelFS and its overall de-
sign. Section 4 describes WheelFS’s cues, and Section 5
presents WheelFS’s detailed design. Section 6 illustrates
some example applications, Section 7 describes the imple-
mentation of WheelFS, and Section 8 measures the per-
formance of WheelFS and the applications. Section 9 dis-
cusses related work, and Section 10 concludes.

2 Goals

A wide-area storage system must have a few key prop-
erties in order to be practical. It must be a useful building
block for larger applications, presenting an easy-to-use in-
terface and shouldering a large fraction of the overall stor-
age management burden. It must allow inter-site access to
data when needed, as long as the health of the wide-area
network allows. When the site storing some data is not
reachable, the storage system must indicate a failure (or
find another copy) with relatively low delay, so that a fail-
ure at one site does not prevent progress at other sites. Fi-
nally, applications may need to control the site(s) at which
data are stored in order to achieve fault-tolerance and per-
formance goals.

As an example, consider a distributed Web cache whose
primary goal is to reduce the load on the origin servers of

popular pages. Each participating site runs a Web proxy
and a part of a distributed storage system. When a Web
proxy receives a request from a browser, it first checks
to see if the storage system has a copy of the requested
page. If it does, the proxy reads the page from the stor-
age system (perhaps from another site) and serves it to the
browser. If not, the proxy fetches the page from the origin
Web server, inserts a copy of it into the storage system (so
other proxies can find it), and sends it to the browser.

The Web cache requires some specific properties from
the distributed storage system in addition to the general
ability to store and retrieve data. A proxy must serve data
with low delay, and can consult the origin Web server if
it cannot find a cached copy; thus it is preferable for the
storage system to indicate “not found” quickly if finding
the data would take a long time (due to timeouts). The
storage need not be durable or highly fault tolerant, again
because proxies can fall back on the origin Web server.
The storage system need not be consistent in the sense of
guaranteeing to find the latest stored version of document,
since HTTP headers allow a proxy to evaluate whether a
cached copy is still valid.

Other distributed applications might need different
properties in a storage system: they might need to see the
latest copy of some data, and be willing to pay a price in
high delay, or they may want data to be stored durably,
or have specific preferences for which site stores a doc-
ument. Thus, in order to be a usable component in many
different systems, a distributed storage system needs to
expose a level of control to the surrounding application.

3  WheelFS Overview

This section gives a brief overview of WheelFS to help the
reader follow the design proposed in subsequent sections.

3.1 System Model

WheelFS is intended to be used by distributed applica-
tions that run on a collection of sites distributed over the
wide-area Internet. All nodes in a WheelFS deployment
are either managed by a single administrative entity or
multiple cooperating administrative entities. WheelFS’s
security goals are limited to controlling the set of partici-
pating servers and imposing UNIX-like access controls on
clients; it does not guard against Byzantine failures in par-
ticipating servers [6,26]. We expect servers to be live and
reachable most of the time, with occasional failures. Many
existing distributed infrastructures fit these assumptions,
such as wide-area testbeds (e.g., PlanetLab and RON),
collections of data centers spread across the globe (e.g.,
Amazon’s EC2), and federated resources such as Grids.

3.2 System Overview

WheelFS provides a location-independent hierarchy of di-
rectories and files with a POSIX file system interface. At
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any given time, every file or directory object has a single
“primary” WheelFS storage server that is responsible for
maintaining the latest contents of that object. WheelFS
clients, acting on behalf of applications, use the storage
servers to retrieve and store data. By default, clients con-
sult the primary whenever they modify an object or need
to find the latest version of an object. Accessing a single
file could result in communication with several servers,
since each subdirectory in the path could be served by a
different primary. WheelFS replicates an object’s data us-
ing primary/backup replication, and a background mainte-
nance process running on each server ensures that data are
replicated correctly. Each update to an object increments
a version number kept in a separate meta-data structure,
co-located with the data.

When a WheelFS client needs to use an object, it must
first determine which server is currently the primary for
that object. All nodes agree on the assignment of objects
to primaries to help implement the default strong consis-
tency. Nodes learn the assignment from a configuration
service—a replicated state machine running at multiple
sites. This service maintains a table that maps each object
to one primary and zero or more backup servers. WheelFS
nodes cache a copy of this table. Section 5 presents the de-
sign of the configuration service.

A WheelFS client reads a file’s data in blocks from
the file’s primary server. The client caches the file’s data
once read, obtaining a lease on its meta-data (including
the version number) from the primary. Clients have the
option of reading from other clients’ caches, which can
be helpful for large and popular files that are rarely up-
dated. WheelFS provides close-to-open consistency by
default for files, so that if an application works correctly
on a POSIX file system, it will also work correctly on
WheelFS.

4 Semantic cues

WheelFS provides semantic cues within the standard
POSIX file system API. We believe cues would also be
useful in the context of other wide-area storage layers with
alternate designs, such as Shark [6] or a wide-area version
of BigTable [13]. This section describes how applications
specify cues and what effect they have on file system op-
erations.

4.1 Specifying cues

Applications specify cues to WheelFS in pathnames; for
example, /wfs/.Cue/data refers to /wfs/data with the cue
.Cue. The main advantage of embedding cues in path-
names is that it keeps the POSIX interface unchanged.
This choice allows developers to program using an inter-
face with which they are familiar and to reuse software
easily.

One disadvantage of cues is that they may break soft-

ware that parses pathnames and assumes that a cue is a
directory. Another is that links to pathnames that contain
cues may trigger unintuitive behavior. We have not en-
countered examples of these problems.

WheelFS clients process the cue path components lo-
cally. A pathname might contain several cues, separated
by slashes. WheelFS uses the following rules to combine
cues: (1) a cue applies to all files and directories in the
pathname appearing after the cue; and (2) cues that are
specified later in a pathname may override cues in the
same category appearing earlier.

As a preview, a distributed Web cache could be
built by running a caching Web proxy at each of a
number of sites, sharing cached pages via WheelFS.
The proxies could store pages in pathnames such as
/wfs/.MaxTime=200/url, causing open () to fail after
200 ms rather than waiting for an unreachable WheelFS
server, indicating to the proxy that it should fetch from
the original Web server. See Section 6 for a more sophis-
ticated version of this application.

4.2 Categories

Table 1 lists WheelFS’s cues and the categories into which
they are grouped. There are four categories: placement,
durability, consistency, and large reads. These categories
reflect the goals discussed in Section 2. The placement
cues allow an application to reduce latency by placing
data near where it will be needed. The durability and con-
sistency cues help applications avoid data unavailability
and timeout delays caused by transient failures. The large
read cues increase throughput when reading large and/or
popular files. Table 2 shows which POSIX file system API
calls are affected by which of these cues.

Each cue is either persistent or transient. A persistent
cue is permanently associated with the object, and may
affect all uses of the object, including references that do
not specify the cue. An application associates a persistent
cue with an object by specifying the cue when first creat-
ing the object. Persistent cues are immutable after object
creation. If an application specifies a transient cue in a file
system operation, the cue only applies to that operation.

Because these cues correspond to the challenges faced
by wide-area applications, we consider this set of cues to
be relatively complete. These cues work well for the ap-
plications we have considered.

4.3 Placement

Applications can reduce latency by storing data near the
clients who are likely to use that data. For example, a
wide-area email system may wish to store all of a user’s
message files at a site near that user.

The .Site=X cue indicates the desired site for a newly-
created file’s primary. The site name can be a simple
string, e.g. .Site=westcoast, or a domain name such as
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Cue Category | Cue Name

| Type | Meaning (and Tradeoffs)

Placement Site=X P Store files and directories on a server at the site named X.
.KeepTogether P Store all files in a directory subtree on the same set of servers.
.RepSites=Nrs P Store replicas across Nrs different sites.
Durability .RepLevel=Ngr 1, P Keep Nry, replicas for a data object.
.SyncLevel=Nsy, T Wait for only Nsy, replicas to accept a new file or directory version, reduc-
ing both durability and delay.
Consistency .EventualConsistency | T" Use potentially stale cached data, or data from a backup, if the primary
does not respond quickly.
.MaxTime=T T Limit any WheelFS remote communication done on behalf of a file system
operation to no more than 7" ms.
Large reads .WholeFile T Enable pre-fetching of an entire file upon the first read request.
.Hotspot T Fetch file data from other clients’ caches to reduce server load. Fetches
multiple blocks in parallel if used with .WholeFile.

Table 1: Semantic cues. A cue can be either Persistent or Transient (*Section 4.5 discusses a caveat for .EventualConsistency).

slel<lel |sls] |2|2|¢
Cue | & % § § g é E|E § § S
S [ X X
KT | X X
.RS X | X X XX | X|X X
RL | X | X X X[ X | X|X X
.SL X | X X XX | X|X X
EC [ X | X[ X[ X[ X[ XX | X|X|X|X
MT | X [ X | X | X[ X[ X | X | X[X[|X]|X
WF X X
H X

Table 2: The POSIX file system API calls affected by each cue.

Site=rice.edu. An administrator configures the corre-
spondence between site names and servers. If the path
contains no .Site cue, WheelFS uses the local node’s site
as the file’s primary. Use of random as the site name will
spread newly created files over all sites. If the site indi-
cated by .Site is unreachable, or cannot store the file due
to storage limitations, WheelFS stores the newly created
file at another site, chosen at random. The WheelFS back-
ground maintenance process will eventually transfer the
misplaced file to the desired site.

The .KeepTogether cue indicates that an entire sub-
tree should reside on as few WheelFS nodes as possible.
Clustering a set of files can reduce the delay for operations
that access multiple files. For example, an email system
can store a user’s message files on a few nodes to reduce
the time required to list all messages.

The .RepSites=Ngrg cue indicates how many different
sites should have copies of the data. Nrg only has an
effect when it is less than the replication level (see Sec-
tion 4.4), in which case it causes one or more sites to
store the data on more than one local server. When pos-

sible, WheelFS ensures that the primary’s site is one of
the sites chosen to have an extra copy. For example, spec-
ifying .RepSites=2 with a replication level of three causes
the primary and one backup to be at one site, and another
backup to be at a different site. By using .Site and .Rep-
Sites, an application can ensure that a permanently failed
primary can be reconstructed at the desired site with only
local communication.

4.4 Durability

WheelFS allows applications to express durability
preferences with two cues: .RepLevel=Ngr; and
.SyncLevel=Ng7 .

The .RepLevel=Npgry cue causes the primary to store
the object on Nr;,—1 backups; by default, Np;, = 3. The
WheelFS prototype imposes a maximum of four replicas
(see Section 5.2 for the reason for this limit; in a future
prototype it will most likely be higher).

The .SyncLevel=Ngy, cue causes the primary to wait
for acknowledgments of writes from only Ngz, of the ob-
ject’s replicas before acknowledging the client’s request,
reducing durability but also reducing delays if some back-
ups are slow or unreachable. By default, Ng;, = Nprp.

4.5 Consistency

The .EventualConsistency cue allows a client to use an
object despite unreachability of the object’s primary node,
and in some cases the backups as well. For reads and
pathname lookups, the cue allows a client to read from a
backup if the primary is unavailable, and from the client’s
local cache if the primary and backups are both unavail-
able. For writes and filename creation, the cue allows a
client to write to a backup if the primary is not available.
A consequence of .EventualConsistency is that clients
may not see each other’s updates if they cannot all reli-
ably contact the primary. Many applications such as Web
caches and email systems can tolerate eventual consis-
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tency without significantly compromising their users’ ex-
perience, and in return can decrease delays and reduce ser-
vice unavailability when a primary or its network link are
unreliable.

The cue provides eventual consistency in the sense that,
in the absence of updates, all replicas of an object will
eventually converge to be identical. However, WheelFS
does not provide eventual consistency in the rigorous form
(e.g., [18]) used by systems like Bayou [39], where all
updates, across all objects in the system, are committed
in a total order at all replicas. In particular, updates in
WheelFS are only eventually consistent with respect to
the object they affect, and updates may potentially be lost.
For example, if an entry is deleted from a directory under
the .EventualConsistency cue, it could reappear in the
directory later.

When reading files or using directory contents with
eventual consistency, a client may have a choice between
the contents of its cache, replies from queries to one or
more backup servers, and a reply from the primary. A
client uses the data with the highest version number that
it finds within a time limit. The default time limit is one
second, but can be changed with the .MaxTime=T cue (in
units of milliseconds). If .MaxTime is used without even-
tual consistency, the WheelFS client yields an error if it
cannot contact the primary after the indicated time.

The background maintenance process periodically rec-
onciles a primary and its backups so that they eventually
contain the same data for each file and directory. The pro-
cess may need to resolve conflicting versions of objects.
For a file, the process chooses arbitrarily among the repli-
cas that have the highest version number; this may cause
writes to be lost. For an eventually-consistent directory, it
puts the union of files present in the directory’s replicas
into the reconciled version. If a single filename maps to
multiple IDs, the process chooses the one with the small-
est ID and renames the other files. Enabling directory
merging is the only sense in which the .EventualConsis-
tency cue is persistent: if specified at directory creation
time, it guides the conflict resolution process. Otherwise
its effect is specific to particular references.

4.6 Large reads

WheelFS provides two cues that enable large-file read op-
timizations: .WholeFile and .Hotspot. The .WholeFile
cue instructs WheelFS to pre-fetch the entire file into
the client cache. The .Hotspot cue instructs the WheelFS
client to read the file from other clients’ caches, consult-
ing the file’s primary for a list of clients that likely have
the data cached. If the application specifies both cues, the
client will read data in parallel from other clients’ caches.

Unlike the cues described earlier, .WholeFile and
.Hotspot are not strictly necessary: a file system could
potentially learn to adopt the right cue by observing appli-

Client Node Storage Node
Client module | [Storage module/
ore =T
P __maints

((confg t/gther
module \(3£)nfigs

Configuration Service

Figure 1: Placement and interaction of WheelFS components.

cation access patterns. We leave such adaptive behavior to
future work.

S WheelFS Design

WheelFS requires a design flexible enough to follow the
various cues applications can supply. This section presents
that design, answering the following questions:

* How does WheelFS assign storage responsibility
for data objects among participating servers? (Sec-
tion 5.2)

* How does WheelFS ensure an application’s desired
level of durability for its data? (Section 5.3)

* How does WheelFS provide close-to-open consis-
tency in the face of concurrent file access and fail-
ures, and how does it relax consistency to improve
availability? (Section 5.4)

* How does WheelFS permit peer-to-peer communica-
tion to take advantage of nearby cached data? (Sec-
tion 5.5)

* How does WheelFS authenticate users and perform
access control? (Section 5.6)

5.1 Components

A WheelFS deployment (see Figure 1) consists of clients
and servers; a single host often plays both roles. The
WheelFS client software uses FUSE [21] to present the
distributed file system to local applications, typically in
/wfs. All clients in a given deployment present the same
file system tree in /wfs. A WheelFS client communicates
with WheelFS servers in order to look up file names, cre-
ate files, get directory listings, and read and write files.
Each client keeps a local cache of file and directory con-
tents.

The configuration service runs independently on a
small set of wide-area nodes. Clients and servers com-
municate with the service to learn the set of servers and
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which files and directories are assigned to which servers,
as explained in the next section.

5.2 Data storage assignment

WheelFS servers store file and directory objects. Each ob-
ject is internally named using a unique numeric ID. A
file object contains opaque file data and a directory object
contains a list of name-to-object-ID mappings for the di-
rectory contents. WheelFS partitions the object ID space
into 27 slices using the first S bits of the object ID.

The configuration service maintains a slice table that
lists, for each slice currently in use, a replication policy
governing the slice’s data placement, and a replica list of
servers currently responsible for storing the objects in that
slice. A replication policy for a slice indicates from which
site it must choose the slice’s primary (.Site), and from
how many distinct sites (.RepSites) it must choose how
many backups (.RepLevel). The replica list contains the
current primary for a slice, and Nr, —1 backups.

Because each unique replication policy requires a
unique slice identifier, the choice of S limits the maxi-
mum allowable number of replicas in a policy. In our cur-
rent implementation .S is fairly small (12 bits), and so to
conserve slice identifiers it limits the maximum number
of replicas to four.

5.2.1 Configuration service

The configuration service is a replicated state machine,
and uses Paxos [25] to elect a new master whenever its
membership changes. Only the master can update the
slice table; it forwards updates to the other members. A
WheelFS node is initially configured to know of at least
one configuration service member, and contacts it to learn
the full list of members and which is the master.

The configuration service exports a lock interface to
WheelFS servers, inspired by Chubby [11]. Through this
interface, servers can acquire, renew, and release
locks on particular slices, or fetch a copy of the cur-
rent slice table. A slice’s lock grants the exclusive right
to be a primary for that slice, and the right to specify the
slice’s backups and (for a new slice) its replication pol-
icy. A lock automatically expires after L seconds unless
renewed. The configuration service makes no decisions
about slice policy or replicas. Section 5.3 explains how
WheelFS servers use the configuration service to recover
after the failure of a slice’s primary or backups.

Clients and servers periodically fetch and cache the
slice table from the configuration service master. A client
uses the slice table to identify which servers should be
contacted for an object in a given slice. If a client encoun-
ters an object ID for which its cached slice table does not
list a corresponding slice, the client fetches a new table.
A server uses the the slice table to find other servers that
store the same slice so that it can synchronize with them.

Servers try to always have at least one slice locked,
to guarantee they appear in the table of currently locked
slices; if the maintenance process notices that the server
holds no locks, it will acquire the lock for a new slice. This
allows any connected node to determine the current mem-
bership of the system by taking the union of the replica
lists of all slices.

5.2.2 Placing a new file or directory

When a client creates a new file or directory, it uses the
placement and durability cues specified by the application
to construct an appropriate replication policy. If .KeepTo-
gether is present, it sets the primary site of the policy to
be the primary site of the object’s parent directory’s slice.
Next the client checks the slice table to see if an existing
slice matches the policys; if so, the client contacts the pri-
mary replica for that slice. If not, it forwards the request
to a random server at the site specified by the .Site cue.

When a server receives a request asking it to create a
new file or directory, it constructs a replication policy as
above, and sets its own site to be the primary site for the
policy. If it does not yet have a lock on a slice matching
the policy, it generates a new, randomly-generated slice
identifier and constructs a replica list for that slice, choos-
ing from the servers listed in the slice table. The server
then acquires a lock on this new slice from the config-
uration service, sending along the replication policy and
the replica list. Once it has a lock on an appropriate slice,
it generates an object ID for the new object, setting the
first S bits to be the slice ID and all other bits to random
values. The server returns the new ID to the client, and
the client then instructs the object’s parent directory’s pri-
mary to add a new entry for the object. Other clients that
learn about this new object ID from its entry in the par-
ent directory can use the first .S bits of the ID to find the
primary for the slice and access the object.

5.2.3 Write-local policy

The default data placement policy in WheelFS is to write
locally, i.e., use a local server as the primary of a newly
created file (and thus also store one copy of the contents
locally). This policy works best if each client also runs a
WheelFS server. The policy allows writes of large non-
replicated files at the speed of the local disk, and allows
such files to be written at one site and read at another with
just one trip across the wide-area network.

Modifying an existing file is not always fast, because
the file’s primary might be far away. Applications desiring
fast writes should store output in unique new files, so that
the local server will be able to create a new object ID in
a slice for which it is the primary. Existing software often
works this way; for example, the Apache caching proxy
stores a cached Web page in a unique file named after the
page’s URL.
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An ideal default placement policy would make deci-
sions based on server loads across the entire system; for
example, if the local server is nearing its storage capac-
ity but a neighbor server at the same site is underloaded,
WheelFS might prefer writing the file to the neighbor
rather than the local disk (e.g., as in Porcupine [31]). De-
veloping such a strategy is future work; for now, applica-
tions can use cues to control where data are stored.

5.3 Primary/backup replication

WheelFS uses primary/backup replication to manage
replicated objects. The slice assignment designates, for
each ID slice, a primary and a number of backup servers.
When a client needs to read or modify an object, by de-
fault it communicates with the primary. For a file, a mod-
ification is logically an entire new version of the file con-
tents; for a directory, a modification affects just one en-
try. The primary forwards each update to the backups,
after which it writes the update to its disk and waits for
the write to complete. The primary then waits for replies
from Ngy—1 backups, indicating that those backups have
also written the update to their disks. Finally, the primary
replies to the client. For each object, the primary executes
operations one at a time.

After being granted the lock on a slice initially, the
WheelFS server must renew it periodically; if the lock ex-
pires, another server may acquire it to become the primary
for the slice. Since the configuration service only grants
the lock on a slice to one server at a time, WheelFS en-
sures that only one server will act as a primary for a slice
at any given time. The slice lock time L is a compromise:
short lock times lead to fast reconfiguration, while long
lock times allow servers to operate despite the temporary
unreachability of the configuration service.

In order to detect failure of a primary or backup, a
server pings all other replicas of its slices every five min-
utes. If a primary decides that one of its backups is un-
reachable, it chooses a new replica from the same site
as the old replica if possible, otherwise from a random
site. The primary will transfer the slice’s data to this new
replica (blocking new updates), and then renew its lock on
that slice along with a request to add the new replica to the
replica list in place of the old one.

If a backup decides the primary is unreachable, it will
attempt to acquire the lock on the slice from the configura-
tion service; one of the backups will get the lock once the
original primary’s lock expires. The new primary checks
with the backups to make sure that it didn’t miss any ob-
ject updates (e.g., because Ng;, <Npy, during a recent up-
date, and thus not all backups are guaranteed to have com-
mitted that update).

A primary’s maintenance process periodically checks
that the replicas associated with each slice match the
slice’s policy; if not, it will attempt to recruit new repli-

cas at the appropriate sites. If the current primary wishes
to recruit a new primary at the slice’s correct primary site
(e.g., a server that had originally been the slice’s primary
but crashed and rejoined), it will release its lock on the
slice, and directly contact the chosen server, instructing it
to acquire the lock for the slice.

5.4 Consistency

By default, WheelFS provides close-to-open consistency:
if one application instance writes a file and waits for
close () to return, and then a second application in-
stance open () s and reads the file, the second applica-
tion will see the effects of the first application’s writes.
The reason WheelFS provides close-to-open consistency
by default is that many applications expect it.

The WheelFS client has a write-through cache for file
blocks, for positive and negative directory entries (en-
abling faster pathname lookups), and for directory and file
meta-data. A client must acquire an object lease from an
object’s primary before it uses cached meta-data. Before
the primary executes any update to an object, it must in-
validate all leases or wait for them to expire. This step
may be time-consuming if many clients hold leases on an
object.

Clients buffer file writes locally to improve perfor-
mance. When an application calls close (), the client
sends all outstanding writes to the primary, and waits
for the primary to acknowledge them before allowing
close () to return. Servers maintain a version num-
ber for each file object, which they increment after each
close () and after each change to the object’s meta-data.

When an application open () s a file and then reads it,
the WheelFS client must decide whether the cached copy
of the file (if any) is still valid. The client uses cached
file data if the object version number of the cached data
is the same as the object’s current version number. If the
client has an unexpired object lease for the object’s meta-
data, it can use its cached meta-data for the object to find
the current version number. Otherwise it must contact the
primary to ask for a new lease, and for current meta-data.
If the version number of the cached data is not current, the
client fetches new file data from the primary.

By default, WheelFS provides similar consistency for
directory operations: after the return of an application sys-
tem call that modifies a directory (links or unlinks a file
or subdirectory), applications on other clients are guaran-
teed to see the modification. WheelFS clients implement
this consistency by sending directory updates to the direc-
tory object’s primary, and by ensuring via lease or explicit
check with the primary that cached directory contents are
up to date. Cross-directory rename operations in WheelFS
are not atomic with respect to failures. If a crash occurs at
the wrong moment, the result may be a link to the moved
file in both the source and destination directories.
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The downside to close-to-open consistency is that if a
primary is not reachable, all operations that consult the
primary will delay until it revives or a new primary takes
over. The .EventualConsistency cue allows WheelFS to
avoid these delays by using potentially stale data from
backups or local caches when the primary does not re-
spond, and by sending updates to backups. This can result
in inconsistent replicas, which the maintenance process
resolves in the manner described in Section 4.5, leading
eventually to identical images at all replicas. Without the
.EventualConsistency cue, a server will reject operations
on objects for which it is not the primary.

Applications can specify timeouts on a per-object ba-
sis using the .MaxTime=T cue. This adds a timeout of
T ms to every operation performed at a server. Without
.EventualConsistency, a client will return a failure to
the application if the primary does not respond within T’
ms; with .EventualConsistency, clients contact backup
servers once the timeout occurs. In future work we hope to
explore how to best divide this timeout when a single file
system operation might involve contacting several servers
(e.g., a create requires talking to the parent directory’s pri-
mary and the new object’s primary, which could differ).

5.5 Large reads

If the application specifies .WholeFile when reading a
file, the client will pre-fetch the entire file into its cache.
If the application uses .WholeFile when reading directory
contents, WheelFS will pre-fetch the meta-data for all of
the directory’s entries, so that subsequent lookups can be
serviced from the cache.

To implement the .Hotspot cue, a file’s primary main-
tains a soft-state list of clients that have recently cached
blocks of the file, including which blocks they have
cached. A client that reads a file with .Hotspot asks the
server for entries from the list that are near the client; the
server chooses the entries using Vivaldi coordinates [15].
The client uses the list to fetch each block from a nearby
cached copy, and informs the primary of successfully
fetched blocks.

If the application reads a file with both .WholeFile and
.Hotspot, the client will issue block fetches in parallel to
multiple other clients. It pre-fetches blocks in a random
order so that clients can use each others’ caches even if
they start reading at the same time [6].

5.6 Security

WheelFS enforces three main security properties. First,
a given WheelFS deployment ensures that only autho-
rized hosts participate as servers. Second, WheelFS en-
sures that requests come only from users authorized to
use the deployment. Third, WheelFS enforces user-based
permissions on requests from clients. WheelFS assumes
that authorized servers behave correctly. A misbehaving

client can act as any user that has authenticated them-
selves to WheelFS from that client, but can only do things
for which those users have permission.

All communication takes place through authenticated
SSH channels. Each authorized server has a public/pri-
vate key pair which it uses to prove its identity. A central
administrator maintains a list of all legitimate server pub-
lic keys in a deployment, and distributes that list to ev-
ery server and client. Servers only exchange inter-server
traffic with hosts authenticated with a key on the list, and
clients only send requests to (and use responses from) au-
thentic servers.

Each authorized user has a public/private key pair;
WheelFS uses SSH’s existing key management support.
Before a user can use WheelFS on a particular client,
the user must reveal his or her private key to the client.
The list of authorized user public keys is distributed to all
servers and clients as a file in WheelFS. A server accepts
only client connections signed by an authorized user key.
A server checks that the authenticated user for a request
has appropriate permissions for the file or directory being
manipulated—each object has an associated access con-
trol list in its meta-data. A client dedicated to a particular
distributed application stores its “user” private key on its
local disk.

Clients check data received from other clients against
server-supplied SHA-256 checksums to prevent clients
from tricking each other into accepting unauthorized
modifications. A client will not supply data from its cache
to another client whose authorized user does not have read
permissions.

There are several planned improvements to this security
setup. One is an automated mechanism for propagating
changes to the set of server public keys, which currently
need to be distributed manually. Another is to allow the
use of SSH Agent forwarding to allow users to connect se-
curely without storing private keys on client hosts, which
would increase the security of highly privileged keys in
the case where a client is compromised.

6 Applications

WheelFS is designed to help the construction of wide-area
distributed applications, by shouldering a significant part
of the burden of managing fault tolerance, consistency,
and sharing of data among sites. This section evaluates
how well WheelFS fulfills that goal by describing four
applications that have been built using it.

All-Pairs-Pings. All-Pairs-Pings [37] monitors the net-
work delays among a set of hosts. Figure 2 shows a sim-
ple version of All-Pairs-Pings built from a shell script and
WheelFS, to be invoked by each host’s cron every few
minutes. The script pings the other hosts and puts the re-
sults in a file whose name contains the local host name
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1 FILE=‘date +%s‘.‘hostname‘.dat

D=/wfs/ping

BIN=$D/bin/.EventualConsistency/
.MaxTime=5000/.HotSpot/.WholeFile

DATA=$D/.EventualConsistency/dat

mkdir -p $DATA/ ‘hostname’

cd $DATA/ ‘hostname’

xargs -nl $BIN/ping -c 10 <
$D/nodes > /tmp/SFILE

8 cp /tmp/SFILE S$FILE

9 rm /tmp/$FILE

10 if [ ‘hostname' = "nodel" ];

11 mkdir -p S$D/res

12 $BIN/process x > $D/res/‘date +%s‘.o

13 fi

[SS AN \S]

~N oA

then

Figure 2: A shell script implementation of All-Pairs-Pings us-
ing WheelFS.

and the current time. After each set of pings, a coordina-
tor host (“nodel”) reads all the files, creates a summary
using the program process (not shown), and writes the
output to a results directory.

This example shows that WheelFS can help keep sim-
ple distributed tasks easy to write, while protecting the
tasks from failures of remote nodes. WheelFS stores each
host’s output on the host’s own WheelFS server, so that
hosts can record ping output even when the network is
broken. WheelFS automatically collects data files from
hosts that reappear after a period of separation. Finally,
WheelFS provides each host with the required binaries
and scripts and the latest host list file. Use of WheelFS in
this script eliminates much of the complexity of a previ-
ous All-Pairs-Pings program, which explicitly dealt with
moving files among nodes and coping with timeouts.

Distributed Web cache. This application consists
of hosts running Apache 2.2.4 caching proxies
(mod_disk_cache). The Apache configuration file
places the cache file directory on WheelFS:

/wfs/.EventualConsistency/.MaxTime=1000/
.Hotspot/cache/

When the Apache proxy can’t find a page in the cache
directory on WheelFS, it fetches the page from the ori-
gin Web server and writes a copy in the WheelFS di-
rectory, as well as serving it to the requesting browser.
Other cache nodes will then be able to read the page from
WheelFS, reducing the load on the origin Web server.
The .Hotspot cue copes with popular files, directing the
WheelFS clients to fetch from each others’ caches to in-
crease total throughput. The .EventualConsistency cue
allows clients to create and read files even if they cannot
contact the primary server. The .MaxTime cue instructs

WheelFS to return an error if it cannot find a file quickly,
causing Apache to fetch the page from the origin Web
server. If WheelFS returns an expired version of the file,
Apache will notice by checking the HTTP header in the
cache file, and it will contact the origin Web server for a
fresh copy.

Although this distributed Web cache implementation is
fully functional, it does lack features present in other sim-
ilar systems. For example, CoralCDN uses a hierarchy of
caches to avoid overloading any single tracker node when
a file is popular.

Mail service. The goal of Wheemail, our WheelFS-based
mail service, is to provide high throughput by spreading
the work over many sites, and high availability by replicat-
ing messages on multiple sites. Wheemail provides SMTP
and IMAP service from a set of nodes at these sites. Any
node at any site can accept a message via SMTP for any
user; in most circumstances a user can fetch mail from the
IMAP server on any node.

Each node runs an unmodified sendmail process to ac-
cept incoming mail. Sendmail stores each user’s messages
in a WheelFS directory, one message per file. The sep-
arate files help avoid conflicts from concurrent message
arrivals. A user’s directory has this path:

/wfs/mail/.EventualConsistency/.Site=X/
.KeepTogether/.RepSites=2/user/Mail/

Each node runs a Dovecot IMAP server [17] to serve users
their messages. A user retrieves mail via a nearby node
using a locality-preserving DNS service [20].

The .EventualConsistency cue allows a user to read
mail via backup servers when the primary for the user’s
directory is unreachable, and allows incoming mail to be
stored even if primary and all backups are down. The
Site=X cue indicates that a user’s messages should be
stored at site X, chosen to be close to the user’s usual lo-
cation to reduce network delays. The .KeepTogether cue
causes all of a user’s messages to be stored on a single
replica set, reducing latency for listing the user’s mes-
sages [31]. Wheemail uses the default replication level of
three but uses .RepSites=2 to keep at least one off-site
replica of each mail. To avoid unnecessary replication,
Dovecot uses .RepLevel=1 for much of its internal data.

Wheemail has goals similar to those of Porcupine [31],
namely, to provide scalable email storage and retrieval
with high availability. Unlike Porcupine, Wheemail runs
on a set of wide-area data centers. Replicating emails over
multiple sites increases the service’s availability when a
single site goes down. Porcupine consists of custom-built
storage and retrieval components. In contrast, the use of a
wide-area file system in Wheemail allows it to reuse exist-
ing software like sendmail and Dovecot. Both Porcupine
and Wheemail use eventual consistency to increase avail-
ability, but Porcupine has a better reconciliation policy as
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its “deletion record” prevents deleted emails from reap-
pearing.

File Distribution. A set of many WheelFS clients can co-
operate to fetch a file efficiently using the large read cues:

/wts/.WholeFile/.Hotspot/largefile

Efficient file distribution may be particularly useful
for binaries in wide-area experiments, in the spirit of
Shark [6] and CoBlitz [29]. Like Shark, WheelFS uses co-
operative caching to reduce load on the file server. Shark
further reduces the load on the file server by using a dis-
tributed index to keep track of cached copies, whereas
WheelFS relies on the primary server to track copies.
Unlike WheelFS or Shark, CoBlitz is a CDN, so files
cannot be directly accessed through a mounted file sys-
tem. CoBlitz caches and shares data between CDN nodes
rather than between clients.

7 Implementation

The WheelFS prototype consists of 19,000 lines of C++
code, using pthreads and STL. In addition, the implemen-
tation uses a new RPC library (3,800 lines) that imple-
ments Vivaldi network coordinates [15].

The WheelFS client uses FUSE’s “low level” interface
to get access to FUSE identifiers, which it translates into
WheelFS-wide unique object IDs. The WheelFS cache
layer in the client buffers writes in memory and caches
file blocks in memory and on disk.

Permissions, access control, and secure SSH con-
nections are implemented. Distribution of public keys
through WheelFS is not yet implemented.

8 Evaluation

This section demonstrates the following points about the
performance and behavior of WheelFS:

* For some storage workloads common in distributed
applications, WheelFS offers more scalable perfor-
mance than an implementation of NFSv4.

* WheelFS achieves reasonable performance under a
range of real applications running on a large, wide-
area testbed, as well as on a controlled testbed using
an emulated network.

* WheelFS provides high performance despite net-
work and server failures for applications that indicate
via cues that they can tolerate relaxed consistency.

* WheelFS offers data placement options that allow
applications to place data near the users of that data,
without the need for special application logic.

* WheelFS offers client-to-client read options that help
counteract wide-area bandwidth constraints.

* WheelFS offers an interface on which it is quick and
easy to build real distributed applications.

8.1 Experimental setup

All scenarios use WheelFS configured with 64 KB blocks,
a 100 MB in-memory client LRU block cache supple-
mented by an unlimited on-disk cache, one minute object
leases, a lock time of L = 2 minutes, 12-bit slice IDs, 32-
bit object IDs, and a default replication level of three (the
responsible server plus two replicas), unless stated oth-
erwise. Communication takes place over plain TCP, not
SSH, connections. Each WheelFS node runs both a stor-
age server and a client process. The configuration service
runs on five nodes distributed across three wide-area sites.

We evaluate our WheelFS prototype on two testbeds:
PlanetLab [7] and Emulab [42]. For PlanetLab experi-
ments, we use up to 250 nodes geographically spread
across the world at more than 140 sites (we determine the
site of a node based on the domain portion of its host-
name). These nodes are shared with other researchers and
their disks, CPU, and bandwidth are often heavily loaded,
showing how WheelFS performs in the wild. These nodes
run a Linux 2.6 kernel and FUSE 2.7.3. We run the config-
uration service on a private set of nodes running at MIT,
NYU, and Stanford, to ensure that the replicated state ma-
chine can log operations to disk and respond to requests
quickly (fsync () s on PlanetLab nodes can sometimes
take tens of seconds).

For more control over the network topology and host
load, we also run experiments on the Emulab [42] testbed.
Each Emulab host runs a standard Fedora Core 6 Linux
2.6.22 kernel and FUSE version 2.6.5, and has a 3 GHz
CPU. We use a WAN topology consisting of 5 LAN clus-
ters of 3 nodes each. Each LAN cluster has 100 Mbps,
sub-millisecond links between each node. Clusters con-
nect to the wide-area network via a single bottleneck link
of 6 Mbps, with 100 ms RTTs between clusters.

8.2 Scalability

We first evaluate the scalability of WheelFS on a mi-
crobenchmark representing a workload common to dis-
tributed applications: many nodes reading data written by
other nodes in the system. For example, nodes running a
distributed Web cache over a shared storage layer would
be reading and serving pages written by other nodes.
In this microbenchmark, N clients mount a shared file
system containing /N directories, either using NFSv4 or
WheelFS. Each directory contains ten 1 MB files. The
clients are PlanetLab nodes picked at random from the
set of nodes that support both mounting both FUSE and
NFS file systems. This set spans a variety of nodes dis-
tributed across the world, from nodes at well-connected
educational institutions to nodes behind limited-upload
DSL lines. Each client reads ten random files from the file
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Figure 3: The median time for a set of PlanetLab clients to read
a 1 MB file, as a function of the number of concurrently reading
nodes. Also plots the median time for a set of local processes to
read 1 MB files from the NFS server’s local disk through ext 3.

system in sequence, and measures the read latency. The
clients all do this at the same time.

For WheelFS, each client also acts as a server, and is
the primary for one directory and all files within that di-
rectory. WheelFS clients do not read files for which they
are the primary, and no file is ever read twice by the same
node. The NFES server is a machine at MIT running De-
bian’s nfs-kernel-server version 1.0.10-6 using the default
configuration, with a 2.8 GHz CPU and a SCSI hard drive.

Figure 3 shows the median time to read a file as NV
varies. For WheelFS, a very small fraction of reads fail be-
cause not all pairs of PlanetLab nodes can communicate;
these reads are not included in the graph. Each point on
the graph is the median of the results of at least one hun-
dred nodes (e.g., a point showing the latency for five con-
current nodes represents the median reported by all nodes
across twenty different trials).

Though the NFS server achieves lower latencies when
there are few concurrent clients, its latency rises sharply as
the number of clients grows. This rise occurs when there
are enough clients, and thus files, that the files do not fit
in the server’s 1GB file cache. Figure 3 also shows results
for N concurrent processes on the NFS server, accessing
the ext 3 file system directly, showing a similar latency
increase after 100 clients. WheelFS latencies are not af-
fected by the number of concurrent clients, since WheelFS
spreads files and thus the load across many servers.

8.3 Distributed Web Cache

Performance under normal conditions. These exper-
iments compare the performance of CoralCDN and the
WheelFS distributed Web cache (as described in Sec-
tion 6, except with .MaxTime=2000 to adapt to Planet-
Lab’s characteristics). The main goal of the cache is to
reduce load on target Web servers via caching, and secon-
darily to provide client browsers with reduced latency and
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Figure 4: The aggregate client service rate and origin server
load for both CoralCDN and the WheelFS-based Web cache,
running on PlanetLab.
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Figure 5: The CDF for the client request latencies of both
CoralCDN and the WheelFS-based Web cache, running on Plan-
etLab.

increased availability.

These experiments use forty nodes from PlanetLab
hosted at .edu domains, spread across the continental
United States. A Web server, located at NYU behind an
emulated slow link (shaped using Click [24] to be 400
Kbps and have a 100 ms delay), serves 100 unique 41KB
Web pages. Each of the 40 nodes runs a Web proxy.
For each proxy node there is another node less than 10
ms away that runs a simulated browser as a Web client.
Each Web client requests a sequence of randomly selected
pages from the NYU Web server. This experiment, in-
spired by one in the CoralCDN paper [19], models a flash
crowd where a set of files on an under-provisioned server
become popular very quickly.

Figures 4 and 5 show the results of these experiments.
Figure 4 plots both the total rate at which the proxies send
requests to the origin server and the total rate at which
the proxies serve Web client requests (the y-axis is a log
scale). WheelFS takes about twice as much time as Coral-

USENIX Association

NSDI *09: 6th USENIX Symposium on Networked Systems Design and Implementation

53



1000 —
Clients
Origin |- T |~
— 100 g |~
&b M\ WM AAANA AN
F
5 10 ¢ E
&
=
g
2 L ]
i
i [
‘ \‘ M i
0.1 . 1 LI Il .
200 300 400 500 600 700

Time (seconds)

Figure 6: The WheelFS-based Web cache running on Emulab
with failures, using the .EventualConsistency cue. Gray regions
indicate the duration of a failure.

CDN to reduce the origin load to zero; both reach simi-
lar sustained aggregate Web client service rates. Figure 5
plots the cumulative distribution function (CDF) of the
request latencies seen by the Web clients. WheelFS has
somewhat higher latencies than Coral CDN.

CoralCDN has higher performance because it incor-
porates many application-specific optimizations, whereas
the WheelFS-based cache is built from more general-
purpose components. For instance, a CoralCDN proxy
pre-declares its intent to download a page, preventing
other nodes from downloading the same page; Apache,
running on WheelFS, has no such mechanism, so several
nodes may download the same page before Apache caches
the data in WheelFS. Similar optimizations could be im-
plemented in Apache.

Performance under failures. Wide-area network prob-
lems that prevent WheelFS from contacting storage nodes
should not translate into long delays; if a proxy cannot
quickly fetch a cached page from WheelFS, it should
ask the origin Web server. As discussed in Section 6, the
cues .EventualConsistency and .MaxTime=1000 yield
this behavior, causing open () to either find a copy of
the desired file or fail in one second. Apache fetches from
the origin Web server if the open () fails.

To test how failures affect WheelFS application perfor-
mance, we ran a distributed Web cache experiment on the
Emulab topology in Section 8.1, where we could control
the network’s failure behavior. At each of the five sites
there are three WheelFS Web proxies. Each site also has a
Web client, which connects to the Web proxies at the same
site using a 10 Mbps, 20 ms link, issuing five requests at a
time. The origin Web server runs behind a 400 Kbps link,
with 150 ms RTTs to the Web proxies.

Figures 6 and 7 compare failure performance of
WheelFS with the above cues to failure performance of
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Figure 7: The WheelFS-based Web cache running on Emulab
with failures, with close-to-open consistency. Gray regions indi-
cate the duration of a failure.
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Figure 8: The aggregate client service rate and origin server
load for the WheelFS-based Web cache, running on Emulab,
without failures.

close-to-open consistency with 1-second timeouts (.Max-
Time=1000). The y-axes of these graphs are log-scale.
Each minute one wide-area link connecting an entire site
to the rest of the network fails for thirty seconds and then
revives. This failure period is not long enough to cause
servers at the failed site to lose their slice locks. Web
clients maintain connectivity to the proxies at their lo-
cal site during failures. For comparison, Figure 8 shows
WheelFS’s performance on this topology when there are
no failures.

When a Web client requests a page from a proxy, the
proxy must find two pieces of information in order to find
a copy of the page (if any) in WheelFS: the object ID to
which the page’s file name resolves, and the file content
for that object ID. The directory information and the file
content can be on different WheelFS servers. For each
kind of information, if the proxy’s WheelFS client has
cached the information and has a valid lease, the WheelFS
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Figure 9: The throughput of Wheemail compared with the static
system, on the Emulab testbed.

client need not contact a server. If the WheelFS client
doesn’t have information with a valid lease, and is us-
ing eventual consistency, it tries to fetch the information
from the primary; if that fails (after a one-second time-
out), the WheelFS client will try fetch from a backup; if
that fails, the client will use locally cached information (if
any) despite an expired lease; otherwise the open () fails
and the proxy fetches the page from the origin server. If a
WheelFS client using close-to-open consistency does not
have cached data with a valid lease, it first tries to contact
the primary; if that fails (after timeout), the proxy must
fetch the page from the origin Web server.

Figure 6 shows the performance of the WheelFS Web
cache with eventual consistency. The graph shows a pe-
riod of time after the initial cache population. The gray re-
gions indicate when a failure is present. Throughput falls
as WheelFS clients encounter timeouts to servers at the
failed site, though the service rate remains near 100 re-
quests/sec. The small load spikes at the origin server af-
ter a failure reflect requests queued up in the network by
the failed site while it is partitioned. Figure 7 shows that
with close-to-open consistency, throughput falls signifi-
cantly during failures, and hits to the origin server increase
greatly. This shows that a cooperative Web cache, which
does not require strong consistency, can use WheelFS’s
semantic cues to perform well under wide-area condi-
tions.

8.4 Mail

The Wheemail system described in Section 6 has a num-
ber of valuable properties such as the ability to serve and
accept a user’s mail from any of multiple sites. This sec-
tion explores the performance cost of those properties by
comparing to a traditional mail system that lacks those
properties.

IMAP and SMTP are stressful file system benchmarks.
For example, an IMAP server reading a Maildir-formatted
inbox and finding no new messages generates over 600

Static mail system —>¢ —
35 | Wheemail, 1 replica —©—

30 1
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0 200 400 600 800 1000 1200

Number of clients

1400

Figure 10: The average latencies of individual SMTP requests,
for both Wheemail and the static system, on Emulab.

FUSE operations. These primarily consist of lookups on
directory and file names, but also include more than 30 di-
rectory operations (creates/links/unlinks/renames), more
than 30 small writes, and a few small reads. A single
SMTP mail delivery generates over 60 FUSE operations,
again consisting mostly of lookups.

In this experiment we use the Emulab network topol-
ogy described in Section 8.1 with 5 sites. Each site has
a 1 Mbps link to a wide-area network that connects all
the sites. Each site has three server nodes that each run a
WheelFS server, a WheelFS client, an SMTP server, and
an IMAP server. Each site also has three client nodes,
each of which runs multiple load-generation threads. A
load-generation thread produces a sequence of SMTP and
IMAP requests as fast as it can. 90% of requests are
SMTP and 10% are IMAP. User mailbox directories are
randomly and evenly distributed across sites. The load-
generation threads pick users and message sizes with
probabilities from distributions derived from SMTP and
IMAP logs of servers at NYU; there are 47699 users, and
the average message size is 6.9 KB. We measure through-
put in requests/second, with an increasing number of con-
current client threads.

When measuring WheelFS, a load-generating thread at
a given site only generates requests from users whose mail
is stored at that site (the user’s “home” site), and connects
only to IMAP and SMTP servers at the local site. Thus
an IMAP request can be handled entirely within a home
site, and does not generate any wide-area traffic (during
this experiment, each node has cached directory lookup
information for the mailboxes of all users at its site). A
load-generating thread generates mail to random users,
connecting to a SMTP server at the same site; that server
writes the messages to the user’s directory in WheelFS,
which is likely to reside at a different site. In this experi-
ment, user mailbox directories are not replicated.

We compare against a “static” mail system in which
users are partitioned over the 15 server nodes, with the
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Figure 11: CDF of client download times of a 50 MB file us-
ing BitTorrent and WheelFS with the .Hotspot and .WholeFile
cues, running on Emulab. Also shown is the time for a single
client to download 50 MB directly using ttcp.

SMTP and IMAP servers on each server node storing mail
on a local disk file system. The load-generator threads at
each site only generate IMAP requests for users at the
same site, so IMAP traffic never crosses the wide area net-
work. When sending mail, a load-generating client picks
a random recipient, looks up that user’s home server, and
makes an SMTP connection to that server, often across the
wide-area network.

Figure 9 shows the aggregate number of requests served
by the entire system per second. The static system can
sustain 112 requests per second. Each site’s 1 Mbps wide-
area link is the bottleneck: since 90% of the requests are
SMTP (message with an average size 6.85 KB), and 80%
of those go over the wide area, the system as a whole is
sending 4.3 Mbps across a total link capacity of 5 Mbps,
with the remaining wide-area bandwidth being used by
the SMTP and TCP protocols.

Wheemail achieves up to 50 requests per second, 45%
of the static system’s performance. Again the 1 Mbps
WAN links are the bottleneck: for each SMTP request,
WheelFS must send 11 wide-area RPCs to the target
user’s mailbox site, adding an overhead of about 40% to
the size of the mail message, in addition to the continuous
background traffic generated by the maintenance process,
slice lock renewal, Vivaldi coordinate measurement, and
occasional lease invalidations.

Figure 10 shows the average latencies of individual
SMTP requests for Wheemail and the static system, as the
number of clients varies. Wheemail’s latencies are higher
than those of the static system by nearly 60%, attributable
to traffic overhead generated by WheelFS.

Though the static system outperforms Wheemail for
this benchmark, Wheemail provides many desirable prop-
erties that the static system lacks. Wheemail transparently
redirects a receiver’s mail to its home site, regardless of
where the SMTP connection occurred; additional storage

Application | LoC | Reuses

CDN 1
Mail service 4
File distribution | N/A
All-Pairs-Pings 13

Apache+mod_disk_cache
Sendmail+Procmail+Dovecot
Built-in to WheelFS

N/A

Table 3: Number of lines of changes to adapt applications to
use WheelFS.

can be added to the system without major manual recon-
figuration; and Wheemail can be configured to offer toler-
ance to site failures, all without any special logic having
to be built into the mail system itself.

8.5 File distribution

Our file distribution experiments use a WheelFS network
consisting of 15 nodes, spread over five LAN clusters con-
nected by the emulated wide-area network described in
Section 8.1. Nodes attempt to read a 50 MB file simulta-
neously (initially located at an originating, 16" WheelFS
node that is in its own cluster) using the .Hotspot and
.WholeFile cues. For comparison, we also fetch the file
using BitTorrent [14] (the Fedora Core distribution of ver-
sion 4.4.0-5). We configured BitTorrent to allow unlimited
uploads and to use 64 KB blocks like WheelFS (in this
test, BitTorrent performs strictly worse with its usual de-
fault of 256 KB blocks).

Figure 11 shows the CDF of the download times, under
WheelFS and BitTorrent, as well as the time for a single
direct transfer of 50 MB between two wide-area nodes (73
seconds). WheelFS’s median download time is 168 sec-
onds, showing that WheelFS’s implementation of cooper-
ative reading is better than BitTorrent’s: BitTorrent clients
have a median download time of 249 seconds. The im-
provement is due to WheelFS clients fetching from nearby
nodes according to Vivaldi coordinates; BitTorrent does
not use a locality mechanism. Of course, both solutions
offer far better download times than 15 simultaneous di-
rect transfers from a single node, which in this setup has
a median download time of 8§92 seconds.

8.6 Implementation ease

Table 3 shows the number of new or modified lines of
code (LoC) we had to write for each application (exclud-
ing WheelFS itself). Table 3 demonstrates that developers
can benefit from a POSIX file system interface and cues
to build wide-area applications with ease.

9 Related Work

There is a humbling amount of past work on distributed
file systems, wide-area storage in general and the tradeoffs
of availability and consistency. PRACTI [8] is a recently-
proposed framework for building storage systems with ar-
bitrary consistency guarantees (as in TACT [43]). Like
PRACTI, WheelFS maintains flexibility by separating
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policies from mechanisms, but it has a different goal.
While PRACTI and its recent extension PADS [9] are
designed to simplify the development of new storage or
file systems, WheelFS itself is a flexible file system de-
signed to simplify the construction of distributed appli-
cations. As a result, WheelFS’s cues are motivated by the
specific needs of applications (such as the .Site cue) while
PRACTT’s primitives aim at covering the entire spectrum
of design tradeoffs (e.g., strong consistency for operations
spanning multiple data objects, which WheelFS does not
support).

Most distributed file systems are designed to support
a workload generated by desktop users (e.g., NFS [33],
AFS [34], Farsite [2], xFS [5], Frangipani [12], Ivy [27]).
They usually provide a consistent view of data, while
sometimes allowing for disconnected operation (e.g.,
Coda [35] and BlueFS [28]). Cluster file systems such as
GFS [22] and Ceph [41] have demonstrated that a dis-
tributed file system can dramatically simplify the con-
struction of distributed applications within a large cluster
with good performance. Extending the success of clus-
ter file systems to the wide-area environment continues
to be difficult due to the tradeoffs necessary to combat
wide-area network challenges. Similarly, Sinfonia [3] of-
fers highly-scalable cluster storage for infrastructure ap-
plications, and allows some degree of inter-object con-
sistency via lightweight transactions. However, it targets
storage at the level of individual pieces of data, rather
than files and directories like WheelFS, and uses proto-
cols like two-phase commit that are costly in the wide
area. Shark [6] shares with WheelFS the goal of allowing
client-to-client data sharing, though its use of a central-
ized server limits its scalability for applications in which
nodes often operate on independent data.

Successful wide-area storage systems generally exploit
application-specific knowledge to make decisions about
tradeoffs in the wide-area environment. As a result, many
wide-area applications include their own storage lay-
ers [4, 14,19, 31] or adapt an existing system [29, 40].
Unfortunately, most existing storage systems, even more
general ones like OceanStore/Pond [30] or S3 [1], are only
suitable for a limited range of applications and still require
a large amount of code to use. DHTs are a popular form
of general wide-area storage, but, while DHTs all offer
a similar interface, they differ widely in implementation.
For example, UsenetDHT [36] and CoralCDN [19] both
use a DHT, but their DHTs differ in many details and are
not interchangeable.

Some wide-area storage systems offer configuration
options in order to make them suitable for a larger range of
applications. Amazon’s Dynamo [16] works across multi-
ple data centers and provides developers with two knobs:
the number of replicas to read or to write, in order to con-
trol durability, availability and consistency tradeoffs. By

contrast, WheelFS’s cues are at a higher level (e.g., even-
tual consistency versus close-to-open consistency). Total
Recall [10] offers a per-object flexible storage API and
uses a primary/backup architecture like WheelFS, but as-
sumes no network partitions, focuses mostly on availabil-
ity controls, and targets a more dynamic environment.
Bayou [39] and Pangaea [32] provide eventual consis-
tency by default while the latter also allows the use of a
“red button” to wait for the acknowledgment of updates
from all replicas explicitly. Like Pangaea and Dynamo,
WheelFS provides flexible consistency tradeoffs. Addi-
tionally, WheelFS also provides controls in other cate-
gories (such as data placement, large reads) to suit the
needs of a variety of applications.

10 Conclusion

Applications that distribute data across multiple sites have
varied consistency, durability, and availability needs. A
shared storage system able to meet this diverse set of
needs would ideally provide applications a flexible and
practical interface, and handle applications’ storage needs
without sacrificing much performance when compared to
a specialized solution. This paper describes WheelFS, a
wide-area storage system with a traditional POSIX inter-
face augmented by cues that allow distributed applications
to control consistency and fault-tolerance tradeoffs.

WheelFS offers a small set of cues in four categories
(placement, durability, consistency, and large reads),
which we have found to work well for many common dis-
tributed workloads. We have used a WheelFS prototype
as a building block in a variety of distributed applications,
and evaluation results show that it meets the needs of
these applications while permitting significant code reuse
of their existing, non-distributed counterparts. We hope to
make an implementation of WheelFS available to devel-
opers in the near future.
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Abstract

This paper presents PADS, a policy architecture for build-
ing distributed storage systems. A policy architecture has
two aspects. First, a common set of mechanisms that al-
low new systems to be implemented simply by defining
new policies. Second, a structure for how policies, them-
selves, should be specified. In the case of distributed
storage systems, PADS defines a data plane that pro-
vides a fixed set of mechanisms for storing and trans-
mitting data and maintaining consistency information.
PADS requires a designer to define a control plane pol-
icy that specifies the system-specific policy for orches-
trating flows of data among nodes. PADS then divides
control plane policy into two parts: routing policy and
blocking policy. The PADS prototype defines a concise
interface between the data and control planes, it provides
a declarative language for specifying routing policy, and
it defines a simple interface for specifying blocking pol-
icy. We find that PADS greatly reduces the effort to de-
sign, implement, and modify distributed storage systems.
In particular, by using PADS we were able to quickly
construct a dozen significant distributed storage systems
spanning a large portion of the design space using just a
few dozen policy rules to define each system.

1 Introduction

Our goal is to make it easy for system designers to con-
struct new distributed storage systems. Distributed stor-
age systems need to deal with a wide range of hetero-
geneity in terms of devices with diverse capabilities (e.g.,
phones, set-top-boxes, laptops, servers), workloads (e.g.,
streaming media, interactive web services, private stor-
age, widespread sharing, demand caching, preloading),
connectivity (e.g., wired, wireless, disruption tolerant),
and environments (e.g., mobile networks, wide area net-
works, developing regions). To cope with these varying
demands, new systems are developed [12, 14, 19, 21,
22, 30], each making design choices that balance perfor-
mance, resource usage, consistency, and availability. Be-
cause these tradeoffs are fundamental [7, 16, 34], we do
not expect the emergence of a single “hero” distributed
storage system to serve all situations and end the need
for new systems.

This paper presents PADS, a policy architecture that

simplifies the development of distributed storage sys-
tems. A policy architecture has two aspects.

First, a policy architecture defines a common set of
mechanisms and allows new systems to be implemented
simply by defining new policies. PADS casts its mech-
anisms as part of a data plane and policies as part of a
control plane. The data plane encapsulates a set of com-
mon mechanisms that handle the details of storing and
transmitting data and maintaining consistency informa-
tion. System designers then build storage systems by
specifying a control plane policy that orchestrates data
flows among nodes.

Second, a policy architecture defines a framework for
specifying policy. In PADS, we separate control plane
policy into routing and blocking policy.

e Routing policy: Many of the design choices of dis-
tributed storage systems are simply routing decisions
about data flows between nodes. These decisions pro-
vide answers to questions such as: “When and where
to send updates?” or “Which node to contact on a
read miss?”, and they largely determine how a sys-
tem meets its performance, availability, and resource
consumption goals.

e Blocking policy: Blocking policy specifies predicates
for when nodes must block incoming updates or lo-
cal read/write requests to maintain system invariants.
Blocking is important for meeting consistency and
durability goals. For example, a policy might block
the completion of a write until the update reaches at
least 3 other nodes.

The PADS prototype is an instantiation of this archi-
tecture. It provides a concise interface between the con-
trol and data planes that is flexible, efficient, and yet sim-
ple. For routing policy, designers specify an event-driven
program over an API comprising a set of actions that set
up data flows, a set of triggers that expose local node in-
formation, and the abstraction of stored events that store
and retrieve persistent state. To facilitate the specifi-
cation of event-driven routing, the prototype defines a
domain-specific language that allows routing policy to
be written as a set of declarative rules. For defining a
control plane’s blocking policy, PADS defines five block-
ing points in the data plane’s processing of read, write,
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Fig. 1: Features covered by case-study systems. Each column corresponds to a system implemented on PADS, and the rows list
the set of features covered by the implementation. *Note that the original implementations of some systems provide interfaces that
differ from the object store or file system interfaces we provide in our prototypes.

and receive-update actions; at each blocking point, a de-
signer specifies blocking predicates that indicate when
the processing of these actions must block.

Ultimately, the evidence for PADS’s usefulness is sim-
ple: two students used PADS to construct a dozen dis-
tributed storage systems summarized in Figure 1 in a few
months. PADS’s ability to support these systems (1) pro-
vides evidence supporting our high-level approach and
(2) suggests that the specific APIs of our PADS prototype
adequately capture the key abstractions for building dis-
tributed storage systems. Notably, in contrast with the
thousands of lines of code it typically takes to construct
such a system using standard practice, given the PADS
prototype it requires just 6-75 routing rules and a hand-
ful of blocking conditions to define each new system with
PADs.

Similarly, we find it easy to add significant new
features to PADS systems. For example, we add co-
operative caching [5] to Coda by adding 13 rules.

This flexibility comes at a modest cost to absolute per-
formance. Microbenchmark performance of an imple-
mentation of one system (P-Coda) built on our user-level
Java PADS prototype is within ten to fifty percent of the
original system (Coda [14]) in most cases and 3.3 times
worse in the worst case we measured.

A key issue in interpreting Figure 1 is understanding
how complete or realistic these PADS implementations
are. The PADS implementations are not bug-compatible
recreations of every detail of the original systems, but we

believe they do capture the overall architecture of these
designs by storing approximately the same data on each
node, by sending approximately the same data across the
same network links, and by enforcing the same consis-
tency and durability semantics; we discuss our definition
of architectural equivalence in Section 6. We also note
that our PADS implementations are sufficiently complete
to run file system benchmarks and that they handle im-
portant and challenging real world details like configura-
tion files and crash recovery.

2 PADS overview

Separating mechanism from policy is an old idea. As
Figure 2 illustrates, PADS does so by defining a data
plane that embodies the basic mechanisms needed for
storing data, sending and receiving data, and maintain-
ing consistency information. PADS then casts policy
as defining a control plane that orchestrates data flow
among nodes. This division is useful because it allows
the designer to focus on high-level specification of con-
trol plane policy rather than on implementation of low-
level data storage, bookkeeping, and transmission de-
tails.

PADS must therefore specify an interface between the
data plane and the control plane that is flexible and effi-
cient so that it can accommodate a wide design space. At
the same time, the interface must be simple so that the
designer can reason about it. Section 3 and Section 4 de-
tail the interface exposed by the data plane mechanisms
to the control plane policy.
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Fig. 2: PADS approach to system development.

To meet these goals and to guide a designer, PADS di-
vides the control policy into a routing policy and a block-
ing policy. This division is useful because it introduces a
separation of concerns for a system designer.

First, a system’s trade-offs among performance, avail-
ability, and resource consumption goals largely map to
routing rules. For example, sending all updates to all
nodes provides excellent response time and availability,
whereas caching data on demand requires fewer network
and storage resources. As described in Section 3, a PADS
routing policy is an event-driven program that builds on
the data plane mechanisms exposed by the PADS API to
set up data flows among nodes in order to transmit and
store the desired data at the desired nodes.

Second, a system’s durability and consistency con-
straints are naturally expressed as conditions that must
be met when an object is read or updated. For example,
the enforcement of a specific consistency semantic might
require a read to block until it can return the value of
the most recently completed write. As described in Sec-
tion 4, a PADS blocking policy specifies these require-
ments as a set of predicates that block access to an object
until the predicates are satisfied.

Blocking policy works together with routing policy to
enforce the safety constraints and the liveness goals of
a system. Blocking policy enforce safety conditions by
ensuring that an operation blocks until system invariants
are met, whereas routing policy guarantee liveness by en-
suring that an operation will eventually unblock—by set-
ting up data flows to ensure the conditions are eventually
satisfied.

2.1 Using PADS

As Figure 2 illustrates, in order to build a distributed stor-
age system on PADS, a system designer writes a routing
policy and a blocking policy. She writes the routing pol-
icy as an event-driven program comprising a set of rules
that send or fetch updates among nodes when particular
events exposed by the underlying data plane occur. She
writes her blocking policy as a list of predicates. She
then uses a PADS compiler to translate her routing rules

into Java and places the blocking predicates in a config-
uration file. Finally, she distributes a Java jar file con-
taining PADS’s standard data plane mechanisms and her
system’s control policy to the system’s nodes. Once the
system is running at each node, users can access locally
stored data, and the system synchronizes data among
nodes according to the policy.

2.2 Policies vs. goals

A PADS policy is a specific set of directives rather than
a statement of a system’s high-level goals. Distributed
storage design is a creative process and PADS does not
attempt to automate it: a designer must still devise a
strategy to resolve trade-offs among factors like perfor-
mance, availability, resource consumption, consistency,
and durability. For example, a policy designer might de-
cide on a client-server architecture and specify “When
an update occurs at a client, the client should send the
update to the server within 30 seconds” rather than stat-
ing “Machine X has highly durable storage” and “Data
should be durable within 30 seconds of its creation” and
then relying on the system to derive a client-server archi-
tecture with a 30 second write buffer.

2.3 Scope and limitations

PADS targets distributed storage environments with mo-
bile devices, nodes connected by WAN networks, or
nodes in developing regions with limited or intermittent
connectivity. In these environments, factors like limited
bandwidth, heterogeneous device capabilities, network
partitions, or workload properties force interesting trade-
offs among data placement, update propagation, and con-
sistency. Conversely, we do not target environments like
well-connected clusters.

Within this scope, there are three design issues for
which the current PADS prototype significantly restricts
a designer’s choices

First, the prototype does not support security specifi-
cation. Ultimately, our policy architecture should also
define flexible security primitives, and providing such
primitives is important future work [18].

Second, the prototype exposes an object-store inter-
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face for local reads and writes. It does not expose other
interfaces such as a file system or a tuple store. We be-
lieve that these interfaces are not difficult to incorporate.
Indeed, we have implemented an NFS interface over our
prototype.

Third, the prototype provides a single mechanism for
conflict resolution. Write-write conflicts are detected and
logged in a way that is data-preserving and consistent
across nodes to support a broad range of application-
level resolvers. We implement a simple last writer wins
resolution scheme and believe that it is straightforward to
extend PADS to support other schemes [14, 31, 13, 28, 6].

3 Routing policy

In PADS, the basic abstraction provided by the data plane
is a subscription—a unidirectional stream of updates to
a specific subset of objects between a pair of nodes. A
policy designer controls the data plane’s subscriptions to
implement the system’s routing policy. For example, if
a designer wants to implement hierarchical caching, the
routing policy would set up subscriptions among nodes
to send updates up and to fetch data down the hierarchy.
If a designer wants nodes to randomly gossip updates,
the routing policy would set up subscriptions between
random nodes. If a designer wants mobile nodes to ex-
change updates when they are in communication range,
the routing policy would probe for available neighbors
and set up subscriptions at opportune times.

Given this basic approach, the challenge is to define
an API that is sufficiently expressive to construct a wide
range of systems and yet sufficiently simple to be com-
prehensible to a designer. As the rest of this section de-
tails, PADS provides three sets of primitives for specify-
ing routing policies: (1) a set of 7 actions that establish
or remove subscriptions to direct communication of spe-
cific subsets of data among nodes, (2) a set of 9 triggers
that expose the status of local operations and informa-
tion flow, and (3) a set of 5 stored events that allow a
routing policy to persistently store and access configura-
tion options and information affecting routing decisions
in data objects. Consequently, a system’s routing policy
is specified as an event-driven program that invokes the
appropriate actions or accesses stored events based on
the triggers received.

In the rest of this section, we discuss details of these
PADS primitives and try to provide an intuition for why
these few primitives can cover a large part of the design
space. We do not claim that these primitives are minimal
or that they are the only way to realize this approach.
However, they have worked well for us in practice.

3.1 Actions

The basic abstraction provided by a PADS action is sim-
ple: an action sets up a subscription to route updates

[ Routing Actions

Add Inval Sub srcld, destld, objS, [startTime],
LOG|CP|CP+Body

Add Body Sub srcld, destId, objS, [startTime]

Remove Inval Sub srcld, destld, objS

Remove Body Sub | srcld, destld, objS

Send Body srcld, destld, objld, off, len, writerld, time

Assign Seq objld, off, len, writerld, time

B Action <policy defined>

Fig. 3: Routing actions provided by PADS. objld, off, and len
indicate the object identifier, offset, and length of the update
to be sent. startTime specifies the logical start time of the sub-
scription. writerld and time indicate the logical time of a par-
ticular update. The fields for the B Action are policy defined.

from one node to another or removes an established sub-
scription to stop sending updates. As Figure 3 shows, the
subscription establishment API (Add Inval Sub and Add
Body Sub) provides five parameters that allow a designer
to control the scope of subscriptions:

o Selecting the subscription type. The designer decides
whether invalidations or bodies of updates should be
sent. Every update comprises an invalidation and a
body. An invalidation indicates that an update of a
particular object occurred at a particular instant in log-
ical time. Invalidations aid consistency enforcement
by providing a means to quickly notify nodes of up-
dates and to order the system’s events. Conversely, a
body contains the data for a specific update.

o Selecting the source and destination nodes. Since sub-
scriptions are unidirectional streams, the designer in-
dicates the direction of the subscription by specifying
the source node (srcld) of the updates and the desti-
nation node (destld) to which the updates should be
transmitted.

e Selecting what data to send. The designer specifies
what data to send by specifying the objects of inter-
est for a subscription so that only updates for those
objects are sent on the subscription. PADS exports a
hierarchical namespace in which objects are identified
with unique strings (e.g., /x/y/z) and a group of related
objects can be concisely specified. (e.g., /a/b/*).

o Selecting the logical start time. The designer specifies
a logical start time so that the subscription can send
all updates that have occurred to the objects of interest
from that time. The start time is specified as a partial
version vector and is set by default to the receiver’s
current logical time.

o Selecting the catch-up method. 1If the start time for
an invalidation subscription is earlier than the sender’s
current logical time, the sender has two options: The
sender can transmit either a log of the updates that
have occurred since the start time or a checkpoint that
includes just the most recent update to each byterange
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[ Local Read/Write Triggers

[ Stored Events

Inval arrives srcld, obj, off, len, writerld, time

Send body success | srcld, obj, off, len, writerld, time

Send body failed srcld, destld, obj, off, len, writerld, time

[ Connection Triggers

Subscription start srcld, destId, objS, Inval|Body

Subscription caught-up | srcld, destld, objS, Inval

Subscription end srcld, destld, objS, Reason, Inval|Body

Fig. 4: Routing triggers provided by PADS. blocking_point and
failed_predicates indicate at which point an operation blocked
and what predicate failed (refer to Section 4). Inval | Body
indicate the type of subscription. Reason indicates if the sub-
scription ended due to failure or termination.

since the start time. These options have different per-
formance tradeoffs. Sending a log is more efficient
when the number of recent changes is small compared
to the number of objects covered by the subscription.
Conversely, a checkpoint is more efficient if (a) the
start time is in the distant past (so the log of events is
long) or (b) the subscription set consists of only a few
objects (so the size of the checkpoint is small). Note
that once a subscription catches up with the sender’s
current logical time, updates are sent as they arrive,
effectively putting all active subscriptions into a mode
of continuous, incremental log transfer. For body sub-
scriptions, if the start time of the subscription is earlier
than the sender’s current time, the sender transmits a
checkpoint containing the most recent update to each
byterange. The log option is not available for send-
ing bodies. Consequently, the data plane only needs to
store the most recent version of each byterange.

In addition to the interface for creating subscriptions
(Add Inval Sub and Add Body Sub), PADS provides Re-
move Inval Sub and Remove Body Sub to remove estab-
lished subscriptions, Send Body to send an individual
body of an update that occurred at or after the speci-
fied time, Assign Seq to mark a previous update with a
commit sequence number to aid enforcement of consis-
tency [23], and B Action to allow the routing policy to
send an event to the blocking policy (refer to Section 4).
Figure 3 details the full routing actions API.

3.2 Triggers

PADS triggers expose to the control plane policy events
that occur in the data plane. As Figure 4 details, these
events fall into three categories.

e Local operation triggers inform the routing policy
when an operation blocks because it needs additional
information to complete or when a local write or delete
occurs.

Operation block | obj, off, len, Write event objld, eventName, fieldl, ..., fieldN
blocking_point, failed_predicates Read event objld
Write obj, off, len, writerld, time Read and watch event | objld
Delete obj, writerld, time Stop watch objld
[ Message Arrival Triggers Delete events objld

Fig. 5: PADS’s stored events interface. objld specifies the ob-
ject in which the events should be stored or read from. event-
Name defines the name of the event to be written and field*
specify the values of fields associated with it.

e Message receipt triggers inform the routing policy
when an invalidation arrives, when a body arrives, or
whether a send body succeeds or fails.

e Connection triggers inform the routing policy when
subscriptions are successfully established, when a sub-
scription has caused a receiver’s state to be caught up
with a sender’s state (i.e., the subscription has trans-
mitted all updates to the subscription set up to the
sender’s current time), or when a subscription is re-
moved or fails.

3.3 Stored events

Many systems need to maintain persistent state to make
routing decisions. Supporting this need is challenging
both because we want an abstraction that meshes well
with our event-driven programming model and because
the techniques must handle a wide range of scales. In
particular, the abstraction must not only handle simple,
global configuration information (e.g., the server identity
in a client-server system like Coda [14]), but it must also
scale up to per-file information (e.g., which nodes store
the gold copies of each object in Pangaea [26].)

To provide a uniform abstraction to address this range
of demands, PADS provides stored events primitives to
store events into a data object in the underlying persis-
tent object store. Figure 5 details the full API for stored
events. A Write Event stores an event into an object and
a Read Event causes all events stored in an object to be
fed as input to the routing program. The API also in-
cludes Read and Watch to produce new events whenever
they are added to an object, Stop Watch to stop producing
new events from an object, and Delete Events to delete all
events in an object.

For example, in a hierarchical information dissemi-
nation system, a parent p keeps track of what volumes
a child subscribes to so that the appropriate subscrip-
tions can be set up. When a child ¢ subscribes to a new
volume v, p stores the information in a configuration
object /sublnfo by generating a <write_event, /sublnfo,
child_sub, p, ¢, v> action. When this information is
needed, for example on startup or recovery, the parent
generates a <read_event, /sublnfo> action that causes a
<child_sub, p, c, v> event to be generated for each item
stored in the object. The child_sub events, in turn, trig-
ger event handlers in the routing policy that re-establish
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subscriptions.

3.4 Specifying routing policy

A routing policy is specified as an event-driven program
that invokes actions when local triggers or stored events
are received. PADS provides R/OverLog, a language
based on the OverLog routing language [17] and a run-
time to simplify writing event-driven policies.'

As in OverLog, a R/OverLog program defines a set of
tables and a set of rules. Tables store tuples that represent
internal state of the routing program. This state does not
need to be persistently stored, but is required for policy
execution and can dynamically change. For example, a
table might store the ids of currently reachable nodes.
Rules are fired when an event occurs and the constraints
associated with the rule are met. The input event to a
rule can be a trigger injected from the local data plane,
a stored event injected from the data plane’s persistent
state, or an internal event produced by another rule on a
local machine or a remote machine. Every rule generates
a single event that invokes an action in the data plane,
fires another local or remote rule, or is stored in a table
as a tuple. For example, the following rule:

EVT clientReadMiss(@S, X, Obj, Off, Len):-
TRIG operationBlock(@X, Obj, Off, Len, BPoint,_),
TBL_serverld(@X, S),
BPoint == “readNowBlock”.

specifies that whenever node X receives a operationBlock
trigger informing it of an operation blocked at the read-
NowBlock blocking point, it should produce a new event
clientReadMiss at server S, identified by serverld table.
This event is populated with the fields from the triggering
event and the constraints—the client id (X), the data to be
read (obj, off; len), and the server to contact (S). Note that
the underscore symbol () is a wildcard that matches any
list of predicates and the at symbol (@) specifies the node
at which the event occurs. A more complete discussion
of OverLog language and execution model is available
elsewhere [17].

4 Blocking policy

A system’s durability and consistency constraints can be
naturally expressed as invariants that must hold when an
object is accessed. In PADS, the system designer speci-
fies these invariants as a set of predicates that block ac-
cess to an object until the conditions are satisfied. To that
end, PADS (1) defines 5 blocking points for which a sys-
tem designer specifies predicates, (2) provides 4 built-in
conditions that a designer can use as predicates, and (3)
exposes a B_Action interface that allows a designer to
specify custom conditions based on routing information.

"Note that if learning a domain specific language is not one’s cup of
tea, one can define a (less succinct) policy by writing Java handlers for
PADS triggers and stored events to generate PADS actions and stored
events.

[ Predefined Conditions on Local Consistency State ]

isValid Block until node has received the body corre-
sponding to the highest received invalidation
for the target object

isComplete Block until object’s consistency state reflects
all updates before the node’s current logical
time

isSequenced Block until object’s total order is established

maxStaleness Block until all writes up to

nodes, count, t (operationStartTime-t) from count nodes in

nodes have been received.

[ User Defined Conditions on Local or Distributed State
B_Action
event-spec

Block until an event with fields matching
event-spec is received from routing policy

Fig. 6: Conditions available for defining blocking predicates.

The set of predicates for each blocking point makes up
the blocking policy of the system.

4.1 Blocking points

PADS defines five points for which a policy can supply a
predicate and a timeout value to block a request until the
predicate is satisfied or the timeout is reached. The first
three are the most important:

e ReadNowBlock blocks a read until it will return data
from a moment that satisfies the predicate. Blocking
here is useful for ensuring consistency (e.g., block un-
til a read is guaranteed to return the latest sequenced
write.)

o WriteEndBlock blocks a write request after it has up-
dated the local object but before it returns. Blocking
here is useful for ensuring consistency (e.g., block un-
til all previous versions of this data are invalidated)
and durability (e.g., block here until the update is
stored at the server.)

e ApplyUpdateBlock blocks an invalidation received
from the network before it is applied to the local data
object. Blocking here is useful to increase data avail-
ability by allowing a node to continue serving local
data, which it might not have been able to if the data
had been invalidated. (e.g., block applying a received
invalidation until the corresponding body is received.)

PADS also provides WriteBeforeBlock to block a write
before it modifies the underlying data object and Read-
EndBlock to block a read after it has retrieved data from
the data plane but before it returns.

4.2 Blocking conditions

PADS provides a set of predefined conditions, listed in
Figure 6, to specify predicates at each blocking point.
A blocking predicate can use any combination of these
predicates. The first four conditions provide an interface
to the consistency bookkeeping information maintained
in the data plane on each node.

o [sValid requires that the last body received for an ob-
ject is as new as the last invalidation received for that
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object. isValid is useful for enforcing monotonic co-
herence on reads” and for maximizing availability by
ensuring that invalidations received from other nodes
are not applied until they can be applied with their cor-
responding bodies [6, 20].

o [sComplete requires that a node receives all invalida-
tions for the target object up to the node’s current log-
ical time. IsComplete is needed because liveness poli-
cies can direct arbitrary subsets of invalidations to a
node, so a node may have gaps in its consistency state
for some objects. If the predicate for ReadNowBlock
is set to isValid and isComplete, reads are guaranteed
to see causal consistency.

o [sSequenced requires that the most recent write to the
target object has been assigned a position in a to-
tal order. Policies that want to ensure sequential or
stronger consistency can use the Assign Seq routing
action (see Figure 3) to allow a node to sequence other
nodes’ writes and specify the isSequenced condition
as a ReadNowBlock predicate to block reads of unse-
quenced data.

e MaxStaleness is useful for bounding real time stale-
ness.

The fifth condition on which a blocking predicate can
be based on is B_Action. A B_Action condition provides
an interface with which a routing policy can signal an
arbitrary condition to a blocking predicate. An operation
waiting for event-spec unblocks when the routing rules
produce an event whose fields match the specified spec.

Rationale. The first four, built-in consistency book-
keeping primitives exposed by this API were developed
because they are simple and inexpensive to maintain
within the data plane [2, 35] but they would be complex
or expensive to maintain in the control plane. Note that
they are primitives, not solutions. For example, to en-
force linearizability, one must not only ensure that one
reads only sequenced updates (e.g., via blocking at Read-
NowBlock on isSequenced) but also that a write operation
blocks until all prior versions of the object have been in-
validated (e.g., via blocking at WriteEndBlock on, say,
the B_Action alllnvalidated which the routing policy pro-
duces by tracking data propagation through the system).

Beyond the four pre-defined conditions, a policy-
defined B_Action condition is needed for two reasons.
The most obvious need is to avoid having to predefine
all possible interesting conditions. The other reason for
allowing conditions to be met by actions from the event-
driven routing policy is that when conditions reflect dis-
tributed state, policy designers can exploit knowledge of
their system to produce better solutions than a generic
implementation of the same condition. For example, in

2 Any read on an object will return a version that is equal to or newer
than the version that was last read.

the client-server system we describe in Section 6, a client
blocks a write until it is sure that all other clients caching
the object have been invalidated. A generic implemen-
tation of the condition might have required the client
that issued the write to contact all other clients. How-
ever, a policy-defined event can take advantage of the
client-server topology for a more efficient implementa-
tion. The client sets the writeEndBlock predicate to a
policy-defined receivedAllAcks event. Then, when an ob-
ject is written and other clients receive an invalidation,
they send acknowledgements to the server. When the
server gathers acknowledgements from all other clients,
it generates a receivedAllAcks action for the client that
issued the write.

S Constructing P-TierStore

As an example of how to build a system with PADS, we
describe our implementation of P-TierStore, a system in-
spired by TierStore [6]. We choose this example because
it is simple and yet exercises most aspects of PADS.

5.1 System goals

TierStore is a distributed object storage system that tar-
gets developing regions where networks are bandwidth-
constrained and unreliable. Each node reads and writes
specific subsets of the data. Since nodes must often op-
erate in disconnected mode, the system prioritizes 100%
availability over strong consistency.

5.2 System design

In order to achieve these goals, TierStore employs a hi-
erarchical publish/subscribe system. All nodes are ar-
ranged in a tree. To propagate updates up the tree, every
node sends all of its updates and its children’s updates
to its parent. To flood data down the tree, data are parti-
tioned into “publications” and every node subscribes to a
set of publications from its parent node covering its own
interests and those of its children. For consistency, Tier-
Store only supports single-object monotonic reads coher-
ence.

5.3 Policy specification

In order to construct P-TierStore, we decompose the de-
sign into routing policy and blocking policy.

A 14-rule routing policy establishes and maintains the
publication aggregation and multicast trees. A full list-
ing of these rules is available elsewhere [3]. In terms
of PADS primitives, each connection in the tree is sim-
ply an invalidation subscription and a body subscription
between a pair of nodes. Every PADS node stores in con-
figuration objects the ID of its parent and the set of pub-
lications to subscribe to.

On start up, a node uses stored events to read the con-
figuration objects and store the configuration information
in R/OverLog tables (4 rules). When it knows of the ID
of its parent, it adds subscriptions for every item in the
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publication set (2 rules). For every child, it adds sub-
scriptions for “/*” to receive all updates from the child
(2 rules). If an application decides to subscribe to an-
other publication, it simply writes to the configuration
object. When this update occurs, a new stored event is
generated and the routing rules add subscriptions for the
new publication.

Recovery. If an incoming or an outgoing subscription
fails, the node periodically tries to re-establish the con-
nection (2 rules). Crash recovery requires no extra pol-
icy rules. When a node crashes and starts up, it sim-
ply re-establishes the subscriptions using its local logical
time as the subscription’s start time. The data plane’s
subscription mechanisms automatically detect which up-
dates the receiver is missing and send them.

Delay tolerant network (DTN) support. P-TierStore
supports DTN environments by allowing one or more
mobile PADS nodes to relay information between a par-
ent and a child in a distribution tree. In this configura-
tion, whenever a relay node arrives, a node subscribes to
receive any new updates the relay node brings and pushes
all new local updates for the parent or child subscription
to the relay node (4 rules).

Blocking policy. Blocking policy is simple because
TierStore has weak consistency requirements. Since
TierStore prefers stale available data to unavailable data,
we set the ApplyUpdateBlock to isValid to avoid applying
an invalidation until the corresponding body is received.

TierStore vs. P-TierStore. Publications in TierStore
are defined by a container name and depth to include all
objects up to that depth from the root of the publication.
However, since P-TierStore uses a name hierarchy to de-
fine publications (e.g., /publication1/*), all objects under
the directory tree become part of the subscription with no
limit on depth.

Also, as noted in Section 2.3, PADS provides a single
conflict-resolution mechanism, which differs from that
of TierStore in some details. Similarly, TierStore pro-
vides native support for directory objects, while PADS
supports a simple untyped object store interface.

6 Experience and evaluation

Our central thesis is that it is useful to design and build
distributed storage systems by specifying a control plane
comprising a routing policy and a blocking policy. There
is no quantitative way to prove that this approach is good,
so we base our evaluation on our experience using the
PADS prototype.

Figure 1 conveys the main result of this paper: using
PADS, a small team was able to construct a dozen signif-
icant systems with a large number of features that cover

a large part of the design space. PADS qualitatively re-
duced the effort to build these systems and increased our
team’s capabilities: we do not believe a small team such
as ours could have constructed anything approaching this
range of systems without PADS.

In the rest of this section, we elaborate on this ex-
perience by first discussing the range of systems stud-
ied, the development effort needed, and our debugging
experience. We then explore the realism of the sys-
tems we constructed by examining how PADS handles
key system-building problems like configuration, consis-
tency, and crash recovery. Finally, we examine the costs
of PADS’s generality: what overheads do our PADS im-
plementations pay compared to ideal or hand-crafted im-
plementations?

Approach and environment. The goal of PADS is to
help people develop new systems. One way to evaluate
PADS would be to construct a new system for a new de-
manding environment and report on that experience. We
choose a different approach—constructing a broad range
of existing systems—for three reasons. First, a single
system may not cover all of the design choices or test
the limits of PADS. Second, it might not be clear how
to generalize the experience from building one system to
building others. Third, it might be difficult to disentangle
the challenges of designing a new system for a new envi-
ronment from the challenges of realizing a design using
PADS.

The PADS prototype uses PRACTI [2, 35] to provide
the data plane mechanisms. We implement a R/OverLog
to Java compiler using the XTC toolkit [9]. Except where
noted, all experiments are carried out on machines with
3GHz Intel Pentium IV Xeon processors, 1GB of mem-
ory, and 1Gb/s Ethernet. Machines and network connec-
tions are controlled via the Emulab software [33]. For
software, we use Fedora Core 8, BEA JRockit JVM Ver-
sion 27.4.0, and Berkeley DB Java Edition 3.2.23.

6.1 System development on PADS

This section describes the design space we have covered,
how the agility of the resulting implementations makes
them easy to adapt, the design effort needed to construct
a system under PADS, and our experience debugging and
analyzing our implementations.

6.1.1 Flexibility

We constructed systems chosen from the literature to
cover large part of the design space. We refer to our im-
plementation of each system as P-system (e.g., P-Coda).
To provide a sense of the design space covered, we pro-
vide a short summary of each of the system’s properties
below and in Figure 1.

Generic client-server. We construct a simple client-
server (P-SCS) and a full featured client-server (P-FCS).
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Objects are stored on the server, and clients cache the
data from the server on demand. Both systems imple-
ment callbacks in which the server keeps track of which
clients are storing a valid version of an object and sends
invalidations to them whenever the object is updated.
The difference between P-SCS and P-FCS is that P-SCS
assumes full object writes while P-FCS supports partial-
object writes and also implements leases and coopera-
tive caching. Leases [8] increase availability by allowing
a server to break a callback for unreachable clients. Co-
operative caching [5] allows clients to retrieve data from
a nearby client rather than from the server. Both P-SCS
and P-FCS enforce sequential consistency semantics and
ensure durability by making sure that the server always
holds the body of the most recently completed write of
each object.

Coda[14]. Codais a client-server system that supports
mobile clients. P-Coda includes the client-server pro-
tocol and the features described in Kistler et al.’s pa-
per [14]. It does not include server replication features
detailed in [27]. Our discussion focuses on P-Coda. P-
Coda is similar to P-FCS—it implements callbacks and
leases but not cooperative caching; also, it guarantees
open-to-close consistency’ instead of sequential consis-
tency. A key feature of Coda is its support for discon-
nected operation—clients can access locally cached data
when they are offline and propagate offline updates to
the server on reconnection. Every client has a hoard list
that specifies objects to be periodically fetched from the
server

TRIP [20]. TRIP is a distributed storage system for
large-scale information dissemination: all updates occur
at a server and all reads occur at clients. TRIP uses a
self-tuning prefetch algorithm and delays applying inval-
idations to a client’s locally cached data to maximize the
amount of data that a client can serve from its local state.
TRIP guarantees sequential consistency via a simple al-
gorithm that exploits the constraint that all writes are car-
ried out by a single server.

TierStore [6]. TierStore is described in Section 5.

Chain replication [32]. Chain replication is a server
replication protocol that guarantees linearizability and
high availability. All the nodes in the system are arranged
in a chain. Updates occur at the head and are only con-
sidered complete when they have reached the tail.

Bayou [23]. Bayou is a server-replication protocol that
focuses on peer-to-peer data sharing. Every node has a
local copy of all of the system’s data. From time to time,

3Whenever a client opens a file, it always gets the latest version of
the file known to the server, and the server is not updated until the file
is closed.

a node picks a peer to exchange updates with via anti-
entropy sessions.

Pangaea [26] Pangaea is a peer-to-peer distributed
storage system for wide area networks. Pangaea main-
tains a connected graph across replicas for each object,
and it pushes updates along the graph edges. Pangaea
maintains three gold replicas for every object to ensure
data durability.

Summary of design features. As Figure 1 further de-
tails, these systems cover a wide range of design features
in a number of key dimensions. For example,

e Replication: full replication (Bayou, Chain Replica-
tion, and TRIP), partial replication (Coda, Pangaea, P-
FCS, and TierStore), demand caching (Coda, Pangaea,
and P-FCS),

e Topology: structured topologies such as client-server
(Coda, P-FCS, and TRIP), hierarchical (TierStore),
and chain (Chain Replication); unstructured topolo-
gies (Bayou and Pangaea). Invalidation-based (Coda
and P-FCS) and update-based (Bayou, TierStore, and
TRIP) propagation.

e Consistency: monotonic-reads coherence (Pangaea
and TierStore), casual (Bayou), sequential (P-FCS and
TRIP), and linearizability (Chain Replication); tech-
niques such as callbacks (Coda, P-FCS, and TRIP) and
leases (Coda and P-FCS).

e Availability: Disconnected operation (Bayou, Coda,
TierStore, and TRIP), crash recovery (all), and net-
work reconnection (all).

Goal: Architectural equivalence. We build systems
based on the above designs from the literature, but con-
structing perfect, “bug-compatible” duplicates of the
original systems using PADS is not a realistic (or use-
ful) goal. On the other hand, if we were free to pick and
choose arbitrary subsets of features to exclude, then the
bar for evaluating PADS is too low: we can claim to have
built any system by simply excluding any features PADS
has difficulty supporting.

Section 2.3 identifies three aspects of system design—
security, interface, and conflict resolution—for which
PADS provides limited support, and our implementations
of the above systems do not attempt to mimic the original
designs in these dimensions.

Beyond that, we have attempted to faithfully imple-
ment the designs in the papers cited. More precisely, al-
though our implementations certainly differ in some de-
tails, we believe we have built systems that are archi-
tecturally equivalent to the original designs. We define
architectural equivalence in terms of three properties:

El. Equivalent overhead. A system’s network bandwidth

between any pair of nodes and its local storage at any
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node are within a small constant factor of the target
system.

E2. Equivalent consistency. The system provides consis-

tency and staleness properties that are at least as strong
as the target system’s.

E3. Equivalent local data. The set of data that may be ac-

cessed from the system’s local state without network
communication is a superset of the set of data that may
be accessed from the target system’s local state. No-
tice that this property addresses several factors includ-
ing latency, availability, and durability.

There is a principled reason for believing that these prop-
erties capture something about the essence of a repli-
cation system: they highlight how a system resolves
the fundamental CAP (Consistency vs. Availability vs.
Partition-resilience) [7] and PC (Performance vs. Con-
sistency) [16] trade-offs that any distributed storage sys-
tem must make.

6.1.2 Agility

As workloads and goals change, a system’s requirements
also change. We explore how systems build with PADS
can be adapted by adding new features. We highlight
two cases in particular: our implementation of Bayou
and Coda. Even though they are simple examples, they
demonstrate that being able to easily adapt a system to
send the right data along the right paths can pay big div-
idends.

P-Bayou small device enhancement. P-Bayou is a
server-replication protocol that exchanges updates be-
tween pairs of servers via an anti-entropy protocol. Since
the protocol propagates updates for the whole data set to
every node, P-Bayou cannot efficiently support smaller
devices that have limited storage or bandwidth.

It is easy to change P-Bayou to support small devices.
In the original P-Bayou design, when anti-entropy is trig-
gered, a node connects to a reachable peer and subscribes
to receive invalidations and bodies for all objects using a
subscription set “/*”. In our small device variation, a
node uses stored events to read a list of directories from
a per-node configuration file and subscribes only for the
listed subdirectories. This change required us to modify
two routing rules.

This change raises an issue for the designer. If a small
device C synchronizes with a first complete server S1, it
will not receive updates to objects outside of its subscrip-
tion sets. These omissions will not affect C since C will
not access those objects. However, if C later synchro-
nizes with a second complete server S2, S2 may end up
with causal gaps in its update logs due to the missing up-
dates that C doesn’t subscribe to. The designer has three
choices: weaken consistency from causal to per-object
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coherence; restrict communication to avoid such situa-
tions (e.g., prevent C from synchronizing with $2); or
weaken availability by forcing S2 to fill its gaps by talk-
ing to another server before allowing local reads of po-
tentially stale objects. We choose the first, so we change
the blocking predicate for reads to no longer require the
isComplete condition. Other designers may make differ-
ent choices depending on their environment and goals.

Figure 7 examines the bandwidth consumed to syn-
chronize 3KB files in P-Bayou and serves two purposes.
First, it demonstrates that the overhead for anti-entropy
in P-Bayou is relatively small even for small files com-
pared to an ideal Bayou implementation (plotted by
counting the bytes of data that must be sent ignoring all
metadata overheads.) More importantly, it demonstrates
that if a node requires only a fraction (e.g., 10%) of the
data, the small device enhancement, which allows a node
to synchronize a subset of data, greatly reduces the band-
width required for anti-entropy.

P-Coda and cooperative caching. In P-Coda, on a
read miss, a client is restricted to retrieving data from the
server. We add cooperative caching to P-Coda by adding
13-rules: 9 to monitor the reachability of nearby nodes,
2 to retrieve data from a nearby client on a read miss, and
2 to fall back to the server if the client cannot satisfy the
data request.

Figure 8 shows the difference in read latency for
misses on a 1KB file with and without support for co-
operative caching. For the experiment, the rount-trip
latency between the two clients is 10ms, whereas the
round-trip latency between a client and server is almost
500ms. When data can be retrieved from a nearby client,
read performance is greatly improved. More importantly,
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with this new capability, clients can share data even when
disconnected from the server.

6.1.3 Ease of development

Each of these systems took a few days to three weeks to
construct by one or two graduate students with part time
effort. The time includes mapping the original system
design to PADS policy primitives, implementation, test-
ing, and debugging. Mapping the design of the original
implementation to routing and blocking policy was chal-
lenging at first but became progressively easier. Once the
design work was done, the implementation did not take
long.

Note that routing rules and blocking conditions are
extremely simple, low-level building bocks. Each rout-
ing rule specifies the conditions under which a single
tuple should be produced. R/Overlog lets us specify
routing rules succinctly—across all of our systems, each
routing rule is from 1 to 3 lines of text. The count of
blocking conditions exposes the complexity of the block-
ing predicates: each blocking predicate is an equation
across zero or more blocking condition elements from
Figure 6, so the count of at most 10 blocking condi-
tions for a policy indicates that across all of that policy’s
blocking predicates, a total of 10 conditions were used.
As Figure 1 indicates, each system was implemented in
fewer than 100 routing rules and fewer than 10 blocking
conditions.

6.1.4 Debugging and correctness

Three aspects of PADS help simplify debugging and rea-
soning about the correctness of PADS systems.

First, the conciseness of PADS policy greatly facili-
tates analysis, peer review, and refinement of design. It
was extremely useful to be able to sit down and walk
through an entire design in a one or two hour meeting.

Second, the abstractions themselves divide work in a
way that simplifies reasoning about correctness. For ex-
ample, we find that the separation of policy into routing
and blocking helps reduce the risk of consistency bugs.
A system’s consistency and durability requirements are
specified and enforced by simple blocking predicates, so
it is not difficult to get them right. We must then design
our routing policy to deliver sufficient data to a node to
eventually satisfy the predicates and ensure liveness.

Third, domain-specific languages can facilitate the
use of model checking [4]. As future work, we intend
to implement a translator from R/Overlog to Promela [1]
so that policies can be model checked to test the correct-
ness of a system’s implementation.

6.2 Realism
When building a distributed storage system, a system de-

signer needs to address issues that arise in practical de-
ployments such as configuration options, local crash re-

covery, distributed crash recovery, and maintaining con-
sistency and durability despite crashes and network fail-
ures. PADS makes it easy to tackle these issues for three
reasons.

First, since the stored events primitive allows routing
policies to access local objects, policies can store and
retrieve configuration and routing options on-the-fly. For
example, in P-TierStore, a nodes stores in a configuration
object the publications it wishes to access. In P-Pangaea,
the parent directory object of each object stores the list
of nodes from which to fetch the object on a read miss.

Second, for consistency and crash recovery, the un-
derlying subscription mechanisms insulate the designer
from low-level details. Upon recovery, local mechanisms
first reconstruct local state from persistent logs. Also,
PADS’s subscription primitives abstract away many chal-
lenging details of resynchronizing node state. Notably,
these mechanisms track consistency state even across
crashes that could introduce gaps in the sequences of in-
validations sent between nodes. As a result, crash re-
covery in most systems simply entails restoring lost sub-
scriptions and letting the underlying mechanisms ensure
that the local state reflects any updates that were missed.

Third, blocking predicates greatly simplify maintain-
ing consistency during crashes. If there is a crash and
the required consistency semantics cannot be guaranteed,
the system will simply block access to “unsafe” data. On
recovery, once the subscriptions have been restored and
the predicates are satisfied, the data become accessible
again.

In each of the PADS systems we constructed, we im-
plemented support for these practical concerns. Due
to space limitations we focus this discussion on the
behaviour of two systems under failure: the full fea-
tured client server system (P-FCS) and TierStore (P-
TierStore). Both are client-server based systems, but they
have very different consistency guarantees. We demon-
strate the systems are able to provide their corresponding
consistency guarantees despite failures.

Consistency, durability, and crash recovery in P-FCS
and P-TierStore Our experiment uses one server and
two clients. To highlight the interactions, we add a 50ms
delay on the network links between the clients and the
server. Client C1 repeatedly reads an object and then
sleeps for 500ms, and Client C2 repeatedly writes in-
creasing values to the object and sleeps for 2000ms. We
plot the start time, finish time, and value of each opera-
tion.

Figure 9 illustrates behavior of P-FCS under failures.
P-FCS guarantees sequential consistency by maintaining
per-object callbacks [11], maintaining object leases [8],
and blocking the completion of a write until the server
has stored the write and invalidated all other client
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Fig. 10: Demonstration of TierStore under a workload similar
to that in Figure 9.

caches. We configure the system with a 10 second lease
timeout. During the first 20 seconds of the experiment, as
the figure indicates, sequential consistency is enforced.
We kill (kill -9) the server process 20 seconds into the
experiment and restart it 10 seconds later. While the
server is down, writes block immediately but reads con-
tinue until the lease expires after which reads block as
well. When we restart the server, it recovers its local
state and then resumes processing requests. Both reads
and writes resume shortly after the server restarts, and the
subscription reestablishment and blocking policy ensure
that consistency is maintained.

We kill the reader, C1, at 50 seconds and restart it 15
seconds later. Initially, writes block, but as soon as the
lease expires, writes proceed. When the reader restarts,
reads resume as well.

Figure 10 illustrates a similar scenario using P-
TierStore. P-TierStore enforces monotonic reads coher-
ence rather than sequential consistency, and it propagates
updates via subscriptions when the network is available.
As a result, all reads and writes complete locally and
without blocking despite failures. During periods of no
failures, the reader receives updates quickly and reads re-
turn recent values. However, if the server is unavailable,

[ [ Ideal | PADS Prototype |
Subscription setup
Inval Subscription O(NssprevU pdates) O(Nuodes
with LOG catch-up +NSSPrevUpdates)
Inval Subscription O(Nssonj) O(Nsson;)
with CP from time=0
Inval Subscription O(Nssobjupa) O(Nuodes
with CP from time=VV +Nssobjupd)
Body Subscription O(Nssobjupd) O(Nssobjupd)
Transmitting updates
Inval Subscription O(NSSNewUpdates) O(NSSNewUpdates)
Body Subscription O(NSSNewUpdateS) O(NSSNewUpdares)

Fig. 11: Network overheads of primitives. Here, N,q.s 1s the
number of nodes. Ngsop; is the number of objects in the sub-
scription set. NgsprevU pdates and Ngsopjupa are the number of
updates that occurred and the number objects in the subscrip-
tion set that were modified from a subscription start time to the
current logical time. Ngsyewt pdares 1 the number of updates to
the subscription set that occur after the subscription has caught
up to the sender’s logical time.

writes still progress, and the reads return values that are
locally stored even if they are stale.

6.3 Performance

The programming model exposed to designers must have
predictable costs. In particular, the volume of data stored
and sent over the network should be proportional to the
amount of information a node is interested in.

We carry out performance evaluation of PADS in two
steps. First, we evaluate the fundamental costs associ-
ated with the PADS architecture. In particular, we ar-
gue that network overheads of PADS are within reason-
able bounds of ideal implementations and highlight when
they depart from ideal.

Second, we evaluate the absolute performance of the
PADS prototype. We quantify overheads associated with
the primitives via micro-benchmarks and compare the
performance of two implementations of the same sys-
tem: the original implementation with the one built over
PADS. We find that P-Coda is as much as 3.3 times worse
than Coda.

6.3.1 Fundamental overheads and scalability

Figure 11 shows the network cost associated with our
prototype’s implementation of PADS’s primitives and in-
dicates that our costs are close to the ideal of having ac-
tual costs be proportional to the amount of new infor-
mation transferred between nodes. Note that these ideal
costs may not be able always be achievable.

There are two ways that PADS sends extra informa-
tion.

First, during invalidation subscription setup in PADS
the sender transmits a version vector indicating the start
time of the subscription and catch-up information so that
the receiver can determine if the catch-up information
introduces gaps in the receiver’s consistency state. That
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cost is then amortized over all the updates sent on the
connection. Also, this cost can be avoided by starting a
subscription at logical time O with a checkpoint rather
than a log for catching up to the current time. Note,
checkpoint catch-up is particularly cheap when interest
sets are small.

Second, in order to support flexible consistency, inval-
idation subscriptions also carry extra information such as
imprecise invalidations [2]. Imprecise invalidations sum-
marize updates to objects out of the subscription set and
are sent to mark logical gaps in the casual stream of in-
validations. The number of imprecise invalidations sent
depends on the workload and is never more than the num-
ber of invalidations of updates to objects in the subscrip-
tion set sent. The size of imprecise invalidations depends
on the locality of the workload and how compactly the
invalidations compress into imprecise invalidations.

Overall, we expect PADS to scale well to systems with
large numbers of objects or nodes—subscription sets and
imprecise invalidations ensure that the number of records
transferred is proportional to amount of data of interest
(and not to the overall size of the database), and the per-
node overheads associated with the version vectors used
to set up some subscriptions can be amortized over all of
the updates sent.

6.3.2 Quantifying the constants

We run experiments to investigate the constant factors
in the cost model and quantify the overheads associated
with subscription setup and flexible consistency. Fig-
ure 12 illustrates the synchronization cost for a simple
scenario. In this experiment, there are 10,000 objects
in the system organized into 10 groups of 1,000 objects
each, and each object’s size is I0KB. The reader registers
to receive invalidations for one of these groups. Then, the
writer updates 100 of the objects in each group. Finally,
the reader reads all the objects.

We look at four scenarios representing combinations
of coarse-grained vs. fine-grained synchronization and
of writes with locality vs. random writes. For coarse-
grained synchronization, the reader creates a single inval-

1KB objects 100KB objects
Coda | P-Coda Coda | P-Coda

Cold read 1.51 4.95(3.28) 11.65 | 9.10(0.78)
Hot read 0.15 0.23(1.53) 0.38 0.43(1.13)
Connected 36.07 | 47.21(1.31) | 49.64 | 54.75(1.10)
Write

Disconnected 17.2 15.50(0.88) | 18.56 | 20.48(1.10)
Write

Fig. 13: Read and write latencies in milliseconds for Coda and
P-Coda. The numbers in parantheses indicate factors of over-
head. The values are averages of 5 runs.

idation subscription and a single body subscription span-
ning all 1000 objects in the group of interest and receives
100 updated objects. For fine-grained synchronization,
the reader creates 1000 invalidation subscriptions, each
for one object, and fetches each of the 100 updated bod-
ies. For writes with locality, the writer updates 100 ob-
jects in the ith group before updating any in the i 4 1st
group. For random writes, the writer intermixes writes
to different groups in a random order.

Four things should be noted. First, the synchroniza-
tion overheads are small compared to the body data trans-
ferred. Second, the “extra” overheads associated with
PADS subscription setup and flexible consistency over
the best case is a small fraction of the total overhead
in all cases. Third, when writes have locality, the over-
head of flexible consistency drops further because larger
numbers of invalidations are combined into an impre-
cise invalidation. Fourth, coarse-grained synchronization
has lower overhead than fine-grained synchronization be-
cause it avoids per-object subscription setup costs.

Similarly, Figure 7 compares the bandwidth overhead
associated with using a PADS system implementation
with an ideal implementation. As the figure indicates, the
bandwidth to propagate updates is close to ideal imple-
mentations. The extra overhead is due to the meta-data
sent with each update.

6.3.3 Absolute Performance

Our goal is to provide sufficient performance to be use-
ful. We compare the performance of a hand-crafted im-
plementation of a system (Coda) that has been in produc-
tion use for over a decade and a PADS implementation of
the same system (P-Coda). We expect to pay some over-
heads for three reasons. First, PADS is a relatively un-
tuned prototype rather than well-tuned production code.
Second, our implementation emphasizes portability and
simplicity, so PADS is written in Java and stores data
using BerkeleyDB rather than running on bare metal.
Third, PADS provides additional functionality such as
tracking consistency metadata, some of which may not
be required by a particular hand-crafted system.

Figure 13 compares the client-side read and write la-
tencies under Coda and P-Coda. The systems are set up
in a two client configuration. To measure the read la-
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tencies, client C1 has a collection of 1,000 objects and
Client C2 has none. For cold reads, Client C2 randomly
selects 100 objects to read. Each read fetches the object
from the server and establishes a callback for the object.
C2 re-reads those objects to measure the hot-read latency.
To measure the connected write latency, both C1 and C2
initially store the same collection of 1,000 objects. C2
selects 100 objects to write. The write will cause the
server to store the update and break a callback with C1
before the write completes at C2. Disconnected writes
are measured by disconnecting C2 from the server and
writing to 100 randomly selected objects.

The performance of PADS’s implementation is com-
parable to hand-crafted C implementation in most cases
and is at most 3 times worse in the worst case we mea-
sured.

7 Related work

PADS and PRACTI. We use a modified version of

PRACTI [2, 35] as the data plane for PADS. Writing a

new policy in PADS differs from constructing a system

using PRACTI alone for three reasons.

1. PADS adds key abstractions not present in PRACTI
such as the separation of routing policy from blocking
policy, stored events, and commit actions.

2. PADS significantly changes abstractions from those

provided in PRACTI. We distilled the interface be-
tween mechanism and policy to the handful of calls
in Figures 3, 4, and 5, and we changed the underly-
ing protocols and mechanisms to meet the needs of
the data plane required by PADS. For example, where
the original PRACTT protocol provides the abstraction
of connections between nodes, each of which carries
one subscription, PADS provides the more lightweight
abstraction of subscriptions which forced us to re-
design the protocol to multiplex subscriptions onto
a single connection between a pair of nodes in or-
der to efficiently support fine-grained subscriptions
and dynamic addition of new items to a subscrip-
tion. Similarly, where PRACTI provides the abstrac-
tion of bound invalidations to make sure that bodies
and updates propagate together, PADS provides the
more flexible blocking predicates, and where PRACTI
hard-coded several mechanisms to track the progress
of updates through the system, PADS simply triggers
the routing policy and lets the routing policy handle
whatever notifications are needed.

3. PADS provides R/OverLog which has proven to be a

convenient way to design about, write, and debug rout-
ing policies.
The whole is more important than the parts. Building
systems with PADS is much simpler than without. In
some cases this is because PADS provides abstractions

not present in PRACTT. In others, it is “merely” because
PADS provides a better way of thinking about the prob-
lem.

R/OverLog and OverLog R/OverLog extends Over-
Log [17] by (1) adding type information to events, (2)
providing an interface to pass triggers, actions, and
stored events as tuples between PADS and the R/OverLog
program, and (3) restricting the syntax slightly to allow
us to implement a R/OverLog-to-Java compiler that pro-
duces executables that are more stable and faster than
programs under the more general P2 [17] runtime sys-
tem.

Other frameworks. A number of other efforts have
defined frameworks for constructing distributed storage
systems for different environments. Deceit [29] focuses
on distributed storage across a well-connected cluster of
servers.  Stackable file systems [10] seek to provide a
way to add features and compose file systems, but it fo-
cuses on adding features to local file systems.

Some systems, such as Cimbiosys [24], distribute
data among nodes not based on object identifiers or file
names, but rather on content-based filters. We see no
fundamental barriers to incorporating filters in PADS to
identify sets of related objects. This would allow sys-
tem designers to set up subscriptions and maintain con-
sistency state in terms of filters rather than object-name
prefixes.

PADS follows in the footsteps of efforts to define run-
time systems or domain-specific languages to ease the
construction of routing [17], overlay [25], cache consis-
tency protocols [4], and routers [15].

8 Conclusion

Our goal is to allow developers to quickly build new dis-
tributed storage systems. This paper presents PADS, a
policy architecture that allows developers to construct
systems by specifying policy without worrying about
complex low-level implementation details. Our experi-
ence has led us to make two conclusions: First, the ap-
proach of constructing a system in terms of a routing pol-
icy and a blocking policy over a data plane greatly re-
duces development time. Second, the range of systems
implemented with the small number of primitives ex-
posed by the API suggest that the primitives adequately
capture the key abstractions for building distributed stor-
age systems.

Acknowledgements

The authors would like to thank the anonymous review-
ers whose comments and suggestions have helped shape
this paper. We would also like to thank Petros Mani-
atis and Amin Vahdat for their valuable insights in the
early drafts of this paper. Finally, we would like to thank

72

NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association



our shepherd, Bruce Maggs. This material is based upon
work supported by the National Science Foundation un-
der Grants No. IIS-0537252 and CNS-0448349 and by
the Center of Information Assurance and Security at Uni-

versity of Texas at Austin.
References

(1]
(2]

(3]

(4]

[3]

(6]
(7]

[8]

[91
[10]

[11]

[12]

[13]

[14]
[15]
[16]
[17]

[18]

[19]
[20]
[21]
[22]

[23]

[24]

http://spinroot.com/spin/whatispin.html.

N. Belaramani, M. Dahlin, L. Gao, A. Nayate, A. Venkataramani,
P. Yalagandula, and J. Zheng. PRACTI replication. In Proc NSDI,
May 2006.

N. Belaramani, J. Zheng, A. Nayate, R. Soule, M. Dahlin, and
R. Grimm. PADS: A Policy Architecture for Distributed Storage
Systems. Technical Report TR-09-08, U. of Texas at Austin, Feb.
2009.

S. Chandra, M. Dahlin, B. Richards, R. Wang, T. Anderson, and
J. Larus. Experience with a Language for Writing Coherence Pro-
tocols. In USENIX Conf. on Domain-Specific Lang., Oct. 1997.
M. Dahlin, R. Wang, T. Anderson, and D. Patterson. Cooperative
Caching: Using Remote Client Memory to Improve File System
Performance. In Proc. OSDI, pages 267-280, Nov. 1994.

M. Demmer, B. Du, and E. Brewer. TierStore: a distributed stor-
age system for challenged networks. In Proc. FAST, Feb. 2008.
S. Gilbert and N. Lynch. Brewer’s conjecture and the feasibility
of Consistent, Available, Partition-tolerant web services. In ACM
SIGACT News, 33(2), Jun 2002.

C. Gray and D. Cheriton. Leases: An Efficient Fault-Tolerant
Mechanism for Distributed File Cache Consistency. In SOSP,
pages 202-210, 1989.

R. Grimm. Better extensibility through modular syntax. In Proc.
PLDI, pages 38-51, June 2006.

J. Heidemann and G. Popek. File-system development with stack-
able layers. ACM TOCS, 12(1):58-89, Feb. 1994.

J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satyanarayanan,
R. Sidebotham, and M. West. Scale and Performance in a Dis-
tributed File System. ACM TOCS, 6(1):51-81, Feb. 1988.

A. Karypidis and S. Lalis. Omnistore: A system for ubiqui-
tous personal storage management. In PERCOM, pages 136—147.
IEEE CS Press, 2006.

A. Kermarrec, A. Rowstron, M. Shapiro, and P. Druschel. The
IceCube aproach to the reconciliation of divergent replicas. In
PODC, 2001.

J. Kistler and M. Satyanarayanan. Disconnected Operation in the
Coda File System. ACM TOCS, 10(1):3-25, Feb. 1992.

E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. Kaashoek. The
Click modular router. ACM TOCS, 18(3):263-297, Aug. 2000.
R. Lipton and J. Sandberg. PRAM: A scalable shared memory.
Technical Report CS-TR-180-88, Princeton, 1988.

B. Loo, T. Condie, J. Hellerstein, P. Maniatis, T. Roscoe, and
I. Stoica. Implementing declarative overlays. In SOSP, Oct. 2005.
P. Mahajan, S. Lee, J. Zheng, L. Alvisi, and M. Dahlin. Astro:
Autonomous and trustworthy data sharing. Technical Report TR-
08-24, The University of Texas at Austin, Oct. 2008.

D. Malkhi and D. Terry. Concise version vectors in WinFS. In
Symp. on Distr. Comp. (DISC), 2005.

A. Nayate, M. Dahlin, and A. Iyengar. Transparent information
dissemination. In Proc. Middleware, Oct. 2004.

E. Nightingale and J. Flinn. Energy-efficiency and storage flexi-
bility in the blue file system. In Proc. OSDI, Dec. 2004.

N.Tolia, M. Kozuch, and M. Satyanarayanan. Integrating portable
and distributed storage. In Proc. FAST, pages 227-238, 2004.

K. Petersen, M. Spreitzer, D. Terry, M. Theimer, and A. Demers.
Flexible Update Propagation for Weakly Consistent Replication.
In SOSP, Oct. 1997.

V. Ramasubramanian, T. Rodeheffer, D. B. Terry, M. Walraed-
Sullivan, T. Wobber, C. Marshall, and A. Vahdat. Cimbiosys: A
platform for content-based partial replication. Technical report,
Microsoft Research, 2008.

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

(33]

[34]

[35]

A. Rodriguez, C. Killian, S. Bhat, D. Kostic, and A. Vahdat.
MACEDON: Methodology for automatically creating, evaluat-
ing, and designing overlay networks. In Proc NSDI, 2004.

Y. Saito, C. Karamanolis, M. Karlsson, and M. Mahalingam.
Taming aggressive replication in the Pangaea wide-area file sys-
tem. In Proc. OSDI, Dec. 2002.

M. Satyanarayanan, J. Kistler, P. Kumar, M. Okasaki, E. Siegel,
and D. Steere. Coda: A highly available file system for distributed
workstation environments. IEEE Trans. Computers, 39(4), 1990.
M. Shapiro, K. Bhargavan, and N. Krishna. A constraint-
based formalism for consistency in replicated systems. In Proc.
OPODIS, Dec. 2004.

A. Siegel, K. Birman, and K. Marzullo. Deceit: A flexible dis-
tributed file system. Corenell TR 89-1042, 1989.

S. Sobti, N. Garg, F. Zheng, J. Lai, E. Ziskind, A. Krishnamurthy,
and R. Y. Wang. Segank: a distributed mobile storage system. In
Proc. FAST, pages 239-252. USENIX Association, 2004.

D. Terry, M. Theimer, K. Petersen, A. Demers, M. Spreitzer, and
C. Hauser. Managing Update Conflicts in Bayou, a Weakly Con-
nected Replicated Storage System. In SOSP, Dec. 1995.

R. van Renesse and F. B. Schneider. Chain replication for sup-
porting high throughput and availability. In Proc. OSDI, Dec.
2004.

B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,
M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An integrated
experimental environment for distributed systems and networks.
In Proc. OSDI, pages 255-270, Dec. 2002.

H. Yu and A. Vahdat. The costs and limits of availability for
replicated services. In SOSP, 2001.

J. Zheng, N. Belaramani, and M. Dahlin. Pheme: Synchronizing
replicas in diverse environments. Technical Report TR-09-07, U.
of Texas at Austin, Feb. 2009.

USENIX Association

NSDI *09: 6th USENIX Symposium on Networked Systems Design and Implementation

73






Sora: High Performance Software Radio
Using General Purpose Multi-core Processors

Kun Tan' Jiansong Zhang' Ji Fang*® HeLiu® Yusheng Ye?
Shen Wang® Yongguang Zhang' Haitao Wuf Wei Wang! Geoffrey M. Voelker?

fMicrosoft Research Asia, Beijing, China ® Tsinghua University, Beijing, China
! Beijing Jiaotong University, Beijing, China % UCSD, La Jolla, USA

Abstract

This paper presents Sora, a fully programmable soft-
ware radio platform on commodity PC architectures.
Sora combines the performance and fidelity of hardware
SDR platforms with the programmability and flexibil-
ity of general-purpose processor (GPP) SDR platforms.
Sora uses both hardware and software techniques to ad-
dress the challenges of using PC architectures for high-
speed SDR. The Sora hardware components consist of
a radio front-end for reception and transmission, and
a radio control board for high-throughput, low-latency
data transfer between radio and host memories. Sora
makes extensive use of features of contemporary proces-
sor architectures to accelerate wireless protocol process-
ing and satisfy protocol timing requirements, including
using dedicated CPU cores, large low-latency caches to
store lookup tables, and SIMD processor extensions for
highly efficient physical layer processing on GPPs. Us-
ing the Sora platform, we have developed a demonstra-
tion radio system called SoftWiFi. SoftWiFi seamlessly
interoperates with commercial 802.11a/b/g NICs, and
achieves equivalent performance as commercial NICs at
each modulation.

1 Introduction

Software defined radio (SDR) holds the promise of fully
programmable wireless communication systems, effec-
tively supplanting current technologies which have the
lowest communication layers implemented primarily in
fixed, custom hardware circuits. Realizing the promise
of SDR in practice, however, has presented developers
with a dilemma.

Many current SDR platforms are based on either pro-
grammable hardware such as field programmable gate
arrays (FPGAs) [6, 11] or embedded digital signal pro-
cessors (DSPs) [5, 13]. Such hardware platforms can
meet the processing and timing requirements of mod-
ern high-speed wireless protocols, but programming FP-
GAs and specialized DSPs are difficult tasks. Develop-
ers have to learn how to program to each particular em-

This work was performed when Ji Fang, He Liu, Yusheng Ye,
and Shen Wang were visiting students and Geoffrey M. Voelker was a
visiting researcher at Microsoft Research Asia.

bedded architecture, often without the support of a rich
development environment of programming and debug-
ging tools. Hardware platforms can also be expensive;
the WARP [6] educational price, for example, is over
US$9,750.

In contrast, SDR platforms based on general-purpose
processor (GPP) architectures, such as commodity PCs,
have the opposite set of tradeoffs. Developers pro-
gram to a familiar architecture and environment using
sophisticated tools, and radio front-end boards for in-
terfacing with a PC are relatively inexpensive. How-
ever, since PC hardware and software have not been
designed for wireless signal processing, existing GPP-
based SDR platforms can achieve only limited perfor-
mance [1,22]. For example, the popular GNU Radio
platform [1] achieves only a few Kbps throughput on an
8MHz channel [21], whereas modern high-speed wire-
less protocols like 802.11 support multiple Mbps data
rates on a much wider 20MHz channel [7]. These con-
straints prevent developers from using such platforms to
achieve the full fidelity of state-of-the-art wireless pro-
tocols while using standard operating systems and appli-
cations in a real environment.

In this paper we present Sora, a fully programmable
software radio platform that provides the benefits of both
SDR approaches, thereby resolving the SDR platform
dilemma for developers. With Sora, developers can im-
plement and experiment with high-speed wireless pro-
tocol stacks, e.g., IEEE 802.11a/b/g, using commodity
general-purpose PCs. Developers program in familiar
programming environments with powerful tools on stan-
dard operating systems. Software radios implemented
on Sora appear like any other network device, and users
can run unmodified applications on their software ra-
dios with the same performance as commodity hardware
wireless devices.

An implementation of high-speed wireless protocols
on general-purpose PC architectures must overcome a
number of challenges that stem from existing hardware
interfaces and software architectures. First, transferring
high-fidelity digital waveform samples into PC memory
for processing requires very high bus throughput. Ex-
isting GPP platforms like GNU Radio use USB 2.0 or
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Gigabit Ethernet [1], which cannot satisfy this require-
ment for high-speed wireless protocols. Second, phys-
ical layer (PHY) signal processing has very high com-
putational requirements for generating information bits
from waveforms, and vice versa, particularly at high
modulation rates; indeed, back-of-the-envelope calcu-
lations for processing requirements on GPPs have in-
stead motivated specialized hardware approaches in the
past [17, 19]. Lastly, wireless PHY and media ac-
cess control (MAC) protocols have low-latency real-
time deadlines that must be met for correct operation.
For example, the 802.11 MAC protocol requires precise
timing control and ACK response latency on the order of
tens of microseconds. Existing software architectures on
the PC cannot consistently meet this timing requirement.

Sora uses both hardware and software techniques to
address the challenges of using PC architectures for
high-speed SDR. First, we have developed a new, in-
expensive radio control board (RCB) with a radio front-
end for transmission and reception. The RCB bridges
an RF front-end with PC memory over the high-speed
and low-latency PCle bus [8]. With this bus standard,
the RCB can support 16.7Gbps (x8 mode) throughput
with sub-microsecond latency, which together satisfies
the throughput and timing requirements of modern wire-
less protocols while performing all digital signal pro-
cessing on host CPU and memory.

Second, to meet PHY processing requirements, Sora
makes full use of various features of widely adopted
multi-core architectures in existing GPPs. The Sora
software architecture also explicitly supports stream-
lined processing that enables components of the signal
processing pipeline to efficiently span multiple cores.
Further, we change the conventional implementation
of PHY components to extensively take advantage of
lookup tables (LUTSs), trading off computation for mem-
ory. These LUTs substantially reduce the computational
requirements of PHY processing, while at the same time
taking advantage of the large, low-latency caches on
modern GPPs. Finally, Sora uses the SIMD (Single In-
struction Multiple Data) extensions in existing proces-
sors to further accelerate PHY processing. With these
optimizations, Sora can fully support the complete dig-
ital processing of 802.11b modulation rates on just one
core, and 802.11a/g on two cores.

Lastly, to meet the real-time requirements of high-
speed wireless protocols, Sora provides a new kernel ser-
vice, core dedication, which allocates processor cores
exclusively for real-time SDR tasks. We demonstrate
that it is a simple yet crucial abstraction that guarantees
the computational resources and precise timing control
necessary for SDR on a GPP.

We have developed a demonstration radio system,
SoftWiFi, based on the Sora platform. SoftWiFi cur-

rently supports the full suite of 802.11a/b/g modulation
rates, seamlessly interoperates with commercial 802.11
NICs, and achieves equivalent performance as commer-
cial NICs at each modulation.

In summary, the contributions of this paper are: (1)
the design and implementation of the Sora platform and
its high-performance PHY processing library; (2) the de-
sign and implementation of the SoftWiFi radio system
that can interoperate with commercial wireless NICs us-
ing 802.11a/b/g standards; and (3) the evaluation of Sora
and SoftWiFi on a commodity multi-core PC. To the best
of our knowledge, Sora is the first SDR platform that
enables users to develop high-speed wireless implemen-
tations, such as the IEEE 802.11a/b/g PHY and MAC,
entirely in software on a standard PC architecture.

The rest of the paper is organized as follows. Sec-
tion 2 provides background on wireless communication
systems. We then present the Sora architecture in Sec-
tion 3, and we discuss our approach for addressing the
challenges of building an SDR platform on a GPP sys-
tem in Section 4. We then describe the implementation
of the Sora platform in Section 5. Section 6 presents
the design and implementation of SoftWiFi, a fully func-
tional software WiFi radio based on Sora, and we eval-
uate its performance in Section 7. Finally, Section 9 de-
scribes related work and Section 10 concludes.

2 Background and Requirements

In this section, we briefly review the physical layer
(PHY) and media access (MAC) components of typi-
cal wireless communication systems. Although differ-
ent wireless technologies may have subtle differences
among one another, they generally follow similar de-
signs and share many common algorithms. In this sec-
tion, we use the IEEE 802.11a/b/g standards to exem-
plify characteristics of wireless PHY and MAC compo-
nents as well as the challenges of implementing them in
software.

2.1 Wireless PHY

The role of the PHY layer is to convert information bits
into a radio waveform, or vice versa. At the transmitter
side, the wireless PHY component first modulates the
message (i.e., a packet or a MAC frame) into a time se-
quence of baseband signals. Baseband signals are then
passed to the radio front-end, where they are multiplied
by a high frequency carrier and transmitted into the
wireless channel. At the receiver side, the radio front-
end detects signals in the channel and extracts the base-
band signal by removing the high-frequency carrier. The
extracted baseband signal is then fed into the receiver’s
PHY layer to be demodulated into the original message.

Advanced communication systems (e.g., IEEE
802.11a/b/g, as shown in Figure 1) contain multiple
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Figure 1: PHY operations of IEEE 802.11a/b/g transceiver.

functional blocks in their PHY components. These
functional blocks are pipelined with one another. Data
are streamed through these blocks sequentially, but with
different data types and sizes. As illustrated in Figure 1,
different blocks may consume or produce different types
of data in different rates arranged in small data blocks.
For example, in 802.11b, the scrambler may consume
and produce one bit, while DQPSK modulation maps
each two-bit data block onto a complex symbol which
uses two 16-bit numbers to represent the in-phase and
quadrature (I/Q) components.

Each PHY block performs a fixed amount of compu-
tation on every transmitted or received bit. When the
data rate is high, e.g., 11Mbps for 802.11b and 54Mbps
for 802.11a/g, PHY processing blocks consume a sig-
nificant amount of computational power. Based on the
model in [19], we estimate that a direct implementation
of 802.11b may require 10Gops while 802.11a/g needs
at least 40Gops. These requirements are very demand-
ing for software processing in GPPs.

PHY processing blocks directly operate on the dig-
ital waveforms after modulation on the transmitter side
and before demodulation on the receiver side. Therefore,
high-throughput interfaces are needed to connect these
processing blocks as well as to connect the PHY and
radio front-end. The required throughput linearly scales
with the bandwidth of the baseband signal. For example,
the channel bandwidth is 20MHz in 802.11a. It requires
a data rate of at least 20M complex samples per second
to represent the waveform [14]. These complex samples
normally require 16-bit quantization for both I and Q
components to provide sufficient fidelity, translating into
32 bits per sample, or 640Mbps for the full 20MHz chan-
nel. Over-sampling, a technique widely used for better
performance [12], doubles the requirement to 1.28Gbps

to move data between the RF frond-end and PHY blocks
for one 802.11a channel.

2.2  Wireless MAC

The wireless channel is a resource shared by all
transceivers operating on the same spectrum. As si-
multaneously transmitting neighbors may interfere with
each other, various MAC protocols have been developed
to coordinate their transmissions in wireless networks to
avoid collisions.

Most modern MAC protocols, such as 802.11, require
timely responses to critical events. For example, 802.11
adopts a CSMA (Carrier-Sense Multiple Access) MAC
protocol to coordinate transmissions [7]. Transmitters
are required to sense the channel before starting their
transmission, and channel access is only allowed when
no energy is sensed, i.e., the channel is free. The latency
between sense and access should be as small as possible.
Otherwise, the sensing result could be outdated and inac-
curate. Another example is the link-layer retransmission
mechanisms in wireless protocols, which may require an
immediate acknowledgement (ACK) to be returned in a
limited time window.

Commercial standards like IEEE 802.11 mandate a
response latency within tens of microseconds, which is
challenging to achieve in software on a general purpose
PC with a general purpose OS.

2.3 Software Radio Requirements

Given the above discussion, we summarize the require-
ments for implementing a software radio system on a
general PC platform:

High system throughput. The interfaces between the
radio front-end and PHY as well as between some
PHY processing blocks must possess sufficiently high
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Figure 2: Sora system architecture. All PHY and MAC
execute in software on a commodity multi-core CPU.

throughput to transfer high-fidelity digital waveforms.
To support a 20MHz channel for 802.11, the interfaces
must sustain at least 1.28Gbps. Conventional inter-
faces like USB 2.0 (< 480Mbps) or Gigabit Ethernet
(< 1Gbps) cannot meet this requirement [1].

Intensive computation. High-speed wireless protocols
require substantial computational power for their PHY
processing. Such computational requirements also in-
crease proportionally with communication speed. Un-
fortunately, techniques used in conventional PHY hard-
ware or embedded DSPs do not directly carry over to
GPP architectures. Thus, we require new software tech-
niques to accelerate high-speed signal processing on
GPPs. With the advent of many-core GPP architec-
tures [9], it is now reasonable to dedicate computational
power solely to signal processing. But, it is still chal-
lenging to build a software architecture to efficiently ex-
ploit the full capability of multiple cores.

Real-time enforcement. Wireless protocols have mul-
tiple real-time deadlines that need to be met. Conse-
quently, not only is processing throughput a critical re-
quirement, but the processing latency needs to meet re-
sponse deadlines. Some MAC protocols also require
precise timing control at the granularity of microseconds
to ensure certain actions occur at exactly pre-scheduled
time points. Meeting such real-time deadlines on a gen-
eral PC architecture is a non-trivial challenge: time shar-
ing operation systems may not respond to an event in a
timely manner, and bus interfaces, such as Gigabit Eth-
ernet, could introduce indefinite delays far more than a
few ps. Therefore, meeting these real-time requirements
requires new mechanisms on GPPs.

3 Architecture

We have developed a high-performance software radio
platform called Sora that addresses these challenges. It
is based on a commodity general-purpose PC architec-
ture. For flexibility and programmability, we push as
much communication functionality as possible into soft-
ware, while keeping hardware additions as simple and
generic as possible. Figure 2 illustrates the overall sys-
tem architecture.

3.1 Hardware Components

The hardware components in the Sora architecture are
a new radio control board (RCB) with an interchange-
able radio front-end (RF front-end). The radio front-
end is a hardware module that receives and/or trans-
mits radio signals through an antenna. In the Sora ar-
chitecture, the RF front-end represents the well-defined
interface between the digital and analog domains. It
contains analog-to-digital (A/D) and digital-to-analog
(D/A) converters, and necessary circuitry for radio trans-
mission. During receiving, the RF front-end acquires
an analog waveform from the antenna, possibly down-
converts it to a lower frequency, and then digitizes it into
discrete samples before transferring them to the RCB.
During transmitting, the RF front-end accepts a syn-
chronous stream of software-generated digital samples
and synthesizes the corresponding analog waveform be-
fore emitting it using the antenna. Since all signal pro-
cessing is done in software, the RF front-end design
can be rather generic. It can be implemented in a self-
contained module with a standard interface to the RCB.
Multiple wireless technologies defined on the same fre-
quency band can use the same RF front-end hardware,
and the RCB can connect to different RF front-ends de-
signed for different frequency bands.

The RCB is a new PC interface board for establish-
ing a high-throughput, low-latency path for transfer-
ring high-fidelity digital signals between the RF front-
end and PC memory. To achieve the required system
throughput discussed in Section 2.1, the RCB uses a
high-speed, low-latency bus such as PCle [8]. With a
maximum throughput of 64Gbps (PCle x32) and sub-
microsecond latency, it is well-suited for supporting
multiple gigabit data rates for wireless signals over a
very wide band or over many MIMO channels. Fur-
ther, the PCle interface is now common in contemporary
commodity PCs.

Another important role of the RCB is to bridge the
synchronous data transmission at the RF front-end and
the asynchronous processing on the host CPU. The RCB
uses various buffers and queues, together with a large
on-board memory, to convert between synchronous and
asynchronous streams and to smooth out bursty trans-
fers between the RCB and host memory. The large
on-board memory further allows caching pre-computed
waveforms, adding additional flexibility for software ra-
dio processing.

Finally, the RCB provides a low-latency control path
for software to control the RF front-end hardware and
to ensure it is properly synchronized with the host CPU.
Section 5.1 describes our implementation of the RCB in
more detail.
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Figure 3: Software architecture of Sora soft-radio stack.

3.2 Sora Software

Figure 3 illustrates Sora’s software architecture. The
software components in Sora provide necessary Sys-
tem services and programming support for implement-
ing various wireless PHY and MAC protocols in a
general-purpose operating system. In addition to fa-
cilitating the interaction with the RCB, the Sora soft-
radio stack provides a set of techniques to greatly im-
prove the performance of PHY and MAC processing on
GPPs. To meet the processing and real-time require-
ments, these techniques make full use of various com-
mon features in existing multi-core CPU architectures,
including the extensive use of lookup tables (LUTs),
substantial data-parallelism with CPU SIMD extensions,
the efficient partitioning of streamlined processing over
multiple cores, and exclusive dedication of cores for
software radio tasks.

4 High-Performance SDR Processing

In this section we describe the software techniques used
by Sora to achieve high-performance SDR processing.

4.1 Efficient PHY processing

In a memory-for-computation tradeoff, Sora relies upon
the large-capacity, high-speed cache memory in GPPs to
accelerate PHY processing with pre-calculated lookup
tables (LUTs). Contemporary modern CPU architec-
tures, such as Intel Core 2, usually have megabytes of
L2 cache with a low (10~20 cycles) access latency. If
we pre-calculate LUTs for a large portion of PHY algo-
rithms, we can greatly reduce the computational require-
ment for on-line processing.

For example, the soft demapper algorithm used in de-
modulation needs to calculate the confidence level of
each bit contained in an incoming symbol. This task
involves rather complex computation proportional to the

modulation density. More precisely, it conducts an ex-
tensive search for all modulation points in a constella-
tion graph and calculates a ratio between the minimum
of Euclidean distances to all points representing one and
the minimum of distances to all points representing zero.
In this case, we can pre-calculate the confidence levels
for all possible incoming symbols based on their I and
Q values, and build LUTs to directly map the input sym-
bol to confidence level. Such LUTSs are not large. For
example, in 802.11a/g with a 54Mbps modulation rate
(64-QAM), the size of the LUT for the soft demapper is
only 1.5KB.

As we detail later in Section 5.2.1, more than half
of the common PHY algorithms can indeed be rewrit-
ten with LUTs, each with a speedup from 1.5x to 50x.
Since the size of each LUT is sufficiently small, the sum
of all LUTs in a processing path can easily fit in the L2
caches of contemporary GPP cores. With core dedica-
tion (Section 4.3), the possibility of cache collisions is
very small. As a result, these LUTs are almost always in
caches during PHY processing.

To accelerate PHY processing with data-level paral-
lelism, Sora heavily uses the SIMD extensions in mod-
ern GPPs, such as SSE, 3DNow!, and AltiVec. Al-
though these extensions were designed for multimedia
and graphics applications, they also match the needs of
wireless signal processing very well because many PHY
algorithms have fixed computation structures that can
easily map to large vector operations. In Appendix A,
we show an example of an optimized digital filter imple-
mentation using SSE instructions. As our measurements
later show, such SIMD extensions substantially speed up
PHY processing in Sora.

4.2 Multi-core streamline processing

Even with the above optimizations, a single CPU core
may not have sufficient capacity to meet the process-
ing requirements of high-speed wireless communication
technologies. As a result, Sora must be able to use
more than one core in a multi-core CPU for PHY pro-
cessing. This multi-core technique should also be scal-
able because the signal processing algorithms may be-
come increasingly more complex as wireless technolo-
gies progress.

As discussed in Section 2, PHY processing typically
contains several functional blocks in a pipeline. These
blocks differ in processing speed and in input/output
data rates and units. A block is only ready to execute
when it has sufficient input data from the previous block.
Therefore, a key issue is how to schedule a functional
block on multiple cores when it is ready.

One possible approach is to run multiple PHY
pipelines on different cores (Figure 4(a)), and have
the scheduler dispatch batches of digital samples to a
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Figure 4: PHY pipeline scheduling: (a) parallel
pipelines, (b) dynamic scheduling, (c) static scheduling.

pipeline. This approach, however, does not work well
for SDR because wireless communication has strong de-
pendencies in a data stream. For example, in convolu-
tional encoding the output of each bit also depends on
the seven preceding bits in the input stream. Without
the scheduler knowing all of the data dependencies, it is
difficult to produce an efficient schedule.

An alternative scheduling approach is to have only
one pipeline and dynamically assign ready blocks to
available cores (Figure 4(b)), in a way similar to thread
scheduling in a multi-core system. Unfortunately, this
approach would introduce prohibitively high overhead.
On the one hand, any two adjacent blocks may be sched-
uled onto two different cores, thereby requiring synchro-
nized FIFO (SFIFO) communication between them. On
the other hand, most PHY processing blocks operate on
very small data items, e.g., 1-4 bytes each, and the pro-
cessing only takes a few operations (several to tens of in-
structions). Such frequent FIFO and synchronization op-
erations are not justifiable for such small computational
tasks.

Instead, Sora chooses a static scheduling scheme.
This decision is based on the observation that the sched-
ule of each block in a PHY processing pipeline is ac-
tually static: the processing pattern of previous blocks
can determine whether a subsequent block is ready or
not. Sora can thus partition the whole PHY processing
pipeline into several sub-pipelines and statically assign
them to different cores (Figure 4(c)). Within one sub-
pipeline, when a block has accumulated enough data for
the next block to be ready, it explicitly schedules the next
block. Adjacent sub-pipelines from different blocks are
still connected with an SFIFO, but the number of SFI-
FOs and their overhead are greatly reduced.

4.3 Real-time support

SDR processing is a time-critical task that requires strict
guarantees of computational resources and hard real-
time deadlines. As an alternative to relying upon the

FIFO

Figure 5: Sora radio control board.

full generality of real-time operating systems, we can
achieve real-time guarantees by simply dedicating cores
to SDR processing in a multi-core system. Thus, suffi-
cient computational resources can be guaranteed without
being affected by other concurrent tasks in the system.

This approach is particularly plausible for SDR. First,
wireless communication often requires its PHY to con-
stantly monitor the channel for incoming signals. There-
fore, the PHY processing may need to be active all the
time. It is much better to always schedule this task on
the same core to minimize overhead like cache misses
or TLB flushes. Second, previous work on multi-core
OSes also suggests that isolating applications into dif-
ferent cores may have better performance compared to
symmetric scheduling, since an effective use of cache
resources and a reduction in locks can outweigh dedicat-
ing cores [10]. Moreover, a core dedication mechanism
is much easier to implement than a real-time scheduler,
sometimes even without modifying an OS kernel. For
example, we can simply raise the priority of a kernel
thread so that it is pinned on a core and it exclusively
runs until termination (Section 5.2.3).

5 Implementation

We have implemented both the hardware and software
components of Sora. This section describes our hard-
ware prototype and software stack, and presents mi-
crobenchmark evaluations of Sora components.

5.1 Hardware

We have designed and implemented the Sora radio con-
trol board (RCB) as shown in Figure 5. It contains
a Virtex-5 FPGA, a PCle-x8 interface, and 256MB of
DDR2 SDRAM. The RCB can connect to various RF
front-ends. In our experimental prototype, we use a
third-party RF front-end, developed by Rice Univer-
sity [6], that is capable of transmitting and receiving a
20MHz channel at 2.4GHz or SGHz.

Figure 6 illustrates the logical components of the Sora
hardware platform. The DMA and PCle controllers in-
terface with the host and transfer digital samples be-
tween the RCB and PC memory. Sora software sends
commands and reads RCB states through RCB regis-
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ters. The RCB uses its on-board SDRAM as well as
small FIFOs on the FPGA chip to bridge data streams
between the CPU and RF front-end. When receiving,
digital signal samples are buffered in on-chip FIFOs and
delivered into PC memory when they fit in a DMA burst
(128 bytes). When transmitting, the large RCB memory
enables Sora software to first write the generated sam-
ples onto the RCB, and then trigger transmission with
another command to the RCB. This functionality pro-
vides flexibility to the Sora software for pre-calculating
and storing several waveforms before actually transmit-
ting them, while allowing precise control of the timing
of the waveform transmission.

While implementing Sora, we encountered a consis-
tency issue in the interaction between DMA operations
and the CPU cache system. When a DMA operation
modifies a memory location that has been cached in the
L2 cache, it does not invalidate the corresponding cache
entry. When the CPU reads that location, it can there-
fore read an incorrect value from the cache. One naive
solution is to disable cached accesses to memory regions
used for DMA, but doing so will cause a significant
degradation in memory access throughput.

We solve this problem with a smart-fetch strat-
egy, enabling Sora to maintain cache coherency with
DMA memory without drastically sacrificing through-
put. First, Sora organizes DMA memory into small slots,
whose size is a multiple of a cache line. Each slot begins
with a descriptor that contains a flag. The RCB sets the
flag after it writes a full slot of data, and cleared after
the CPU processes all data in the slot. When the CPU
moves to a new slot, it first reads its descriptor, causing
a whole cache line to be filled. If the flag is set, the data
just fetched is valid and the CPU can continue process-
ing the data. Otherwise, the RCB has not updated this
slot with new data. Then, the CPU explicitly flushes the
cache line and repeats reading the same location. This
next read refills the cache line, loading the most recent
data from memory.

5.2 Software

The Sora software is written in C, with some assem-
bly for performance-critical processing. The entire Sora

software stack is implemented on Windows XP as a net-
work device driver and it exposes a virtual Ethernet in-
terface to the upper TCP/IP stack. Since any software
radio implemented on Sora can appear as a normal net-
work device, all existing network applications can run
unmodified on it.

The Sora software currently consists of 23,325 non-
blank lines of C code. Of this total, 14,529 lines are for
system support, including driver framework, memory
management, streamline processing, etc. The remaining
8,796 lines comprise the PHY processing library.

5.2.1 PHY processing library

In the Sora PHY processing library, we extensively ex-
ploit the use of look-up tables (LUTs) and SIMD in-
structions to optimize the performance of PHY algo-
rithms. We have been able to rewrite more than half
of the PHY algorithms with LUTs. Some LUTs are
straightforward pre-calculations, others require more so-
phisticated implementations to keep the LUT size small.
For the soft-demapper example mentioned earlier, we
can greatly reduce the LUT size (e.g., 1.5KB for the
802.11a/g 54Mbps modulation) by exploiting the sym-
metry of the algorithm. In our SoftWiFi implementa-
tion described below, the overall size of the LUTs used
in 802.11a/g is around 200KB and 310KB in 802.11b,
both of which fit comfortably within the L2 caches of
commodity CPUs.

We also heavily use SIMD instructions in coding Sora
software. We currently use the SSE2 instruction set de-
signed for Intel CPUs. Since the SSE registers are 128-
bit wide while most PHY algorithms require only 8-bit
or 16-bit fixed-point operations, one SSE instruction can
perform 8 or 16 simultaneous calculations. SSE2 also
has rich instruction support for flexible data permuta-
tions, and most PHY algorithms, e.g., FFT, FIR Filter
and Viterbi, can fit naturally into this SIMD model. For
example, the Sora Viterbi decoder uses only 40 cycles to
compute the branch metric and select the shortest path
for each input. As a result, our Viterbi implementation
can handle 802.11a/g at the 54Mbps modulation with
only one 2.66GHz CPU core, whereas previous imple-
mentations relied on hardware implementations. Note
that other GPP architectures, like AMD and PowerPC,
have very similar SIMD models and instruction sets;
AMD’s Enhanced 3DNow!, for instance, includes SSE
instructions plus a set of DSP extensions. We expect
that our optimization techniques will directly apply to
these other GPP architectures as well. In Appendix A,
we show a simple example of a functional block using
SIMD instruction optimizations.

Table 1 summarizes some key PHY processing algo-
rithms we have implemented in Sora, together with the
optimization techniques we have applied. The table also
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Optimization

Algorithm Configuration 1/0 Size (bit) Method Computation Required (Mcycles/sec)
Input [ Output Conv. Impl. [ SoraTmpl. | Speedup
\ 1IEEE 802.11b |

Scramble 11Mbps 8 8 LUT 96.54 10.82 8.9x
Descramble 11Mbps 8 8 LUT 95.23 591 16.1x
Mapping and Spreading 2Mbps, DQPSK 8 | 44%16%2 LUT 128.59 73.92 1.7x
CCK modulator 5Mbps, CCK 8 8%16%2 LUT 124.93 81.29 1.5x
ITMbps, CCK 8 8¥F16%2 LUT 203.96 110.88 1.8x

FIR Filter 16-bit I/Q, 37 taps, 22MSps 16%2%4 16%2%4 SIMD 5,780.34 616.41 9.4x
Decimation 16-bit 1/Q, 4x Oversample 16*2%4*4 16%2%4 SIMD 422.45 198.72 2.1x

[ IEEE 802.11a |

FFT/IFFT 64 points 64%16%2 64%16%2 SIMD 754.11 459.52 1.6x
Conv. Encoder 24Mbps, 1/2 rate 8 16 LUT 406.08 18.15 22.4x
48Mbps, 2/3 rate 16 24 LUT 688.55 37.21 18.5x

54Mbps, 3/4 rate 24 32 LUT 712.10 56.23 12.7x

Viterbi 24Mbps, 1/2 rate 8*16 8 SIMD+LUT 68,553.57 1,408.93 48.7x
48Mbps, 2/3 rate 8%24 16 SIMD+LUT 117,199.6 2,422.04 48.4x

54Mbps, 3/4 rate 8%32 24 SIMD+LUT 131,017.9 2,573.85 50.9x

Soft demapper 24Mbps, QAM 16 16%2 8*4 LUT 115.05 46.55 2.5x
54Mbps, QAM 64 16%2 8%6 LUT 255.86 98.75 2.4x

Scramble & Descramble | 54Mbps 8 8 LUT 547.86 40.29 13.6x

Table 1: Key algorithms in IEEE 802.11b/a and their performance with conventional and Sora implementations.

compares the performance of a conventional software
implementation (e.g., a direct translation from a hard-
ware implementation) and the Sora implementation with
the LUT and SIMD optimizations.

5.2.2 Lightweight, synchronized FIFOs

Sora allows different PHY processing blocks to stream-
line across multiple cores while communicating with
one another through shared memory FIFO queues. If
two blocks are running on different cores, their access
to the shared FIFO must be synchronized. The tradi-
tional implementation of a synchronized FIFO uses a
counter to synchronize the writer and reader, which we
refer to as a counter-based FIFO (CBFIFO) and illustrate
in Figure 7(a). However, this counter is shared by two
processor cores, and every write to the variable by one
core will cause a cache miss on the other core. Since
both the producer and consumer modify this variable,
two cache misses are unavoidable for each datum. It is
also quite common to have very fine data granularity in
PHY (e.g., 4-16 bytes as summarized in Table 1). There-
fore, such cache misses will result in significant over-
head when synchronization has to be performed very
frequently (e.g., once per micro-second) for such small
pieces of data.

In Sora, we implement another synchronized FIFO
that removes the sole shared synchronization variable.
The idea is to augment each data slot in the FIFO with
a header that indicates whether the slot is empty or not.
We pad each data slot to be a multiple of a cache line.
Thus, the consumer is always chasing the producer in
the circular buffer for filled slots, as outlined in Figure
7(b). This chasing-pointer FIFO (CPFIFO) largely mit-
igates the overhead even for very fine-grained synchro-
nization. If the speed of the producer and consumer is

// producer:

void write_fifo ( DATA_TYPE data ) {
while (cnt >= g_size); // spin wait
qlw_tail] = data;
w_tail = (w_tail+l) %

6 InterlockedIncrement
}

// consumer:

void read_fifo ( DATA_TYPE x pdata ) {
while (cnt==0); // spin wait
* pdata = g[r_head];
r_head = (r_head+l) % g_size;
InterlockedDecrement (cnt); // decrease cnt by 1

}

[T SR

q_size;
(cnt); // increase cnt by 1

PSRV TR SR

(a)

// producer:

void write_fifo ( DATA_TYPE data ) {

while (q[w_taill.flag>0); // spin wait
glw_tail].data = data;

glw_tail].flag = 1; // occupied
w_tail = (w_tail+l) % g_size;

}

// consumer:

void read_fifo ( DATA_TYPE x pdata ) {
while (g[r_head].flag==0); // spin
~data = g[r_head].data;
qlr_head].flag = 0; // release

6 r_head = (r_head + 1) % g_size;

7}

[ S T T I NERF I C

(b)

Figure 7: Pseudo-code for synchronized (a) CBFIFOs
and (b) CPFIFOs.

the same and the two pointers are separated by a partic-
ular offset (e.g., two cache lines in the Intel architecture),
no cache miss will occur during synchronized streaming
since the local cache will prefetch the following slots be-
fore the actual access. If the producer and the consumer
have different processing speeds, e.g., the reader is faster
than the writer, then eventually the consumer will wait
for the producer to release a slot. In this case, each time
the producer writes to a slot, the write will cause a cache
miss at the consumer. But the producer will not suffer
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| Mode [ Rx (Gbps) | Tx (Gbps) |
PCle-x4 6.71 6.55
PCle-x8 12.8 12.3

Table 2: DMA throughput performance of the RCB.

| Method | Memory Throughput |
‘ Cache Disabled 707.2Mbps ‘
‘ Smart-fetch 10.1Gbps ‘

Table 3: Memory throughput.

a miss since the next free slot will be prefetched into its
local cache. Fortunately, such cache misses experienced
by the consumer will not cause significant impact on the
overall performance of the streamline processing since
the consumer is not the bottleneck element.

5.2.3 Real-time support

Sora uses exclusive threads (or ethreads) to dedicate
cores for real-time SDR tasks. Sora implements ethreads
without any modification to the kernel code. An ethread
is implemented as a kernel-mode thread, and it exploits
the processor affiliation that is commonly supported in
commodity OSes to control on which core it runs. Once
the OS has scheduled the ethread on a specified physical
core, it will raise its IRQL (interrupt request level) to a
level as high as the kernel scheduler, e.g., dispatch_level
in Windows. Thus, the ethread takes control of the
core and prevents itself from being preempted by other
threads.

Running at such an IRQL, however, does not prevent
the core from responding to hardware interrupts. There-
fore, we also constrain the interrupt affiliations of all
devices attached to the host. If an ethread is running on
one core, all interrupt handlers for installed devices are
removed from the core, thus prevent the core from being
interrupted by hardware. To ensure the correct operation
of the system, Sora always ensures core zero is able to
respond to all hardware interrupts. Consequently, Sora
only allows ethreads to run on cores whose ID is greater
than zero.

5.3 Evaluation

We measure the performance of the Sora implementa-
tion with microbenchmark experiments. We perform all
measurements on a Dell XPS PC with an Intel Core 2
Quad 2.66GHz CPU (Section 7.1 details the complete
hardware configuration).

Throughput and latency. To measure PCle through-
put, we instruct the RCB to read/write a number of de-
scriptors from/to main memory via DMA, and measure
the time taken. Table 2 summarizes the results, which
agree with the hardware specifications.

To precisely measure PCle latency, we instruct the
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Figure 8: Overhead of synchronized FIFOs.

RCB to read a memory address in host memory. We
measure the time interval between issuing the request
and receiving the response data in hardware. Since the
memory read operation accesses the PCle bus using a
round trip operation, we use half of the measured time
to estimate the one-way delay. This one-way delay is
360ns with a worst case variation of 4ns. We also con-
firm that the RCB hardware itself induces negligible de-
lay except for buffers on the data path. However, such
delay is tiny when the buffer is small. For example, the
DMA burst size is 128 bytes, which causes only 76ns
latency in PCle-x8.

Table 3 compares measured memory throughput in
two different cases. The first row shows the read
throughput of uncacheable memory. It is only 707Mbps,
which is insufficient for 802.11 processing. The second
row shows the performance of the smart-fetch technique.
With smart-fetch, the memory throughput is a factor of
14 greater compared to the uncacheable case, and suffi-
cient for supporting high-speed protocol processing. We
note, however, that it is still slower than reading from
normal cacheable memory without having to be consis-
tent with DMA operations. This reduction is due to the
overhead of additional cache-line invalidations.

Synchronized FIFO. To measure the overhead of the
synchronized CBFIFO and CPFIFO implementations,
we process ten thousand data inputs through the FIFOs
first on one core, and then on two cores. We also vary
the number of cycles to process each datum to change
the ratio of synchronization time with processing time.
When processing with two cores, we allocate the same
computation to each core. Denote ¢; and ¢, as the com-
pletion times of processing on one core and two cores,
respectively. We then define the overhead of a synchro-

nized FIFO as 2-0/2.

Figure 8 shows the results of this experiment. The z-
axis shows the total processing cycles required for each
datum, and the y-axis shows the overhead of the syn-
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chronized FIFO. We make following observations from
these results. First, partitioning work across cores gives
different overheads depending upon whether the cores
are on the same die. Two cores on the same die share the
same L2 cache, while cores on different dies are con-
nected via a shared front-side bus. Thus, streaming data
between functional blocks across cores on the same die
has significantly less overhead than streaming between
cores on different dies.

Second, the overhead decreases as the computation
time per datum increases, as expected. When the compu-
tation per datum is very short, the communication over-
head between cores dominates. The Intel CPU requires
about 10 cycles to access its local L2 cache, and 100 cy-
cles to access a remote cache. Therefore, when there are
40 cycles per datum, the overhead is at least % = 50%
when two cores are on one die, and % = 500% when
two cores are on different dies. The CPFIFO almost
achieves this lower bound. When there is more com-
putation required per datum, however, the data transfer
can be overlapped with computation, enabling the over-
head to be hidden. Finally, the CBFIFO generally has
significantly higher overhead compared to the CPFIFO
due to the additional synchronization overhead on the
shared variable, which the CPFIFO avoids.

6 Case study: SoftWiFi

To demonstrate the use of Sora, we have developed a
fully functional WiFi transceiver on the Sora platform
called SoftWiFi. Our SoftWiFi stack supports all IEEE
802.11a/b/g modulations and can communicate seam-
lessly with commercial WiFi network cards.

Figure 9 illustrates the Sora SoftWiFi implementa-
tion. The MAC state machine (SM) is implemented
as an ethread. Since 802.11 is a half-duplex radio,
the demodulation components can run directly within
a MAC SM thread. If a single core is insufficient for
all PHY processing (e.g., 802.11a/g), the PHY process-
ing can be partitioned across two ethreads. These two
ethreads are streamlined using a CPFIFO. An additional
thread, Snd_thread, modulates the outgoing frames into
waveform samples in the background. These modulated
waveforms can be pre-stored in the RCB’s memory to
facilitate transmission. The Completion_thread moni-
tors the Rev_buf and notifies upper software layers of
any correctly received frames. This thread also cleans
up the snd and rcv buffers after they are used.

SoftWiFi implements the basic access mode of
802.11. The detailed MAC SM is shown in Figure 10.
Normally, the SM is in the Frame Detection (FD) state.
In that state, the RCB constantly writes samples into
the Rx_buf. The SM continuously measures the aver-
age energy to determine whether the channel is clean or
whether there is an incoming frame.

Application
TCP/IP

Virtual Eth Interface

PHY Library
BB_Scramble; BB_QAM_Mapper;
BB_Spread; BB_FFT; ...

fffffffffff B

PHY_Thread |

Soft-WIFI Impl

Snd_thread

MAC_SM_Thread

Completion_thread Rev_buf

Tx_buf Rx_buf

RCB
Ctrl Hw TX Hw RX

Figure 9: SoftWiFi implementation.

Channel Free

Figure 10: State machine of the SoftWiFi MAC.

The transmission of a frame follows the CSMA mech-
anism. When there is a pending frame, the SM first
needs to check if the energy on the channel is low. If
the channel is busy, the transmission should be deferred
and a backoff timer started. Each time the channel be-
comes free, the SM checks if any backoff time remains.
If the timer goes to zero, it transmits the frame.

SoftWiFi starts to receive a frame if it detects a high
energy in the FD state. In 802.11, it takes three steps in
the PHY layer to receive a frame. First, the PHY layer
needs to synchronize to the frame, i.e., find the start-
ing point of the frame (timing synchronization) and the
frequency offset and phase of the sample stream (car-
rier synchronization). Synchronization is usually done
by correlating the incoming samples with a pre-defined
preamble. Subsequently, the PHY layer needs to demod-
ulate the PLCP (Physical Layer Convergence Protocol)
header, which is always transmitted using a fixed low-
rate modulation mode. The PLCP header contains the
length of the frame as well as the modulation mode, pos-
sibly a higher rate, of the frame data that follows. Thus,
only after successful reception of the PLCP header will
the PHY layer know how to demodulate the remainder
of the frame.

After successfully receiving a frame, the 802.11 MAC
standard requires a station to transmit an ACK frame in
a timely manner. For example, 802.11b requires that an

84

NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association



ACK frame be sent with a 10ps delay. However, this
ACK requirement is quite difficult for an SDR imple-
mentation to achieve in software on a PC. Both generat-
ing and transferring the waveform across the PC bus will
cause a latency of several microseconds, and the sum
is usually larger than mandated by the standard. Fortu-
nately, an ACK frame generally has a fixed pattern. For
example, in 802.11 all data in an ACK frame is fixed
except for the sender address of the corresponding data
frame. Thus, in SoftWiFi, we can precalculate most of
an ACK frame (19 bytes), and update only the address
(10 bytes). Further, we can do it early in the process-
ing, immediately after demodulating the MAC header,
and without waiting for the end of a frame. We then pre-
store the waveform into the memory of the RCB. Thus,
the time for ACK generation and transferring can over-
lap with the demodulation of the data frame. After the
MAC SM demodulates the entire frame and validates the
CRC32 checksum, it instructs the RCB to transmit the
ACK, which has already been stored on the RCB. Thus,
the latency for ACK transmission is very small.

In rare cases when the incoming data frame is quite
small (e.g., the frame contains only a MAC header and
zero payload), then SoftWiFi cannot fully overlap ACK
generation and the DMA transfer with demodulation to
completely hide the latency. In this case, SoftWiFi may
fail to send the ACK in time. We address this problem
in SoftWiFi by maintaining a cache of previous ACKs
in the RCB. With 802.11, all data frames from one node
will have exactly the same ACK frame. Thus, we can
use pre-allocated memory slots in the RCB to store ACK
waveforms for different senders (we currently allocate
64 slots). Now, when demodulating a frame, if the ACK
frame is already in the RCB cache, the MAC SM sim-
ply instructs the RCB to transmit the pre-cached ACK.
With this scheme, SoftWiFi may be late on the first small
frame from a sender, effectively dropping the packet
from the sender’s perspective. But retransmissions, and
all subsequent transmissions, will find the appropriate
ACK waveform already stored in the RCB cache.

We have implemented and tested the full 802.11a/g/b
SoftWiFi tranceivers, which support DSSS (Direct Se-
quence Spreading: 1 and 2Mbps in 11b), CCK (Com-
plementary Code Keying: 5.5 and 11Mbps in 11b), and
OFDM (Orthogonal Frequency Division Multiplexing:
6, 9 and up to 54Mbps in 11a/g). It took one student
about one month to develop and test 11b on Sora, and an-
other student one and half months to code and test 11a/g;
these efforts also include the time for implementing the
corresponding algorithms in the PHY library.

7 Evaluations

In this section we evaluate the end-to-end applica-
tion performance delivered by Sora. Our goals are to
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Figure 11: Throughput of Sora when communicat-

ing with a commercial WiFi card. Sora—Commercial
presents the transmission throughput when a Sora node
sends data. Commercial-Sora presents the through-
put when a Sora node receives data. Commercial—
Commercial presents the throughput when a commercial
NIC communicates with another commercial NIC.

show that Sora interoperates seamlessly with commer-
cial 802.11 devices, and that the Sora SoftWiFi imple-
mentation achieves equivalent performance. As a result,
we show that Sora can process signals sufficiently fast to
achieve full channel utilization, and that it can satisfy all
timing requirements of the 802.11 standards with a soft-
ware implementation on a GPP. We also characterize the
CPU utilization of the software processing. In the fol-
lowing, we sometimes use the label 11a/g to present data
for both 11a/g, since 11a and 11g have exactly the same
OFDM PHY specification.

7.1 Experimental setup

The experimental setup consists of two high-end Dell
XPS PCs (Intel Core 2 Quad 2.66GHz CPU, 4GB DDR2
400MHz SDRAM, and two PCle-16x slots) and two lap-
tops, all running Window XP. Each Dell PC equips a
Sora radio control board (RCB) with an 802.11 RF board
(Section 5) and runs Sora and the SoftWiFi implemen-
tation. Each CPU core has 32KB instruction and 32KB
data L1 caches and a 2MB L2 cache. The Dell laptops
use commercial WiFi NICs. We have used several dif-
ferent WiFi NICs in our experiments, including Netgear,
Cisco and Intel devices. All give similar results. Thus,
we present results just for the Netgear WAGS511 device
(based on the Atheros AR5212 chipset).

7.2 Throughput

Figure 11 shows the transmitting and receiving through-
put of a Sora SoftWiFi node when it communicates with
a commercial WiFi NIC. In the “Sora—Commercial”
configuration, the Sora node acts as a sender and gener-
ates 1400-byte UDP frames and unicast transmits them
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to a laptop equipped with a commercial NIC. In the
“Commercial-Sora” configuration, the Sora node acts
as a receiver, and the laptop generates the same work-
load. The “Commercial-Commercial” configuration
shows the throughput when both sender and receiver are
commercial NICs. In all configurations, the hosts were
at the same distance from each other and experienced
very little packet loss. Figure 11 shows the throughput
achieved for all configurations with the various modu-
lation modes in 11a/b/g. We show only three selective
rates in 11a/g for conciseness. The results are averaged
over five runs (the variance was very small).

We make a number of observations from these results.
First, the Sora SoftWiFi implementation operates seam-
lessly with commercial devices, showing that Sora Soft-
WiFi is protocol compatible. Second, Sora SoftWiFi
can achieve similar performance as commercial devices.
The throughputs for both configurations are essentially
equivalent, demonstrating that SoftWiFi (1) has the pro-
cessing capability to demodulate all incoming frames at
full modulation rates, and (2) it can meet the 802.11 tim-
ing constraints for returning ACKs within the delay win-
dow required by the standard. We note that the maximal
achievable application throughput for 802.11 is less than
80% of the PHY data rate, and the percentage decreases
as the PHY data rate increases. This limit is due to the
overhead of headers at different layers as well as the
MAC overhead to coordinate channel access (i.e., carrier
sense, ACKs, and backoff), and is a well-known prop-
erty of 802.11 performance.

7.3 CPU Utilization

What is the processing cost of onloading all digital sig-
nal processing into software on the host? Figure 12
shows the CPU utilization of a Sora SoftWiFi node to
support modulation/demodulation at the corresponding
rate. We normalize the utilization to the processing ca-
pability of one core. For receiving, higher modulation
rates require higher CPU utilization due to the increased
computational complexity of demodulating the higher
rates. We can see that one core of a contemporary multi-
core CPU can comfortably support all 11b modulation
modes. With the 11Mbps rate, Sora SoftWiFi requires
roughly 70% of the computational power of one core
for real-time SDR processing. However, 802.11a/g PHY
processing is more complex than 11b and may require
two cores for receive processing. In our software im-
plementation, the Viterbi decoder in 11a/g is the most
computationally-intensive component. It alone requires
more than 1.4 Geycles/s at modulation rates higher than
24Mbps (Table 1). Therefore, it is natural to partition
the receive pipeline across two cores, with the Viterbi
decoder on one core and the remainder on another. With
the parallelism enabled by this streamline processing,
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Figure 12: CPU Utilization of Sora.

we reduce the delay to process one 11a/g symbol from
4.8us to 3.9us, meeting the requirement of the standard
(i.e. 4us) for 54Mbps. Note that the CPU utilization is
not completely linear with the modulation rates in 11b
because the 5.5/11Mbps rates use a different modulation
scheme than with 1/2Mbps.

The CPU utilization for transmission, however, is
generally lower than the receiving case. Note that the
utilization is constant for all 11b rates. Since the trans-
mission part of 11b can be optimized effectively with
LUTs, for different rates we just use different LUTSs. In
11a/g, since all samples need to pass an IFFT, the com-
putation requirements increase as the rate increases.

7.4 Detailed processing costs

The results in Figure 12 presented the overall CPU uti-
lization for a Sora SoftWiFi receiving node. As dis-
cussed in Section 6, a complete receiver has a number
of stages: frame detection, frame synchronization, and
demodulators for both the PLCP header and its data de-
pending on the modulation mode. How does CPU uti-
lization partition across these stages? Figure 13 shows
the computational cost for each component for receiv-
ing a 1400-byte UDP packet in each modulation mode;
again, we show only three representative modulation
rates for 11a/g. Frame detection (FD) has the lowest uti-
lization (11% of a 2.66GHz core for 11b and only 3.2%
for 11a/g) and is constant across all modulation modes
in each standard. Note that frame detection needs to ex-
ecute even if there is no communication since a frame
may arrive at any time. When Sora detects a frame,
it uses 29% of a core to synchronize to the start of a
frame (SYNC) for 11b, and it uses 20% of a core to syn-
chronize to an 11a/g frame. Then Sora can demodulate
the PLCP header, which is always transmitted using the
lowest modulation rate. It requires slightly less (27.5%)
computation overhead than synchronization for 11b; but
it needs much more computation (44%) for 11a. De-
modulation of the data (DATA) at the higher rates is the
most computationally expensive step in a receiver. It re-
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Figure 13: Detailed processing costs in WiFi PHY.

quires 75% of a core at 11Mbps for 11b, and the utiliza-
tion reaches exceeds one core (134%) for processing at
54Mbps in 11a/g. This result indicates that we need to
streamline the processing to at least two cores to support
this modulation.

8 Extensions

The flexibility of Sora allows us to develop interesting
extensions to current WiFi protocol.

8.1 Jumbo Frames

If the channel conditions are good, transmitting data
with larger frames can reduce the overhead of MAC/-
PHY headers, preambles and the per frame ACK. How-
ever, the maximal frame size of 802.11 is fixed at 2304
bytes. With simple modifications (changes in a few
lines), SoftWiFi can transmit and receive jumbo frames
with up to 32KB. Figure 14 shows the throughput of
sending UDP packets between two Sora SoftWiFi nodes
using the jumbo frame optimization across a range of
frame sizes (with 11b using the 11Mbps modulation
mode). When we increase the frame size from 1KB
to 6KB, the end-to-end throughput increase 39% from
5.9Mbps to 8.2Mbps. When we further increase the
frame size to 7KB, however, the throughput drops be-
cause the frame error rate also increases with the size.
So, at some point, the increasing error will offset the gain
of reducing the overhead. Note that our default commer-
cial NIC rejects frames larger than 2304 bytes, even if
those frames can be successfully demodulated.

In this experiment, we place the antennas close to each
other, clearly a best-case scenario. Our goal, though,
is not to argue that jumbo frames for 802.11 are nec-
essarily a compelling optimization. Rather, we want
to demonstrate that the full programmability offered by
Sora makes it both possible and straightforward to ex-
plore such “what if”” questions on a GPP SDR platform.

_
: /./l/- e
7
2
o 6 w
£
<5
S
£
h04
S
23
<
=
2
1
0
1 2 3 4 5 6 7

Frame Size (KBytes)

Figure 14: Throughput with Jumbo Frames between two
Sora SoftWiFi nodes.

10ms 50ms 100ms
e/o(us) | 0.85/0.5 | 0.96/0.54 | 0.98/0.46
Outlier 0.5% 0.4% 0.4%

Table 4: Timing error of Sora in TDMA.

8.2 TDMA MAC

To evaluate the ability of Sora to precisely control the
transmission time of a frame, we implemented a simple
TDMA MAC that schedules a frame transmission at a
predefined time interval. The MAC state machine (SM)
runs in an ethread, and it continuously queries a timer
to check if the pre-defined amount of time has elapsed.
If so, the MAC SM will instruct the RCB to send out a
frame. The modification is simple and straightforward
with about 20 lines of additional code.

Since our RCB can indicate to SoftWiFi when the
transmission completes, and we know the exact size of
the frame, we can calculate the exact time when the
frame transmits. Table 4 summarizes the results with
various scheduling intervals under a heavy load, where
we copy files on the local disk, download files from
a nearby server, and playback a HD video simultane-
ously. In the Table, e presents the average error and o
presents the standard deviation of the error. The average
error is less than 1us, which is sufficient for most wire-
less protocols. We also list outliers, which we define
as packet transmissions that occur later than 2us from
the pre-defined schedule. Previous work has also imple-
mented TDMA MACs on a commodity WiFi NIC [20],
but their software architecture results in a timing error of
near 100us.

8.3 Soft Spectrum Analyzer.

It is also easy for Sora to expose all PHY layer informa-
tion to applications. One application we have found use-
ful is a software spectrum analyzer for WiFi. We have
implemented such a simple spectrum analyzer that can
graphically display the waveform and modulation points
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Figure 15: Software Spectrum Analyzer built on Sora.

in a constellation graph, as well as the demodulated re-
sults, as shown in Figure 15. Commercial spectrum ana-
lyzers may have similar functionality and wider sensing
spectrum band, but they are also more expensive.

9 Related Work

In this section we discuss various efforts to implement
software defined radio functionality and platforms.
Traditionally, device drivers have been the primary
software mechanism for changing wireless functional-
ity on general purpose computing systems. For example,
the MadWiFi drivers for cards with Atheros chipsets [3],
HostAP drivers for Prism chipsets [2], and the rtx200
drivers for RaLink chipsets [4] are popular driver suites
for experimenting with 802.11. These drivers typically
allow software to control a wide range of 802.11 man-
agement tasks and non-time-critical aspects of the MAC
protocol, and allow software to access some device hard-
ware state and exercise limited control over device oper-
ation (e.g., transmission rate or power). However, they
do not allow changes to fundamental aspects of 802.11
like the MAC packet format or any aspects of PHY.
SoftMAC goes one step further to provide a platform
for implementing customized MAC protocols using in-
expensive commodity 802.11 cards [20]. Based on the
MadWiFi drivers and associated open-source hardware
abstraction layers, SoftMAC takes advantage of features
of the Atheros chipsets to control and disable default
low-level MAC behavior. SoftMAC enables greater flex-
ibility in implementing non-standard MAC features, but
does not provide a full platform for SDR. With the sepa-
ration of functionality between driver software and hard-
ware firmware on commodity devices, time critical tasks
and PHY processing remain unchangeable on the device.
GNU Radio is a popular software toolkit for building
software radios using general purpose computing plat-

forms [1]. It is derived from an earlier system called
SpectrumWare [22]. GNU Radio consists of a software
library and a hardware platform. Developers implement
software radios by composing modular pre-compiled
components into processing graphs using python scripts.
The default GNU Radio platform is the Universal Soft-
ware Radio Peripheral (USRP), a configurable FPGA ra-
dio board that connects to the host. As with Sora, GNU
Radio performs much of the SDR processing on the host
itself. Current USRP supports USB2.0 and a new ver-
sion USRP 2.0 upgrades to Gigabit Ethernet. Such in-
terfaces, though, are not sufficient for high speed wire-
less protocols in wide bandwidth channels.  Existing
GNU Radio platforms can only sustain low-speed wire-
less communication due to both the hardware constraints
as well as software processing [21]. As a consequence,
users must sacrifice radio performance for its flexibility.

The WARP hardware platform provides a flexible and
high-performance software defined radio platform [6].
Based on Xilinx FPGAs and PowerPC cores, WARP
allows full control over the PHY and MAC layers and
supports customized modulations up to 36 Mbps. A va-
riety of projects have used WARP to experiment with
new PHY and MAC features, demonstrating the impact
a high-performance SDR platform can provide. KUAR
is another SDR development platform [18]. Similar to
WARP, KUAR mainly uses Xilinx FPGAs and PowerPC
cores for signal processing. But it also contains an em-
bedded PC as the control processor host (CPH), which
has a 1.4GHz Pentium M processor. Therefore, it allows
some communication systems to be implemented com-
pletely in software on CPH. They have demonstrated
some GNU Radio applications on KUAR. Sora provides
the same flexibility and performance as hardware-based
platforms, like WARP, but it also provides a familiar
and powerful programming environment with software
portability at a lower cost.

The SODA architecture represents another point in
the SDR design space [17]. SODA is an application
domain-specific multiprocessor for SDR. It is fully pro-
grammable and targets a range of radio platforms — four
such processors can meet the computational require-
ments of 802.11a and W-CDMA. Compared to WARP
and Sora, as a single-chip implementation it is more ap-
propriate for embedded scenarios. As with WARP, de-
velopers must program to a custom architecture to im-
plement SDR functionality.

10 Conclusions

This paper presents Sora, a fully programmable software
radio platform on commodity PC architectures. Sora
combines the performance and fidelity of hardware SDR
platforms with the programmability of GPP-based SDR
platforms. Using the Sora platform, we also present the
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design and implementation of SoftWiFi, a software ra-
dio implementation of the 802.11a/b/g protocols. We are
planning and implementing additional software radios,
such as 3GPP LTE (Long Term Evolution), W-CDMA,
and WiMax using the Sora platform. We have started
the implementation of 3GPP LTE in cooperation with
Beijing University of Posts and Telecommunications,
China, and we confirm the programming effort is greatly
reduced with Sora. For example, it has taken one student
only two weeks to develop the transmission half of LTE
PUSCH(Physical Uplink Shared Channel), which can be
a multi-month task on a traditional FPGA platform.

The flexibility provided by Sora makes it a convenient
platform for experimenting with novel wireless proto-
cols, such as ANC [16] or PPR [15]. Further, being able
to utilize multiple cores, Sora can scale to support even
more complex PHY algorithms, such as MIMO or SIC
(Successive Interference Cancellation) [23].

More broadly, we plan to make Sora available to the
wireless networking research community. Currently,
we are collaborating with Xi’an Jiao Tong University,
China, to design a new MIMO RF module that supports
eight channels. We are planning moderate production
of the Sora RCB and RF modules for use by other re-
searchers. The estimated cost for Sora hardware is about
$2,000 per set (RCB + one RF front-end). We also plan
to release the Sora software to the wireless network re-
search community. Our hope is that Sora can substan-
tially contribute to the adoption of SDR for wireless net-
working experimentation and innovation.
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Appendix A: SIMD example for FIR Filter

In this appendix, we show a small example of how to
use SSE instructions to optimize the implementation of a
FIR (Finite Impulse Response) filter in Sora. FIR filters
are widely used in various PHY layers. An n-tap FIR
filter is defined as

ylt] = z_:ck -zt — K],
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0[0[0]|=eee|0|co
1 int FirSSE ( PSAMPLE pSrc,
0 0 Co | C1 > PSAMPLE pOutput,
L, R 3 int nSize, // number of complex samples
.’ H 4 PSHORT pCoff, // filter coeffs
0|0 |co Coa| Cms H Temporary 5 int iTaps, // the highest index of tap (n-1)
' results 6 PSAMPLE pTempBuf, // for temp value store
0|colc Cma| Cmez H 7 )
[]
Col|Ci|ce Cr2 | Crt H s
- H 9 _asm {
‘1' ' 10 mov esi, pSrc;
. ] 11 mov ecx, nSize;
Cnm | Crome1[Cnme2 Cn2 | Cn-t 12 mov ebx, pOutput;
13 outerloop:
Come1|Comi2|C: Coi| O 14 mov edx, pCoff;
o’ 15 mov edi, pTempBuf;
'0' 16
. 0 0 17 ;// load samples 4-I and 4-Q
- 0 |===- 0 18 movdga xmm0, [esil];
. . 19
Figure 16: Memory layout of the FIR coefficients. 2 ; // result_0
21 movdga xmm4, xmmO;
22 pmullw xmmé4, [edx];
where z[.] are the input samples, y|.] are the output sam- = paddsw xmmd, [edi];
. . . 24 ;i // 1t_1
ples, and ¢y, are the filter coefficients. With SIMD in- . movdqarei;m —
structions, we can process multiple samples at the same 2% pmullw xmm5, [edx + 16];
. . 27 dd 5, di + 16];
time. For example, Intel SSE supports a 128-bit packed- -, D reault. 2 fedt !
vector and each FIR sample takes 16 bits. Therefore, 29 movdga xmm6, xmm0;
. . 30 pmullw xmm6, [edx + 32];
we can perform m = 8 calculations simultaneously. a paddsw xmm6, [edi + 32];
To facilitate SSE processing, the data layout in mem- 32 i // result_ 3
. . 33 d 7, 0;
ory should be carefully designed. Figure 16 shows the T T leds + 481
memory layout of the FIR coefficients. Each row forms 35 paddsw xmm7, [edi + 48];

a packed-vector containing m components for SIMD op-
erations. The coefficient vector of the FIR filter is repli-
cated in each column in a zig-zag layout. Thus, the total

; // xmmd,

xmm5, xmm6, xmm7/ contains output

; // perform shuffle and horizontal additions

movdga xmml,

xmmé ;

40 punpckldg xmml, xmmé6;
number of rows is (n +m — 1). There are also n tem- 4 punpckhdg xmm4, xmm6;
. .. 42 paddsw xmmé4, xmml;
porary variables containing the accumulated sum up to h
each FIR tap for each sample. 4 movdga xmml, xmm5;
. 45 punpckldg xmml, xmm7;
Figure 17 shows the example code. It takes an ar- punpckhdg xmmS, xmm7;
ray of input samples, a coefficient array, and outputs the — + paddsw xmm5, xmml;
. . 48
filtered samples in an output sample buffer. The input movdga xmml, xmmd;
contains two separate sample streams, with the even and 50 punpckldg xmml, xmmS;
. . 51 punpckhdg xmm4, xmm5;
odd indexed samples representing the / and Q samples, paddsw xmmd, xmml;

respectively. The coefficient array is arranged similarly
to Figure 16, but with two sets of FIR coefficients for /
and Q samples, respectively.

Each iteration, four / and four Q samples are loaded
into an SSE register. It multiplies the data in each row
and adds the result to the corresponding temporal accu-

61

; // output

; // additional instructions may be added to

; // adjust the sample orders

movdga [ebx],
; // update t
mov eax, iTap

innerloop:

xmmé ;

emp buffers
Sy

mulative sum variable (lines 59-68). A result is output 62 movdga xmml, xmmO;

. . 3 11 1, [edx + 64];
when all taps are calculated for the input samples (lines |, I D
18-57). When the input sample stream is long, there are 6 movdga [edi], xmml;

nm samples in the pipeline and m outputs are generated
in each iteration. Note that the output samples may not
be in the same order as the input — some algorithms do
not always require the output to have exactly the same
order as the input. A few shuffle instructions can be
added to place the output samples in original order if
needed.

add edx, 16;
add edi, 16;
dec eax;

jnz innerloop

;// advance to next sample group

add esi, 16;
add ebx, 16;
sub ecx, 4;
jg outerloop;

}

7

Figure 17: Pseudo-code of SSE optimized FIR Filter.
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Enabling MAC Protocol Implementations on
Software-Defined Radios

George Nychis, Thibaud Hottelier, Zhuocheng Yang, Srinivasan Seshan, Peter Steenkiste
Carnegie Mellon University

Abstract

Over the past few years a range of new Media Access
Control (MAC) protocols have been proposed for wire-
less networks. This research has been driven by the
observation that a single one-size-fits-all MAC protocol
cannot meet the needs of diverse wireless deployments
and applications. Unfortunately, most MAC functional-
ity has traditionally been implemented on the wireless
card for performance reasons, thus, limiting the opportu-
nities for MAC customization. Software-defined radios
(SDRs) promise unprecedented flexibility, but their ar-
chitecture has proven to be a challenge for MAC proto-
cols.

In this paper, we identify a minimum set of core MAC
functions that must be implemented close to the radio
in a high-latency SDR architecture to enable high per-
formance and efficient MAC implementations. These
functions include: precise scheduling in time, carrier
sense, backoff, dependent packets, packet recognition,
fine-grained radio control, and access to physical layer
information. While we focus on an architecture where
the bus latency exceeds common MAC interaction times
(tens to hundreds of microseconds), other SDR architec-
tures with lower latencies can also benefit from imple-
menting a subset of these functions closer to the radio.
We also define an API applicable to all SDR architectures
that allows the host to control these functions, providing
the necessary flexibility to implement a diverse range of
MAC protocols. We show the effectiveness of our split-
functionality approach through an implementation on the
GNU Radio and USRP platforms. Our evaluation based
on microbenchmarks and end-to-end network measure-
ments, shows that our design can simultaneously achieve
high flexibility and high performance.

1 Introduction

Over the past few years, a range of new Media Access
Control (MAC) protocols have been proposed for use in
wireless networks. Much of this increased activity has
been driven by the observation that a single one-size-

fits-all MAC protocol cannot meet the needs of diverse
wireless deployments and applications and, thus, MAC
protocols need to be specialized (e.g. for use on long-
distance links, mesh networks). Unfortunately, the devel-
opment and deployment of new MAC designs has been
slow due to the limited programmability of traditional
wireless network interface hardware. The reason is that
key MAC functions are implemented on the network in-
terface card (NIC) for performance reasons, which often
uses proprietary software and custom hardware, making
the MAC hard, if even possible, to modify.

Software-defined radios (SDRs) have been proposed
as an attractive alternative. SDRs provide simple hard-
ware that translates signals between the RF and the digi-
tal domains. SDRs implement most of the network inter-
face functionality (e.g., the physical layer and link layer)
in software and, as a result, they make it feasible for
developers to modify this functionality. SDR architec-
tures [19, 6, 17, 20, 9] typically distribute processing of
the digitized signals across several processing units — in-
cluding FPGAs and CPUs located on the SDR device,
and the CPU of the host. The platforms differ in the pre-
cise nature of the processing units that are provided, how
those units are connected, and how computation is dis-
tributed across them.

Unfortunately, the high degree of flexibility offered
by SDRs does not automatically lead to flexibility in the
MAC implementation. The reason is that, in the SDR ar-
chitecture we are addressing, the use of multiple hetero-
geneous processing units with interconnecting buses, in-
troduces large delays and jitter into the processing path of
packets. Processing, queuing, and bus transfer delays can
easily add up to hundreds of microseconds [14]. Unfor-
tunately, the delay limits how quickly the MAC can re-
spond to incoming packets or changes in channel condi-
tions, and the jitter prevents precise control over the tim-
ing of packet transmissions. These restrictions severely
reduce the performance of many MAC protocols.

This paper presents a set of techniques that makes it
possible to implement diverse, high performance MAC
protocols that are easy to modify and customize from the
host. The key idea is a novel way of splitting core MAC
functionality between the host processing unit and pro-
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Figure 1: Generic SDR Architecture

cessing units on the hardware (e.g., FPGA). The paper
makes the following contributions:

e We identify a set of core MAC functions that must
be implemented close to the radio for performance
and efficiency reasons.

e We define a split-functionality architecture that al-
lows the functions to be implemented near the ra-
dio hardware, while maintaining control on the host
CPU through an APIL

e We present an implementation of our architecture
using the GNU Radio [6] and USRP [17] SDR plat-
form. We also use our implementation to charac-
terize the performance-flexibility tradeoffs for key
MAC features. For example, our results show
three orders of magnitude greater precision for the
scheduling of packets and carrier sense, along with
a high level of accuracy in fast packet detection.

e Finally, we use our implementation for an end-to-
end evaluation of the split-functionality architec-
ture. We show how the system can support diverse
high-performance MAC implementations by imple-
menting 802.11-like and Bluetooth-like protocols
for experimentation over the air.

The rest of the paper is organized as follows. We dis-
cuss current radio architecture and its impact on MAC
protocol development in Section 2. In Sections 3 and
4, we explore the core MAC requirements and introduce
our split-functionality architecture. Section 5 provides
details for each component implementation with evalu-
ation results. Finally, we present end-to-end evaluation
results, related work, and a summary of our results in
Sections 6 through 8.

2 MAC Implementation Choices

A number of different software-defined radio architec-
tures have been developed. One common architecture
is shown in Figure 1. The frontend is responsible for
converting the signal between the RF domain and an
intermediate frequency, and the A/D and D/A compo-
nents convert the signal between the analog and the dig-
ital domain. Physical and higher layer processing of the

digitized signal are executed on one or more processing
units. Typically, there is at least an FPGA or DSP close
to the frontend. The frontend, D/A, A/D, and FPGA are
usually placed on a network card that is connected to the
host CPU by a standard bus (e.g., USB).

The distribution of functionality across the processing
units significantly impacts the radio’s performance, flex-
ibility, and ease of reprogramming. To achieve a high
level of flexibility and reprogramming, the majority of
processing (i.e., modulation) can be placed on the host
CPU where the functionality is easy to modify. We refer
to this architecture as host-PHY. This architecture is ex-
emplified by GNU Radio [6] and the USRP [17], which
place the majority of functionality in userspace, shown
in Figure 1. For greater performance, processing can be
implemented in the radio hardware on the FPGA or DSP.
We refer to this architecture as NIC-PHY. The WARP
platform [20] implements this architecture, placing the
PHY and MAC layers on the radio hardware for perfor-
mance reasons. It is fairly straightforward however, to
parameterize PHY layers (e.g. to control the frequency
band and coding an modulation options). Thus, it is pos-
sible control many aspects of the PHY layer from the
host, no matter where it is implemented.

Unfortunately, MAC protocols are less structured and
SDRs have fallen short in providing high-performance
flexible MAC implementation. The MAC is either im-
plemented near the radio hardware for performance, or
near the host for flexibility. We propose a novel split of
MAC functionality across the processing units in a host-
PHY architecture such that we can achieve a high level
of performance, while maintaining flexibility at both the
MAC and PHY layers. This is especially significant in
a host-PHY architecture, which has been considered in-
capable of supporting even core MAC protocol functions
(e.g., carrier sense) due to the large processing delays in-
herent to the architecture [ 14, 18]. In addition, our design
can enable many cross-layer optimizations, such as those
proposed between the MAC and PHY layers [5, 8, 7].
Such optimizations have used the host-PHY architecture
for easy PHY modifications, but given the lack of MAC
support, they typically “fake” the MAC layer (e.g., by
combining the SDR with a commodity 802.11 NIC to do
the MAC processing [5]) or omit it all together [7, &].
Although our work focuses on a host-PHY architecture,
several of the components we will present can be applied
to a NIC-PHY architecture.

In the next section, we explore delay and jitter mea-
surements in the host-PHY architecture, which are the
major limiting factor on performance of MAC imple-
mentations. The measurements are important in under-
standing the proper split of MAC functionality across the
heterogeneous processing units of an SDR.
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‘ Avg SDev Min Max
User—>Kernel (us) 24 10 22 213
Kernel->User (us) 27 89 13 7000
4096 Kernel<—>FPGA (us) | 291 62 204 360

512 Kernel<—>FPGA (us) 148 35 90 193
GNU Radio<—>FPGA (us) | 612 789 289 9000

Table 1: Kernel level delay measurements.

2.1 Delay Measurements

Schmid et al [14] present delay measurement for SDRs
and their impact on MAC functionality in a host-PHY
architecture. However, they focus on user-level mea-
surements, largely ignoring precise measurement of de-
lays between the kernel and userspace, and kernel and
the radio hardware. Such measurements are important,
since they can provide insight into whether implementing
MAC functions in the kernel is sufficient to overcome the
performance problems associated with user level imple-
mentations. To obtain precise user and kernel-level mea-
surements, we modified the Linux kernel’s USB Request
Block (URB) and USB Device Filesystem URB (US-
BDEVFS_URB) to include nanosecond precision times-
tamps taken at various times in the transmission and re-
ceive process. All user level timestamps are taken in user
space right before or after a URB is submitted (write) or
returned (read). At the kernel level, the measurement is
taken at the last point in the kernel’s USB driver before
the DMA write request is generated, or after a DMA read
request interrupts the driver. This is as close to the bus
transfer timing as possible.

We measured the round trip time between GNU Ra-
dio (in user space) and the FPGA using a ping command
on a control channel that we implement (Section 4.2).
Using the measurements described above, we are also
able to identify the sources of the delay by calculating
the user to kernel space delay, kernel to user space de-
lay, and round trip time between the kernel and FPGA
based on ping. We ran the user process at the highest pri-
ority to minimize scheduling delay. We used the default
4096 byte USB transfer block size for all experiments,
and then perform an additional kernel to FPGA RTT ex-
periment using a 512 byte transfer block size, the mini-
mum possible, in an attempt to minimize queuing delay.

The results presented in Table 1 are averaged over
1000 experiments. Focusing on the average times, we
see the cost of a GNU Radio ping is dominated by the
kernel-FPGA roundtrip time (291 out of 612 us). The
user-kernel and kernel-user times are relatively modest
(24 and 27 us). The remaining time (270 Ls) is spent in
the GNU Radio chain. The high latency of the kernel-
FPGA roundtrip time is somewhat surprising, given that
the effective measured rate of the USB with the USRP is
32MB/s. The difference between the latencies for 4KB

and 512B shed some light on this. The difference in la-
tency is only a factor of two, suggesting that the set up
cost for transfers contributes significantly to the delay.
The kernel-FPGA time also includes the time it takes for
the data to pass through the USRP USB FX2 controller
buffers, and to be copied into the FPGA for parsing. The
time taken for the data to pass through the USRP USB
FX2 controller buffers and copied into the FPGA for
parsing also contributes to the kernel-FPGA RTT.

The standard deviations and the min/max values paint
a different picture. The user-to-kernel and kernel-FPGA
times fall in a fairly narrow range, so they only contribute
a limited amount of jitter. The kernel-to-user times how-
ever have a very high standard deviation, which results
in a high standard deviation for the GNU Radio ping de-
lays. This is clearly the result of process scheduling.

2.2 MAC Design Space

As discussed briefly in Section 2, the processing units
in the above SDR architecture have very different prop-
erties. Focusing on Figure 1, the host CPU is easy to
program and is readily accessible to users and develop-
ers. However, the path between the host CPU and the
radio front end has both high delay and jitter, as shown
by the measurements presented in Section 2.1. The round
trip times between the device driver on the host and the
FPGA is about 300 us for 4KB of data, with relatively
modest jitter. The roundtrip from GNU Radio is about
double, but with significantly more jitter. As a result, a
host-based MAC protocol (be it in user space or in the
kernel) will not be able to precisely control packet tim-
ing, or implement small, precise inter-frame spacings,
which will hurt the performance of many MAC proto-
cols. We conclude that, time critical radio or MAC func-
tions should not be placed on the host CPU.

Processing close to the radio performed by a FPGA
or CPU on the NIC has the opposite properties. It has a
low latency path to the frontend (see USRP latencies in
Figure 1), making it attractive for delay sensitive func-
tions. Unfortunately, code running on the radio hardware
is much harder to change because it is often hardware-
specific and requires a more complex development envi-
ronment. Moreover, history shows that vendors do not
provide open access to their NICs, even if they are pro-
grammable. Access to the processors on the NIC is re-
stricted to its manufacturer and possibly large customers
who can, under license, customize the NIC code. This
is of course not a problem for research groups using
research platforms, which is why many researchers are
moving to software radios, but it is an important consid-
eration for widespread deployment. We conclude that in
order to be widely applicable, the control of flexible MAC
implementations should reside on the host.
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Interesting enough, the SDR NIC architecture in Fig-
ure 1 is not unlike the architecture of traditional NICs
(e.g., 802.11 cards). Today’s commodity NICs use ana-
log hardware to perform physical layer processing, but
they typically also have a CPU, FPGA, or custom proces-
sor. These commodity devices exhibit the same tradeoffs
we identified above for software radios: the delay be-
tween the processing on the host and the (analog) fron-
tend is substantially higher and less predictable than be-
tween the NIC processor and the front end.

Experience with commercial 802.11 cards supports
the conclusions we highlighted above. First, time sen-
sitive MAC functions such as sending ACKs are always
performed on the NIC, and only functions that are not de-
lay sensitive such as access point association are handled
by the host processor. Moreover, although most of the
MAC functionality on the NIC is implemented in soft-
ware, it can only be modified by a small number of ven-
dors (i.e. in practice the NIC is a black box). Researchers
have had some success in using commodity cards for
MAC research by moving specific MAC functions to the
host [13, 16, 10, 15], but the results are often unsatis-
factory. The host can only take control over certain func-
tions (e.g. interframe spacings must be longer than 60
microseconds), precision is limited (e.g. cannot elimi-
nate all effects of jitter), and the host implementation is
inefficient (as a result of polling) and is susceptible to
host loads.

The different properties of the host and NIC process-
ing units means that the placement of MAC functional-
ity will fundamentally affect four key MAC performance
metrics, including network performance, flexibility in
MAC implementation and runtime control, and ease of
development. Unfortunately, as discussed above, these
performance goals are in conflict with each other and
achieving the highest level for each is not possible. In
this paper, we present a split-functionality architecture
that implements key MAC functions on the radio hard-
ware, but provides full control to the host. This allows
us to simultaneously score very high on all four metrics,
and it also allows developers and users to make tradeoffs
across the metrics. While developers will always have to
make tradeoffs, the negatives associated with specific de-
sign choices are significantly reduced in our design. Note
that this does not imply that our design can support any
arbitrary or even all existing MAC designs. However, we
believe that it is capable of supporting most of the critical
features of modern MAC designs.

The focus of the paper is on SDR platforms be-
cause they provide maximal flexibility in key research
areas such as cross-layer MAC and PHY optimization
(e.g.,[5,7, 8]). Our evaluation is based on a platform that
uses the host-PHY architecture, but is not critical. Even
in NIC-PHY architectures that have good support for the

MAC on the NIC (e.g., in the form of a general-purpose
CPU), it is important to maintain control over the MAC
and PHY on the host to ensure easy customization. As
a result, the techniques we propose can be useful across
the entire spectrum of NIC designs.

3 Core MAC Functions

An ideal wireless protocol platform should support the
implementation of well-known MAC protocols as well as
novel MAC research designs. A study of current wireless
protocols, including WiFi (both Distributed and Point
Coordination Function), Zigbee, Bluetooth, and various
research protocols shows that they are based on a com-
mon, core set of techniques such as contention-based ac-
cess (CSMA), TDMA, CDMA, and polling. In this sec-
tion, we identify key core functions that a platform must
implement efficiently in order to support a wide range of
MAC protocols.

Precise Scheduling in Time: TDMA-based protocols
require precise scheduling to ensure that transmissions
occur during time slots. Imprecise timing can be tol-
erated by using long guard periods; however, this de-
grades performance. Surprisingly, modern contention-
based protocols also require precise scheduling to imple-
ment inter-frame spacing (i.e. DIFS, SIFS, PIFS), con-
tention windows, back-off periods, etc.

Carrier Sense: Contention-based protocols often use
carrier sense to detect other transmissions. Carrier
sense may use simple power detection (e.g., using sig-
nal strength) or may use actual bit decoding. Network
interfaces need to transmit shortly after the channel is
detected to be idle. Additional delay increases both the
frequency of collision and also the minimum packet size
required by the network.

Backoff: When a transmission fails in a contention-
based protocol, a backoff mechanism is used to resched-
ule the transmission under the assumption that the
loss was caused by a collision. Backoff is related to
precise scheduling, but focuses more closely on fast-
rescheduling of a transmission without the full packet
transmission process (e.g., modulation).

Fast Packet Recognition: Many MAC performance
optimizations could use the ability to quickly detect an
incoming packet and identify that it is relevant to the lo-
cal node in a timely and accurate manner. For example,
detecting and identifying an incoming packet before the
demodulation procedure can reduce resource use on the
processing units and on the bus.

Dependent Packets: Dependent packets are explicit
responses to received packets. A typical example is con-
trol packets that are associated with data packets, for
example for error control (e.g., ACKs) or for improved
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channel access (e.g., RT'S/CTS). Network interfaces need
to generate these packets quickly and transmit them with
precise time scheduling relative to the previous packet.

Fine-grained Radio Control: Frequency-hopping
spread spectrum protocols such as Bluetooth and the re-
cently proposed MAXchop algorithm [! 1] require fine-
grained radio control to rapidly change channels accord-
ing to a pseudo-random sequence. Similarly, recent de-
signs [1] for minimizing interference require the ability
to control transmission power on a per-packet basis.

Access to physical layer information: Many MAC
protocol optimizations could benefit from access to
radio-level packet information. Examples include using
a received signal strength indicator (RSSI) to improve
access point handoff decisions and using information on
the confidence of each decoded bit to implement partial
packet recovery [7].

3.1 Implications

While it is difficult to argue that this (or any) list of core
functions is the correct one and is complete, we believe
that it is sufficient to implement a broad range of inter-
esting MAC protocols. To provide some degree of confi-
dence in this statement, we describe our implementation
of an 802.11-like CSMA protocol and a Bluetooth-like
TDMA protocol using our framework in Section 6. As
such, this is a reasonable first “toolbox” that MAC pro-
tocol developers can extend over time.

4 Split Functionality Architecture

As discussed in Section 2, implementing flexible high-
performance MAC protocols is challenging because the
high delays and jitter between the host CPU and frontend
affects the performance of the core MAC functions de-
scribed in the previous section. For example, most proto-
cols need either precise scheduling in time or dependent
packets. However, the delays inherent in a host MAC im-
plementation in the given SDR architecture would make
these functions inefficient or ineffective. In this section,
we first review the requirements associated with the core
MAC functions identified above, and we then present an
architecture that allows us to support high performance
MACs while maintaining host control.

4.1 Core Requirements

Implementing the core MAC functions from Section 3
raises three challenges.

Bus delay: The delay introduced by transmission of
data over the bus can be constant and predictable, de-
pending on the technology. A constant delay is relatively

easy to accommodate in supporting precision schedul-
ing, as discussed in Section 5.1. However, the bus delay
does impact the performance of carrier sense, dependent
packets, and fast packet recognition. The effect of bus
latency on performance for SDR NICs is discussed in
previous work [14].

Queuing delay: The delay introduced by queues may
be smaller than the bus transmission delay but has signif-
icant jitter, which makes precision scheduling difficult,
if not impossible. The jitter can modify the inter-packet
spacing through compression or dispersion as the data is
processed in the host and at the ends of the bus. In Sec-
tion 5.1.2, we present measurements that show that this
compression can be so significant in the given architec-
ture that spacing transmissions by under Ims cannot be
achieved reliably using host-CPU based scheduling.

Stream-based architecture of SDRs: The frontend
operates on streams of samples, which can make fine-
grained radio control and access to physical layer infor-
mation from the host ineffective. The reason is that it
adds complexity to the interaction between a MAC layer
executing on a host CPU (or NIC CPU) and the radio
frontend since it is difficult to associate control informa-
tion or radio information with particular groups of sam-
ples (e.g., those belonging to a packet). This problem
consists of two components: (1) how to propagate in-
formation within the software environment that performs
physical and MAC layer processing, and (2) how to prop-
agate the information between the host and the frontend,
across the bus and SDR hardware. This first issue is
being addressed in the GNU Radio design with the in-
troduction of m-blocks [2], which is briefly discussed in
Section 7, but we must address the second issue.

4.2 Overcoming the Limitations

We now present an architecture that overcomes the above
limitations. The goal is to allow as much of the pro-
tocol to execute on the host as possible to achieve the
flexibility and ease of development goals, both of which
are important to a wireless platform for protocol devel-
opment, as identified in Section 2. However, we must
ensure that the high latency and jitter between the host
and radio frontend does not result in poor performance
and limited control, the other two criteria in Section 2.
This is done by introducing two architectural features,
per-block meta-data and a control channel, shown in
Figure 2. The novelty is not in the two new architectural
features, but in how we use them to implement the core
MAC functions (Section 3) in such a way that we main-
tain flexibility, while increasing performance (Section 5).
We first discuss both features in more detail.

Per block meta-data: Enabling the association of in-
formation with a packet is crucial to the support of nearly
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Figure 2: Split SDR architecture.

all of the core requirements in Section 3. Each packet is
modulated into blocks of samples, for which we intro-
duce per block meta-data. The meta-data stored in the
header includes a timestamp (inbound and outbound), a
channel flag (data/control), a payload length, and single
bit flags to mark events such as overrun, underrun, or to
request specific functions that we implement on the ra-
dio hardware. We limit the scope of the meta-data to the
minimum needed to support the core requirements, thus
minimizing the overhead on the bus.

Control Channel: The control channel allows us
to implement a rich API between the host and radio
hardware and allows for less frequent information to be
passed. It consists of control blocks that are interleaved
with the data blocks over the same bus. Control blocks
carry the same meta-data header as data blocks but have
the channel field in the header set to CONTROL. The
control block payload contains one or more command
subblocks. Each subblock specifies the command type,
the length of the subblock, and information relevant to
the specific command (e.g., a register number). Exam-
ples of commands include: reading or writing configu-
ration registers on the SDR device, changing the carrier
frequency, and setting the signal sampling rate.

With these two features, we can effectively partition
the core MAC functions into a part that runs on the radio
hardware close to the radio frontend, and a control part
that runs on the host. Of course, meta-data and control
channels are used in many contexts. The contribution lies
in how we use them to partition the core MAC functions,
which is the focus of the next section.

S Core Component Design and
Evaluation

We now examine how the split-functionality approach
can be used to implement the core functions described
in Section 3. We also evaluate the performance of the
implementation of each core function. We focus our dis-
cussion on the GNU Radio and USRP platform.

5.1 Precise Scheduling in Time

Precision scheduling needs to be implemented close to
the radio to achieve the fine-grained timing required for
TDMA, spread spectrum, and contention based proto-
cols. This is especially important when a large amount of
jitter exists in the system from multiple stages of queuing
and process scheduling, explored in Section 2.1.

For nodes to synchronize to the time of a global ref-
erence point, such as a beacon transmission for synchro-
nization to the start of a round in a TDMA protocol, the
nodes need to accurately estimate the reference point.
Jitter at the transmitter can cause the actual transmission
of the beacon to vary from its target time by &;, the maxi-
mum transmission jitter. Moreover, the estimated time of
the beacon transmission as a global reference point will
vary by J,, the maximum reception jitter. The maximum
error is therefore & + &,, which defines the minimum
guard time needed by a TDMA protocol. By minimiz-
ing & and J,, we increase channel capacity.

5.1.1 Precision Scheduling Design

Our delay measurements in Section 2.1 suggest that
much of the delay jitter is created near the host. There-
fore, the triggering mechanism for packet transmissions
should reside beyond the introduction of the jitter. Like-
wise, to obtain an accurate local time at which a recep-
tion occurs, the time should be recorded prior to the in-
troduction of the jitter on the RX path. To enable preci-
sion scheduling, we use a free running clock on the radio
hardware to coordinate transmission/reception times as
follows.

Transmit: To reduce the transmission jitter (&), we
insert a timestamp on all sample blocks sent from the
host to the radio hardware. When the radio hardware
receives the sample block, it waits until the local clock
is equal to the timestamp value before transmitting the
samples. This allows for timing compression or disper-
sion of data in the system with no effect on the preci-
sion scheduling of the transmission. The host must en-
sure the transmission reaches the radio hardware before
the timestamp is equal to the hardware clock, else the
transmission is discarded. The host is notified on failure,
which can be treated as notification to schedule transmis-
sions earlier. To support traditional best-effort streaming,
we use a special timestamp value, called NOW, to trans-
mit the block immediately.

In practice, the samples for a packet will be frag-
mented across multiple blocks. To make sure that a sin-
gle packet’s transmission is continuous and that if the
packet is dropped all fragments are dropped, we imple-
ment start of packet and end of packet flags in the block
headers. The first block carrying the packet will have the
start of packet flag set and the timestamp for transmis-
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Figure 3: Evaluation setup using 3 USRPs.

sion. All remaining blocks carry a timestamp value of
NOW to ensure continuous transmission. The hardware
detects the last fragment using the end of packet flag, and
can also report underruns to the host by detecting a gap
between fragments.

A common solution to achieve precise transmission
spacing from the host is to leave the transmitter enabled
at all times and space transmissions with 0 valued sam-
ples. This solution is inefficient since it wastes both host
CPU cycles and bus bandwidth, and it does not eliminate
jitter on the receive side.

Receive: To reduce the receiver jitter (6,), the radio
hardware timestamps all incoming sample blocks with
the radio clock time at which the first sample in the block
was generated by the ADC. Given that the sampling rate
is set by the host, the host knows the exact spacing be-
tween samples. It can therefore calculate the exact time
at which any sample was received, eliminating &, and al-
lowing for full synchronization between transmitter and
receiver.

5.1.2 Precision Scheduling Evaluation

To evaluate precision scheduling, we compare the
timestamp-based release of packets using the split-
functionality approach with a timer-based implementa-
tion in GNU Radio and in the kernel. We enable the real-
time scheduling mechanism, which sets the GNU Radio
processes to the highest priority. Our experiment trans-
mits a frame used as a logical time reference, and then at-
tempts to transmit another frame at a controlled spacing
over the air. With no error, the actual spacing over the air
is equal to the targeted spacing. We measure the actual
spacings achieved using a monitoring node (Figure 3). A
USRP on the monitoring node measures the magnitude
of received complex samples at 8 megasamples per sec-
ond, resulting in a precision of 125 nanoseconds. With
no transmission jitter (&), the spacing between beacons
will exactly match their transmission rate, while any vari-
ability in scheduling will affect the spacings. The nodes
are connected via coaxial cable to avoid the impact of
external signals.

We compare the measured spacing of 50 transmis-
sions with targeting spacings from 100ms to 1us. Fig-
ure 4 shows the host and kernel based implementations
to have approximately 1ms and 35us of error, respec-
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Figure 4: Split-functionality vs. host scheduling.

tively. The timestamp-based mechanism achieves exact
spacing to our monitoring node’s precision. Therefore,
moving timestamps to the kernel improves accuracy, but
the error is still at least an order of magnitude greater
than in the split-functionality design. Section 6.1 quan-
tifies the benefits further through the implementation of
a Bluetooth-like TDMA protocol. In the evaluation, we
also measure , with the split-functionality approach to
be within 312ns. The average results show one-sided er-
ror, illustrating that compression of data across the bus
dominates over dispersion. This is likely due to the mul-
tiple stages of buffers, including the buffers on the radio
hardware to read the data from the FX2 controller. While
dispersion is recorded, it occurs infrequently.

5.2 Carrier Sense

The performance of carrier sense is crucial to CSMA
protocols: the longer it takes to transmit a packet after
the channel goes idle, the greater the chance of colli-
sion. This turnaround time is referred to as the carrier
sense ‘blind spot” by Schmid et al. [14]. This blind spot
has 4 components: signal propagation delay, the delay
between the radio hardware and host for incoming sam-
ples, the processing delay involved in carrier detection at
the host, and the complete transmission delay once the
medium is detected idle at the host; this includes mod-
ulation of a packet and transferring the samples to the
radio hardware for transmission.

5.2.1 Carrier Sense Design

To significantly reduce the size of the carrier sense blind
spot, we must avoid the associated delays by placing the
decision at the radio hardware. However, the decision
process should be controlled by software running on the
host CPU to maintain flexibility. The first assumption we
can make is that if carrier sense is to be performed, the
host has data to transmit and can modulate it and pass
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Figure 5: Carrier sense blind spot measurement.

it to the radio hardware to pend on carrier sense. The
per block meta-data for the transmission has a single bit
flag set to indicate the block should be held until there
is no carrier using a locally computed RSSI value. The
host can control the carrier sense threshold via the con-
trol channel. We use an RSSI value recorded in the radio
hardware to implement a simple RSSI threshold carrier
sense mechanism.

5.2.2 Carrier Sense Evaluation

We now present an evaluation of the carrier sense com-
ponent in comparison to performing carrier sense at the
host. In the host implementation, the received signal
strength is estimated from the incoming sample stream
and uses thresholds to control outgoing transmissions.
We use the evaluation setup in Figure 3, described in
Section 5.1.2, to achieve a 125 nanosecond resolution
in measuring the archived carrier sense blind spot. The
two contending nodes exchange the channel using car-
rier sense 100 times and we measure the spacing be-
tween each transmission, as illustrated in Figure 5. The
first contending node, Cy, finishes transmission 7'X,,, and
C, takes T; time to detect the channel as idle and be-
gin transmission 7X,y;. T; represents the carrier sense
turnaround time, or blind spot.

We plot two example channel exchanges using both
implementations in Figure 6. Time is relative in the fig-
ure and we align the contending node’s end of transmis-
sion at time 100. We highlight the gap in both implemen-
tations, and present the average gap observed across 100
exchanges: 1.5us and 1.98ms for the split-functionality
and host implementations, respectively. The host based
latency could be reduced closer to 1ms, or on the order
of tens of microseconds, by splitting the functionality to
the USRP device driver, or the kernel, respectively. In
our evaluation, the times were recorded at a higher-level
block in GNU Radio where a MAC protocol would re-
side. These measurements illustrate our design’s abil-
ity to reduce the carrier sense blind spot by three orders
of magnitude, while maintaining host control on a per-
packet basis. This can significantly increase the capac-
ity in the channel by reducing the time it takes to detect
it is idle. The host can even control the threshold on a
per-packet basis by placing a control packet with a new
threshold on the bus before the data packet.

<—1.5us average Split-functionality

Host

<—1.96ms average —=

| | | |
0 500 1000 1500 2000 2500
relative time(us)

Figure 6: Measured carrier sense blind spots.

5.3 Backoff

In contention based protocols, backoff is used to reduce
collisions and increase fairness. Although the technique
varies by protocol, a common implementation is to re-
duce collisions by forcing a transmission delay and to
increase fairness by making this delay random. The
various delay components in SDRs prevent fine-grained
backoff at the host. As shown in Section 5.1, a host
backoff of less than 1ms is unachievable and values be-
tween 1ms and 100ms would be unpredictable. There-
fore, backoff at the host would require a large minimum
backoff time, which decreases channel capacity.

Despite our timestamping mechanism achieving mi-
crosecond level accuracy (Section 5.1.2), such a mecha-
nism alone is insufficient. If a new backoff time is to be
computed once a failure is reported to the MAC on the
host, the retransmission would incur at least a radio-to-
host RTT after the previous transmission, meaning the
minimum backoff in a host implementation is an RTT.
The average RTT measured in Section 2.1 was 612us
with a standard deviation was 789us and a maximum
observed value of 9ms. This is insufficient by current
protocol standards. Placing the backoff algorithm on the
radio hardware would require developers to make low
level changes. We therefore explore a split-functionality
approach for backoff.

5.3.1 Backoff Design

To enable flexible fine-grained backoff we build upon
the precision scheduling mechanism (Section 5.1) to in-
troduce a technique that leaves the backoff algorithm
and computations at the host, and the actual transmis-
sion delay on the radio hardware. The key observation
that enables our technique is that all backoff times, from
the initial transmission n¢ to npaX_RETRIES, Can be pre-
calculated by the host. The host calculates the backoff
time for transmission 7, and then assuming failure cal-
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culates all remaining backoffs from 1 to MAX_RETRIES,
including each in the per packet meta-data.

A flag is set in the per block meta-data for the radio
hardware to interpret the timestamp value as the maxi-
mum number of retries (M), and the first M 32-bit words
pre-pended in the data payload to be interpreted as back-
off times for each retransmission. Each value is inter-
preted as a time-to-wait, where the transmission is sched-
uled at current_clock+backoff. Moreover, we implement
a control channel command that allows the host to con-
figure the interpretation of a backoff value as an absolute
time-to-wait, or a channel idle time-to-wait (most com-
mon).

This technique does not affect scheduling of future
transmissions, as for example in 802.11 the contention
window is reset to the minimum on a successful trans-
mission. This means that the host can fully schedule a
transmission and before a success/failure notification is
given by the hardware, it can prepare the next transmis-
sion and buffer it on the radio hardware.

5.3.2 Backoff Evaluation

Given that the backoff technique uses the precision
scheduling mechanism, its accuracy is the same as the
precision scheduling mechanism and on the order of mi-
croseconds. We also use the backoff technique in our
split-functionality 802.11-like protocol evaluation found
in Section 6.

5.4 Fast Packet Recognition

Traditional software-defined radios, in the receive state,
stream captured samples at some decimated rate between
the radio hardware and the host. For many MAC pro-
tocols, such as CSMA-style designs, the radio cannot
determine when packets for the attached node will ar-
rive. As a result, the radio must remain in the receiving
state. The downside to this is that the demodulation pro-
cess uses significant memory and processor resources de-
spite the fact that incoming packets destined for the radio
are infrequent. As such radios become more ubiquitous
and common for implementation, resource usage will
become increasingly important, especially for energy-
constrained devices such as the battery-powered Kansas
University Agile Radio [9].

One simple solution would be to send samples when
the RSSI is above some threshold. However, this does
not filter out transmissions destined to other hosts and
external signals. A better solution would be to have
the radio hardware look for the packet preamble and
the destination address, then transfer a maximum packet
size worth of samples to the host after any match. At
first glance, it may seem that fast packet recognition
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is not a “necessary”’ function for implementing MAC
protocols, especially since the CPU and bus bandwidth
resource consumption can become insignificant rather
quickly (i.e., due to Moore’s Law). However, trends in
bus delay do not have this same property. As we will dis-
cuss further in Section 5.5, the ability to identify packets
and process them partially on the SDR hardware is crit-
ical to supporting low-latency MAC interactions (e.g.,
packet/ACK exchanges or RTS/CTS) in a high-latency
architecture.

5.4.1 Fast Packet Recognition Design

Our goal is to accurately detect packets at the radio hard-
ware without demodulating the signal (to keep flexibil-
ity), for which we perform signal detection. The most
relevant work in signal detection comes from the area of
radar and sonar system design. From this area, we bor-
row a well-known technique, called a matched filter, to
detect incoming packets at the radio hardware without
the demodulation stage. For the purpose of design dis-
cussion, we refer to the bottom half of Figure 7.

Matched filter: A matched filter is the optimal lin-
ear filter that maximizes the output signal to noise ratio
for use in correlating a known signal to the unknown re-
ceived signal. For use in packet detection, the known
signal would be the time-reversed complex conjugate of
the modulated framing bits. This known signal is stored
as the coefficients of the matched filter (Figure 7). The
received sample stream is convolved with the coefficients
to perform cross-correlation, where the output can be
treated as a correlation score between the unknown and
known signals. The correlation score is then compared
with a threshold to trigger the transfer of samples to the
host. The matched filter is flexible to different modula-
tion schemes (e.g., GMSK, PSK, QAM), but requires a
Fast Fourier transform for OFDM, given that the sym-
bols are in the frequency domain. This would require an
FFT implementation on the radio hardware.

To also detect that the frame is destined to the par-
ticular host, two different methods that have mathemat-
ically different properties can be used. Single Stage:
Use a frame format where the destination address is the
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first field after the framing bits, and use this complete
modulated sequence as the matched filter coefficients.
Dual Stages: detect the framing bits first, then change the
coefficients to the modulated destination address. Our
implementation uses the single stage approach for sim-
plification. However, a dual stage is more appropriate
for monitoring multiple addresses such as a local address
and a broadcast address.

5.4.2 Fast Packet Recognition Evaluation

We evaluate the effectiveness of the matched filter at de-
tecting incoming sequences using simulations where we
can control the noise level. Results are presented from
over the air experiments with the presence of interfer-
ence, multipath, and fading in Section 5.5.

To evaluate the effectiveness of the matched filter with
varying signal quality, we first run experiments with
controlled signal-to-noise ratios (SNR) using the GNU
Radio software. We introduce additive white Gaussian
noise (AWGN) to control the SNR in terms of dB:

Powersignal

SNR(dB) = 10xlog1o * (D

Powernoixe

To introduce noise, we compute the noise power based
on the specified snr and power in the signal:

SNR = 10t7/10)

. 2
Powersignal = ‘Slgnalampl’

Powe T'signal

Powerypise = SNR

For evaluation, 1000 frames of 1500 bytes are encoded
using the Gaussian minimum-shift keying (GMSK) mod-
ulation scheme. These frames are used as the ground
truth and mixed with the noise. We require that the
matched filter detect the framing bits and that the trans-
mission is destined for the attached host using the single-
stage scheme (Section 5.4.1). The success rate is defined
as the number of detected frames over the total number
of frames in the dataset (1000). For comparison, we also
include the success rate of the full GMSK decoder. At
a high noise level, even the full decoder will fail at de-
tecting the frames. The success rate, as a function of
the SNR, is shown in Figure 8. The results show that
the matched filter can detect the frames at a much higher
success rate than the decoder can, even at low SNR levels
where the noise power is greater than the signal power.

Given these results, and further real-world results
presented in Section 5.5, we conclude that using the
matched filter for detecting relevant packets is accurate
enough that the host will never miss an actual frame due
to the filter. In fact, the filter triggering samples to the
host can been seen from a different perspective as pro-
viding further confidence to the host that there is actually

1
Matched Filter —+—
Full Decoder ---x-—-
08 | i
] / 4
g 061 !
= |
[%3
Q
Q 1
o ]
2 04 i 4
0.2 | i
*
0 4 e o 1
-30 -20 -10 0 10 20 30

SNR(dB)

Figure 8: Success rate of the matched filter.

a frame within the sample stream. The host could then
perform additional processing in an attempt to decode
the frame successfully.

5.5 Dependent Packets

Dependent packets are packets generated in response to
another packet (e.g., an ACK or RTS packet). MAC pro-
tocols often leave the channel idle during the dependent
packet exchanges such as RTS-CTS and data-ACK ex-
changes. As a result, reducing the turnaround time of
such exchanges can significantly increase overall capac-
ity. In a host-based MAC, three sources contribute to the
delay associated with dependent packet generation: bus
transmission delay, queuing delay, and processing time.
In this section, we explore the use of a matched filter
along with additional techniques for triggering depen-
dent packet responses on the radio hardware. The tech-
nique minimizes processing time by placing the packet
detection as close to the radio as possible and avoids
bus transmission and queuing delays by triggering a pre-
modulated packet stored on the radio hardware.

5.5.1 Decoding Delay at the Host

We begin by quantifying the processing delay associated
with host-based dependent packet generation. Note that
we have already quantified bus delays in Section 2.1. We
measure decode time for various frame sizes at the maxi-
mum supported decoding rate of the USRP: 2Mbps. The
larger frame sizes would be representative of process-
ing time for data/ACK exchanges, and the smaller frame
sizes for RTS/CTS exchanges.

We use two 3.0GHz Pentium 4 machines running
GNU Radio with their USRPs transmitting/receiving us-
ing the GMSK modulation scheme. Using host based
timers, we record the minimum, average, and maxi-
mum time to decode 6 different frame sizes seen in Fig-
ure 9. The average decoding time is close to the mini-
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Figure 9: Decode times for various frame sizes.

mum recorded times for each frame size, however, rather
large delays can be experienced at each frame size, likely
due to the jitter introduced by queuing delays and pro-
cess scheduling. Therefore, if one were to implement
the matched filter at the radio hardware to detect in-
coming dependent packets and generate responses, any-
where from several milliseconds to 70 milliseconds can
be saved solely in host processing.

5.5.2 Generating Fast-Dependent Packets

As an optimization to circumvent the decoding delays
described, we develop a mechanism for fast-dependent
packet generation in the radio hardware. This is not nec-
essarily limited to host-PHY architectures. Although bus
delay is reduced in NIC-PHY architectures, they typi-
cally use slower processors that increases decoding de-
lays. Fast-dependent packet generation has three stages:
(1) fast-packet detection of the initiating packet (e.g.,
RTS), (2) conditionals specific to the protocol that trig-
ger the dependent packet, and (3) transmission of a pre-
modulated dependent packet. We discuss stages 2 and
3 in this section. Stage 1 was detailed in Section 5.4,
although it is important to point out that by running mul-
tiple matched filters in parallel, it is possible to detect and
respond to different initiating packets.

Stage 2: To introduce protocol dependent behavior
after stage 1 detects the initiating packet and its end
of transmission (the incoming signal drops to the noise
floor), protocol developers can introduce a set of condi-
tionals that control when a dependent packet is gener-
ated. In our current implementation this must be written
in a hardware description language (Verilog), which has
primitives similar to those in C/C++ (e.g., if, else, case,
etc.). A simple example is the conditional for generating
a CTS in Verilog. It checks that the receiver and channel
are idle: if{!receiving & & RSSI < carrier_sense_thresh).

A more interesting example is the fast-ACK genera-
tor developed for our 802.11-like protocol (Section 6.3).

We write 3 simple conditional statements around an SNR
value. If any of the conditionals pass during the transmis-
sion, the radio hardware concludes that the host would
not have been able to decode the packet, and a fast-ACK
should not be triggered. The following are the 3 condi-
tionals, with reasons as to why the fast-ACK should not
be generated based on the conditional passing. (1) iff SNR
< lowest_thresh): interference throughout the transmis-
sion. (2) if(last_SNR_val - SNR < drop_thresh): interfer-
ence at the tail of the transmission, or fading. (3) if{SNR -
last_SNR _val > increase_thresh): interference at the head
of the transmission, or multipath. The technique is illus-
trated in the overall system in Figure 7, where the cor-
relation threshold for a data packet raises a signal which
streams the samples to the SNR monitor. The final con-
ditional is to detect the carrier as idle; then the fast-ACK
is generated.

Stage 3: To satisfy fast-dependent packet generation,
the dependent packet must be pre-modulated and stored
on the radio hardware, for which we provide a mech-
anism on the control channel. Pre-modulation restricts
the dependent packet to not contain fields dependent on
the initiating packet (e.g., a MAC address). However, it
still permits many dependent packets like those in cur-
rent protocol standards (e.g., ACKs, RTS/CTS). For ex-
ample, despite 802.11’s requirement for a destination ad-
dress in an ACK packet, we can still develop and evaluate
an 802.11-like protocol where senders assume the desti-
nation of the ACK based on data transmissions. We re-
mind the reader that a goal of our work is to enable MAC
implementations and building blocks for novel MAC de-
signs, not to necessarily support every current protocol
to its specification. Future work could be in the de-
velopment of a technique which extracts part of an in-
coming signal (e.g., destination address) and then per-
forms additional processing to use this raw signal in a
pre-modulated dependent packet. This would essentially
enable dynamic fast-dependent packets, without the in-
teraction of the host. We do not explore this in the scope
of our work.

Fast-Dependent Packet Evaluation: To illustrate the
fast-dependent packet generator, we evaluate an imple-
mentation of the fast-ACK generator outlined in the de-
scription of stage 2. First, we use the control channel to
setup a matched filter which detects the framing bits and
the attached node’s address (satisfying stage 1). Then,
we pre-modulate an ACK that uses the broadcast address
as the destination address for all active nodes to parse it
(satisfying stage 3).

To evaluate the SNR monitoring technique, and fur-
ther evaluate the matched filter’s ability to detect packets
in a real world scenario, we use a 2 USRP-node setup
in the ISM band for presence of 802.11 and Bluetooth
devices, incorporating real world interference in our re-
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sults. We detected 6 active 802.11 devices within inter-
ference range, but ensured that none were within 40 feet
of either node. To test in adversarial conditions with mul-
tipath interference, the two USRPs were placed in sepa-
rate rooms with no direct line of sight. The matched fil-
ter and fast-ACK technique are enabled at the receiver,
for which we transmit 10000 frames to at 1Mbps. These
frames are considered the ground truth for the matched
filter, which we are trying to determine the accuracy of in
detecting the frames. Full decoding of the data packets at
the host is used as the ground truth for the fast-ACK gen-
erator. If the full decoder successfully decodes the frame,
and the SNR monitor triggers a fast-ACK, it is consid-
ered success. If the SNR monitor chose to not generate
a fast-ACK in this scenario, it is considered failure. An
additional failure scenario is triggering a fast-ACK when
the host could not decode the frame.

For the 10000 frames transmitted, we find that the
matched filter is able to detect the transmissions with
100% success rate, reinforcing the simulation results
from Section 5.4.2 with real world signal propagation
properties. Of the 10000 frames, 460 transmissions were
not decodable. Using the SNR monitoring technique we
detect 457 of the corrupted frames for a failure rate of
0.6%. Inspection of the 3 misses could not determine
the cause of transmission failure. The error rate of not
generating an ACK, when one should have been, is 4%.

There are implications to incorrectly generating
ACKs, which the MAC can be designed to recover from,
or higher layers such as TCP can be relied on. Our eval-
uation further explores the matched filter’s accuracy and
illustrates the ability to implement fast-dependent pack-
ets. Reducing the error rates seen by our technique is
future work, either by improving the SNR monitoring
technique, or introducing other fast-ACK techniques. An
example for improvement would be detecting multipath
during SNR monitoring, which is a property that can re-
duce decoding probability.

5.6 Access to Physical Layer Information
and Fine-grained Radio Control

The underlying radio hardware in an SDR platform has
many controls that are not configured by the transmitted
sample stream (e.g., transmission frequency and power),
and can make many observations that are not easily de-
rived from the input sample stream (e.g., RSSI). We use
our control channel between the SDR hardware and host
to expose these controls and physical layer information
to the MAC protocol implementation. Many existing net-
work interface use similar designs for setting the trans-
mission channel and obtaining RSSI measurements. One
key difference is that our interface operates on blocks of
samples instead of packets.

Physical Layer Information: Access to physical layer
information at all other layers in the processing chain is
important for supporting common cross-layer optimiza-
tions. This can be seen through recent work where per-bit
confidence levels are used to perform partial packet re-
covery [7]. In our design, information from the SDR can
be sent to the host using either the control channel or per
block meta-data. We use this mechanism to report RSSI
to the host. Note that the host could calculate RSSI us-
ing the raw samples, but an RSSI value which takes into
account the gain or attenuation in the RF stages is only
available at the radio hardware. The control protocol is
easily modified to support reporting additional proper-
ties, however, developers must reprogram the FPGA to
report the desired values.

Radio Control: We implement a set of radio hardware
control messages on the control channel (Section 4.2)
that can be synchronized with packet transmissions us-
ing the timestamp. For example, by placing a control
block with a timestamp 7' before a data packet on the
bus, which uses a NOW timestamp, the radio will be re-
configured at time 7 and the data packet will be trans-
mitted immediately after the reconfiguration. This can
be used to implement common techniques such as rapid
frequency hopping. Unfortunately on the USRP, the
daughterboards are tuned directly from the FX2 USB
controller using the I2C bus, which has no connection
to the FPGA. Therefore, we cannot issue daughterboard
commands from the FPGA using the control channel and
hardware clock to implement rapid frequency hopping.
The USRP2 tunes the daughterboards directly from the
FPGA. Therefore, if our design was implemented on the
USRP2, unavailable at the time, rapid frequency hopping
could be achieved.

6 MAC Evaluation

We now provide end-to-end results for a Bluetooth-like
TDMA protocol and 802.11-like CSMA protocol. The
protocols use the split-functionality design described in
Section 5 and we compare their performance with that of
full host-based implementations.

6.1 Bluetooth-like TDMA Protocol

To illustrate the effectiveness of the overall system
design, we implement a tightly timed Bluetooth-like
TDMA protocol. Like Bluetooth, the network (piconet)
consists of a master and a maximum of 7 slaves. The
slaves communicate with the master in a round-robin
fashion within a slot time of 625us. Unlike Bluetooth,
our protocol fixes its frequency instead of hopping (a

102

NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association



limitation of the USRP discussed in Section 5.6), varies
slightly in synchronization (bypasses pairing), and the
slot guard time is varied for evaluation.

Each slave in the network synchronizes with the start
of a round by listening for the master’s beacon, and cal-
culates the start of transmission (Section 5.1) as the log-
ical synchronization time 7. The beacon frame also
carries the total number of registered slaves (N) and
the guard time (7g). The slave can then compute the
total round time, which must account for the master:
T, = N+ 1% (T;+ T,), where T is the slot time (625LLs).
The start of round k is computed as: Ty =T + T, x k. We
remind the reader that this is a logical time kept at each
node, taken from the beacon frame which is a global ref-
erence point. Global hardware clock synchronization is
explored in Section 6.2. Finally, each slave’s slot offset is
computed from its node ID (n), 8, = n* (T; + T), which
is then used to compute the local start time of slave n’s
slot in round k: T,x) = Rk + Op-

6.1.1 TDMA Results

We use two metrics in our evaluation: ability to main-
tain tight synchronization and overall throughput. The
synchronization error at the master is 15ns, computed by
measuring the actual spacing of 1000 beacons using a
monitoring node (discussed in Section 5.1.2). This il-
lustrates the tight timing of the master’s beacon trans-
missions. To measure the synchronization error at the
slaves, we record the calculated timestamps of 1000 bea-
cons at 4 slaves. Each timestamp should be exactly 7,
apart from the next. The absolute error in spacing rep-
resents shifts in the slave’s calculation of the start of the
round. We find the maximum error of the 1000 beacons
at all 4 slaves to be 312 nanoseconds, with an average
of 140ns. This answers the question of our platform’s
ability to obtain tight synchronization at both transmit-
ters (master) and receivers (slaves).

We compare a split-functionality implementation to a
host implementation, which differ in their guard times.
A guard time of 1us is used for the split-functionality
implementation, which is nearly 3 times the maximum
error. We use our round trip host and radio hardware
delay measurements from Section 2.1, which accounts
for both transmissions and reception timing variability,
to estimate the host guard time needed. A guard time of
9ms would be needed to account for the maximum er-
ror, however, this delay occurs rarely and we therefore
present results using a generous guard time of 3ms (ap-
proximately 3 * sdev) and a more realistic guard time of
6ms based on our recorded delay distribution.

We perform 100KB file transfers, varying the num-
ber of registered slaves and presenting averaged results
across 100 transfers in Figure 10. The split-functionality
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Figure 10: TDMA throughput comparison results.

implementation is able to achieve an average of 4 times
the throughput of the host based implementation. While
we had only been able to answer the question of ob-
taining synchronization, we find that throughout the full
transfers no slave drifts into another slot period using
only the initial beacon for synchronization, illustrating
the ability to maintain tight synchronization. These re-
sults are promising for the development of TDMA pro-
tocols on the platform.

6.2 Additional TDMA Protocols

Another common TDMA implementation is the use of
global clock synchronization. We extend the Bluetooth-
like protocol to use global clock synchronization on the
platform rather than the logical clock. The implementa-
tion design is as follows. The global clock in the network
is the clock of the master, to which all slaves synchronize
via beacon frames. In addition to the information sent
in each beacon frame described in Section 6.1, the mas-
ter includes the timestamp at which the beacon is locally
scheduled for transmission.

For global synchronization, the slave takes its esti-
mated local time of the master’s beacon transmission
and subtracts the incoming global clock timestamp in-
cluded in the beacon to calculate 8, the local clock offset
from the master. The error is within 312ns plus over-
the-air propagation delay. The MAC framework can now
synchronize to the global clock with a command packet
(Section 4.2) which adds & to the local clock. Another
option is to use a timestamp transformation where the
MAC adds 9§ to all timestamps. Using this methodol-
ogy, we are able to achieve measurement results similar
to those in Figure 10 using global synchronization.

6.3 802.11-like CSMA Protocol

We implemented two 802.11-like CSMA MAC proto-
cols, one fully on the host CPU and one using our
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‘ pairs Avg (Kbps) min max
platform 1 408 387 415
host 1 215 190 240
plat form 2 205 201 210
host 2 112 101 130

Table 2: 802.11-like CSMA protocol per-pair results.

split-functionality optimizations including on-board car-
rier sense (Section 5.2), dependent packet ACK genera-
tion (Section 5.5), and backoff (Section 5.3). The MAC
implements 802.11’s clear channel assessment (CCA),
exponential backoff, and ACK’ing. Our protocol does
not implement SIFS and DIFS periods; this work is in
progress. For space reasons, we focus our description on
how the 802.11-like protocol uses our architecture.

The host-based implementation places all functional-
ity on the host CPU, including carrier sense, ACK gener-
ation, and the backoff. The optimized implementation
uses the matched filter and SNR monitoring for ACK
generation, and performs carrier sense and backoff on
the radio hardware. We configure the USRPs for a target
rate of 0.5Mbps, and run 100 1MB file transfers for each
implementation using a center frequency of 2.485GHz in
an attempt to avoid 802.11 interference. This allows us
to present results that highlight the differences in the im-
plementation without the effect of uncontrolled interfer-
ence. We also vary the number of nodes in the network,
where each pair of nodes performs a transfer.

The results for the two implementations are shown
in Table 2. We see significant performance increases
from the use of the split-functionality implementation.
This nearly doubles the throughput on average, likely
due to the time saved in decoding to generate the ACK,
and the delays associated with carrier sense and backoff.
We note that the matched filter detected every framing
sequence, and the fast-ACK generation technique only
failed 2 times over the total number of runs. To recover
from these failures, we implemented a feedback mecha-
nism on the host that checks the SNR monitoring tech-
nique’s decision and retransmits. This is needed since we
did not use a higher-layer recover mechanism like TCP.

7 Related Work

We review related work in the area of MAC development.
Existing platforms mostly use the extremes of the design
space where either the majority of functionality is fixed
on the network card (Traditional NICs), or perform all
processing at the host (Software-defined Radios).

7.1 Traditional NICs

Several efforts [ 13, 4, 16] have built new MAC protocols
on top of existing commercial NICs (e.g., 802.11 cards).
Unfortunately, commercial 802.11 cards implement the
bulk of the MAC functionality in proprietary microcode
on the card, limiting what functions can be changed by
researchers. As a result, this approach is not very sat-
isfactory: the range of MAC protocols that can be im-
plemented is limited and performance (e.g. throughput,
capacity) is often poor from the MAC needing to be im-
plemented on the host. For example, past efforts have
mostly implemented TDMA-based schemes.

7.2 Software-defined Radios

Software-defined radios (SDRs) provide a compelling
architecture for flexible wireless protocol development
since most aspects of both the MAC and physical layer
are, by design, implemented in software and thus in prin-
ciple, easy to modify. However, so far, SDR efforts
have focused on implementing the physical layer [19]
while MAC and higher layer protocol development has
received little attention.

Recent work by Schmid et al [14] examines the im-
pact of increased latency in software-defined radios us-
ing GNU Radio and the USRP. The authors address how
the bus latency creates “blind spots” that increase colli-
sion rates when carrier sense is performed at the host, and
how pre-computation of packets is not possible without
fully demodulating (at the host), resulting in larger inter-
frame spacing. Our design provides solutions for both of
these issues in Sections 5.2 and 5.4, respectively. Bus de-
lay measurements were also taken by Valentin et al [18].

On top of these hardware challenges, the original
streaming-based design of GNU Radio and the fixed size
data limitation on its blocks prevents packet process-
ing. Dhar et al [3] take the approach of integrating the
Click modular router [12] with GNU Radio. GNU Ra-
dio blocks are imported into Click to handle the physical
layer, while Click is used to implement the MAC layer.
Additionally, the authors interface with the USRP to pro-
vide a full SDR. Another approach extended the GNU
Radio architecture with m-blocks [2], blocks that allow
variable length data passing and include meta-data that
can be used to represent packets. Our work is comple-
mentary to the above efforts: while they focus on a MAC
development environment on the host, we focus on the
partitioning of MAC layer processing between the host
and radio hardware. Our architecture and results also do
not depend on a particular environment on the host.

A number of groups have developed software radios
with architectures that differ from the current GNU Ra-
dio and USRP design by including a CPU on the ra-
dio hardware (NC-CPU), either as a separate compo-
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nent or as a core on the FPGA. Examples include the
Rice University Wireless Open-Access Research Plat-
form (WARP) [20] and USRP2. These designs are more
expensive, but they offer additional flexibility for par-
titioning the MAC. However, there is still a non-trivial
delay (compared with traditional radios) due to physi-
cal layer processing and queueing. The NC-CPU is also
likely to be slower than the host CPU, increasing the pro-
cessing delay. Finally, in deployed products based on
this architecture, the NC-CPU is likely to be off-limit to
users, similar to the current situation with commercial
wireless cards. As a result, we expect that our architec-
ture will be useful this type of platform as well.

8 Conclusions

In this paper, we presented a set of techniques that sup-
port the implementation of diverse, high-performance
MAC protocols on software radios. The work is mo-
tivated by the observation that a single one-size fits all
MAC protocol cannot meet the demands of increasingly
diverse deployments and application loads. Software ra-
dios offer flexibility, but their architecture, specifically
the delay between the host and the radio frontend, has
traditionally been a problem for MAC protocols. We in-
troduce a split-functionally approach, which addresses
this problem, and show that it enables the implementa-
tion of a set of core MAC functions. An implementation
for the USRP and GNU Radio, along with the imple-
mentation of an 802.11-like and Bluetooth-like protocol,
shows the approach is effective. To our best knowledge,
these protocol implementations are the first high-speed,
bi-directional MAC implementations for the GNU soft-
ware radio platform. For future work, we plan to im-
plement a more diverse set of MAC protocols to further
evaluate our design and implement the architecture on
different SDR platforms to evaluate its generality.
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This paper describes Antfarm, a content distribution sys-
tem based on managed swarms. A managed swarm
couples peer-to-peer data exchange with a coordinator
that directs bandwidth allocation at each peer. Antfarm
achieves high throughput by viewing content distribution
as a global optimization problem, where the goal is to
minimize download latencies for participants subject to
bandwidth constraints and swarm dynamics. The sys-
tem is based on a wire protocol that enables the Antfarm
coordinator to gather information on swarm dynamics,
detect misbehaving hosts, and direct the peers’ allot-
ment of upload bandwidth among multiple swarms. Ant-
Jfarm’s coordinator grants autonomy and local optimiza-
tion opportunities to participating nodes while guiding
the swarms toward an efficient allocation of resources.
Extensive simulations and a PlanetLab deployment show
that the system can significantly outperform centralized
distribution services as well as swarming systems such
as BitTorrent.

1 INTRODUCTION

Content distribution has emerged as a critical applica-
tion as demand for high fidelity multimedia content has
soared. Large multimedia files require effective content
distribution services. Past solutions to the content distri-
bution problem can be categorized into two approaches,
namely client-server systems and peer-to-peer swarming
systems, whose fundamental limitations render them in-
adequate for many deployment environments.

In the client-server approach to content distribution,
the content owner operates a set of servers that pro-
vide the content to every client without tapping into any
client-side resources. The presence of a central authority
simplifies the design of client-server systems, exempli-
fied by YouTube and Akamai: provisioning the network
simply requires purchasing sufficient bandwidth for the
desired quality of service and the targeted number of
clients; accounting and admission control can be handled

by the servers; clients can be prioritized and bandwidth
can be dedicated to desired transfers at fine granularity.
The chief drawback to the client-server approach is its
cost and feasibility: the distributor must bear the entire
bandwidth cost of distributing the content, and operating
a high-bandwidth data center for a large client population
can be prohibitively expensive [11].

Peer-to-peer swarms offer an emerging alternative,
where clients interested in downloading a file provide
content to other clients interested in the same file.
Swarming protocols transfer part of the bandwidth cost
from centralized servers to the participants and their ISPs
by taking advantage of the additional upload capacity of-
fered by downloading peers. This redistribution of costs
reduces the bandwidth burden on the servers, helps im-
prove download times for clients, and reduces ingress
bandwidth demand for ISPs. Swarming protocols pro-
posed to date, including BitTorrent [1], Avalanche [24],
and Dandelion [52], have been designed to resist techni-
cal and legal attacks by avoiding management and cen-
tralization. This design choice has led to protocols that
lack coordination among peers, rely solely on directly-
obtained measurements to avoid trusting information re-
layed by peers, and depend on randomization to thwart
adversaries. The highly decentralized nature of existing
unmanaged swarming systems leads to a performance
penalty for legitimate content distributors.

To understand why unmanaged swarming architec-
tures fail to make efficient use of bandwidth in multi-
swarm environments, imagine a content provider with
two movies to distribute to two sets of users using a set of
seeders' over which they have full control and at which
both movies are replicated. Depending on the size of the
swarms and the nature of the peers that make up each

n this paper, seeders are trusted servers managed by the coordi-
nator that distribute data blocks to peers. This is in contrast with Bit-
Torrent terminology, where seeders are altruistic peers that have fin-
ished downloading a file and provide content without further down-
loads themselves.
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swarm, the two swarms may have vastly different inter-
nal dynamics. Seeders and peers with blocks belonging
to multiple swarms face a difficult choice: which swarm
should they reward with their upload bandwidth? Simple
heuristics, such as round-robin, are unlikely to work well
because they do not take swarm dynamics into account.
The default BitTorrent behavior, which awards download
slots to the peers with a proven track of fast downloads,
works well within a single torrent, but can lead to whole-
sale starvation in a multi-torrent setting.

The fundamental problem is one of global optimiza-
tion: the seeders should award their bandwidth such that
download times across all swarms are minimized. Cur-
rent swarming protocols lack the mechanisms to com-
pute and operate at this point. Consequently, adminis-
trators that run torrent sites manually prune old torrents
and reallocate bandwidth to more popular downloads by
hand. This approach is not guaranteed to achieve a good
allocation of bandwidth, leads to the “heavy-tail” prob-
lem where old, unpopular torrents are difficult to find,
and does not scale.

This paper describes an efficient content distribution
system, called Antfarm, based on managed swarms. The
goal of Antfarm is to distribute a large set of files to a
potentially very large set of clients. Managed swarms
introduce a hybrid approach to swarming systems in that
they permit a coordinator, typically managed by the con-
tent distributor, to control the behavior of the swarms.

Antfarm is designed to maximize the system-wide
benefit of the critical resource, seeder bandwidth. Each
Antfarm peer provides resources to other participants, re-
ceives unforgeable fokens in return, and receives credit
for its cooperation by presenting these tokens to the
central coordinator. The Antfarm token protocol forces
each participant to divulge its upload contributions to the
swarm coordinator, which enables the coordinator to de-
termine swarm dynamics and allocate bandwidth to com-
peting swarms. This enables the coordinator to exert con-
trol while enabling peers to use microoptimizations, such
as optimistic unchoking for peer discovery, tit-for-tat for
peer selection, and rarest first, to improve the efficiency
of swarming downloads. Overall, the Antfarm transport
protocol makes the system resistant to attacks through
unforgeable tokens, reveals a coarse-grain view of the
network to the central coordinator, and enables the coor-
dinator to adopt and enforce a chosen bandwidth alloca-
tion strategy.

The key contribution of this paper is the design of an
efficient and scalable coordinator for multiple, concur-
rent swarms. Given the internal dynamics of a set of
swarms, we show how to optimize bandwidth among the
swarms such that average download latencies are mini-
mized across all peers. If desired, the algorithm can guar-

antee a minimum service level to certain swarms, avoid
starvation, and enforce prioritization among swarms.
Minimizing the average download latency in turn enables
a content distributor to achieve the best possible service
from the available bandwidth.

This paper makes two additional contributions for
achieving high throughput in a practical multiple-swarm
download service. First, the paper presents a wire-level
protocol for accurately measuring the internal dynamics
of individual swarms by making peer contributions evi-
dent to the coordinator, enabling the coordinator to opti-
mally allocate bandwidth among the competing swarms.
Second, a full implementation of the protocol, accompa-
nied by extensive simulations and a deployment on Plan-
etLab, quantifies the performance of Antfarm against a
client-server system and BitTorrent. In our experiments,
Antfarm achieves aggregate bandwidths up to a factor of
five higher than BitTorrent, and the protocol scales well
with increasing peers and swarms.

The rest of this paper is structured as follows. The
next section describes the Antfarm system and the cen-
tral optimization that underlies the approach. Section 3
outlines the protocol that Antfarm uses for data distri-
bution. Section 4 shows that the system achieves high
performance. Section 5 describes related work and high-
lights Antfarm’s differences, and Section 6 summarizes
our contributions.

2 APPROACH

Antfarm is based on a hybrid peer-to-peer architecture
that utilizes resources provided by peers according to
an optimal strategy for managing multiple swarms com-
puted by a coordinator. Each coordinator can manage
multiple swarms, a single peer may participate in swarms
managed by multiple coordinators, and coordinators may
be physically replicated to scale with the number of peers
and swarms. For simplicity, we assume a single coordi-
nator in the following discussion and address the issue of
scale in Section 3.

The coordinator’s central task is to achieve the shortest
possible download times across multiple swarms. Find-
ing the right allotment of bandwidth among swarms is
best viewed as a constrained optimization problem. The
primary constraint is the available bandwidth at the seed-
ers. The primary input to this optimization problem is the
inherent response curve of each swarm. The response
curve represents the swarm bandwidth as a function of
allocated seeder bandwidth. It depends on the number
of peers in the swarm, number of seeders, spare band-
width on upload and download links of swarm partici-
pants, and the distribution of unique blocks. Peers’ local
decisions also influence their swarms’ response curves,
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as peers can advertise a lower upload bandwidth capacity
than they are capable of providing. However, the Ant-
farm wire protocol, discussed in Section 3, encourages
peers to cooperate within their swarms, granting the co-
ordinator more available bandwidth to optimally allocate
among all swarms in the system.

Response curves embody the critical properties of
each swarm and have a characteristic shape—a fact we
exploit in this work. Figure 1 illustrates the characteris-
tic form of the response curve for a homogeneous swarm
with static membership; for illustration purposes in this
example, peer download capacities exceed upload ca-
pacities, and the set of peers does not change through-
out the download. When the seeder bandwidth is small,
the peers in the swarm have unused upload and down-
load capacity. In this regime of operation (region A),
the swarm’s aggregate bandwidth increases rapidly with
the seeder bandwidth, since peers can use their spare up-
load bandwidth to forward new blocks to other peers.
Each individual block the seeders feed into the swarm
will be shared among many peers, highly leveraging the
bandwidth committed by the seeder. Once the peers
in a homogeneous swarm have saturated their uplinks,
the marginal benefit from additional seeder bandwidth
drops significantly. In this regime (region B), any addi-
tional bandwidth that a peer receives only benefits that
peer, since saturated upload links render it unable to for-
ward the data to other peers. Finally, once downlinks of
swarm participants are saturated (region C), the swarm
has reached its maximum aggregate bandwidth. Further
bandwidth provided by the seeders will not impact down-
load latency. If download capacities are lower than up-
load capacities, region B will simply not exist, yielding a
response curve with only two regions.

A coordinator relies on two key properties of response
curves to maximize the achieved aggregate swarm band-
width while respecting the seeder bandwidth constraint.
First, response curves are monotonic: a swarm’s aggre-
gate bandwidth will never decrease as a result of increas-
ing the seeder bandwidth to the swarm. Second, response
curves are concave; that is, their derivatives monoton-
ically decrease over possible seeder bandwidths. Con-
cavity implies that a swarm’s aggregate bandwidth ex-
hibits diminishing returns as the seeders increase their
bandwidth to the swarm. When the seeders increase their
bandwidth beyond a swarm-specific threshold, the peers’
uplinks and downlinks saturate, decreasing their ability
to receive and forward data from the seeders and other
peers.

Real-life swarms are more complex than the idealized
swarms discussed above in that they may comprise het-
erogeneous hosts and exhibit peer churn. They neverthe-
less exhibit several critical properties that Antfarm ex-
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Figure 1: Response curves of a theoretical homogeneous
swarm and a measured heterogeneous swarm on Planet-
Lab. Aggregate bandwidth increases rapidly as seeder band-
width increases (A) until peer uplink capacity is exhausted (B)
and reaches its maximum when downlinks are saturated (C).

ploits. In heterogeneous swarms, where peer uplinks and
downlinks are nonuniform, the transitions between the
disparate regions of the response curves are smoother.
This is because different peers’ upload and download ca-
pacities saturate at different points, smoothing the dis-
continuous transition seen in a homogeneous swarm. In
addition to heterogeneity, real swarms exhibit peer churn,
where peers can join at any time and leave due to failure,
cancellation, or completion. Such membership changes
shift the response curve because their influence affects
the swarm’s dynamics, but do not violate the monotonic-
ity and concavity properties outlined above. Section 3
describes how Antfarm maintains an accurate view of
the system and adjusts its behavior in the presence of dy-
namic membership.

The monotonicity and concavity of swarm response
curves form the foundation of Antfarm’s multiple-swarm
optimization. Intuitively, when a seeder is supporting a
swarm that has a large number of saturated peers, such as
in regions B or C in Figure 1, it should reduce its band-
width to that swarm and divert it to a swarm whose peers
can readily share additional bandwidth. More generally,
given a response curve for each swarm Antfarm is cur-
rently distributing, the coordinator “climbs” each of the
curves, always preferring the steepest curve, until it has
allocated all seeder bandwidth. The resulting point of
operation on each curve represents the amount of band-
width the seeders plan to feed to each swarm and the ex-
pected aggregate bandwidth within each swarm based on
the seeder bandwidth. Given each swarm’s measured re-
sponse curve, this allocation of seeder bandwidth is opti-
mal [40]: decreasing the seeder bandwidth to one swarm
in favor of another will not improve the overall perfor-
mance of the system. Antfarm’s allocation of seeder
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Figure 2: Optimal bandwidth allocation for three concur-
rent swarms. The Antfarm coordinator awards seeder band-
width by hill-climbing the steepest response curves first until
all available bandwidth has been allocated.

bandwidth ensures that the content distributor achieves
the highest performance possible from its servers’ band-
width.

The optimization process described above may reach
a point at which the seeders have excess bandwidth to
award, yet the derivatives of multiple response curves
are identical, indicating that multiple swarms offer the
same global benefit (Figure 2). In such cases of equiva-
lent global benefit, Antfarm uses a tie-breaker algorithm
to maximize perceived improvement by peers. Suppose
that two swarms ¢; and t2 have response curves with
equivalent slopes at seeder bandwidths s; and sq, corre-
sponding to swarm aggregate bandwidths of a; and ao,
with a; > as. While this indicates that awarding a block
to either swarm would improve average download times
across the entire network by an equal amount, the in-
cremental benefit to members of 1, which already en-
joy a larger aggregate throughput, is small compared to
the relative improvement that members of ¢5 would per-
ceive. Consequently, Antfarm breaks ties by awarding
bandwidth to swarms with lower bandwidth when mul-
tiple response curves have the same slope. This mecha-
nism ensures that the system maintains its primary goal
of minimizing download time, while the participants re-
ceive maximal marginal benefit whenever there is free-
dom in making a bandwidth allocation that is in line with
the primary goal.

3 IMPLEMENTATION

The Antfarm implementation is centered around a token-
based wire protocol that implicitly reveals peer dynam-
ics to the coordinator. This section provides an overview
of the Antfarm implementation, outlines the wire pro-
tocol and the use of tokens, and describes how tokens

are used in the larger context of bandwidth allocation.
We illustrate the common case first and treat the corner
cases stemming from token misuse, peer misbehavior,
and overall scalability in Sections 3.4 and 3.5.

3.1 Overview

An Antfarm deployment consists of two types of servers
provided by the content provider. Coordinators man-
age the system by issuing tokens, computing response
curves, and determining bandwidth allocations. Seed-
ers expend their bandwidth to distribute blocks of files
to peers. For small deployments, a single server machine
can act as both coordinator and seeder, while large de-
ployments will comprise multiple physical hosts.

Antfarm seeders are members of all swarms and dis-
tribute data blocks without downloading any themselves.
They may be under the direct administrative control of
the coordinator, or they may be deployed by ISPs to re-
duce their ingress bandwidth demand; in either case, they
may be geographically distributed to improve bandwidth
to peers. Seeders do not demand tokens from peers in
exchange for blocks because they do not place resource
demands on the system.

Peers interact with coordinators, seeders, and each
other to download files. Each peer in Antfarm is identi-
fied by a certificate acquired from the coordinator during
an initial, one-time registration. Once a connection with
a peer has been established and the peer has been au-
thenticated with the coordinator, wire messages identify
peers using a public IP address and port pair that is short-
hand for the verified certificate. Antfarm assumes that
peers are either rational, where the protocol will incen-
tivize them to contribute resources to the global pool, or
malicious, where they may behave in a Byzantine man-
ner; the protocol is resilient to such malicious hosts (see
Section 3.5).

The Antfarm wire protocol is designed around peer-
to-peer data exchange in return for tokens. A token is
a cheap, unforgeable capability that the bearer may ex-
change for a data block in a given swarm. Logically,
a token is composed of a unique, randomly generated ID
string, an expiration time after which the token is invalid,
a reference to the intended spender of the token, and a
reference to the file for which the token should be spent.
The coordinator records these four fields when it mints
a new token for a particular peer. A token can only be
spent by the peer to which it was issued in exchange for
blocks of the designated file; tokens are not interchange-
able between swarms.

Downloadable files in Antfarm are described by a
“.ant” swarm description, analogous to a “.torrent” file,
which contains the name of the file, the address and port
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of the coordinator managing the swarm, data block size,
and a hash of each data block.

3.2 A Peer’s Perspective

An Antfarm peer joins a swarm by opening a connection
to the swarm’s coordinator and authenticating itself us-
ing its peer certificate. Once a connection has been estab-
lished, all correspondence with the coordinator and peers
occurs with the exchange of protocol messages summa-
rized in Table 1. When a new peer joins a swarm, the
coordinator sends the peer a subset of the peers in the
swarm and an initial allowance of tokens unless the new
peer has a history of malicious behavior. The peer can
similarly join additional swarms, acquiring peer lists and
initial tokens for each.

The basic data transmission protocol in Antfarm has
three phases consisting of peer and block selection, data-
for-token exchange, and bandwidth allocation.

Peers may determine their own criteria for selecting
peers and blocks. This enables Antfarm peers to per-
form optimizations based on local information, reduc-
ing the burden on the centralized coordinator. The de-
fault behavior in Antfarm for peer and block selection is
identical to BitTorrent. Peers retain a prioritized list of
other peers with which to exchange data blocks (to un-
choke). The priority order is determined by the running
average bandwidth achieved through that peer’s history
of interactions. Blocks are chosen using a rarest-first al-
gorithm; peers maintain a bitmap of blocks held by each
connected peer constructed from block acquisition noti-
fications sent by peers after each block transfer. Since
swarming systems that rely solely on local information
and randomized interactions may operate at reduced ef-
ficiency due to lack of information [30], the Antfarm
coordinator uses its global knowledge to influence peer
selection. The coordinator monitors each peer’s upload
history and identifies underutilized peers. It sends lists
of such peers as candidates for data exchange through an
asynchronous notification. This is an advisory notifica-
tion that causes the recipient to increase the priority of
the named, underutilized peers. This is a no-cost opti-
mization for Antfarm; a peer is under no obligation to
follow the recommendations and the protocol’s correct-
ness does not depend on the peer-selection algorithm.
This process of aiding peer selection could be improved
by the use of network proximity measures [19, 33, 41],
though our current implementation does not yet include
this optimization.

Connections

handshake  Sent by peers to establish connections; in-
cludes the identifier of a file the sender wants to down-
load and the public port of the sender.

handshake_response  Sent in response to a handshake.

Jjoin_swarm  Sent to the coordinator to become a swarm
member.

leave_swarm Sent to the coordinator to be removed from
a swarm.

time_request
system time.

Sent by a peer to the coordinator to get the

time_response  Sent in response to a time_request; con-
tains the time according to the coordinator.

Node state

choke Informs the recipient that the sender is not accept-
ing block requests from the recipient.

unchoke  Informs the recipient that the sender is now
accepting block requests from the recipient.

interested  Informs the recipient that it has at least one
block that the sender needs.

not_interested  Informs the recipient that the recipient
does not have any blocks that the sender needs.

have_block A notification sent to directly-connected
peers when a peer receives a new block.

bitfield Contains a bitfield of all the blocks the sender
possesses. Normally sent after establishing a new con-
nection.

Block transfers

request A request for a specific block.

block A block of file data, sent in response to a request.

Swarm info

peer_request Sent by a peer to the coordinator to request
a set of peers in the swarm.

peer_response A set of peers’ addresses and ports.

good_peers  Sent periodically by the coordinator to each
peer to notify them of peers to unchoke.

bad_peers A notification containing a set of peers the
coordinator has identified as malicious.

allocation  Sent by the coordinator to inform peers of the
desired allocation of their upload bandwidth.

Token management

new_tokens  Sent by the coordinator to deliver a set of
fresh tokens to a peer.

token_receipt Receipt for a block transfer; sent from one
peer to another in response to a block message.

token_ledger Contains a set of spent tokens sent to the
coordinator in exchange for fresh tokens.

token_replace Contains a set of fresh tokens sent to the
coordinator in exchange for new tokens with later expi-
ration times.

Table 1: Antfarm wire protocol. A comprehensive list
of peer-peer and coordinator-peer messages. The protocol
comprises messages to establish connections, notify peers of
progress and status, exchange blocks, and handle tokens.

Once a peer (receiver) has chosen another peer
(sender) and determined a suitable block for download,
it sends a data-exchange request. If the sender has un-
choked the receiver, it sends the requested block to the re-
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ceiver. Upon completion of the transfer, a non-malicious
receiver checks the hash of the block against the hash
specified in the swarm description and sends an unex-
pired token to the sender of the data block. Each peer
maintains a purse of unused tokens issued by the coordi-
nator for use by that peer, and a ledger of tokens received
from other peers in exchange for data blocks. Tokens
flow from the purse of the receiver to the ledger of the
sender.

Peers communicate periodically with the coordinator
to refresh their purses and ledgers. Each unexpired to-
ken in the ledger entitles the peer to a fresh token for its
purse. This communication takes place every minute in
the current implementation. If a newly received token in
the ledger is going to expire before the next scheduled re-
fresh, or if the purse contains nearly expired unspent to-
kens, the peer can preemptively redeem selected tokens
for new tokens with later expiration times.

Peers following the above protocol will face a stream
of competing requests for data blocks. Peers use a leaky-
bucket algorithm to restrict upload bandwidth according
to the coordinator-prescribed allocation. Altruistic peers
that finish downloading a file may remain in the swarm
and continue to upload content, functioning similarly to
seeders.

3.3 The Coordinator’s Perspective

The coordinator collects statistics on peer network be-
havior, computes response curves and bandwidth alloca-
tions for each peer and seeder, and steers the swarm to-
ward an efficient operating point. It affects these through
manipulation of the token supply and direct interaction
with cooperative peers. Finally, it keeps track of mali-
cious and uncooperative participants, excising them from
the network when their misbehavior affects performance.
The primary task of the coordinator is to monitor
network characteristics and swarm dynamics by keep-
ing track of tokens for each data block transaction be-
tween peers. Each token the coordinator receives informs
the coordinator of the swarm in which a transaction oc-
curred, the specific peers involved in the transaction, and
a window of time in which the data block was transferred
based on the token’s minting and expiration times. This
information is sufficient to maintain two key parameters
for each peer p: the set of swarms T}, that p is a mem-
ber of and a rolling average of its upload bandwidth u,,.
In addition, the coordinator keeps track of the set of all
seeders S and two pieces of state for each swarm: a set
P, of peers in swarm ¢ and a response scatterplot for each
swarm, represented as a collection of data points with
associated time-decaying weights. Data points decay ac-
cording to 1/t and are removed after 30 minutes.
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Figure 3: Bandwidth allocation. The black dots denote the
allocation of bandwidth for swarm ¢ before and after one it-
eration of allocation. For each Ao tasked to a seeder by the
hill-climbing algorithm, a randomly selected peer with spare
upload capacity is tasked with allocating a corresponding Ad.
The dotted line has a slope of 1, accounting for the seeders’
contribution to the swarm’s aggregate bandwidth.

The coordinator chooses swarms to grant bandwidth
based on collected swarm statistics. The response scat-
terplots are not immediately suitable for use in comput-
ing bandwidth allocation, as they contain artifacts due
to measurement errors and changes over time, creating
false local minima and maxima. The coordinator gen-
erates a response curve from a response scatterplot by
fitting a piecewise linear function that respects the mono-
tonicity and concavity constraints, contains a segment
for each measurement point, and minimizes error using
least-squares.

The coordinator computes the amount of bandwidth
each seeder and peer should dedicate to each swarm
based on the computed response curves, represented as
two matrices ¢ and §. For each swarm ¢, o, ; captures
the amount of bandwidth seeder s will dedicate to ¢, and
0p.+ captures the amount of bandwidth peer p is expected
to dedicate to t. This determines the critical allocation of
seeder upload bandwidth o, = Zse g 05t to swarm ¢ in
order to achieve a swarm aggregate bandwidth (o + ),
where 6, = 3 p 0y, is the bandwidth component re-
sulting from peer-to-peer uploads. The coordinator com-
putes this allocation periodically, every 5 minutes in our
current implementation, and also when the area under
the curve has changed by more than 10%. In comput-
ing o and § the coordinator operates under two hard con-
straints. First, 0, = >_;cp dp,¢ can never exceed p’s
upload capacity u,,. Second, the node must have the file
to seed; a peer will never be tasked to upload blocks of a
file it is not interested in downloading. The coordinator
determines o and ¢ iteratively. Initially, 05 = 6, = 0
for all peers p, seeders s, and swarms ¢t. The coordi-
nator determines the allocation of bandwidth through a
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greedy hill-climbing algorithm using the computed re-
sponse curves and its knowledge of the seeders’ upload
capacities, illustrated in Figure 3. It allocates bandwidth
in discrete units to the swarms whose response curves
have the highest gradient, breaking ties in favor of the
swarm with the lower value of (o + 4), as described in
Section 2. For each increase in seeder bandwidth Ao to
swarm t, the algorithm chooses a peer at random from
P, with spare upload bandwidth and tasks it with up-
loading an additional Ad; to ¢, as prescribed by t’s re-
sponse curve. The coordinator continues the process un-
til all seeder bandwidth has been allocated. The final
peer allocation ¢ satisfies the two critical constraints de-
scribed above and ensures that peer transfers within each
swarm achieve the previously measured aggregate band-
width based on the seeders’ allocation o.

Computation of bandwidth allocation is not a highly
time-critical task. Delays in network measurements and
peer interactions imply inherent delays between comput-
ing an allocation and seeing a change in the network.
Since the latency of computing the bandwidth allocation
is dwarfed by the latency of data exchange, the computa-
tion can be performed in the background. The optimiza-
tion algorithm is linear in the number of peers and grows
according to O(nlgn) with the number of swarms, en-
abling the system to scale. The primary metric that deter-
mines the quality of the solution is the freshness of data
on swarm dynamics.

Antfarm’s token protocol incentivizes peers to report
statistics to the coordinator in a timely manner. A to-
ken’s expiration time (5 minutes in the current imple-
mentation) and spender-specificity force peers to return
tokens to the coordinator in order to receive bandwidth
in the future. The circulation of tokens reveals enough
information to the coordinator to perform the allocation
described above.

Token-based economies can suffer from inflation, de-
flation, and bankruptcy if left unmonitored. Based on
analyses of scrip systems [32], the Antfarm coordina-
tor maintains a constant number of tokens per swarm per
peer (30 in the current implementation). New peers re-
ceive an initial allowance of 30 tokens. As unspent to-
kens expire, the coordinator redistributes an equal num-
ber of new tokens to random peers to prevent a token
deficit when peers depart with positive token balances.
Token unforgeability prohibits deflation, and token redis-
tribution enables bankrupt peers to acquire new blocks
and reintegrate themselves into the swarm.

The coordinator rewards peers that contribute to the
system both directly, by offering seeder bandwidth to
peers that have donated bandwidth to peers, and indi-
rectly, by suggesting which peers are underutilized. The
latter partly influences unchoking decisions as described

previously. The coordinator determines this list for each
peer by selecting a small subset of the top uploaders to
that swarm, chosen randomly from a probability distri-
bution determined by upload bandwidth.

Peer churn and changes in network conditions cause
response curves to become stale over time. In addi-
tion, transient measurement errors can skew response
curves, causing the system to operate suboptimally. Ant-
farm maintains response curves by actively exploring
the swarm’s response at different seeder bandwidths. In
each epoch, the coordinator randomly perturbs the cur-
rent bandwidth allocation by a small amount for each
swarm, on the order of 5 KB/s (kilobytes per second).
Such variances provide additional datapoints for the re-
sponse scatterplot, enabling the system to overcome false
local minima due to transient effects.

The coordinator does not enforce peers’ compliance
with the coordinator’s directives in allocating their up-
load bandwidth. A peer is free to shift bandwidth away
from one swarm in favor of another at its discretion. In
such a scenario, the coordinator will simply observe a
shift in the swarms’ dynamics, which will be reflected in
the response curves. In the next epoch, the coordinator
will perform a new bandwidth allocation that takes the
peer’s behavior into account.

3.4 Scalability

The Antfarm coordinator is optimized to ensure that the
logical centralization does not pose a CPU or bandwidth
scalability bottleneck.

Shuttling tokens to and from the coordinator for each
data block transaction is the main source of coordinator
bandwidth expenditure. To reduce the burden, Antfarm
does not rely on public-key cryptography to issue or ex-
change tokens. The Antfarm protocol minimizes the size
of tokens on the wire, transmitting only relevant fields
when tokens change hands. Only a token’s ID, file refer-
ence, and expiration time are sent on the wire when the
coordinator sends fresh tokens, and only the ID and expi-
ration time are sent on the wire when a peer sends another
peer a token. Spent tokens sent back to the coordinator
are represented with only the token’s ID and the identifier
of the peer that spent the token. Using 4-byte token IDs,
each token exchange requires less than 24 bytes of to-
tal bandwidth and less than 16 bytes of bandwidth at the
coordinator for each data block of around 32-128 KB.

Antfarm uses highly compact versions of token iden-
tifiers to reduce bandwidth. A 4-byte ID is sufficient to
disincentivize forgery because the coordinator will detect
a malicious peer’s attempt to forge a token upon its first
failure to produce a legitimate token. In the event that a
peer correctly guesses an active token’s ID, it is unlikely
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to correctly identify the token’s intended spender. In the
worst case, should a peer successfully forge a token, it
will only gain one data block for its efforts, whereas fail-
ures will lead to remedial action against the peer, de-
scribed in Section 3.5. Thus, with 4-byte token IDs, sev-
eral million peers, and several hundred million tokens,
the likelihood of a successful, undetected token forgery
is around 10~® when tokens are uniformly distributed.
With a skewed token distribution where some peers have
100 times more tokens than the average peer, the like-
lihood might rise as high as 107%. Downloading ten
blocks with forged tokens is as likely as discovering a
collision for a cryptographically secure hash function.

The Antfarm coordinator expends its bandwidth to
send tokens to peers, receive spent tokens back from
peers, and periodically send swarm allocations and lists
of top contributors to peers and seeders. To alleviate the
bandwidth demands placed on the coordinator, the Ant-
farm protocol enables the coordinator to be distributed
hierarchically. A lead coordinator machine handles com-
puting response curves and determining swarm band-
width allocations. The remaining coordinators, called
token coordinators, issue tokens, collect tokens back
from peers, and periodically send each peer’s upload and
download rates to the lead coordinator each time the lead
coordinator computes bandwidth allocations. The lead
coordinator redirects each peer to a token coordinator
based on a hash of the peer’s IP address. When a token
coordinator receives a spent token from an assigned peer,
it applies the same hash function to the IP address of the
token’s original owner, a field in the token itself, so it can
verify the token with the token coordinator that issued it.
Thus, each token exchanged between peers involves at
most two token coordinators.

Token coordination is an embarrassingly parallel task.
The high ratio between token size and data block length
ensures that the coordinator bandwidth is leveraged sev-
eral thousand-fold. Section 4 shows that distributing the
coordinator incurs negligible overhead and that the par-
allel nature of token management enables the system to
grow linearly with the number of coordinator machines.

The coordinator performs two periodic CPU-bound
tasks: it computes response curves from scatterplots and
allocates seeders’ and peers’ bandwidth. These tasks are
computed centrally in order to derive bandwidth alloca-
tions based on the most recent measurements. Our cur-
rent implementation on a 2.2 GHz CPU with 3 GB of
memory takes 6 seconds to perform these computations
for 1,000,000 peers and 10,000 swarms whose populari-
ties follow a realistic Zipf distribution. The lead coordi-
nator can easily be replicated to mask network and host
failures.

3.5 Security

A formal treatment of the security properties of the un-
derlying Antfarm wire protocol is beyond the scope of
this paper. Past work on similar, though heavier-weight,
protocols [52] has established the feasibility of a secure
wire protocol. Consequently, the focus of this section is
to enunciate our assumptions, describe the overall goals
of the protocol, provide design alternatives, and outline
ho