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TrInc: Small Trusted Hardware for Large Distributed Systems

Dave Levin John R. Douceur Jacob R. Lorch Thomas Moscibroda
University of Maryland Microsoft Research Microsoft Research Microsoft Research

Abstract
A simple yet remarkably powerful tool of selfish and

malicious participants in a distributed system is “equiv-
ocation”: making conflicting statements to others. We
present TrInc, a small, trusted component that combats
equivocation in large, distributed systems. Consisting
fundamentally of only a non-decreasing counter and a
key, TrInc provides a new primitive: unique, once-in-a-
lifetime attestations.

We show that TrInc is practical, versatile, and easily
applicable to a wide range of distributed systems. Its
deployment is viable because it is simple and because
its fundamental components—a trusted counter and a
key—are already deployed in many new personal com-
puters today. We demonstrate TrInc’s versatility with
three detailed case studies: attested append-only mem-
ory (A2M), PeerReview, and BitTorrent.

We have implemented TrInc and our three case stud-
ies using real, currently available trusted hardware.
Our evaluation shows that TrInc eliminates most of
the trusted storage needed to implement A2M, signifi-
cantly reduces communication overhead in PeerReview,
and solves an open incentives issue in BitTorrent. Mi-
crobenchmarks of our TrInc implementation indicate di-
rections for the design of future trusted hardware.

1 Introduction
As wide-area systems grow in scale, so do their ex-

posure to threats. Much of the interesting distributed-
systems research of the past decade has focused on the
issues of security and adversarial incentive that are inher-
ent to large-scale systems. This research has addressed a
wide range of applications, including storage [2, 16, 19,
22, 28], communication [4, 45, 30], databases [40], con-
tent distribution [15, 24, 32, 36], grid computation [12],
and games [3, 10], in addition to generic infrastruc-
ture [1, 5, 9, 18, 23, 43]. Virtually all of this work shares
a common supposition, namely that the individual com-
ponents in the system are completely untrusted.

Recently, the necessity of this supposition has been
called into question. The Attested Append-only Mem-
ory (A2M) system by Chun et al. [7] showed that a small
trusted module in each distributed component can signif-
icantly improve system security. In addition to found-
ing this important new research direction, A2M made
two key contributions: First, they proposed a particu-
lar abstraction for such a module, namely a trusted log.

Second, they showed specifically that their proposed ab-
straction could improve the degree of fault tolerance
to Byzantine faults in the server components of client-
server systems.

Despite our appreciation for this work, we are con-
cerned that distributed-protocol designers may be reluc-
tant to start assuming the availability of such trusted
modules. We have two reasons for this concern: First,
the abstraction of a trusted log may require more stor-
age space and complexity than researchers are comfort-
able assuming, particularly for an embedded module in-
side a potentially hostile component. Second, designers
may have difficulty appreciating how broadly applicable
a trusted module can be to distributed protocols.

In this paper, we continue the research direction begun
by A2M, with an eye toward addressing these two issues.
First, we have developed a significantly smaller abstrac-
tion: Instead of a trusted log, we propose a trusted in-
crementer (TrInc), which is little more than a monotonic
counter and a key. Second, we demonstrate a more inclu-
sive set of architectures, running a broader range of pro-
tocols, yielding a wider set of benefits: Our architectures
include not only client-server systems but also peer-to-
peer systems. Our protocols include not only Byzantine-
fault-tolerant protocols but also PeerReview [13] and Bit-
Torrent [8]. Our demonstrated benefits include not only
improving fault tolerance but also reducing communica-
tion overhead and solving an open incentive problem.

We show that TrInc has several benefits over A2M.
First, its smaller size and simpler semantics make it
easier to deploy, as we demonstrate by implementing
it on real, currently available trusted hardware. Sec-
ond, we observe that TrInc’s core functional elements
are included in the Trusted Platform Module (TPM) [38]
found on many modern PCs, lending credence to the
idea that such a component could become widespread.
Third, TrInc makes use of a shared symmetric session
key among all participants in a protocol instance, which
significantly decreases the cryptographic overhead.

The rest of this paper is structured as follows. §2 pro-
vides background on the underlying problem addressed
by TrInc (and by A2M), as well as a primer on trusted
hardware. §3 then presents the design of TrInc, and §4
analyzes its security. §§5, 6, and 7 respectively describe
several protocols we modified to use TrInc, our trusted
hardware implementation, and our evaluation thereof.
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Accountability layer Trusted module
Property PeerReview [13] Nysiad [14] A2M [7] TrInc
No centralized trust ∗ ∗

Easy to deploy   
Easy to apply to existing protocols  † ‡

Immediate consistency   
No assumptions about protocol’s determinism †  
No additional online assumptions  
Additional communication overhead per protocol
message, with witness sets of size W

O(W 2) O(W 2) O(1) O(1)

Table 1: Summary of the properties of various equivocation-fighting systems. ∗While PeerReview and Nysiad do not
require centralized trust, they do make use of a PKI. †Nysiad deals with nondeterminism by treating nondeterministic
events as inputs; this requires protocol changes for nondeterministic state machines. ‡We found that, although TrInc
requires a protocol redesign, the modifications are often localized, and vastly simplify security procedures.

2 Background and Related Work
2.1 Equivocation in distributed systems

Since 1982, it has been known that tolerating f Byzan-
tine faults requires at least 3f +1 participants [20]. This
stands in marked contrast to the case for f stopping
faults, which more intuitively requires 2f + 1 partici-
pants. A key insight behind A2M [7] was the observation
that a single property of Byzantine faults is responsible
for the difference between these two bounds. That prop-
erty is equivocation, meaning the ability to make con-
flicting statements to different participants. A2M pro-
vides a mechanism that prevents participants from equiv-
ocating, thereby improving the fault tolerance of Byzan-
tine protocols to f out of 2f + 1.

We make the further observation that equivocation is a
necessary property for many forms of cheating and fraud,
not merely for classical Byzantine faults. For instance,
in BitTorrent, recent work [21] has shown an exploit in
which a peer can obtain an unfairly high download rate
by lying about which chunks of a file it has received.
This is equivocation, insofar as the peer acknowledges
receiving a chunk from the peer that provided it, but then
tells another peer that it does not have the chunk.

The following are three more brief examples:

• In a simultaneous-turn game, one can cheat by ob-
serving an opponent’s move before making one’s
own move; this is equivocating about whether one
has yet moved.

• In a distributed electronic currency system, one can
counterfeit money by equivocating to different pay-
ees about whether one has spent a particular bill.

• In an election, the tallier can disrupt the vote by
equivocating to a voter and an official about whether
the voter’s vote was recorded.

In §5.5, we will consider many other cases of mali-
cious behavior that can be interpreted as equivocation.

2.2 Prior solutions to equivocation
Several recent efforts have addressed the problem of

Byzantine faults in distributed systems. Although their
approaches to the problem are very different, they have
all effectively focused on the issue of equivocation. Ta-
ble 1 summarizes our analysis of their properties.

PeerReview [13] is a system that employs witnesses to
collect a tamper-evident record of all messages in a dis-
tributed system for subsequent checking against a refer-
ence implementation. Unlike the remaining approaches
we will discuss, PeerReview does not provide fault toler-
ance. Instead, it provides eventual fault detection and
localization, which the system’s designers argue leads
to fault deterrence. The tamper-evident record is a dis-
tributed collection of logs that are authenticated using
hash chains. The purpose of the tamper-evidence is to
detect equivocation about the messages recorded in a
log. As shown in Table 1, the communication required
to collectively manage the tamper-evident message log
is quadratic in the size of the witness set.

Nysiad [14] is a mechanism that transforms crash-
tolerant distributed systems into Byzantine-fault-tolerant
ones. It does this by assigning a set of guards (compara-
ble to witnesses) to each host in the system. The guards
validate the messages sent by their associated hosts, us-
ing replicas of the hosts’ execution engines. The po-
tential for equivocation in Nysiad is that the host might
send different messages to different guards or order its
messages differently for different guards. To deal with
this equivocation, the guards gossip among each other to
agree on the order and content of messages sent by the
host. As shown in Table 1, this gossip requires a count
of messages that is quadratic in the number of guards.
Relative to PeerReview, Nysiad has the benefit of imme-
diate consistency, rather than eventual detection. Nysiad
is also able to handle nondeterministic state machines,
but doing so requires protocol changes to treat nondeter-
ministic events as inputs.

Attested Append-only Memory, or A2M [7], is a
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trusted module that is embedded in an untrusted ma-
chine, for the purpose of improving the fault tolerance of
a distributed protocol. The A2M module provides the ab-
straction of a trusted log, which the machine can append
to but not otherwise modify. This limitation prevents the
machine from equivocating about whether it performed
a particular action at a particular step, because once the
action is recorded in the log, it cannot be overwritten.
A2M uses cryptography to enforce its properties and to
attest the log’s contents to other machines. Relative to
Nysiad and PeerReview, A2M does not require any addi-
tional online communication between machines beyond
what is required in the base protocol. Consequently, the
communication overhead is merely a constant factor due
to the cryptographic attestations that accompany the pro-
tocol’s messages.

As we will show in §3, TrInc is significantly smaller
than A2M, making it easier to deploy. TrInc also has
another advantage, namely that its use is less tightly
coupled to the distributed protocol than use of A2M is.
Specifically, because A2M’s trusted log has finite stor-
age, it provides a log-truncation operation, but opportu-
nities to truncate the log may be limited by the protocol.
Conversely, message sequencing in the protocol may be
constrained by the available space in A2M’s log. Perhaps
in part to address this concern, A2M considered various
implementations in addition to hardware, some of which
would likely have plentiful storage for the log. These in-
clude a remote service, a software-isolated process, and
a memory-isolated virtual machine. By contrast, the pro-
tocol modifications required to use TrInc tend to be quite
localized. Furthermore, TrInc’s use of a shared session
key often simplifies the protocol.

2.3 Trusted hardware
There have been many trusted hardware designs that

predate both TrInc and A2M. Perhaps most similar
to TrInc is the abstraction of virtual monotonic coun-
ters [34]. These are similar to the four increment-
only counters included in the current specification of
the TPM [38]. Van Dijk et al. propose an algorithm
by which to emulate multiple counters with a single
trusted counter [39]. We believe a similar approach
could ease TrInc’s deployment by requiring fewer physi-
cal counters. Further, other systems have been proposed
that make use of trusted hardware, such as for securing
database systems [26] and auctions [31]. To the best of
our knowledge, TrInc is the first trusted component de-
signed to be used in large-scale, distributed systems.

3 TrInc Design
3.1 Design Goals

The fundamental security goal of TrInc is to remove
participants’ ability to equivocate. Consider the situation
in which Mallory wishes to send conflicting messages
to Alice and Bob. Common approaches to combating

such equivocation require Alice and Bob to communi-
cate with one another [13, 14, 20] or with a third party,
so they can learn of the distinct messages sent to each.
Unfortunately, this additional communication overhead
can become a bottleneck for the overlying system, and
constitutes the super-linear number of messages in Peer-
Review [13].

One goal of TrInc is to therefore minimize both com-
munication overhead and the number of non-faulty par-
ticipants required. With trusted hardware, it is possible to
remove Mallory’s ability to equivocate without any com-
munication between Alice and Bob [7].

The other broad goal of TrInc is to be practical for dis-
tributed systems today. To be practical, a trusted com-
ponent must be small so that it is feasible to manufacture
and deploy. Arbitrary computation and a large amount of
storage are difficult and costly to make tamper-resistant.
Further, to be a practical primitive in distributed systems,
the trusted component must have an API with which it is
easy to build distributed systems.

3.2 Overview
To gain the benefits of TrInc, a user must attach a

trusted piece of hardware we call a trinket to his com-
puter. Unlike a typical TPM, which must attest to states
of the associated computer, the trinket’s API depends
only on its internal state, so the trinket does not need
access to the state of the computer. All it needs is an un-
trusted channel over which it can receive input and pro-
duce output, so even USB is quite sufficient.

When Mallory wishes to send a message m to Al-
ice, she must include an attestation from her trinket that
(1) binds m to a certain value of a counter, and (2) en-
sures Alice that no other message will ever be bound to
that value of that counter, even messages sent to other
users. A trinket enables such attestation by using a
counter that monotonically increases with each new at-
testation. In this way, once Mallory has bound a message
m to a certain counter value c, she will never be able to
bind a different message m to that value.

As we show in our case studies in §5, some protocols
benefit from using multiple counters. In theory, any-
thing done with multiple counters can be done with a
single counter, but multiple counters allow certain per-
formance optimizations and simplifications, such as as-
signing semantic meaning to a particular counter value.
Furthermore, the user of a trinket may participate in mul-
tiple protocols, each requiring its own counter or coun-
ters. Therefore, a trinket provides the ability to allo-
cate new counters. However, we must identify each of
them uniquely so that a malicious user cannot create a
new counter with the same identity as an old counter
and thereby attest to a different message with the same
counter identity and value.

As a performance optimization, TrInc allows its attes-
tations to be signed with shared symmetric keys, which
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vastly improves its performance over using asymmetric
cryptography or even secure hashes. To ensure that par-
ticipants cannot generate arbitrary attestations, the sym-
metric key is stored in trusted memory, so that users can-
not read it directly. Symmetric keys are shared among
trinkets using a mechanism that ensures they will not be
exposed to untrusted parties.

3.3 Notation
We use the notation xK to mean an attestation of x

that could only be produced by an entity knowing K. If
K is a symmetric key, then this attestation can be verified
only by entities that know K; if K is a private key, then
this attestation can be verified by anyone, or more accu-
rately anyone who knows the corresponding public key.
We use the notation {x}K to mean the value x encrypted
with public key K, so that it can only be decrypted by
entities knowing the corresponding private key.

3.4 TrInc state
Figure 1 describes the full internal state of a trinket,

which we describe in more detail here. Each trinket is
endowed by its manufacturer with a unique identity I and
a public/private key pair (Kpub, Kpriv). Typically, I will
be the hash of Kpub. The manufacturer also includes in
the trinket an attestation A that proves the values I and
Kpub belong to a valid trusted trinket, and therefore that
the corresponding private key is unknown to untrusted
parties.

We leave open the question of what form A will take.
This attestation is meant to be evaluated by users, not by
trinkets, and so can be of various forms. For instance,
it might be a certificate chain leading to a well-known
authority trusted to oversee trinket production and ensure
their secrets are well kept.

Another element of the trinket’s state is the meta-
counter M . Whenever the trinket creates a new counter,
it increments M and gives the new counter identity M .
This allows users to create new counters at will, with-
out sacrificing the non-monotonicity of any particular
counter. Because M only goes up, once a counter has
been created it can never be recreated by a malicious user
attempting to reset it.

Yet another element is Q, a limited-size FIFO queue
containing the most recent few counter attestations gen-
erated by the trinket. It is useful for allowing users to
recover from power failures, as we will describe later.

The final part of a trinket’s state is an array of counters,
not all of which have to be in use at a time. For each in-
use counter, the state includes the counter’s identity i, its
current value c, and its associated key K. The identity
i is, as described before, the value of the meta-counter
when the counter was created. The value c is initialized
to 0 at creation time and cannot go down. The key K
contains a symmetric key to use for attestations of this
counter; if K = 0, attestations will use the private key
Kpriv instead.

Global state:
Notation Meaning
Kpriv Unique private key of this trinket
Kpub Public key corresponding to Kpriv

I ID of this trinket, the hash of Kpub

A Attestation of this trinket’s validity
M Meta-counter: the number of counters

this trinket has created so far
Q Limited-size FIFO queue containing the

most recent few counter attestations gen-
erated by this trinket

Per-counter state:
Notation Meaning
i Identity of this counter, i.e., the value of

M when it was created
c Current value of the counter (starts at 0,

monotonically non-decreasing)
K Key to use for attestations, or 0 if Kpriv

should be used instead

Figure 1: State of a trinket

3.5 TrInc API
Figure 2 shows the full API of a trinket, described in

more detail in this subsection.
3.5.1 Generating attestations

The core of TrInc’s API is Attest. Attest takes
three parameters: i, c, and h. Here, i is the identity of
a counter to use, c is the requested new value for that
counter, and h is a hash of the message m to which the
user wishes to bind the counter value. Attest works as
follows:

Algorithm 1 Attest(i, c, h, n)
1. Assert that i is the identity of a valid counter.
2. Let c be the value of that counter, and K be the key.
3. Assert no roll-over: c ≤ c.
4. If K = 0, then let a ← I, i, c, c, hK ; otherwise

let a ← I, i, c, c, hKpriv .
5. Insert a into Q, kicking out oldest value.
6. Update c ← c.
7. Return a.

Note that Attest allows calls with c = c. This is
crucial to allowing peers to attest to what their current
counter value is without incrementing it. To allow for
this while still keeping peers from equivocating, TrInc
includes both the prior counter value and the new one.
One can easily differentiate attestations intended to learn
a trinket’s current counter value (c = c) from attesta-
tions that bind new messages (c < c).
3.5.2 Verifying attestations

Suppose a user Alice with trinket A wants to send a
message to user Bob with trinket B. She first invokes
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Function Operation
Attest(i, c, h) Verifies that i is a valid counter with some value c and key K. Verifies

that c ≤ c. Creates an attestation a = COUNTER, I, i, c, c, hK ; if
K = 0, uses Kpriv instead of K. Adds a to Q. Sets c = c. Returns a.

GetCertificate() Returns a certificate of this trinket’s validity: (I, Kpub,A).
CheckAttestation(a, i) Returns a boolean indicating whether a is the output of invoking

Attest on a trinket using the same symmetric key as the one associated
with counter i.

CreateCounter() Increments M . Creates a new counter with i = M , c = 0, and K = 0.
Returns i.

FreeCounter(i) If i is the identity of a valid counter, deletes that counter.
ImportSymmetricKey(S, i) Verifies that S is an encrypted symmetric key decryptable with Kpriv.

Decrypts it and installs the included key as K for counter i.
GetRecentAttestations() Returns Q.

Figure 2: API of a trinket

Attest on her trinket using the message’s hash, and
thereby obtains an attestation a. Next, she sends the mes-
sage to Bob along with this attestation. However, for Bob
to accept this message, he needs to be convinced that the
attestation was created by a valid trinket. There are two
cases to consider: first, that the attestation used A’s pri-
vate key KA

priv, and second, that the attestation used a
shared symmetric key K.

In the first case, the API call GetCertificate will
be useful. This call returns a certificate C of the form
(I, Kpub,A), where I is the trinket’s identity, Kpub is
its public key, and A is an attestation that I and Kpub

belong to a valid trinket. Alice can call this API routine
and send the resulting certificate CA to Bob. Bob can
then (a) learn Alice’s public key KA

pub, and (b) verify
that this is a valid trinket’s public key. After this, he can
verify the attestation Alice attached to her message, and
any future attestations she attaches to messages.

In the second case, the API call
CheckAttestation is useful. When
CheckAttestation(a, i) is invoked on a trin-
ket, the trinket checks whether a is the output of
invoking Attest on a trinket using the same symmetric
key as the one associated with the local counter i. It
returns a boolean indicating whether this is so. So, if
Alice sends Bob an attestation signed with a shared
symmetric key, Bob can invoke CheckAttestation
on his trinket to learn whether the attestation is valid.
3.5.3 Allocating counters

Since a trinket may contain many counters, another
important component of TrInc’s API is the creation of
these counters. TrInc creates new logical counters, and
allows counters to be deleted, but never resets an ex-
isting counter. Logical counters are identified by a
unique ID, generated using a non-deletable, monotonic
meta-counter M . Every trinket has precisely one meta-
counter, and when it expires, the trinket can no longer be
used; we compensate for this by making M 64 bits, only
incrementing M , and assigning no semantic meaning to

M ’s value. TrInc exports a CreateCounter function
that increments M ; allocates a new counter with identity
i = M , initial value 0, and initial key K = 0; and re-
turns this new identity i. When the user no longer needs
the counter, she may call FreeCounter to free it and
thereby provide space in the trinket for a new counter.
3.5.4 Using symmetric keys

TrInc allows its attestations to be signed with shared
symmetric keys, which vastly improves its performance
over using asymmetric cryptography or even secure
hashes. When a set of users are willing to use a single
symmetric key for a certain purpose, we call this a ses-
sion. Creating a session requires a session administrator,
a user trusted by all participants to create a session key
and keep it safe, i.e., to not reveal it to any untrusted par-
ties.

To create a session, the session administrator simply
generates a random, fresh symmetric key as the session
key K. To allow a certain user to join the session, he
asks that user for his trinket’s certificate C. If the session
administrator is satisfied that the certificate represents a
valid trinket, he encrypts the key in a way that ensures
it can only be decrypted by that trinket. Specifically, he
creates {KEY, K}Kpub , where Kpub is the public key in
C. He then sends this encrypted session key to the user
who wants to join the session.

Upon receipt of an encrypted session key, the user can
join one of his counters to the session by using the API
call ImportSymmetricKey(S, i). This call checks
that S is a valid encrypted symmetric key, meant to be
decrypted by the local private key. If so, it decrypts the
session key and installs it as K for local counter i. From
this point forward, attestations for this counter will use
the symmetric key. Also, the user will be able to verify
any trinket’s attestation a using this symmetric key by
invoking CheckAttestation(a, i).
3.5.5 Handling power failures

One practical concern is that of power failure. Unlike
A2M, TrInc users need not query the trusted hardware to
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obtain attestations. Instead, TrInc relies on the applica-
tion (or a TrInc driver) to store attestations in untrusted,
persistent storage. If there is a power failure between the
time that the trinket advances its counter and the appli-
cation writes it to disk, then the attestation is lost. This
can be problematic for many protocols, which rely on
the user being able to attest to a message with a particu-
lar counter value. For instance, if Charlie cannot produce
an attestation for counter value v, Alice may suspect this
is because Charlie has already told Bob about some mes-
sage m associated with that counter value. Not wanting
to be fooled about the absence of such a message, Alice
may lose all willingness to trust Charlie.

To alleviate this, a trinket includes a queue Q contain-
ing the most recent attestations it has created. To limit
the storage requirements, this queue only holds a certain
fixed number k of entries, perhaps 10. In the event of
a power failure, after recovery the user can invoke the
API call GetRecentAttestations to retrieve the
contents of Q. Thus, all a user must do to protect against
power failure is make sure she writes a needed attestation
to disk before she makes her kth next attestation request.
As long as k is at least 1, the user can safely use the trin-
ket for any application. Higher values of k are useful as
a performance optimization, allowing greater pipelining
between writing to disk and submitting attestations.

So far we have only discussed a power failure affect-
ing the user, but a power failure can also affect the trin-
ket. The Attest algorithm ensures that the attestation
is inserted into the queue before the counter is updated,
so the trinket cannot enter a situation where the counter
has been updated but the attestation is unavailable. It
can, however, enter the dangerous situation in which the
attestation is in Q, and thus available to the user, but the
counter has not been incremented. This window of vul-
nerability could potentially be exploited by a user to gen-
erate multiple attestations for the same counter value, if
he could arrange to shut off power at precisely this inter-
vening time. However, we guard against this case by hav-
ing the trinket check Q whenever it starts up. At startup,
before handling any requests, it checks all attestations in
Q and removes any that refer to counter values beyond
the current one.
3.5.6 A TrInc by any other name

The computational demands of a trinket are small. It
must be able to do simple operations such as comparison,
as well as cryptographic operations including hashing
and both symmetric and asymmetric encryption and de-
cryption. Such cryptographic operations are standard in
trusted components such as the TPM [38]. However, we
recognize that hardware manufacturers and users are of-
ten highly cost-conscious and may be willing to do with-
out performance optimization to save hardware costs.

Therefore, we propose three versions of TrInc that
make different trade-offs between cost and performance,

Persistent Asym. Symm. Fast
Memory Crypto Crypto Memory

Bronze TrInc  
Silver TrInc   
Gold TrInc    

Table 2: Versions of TrInc with different performance.

summarized in Table 2. The bronze version simply of-
fers correctness with no performance optimizations, by
leaving out the ability to use symmetric keys. The silver
version is as we have described it. The gold version adds
one additional optimization: the use of fast persistent
memory such as battery-backed RAM. This optimization
makes attestations especially fast since they need not in-
cur the cost of writing to the slow flash memory often
found in modern TPMs.

3.6 Local adversaries
Mutually distrusting principals on a single computer

will share access to a single trinket, creating the potential
for conflict between them. Although they cannot equiv-
ocate to remote parties, they can hurt each other. They
can impersonate each other by using the same counter,
and they can deny service to each other by exhausting
shared resources within the trinket. Resource exhaustion
attacks include allocating all available counters, submit-
ting requests at a high rate, and rapidly filling the queue
Q to prevent the pipelining performance optimization.

The operating system can solve this problem by me-
diating access to the trinket, just as it mediates access to
other devices. In this way, the OS can prevent a princi-
pal from using counters allocated to other principals, and
can use rate limiting and quotas to prevent resource ex-
haustion. Developing a detailed API and policy for such
mediation is beyond the scope of this paper, and is left for
future work. However, note that a remote party need not
care about how or whether such local mediation is done.
Equivocation to remote parties is impossible, even if an
adversary has root access to the machine, since cryptog-
raphy allows the trinket to communicate securely even
over an untrusted channel.

4 Analysis of TrInc
We now present a brief discussion of why TrInc is suf-

ficient for a broad class of distributed protocols and why
it is nearly minimal in size.

4.1 Equivocation
When a trinket creates an attestation with distinct old

and new counter values of c and c, we say that attes-
tation covers the half-open interval (c, c]. TrInc pre-
vents equivocation by ensuring that no two attestations
will cover overlapping intervals. This property could be
violated only if:

• the counter is decremented,
• the cryptosystem is broken,
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• more than one counter has the same identity, or
• more than one trinket has the same identifier.

By construction, it is not possible to decrement the
counter nor to assign the same identity to multiple coun-
ters. By hypothesis, cryptographic primitives are effec-
tively unbreakable. Finally, no two trinkets will be cre-
ated with the same identifier, at least not by a trusted
manufacturer; recall that users can verify whether the
trinket comes from a trusted manufacturer by observing
the certificate chain in A.

4.2 Timeliness
When a trinket creates an attestation with the same old

and new counter values, there is no change to the trin-
ket’s state; however, the attestation demonstrates the cur-
rent value of the counter. Thus, if a machine attests to a
value of a remotely supplied nonce, the remote machine
can be certain that the attestation was generated after the
nonce was supplied. Since this attestation carries the cur-
rent counter value, the remote machine can thus also be
sure that the local machine’s counter is no lower than this
value.

Therefore, when the local machine provides attesta-
tions of counter values up to the nonce-attested value,
the remote machine can be certain that these attestations
are timely.

4.3 Minimality
Suppose, during the execution of a protocol, a partic-

ipant sends n messages requiring attestation, but her at-
testing module has fewer than log2(n) bits of storage.
The attesting module must be willing to provide all n
attestations, or else it will cause the protocol to halt pre-
maturely. However, since the module can be in fewer
than n distinct states, by the pigeonhole principle it must
be willing to attest to two different messages while in the
same state. Since this state is as it was before the first
message, it cannot reflect the trinket’s having attested to
the first message. This means a malicious user could take
advantage of the trinket’s inability to remember its first
attestation when requesting the second attestation, and
thereby obtain an attestation inconsistent with the ear-
lier one. This is clearly inconsistent with the goals of a
trusted module, so we come to a contradiction, and con-
clude that such a module requires at least log2(n) bits
of storage. In other words, it needs sufficient storage to
accommodate a message counter.

Furthermore, an attesting module needs for its attesta-
tions to be unforgeable. Otherwise, the user could gen-
erate attestations without using the module, and thereby
attest to both sides of an equivocation. TrInc achieves
this unforgeability with simple cryptographic primitives.

In summary, the core components of TrInc, a counter
and cryptography, seem to be essential for equivocation
prevention.

5 Designing Systems with TrInc
5.1 Overview

When designing a protocol that incorporates TrInc, we
find it important to address the following questions:
5.1.1 What does TrInc’s counter represent?

In the applications we have considered, TrInc’s
counter represents a natural “progression” of the sys-
tem. In BitTorrent, for instance, the counter represents
the number of blocks a given peer has received, a value
which is naturally monotonically increasing. In Byzan-
tine Fault Tolerance (BFT), the counter represents which
view a replica is in. Ultimately, the choice of what the
counter represents is dependent on what data peers will
need to attest to.
5.1.2 To what data do peers attest?

There are two broad types of attestations that TrInc of-
fers. Advance attestations increase the trinket’s counter,
thus binding a message to a counter. Status attestations
attest to the current counter without advancing it.
Advance attestations Advance attestations are largely
protocol-dependent, including such elements as the set of
pieces received in BitTorrent, or the root of a Merkle tree
of file hashes in a file server. The specific data to which
to attest often requires a careful analysis of the selfish
or malicious ways in which peers could equivocate. It
is important to ensure that the impossibility of equivo-
cating about what was assigned to a particular counter
value translates into the impossibility of equivocating at
the higher desired semantic level.

For instance, suppose an attestation consists solely of
a number n of pieces received in BitTorrent and a list of
n peers. In this case, a participant Mallory can cheat in
the following way. After receiving the first piece a from
Alice, she replies with an attestation that her one-piece
set contains only a. Next, after receiving her next two
pieces b from Bob and c from Charlie, she sends them
both an identical attestation that her two-piece set is b
and c. In this way, Mallory gets away with hiding the
fact that she has received piece a, despite not being able
to get different attestations for the same value of n = 2.
As we will see later, in §5.4, we prevent this by having
an attestation include the last piece received.
Status attestations Most distributed systems do not
have an implicit system-wide “counter.” Rather, peers
progress at varying rates: BitTorrent peers download at
rates largely dependent on their own upload rates, DHT
peers store varying amounts of data, and so on. Sta-
tus attestations enable peers to determine others’ current
counter values. The data in a status attestation is gen-
erally a nonce, to ensure freshness in peers’ reports of
their counters. Coupled with a counter that has semantic
meaning, status attestations can provide peers with up-
to-date information about their neighbors. In BitTorrent,
for instance, knowing how much of a file a neighbor has
downloaded can help determine whether to bootstrap him
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Algorithm 2 Implementation of A2M with TrInc
Init()

1. Create low and high counters:
Lq ← CreateCounter(); Hq ← CreateCounter()

2. Return {Lq,Hq}
Append(queue q, value x)

1. Bind h(x) to a unique counter (the current “high counter”):
a ← Attest(Hq.id, Hq.ctr + 1, h(x))

2. Store the attestation in untrusted memory:
q.append(a, x)

Lookup(queue q, sequence number n, nonce z)

1. If n < Lq , the entry was truncated. Attest to this by returning an
attestation of the supplied nonce using the low-counter:

Attest(Lq.id, Lq.ctr, h(FORGOTTEN||z))

2. If n > Hq , the query is too early. Attest to this by returning an
attestation of the supplied nonce using the high-counter:

Attest(Hq.id, Hq.ctr, h(TOOEARLY||z))

3. Otherwise, return the entry in q that spans n, i.e., the one such that
a.c < n ≤ a.c. Note that if n < a.c, this means n was skipped
by an Advance.

End(queue q, sequence number n, nonce z)

1. Retrieve the latest entry from the given log:
{a, x} ← q.end()

2. Attest that this is the latest entry with a high-
counter attestation of the supplied nonce:

a ← Attest(Hq.id, Hq.ctr, z)

3. Return {a, {a, x}}
Truncate(queue q, sequence number n)

1. Remove the entries from untrusted memory:
q.truncate(n)

2. Move up the low counter:
a ← Attest(Lq.id, n, FORGOTTEN)

Advance(queue q, sequence number n, value x)

1. Append a new item with sequence number n:
a ← Attest(Hq.id, n, h(x))

2. Store the attestation in untrusted memory:
q.append(a, x)

with free pieces (because he is new to the swarm) or to
initiate a trade with him (because he has many interesting
pieces of the file).

5.2 Case study 1: A2M
Attested Append-only Memory (A2M) [7] is another

proposed trusted hardware design with the intent of com-
bating equivocation. A2M offers trusted logs, to which
users can only append. The fundamental difference be-
tween the designs of A2M and TrInc are in the amount
of state and computation required from the trusted hard-
ware. To demonstrate that TrInc’s decreased complex-
ity is enough, we present, as our first case study, how to
build A2M using TrInc.
5.2.1 A2M overview

A2M’s state consists of a set of logs, each contain-
ing entries with monotonically increasing sequence num-
bers. A2M supports operations to add (append and
advance), retrieve (lookup and end), and delete
(truncate) items from its logs. The basis of A2M’s re-
silience to equivocation is append, which binds a mes-
sage to a unique sequence number. For each log q, A2M
stores the lowest sequence number, Lq, and the highest
sequence number, Hq, stored in q. A2M appends an en-
try to log q by incrementing the sequence number Hq

and setting the new entry’s sequence number to be this
incremented value. The low and high sequence numbers
allow A2M to attest to failed lookups; for instance, if a
user requests an item with sequence number s > Hq,
A2M returns an attestation of Hq.

5.2.2 Trusted logs with TrInc
In our TrInc-based design of A2M, we store logs in

untrusted memory, as opposed to within a trinket. As in
A2M, we make use of two counters per log, representing
the highest (Hq) and lowest (Lq) sequence number in the
respective log q.

We present the detailed protocol in Algorithm 2, and
summarize some of its characteristics here. Note the
power of TrInc’s simple API; our design is built predom-
inately on calls to a trinket’s Attest function. Our pro-
tocol uses advance attestations for moving the high se-
quence number when appending to the log, and for mov-
ing the low sequence number when deleting from the log.
We perform status attestations of the low counter value to
attest to failed lookups, and of the high counter to attest
to the end of the log. No additional attestations are nec-
essary for a successful lookup, even if the lookup is
to a skipped entry. Conversely, A2M requires calls to the
trusted hardware even for successful lookups.
5.2.3 Properties of a TrInc-based A2M

Chun et al. [7] demonstrate how to apply A2M to
BFT [20], SUNDR [22], and Q/U [1]. Our implemen-
tation of A2M in TrInc demonstrates that TrInc, too, can
be applied to these systems.

Implementing trusted logs using TrInc has several
benefits over a completely in-hardware design like A2M.
Because TrInc stores the logs in untrusted storage, we
decouple the usage demand of the trusted log from the
amount of available trusted storage. Conversely, lim-
ited by the amount of trusted storage, A2M must make
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more frequent calls to truncate to keep the logs small.
Some systems, such as PeerReview [13], benefit from
large logs, making TrInc a more suitable addition, which
we consider next.

5.3 Case study 2: PeerReview
Accountability systems, such as PeerReview [13] and

Nysiad [14], strive to augment existing protocols to make
them tolerant to Byzantine faults. This is a powerful ap-
proach, as it allows system designers to focus on the sys-
tem at hand, rather than consider Byzantine faults at all
layers of the system. The general approach is to have par-
ticipants in the system communicate with and audit one
another, resulting in what is sometimes, unfortunately, a
massive amount of additional communication overhead.

Our main observation in this case study is that the
means by which these systems combat equivocation con-
stitutes the bulk of their communication overhead. By
applying TrInc to PeerReview, we are able to vastly re-
duce PeerReview’s communication overhead.
5.3.1 PeerReview review

PeerReview [13] is a system that enables accountabil-
ity in general distributed protocols. Unlike BFT, which
ensures that bad behavior never has an effect, PeerRe-
view allows bad behavior to affect the system but ensures
that the improper act will eventually be detected. This al-
lows a system to correct for bad behavior after the fact,
and also deters bad behavior to begin with.

PeerReview works on any protocol in which each par-
ticipant acts according to a deterministic state machine.
PeerReview assigns each participant a set of witnesses,
machines whose job it is to detect bad behavior by that
participant. The participant is required to log all of the
messages it sends and receives, and report these to the
witnesses. The witnesses then run the participant’s state
machine to ensure the participant’s outgoing messages
were consistent with proper operation.

A participant might try to cheat by sending different
messages to the witnesses than it sends to other partic-
ipants. For this reason, when a participant receives a
message from another, it forwards this message to the
sender’s witnesses, so they can ensure this message actu-
ally appears in the sender’s log.

As a practical matter, full messages do not have to be
transmitted to witnesses thanks to the use of a tamper-
evident log. Each log entry is associated with a sequence
number, and the log itself is represented by a recursive
hash reflecting all log entries. When a participant sends
a message, it includes a signed statement that this mes-
sage has a particular sequence number and that the log
had a particular recursive hash when this message was
logged. In this way, the receiver only needs to report this
authenticator to the witness.

PeerReview’s tamper-evident log has another impor-
tant use. When a participant or witness discovers bad
behavior in a participant, the authenticators signed by

the malefactor stand as clear proof of the misbehavior.
Thus, a faulty witness cannot improperly accuse a par-
ticipant, and an incompletely trusted witness can be be-
lieved when it presents evidence of a participant’s mis-
behavior.
5.3.2 Simplifying PeerReview with TrInc

By augmenting PeerReview with TrInc, we are able to
simplify much of PeerReview’s protocol. We detail here
the modifications we make to PeerReview in augmenting
it with TrInc.
Trusted logs As demonstrated with A2M, TrInc can
easily supply a trusted log without the assistance of a
witness set. Our first modification is to include such a
trusted log. Whenever a participant sends or receives a
message, it logs that message with an attestation from
its trinket. A participant should only process a received
message if it is accompanied by an attestation that the
message has been logged by the sender’s trinket.
Audits Each witness w for a participant p keeps track of
n, a log sequence number, and s, the state that p should
have been in after sending or receiving the message in
log entry n. It initializes n to 0 and s to the initial state
of participant p.

Whenever w wants to audit p, it sends it n and a nonce.
The participant returns an attestation of its current log en-
try number n using the nonce, and also returns a log en-
try and attestation for every index i such that n < i ≤ n.
Note that witnesses need only obtain these entries di-
rectly from p, and not from other peers with whom p has
communicated. The witness then runs the reference im-
plementation, starting at state s, and progressing through
the log entries between n and n. If the reference imple-
mentation sends the same messages that are in the log,
then the witness simply updates n to n and updates s
to the state of the reference implementation at that point.
If not, then the witness has proof it can present of the
participant’s failure to act properly.
5.3.3 Properties of a TrInc-enabled PeerReview

The benefits from applying TrInc to PeerReview are
evident when considering what the protocol no longer
has to do.
Challenge/response Enabled with TrInc, PeerRe-
view’s challenge/response protocol is no longer needed
for a participant to verify a hash chain of log entries. The
fact that TrInc signs the messages is sufficient. The only
time a participant i has to challenge another participant j
is when it sends participant j a message and receives no
acknowledgment of it. In this case, the challenge works
as in regular PeerReview.
Consistency TrInc further removes the need for
witness-to-witness communication. In PeerReview, if p
receives an authenticator from q, then p’s witnesses must
forward it to q’s witnesses. This is not necessary in a
TrInc-augmented PeerReview because there would be no
way for those other participants to avoid sending the au-
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thenticators themselves to their witnesses. Another way
to look at it is that it is not necessary for a participant
to pass on authenticators it receives to witnesses, so it is
not necessary for a witness to do this on behalf of partic-
ipants.

To summarize, we find that by applying TrInc to Peer-
Review, we are able to vastly decrease the amount of
communication overhead. We demonstrate this empiri-
cally in Section 7.

5.4 Case study 3: BitTorrent
The previous two systems demonstrate that TrInc is a

minimal counterpart to a related trusted component, and
that it can reduce the overhead of achieving accountabil-
ity in a distributed setting. Our third case study demon-
strates TrInc’s versatility. We show how TrInc can be
applied to solving an open incentive problem [21] in the
immensely popular BitTorrent system [8].
5.4.1 A brief overview of BitTorrent

BitTorrent [8] is a decentralized file swarming system
whose goal is to disseminate large files to a large num-
ber of downloaders. Rather than rely on a highly pro-
visioned server, BitTorrent peers trade small pieces of a
file with one another, thereby contributing to the system
while gaining from it. Bitfields represent which pieces of
a file a peer has. Peers trade bitfields in order to gain one
another’s interest; a peer is interested in peers who have
pieces that it does not. Since peers only upload to peers
in whom they are interested, peers have incentive to be
as interesting to as many others as possible.
5.4.2 Piece under-reporting

BitTorrent peers can sometimes have incentive to
under-report what pieces they have to their neighbors,
since by doing so they can limit the degree to which their
neighbors find interest in one another [21]. For instance,
suppose peer i has neighbors j and k, both of whom want
pieces p and q from i. If i were to tell them both about
both pieces, one might demand p and the other might de-
mand q. After obtaining them, they might gain interest
in one another and exchange p and q among themselves,
thus decoupling from i. Thus, i may prefer to under-
report by sending to j and k a bitfield that contains p but
not q. As a result, both neighbors request and obtain p,
gaining no interest in one another; only then does i reveal
that he also has piece q, forcing j and k to download it
from i.

Such under-reporting leads to a tragedy of the com-
mons, since although strategic under-reporters’ down-
load times improve, the system as a whole suffers [21].
Since its recent discovery, strategic under-reporting has
yet to be solved; we demonstrate how to solve it with
TrInc.
5.4.3 Solving under-reporting with TrInc

We observe that under-reporting in file swarming sys-
tems is an act of equivocation. Using the above example,
when peer i received piece q from peer , i must have

Algorithm 3 Fighting equivocation in BitTorrent
Upon receipt of piece p:

1. Add p to bitfield B
2. acurr ← Attest(i, |B|, h(p, B))

Upon sending piece p to neighbor j:
1. Request an attestation from j with a random nonce.
2. Do not send any piece other than p to j until j ad-

mits to having p.

Periodically, for each neighbor j:
1. Request an attestation of j’s current bitfield with a

random nonce.

Upon receiving an attestation request with nonce z:
1. atmp ← Attest(i, |B|, z).
2. Reply with (acurr, atmp).

sent an acknowledgment, stating to  that he received the
piece. However, by under-reporting q to peers j and k,
i is effectively contradicting a statement he made earlier
to .

Our goal is therefore to remove BitTorrent peers’ abil-
ity to undetectably equivocate. We present in Algo-
rithm 3 a TrInc-based protocol for fighting equivocation
in BitTorrent. In this protocol, a peer attests to his bit-
field, incrementing a trinket counter for each piece he
receives. Also, peers periodically request up-to-date at-
testations from their neighbors, to maintain fresh state.

Because they join the swarm at different times and
download at different rates, peers’ counters are not syn-
chronized. In Algorithm 3, the TrInc counter does not
correspond to some system-wide “round” the protocol is
in, as it would in, say, BFT machine replication. Instead,
peer i’s counter represents how many pieces i has down-
loaded. This is a natural fit for the counter, because it is a
monotonically increasing number, and because the type
of malicious behavior we want to prevent corresponds to
pretending it is not monotonic.

Algorithm 3 demonstrates the importance of choosing
the correct data to which to attest. Suppose, for instance,
peers were to attest only to their bitfields. Clearly, when
s sends an attested bitfield to neighbor n, s must include
the piece n sent him, pn, in the bitfield, otherwise n will
observe an under-report. Were s to attest only to the bit-
field, then s could under-report as follows, where Bold

represents the bitfield before receiving pieces pa, pb, and
pc, and ⊕ denotes adding a piece to the bitfield:

• To a: Bold ⊕ pa

• To b and c: Bold ⊕ pb ⊕ pc

The problem arises because the data to which s is attest-
ing does not enforce monotonicity at the semantic level
we desire. Specifically, though the counter cannot de-
crease, it does not have to correspond to the number of
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distinct pieces acknowledged, allowing a malicious par-
ticipant to misstate the number of distinct pieces he has
acknowledged.

In our solution, a peer attests not only to the hash of
his bitfield B, but also to the most recent piece he has
received, p. Neighbor n therefore expects an advance at-
testation including both pn and a bitfield containing pn.
As a result, every piece must have a unique advance at-
testation, ensuring that s’s counter must be as large as the
number of pieces he has acknowledged receiving.
5.4.4 Properties of a TrInc-augmented BitTorrent

Our TrInc-based solution to equivocation in BitTorrent
solves two difficult incentives-related problems. First,
peers have incentive to truthfully reveal the pieces they
have whenever they are asked to. TrInc removes the abil-
ity to equivocate, and step-omission failures (remaining
silent) result in getting no further pieces from a neighbor.
Peers can therefore obtain long-lived trades with others
only by truthfully reporting their pieces.

Second, our solution adds additional security to Bit-
Torrent’s bootstrapping mechanism. In BitTorrent, peers
optimistically unchoke new participants, sending them
pieces without requiring anything in return, to introduce
them into the system. BitThief [24] exploits this by pre-
tending not to be able to make progress [35]. However,
such artifice is not possible with TrInc since with it a peer
cannot hide the rate at which he is downloading pieces.

Note, however, that what we propose is not a com-
plete solution to problems with bootstrapping. Even with
TrInc-enabled BitTorrent, a peer can steal a single piece
from each other peer. Our goal of applying TrInc here is
to ensure truthfulness in long-lived peerings, which (sur-
prisingly) does not arise automatically.

5.5 Other applications
We see many other potential applications for TrInc.

We briefly described three such apps in Section 2.1:
simultaneous-turn games, electronic currency, and elec-
tions. Here, we detail several others:

Secure DNS is intended to protect the integrity of the
Internet domain name system. One identified threat [6]
is that a resolving name server could be compromised
and forge incorrect responses. The official solution to
this threat is data origin identification in the DNS Secu-
rity Extensions (DNSSEC), which uses public-key sig-
natures to authenticate name updates. However, this so-
lution does not address a threat in which the compro-
mised name server replies to a query with out-of-date
data, which would still bear a valid signature. Modify-
ing DNSSEC with TrInc could address this problem by
preventing the resolving name server from equivocating
about whether it has received an update. Once it ac-
knowledges receipt to the authoritative name server, it
can no longer pretend it has not received the update.

Secure Origin BGP (soBGP) [44] is intended to
protect the integrity of Internet routing updates. Like

DNSSEC, soBGP uses public-key signatures to authen-
ticate updates. Also like DNSSEC, soBGP is vulnerable
to a threat in which a compromised router advertises out-
of-date routes, which would still bear valid signatures.
TrInc could address this problem by preventing a router
from equivocating about whether it has received a rout-
ing update.

Distributed hash tables (DHTs), such as Chord [37],
Bamboo [33], and Kademlia [27], are vulnerable to mis-
behaving nodes. In particular, a node can lie about which
region of the keyspace it is responsible for. As nodes
join and leave the DHT, these regions of responsibil-
ity change (sometimes quite rapidly [33]) in response
to reconfiguration messages. A node can equivocate
about whether it has received a particular message, which
may allow it to claim responsibility for a region of the
keyspace it does not own. TrInc could be used to prevent
this equivocation.

Version control systems, such as CVS [41] and Sub-
version [29] are often run on remote servers. Thus, they
are vulnerable to a threat model in which the server
presents different views of the repository to different
clients. Although this threat could be addressed at the
block-store level [22], it might be more efficient to ad-
dress it at the application level, in which case TrInc could
prevent this equivocation.

Distributed auctions [42] are vulnerable to cheating
participants. A bidder can try to manipulate others’ bids
by equivocating about the value of his current bid. An
auctioneer can try to manipulate the bidding by equiv-
ocating about her reserve price for a particular auction.
TrInc could protect against both of these classes of cheat-
ing, by preventing both bidders and auctioneers from
equivocating.

Leader election protocols [25] rely on a quorum of
participants to agree on a choice of leader. For a quo-
rum of size q, it can legitimately happen that two groups
of size q − 1 will nominate different leaders. In this
case, one participant can equivocate about which leader
to nominate, causing the protocol to select two leaders
concurrently. TrInc could be used to prevent this equivo-
cation.

Digital signatures are used in many cryptographic
protocols, but commonly use slow asymmetric key oper-
ations [17]. However, TrInc allows faster symmetric key
operations to be used instead. To do so, a signer merely
has to have his trinket attest to the hash of the message to
be signed using a shared symmetric key. Since this attes-
tation can only be generated by a party with access to the
symmetric key, and since the hardware includes the ID in
any attestation, no other party (except the trusted session
administrator) can have generated the attestation. Thus,
it functions effectively as a digital signature, verifiable
by anyone whose trinket has the same symmetric key in-
stalled.
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Operation Time (msec)
Noop 6.14 ± 0.15

(asymmetric, advance > 0) 230.24 ± 0.28
(asymmetric, advance = 0) 198.21 ± 0.10Attest
(symmetric, advance > 0) 128.95 ± 0.08
(symmetric, advance = 0) 105.90 ± 0.08

Verify Symmetric Attestation 85.81 ± 0.11

Table 3: TrInc microbenchmarks on a Gemalto .NET
Smartcard, with 95% confidence intervals.

6 TrInc Implementation
The application case studies demonstrate the strong

theoretical properties of TrIncs. In this section, we study
the performance of TrIncs today. To this end, we have
implemented TrInc on Gemalto .NET SmartCards [11],
and present microbenchmarks that measure TrInc’s per-
formance on these widely available pieces of trusted
hardware.

6.1 Microbenchmarks
Our experimental setup consists of an Intel Core 2

Duo 1.6GHz machine with 3GB of RAM, and a smart-
card connected via a USB card reader. We present our
microbenchmarks in Table 3, with results averaged over
1,000 runs. In addition to TrInc’s API, we include a noop
to essentially measure the round-trip time between PC
and smartcard.

Compare the Attest results on the card to those
on the untrusted PC, where 3-DES took 0.017 ± 0.008
msec, and RSA took 8.6 ± 0.67 msec. It is no surprise
that a smartcard does not perform as well, but the dif-
ference in relative performance between symmetric and
asymmetric encryption is striking. On the PC, they dif-
fer by a factor of over 500, while on the card they differ
by less than a factor of 2. While using symmetric instead
of asymmetric operations improves TrInc’s performance,
we were surprised to see it was by this small a factor.

6.2 Why so slow?
The conclusion is clear: today’s trusted hardware is

slow! Indeed, it is much slower than would be allowed
by most components of a distributed system. But why is
it slow, and why do current applications that use trusted
hardware not suffer as a result?

We believe this is attributable to the fact that TrInc uses
trusted hardware in a fundamentally different way than
that for which the hardware is currently designed. To-
day’s trusted hardware is designed to bootstrap software,
generally performing few operations during a machine’s
boot cycle. Conversely, TrInc makes use of trusted hard-
ware during operation, in some cases multiple times for
each message sent.

We proposed several versions in §3.5.6 that we believe
would be viable directions for future designs of trusted
hardware to take. In the interim, a logical solution is

Time (msec)
Operation TrInc A2M
Noop 6.99 ± 0.01
Append 187.60 ± 0.15 551.93 ± 154
Lookup (Successful) 0.0122 ± 0.02 304.14 ± 6.87
Lookup (TooEarly) 162.24 ± 0.08 289.68 ± 2.23
Lookup (Forgotten) 162.35 ± 0.10 350.51 ± 1.43
End 162.31 ± 0.11 294.16 ± 2.04
Truncate 187.94 ± 0.10 28.99 ± 0.02
Advance 187.81 ± 0.12 288.20 ± 11.4

Table 4: TrInc-A2M microbenchmarks, with 95% confi-
dence intervals.

to design protocols that limit the number of necessary
attestations, but such approaches are beyond the scope
of this paper. Nevertheless, our empirical results in the
following section indicate that making trusted hardware
more suitable for use in distributed systems today is a
valuable area of future work.

7 Application Evaluation
We now turn to macrobenchmarks, evaluating TrInc

as it applies to our three case studies: A2M, PeerReview,
and BitTorrent.

7.1 TrInc-A2M
In Section 5.2, we proposed a way to build A2M

using TrInc. While demonstrating TrInc’s ease of use
and versatility, it also allows us to compare the two
trusted-component designs. To this end, we have im-
plemented A2M in the Gemalto .NET SmartCard, and
a TrInc library—run on an untrusted machine—that ac-
cesses TrInc as prescribed in Algorithm 2.

We present microbenchmark comparisons in Table 4.
As expected, TrInc performs Appends much more
quickly, as it does not require as many writes to trusted
storage. Where TrInc offers vast speed improvements
over A2M is in successful Lookups; since these do not
have to be either stored in trusted hardware or attested,
they are merely local operations. Interestingly, A2M im-
proves with Truncate, since A2M simply increases the
log’s low counter and postpones the attestation of the op-
eration until a lookup that needs to return FORGOTTEN.
TrInc amortizes this cost, in the expectation that there
will be more FORGOTTEN lookups than truncations.

These results demonstrate that TrInc performs better
on today’s trusted hardware. As trusted components im-
prove, particularly in terms of memory writes and cryp-
tographic operations, it is likely that A2M and TrInc will
perform comparably well. However, the slowness of to-
day’s trusted hardware brings to light the difference in
complexity between A2M and TrInc. We believe TrInc’s
relative simplicity makes it a more suitable candidate
even with future designs of trusted hardware.
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Figure 3: Reduction in PeerReview’s message overhead
due to TrInc.

7.2 TrInc-PeerReview
In Section 5.3, we demonstrated how including TrInc

into the design of an accountability system such as Peer-
Review can decrease the amount of communication re-
quired between participants. This represents one of the
fundamental strengths of including a small, trusted com-
ponent into an otherwise untrusted system.

Applying TrInc to PeerReview removes the require-
ment for a peer p to communicate with the witness set
of any other peer q, unless, of course, p happens in q’s
witness set. Using data from the original PeerReview
study [13], we demonstrate in Figure 3 the extent to
which TrInc reduces PeerReview’s communication over-
head. TrInc effectively removes the O(W 2) witness-set-
to-witness-set communication, for reasons described in
Section 5.3. As a result, the amount of additional com-
munication overhead scales linearly rather than quadrat-
ically with the size of the witness sets.

7.3 TrInc-BitTorrent
To evaluate our TrInc-based solution for BitTorrent,

we simulated using a “gold-standard” trinket in the
Azureus BitTorrent client. To do so, we modified Bit-
Torrent’s Have messages to include attestations to coun-
ters. We observed that Have messages, originally in-
tended simply to inform others when a peer receives a
piece, come frequently enough in practice to also satisfy
peers’ continual need for fresh attestations.

We modified the BitTorrent code to recognize these
new messages, and to cut off peers thereby discovered to
be under-reporting. However, we never have the seeder
punish a peer in this way. It seems reasonable to have
such a forgiving seeder since otherwise peers who suf-
fer failures—for example, from a corrupted disk—could
never request blocks after they have attested to them.

We ran our experiments on a local cluster consisting
of 23 leechers, each with upload bandwidth capped at
50Kbps, and one seeder, with upload bandwidth capped
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Figure 4: Rate of progress for various BitTorrent clients
when TrInc is used.

at 80Kbps. We chose one host to act as a strategic piece
revealer using an algorithm from a prior study [21]. We
chose this host arbitrarily since, on the local cluster, we
found them to be virtually indistinguishable in terms of
performance.

Our experiments demonstrated a clear loss in perfor-
mance from under-reporting. In a representative run, the
under-reporting peer took 27% longer to download the
file than the other peers did on average, and 33% longer
than the median.

The under-reporter’s download times would have been
much worse if not for the forgiving seeder. We show in
Figure 4 the total number of blocks the under-reporter re-
ceived over time, compared to the number of blocks he
received from the seeder. We plot a representative, truth-
ful peer from the swarm as a point of comparison. Be-
cause other peers refused to send to the under-reporter
until he revealed all the pieces in his possession, the
seeder became the under-reporter’s only remaining op-
tion. Indeed, the under-reporting peer obtained more
pieces (73%) from the seeder than any other peer in the
swarm (11% on average, 6% median).

These results indicate the power of applying a small
amount of trust, and small attestations piggybacked on
existing protocol messages, to a large-scale decentralized
system.

8 Conclusions
In this paper, we presented TrInc, a simple yet power-

ful abstraction for improving security in distributed sys-
tems. TrInc is a trusted hardware module that holds a
non-decreasing counter and a hidden cryptographic key.
This combination, along with the computational machin-
ery to support it, yields an abstraction that significantly
improves various aspects of security in distributed sys-
tems.

TrInc was inspired by the seminal work of A2M,
which introduced the idea of a trusted log for improv-
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ing system security. Relative to A2M, TrInc has a sig-
nificantly simpler abstraction: a counter instead of a log.
We have also demonstrated a wider range of applications
for, and benefits from, a trusted module than previously
shown.

We have implemented TrInc on real, currently avail-
able trusted hardware. We have performed three detailed
case studies of TrInc as applied to different distributed
protocols. Our results show that this abstraction is easy
to deploy, powerful, and versatile.
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Abstract
Obtaining user opinion (using votes) is essential to rank-
ing user-generated online content. However, any content
voting system is susceptible to the Sybil attack where ad-
versaries can out-vote real users by creating many Sybil
identities. In this paper, we present SumUp, a Sybil-
resilient vote aggregation system that leverages the trust
network among users to defend against Sybil attacks.
SumUp uses the technique of adaptive vote flow aggre-
gation to limit the number of bogus votes cast by adver-
saries to no more than the number of attack edges in the
trust network (with high probability). Using user feed-
back on votes, SumUp further restricts the voting power
of adversaries who continuously misbehave to below the
number of their attack edges. Using detailed evaluation
of several existing social networks (YouTube, Flickr), we
show SumUp’s ability to handle Sybil attacks. By apply-
ing SumUp on the voting trace of Digg, a popular news
voting site, we have found strong evidence of attack on
many articles marked “popular” by Digg.

1 Introduction
The Web 2.0 revolution has fueled a massive prolifera-
tion of user-generated content. While allowing users to
publish information has led to democratization of Web
content and promoted diversity, it has also made the Web
increasingly vulnerable to content pollution from spam-
mers, advertisers and adversarial users misusing the sys-
tem. Therefore, the ability to rank content accurately is
key to the survival and the popularity of many user-
content hosting sites. Similarly, content rating is also in-
dispensable in peer-to-peer file sharing systems to help
users avoid mislabeled or low quality content [7, 16, 25].

People have long realized the importance of incorpo-
rating user opinion in rating online content. Traditional
ranking algorithms such as PageRank [2] and HITS [12]
rely on implicit user opinions reflected in the link struc-
tures of hypertext documents. For arbitrary content types,
user opinion can be obtained in the form of explicit
votes. Many popular websites today rely on user votes to
rank news (Digg, Reddit), videos (YouTube), documents
(Scribd) and consumer reviews (Yelp, Amazon).

Content rating based on users’ votes is prone to vote
manipulation by malicious users. Defending against vote
manipulation is difficult due to the Sybil attack where
the attacker can out-vote real users by creating many

Sybil identities. The popularity of content-hosting sites
has made such attacks very profitable as malicious enti-
ties can promote low-quality content to a wide audience.
Successful Sybil attacks have been observed in the wild.
For example, online polling on the best computer science
school motivated students to deploy automatic scripts to
vote for their schools repeatedly [9]. There are even com-
mercial services that help paying clients promote their
content to the top spot on popular sites such as YouTube
by voting from a large number of Sybil accounts [22].

In this paper, we present SumUp, a Sybil-resilient on-
line content voting system that prevents adversaries from
arbitrarily distorting voting results. SumUp leverages the
trust relationships that already exist among users (e.g. in
the form of social relationships). Since it takes human ef-
forts to establish a trust link, the attacker is unlikely to
possess many attack edges (links from honest users to an
adversarial identity). Nevertheless, he may create many
links among Sybil identities themselves.

SumUp addresses the vote aggregation problem which
can be stated as follows: Given m votes on a given object,
of which an arbitrary fraction may be from Sybil iden-
tities created by an attacker, how do we collect votes in
a Sybil resilient manner? A Sybil-resilient vote aggrega-
tion solution should satisfy three properties. First, the so-
lution should collect a significant fraction of votes from
honest users. Second, if the attacker has eA attack edges,
the maximum number of bogus votes should be bounded
by eA, independent of the attacker’s ability to create many
Sybil identities behind him. Third, if the attacker repeat-
edly casts bogus votes, his ability to vote in the future
should be diminished. SumUp achieves all three proper-
ties with high probability in the face of Sybil attacks. The
key idea in SumUp is the adaptive vote flow technique
that appropriately assigns and adjusts link capacities in
the trust graph to collect the net vote for an object.

Previous works have also exploited the use of trust net-
works to limit Sybil attacks [3,15,18,26,27,30], but none
directly addresses the vote aggregation problem. Sybil-
Limit [26] performs admission control so that at most
O(log n) Sybil identities are accepted per attack edge
amongn honest identities. As SybilLimit results in 10∼30
bogus votes per attack edge in a million-user system [26],
SumUp provides notable improvement by limiting bogus
votes to one per attack edge. Additionally, SumUp lever-
ages user feedback to further diminish the voting power
of adversaries that repeatedly vote maliciously.
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In SumUp, each vote collector assigns capacities to
links in the trust graph and computes a set of approx-
imate max-flow paths from itself to all voters. Because
only votes on paths with non-zero flows are counted, the
number of bogus votes collected is limited by the total ca-
pacity of attack edges instead of links among Sybil iden-
tities. Typically, the number of voters on a given object
is much smaller than the total user population (n). Based
on this insight, SumUp assigns Cmax units of capacity in
total, thereby limiting the number of votes that can be col-
lected to be Cmax. SumUp adjusts Cmax automatically
according to the number of honest voters for each object
so that it can aggregate a large fraction of votes from hon-
est users. As Cmax is far less than n, the number of bo-
gus votes collected on a single object (i.e. the attack ca-
pacity) is no more than the number of attack edges (eA).
SumUp’s security guarantee on bogus votes is probabilis-
tic. If a vote collector happens to be close to an attack
edge (a low probability event), the attack capacity could
be much higher than eA. By re-assigning link capacities
using feedback, SumUp can restrict the attack capacity to
be below eA even if the vote collector happens to be close
to some attack edges.

Using a detailed evaluation of several existing social
networks (YouTube, Flickr), we show that SumUp suc-
cessfully limits the number of bogus votes to the num-
ber of attack edges and is also able to collect > 90% of
votes from honest voters. By applying SumUp to the vot-
ing trace and social network of Digg (an online news vot-
ing site), we have found hundreds of suspicious articles
that have been marked “popular” by Digg. Based on man-
ual sampling, we believe that at least 50% of suspicious
articles exhibit strong evidence of Sybil attacks.

This paper is organized as follows. In Section 2, we dis-
cuss related work and in Section 3 we define the system
model and the vote aggregation problem. Section 4 out-
lines the overall approach of SumUp and Sections 5 and
6 present the detailed design. In Section 7, we describe our
evaluation results. Finally in Section 8, we discuss how to
extend SumUp to decentralize setup and we conclude in
Section 9.

2 Related Work
Ranking content is arguably one of the Web’s most im-
portant problems. As users are the ultimate consumers of
content, incorporating their opinions in the form of either
explicit or implicit votes becomes an essential ingredient
in many ranking systems. This section summarizes related
work in vote-based ranking systems. Specifically, we ex-
amine how existing systems cope with Sybil attacks [6]
and compare their approaches to SumUp.

2.1 Hyperlink-based ranking
PageRank [2] and HITS [12] are two popular ranking al-
gorithms that exploit the implicit human judgment embed-

ded in the hyperlink structure of web pages. A hyperlink
from page A to page B can be viewed as an implicit en-
dorsement (or vote) of page B by the creator of page A. In
both algorithms, a page has a higher ranking if it is linked
to by more pages with high rankings. Both PageRank and
HITS are vulnerable to Sybil attacks. The attacker can
significantly amplify the ranking of a page A by creating
many web pages that link to each other and also to A. To
mitigate this attack, the ranking system must probabilisti-
cally reset its PageRank computation from a small set of
trusted web pages with probability ǫ [20]. Despite proba-
bilistic resets, Sybil attacks can still amplify the PageRank
of an attacker’s page by a factor of 1/ǫ [29], resulting in a
big win for the attacker because ǫ is small.

2.2 User Reputation Systems
A user reputation system computes a reputation value for
each identity in order to distinguish well-behaved identi-
ties from misbehaving ones. It is possible to use a user
reputation system for vote aggregation: the voting system
can either count votes only from users whose reputations
are above a threshold or weigh each vote using the voter’s
reputation. Like SumUp, existing reputation systems miti-
gate attacks by exploiting two resources: the trust network
among users and explicit user feedback on others’ behav-
iors. We discuss the strengths and limitations of existing
reputation systems in the context of vote aggregation and
how SumUp builds upon ideas from prior work.

Feedback based reputations In EigenTrust [11] and
Credence [25], each user independently computes person-
alized reputation values for all users based on past trans-
actions or voting histories. In EigenTrust, a user increases
(or decreases) another user’s rating upon a good (or bad)
transaction. In Credence [25], a user gives a high (or low)
rating to another user if their voting records on the same
set of file objects are similar (or dissimilar). Because not
all pairs of users are known to each other based on direct
interaction or votes on overlapping sets of objects, both
Credence and EigenTrust use a PageRank-style algorithm
to propagate the reputations of known users in order to
calculate the reputations of unknown users. As such, both
systems suffer from the same vulnerability as PageRank
where an attacker can amplify the reputation of a Sybil
identity by a factor of 1/ǫ.

Neither EigenTrust nor Credence provide provable
guarantees on the damage of Sybil attacks under arbitrary
attack strategies. In contrast, SumUp bounds the voting
power of an attacker on a single object to be no more than
the number of attack edges he possesses irrespective of the
attack strategies in use. SumUp uses only negative feed-
back as opposed to EigenTrust and Credence that use both
positive and negative feedback. Using only negative feed-
back has the advantage that an attacker cannot boost his
attack capacity easily by casting correct votes on objects
that he does not care about.
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DSybil [28] is a feedback-based recommendation sys-
tem that provides provable guarantees on the damages of
arbitrary attack strategies. DSybil differs from SumUp in
its goals. SumUp is a vote aggregation system which al-
lows for arbitrary ranking algorithms to incorporate col-
lected votes to rank objects. For example, the ranking al-
gorithm can rank objects by the number of votes collected.
In contrast, DSybil’s recommendation algorithm is fixed:
it recommends a random object among all objects whose
sum of the weighted vote count exceeds a certain thresh-
old.

Trust network-based reputations A number of pro-
posals from the semantic web and peer-to-peer literature
rely on the trust network between users to compute repu-
tations [3, 8, 15, 21, 30]. Like SumUp, these proposals ex-
ploit the fact that it is difficult for an attacker to obtain
many trust edges from honest users because trust links
reflect offline social relationships. Of the existing work,
Advogato [15], Appleseed [30] and Sybilproof [3] are re-
silient to Sybil attacks in the sense that an attacker cannot
boost his reputation by creating a large number of Sybil
identities “behind” him. Unfortunately, a Sybil-resilient
user reputation scheme does not directly translate into a
Sybil-resilient voting system: Advogato only computes a
non-zero reputation for a small set of identities, disallow-
ing a majority of users from being able to vote. Although
an attacker cannot improve his reputation with Sybil iden-
tities in Appleseed and Sybilproof, the reputation of Sybil
identities is almost as good as that of the attacker’s non-
Sybil accounts. Together, these reputable Sybil identities
can cast many bogus votes.

2.3 Sybil Defense using trust networks
Many proposals use trust networks to defend against Sybil
attacks in the context of different applications: Sybil-
Guard [27] and SybilLimit [26] help a node admit an-
other node in a decentralized system such that the ad-
mitted node is likely to be an honest node instead of a
Sybil identity. Ostra [18] limits the rate of unwanted com-
munication that adversaries can inflict on honest nodes.
Sybil-resilient DHTs [5, 14] ensure that DHT routing is
correct in the face of Sybil attacks. Kaleidoscope [23]
distributes proxy identities to honest clients while mini-
mizing the chances of exposing them to the censor with
many Sybil identities. SumUp builds on their insights and
addresses a different problem, namely, aggregating votes
for online content rating. Like SybilLimit, SumUp bounds
the power of attackers according to the number of attack
edges. In SybilLimit, each attack edge results in O(log n)
Sybil identities accepted by honest nodes. In SumUp, each
attack edge leads to at most one vote with high probability.
Additionally, SumUp uses user feedback on bogus votes
to further reduce the attack capacity to below the number
of attack edges. The feedback mechanism of SumUp is
inspired by Ostra [18].

3 The Vote Aggregation Problem
In this section, we outline the system model and formalize
the vote aggregation problem that SumUp addresses.

System model: We describe SumUp in a centralized
setup where a trusted central authority maintains all the
information in the system and performs vote aggregation
using SumUp in order to rate content. This centralized
mode of operation is suitable for web sites such as Digg,
YouTube and Facebook, where all users’ votes and their
trust relationships are collected and maintained by a sin-
gle trusted entity. We describe how SumUp can be applied
in a distributed setting in Section 8.

SumUp leverages the trust network among users to de-
fend against Sybil attacks [3,15,26,27,30]. Each trust link
is directional. However, the creation of each link requires
the consent of both users. Typically, user i creates a trust
link to j if i has an offline social relationship to j. Sim-
ilar to previous work [18, 26], SumUp requires that links
are difficult to establish. As a result, an attacker only pos-
sesses a small number of attack edges (eA) from honest
users to colluding adversarial identities. Even though eA

is small, the attacker can create many Sybil identities and
link them to adversarial entities. We refer to votes from
colluding adversaries and their Sybil identities as bogus
votes.

SumUp aggregates votes from one or more trusted vote
collectors. A trusted collector is required in order to break
the symmetry between honest nodes and Sybil nodes [3].
SumUp can operate in two modes depending on the choice
of trusted vote collectors. In personalized vote aggrega-
tion, SumUp uses each user as his own vote collector to
collect the votes of others. As each user collects a differ-
ent number of votes on the same object, she also has a
different (personalized) ranking of content. In global vote
aggregation, SumUp uses one or more pre-selected vote
collectors to collect votes on behalf of all users. Global
vote aggregation has the advantage of allowing for a sin-
gle global ranking of all objects; however, its performance
relies on the proper selection of trusted collectors.

Vote Aggregation Problem: Any identity in the trust
network including Sybils can cast a vote on any object to
express his opinion on that object. In the simplest case,
each vote is either positive or negative (+1 or -1). Alterna-
tively, to make a vote more expressive, its value can vary
within a range with higher values indicating more favor-
able opinions. A vote aggregation system collects votes
on a given object. Based on collected votes and various
other features, a separate ranking system determines the
final ranking of an object. The design of the final rank-
ing system is outside the scope of this paper. However, we
note that many ranking algorithms utilize both the number
of votes and the average value of votes to determine an
object’s rank [2, 12]. Therefore, to enable arbitrary rank-
ing algorithms, a vote aggregation system should collect
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Figure 1: SumUp computes a set of approximate max-flow
paths from the vote collector s to all voters (A,B,C,D). Straight
lines denote trust links and curly dotted lines represent the vote
flow paths along multiple links. Vote flow paths to honest vot-
ers are “congested” at links close to the collector while paths to
Sybil voters are also congested at far-away attack edges.

a significant fraction of votes from honest voters.
A voting system can also let the vote collector pro-

vide negative feedback on malicious votes. In personal-
ized vote aggregation, each collector gives feedback ac-
cording to his personal taste. In global vote aggregation,
the vote collector(s) should only provide objective feed-
back, e.g. negative feedback for positive votes on cor-
rupted files. Such feedback is available for a very small
subset of objects.

We describe the desired properties of a vote aggregation
system. Let G = (V,E) be a trust network with vote col-
lector s ∈ V . V is comprised of an unknown set of honest
users Vh ⊂ V (including s) and the attacker controls all
vertices in V \ Vh, many of which represent Sybil iden-
tities. Let eA represent the number of attack edges from
honest users in Vh to V \ Vh. Given that nodes in G cast
votes on a specific object, a vote aggregation mechanism
should achieve three properties:

1. Collect a large fraction of votes from honest users.
2. Limit the number of bogus votes from the attacker

by eA independent of the number of Sybil identities
in V \ Vh.

3. Eventually ignore votes from nodes that repeatedly
cast bogus votes using feedback.

4 Basic Approach
This section describes the intuition behind adaptive vote
flow that SumUp uses to address the vote aggregation
problem. The key idea of this approach is to appropriately
assign link capacities to bound the attack capacity.

In order to limit the number of votes that Sybil identi-
ties can propagate for an object, SumUp computes a set of
max-flow paths in the trust graph from the vote collector
to all voters on a given object. Each vote flow consumes
one unit of capacity along each link traversed. Figure 1
gives an example of the resulting flows from the collec-
tor s to voters A,B,C,D. When all links are assigned unit

capacity, the attack capacity using the max-flow based ap-
proach is bounded by eA.

The concept of max-flow has been applied in several
reputation systems based on trust networks [3, 15]. When
applied in the context of vote aggregation, the challenge is
that links close to the vote collector tend to become “con-
gested” (as shown in Figure 1), thereby limiting the total
number of votes collected to be no more than the collec-
tor’s node degree. Since practical trust networks are sparse
with small median node degrees, only a few honest votes
can be collected. We cannot simply enhance the capac-
ity of each link to increase the number of votes collected
since doing so also increases the attack capacity. Hence, a
flow-based vote aggregation system faces the tradeoff be-
tween the maximum number of honest votes it can collect
and the number of potentially bogus votes collected.

The adaptive vote flow technique addresses this trade-
off by exploiting two basic observations. First, the number
of honest users voting for an object, even a popular one,
is significantly smaller than the total number of users. For
example, 99% of popular articles on Digg have fewer than
4000 votes which represents 1% of active users. Second,
vote flow paths to honest voters tend to be only “con-
gested” at links close to the vote collector while paths
to Sybil voters are also congested at a few attack edges.
When eA is small, attack edges tend to be far away from
the vote collector. As shown in Figure 1, vote flow paths
to honest voters A and B are congested at the link l1 while
paths to Sybil identities C and D are congested at both l2
and attack edge l3.

The adaptive vote flow computation uses three key
ideas. First, the algorithm restricts the maximum num-
ber of votes collected on an object to a value Cmax. As
Cmax is used to assign the overall capacity in the trust
graph, a small Cmax results in less capacity for the at-
tacker. SumUp can adaptively adjust Cmax to collect a
large fraction of honest votes on any given object. When
the number of honest voters is O(nα) where α < 1, the
expected number of bogus votes is limited to 1 + o(1) per
attack edge (Section 5.4).

The second important aspect of SumUp relates to ca-
pacity assignment, i.e. how to assign capacities to each
trust link in order to collect a large fraction of honest votes
and only a few bogus ones? In SumUp, the vote collec-
tor distributes Cmax tickets downstream in a breadth-first
search manner within the trust network. The capacity as-
signed to a link is the number of tickets distributed along
the link plus one. As Figure 2 illustrates, the ticket distri-
bution process introduces a vote envelope around the vote
collector s; beyond the envelope all links have capacity
1. The vote envelope contains Cmax nodes that can be
viewed as entry points. There is enough capacity within
the envelope to collect Cmax votes from entry points. On
the other hand, an attack edge beyond the envelope can
propagate at most 1 vote regardless of the number of Sybil
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Figure 2: Through ticket distribution, SumUp creates a vote en-
velope around the collector. The capacities of links beyond the
envelope are assigned to be one, limiting the attack capacity to
be at most one per attack edge for adversaries outside this en-
velope. There is enough capacity within the envelope, such that
nodes inside act like entry points for outside voters.

identities behind that edge. SumUp re-distributes tickets
based on feedback to deal with attack edges within the
envelope.

The final key idea in SumUp is to leverage user feed-
back to penalize attack edges that continuously propa-
gate bogus votes. One cannot penalize individual identi-
ties since the attacker may always propagate bogus votes
using new Sybil identities. Since an attack edge is always
present in the path from the vote collector to a malicious
voter [18], SumUp re-adjusts capacity assignment across
links to reduce the capacity of penalized attack edges.

5 SumUp Design
In this section, we present the basic capacity assignment
algorithm that achieves two of the three desired properties
discussed in Section 3: (a) Collect a large fraction of votes
from honest users; (b) Restrict the number of bogus votes
to one per attack edge with high probability. Later in Sec-
tion 6, we show how to adjust capacity based on feedback
to deal with repeatedly misbehaved adversarial nodes.

We describe how link capacities are assigned given a
particular Cmax in Section 5.1 and present a fast algo-
rithm to calculate approximate max-flow paths in Sec-
tion 5.2. In Section 5.3, we introduce an additional op-
timization strategy that prunes links in the trust network
so as to reduce the number of attack edges. We formally
analyze the security properties of SumUp in Section 5.4
and show how to adaptively set Cmax in Section 5.5.

5.1 Capacity assignment
The goal of capacity assignment is twofold. On the one
hand, the assignment should allow the vote collector to
gather a large fraction of honest votes. On the other hand,
the assignment should minimize the attack capacity such
that CA ≈ eA.

As Figure 2 illustrates, the basic idea of capacity as-
signment is to construct a vote envelope around the vote
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Figure 3: Each link shows the number of tickets distributed to
that link from s (Cmax=6). A node consumes one ticket and
distributes the remaining evenly via its outgoing links to the next
level. Tickets are not distributed to links pointing to the same
level (B→A), or to a lower level (E→B). The capacity of each
link is equal to one plus the number of tickets.

collector with at least Cmax entry points. The goal is
to minimize the chances of including an attack edge in
the envelope and to ensure that there is enough capacity
within the envelope so that all vote flows from Cmax en-
try points can reach the collector.

We achieve this goal using a ticket distribution mecha-
nism which results in decreasing capacities for links with
increasing distance from the vote collector. The distri-
bution mechanism is best described using a propagation
model where the vote collector is to spread Cmax tickets
across all links in the trust graph. Each ticket corresponds
to a capacity value of 1. We associate each node with a
level according to its shortest path distance from the vote
collector, s. Node s is at level 0. Tickets are distributed to
nodes one level at a time. If a node at level l has received
tin tickets from nodes at level l − 1, the node consumes
one ticket and re-distributes the remaining tickets evenly
across all its outgoing links to nodes at level l + 1, i.e.
tout = tin − 1. The capacity value of each link is set to
be one plus the number of tickets distributed on that link.
Tickets are not distributed to links connecting nodes at
the same level or from a higher to lower level. The set of
nodes with positive incoming tickets fall within the vote
envelope and thus represent the entry points.

Ticket distribution ensures that all Cmax entry points
have positive vote flows to the vote collector. Therefore,
if there exists an edge-independent path connecting one of
the entry points to an outside voter, the corresponding vote
can be collected. We show in Section 5.4 that such a path
exists with good probability. When Cmax is much smaller
than the number of honest nodes (n), the vote envelope is
very small. Therefore, all attack edges reside outside the
envelope, resulting in CA ≈ eA with high probability.

Figure 3 illustrates an example of the ticket distribution
process. The vote collector (s) is to distribute Cmax=6
tickets among all links. Each node collects tickets from
its lower level neighbors, keeps one to itself and re-
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distributes the rest evenly across all outgoing links to the
next level. In Figure 3, s sends 3 tickets down each of its
outgoing links. Since A has more outgoing links (3) than
its remaining tickets (2), link A→D receives no tickets.
Tickets are not distributed to links between nodes at the
same level (B→A) or to links from a higher to lower level
(E→B). The final number of tickets distributed on each
link is shown in Figure 3. Except for immediate outgoing
edges from the vote collector, the capacity value of each
link is equal to the amount of tickets it receives plus one.

5.2 Approximate Max-flow calculation
Once capacity assignment is done, the task remains to cal-
culate the set of max-flow paths from the vote collector to
all voters on a given object. It is possible to use existing
max-flow algorithms such as Ford-Fulkerson and Preflow
push [4] to compute vote flows. Unfortunately, these ex-
isting algorithms require O(E) running time to find each
vote flow, where E is the number of edges in the graph.
Since vote aggregation only aims to collect a large fraction
of honest votes, it is not necessary to compute exact max-
flow paths. In particular, we can exploit the structure of
capacity assignment to compute a set of approximate vote
flows in O(∆) time, where ∆ is the diameter of the graph.
For expander-like networks, ∆ = O(log n). For practical
social networks with a few million users, ∆ ≈ 20.

Our approximation algorithm works incrementally by
finding one vote flow for a voter at a time. Unlike the
classic Ford-Fulkerson algorithm, our approximation per-
forms a greedy search from the voter to the collector in
O(∆) time instead of a breadth-first-search from the col-
lector which takes O(E) running time. Starting at a voter,
the greedy search strategy attempts to explore a node at
a lower level if there exists an incoming link with posi-
tive capacity. Since it is not always possible to find such
a candidate for exploration, the approximation algorithm
allows a threshold (t) of non-greedy steps which explores
nodes at the same or a higher level. Therefore, the num-
ber of nodes visited by the greedy search is bounded by
(∆ + 2t). Greedy search works well in practice. For links
within the vote envelope, there is more capacity for lower-
level links and hence greedy search is more likely to find
a non-zero capacity path by exploring lower-level nodes.
For links outside the vote envelope, greedy search results
in short paths to one of the vote entry points.

5.3 Optimization via link pruning
We introduce an optimization strategy that performs link
pruning to reduce the number of attack edges, thereby re-
ducing the attack capacity. Pruning is performed prior to
link capacity assignment and its goal is to bound the in-
degree of each node to a small value, din thres. As a re-
sult, the number of attack edges is reduced if some ad-
versarial nodes have more than din thres incoming edges
from honest nodes. We speculate that the more honest

neighbors an adversarial node has, the easier for it to trick
an honest node into trusting it. Therefore, the number of
attack edges in the pruned network is likely to be smaller
than those in the original network. On the other hand,
pruning is unlikely to affect honest users since each honest
node only attempts to cast one vote via one of its incoming
links.

Since it is not possible to accurately discern honest
identities from Sybil identities, we give all identities the
chance to have their votes collected. In other words, prun-
ing should never disconnect a node. The minimally con-
nected network that satisfies this requirement is a tree
rooted at the vote collector. A tree topology minimizes
attack edges but is also overly restrictive for honest nodes
because each node has exactly one path from the collec-
tor: if that path is saturated, a vote cannot be collected.
A better tradeoff is to allow each node to have at most
din thres > 1 incoming links in the pruned network
so that honest nodes have a large set of diverse paths
while limiting each adversarial node to only din thres at-
tack edges. We examine the specific parameter choice of
din thres in Section 7.

Pruning each node to have at most din thres incoming
links is done in several steps. First, we remove all links ex-
cept those connecting nodes at a lower level (l) to neigh-
bors at the next level (l+ 1). Next, we remove a subset of
incoming links at each node so that the remaining links do
not exceed din thres. In the third step, we add back links
removed in step one for nodes with fewer than din thres

incoming links. Finally, we add one outgoing link back
to nodes that have no outgoing links after step three, with
priority given to links going to the next level. By preferen-
tially preserving links from lower to higher levels, pruning
does not interfere with SumUp’s capacity assignment and
flow computation.

5.4 Security Properties
This section provides a formal analysis of the security
properties of SumUp assuming an expander graph. Vari-
ous measurement studies have shown that social networks
are indeed expander-like [13]. The link pruning optimiza-
tion does not destroy a graph’s expander property because
it preserves the level of each node in the original graph.

Our analysis provides bounds on the expected attack
capacity, CA, and the expected fraction of votes collected
if Cmax honest users vote. The average-case analysis
assumes that each attack edge is a random link in the
graph. For personalized vote aggregation, the expectation
is taken over all vote collectors which include all honest
nodes. In the unfortunate but rare scenario where an ad-
versarial node is close to the vote collector, we can use
feedback to re-adjust link capacities (Section 6).

Theorem 5.1 Given that the trust network G on n nodes
is a bounded degree expander graph, the expected capac-
ity per attack edge is E(CA)

eA
= 1 + O(Cmax

n
logCmax)
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which is 1 + o(1) if Cmax = O(nα) for α < 1. If
eA · Cmax ≪ n, the capacity per attack edge is bounded
by 1 with high probability.

Proof Sketch Let Li represent the number of nodes at
level i with L0 = 1. Let Ei be the number of edges point-
ing from level i − 1 to level i. Notice that Ei ≥ Li. Let
Ti be the number of tickets propagated from level i − 1
to i with T0 = Cmax. The number of tickets at each level
is reduced by the number of nodes at the previous level
(i.e. Ti = Ti−1 − Li−1). Therefore, the number of lev-
els with non-zero tickets is at most O(log(Cmax)) as Li

grows exponentially in an expander graph. For a randomly
placed attack edge, the probability of its being at level i is
at most Li/n. Therefore, the expected capacity of a ran-
dom attack edge can be calculated as 1 +

�
i(

Li

n
· Ti

Ei
) <

1+
�

i(
Li

n
· Cmax

Li
) = 1+O(Cmax

n
logCmax). Therefore,

if Cmax = O(nα) for α < 1, the expected attack capacity
per attack edge is 1 + o(1).

Since the number of nodes within the vote envelope is
at most Cmax, the probability of a random attack edge
being located outside the envelope is 1− Cmax

n
. Therefore,

the probability that any of the eA attack edges lies within
the vote envelope is 1−(1− Cmax

n
)eA < eA·Cmax

n
. Hence,

if eA · Cmax = nα where α < 1, the attack capacity is
bounded by 1 with high probability.

Theorem 5.1 is for expected capacity per attack edge.
In the worse case when the vote collector is adjacent to
some adversarial nodes, the attack capacity can be a sig-
nificant fraction of Cmax. Such rare worst case scenarios
are addressed in Section 6.

Theorem 5.2 Given that the trust network G on n nodes
is a d-regular expander graph, the expected fraction of
votes that can be collected out of Cmax honest voters is
d−λ2

d
(1−Cmax

n
) where λ2 is the second largest eigenvalue

of the adjacency matrix of G.

Proof Sketch SumUp creates a vote envelop consisting
of Cmax entry points via which votes are collected. To
prove that there exists a large fraction of vote flows, we
argue that the minimum cut of the graph between the set
of Cmax entry points and an arbitrary set of Cmax honest
voters is large.

Expanders are well-connected graphs. In particular, the
Expander mixing lemma [19] states that for any set S and
T in a d-regular expander graph, the expected number of
edges between S and T is (d − λ2)|S| · |T |/n, where
λ2 is the second largest eigenvalue of the adjacency ma-
trix of G. Let S be a set of nodes containing Cmax en-
try points and T be a set of nodes containing Cmax hon-
est voters, thus |S| + |T | = n and |S| ≥ Cmax, |T | ≥
Cmax. Therefore, the min-cut value between S and T is
= (d− λ2)|S| · |T |/n ≥ (d− λ2) ·Cmax(n−Cmax)/n.
The number of vote flows between S and T is at least 1/d

of the min-cut value because each vote flow only uses one
of an honest voter’s d incoming links. Therefore, the frac-
tion of votes that can be collected is at least (d − λ2) ·
Cmax(n − Cmax)/(n · d · Cmax) = d−λ2

d
(1 − Cmax

n
).

For well-connected graphs like expanders, λ2 is well sep-
arated from d, so that a significant fraction of votes can be
collected.

5.5 Setting C
max

adaptively
When nv honest users vote on an object, SumUp should
ideally set Cmax to be nv in order to collect a large frac-
tion of honest votes on that object. In practice, nv/n is
very small for any object, even a very popular one. Hence,
Cmax = nv ≪ n and the expected capacity per attack
edge is 1. We note that even if nv ≈ n, the attack capacity
is still bounded by O(log n) per attack edge.

It is impossible to precisely calculate the number of
honest votes (nv). However, we can use the actual num-
ber of votes collected by SumUp as a lower bound esti-
mate for nv. Based on this intuition, SumUp adaptively
sets Cmax according to the number of votes collected for
each object. The adaptation works as follows: For a given
object, SumUp starts with a small initial value for Cmax,
e.g. Cmax = 100. Subsequently, if the number of actual
votes collected exceeds ρCmax where ρ is a constant less
than 1, SumUp doubles the Cmax in use and re-runs the
capacity assignment and vote collection procedures. The
doubling of Cmax continues until the number of collected
votes becomes less than ρCmax.

We show that this adaptive strategy is robust, i.e. the
maximum value of the resulting Cmax will not dramati-
cally exceed nv regardless of the number of bogus votes
cast by adversarial nodes. Since adversarial nodes at-
tempt to cast enough bogus votes to saturate attack ca-
pacity, the number of votes collected is at most nv + CA

where CA = eA(1 + Cmax

n
logCmax). The doubling of

Cmax stops when the number of collected votes is less
than ρCmax. Therefore, the maximum value of Cmax that
stops the adaptation is one that satisfies the following in-
equality:

nv + eA(1 +
Cmax

n
logCmax) < ρCmax

Since logCmax ≤ logn, the adaptation terminates with
C′

max = (nv + eA)/(ρ− log n
n

). As ρ≫ log n
n

, we derive
C′

max = 1
ρ
(nv+eA). The adaptive strategy doublesCmax

every iteration, hence it overshoots by at most a factor
of two. Therefore, the resulting Cmax found is Cmax =
2
ρ
(nv + eA). As we can see, the attacker can only affect

the Cmax found by an additive factor of eA. Since eA is
small, the attacker has negligible influence on the Cmax

found.
The previous analysis is done for the expected case with

random attack edges. Even in a worst case scenario where
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some attack edges are very close to the vote collector, the
adaptive strategy is still resilient against manipulation. In
the worst case scenario, the attack capacity is proportional
to Cmax, i.e. CA = xCmax. Since no vote aggregation
scheme can defend against an attacker who controls a ma-
jority of immediate links from the vote collector, we are
only interested in the case where x < 0.5. The adap-
tive strategy stops increasing Cmax when nv + xCmax <
ρCmax, thus resulting in Cmax ≤ 2nv

ρ−x
. As we can see, ρ

must be greater than x to prevent the attacker from caus-
ing SumUp to increaseCmax to infinity. Therefore, we set
ρ = 0.5 by default.

6 Leveraging user feedback
The basic design presented in Section 5 does not address
the worst case scenario where CA could be much higher
than eA. Furthermore, the basic design only bounds the
number of bogus votes collected on a single object. As
a result, adversaries can still cast up to eA bogus votes
on every object in the system. In this section, we utilize
feedback to address both problems.

SumUp maintains a penalty value for each link and uses
the penalty in two ways. First, we adjust each link’s ca-
pacity assignment so that links with higher penalties have
lower capacities. This helps reduce CA when some attack
edges happen to be close to the vote collector. Second, we
eliminate links whose penalties have exceeded a certain
threshold. Therefore, if adversaries continuously misbe-
have, the attack capacity will drop below eA over time.
We describe how SumUp calculates and uses penalty in
the rest of the section.

6.1 Incorporating negative feedback
The vote collector can choose to associate negative feed-
back with voters if he believes their votes are malicious.
Feedback may be performed for a very small set of
objects-for example, when the collector finds out that an
object is a bogus file or a virus.

SumUp keeps track of a penalty value, pi, for each link
i in the trust network. For each voter receiving negative
feedback, SumUp increments the penalty values for all
links along the path to that voter. Specifically, if the link
being penalized has capacity ci, SumUp increments the
link’s penalty by 1/ci. Scaling the increment by ci is intu-
itive; links with high capacities are close to the vote col-
lector and hence are more likely to propagate some bogus
votes even if they are honest links. Therefore, SumUp im-
poses a lesser penalty on high capacity links.

It is necessary to penalize all links along the path in-
stead of just the immediate link to the voter because that
voter might be a Sybil identity created by some other at-
tacker along the path. Punishing a link to a Sybil identity
is useless as adversaries can easily create more such links.
This way of incorporating negative feedback is inspired
by Ostra [18]. Unlike Ostra, SumUp uses a customized

flow network per vote collector and only allows the col-
lector to incorporate feedback for its associated network
in order to ensure that feedback is always trustworthy.

6.2 Capacity adjustment
The capacity assignment in Section 5.1 lets each node dis-
tribute incoming tickets evenly across all outgoing links.
In the absence of feedback, it is reasonable to assume that
all outgoing links are equally trustworthy and hence to
assign them the same number of tickets. When negative
feedback is available, a node should distribute fewer tick-
ets to outgoing links with higher penalty values. Such ad-
justment is particularly useful in circumstances where ad-
versaries are close to the vote collector and hence might
receive a large number of tickets.

The goal of capacity adjustment is to compute a weight,
w(pi), as a function of the link’s penalty. The num-
ber of tickets a node distributes to its outgoing link i
is proportional to the link’s weight, i.e. ti = tout ∗
w(pi)/

�
∀i∈nbrsw(pi). The question then becomes how

to computew(pi). Clearly, a link with a high penalty value
should have a smaller weight, i.e. w(pi)<w(pj) if pi>pi.
Another desirable property is that if the penalties on two
links increase by the same amount, the ratio of their
weights remains unchanged. In other words, the weight
function should satisfy: ∀p′, pi, pj ,

w(pi)
w(pj)

= w(pi+p′)
w(pj+p′) .

This requirement matches our intuition that if two links
have accumulated the same amount of additional penal-
ties over a period of time, the relative capacities between
them should remain the same. Since the exponential func-
tion satisfies both requirements, we use w(pi) = 0.2pi by
default.

6.3 Eliminating links using feedback
Capacity adjustment cannot reduce the attack capacity to
below eA since each link is assigned a minimum capacity
value of one. To further reduce eA, we eliminate those
links that received high amounts of negative feedback.

We use a heuristic for link elimination: we remove a
link if its penalty exceeds a threshold value. We use a de-
fault threshold of five. Since we already prune the trust
network (Section 5.3) before performing capacity assign-
ment, we add back a previously pruned link if one exists
after eliminating an incoming link. The reason why link
elimination is useful can be explained intuitively: if adver-
saries continuously cast bogus votes on different objects
over time, all attack edges will be eliminated eventually.
On the other hand, although an honest user might have
one of its incoming links eliminated because of a down-
stream attacker casting bad votes, he is unlikely to expe-
rience another elimination due to the same attacker since
the attack edge connecting him to that attacker has also
been eliminated. Despite this intuitive argument, there al-
ways exist pathological scenarios where link elimination
affects some honest users, leaving them with no voting
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Network Nodes Edges Degree Directed?
×1000 ×1000 50%(90%)

YouTube [18] 446 3,458 2 (12) No
Flickr [17] 1,530 21,399 1 (15) Yes
Synthetic [24] 3000 24,248 6 (15) No

Table 1: Statistics of the social network traces or synthetic
model used for evaluating SumUp. All statistics are for the
strongly connected component (SCC).

power. To address such potential drawbacks, we re-enact
eliminated links at a slow rate over time. We evaluate the
effect of link elimination in Section 7.

7 Evaluation
In this section, we demonstrate SumUp’s security prop-
erty using real-world social networks and voting traces.
Our key results are:

1. For all networks under evaluation, SumUp bounds
the average number of bogus votes collected to be no
more than eA while being able to collect >90% of
honest votes when less than 1% of honest users vote.

2. By incorporating feedback from the vote collector,
SumUp dramatically cuts down the attack capacity
for adversaries that continuously cast bogus votes.

3. We apply SumUp to the voting trace and social net-
work of Digg [1], a news aggregation site that uses
votes to rank user-submitted news articles. SumUp
has detected hundreds of suspicious articles that have
been marked as “popular” by Digg. Based on man-
ual sampling, we believe at least 50% of suspicious
articles found by SumUp exhibit strong evidence of
Sybil attacks.

7.1 Experimental Setup
For the evaluation, we use a number of network datasets
from different online social networking sites [17] as well
as a synthetic social network [24] as the underlying trust
network. SumUp works for different types of trust net-
works as long as an attacker cannot obtain many attack
edges easily in those networks. Table 1 gives the statis-
tics of various datasets. For undirected networks, we treat
each link as a pair of directed links. Unless explicitly men-
tioned, we use the YouTube network by default.

To evaluate the Sybil-resilience of SumUp, we inject
eA = 100 attack edges by adding 10 adversarial nodes
each with links from 10 random honest nodes in the net-
work. The attacker always casts the maximum bogus votes
to saturate his capacity. Each experimental run involves
a randomly chosen vote collector and a subset of nodes
which serve as honest voters. SumUp adaptively adjusts
Cmax using an initial value of 100 and ρ = 0.5. By de-
fault, the threshold of allowed non-greedy steps is 20. We
plot the average statistic across five experimental runs in
all graphs. In Section 7.6, we apply SumUp on the real
world voting trace of Digg to examine how SumUp can
be used to resist Sybil attacks in the wild.
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Figure 4: The average capacity per attack edge as a function
of the fraction of honest nodes that vote. The average capacity
per attack edge remains close to 1, even if 1/10 of honest nodes
vote.

7.2 Sybil-resilience of the basic design

The main goal of SumUp is to limit attack capacity while
allowing honest users to vote. Figure 4 shows that the
average attack capacity per attack edge remains close to
1 even when the number of honest voters approaches
10%. Furthermore, as shown in Figure 5, SumUp man-
ages to collect more than 90% of all honest votes in all
networks. Link pruning is disabled in these experiments.
The three networks under evaluation have very different
sizes and degree distributions (see Table 1). The fact that
all three networks exhibit similar performance suggests
that SumUp is robust against the topological details. Since
SumUp adaptively setsCmax in these experiments, the re-
sults also confirm that adaptation works well in finding a
Cmax that can collect most of the honest votes without
significantly increasing attack capacity. We point out that
the results in Figure 4 correspond to a random vote collec-
tor. For an unlucky vote collector close to an attack edge,
he may experience a much larger than average attack ca-
pacity. In personalized vote collection, there are few un-
lucky collectors. These unlucky vote collectors need to
use their own feedback on bogus votes to reduce attack
capacity.

Benefits of pruning: The link pruning optimization, in-
troduced in Section 5.3, further reduces the attack capac-
ity by capping the number of attack edges an adversarial
node can have. As Figure 6 shows, pruning does not af-
fect the fraction of honest votes collected if the threshold
din thres is greater than 3. Figure 6 represents data from
the YouTube network and the results for other networks
are similar. SumUp uses the default threshold (din thres)
of 3. Figure 7 shows that the average attack capacity is
greatly reduced when adversarial nodes have more than 3
attack edges. Since pruning attempts to restrict each node
to at most 3 incoming links, additional attack edges are
excluded from vote flow computation.
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Figure 5: The fraction of votes collected as a function of frac-
tion of honest nodes that vote. SumUp collects more than 80%

votes, even 1/10 honest nodes vote.
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(YouTube graph). More than 90% votes are collected when
din thres = 3.
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Figure 7: Average attack capacity per attack edge decreases as
the number of attack edges per adversary increases.
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Figure 9: The running time of one vote collector gathering up
to 1000 votes. The Ford-Fulkerson max-flow algorithm takes 50

seconds to collect 1000 votes for the YouTube graph.

7.3 Effectiveness of greedy search

SumUp uses a fast greedy algorithm to calculate approx-
imate max vote flows to voters. Greedy search enables
SumUp to collect a majority of votes while using a small
threshold (t) of non-greedy steps. Figure 8 shows the frac-
tion of honest votes collected for the pruned YouTube
graph. As we can see, with a small threshold of 20, the
fraction of votes collected is more than 80%. Even when
disallowing non-greedy steps completely, SumUp man-
ages to collect > 40% of votes.

Figure 9 shows the running time of greedy-search for
different networks. The experiments are performed on
a single machine with an AMD Opteron 2.5GHz CPU
and 8GB memory. SumUp takes around 5ms to collect
1000 votes from a single vote collector on YouTube and
Flickr. The synthetic network incurs more running time as
its links are more congested than those in YouTube and
Flickr. The average non-greedy steps taken in the syn-
thetic network is 6.5 as opposed to 0.8 for the YouTube
graph. Greedy-search dramatically reduces the flow com-
putation time. As a comparison, the Ford-Fulkerson max-
flow algorithm requires 50 seconds to collect 1000 votes
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Figure 10: Average attack capacity per attack edge as a function
of voters. SumUp is better than SybilLimit in the average case.

for the YouTube graph.

7.4 Comparison with SybilLimit

SybilLimit is a node admission protocol that leverages the
trust network to allow an honest node to accept other hon-
est nodes with high probability. It bounds the number of
Sybil nodes accepted to beO(log n). We can apply Sybil-
Limit for vote aggregation by letting each vote collector
compute a fixed set of accepted users based on the trust
network. Subsequently, a vote is collected if and only if it
comes from one of the accepted users. In contrast, SumUp
does not calculate a fixed set of allowed users; rather, it
dynamically determines the set of voters that count toward
each object. Such dynamic calculation allows SumUp to
settle on a small Cmax while still collecting most of the
honest votes. A small Cmax allows SumUp to bound at-
tack capacity by eA.

Figure 10 compares the average attack capacity in
SumUp to that of SybilLimit for the un-pruned YouTube
network. The attack capacity in SybilLimit refers to the
number of Sybil nodes that are accepted by the vote col-
lector. Since SybilLimit aims to accept nodes instead of
votes, its attack capacity remains O(log n) regardless of
the number of actual honest voters. Our implementation
of SybilLimit uses the optimal set of parameters (w = 15,
r = 3000) we determined manually. As Figure 10 shows,
while SybilLimit allows 30 bogus votes per attack edge,
SumUp results in approximately 1 vote per attack edge
when the fraction of honest voters is less than 10%. When
all nodes vote, SumUp leads to much lower attack ca-
pacity than SybilLimit even though both have the same
O(log n) asymptotic bound per attack edge. This is due
to two reasons. First, SumUp’s bound of 1 + logn in
Theorem 5.1 is a loose upper bound of the actual aver-
age capacity. Second, since links pointing to lower-level
nodes are not eligible for ticket distribution, many incom-
ing links of an adversarial nodes have zero tickets and thus
are assigned capacity of one.
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Figure 11: The change in attack capacity as adversaries contin-
uously cast bogus votes (YouTube graph). Capacity adjustment
and link elimination dramatically reduce CA while still allowing
SumUp to collect more than 80% of the honest votes.

7.5 Benefits of incorporating feedback
We evaluate the benefits of capacity adjustment and link
elimination when the vote collector provides feedback
on the bogus votes collected. Figure 11 corresponds to
the worst case scenario where one of the vote collec-
tor’s four outgoing links is an attack edge. At every time
step, there are 400 random honest users voting on an ob-
ject and the attacker also votes with its maximum capac-
ity. When collecting votes on the first object at time step
1, adaption results in Cmax = 2nv

ρ−x
= 3200 because

nv = 400, ρ = 0.5, x = 1/4. Therefore, the attacker man-
ages to cast 1

4Cmax = 800 votes and outvote honest users.
After incorporating the vote collector’s feedback after the
first time step, the adjacent attack edge incurs a penalty
of 1 which results in drastically reduced CA (97). If the
vote collector continues to provide feedback on malicious
votes, 90% of attack edges are eliminated after only 12
time steps. After another 10 time steps, all attack edges
are eliminated, reducingCA to zero. However, because of
our decision to slowly add back eliminated links, the at-
tack capacity doesn’t remains at zero forever. Figure 11
also shows that link elimination has little effects on hon-
est nodes as the fraction of honest votes collected always
remains above 80%.

7.6 Defending Digg against Sybil attacks
In this section, we ask the following questions: Is there
evidence of Sybil attacks in real world content voting sys-
tems? Can SumUp successfully limit bogus votes from
Sybil identities? We apply SumUp to the voting trace and
social network crawled from Digg to show the real world
benefits of SumUp.

Digg [1] is a popular news aggregation site where any
registered user can submit an article for others to vote on.
A positive vote on an article is called a digg. A negative
vote is called a bury. Digg marks a subset of submitted ar-
ticles as “popular” articles and displays them on its front
page. In subsequent discussions, we use the terms pop-
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Number of Nodes 3,002,907
Number of Edges 5,063,244
Number of Nodes in SCC 466,326
Number of Edges in SCC 4,908,958
Out degree avg(50%, 90%) 10(1, 9)
In degree avg(50%, 90%) 10(2, 11)
Number of submitted (popular) articles 6,494,987
2004/12/01-2008/09/21 (137,480)
Diggs on all articles
avg(50%, 90%) 24(2, 15)
Diggs on popular articles
avg(50%, 90%) 862(650, 1810)
Hours since submission before a popular
article is marked as popular.
avg (50,%,90%) 16(13, 23)
Number of submitted (popular) articles 38,033
with bury data available (5,794)
2008/08/13-2008/09/15

Table 2: Basic statistics of the crawled Digg dataset. The
strongly connected component (SCC) of Digg consists of
466,326 nodes.
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being marked as popular and for all articles within 24 hours after
submission.

ular or popularity only to refer to the popularity status
of an article as marked by Digg. A Digg user can cre-
ate a “follow” link to another user if he wants to browse
all articles submitted by that user. We have crawled Digg
to obtain the voting trace on all submitted articles since
Digg’s launch (2004/12/01-2008/09/21) as well as the
complete “follow” network between users. Unfortunately,
unlike diggs, bury data is only available as a live stream.
Furthermore, Digg does not reveal the user identity that
cast a bury, preventing us from evaluating SumUp’s feed-
back mechanism. We have been streaming bury data since
2008/08/13. Table 2 shows the basic statistics of the Digg
“follow” network and the two voting traces, one with bury
data and one without. Although the strongly connected
component (SCC) consists of only 15% of total nodes,
88% of votes come from nodes in the SCC.

There is enormous incentive for an attacker to get a sub-
mitted article marked as popular, thus promoting it to the
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Figure 13: The distribution of the fraction of diggs collected by
SumUp over all diggs before an article is marked as popular.

front page of Digg which has several million page views
per day. Our goal is to apply SumUp on the voting trace
to reduce the number of successful attacks on the popu-
larity marking mechanism of Digg. Unfortunately, unlike
experiments done in Section 7.2 and Section 7.5, there is
no ground truth about which Digg users are adversaries.
Instead, we have to use SumUp itself to find evidence of
attacks and rely on manual sampling and other types of
data to cross check the correctness of results.

Digg’s popularity ranking algorithm is intentionally not
revealed to the public in order to mitigate gaming of the
system. Nevertheless, we speculate that the number of
diggs is a top contributor to an article’s popularity status.
Figure 12 shows the distribution of the number of diggs
an article received before it was marked as popular. Since
more than 90% of popular articles are marked as such
within 24 hours after submission, we also plot the number
of diggs received within 24 hours of submission for all ar-
ticles. The large difference between the two distributions
indicates that the number of diggs plays an important role
in determining an article’s popularity status.

Instead of simply adding up the actual number of diggs,
what if Digg uses SumUp to collect all votes on an article?
We use the identity of Kevin Rose, the founder of Digg,
as the vote collector to aggregate all diggs on an article
before it is marked as popular. Figure 13 shows the distri-
bution of the fraction of votes collected by SumUp over
all diggs before an article is marked as popular. Our pre-
vious evaluation on various network topologies suggests
that SumUp should be able to collect at least 90% of all
votes. However, in Figure 13, there are a fair number of
popular articles with much fewer than the expected frac-
tion of diggs collected. For example, SumUp only man-
ages to collect less than 50% of votes for 0.5% of popu-
lar articles. We hypothesize that the reason for collecting
fewer than the expected votes is due to real world Sybil
attacks.

Since there is no ground truth data to verify whether
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Threshold of the 20% 30% 40% 50%

fraction of collected diggs
# of suspicious articles 41 131 300 800

Advertisement 5 4 2 1
Phishing 1 0 0 0

Obscure political articles 2 2 0 0
Many newly registered voters 11 7 8 10

Fewer than 50 total diggs 1 3 6 4
No obvious attack 10 14 14 15

Table 3: Manual classification of 30 randomly sampled suspi-
cious articles. We use different thresholds of the fraction of col-
lected diggs for marking suspicious articles. An article is labeled
as having many new voters if > 30% of its votes are from users
who registered on the same day as the article’s submission date.

few collected diggs are indeed the result of attacks, we
resort to manual inspection. We classify a popular article
as suspicious if its fraction of diggs collected is less than
a given threshold. Table 3 shows the result of manually
inspecting 30 random articles out of all suspicious arti-
cles. The random samples for different thresholds are cho-
sen independently. There are a number of obvious bogus
articles such as advertisements, phishing articles and ob-
scure political opinions. Of the remaining, we find many
of them have an unusually large fraction (>30%) of new
voters who registered on the same day as the article’s sub-
mission time. Some articles also have very few total diggs
since becoming popular, a rare event since an article typi-
cally receives hundreds of votes after being shown on the
front page of Digg. We find no obvious evidence of at-
tack for roughly half of the sampled articles. Interviews
with Digg attackers [10] reveal that, although there is a
fair amount of attack activities on Digg, attackers do not
usually promote obviously bogus material. This is likely
due to Digg being a highly monitored system with fewer
than a hundred articles becoming popular every day. In-
stead, attackers try to help paid customers promote nor-
mal or even good content or to boost their profiles within
the Digg community.

As further evidence that a lower than expected fraction
of collected diggs signals a possible attack, we examine
Digg’s bury data for articles submitted after 2008/08/13,
of which 5794 are marked as popular. Figure 14 plots the
correlation between the average number of bury votes on
an article after it became popular vs. the fraction of the
diggs SumUp collected before it was marked as popular.
As Figure 14 reveals, the higher the fraction of diggs col-
lected by SumUp, the fewer bury votes an article received
after being marked as popular. Assuming most bury votes
come from honest users that genuinely dislike the article,
a large number of bury votes is a good indicator that the
article is of dubious quality.

What are the voting patterns for suspicious articles?
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Figure 14: The average number of buries an article received
after it was marked as popular as a function of the fraction of
diggs collected by SumUp before it is marked as popular. The
Figure covers 5, 794 popular articles with bury data available.

Since 88% diggs come from nodes within the SCC, we
expect only 12% of diggs to originate from the rest of the
network, which mostly consists of nodes with no incom-
ing follow links. For most suspicious articles, the reason
that SumUp collecting fewer than expected diggs is due
to an unusually large fraction of votes coming from out-
side the SCC component. Since Digg’s popularity mark-
ing algorithm is not known, attackers might not bother to
connect their Sybil identities to the SCC or to each other.
Interestingly, we found 5 suspicious articles with sophis-
ticated voting patterns where one voter is linked to many
identities (∼ 30) that also vote on the same article. We be-
lieve the many identities behind that single voter are likely
Sybil identities because those identities were all created
on the same day as the article’s submission. Additionally,
those identities all have similar usernames.

8 SumUp in a Decentralized Setting
Even though SumUp is presented in a centralized setup
such as a content-hosting Web site, it can also be imple-
mented in a distributed fashion in order to rank objects
in peer-to-peer systems. We outline one such distributed
design for SumUp. In the peer-to-peer environment, each
node and its corresponding user is identified by a self-
generated public key. A pair of users create a trust link
relationship between them by signing the trust statement
with their private keys. Nodes gossip with each other or
perform a crawl of the network to obtain a complete trust
network between any pair of public keys. This is differ-
ent from Ostra [18] and SybilLimit [26] which address
the harder problem of decentralized routing where each
user only knows about a small neighborhood around him-
self in the trust graph. In the peer-to-peer setup, each user
naturally acts as his own vote collector to aggregate votes
and compute a personalized ranking of objects. To obtain
all votes on an object, a node can either perform flooding
(like in Credence [25]) or retrieve votes stored in a dis-
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tributed hash table. In the latter case, it is important that
the DHT itself be resilient against Sybil attacks. Recent
work on Sybil-resilient DHTs [5, 14] addresses this chal-
lenge.

9 Conclusion
This paper presented SumUp, a content voting system
that leverages the trust network among users to defend
against Sybil attacks. By using the technique of adaptive
vote flow aggregation, SumUp aggregates a collection of
votes with strong security guarantees: with high proba-
bility, the number of bogus votes collected is bounded
by the number of attack edges while the number of hon-
est votes collected is high. We demonstrate the real-world
benefits of SumUp by evaluating it on the voting trace of
Digg: SumUp detected many suspicious articles marked
as “popular” by Digg. We have found strong evidence of
Sybil attacks on many of these suspicious articles.
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Abstract: ISPs are increasingly reluctant to collect
and store raw network traces because they can be used
to compromise their customers’ privacy. Anonymization
techniques mitigate this concern by protecting sensitive
information. Trace anonymization can be performed of-
fline (at a later time) or online (at collection time). Of-
fline anonymization suffers from privacy problems be-
cause raw traces must be stored on disk – until the traces
are deleted, there is the potential for accidental leaks or
exposure by subpoenas. Online anonymization drasti-
cally reduces privacy risks but complicates software en-
gineering efforts because trace processing and anony-
mization must be performed at line speed. This paper
presents Bunker, a network tracing system that combines
the software development benefits of offline anonymiz-
ation with the privacy benefits of online anonymization.
Bunker uses virtualization, encryption, and restricted I/O
interfaces to protect the raw network traces and the trac-
ing software, exporting only an anonymized trace. We
present the design and implementation of Bunker, eval-
uate its security properties, and show its ease of use for
developing a complex network tracing application.

1 Introduction

Network tracing is an indispensable tool for many
network management tasks. Operators need network
traces to perform routine network management opera-
tions, such as traffic engineering [19], capacity plan-
ning [38], and customer accounting [15]. Several re-
search projects have proposed using traces for even more
sophisticated network management tasks, such as diag-
nosing faults and anomalies [27], recovering from se-
curity attacks [45], or identifying unwanted traffic [9].
Tracing is also vital to networking researchers. As net-
works and applications grow increasingly complex, un-
derstanding the behavior of such systems is harder than
ever. Gathering network traces helps researchers guide
the design of future networks and applications [42, 49].

Customer privacy is a paramount concern for all on-
line businesses, including ISPs, search engines, and e-
commerce sites. Many ISPs view possessing raw net-
work traces as a liability: such traces sometimes end up
compromising their customers’ privacy through leaks or
subpoenas. These concerns are real: the RIAA has sub-
poenaed ISPs to reveal customer identities when pursu-
ing cases of copyright infringement [16]. Privacy con-
cerns go beyond subpoenas, however. Oversights or er-
rors in preparing and managing network trace and server
log files can seriously compromise users’ privacy by dis-

closing social security numbers, names, addresses, or
telephone numbers [5, 54].

Trace anonymization is the most common technique
for addressing these privacy concerns. A typical imple-
mentation uses a keyed one-way secure hash function to
obfuscate sensitive information contained in the trace.
This could be as simple as transforming a few fields in
the IP headers, or as complex as performing TCP connec-
tion reconstruction and then obfuscating data (e.g., email
addresses) deep within the payload. There are two cur-
rent approaches to anonymizing network traces: offline
and online. Offline anonymization collects and stores
the entire raw trace and then performs anonymization
as a post-processing step. Online anoymization is done
on-the-fly by extracting and anonymizing sensitive infor-
mation before it ever reaches the disk. In practice, both
methods have serious shortcomings that make network
trace collection increasingly difficult for network opera-
tors and researchers.

Offline anonymization poses risks to customer privacy
because of how raw network traces are stored. These
risks are growing more severe because of the need to look
“deeper” into packet payloads, revealing more sensitive
information. Current privacy trends make it unlikely that
ISPs will continue to accept the risks associated with of-
fline anonymization. We have first-hand experience with
tracing Web, P2P, and e-mail traffic at two universities.
In both cases the universities deemed the privacy risks as-
sociated with offline anonymization to be unacceptable.

While online anonymization offers much stronger pri-
vacy benefits, it is very difficult to deploy in practice be-
cause it creates significant software engineering issues.
Any portion of the trace analysis that requires access to
sensitive data must be performed on-the-fly and at a rate
that can handle the network’s peak throughput. This is
practical for simple tracing applications that analyze only
IP and TCP headers; however, it is much more difficult
for tracing applications that require deep packet inspec-
tion. Developing complex online tracing software there-
fore poses a significant challenge. Developers are limited
in their selection of software: adopting garbage-collected
(e.g., Java, C#) and dynamic scripting (e.g., Python, Perl)
languages can be difficult; reusing existing libraries (e.g.,
HTML parsers or regexp engines) may also be hard if
their implementation choices are incompatible with per-
formance requirements. A network tracing experiment
illustrates the performance challenges of online tracing.
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Our goal was to run hundreds of regular expressions to
identify phishing Web forms. However, an Intel 3.6GHz
processor running just one of these regular expressions
(using the off-the-shelf “libpcre” regexp library) could
only handle less than 50 Mbps of incoming traffic.

This paper presents Bunker, a network tracing sys-
tem built and deployed at the University of Toronto.
Bunker offers the software development benefits of of-
fline anonymization and the privacy benefits of online
anonymization. Our key insight is that we can use the
buffer-on-disk approach of offline anonymization if we
can “lock down” the trace files and trace analysis soft-
ware. This approach lets Bunker avoid all the software
engineering downsides of online trace analysis. To im-
plement Bunker, we use virtual machines, encryption,
and restriction of I/O device configuration to construct a
closed-box environment; Bunker requires no specialized
hardware (e.g., a Trusted Platform Module (TPM) or a
secure co-processor) to provide its security guarantees.
The trace analysis and anonymization software is pre-
loaded into a closed-box VM before any raw trace data
is gathered. Bunker makes it difficult for network opera-
tors to interact with the tracing system or to access its in-
ternal state once it starts running and thereby protects the
anonymization key, the tracing software, and the raw net-
work trace files inside the closed-box environment. The
closed-box environment produces an anonymized trace
as its only output.

To protect against physical attacks (e.g., hardware
tampering), we design Bunker to be safe-on-reboot:
upon a reboot, all sensitive data gathered by the system
is effectively destroyed. This property makes physical
attacks more difficult because the attacker must tamper
with Bunker’s hardware without causing a reboot. While
a small class of physical attacks remains feasible (e.g.,
cold boot attacks [21]), in our experience ISPs find the
privacy benefits offered by a closed-box environment that
is safe-on-reboot a significant step forward. Although the
system cannot stop ISPs from being subject to wiretaps,
Bunker helps protect ISPs against the privacy risks inher-
ent in collecting and storing network traces.

Bunker’s privacy properties come at a cost. Bunker
requires the network operator to pre-plan what data to
collect and how to anonymize it before starting to trace
the network. Bunker prevents anyone from changing the
configuration while tracing; it can be reconfigured only
through a reboot that will erase all sensitive data.

The remainder of this paper describes Bunker’s threat
model (Section 2), design goals and architecture (Sec-
tion 3), as well as the benefits of Bunker’s architecture
(Section 4). It then analyzes Bunker’s security proper-
ties when confronted with a variety of attacks (Section
5), describes operational issues (Section 6), and evalu-
ates Bunker’s software engineering benefits by examin-

ing a tracing application (phishing analysis) built by one
student in two months that leverages off-the-shelf com-
ponents and scripting languages (Section 7). The paper’s
final sections review legal issues posed by Bunker’s ar-
chitecture (Section 8) and related work (Section 9).

2 Threat Model

This section outlines the threat model for network
tracing systems. We present five classes of attacks and
discuss how Bunker addresses each.

2.1 Subpoenas For Network Traces

ISPs are discovering that traces gathered for diagnos-
tic and research purposes can be used in court proceed-
ings against their customers. As a result, they may view
the benefits of collecting network traces as being out-
weighed by the liability of possessing such information.
Once a subpoena has been issued, an ISP must cooperate
and reveal the requested information (e.g., traces or en-
cryption keys) as long as the cooperation does not pose
an undue burden. Consequently, a raw trace is protected
against a subpoena only if no one has access to it or to
the encryption and anonymization keys used to protect it.

Our architecture was designed to collect traces while
preserving user privacy even if a court permits a third
party to have full access to the system. Once a Bunker
trace has been initiated, all sensitive information is pro-
tected from the system administrator in the same way it is
protected from any adversary. Thus, our solution makes
it a hardship for the ISP to surrender sensitive infor-
mation. We eliminate potential downsides to collecting
traces for legitimate purposes but do not prevent those
with legal wiretap authorization from installing their own
trace collection system.

2.2 Accidental Disclosure

ISPs face another risk, that of accidental disclosure of
sensitive information from a network trace. History has
shown that whenever people handle sensitive data, the
danger of accidental disclosure is substantial. For exam-
ple, the British Prime Minister recently had to publicly
apologize when a government agency accidentally lost
25 million child benefit records containing names and
bank details because the agency did not follow the cor-
rect procedure for sending these records by courier [5].
Bunker vastly reduces the risk that sensitive data will be
accidentally released or stolen because no human can ac-
cess the unanonymized trace.

2.3 Remote Attacks Over The Internet

Remote theft of data collected by a tracing machine
presents another threat to network tracing systems. There
are many possible ways to break into a system over the
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network, yet there is one simple solution that eliminates
this entire class of attacks. To collect traces, Bunker uses
a specialized network capture card that is incapable of
sending outgoing data. It also uses firewall rules to limit
access to the tracing machine from the internal private
network. Section 5.3 examines in-depth Bunker’s secu-
rity measures against such attacks.

2.4 Operational Attacks

Attacks that traverse the network link being moni-
tored, such as denial-of-service (DoS) attacks, may also
incidentally affect the tracing system. This is a problem
when tracing networks with direct connections to the In-
ternet: Internet hosts routinely receive attack traffic such
as vulnerability probes, denial-of-service (DoS) attacks,
and back-scatter from attacks occurring elsewhere on the
Internet [36]. Methods exist to reduce the impact of DoS
attacks [31] and adversarial traffic [13]. However, these
methods may have limited effectiveness against a large
enough attack. Both Bunker and offline anonymization
systems are more resilient to such attacks because they
need not process the traffic in real time.

Because many network studies collect traces for rel-
atively long time periods, an attacker with physical ac-
cess could tamper with the monitoring system after it
has started tracing, creating the appearance that the orig-
inal system is still running. For example, the attacker
might reboot the system and then set up a new closed-
box environment that uses anonymization keys known to
the attacker. Section 6 describes a simple modification to
Bunker that addresses this type of attack.

2.5 Attacks On Anonymization

Packet injection attacks attempt to partially learn the
anonymization mapping by injecting traffic and then ana-
lyzing the anonymized trace. To perform such attacks, an
adversary transmits traffic over the network being traced
and later identifies this traffic in the anonymized trace.
These attacks are possible when non-sensitive trace in-
formation (e.g., times or request sizes) is used to cor-
relate entries in the anonymized trace with the specific
traffic being generated by the adversary. Packet injec-
tion attacks do not completely break the anonymization
mapping because they do not let the adversary deduce
the anonymization key. Even without packet injection,
recent work has shown that private information can still
be recovered from data anonymized with state-of-the-art
techniques [10, 34]. These attacks typically make use
of public information and attempt to correlate it with the
obfuscated data. Our tracing system is susceptible to at-
tacks on the anonymization scheme. The best way to de-
fend against this class of attacks is to avoid public release
of anonymized trace data [10].
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Figure 1. Logical view of Bunker: Raw data enters the
closed-box perimeter and only anonymized data leaves
this perimeter.

Another problem involves ensuring that the anony-
mization policy is specified correctly, and that the
implementation correctly implements the specification.
Bunker does not explicitly address these issues. We rec-
ommend code reviews of the trace analysis and anony-
mization software. However, even a manual audit of this
software can miss certain properties and anomalies that
could be exploited by a determined adversary [34]. Al-
though there is no simple checklist to follow that ensures
a trace does not leak private data, there are tools that can
aid in the design and implementation of sound anony-
mization policies [35].

2.6 Summary

Bunker’s design raises the bar for mounting any of
these attacks successfully. At a high level, our threat
model assumes that: (1) the attacker has physical access
to the tracing infrastructure but no specialized hardware,
such as a bus monitoring tool; (2) the attacker did not
participate in implementing the trace analysis software.
While Bunker’s security design is motivated by the threat
of subpoenas, it also addresses the other four classes of
attacks described in this section. We examine security
attacks against Bunker in Section 5 and we discuss legal
issues in Section 8.

3 The Bunker Architecture
Our main insight when designing Bunker is that a

tracing infrastructure can maintain large caches of sen-
sitive data without compromising user privacy as long
as none of that data leaves the host. Figure 1 illustrates
Bunker’s high-level design, which takes raw traffic as in-
put and generates an anonymized trace.

3.1 Design Goals

1. Privacy. While the system may store sensitive data
such as unanonymized packets, it must not permit an out-
side agent to extract anything other than analysis output.

2. Ease of development. The system should place as
few constraints as possible on implementing the analysis
software. For example, protocol reconstruction and pars-
ing should not have real-time performance requirements.
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3. Robustness. Common bugs found in handling
corner cases in parsing and analysis code should lead to
small errors in the trace rather than crashing the system
or completely corrupting its output.

4. Performance. The proposed system must per-
form as well as today’s network tracers when running on
equivalent hardware. In particular, it should be possible
to trace a high-capacity link with inexpensive hardware.

5. Use commodity hardware and software. The
proposed system should not require specialized hard-
ware, such as a Trusted Platform Module (TPM).

3.2 Privacy Properties

To meet our privacy design goal, we must protect all
gathered trace data even from an attacker who has phys-
ical access to the network tracing platform. To achieve
this high-level of protection, we designed Bunker to have
the following two properties:

1. Closed-box. The tracing infrastructure runs all
software that has direct access to the captured trace data
inside a closed-box environment. Administrators, oper-
ators, and users cannot interact with the tracing system
or access its internal state once it starts running. Input
to the closed-box environment is raw traffic; output is an
anonymized trace.

2. Safe-on-reboot. Upon a reboot, all gathered sensi-
tive data is effectively destroyed. This means that all un-
encrypted data is actually destroyed; the encryption key
is destroyed for all encrypted data placed in stable stor-
age. Bunker uses ECC RAM modules that are zeroed
out by the BIOS before booting [21]. Thus, it is safe-on-
reboot for reboots caused by pressing the RESET button
or by powering off the machine.

The closed-box property prevents an attacker from
gaining access to the data or to the tracing code while
it is running. However, this property is not sufficient.
An attacker could restart the system and boot a different
software image to access data stored on the tracing sys-
tem, or an attacker could tamper with the tracing hard-
ware (e.g., remove a hard drive and plug it in to another
system). To protect sensitive data against such physical
attacks, we use the safe-on-reboot property to erase all
sensitive data upon a reboot. Together, these two proper-
ties prevent an attacker from gaining access to sensitive
data via system tampering.

3.3 The Closed-Box Property

Bunker uses virtual machines to provide the closed-
box property. We now describe the rationale for our de-
sign and implementation.

3.3.1 Design Approach

In debating whether to use virtual or physical ma-
chines (e.g., a sealed appliance) to design our closed-box
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Figure 2. Overview of Bunker’s implementation. The
closed-box VM runs a carefully configured Linux kernel.
The shaded area represents the Trusted Computing Base
(TCB) of our system.

environment, we chose the virtual machine option pri-
marily for flexibility and ease of development. We an-
ticipated that our design would undergo small modifica-
tions to accommodate unforeseen problems and worried
that making small changes to a sealed appliance would
be too difficult after the initial system was implemented
and deployed. With VMs, Bunker’s software can be eas-
ily retrofitted to trace different types of traffic. For exam-
ple, we used Bunker to gather a trace of Hotmail e-mails
and to gather flow-level statistics about TCP traffic.

Virtual machine monitors (VMMs) have been used in
the past for building closed-box VMs [20, 11]. Using
virtual machines to provide isolation is especially ben-
eficial for tasks that require little interaction [6], such
as network tracing. Bunker runs all software that pro-
cesses captured data inside a highly trusted closed-box
VM. Users, administrators, and software in other VMs
cannot interact with the closed-box or access any of its
internal state once it starts running.

3.3.2 Implementation Details

We used the Xen 3.1 VMM to implement Bunker’s
closed-box environment. Xen, an open-source VMM,
provides para-virtualized x86 virtual machines [4]. The
VMM executes at the highest privilege level on the pro-
cessor. Above the VMM are the virtual machines, which
Xen calls domains. Each domain executes a guest oper-
ating system, such as Linux, which runs at a lower privi-
lege level than the VMM.

In Xen, Domain0 has a special role: it uses a con-
trol interface provided by the VMM to perform man-
agement functions outside of the VMM, such as creating
other domains and providing access to physical devices
(including the network interfaces). Both its online trace
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Figure 3. iptables firewall rules: An abbreviated list of
the rules that creates a one-way-initiation interface be-
tween the closed-box VM and the open-box VM. These
rules allow connections only if they are initiated by the
closed-box VM. Note that the ESTABLISHED state above
refers to a connection state used by iptables and not to
the ESTABLISHED state in the TCP stack.

collection and offline trace analysis components are im-
plemented as a collection of processes that execute on a
“crippled” Linux kernel that runs in the Domain0 VM,
as shown in Figure 2.

We carefully configured the Linux kernel running in
Domain0 to run as a closed-box VM. To do this, we
severely limited the closed-box VM’s I/O capabilities
and disabled all the kernel functionality (i.e., kernel sub-
systems and modules) not needed to support tracing. We
disabled all drivers (including the monitor, mouse and
keyboard) inside the kernel except for: 1) the network
capture card driver; 2) the hard disk driver; 3) the vir-
tual interface driver, used for closed-box VM to open-
box VM communication, and 4) the standard NIC driver
used to enable networking in the open-box VM. We also
disabled the login functionality; nobody, ourselves in-
cluded, can login to the closed-box VM. Once the kernel
boots, the kernel init process runs a script that launches
the tracer. We provide a publicly downloadable copy of
the kernel configuration file1 used to compile the Do-
main0 kernel so that anyone can audit it.

The closed-box VM sends anonymized data and non-
sensitive diagnostic data to the open-box VM via a one-
way-initiation interface, as follows. We setup a layer-
3 firewall (e.g., iptables) that allows only those connec-
tions initiated by the closed-box VM; this firewall drops
any unsolicited traffic from the open-box VM. Figure 3
presents an abbreviated list of the firewall rules used to
configure this interface.

We deliberately crippled the kernel to restrict all other
I/O except that from the four remaining drivers. We con-
figured and examined each driver to eliminate any possi-
bility of an adversary taking advantage of these channels
to attack Bunker. Section 5 describes Bunker’s system
security in greater detail.

3.4 The Safe-on-Reboot Property

To implement the safe-on-reboot property, we need to
ensure that all sensitive data and the anonymization key
are stored in volatile memory only. However, tracing ex-
periments frequently generate more sensitive data than

1http://www.slup.cs.toronto.edu/utmtrace/
config-2.6.18-xen0-noscreen

can fit into memory. For example, a researcher might
need to capture a very large raw packet trace before run-
ning a trace analysis program that makes multiple passes
through the trace. VMMs alone cannot protect data writ-
ten to disk, because an adversary could simply move the
drive to another system to extract the data.

3.4.1 Design Approach

On boot-up, the closed-box VM selects a random key
that will be used to encrypt any data written to the hard
disk. This key (along with the anonymization key) is
stored only in the closed box VM’s volatile memory, en-
suring that it is both inaccessible to other VMs and lost
on reboot. Because data stored on the disk can be read
only with the encryption key, this approach effectively
destroys the data after a reboot. The use of encryption to
make disk storage effectively volatile is not novel; swap
file encryption is used on some systems to ensure that
fragments of an application’s memory space do not per-
sist once the application has terminated or the system has
restarted [39].

3.4.2 Implementation Details

To implement the safe-on-reboot property, we need to
ensure that all sensitive information is either stored only
in volatile memory or on disk using encryption where the
encryption key is stored only in volatile memory. To im-
plement the encrypted store, we use the dm-crypt [41]
device-mapper module from the Linux 2.6.18 kernel.
This module provides a simple abstraction: it adds an
encrypted device on top of any ordinary block device.
As a result, it works with any file system. The dm-crypt
module supports several encryption schemes; we used
the optimized implementation of AES. To ensure that
data in RAM does not accidentally end up on disk, we
disabled the swap partition. If swapping is needed in the
future, we could enable dm-crypt on the swap partition.
The root file system partition that contains the closed-
box operating system is initially mounted read only. Be-
cause most Linux configurations expect the root parti-
tion to be writable, we enable a read-write overlay for
the root partition that is protected by dm-crypt. This also
ensures that the trace analysis software does not acciden-
tally write any sensitive data to disk without encryption.

3.5 Trace Analysis Architecture

Bunker’s tracing software consists of two major
pieces: 1) the online component, independent of the par-
ticular network tracing experiment, and 2) the offline
component, which in our case is a phishing analysis trac-
ing application. Figure 4 shows Bunker’s entire pipeline,
including the online and offline components.

Bunker uses tcpdump version 3.9.5 to collect packet
traces. We fine-tuned tcpdump to increase the size of its
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Figure 4. Flow of trace data through Bunker’s modules. The online part of Bunker consists of tcpdump and the bfr
buffering module. The offline part of Bunker consists of bfr, libNids, HTTP parser, Hotmail parser, SpamAssassin, and
an anonymizer module. Also, tcpdump, bfr, and libNids are generic components to Bunker, wherease HTTP parser,
Hotmail parser, SpamAssassin, and the anonymized module are specific to our current application: collecting traces
of phishing e-mail.

receive buffers. All output from tcpdump is sent directly
to bfr, a Linux non-blocking pipe buffer that buffers data
between Bunker’s offline and online components. We
use multiple memory mapped files residing on the en-
crypted disks as the bfr buffer and we allocate 380 GB of
disk space to it, sufficient to buffer over 8 hours of HTTP
traffic for our network. Figure 5 shows how bfr’s buffer
size varies over time.

Our Bunker deployment at the University of Toronto
is able to trace continuously, even with an unoptimized
offline component. This is because of the cyclical na-
ture of network traffic (e.g., previous studies showed that
university traffic is 1.5 to 2 times lower on a weekend
day than on a week day [42, 50]). This allows the offline
component to catch up with the online component dur-
ing periods of low load, such as nights and weekends. In
general, Bunker can only trace continuously if the buffer
drains completely at least once during the week. If the
peak buffer size during a week day is p and Bunker’s of-
fline component leaves ∆ unprocessed at the end of a
week day (see Figure 5), Bunker is able to trace continu-
ously if the following two conditions hold:

1. Bunker’s buffer size is larger than 4×∆+p, or the
amount of unprocessed data after four consecutive week
days plus the peak traffic on the fifth week day;

2. During the weekend, Bunker’s offline component
can catch up to the online component by at least 5 × ∆

of the unprocessed data in the buffer.
The tracing application we built using Bunker gath-

ers traces of phishing e-mails received by Hotmail users
at the University of Toronto. The offline trace analysis
component performs five tasks: 1) reassembling pack-
ets into TCP streams; 2) parsing HTTP; 3) parsing Hot-
mail; 4) running SpamAssassin over the Hotmail e-mails,
and 5) anonymizing output. To implement each of these
tasks, we wrote simple Python and Perl scripts that made
extensive use of existing libraries and tools.

For TCP/IP reconstruction, we used libNids [48], a C
library that runs the TCP/IP stack from the Linux 2.0 ker-
nel in user-space. libNids supports reassembly of both

IP fragments and TCP streams. Both the HTTP and the
Hotmail parsers are written in Python version 2.5. We
used a wrapper for libNids in Python to interface with our
HTTP parsing code. Whenever a TCP stream is assem-
bled, libNids calls a Python function that passes on the
content to the HTTP and Hotmail parsers. The Hotmail
parser passes the bodies of the e-mail messages to Spa-
mAssassin (written in Perl) to utilize its spam and phish-
ing detection algorithms. The output of SpamAssassin
is parsed and then added to an internal object that repre-
sents the Hotmail message. This object is then serialized
as a Python “pickled” object before it is transferred to
the anonymization engine. We used an HTTP anonymiz-
ation policy similar to the one described in [35]. We took
two additional steps towards ensuring that the anonymiz-
ation policy is correctly specified and implemented: (1)
we performed a code review of the policy and its im-
plementation, and (2) we made the policy and the code
available to the University of Toronto’s network opera-
tors encouraging them to inspect it.

3.6 Debugging

Debugging a closed-box environment is challenging
because an attacker could use the debugging interface to
extract sensitive internal state from the system. Despite
this restriction, we found the development of Bunker’s
analysis software to be relatively easy. Our experience
found the off-the-shelf analysis code we used in Bunker
to be well tested and debugged. We used two addi-
tional techniques for helping to debug Bunker’s analysis
code. First, we tested our software extensively in the lab
against synthetic traffic sources that do not pose any pri-
vacy risks. To do this, we booted Bunker into a special
diagnostic mode that left I/O devices (such as the key-
board and monitor) enabled. This configuration allowed
us to easily debug the system and patch the analysis soft-
ware without rebooting.

Second, we ensured that every component of our anal-
ysis software produced diagnostic logs. These logs were
sent from the closed-box VM to the open-box VM using
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Figure 5. The size of bfr’s buffer over time. While the
queue size increases during the day, it decreases during
night when there is less traffic. At the end of this partic-
ular day, Bunker’s offline component still had 50GB of
unprocessed raw trace left in the buffer.

the same interface as the anonymized trace. They proved
helpful in shedding light on the “health” of the processes
inside the closed-box VM. We were careful to ensure that
no sensitive data could be written to the log files in order
to preserve trace data privacy.

4 The Benefits of Bunker

This section presents the benefits offered by Bunker’s
architecture.

4.1 Privacy Benefits

Unlike offline anonymization, our approach does not
allow network administrators or researchers to work
directly with sensitive data at any time. Because
unanonymized trace data cannot be directly accessed, it
cannot be produced under a subpoena. Our approach
also greatly reduces the chance that unanonymized data
will be stolen or accidentally released because individu-
als cannot easily extract such data from the system.

The privacy guarantees provided by our tracing sys-
tem are more powerful than those offered by online
anonymization. Bunker’s anonymization key is stored
within the closed-box VM, which prevents anyone from
accessing it. While online anonymization tracing sys-
tems are typically careful to avoid writing unanonymized
data to stable storage, they generally do not protect the
anonymization key against theft by an adversary with the
ability to login to the machine.

4.2 Software Engineering Benefits

When an encrypted disk is used to store the raw net-
work trace for later processing, the trace analysis code is
free to run offline at slower than line speeds. Bunker sup-
ports two models for tracing. In continuous tracing, the
disk acts as a large buffer, smoothing the traffic’s bursts
and its daily cycles. To trace network traffic continu-
ously, Bunker’s offline analysis code needs to run fast
enough for the average traffic rate, but it need not keep

up with the peak traffic rate. Bunker also supports de-
ferred trace analysis, where the length of the tracing pe-
riod is limited by the amount of disk storage, but there
are no constraints on the performance of the offline trace
analysis code. In contrast, online anonymization tracing
systems process data as it arrives and therefore must han-
dle peak traffic in real-time.

Bunker’s flexible performance requirements let the
developer use managed languages and sophisticated li-
braries when creating trace analysis software. As a re-
sult, its code is both easier to write and less likely to
contain bugs. The phishing analysis application using
Bunker was built by one graduate student in less than two
months, including the time spent configuring the closed-
box environment (a one-time cost with Bunker). This
development effort contrasts sharply with our experience
developing tracing systems with online anonymization.
To improve performance, these systems required devel-
opers to write carefully optimized code in low-level lan-
guages using sophisticated data structures. Bunker lets
us use Python scripts to parse HTTP, a TCP/IP reassem-
bly library, and Perl scripts running SpamAssassin.

4.3 Fault Handling Benefits

One serious drawback of most online trace analysis
techniques is their inability to cope gracefully with bugs
in the analysis software. Often, these are “corner-case”
bugs that arise in abnormal traffic patterns. In many cases
researchers and network operators would prefer to ig-
nore these abnormal flows and continue the data gath-
ering process; however, if the tracing software crashes,
all data would be lost until the system can be restarted.
This could result in the loss of megabytes of data even
if the restart process is entirely automated. Worse, this
process introduces systematic bias in the data collection
because crashes are more likely to affect long-lived than
short-lived flows.

Bunker can better cope with bugs because its online
and offline components are fully decoupled. This pro-
vides a number of benefits. First, Bunker’s online trace
collection software is simple because it only captures
packets and loads them in RAM (encryption is handled
automatically at the file system layer). Its simplicity and
size make it easy to test extensively. Second, the on-
line software need not change even when the type of
trace analysis being performed changes. Third, the of-
fline trace analysis software also becomes much simpler
because it need not be heavily optimized to run at line
speed. Unoptimized software tends to have a simpler
program structure and therefore fewer bugs. Simpler
program structure also makes it easier to recover from
bugs when they do arise. Finally, a decoupled architec-
ture makes it possible to identify the flow that caused the
error in the trace analyzer, filter out that flow from the
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buffered raw trace, and restart the trace analyzer so that
it never sees that flow as input and thereby avoids the bug
entirely. Section 7 quantifies the effect of this improved
fault handling on the number of flows that are dropped
due to a parsing bug.

5 Security Attacks

Bunker’s design is inspired by Terra, a VM-based
platform for trusted computing [20]. Both Terra and
Bunker protect sensitive data by encapsulating it in a
closed-box VM with deliberately restricted I/O inter-
faces. The security of such architectures does not rest
on the size of the trusted computing base (TCB) but on
whether an attacker can exploit a vulnerability through
the system’s narrow interfaces. Even if there is a vulner-
ability in the OS running in the closed-box VM, Bunker
remains secure as long as attackers cannot exploit the
vulnerability through the restricted channels. In our ex-
perience, ISPs have found Bunker’s security properties a
significant step forward in protecting users privacy when
tracing.

Attacks on Bunker can be categorized into three
classes. The first are those that attempt to subvert the
narrow interfaces of the closed-box VM. A successful
attack on these interfaces exposes the closed-box VM’s
internals. The second class are physical attacks, in which
the attacker tampers with Bunker’s hardware. The third
possibility are attacks whereby Bunker deliberately al-
lows network traffic into the closed-box VM: an attacker
could try to exploit a vulnerability in the trace analysis
software by injecting traffic in the network being moni-
tored. We now examine each attack type in greater detail.

5.1 Attacking the Restricted Interfaces of the
Closed-Box VM

There are three ways to attack the restricted interfaces
of the closed-box VM: 1) subverting the isolation pro-
vided by the VMM to access the memory contents of the
closed-box VM; 2) exploiting a security vulnerability in
one of the system’s drivers; and 3) attacking the closed-
box VM directly using the one-way-initiation interface
between the closed and open-box VMs.

5.1.1 Attacking the VMM

We use a VMM to enforce isolation between soft-
ware components that need access to sensitive data and
those that do not. Bunker’s security rests on the assump-
tion that VMM-based isolation is hard to attack, an as-
sumption made by many in industry [23, 47] and the re-
search community [20, 11, 6, 43]. There are other ap-
proaches we could have used to confine sensitive data
strictly to the pre-loaded analysis software. For exam-
ple, we could have used separate physical machines to

host the closed and open box systems. Alternatively, we
could have relied on a kernel and its associated isola-
tion mechanisms, such as processes and file access con-
trols. However, VM-based isolation is generally thought
to provide stronger security than process-based isolation
because VMMs are small enough to be rigorously ver-
ified and export only a very narrow interface to their
VMs [6, 7, 29]. In contrast, kernels are complex pieces
of software that expose a rich interface to their processes.

5.1.2 Attacking the Drivers

Drivers are among the buggiest components of an
OS [8]. Security vulnerabilities in drivers let attackers
bypass all access restrictions imposed by the OS. Sys-
tems without an IOMMU are especially susceptible to
buggy drivers because they cannot prevent DMA-capable
hardware from accessing arbitrary memory addresses.
Many filesystem drivers can be exploited by carefully
crafted filesystems [53]. Thus, if Bunker were to auto-
mount inserted media, an attacker could compromise the
system by inserting a CDROM or USB memory device
with a carefully crafted filesystem image.

Bunker addresses such threats by disabling all drivers
(including the monitor, mouse, and keyboard) except
these four: 1) the network capture card driver, 2) the
hard disk driver, 3) the driver for the standard NIC used
to enable networking in the open-box VM, and 4) the
driver for the virtual interfaces used between the closed-
box and open-box VMs. In particular, we were careful
to disable external storage device support (i.e. CDROM,
USB mass storage) and USB support.

We examined each of these drivers and believe that
none can be exploited to gain access to the closed-box.
First, the network capture card loads incoming network
traffic via one of the drivers left enabled in Domain0.
This capture card, a special network monitoring card
made by Endace (DAG 4.3GE) [17], cannot be used for
two-way communication. Thus, an attacker cannot gain
remote access to the closed-box solely through this net-
work interface. The second open communication chan-
nel is the SCSI controller driver for our hard disks. This
is a generic Linux driver, and we checked the Linux ker-
nel mailing lists to ensure that it had no known bugs. The
third open communication channel, the NIC used by the
open-box VM, remains in the closed-box VM because
Xen’s design places all hardware drivers in Domain0. We
considered mapping this driver directly into DomainU,
but doing so would create challenging security issues re-
lated to DMA transfers that are best addressed with spe-
cialized hardware support (SecVisor [43] discusses these
issues in detail). Instead, we use firewall rules to ensure
that all outbound communication on this NIC originates
from the open-box VM. As with the SCSI driver, this is
a generic Linux gigabit NIC driver, and we verified that
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it had no known bugs. The final open communication
channel is constructed by installing a virtual NIC in both
the closed-box and open-box VMs and then building a
virtual network between them. Typical for most Xen
environments, this configuration permits communication
across different Domains. As with the SCSI driver, we
checked that it had no known security vulnerabilities.

5.1.3 Attacking the One-Way-Initiation Interface

Upon startup, Bunker firewalls the interface between
the open-box VM and the closed-box VM using ipta-
bles. The rules used to configure iptables dictate that no
connections are allowed unless they originate from the
closed-box VM (see Figure 3). We re-used a set of rules
from an iptables configuration for firewalling home envi-
ronments found on the Internet.

5.2 Attacking Hardware

Bunker protects the closed-box VM from hardware at-
tacks by making it safe-on-reboot. If an attacker turns off
the machine to tamper with the hardware (e.g. by remov-
ing existing hardware or installing new hardware), the
sensitive data contained in the closed-box VM is effec-
tively destroyed. This is because the encryption keys and
any unencrypted data are only stored in volatile memory
(RAM). Therefore, hardware attacks must be mounted
while the system is running. Section 5.1.2 discusses how
we eliminated all unnecessary drivers from Bunker; this
protects Bunker against attacks relying on adding new
system devices, such as USB devices.

Another class of hardware attacks is one in which the
attacker attempts to extract sensitive data (e.g., the en-
cryption keys) from RAM. Such attacks can be mounted
in many ways. A recent project demonstrated that the
contents of today’s RAM modules may remain readable
even minutes after the system has been powered off [21].
Bunker is vulnerable to such attacks: an attacker could
try to extract the encryption keys from memory by re-
moving the RAM modules from the tracing machine and
placing them into one configured to run key-searching
software over memory on bootup [21]. Another approach
is to attach a bus monitor to observe traffic on the mem-
ory bus. Preventing RAM-based attacks requires special-
ized hardware, which we discuss below. Yet another way
is to attach a specialized device, such as certain Firewire
devices, that can initiate DMA transfers without any sup-
port from software running on the host [37, 14]. Prevent-
ing this attack requires either 1) disabling the Firewire
controller or 2) support from an IOMMU to limit which
memory regions can be accessed by Firewire devices.

Secure Co-processors Can Prevent Hardware At-
tacks: A secure co-processor contains a CPU pack-
aged with a moderate amount of non-volatile memory
enclosed in a tamper-resistant casing [44]. A secure

co-processor would let Bunker store the encryption and
anonymization keys, the unencrypted trace data and the
code in a secure environment. It also allows the code to
be executed within the secure environment.

Trusted Platform Modules (TPMs) Cannot Pre-
vent Hardware Attacks: Unfortunately, the use of
TPMs would not significantly help Bunker survive hard-
ware attacks. The limited storage and execution capa-
bilities of a TPM cannot fully protect encryption keys
and other sensitive data from an adversary with physical
access [21]. This is because symmetric encryption and
decryption are not performed directly by the TPM; these
operations are still handled by the system’s CPU. There-
fore, the encryption keys must be exposed to the OS and
stored in RAM, making them subject to the attack types
mentioned above.

5.3 Attacking the Trace Analysis Software
An attacker could inject carefully crafted network

traffic to exploit a vulnerability in the trace analysis soft-
ware, such as a buffer overflow. Because this software
does not run as root, such attacks cannot disable the nar-
row interfaces of the closed-box; the attacker needs root
privileges to alter the OS drivers or the iptable’s firewall
rules. Nevertheless, such an attack could obtain access
to sensitive data, skip the anonymization step, and send
captured data directly to the open-box VM through the
one-way-initiation interface.

While possible, such attacks are challenging to mount
in practice for two reasons. First, Bunker’s trace anal-
ysis software combines C (e.g., tcpdump plus a TCP/IP
reconstruction library, which is a Linux 2.0 networking
stack running in user-space), Python, and Perl. The C
code is well-known and well-tested, making it less likely
to have bugs that can be remotely exploited by injecting
network traffic. Bunker’s application-level parsing code
is written in Python and Perl, two languages that are re-
sistant to buffer overflows. In contrast, online anonymiz-
ers write all their parsing code in unmanaged languages
(e.g., C or C++) in which it is much harder to handle code
errors and bugs.

Second, a successful attack would send sensitive data
to the open-box VM. The attacker must then find a way
to extract the data from the open-box VM. To mitigate
this possibility, we firewall the open-box’s NIC to re-
ject any traffic unless it originates from our own private
network. Thus, to be successful, an attacker must not
only find an exploitable bug in the trace analysis code
but must also compromise the open-box VM through an
attack that originates from our private network.

6 Operational Issues
At boot time, Bunker’s bootloader asks the user to

choose between two configurations: an ordinary one and
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a restricted one. The ordinary configuration loads a typ-
ical Xen environment with all drivers enabled. We use
this environment only to prepare a tracing experiment
and to configure Bunker; we never gather traces in it
because it offers no privacy benefits. To initiate a trac-
ing experiment, we boot into the restricted environment.
When booting into this environment, Bunker’s display
and keyboard freeze because no drivers are being loaded.
In this configuration, we use the open NIC to log in to
the open-box VM where we can monitor the anonymized
traces received through the one-way-initiation interface.
These traces also contain meta-data about the health of
the closed-box VM, including a variety of counters (such
as packets received, packets lost, usage of memory, and
amount of free space on the encrypted disk).

Network studies often need traces that span weeks,
months, or even years. The closed-box nature of Bunker
and its long-term use raise the possibility of the following
operational attack: an intruder gains physical access to
Bunker, reboots it, and sets it up with a fake restricted en-
vironment that behaves like Bunker’s restricted environ-
ment but uses encryption and anonymization keys known
to the intruder. This attack could remain undetected by
network operators. From the outside, Bunker seems to
have gathered network traces continuously.

To prevent this attack, Bunker could generate a pub-
lic/private key-pair upon starting the closed-box VM.
The public key would be shared with the network op-
erator who saves an offline copy, while the private key
would never be released from the closed-box VM. To
verify that Bunker’s code has not been replaced, the
closed-box VM would periodically send a heartbeat mes-
sage through the one-way-initiation interface to the open-
box. The heartbeat message would contain the experi-
ment’s start time, the current time, and additional coun-
ters, all signed with the private key to let network opera-
tors verify that Bunker’s original closed-box remains the
one currently running. This prevention mechanism is not
currently implemented.

7 Evaluation

This section presents a three-pronged evaluation of
Bunker. First, we measure the performance overhead in-
troduced by virtualization and encryption. Second, we
evaluate Bunker’s software engineering benefits when
compared to online tracing tools. Third, we conduct an
experiment to show Bunker’s fault handling benefits.

7.1 Performance Overhead

To evaluate the performance overhead of virtualiza-
tion and encryption, we ran tcpdump (i.e., Bunker’s on-
line component) to capture all traffic traversing a gigabit
link and store it to disk. We measured the highest rate of
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Figure 6. Performance overhead of virtualization and
encryption: We measured the rate of traffic that tcpdump
can capture on our machine with no packet losses under
four configurations: standalone, running in a Xen VM,
running on top of an encrypted file system, and running
on top of an encrypted file system in a Xen VM. All output
captured by tcpdump was written to the disk.

traffic tcpdump can capture with no packet losses under
four configurations: standalone, running in a Xen VM,
running on top of an encrypted disk with dm-crypt [41],
and running on top of an encrypted disk in a Xen VM.

Our tracing host is a dual Intel Xeon 3.0GHz with
4 GB of RAM, six 150 GB SCSI hard-disk drives, and
a DAG 4.3GE capture card. We ran Linux Debian 4.0
(etch), kernel version 2.6.18-4 and attached the tracer to
a dedicated Dell PowerConnect 2724 gigabit switch with
two other commodity PCs attached. One PC sent con-
stant bit-rate (CBR) traffic at a configurable rate to the
other; the switch was configured to mirror all traffic to
our tracing host. We verified that no packets were being
dropped by the switch.

Figure 6 shows the results of this experiment. The
first bar shows that we capture 925 Mbps when running
tcpdump on the bare machine with no isolation. The lim-
iting factor in this case is the rate at which our commod-
ity PCs can exchange CBR traffic; even after fine tuning,
they can exchange no more than 925 Mbps on our gi-
gabit link. The second bar shows that running tcpdump
inside the closed-box VM has no measurable effect on
the capture rate because the limiting factor remains our
traffic injection rate. When we use the Linux dm-crypt
module for encryption, however, the capture rate drops
to 817 Mbps even when running on the bare hardware:
the CPU becomes the bottleneck when running the en-
cryption module. Combining both virtualization and en-
cryption shows a further drop in the capture rate, to 618
Mbps. Once the CPU is fully utilized by the encryp-
tion module, the additional virtualization costs become
apparent.

Our implementation of Bunker can trace network traf-
fic of up to 618 Mbps with no packet loss. This is suf-
ficiently fast for the tracing scenario that our university
requires. While the costs of encryption and virtualiza-
tion are not negligible, we believe that these overheads
will decrease over time as Linux and Xen incorporate
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a restricted one. The ordinary configuration loads a typ-
ical Xen environment with all drivers enabled. We use
this environment only to prepare a tracing experiment
and to configure Bunker; we never gather traces in it
because it offers no privacy benefits. To initiate a trac-
ing experiment, we boot into the restricted environment.
When booting into this environment, Bunker’s display
and keyboard freeze because no drivers are being loaded.
In this configuration, we use the open NIC to log in to
the open-box VM where we can monitor the anonymized
traces received through the one-way-initiation interface.
These traces also contain meta-data about the health of
the closed-box VM, including a variety of counters (such
as packets received, packets lost, usage of memory, and
amount of free space on the encrypted disk).

Network studies often need traces that span weeks,
months, or even years. The closed-box nature of Bunker
and its long-term use raise the possibility of the following
operational attack: an intruder gains physical access to
Bunker, reboots it, and sets it up with a fake restricted en-
vironment that behaves like Bunker’s restricted environ-
ment but uses encryption and anonymization keys known
to the intruder. This attack could remain undetected by
network operators. From the outside, Bunker seems to
have gathered network traces continuously.

To prevent this attack, Bunker could generate a pub-
lic/private key-pair upon starting the closed-box VM.
The public key would be shared with the network op-
erator who saves an offline copy, while the private key
would never be released from the closed-box VM. To
verify that Bunker’s code has not been replaced, the
closed-box VM would periodically send a heartbeat mes-
sage through the one-way-initiation interface to the open-
box. The heartbeat message would contain the experi-
ment’s start time, the current time, and additional coun-
ters, all signed with the private key to let network opera-
tors verify that Bunker’s original closed-box remains the
one currently running. This prevention mechanism is not
currently implemented.

7 Evaluation

This section presents a three-pronged evaluation of
Bunker. First, we measure the performance overhead in-
troduced by virtualization and encryption. Second, we
evaluate Bunker’s software engineering benefits when
compared to online tracing tools. Third, we conduct an
experiment to show Bunker’s fault handling benefits.

7.1 Performance Overhead

To evaluate the performance overhead of virtualiza-
tion and encryption, we ran tcpdump (i.e., Bunker’s on-
line component) to capture all traffic traversing a gigabit
link and store it to disk. We measured the highest rate of
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Figure 6. Performance overhead of virtualization and
encryption: We measured the rate of traffic that tcpdump
can capture on our machine with no packet losses under
four configurations: standalone, running in a Xen VM,
running on top of an encrypted file system, and running
on top of an encrypted file system in a Xen VM. All output
captured by tcpdump was written to the disk.

traffic tcpdump can capture with no packet losses under
four configurations: standalone, running in a Xen VM,
running on top of an encrypted disk with dm-crypt [41],
and running on top of an encrypted disk in a Xen VM.

Our tracing host is a dual Intel Xeon 3.0GHz with
4 GB of RAM, six 150 GB SCSI hard-disk drives, and
a DAG 4.3GE capture card. We ran Linux Debian 4.0
(etch), kernel version 2.6.18-4 and attached the tracer to
a dedicated Dell PowerConnect 2724 gigabit switch with
two other commodity PCs attached. One PC sent con-
stant bit-rate (CBR) traffic at a configurable rate to the
other; the switch was configured to mirror all traffic to
our tracing host. We verified that no packets were being
dropped by the switch.

Figure 6 shows the results of this experiment. The
first bar shows that we capture 925 Mbps when running
tcpdump on the bare machine with no isolation. The lim-
iting factor in this case is the rate at which our commod-
ity PCs can exchange CBR traffic; even after fine tuning,
they can exchange no more than 925 Mbps on our gi-
gabit link. The second bar shows that running tcpdump
inside the closed-box VM has no measurable effect on
the capture rate because the limiting factor remains our
traffic injection rate. When we use the Linux dm-crypt
module for encryption, however, the capture rate drops
to 817 Mbps even when running on the bare hardware:
the CPU becomes the bottleneck when running the en-
cryption module. Combining both virtualization and en-
cryption shows a further drop in the capture rate, to 618
Mbps. Once the CPU is fully utilized by the encryp-
tion module, the additional virtualization costs become
apparent.

Our implementation of Bunker can trace network traf-
fic of up to 618 Mbps with no packet loss. This is suf-
ficiently fast for the tracing scenario that our university
requires. While the costs of encryption and virtualiza-
tion are not negligible, we believe that these overheads
will decrease over time as Linux and Xen incorporate

further optimizations to their block-level encryption and
virtualization software. At the same time, CPU manu-
facturers have started to incorporate hardware accelera-
tion for AES encryption (i.e., similar to what dm-crypt
uses) [46].

7.2 Software Engineering Benefits

As previously discussed, Bunker offers significant
software engineering benefits over online network trac-
ing systems. Figure 7 shows the number of lines of code
for three network tracing systems that perform HTTP
parsing, all developed by this paper’s authors. The first
two systems trace HTTP traffic at line speeds. The first
system was developed from scratch by two graduate stu-
dents over the course of one year. The second system
was developed by one graduate student in nine months;
this system was built on top of CoMo, a packet-level trac-
ing system developed by Intel Research [22]. Bunker is
the third system; it was developed by one student in two
months. As Figure 7 shows, Bunker’s codebase is an or-
der of magnitude smaller than the others. Moreover, we
wrote only about one fifth of Bunker’s code; the remain-
der was re-used from libraries.

Bunker’s smaller and simpler codebase comes at a
cost in terms of its offline component’s performance.
Figure 8 shows the time elapsed for Bunker’s online
and offline components to process a 5 minute trace of
HTTP traffic. The trace contains 4.5 million requests,
or about 15,000 requests per second, that we generated
using httpperf. In practice, very few traces contain that
many HTTP requests per second. While the online com-
ponent runs only tcpdump storing data to the disk, the of-
fline component performs TCP/IP reconstruction, parses
HTTP, and records the HTTP headers before copying the
trace to the open-box VM. The offline component spends
20 minutes and 28 seconds processing this trace. Clearly,
Bunker’s ease of development comes at the cost of per-
formance, as we did not optimize the HTTP parser at all.
The privacy guarantees of our isolated environment grant
us the luxury of re-using existing software components
even though they do not meet the performance demands
of online tracing.

7.3 Fault Handling Evaluation

In addition to supporting fast development of differ-
ent tracing experiments, Bunker handles bugs in the trac-
ing software robustly. Upon encountering a bug, Bunker
marks the offending flow as “erroneous” and continues
processing traffic without having to restart. To illus-
trate the benefits of this fault handling approach, we per-
formed the following experiment. We used Bunker on
a Saturday to gather a 20 hour trace of the HTTP traf-
fic our university exchanges with the Internet. This trace
contained over 5.2 million HTTP flows. We artificially
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Figure 7. Lines of Code in three systems for gather-
ing HTTP traces: The first system was developed from
scratch by two graduate students in one year. The sec-
ond system, an extension of CoMo [22], was developed
by one graduate student in nine months; we included
CoMo’s codebase when counting the size of this system’s
codebase. The third system, Bunker, was developed by
one student in two months.

injected a parsing bug in one packet out of 100,000 (cor-
responding to a parsing error rate of 0.001%). Upon en-
countering this bug, Bunker stops parsing the erroneous
HTTP flow and continues with the remaining flows. We
compare Bunker to an online tracer that would crash
upon encountering a bug and immediately restart. This
would result in the online tracer dropping all concurrent
flows (we refer to this as “collateral damage”). This ex-
periment assumes an idealized version of an online tracer
that restarts instantly; in practice, it takes tens of sec-
onds to restart an online tracer’s environment losing even
more ongoing flows. Figure 9 illustrates the difference in
the fraction of flows affected. While our bug is encoun-
tered in only 0.08% of the flows, it affects an additional
31.72% of the flows for an online tracing system. Not
one of these additional flows is affected by the bug when
Bunker performs the tracing.

8 Legal Background

This section presents legal background concerning the
issuing of subpoenas for network traces in the U.S. and
Canada and discusses legal issues inherent in designing
and deploying data-hiding tracing platforms2.

8.1 Issuing Subpoenas for Data Traces

U.S. law has two sets of requirements for obtaining
a data trace that depend on when the data was gathered.
For data traces gathered in the past 180 days, the govern-
ment needs a mere subpoena. Such subpoenas are ob-
tained from a federal or state court with jurisdiction over
the offense under investigation. Based on our conver-
sations with legal experts, obtaining a subpoena is rel-
atively simple in the context of a lawsuit. A defendant

2Any mistakes in our characterization of the U.S. or Canadian legal
systems are the sole responsibility of the authors and not the lawyers
we consulted during this research project.
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Figure 8. Online vs. Offline processing speed: The time
spent processing a five minute HTTP trace by Bunker’s
online and offline components, respectively.

(e.g., the ISP) could try to quash the subpoena if compli-
ance would be unreasonable or oppressive.

For data gathered more than 180 days earlier, a gov-
ernment entity needs a warrant under Title 18 United
States Code 2703(d) from a federal or state court with ap-
propriate jurisdiction. The government needs to present
“specific and articulable facts showing that there are rea-
sonable grounds to believe that the contents of a wire
or electronic communication, or the records or other in-
formation sought, are relevant and material to an ongo-
ing criminal investigation.” The defendant can quash the
subpoena if the information requested is “unusually vo-
luminous in nature” or compliance would cause undue
burden. Based on our discussions with legal experts, the
court would issue such a warrant if it determines that
the data is relevant and not duplicative of information
already held by the government entity.

In Canada, a subpoena is sufficient to obtain a data
trace regardless of the data’s age. In 2000, the Cana-
dian government passed the Personal Information Pro-
tection and Electronic Documents Act (PIPEDA) [33],
which enhances the users’ rights to privacy for their data
held by private companies such as ISPs. However, Sec-
tion 7(3)(c.1) of PIPEDA indicates that ISPs must dis-
close personal information (including data traces) if they
are served with a subpoena or even an “order made by
a court, person or body with jurisdiction to compel pro-
duction of information”. In a recent case, a major Cana-
dian ISP released personal information to the local police
based on a letter that stated that “the request was done
under the authority of PIPEDA” [32]. A judge subse-
quently found that prior authorization for this informa-
tion should have been obtained, and the ISP should not
have disclosed this information. This case illustrates the
complexity of the legal issues ISPs face when they store
personal information (e.g., raw network traces).

8.2 Developing Data-Hiding Technology

In our discussions with legal experts, we investigated
whether it is legal to develop and deploy a data-hiding
network tracing infrastructure (such as Bunker). While
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Figure 9. Fraction of flows affected by a bug in an on-
line tracer versus in Bunker: A bug crashing an online
tracer affects all flows running concurrent with the crash.
Instead, Bunker handles bugs using exceptions affecting
only the flows that triggered the bug.

there is no clear answer to this question without legal
precedent, we learned that the way to evaluate this ques-
tion is to consider the purpose and potential uses for the
technology in question. In general, it is legal to deploy
a technology that has many legitimate uses but could
also enable certain illegitimate uses. Clearly, technolo-
gies whose primary use is to enable or encourage users
to evade the law are not legal. A useful example to il-
lustrate this distinction is encryption technology. While
encryption can certainly be used to enable illegal activi-
ties, its many legitimate uses make development and de-
ployment of encryption technologies legal. In the con-
text of network tracing, protecting users’ privacy against
accidental loss or mismanagement of the trace data is a
legitimate purpose.

9 Related Work
Bunker draws on previous work in network tracing

systems, data anonymizing techniques, and virtual ma-
chine usage for securing systems. We summarize this
previous work and then we describe two systems built to
protect access to sensitive data, such as network traces.

9.1 Network Tracing Systems

One of the earliest network tracing systems was Http-
dump [51], a tcpdump extension that constructs a log
of HTTP requests and responses. Windmill [30] devel-
oped a custom packet filter that facilitates the building
of specific network analysis applications; it delivers cap-
tured packets to multiple filters using dynamic code gen-
eration. BLT [18], a network tracing system developed
specifically to study HTTP traffic, supports continuous
online network monitoring. BLT does not use online
anonymization; instead, it records raw packets directly to
disk. More recently, CoMo [22] was designed to allow
independent parties to run multiple ongoing trace anal-
ysis modules by isolating them from each other. With
CoMo, anonymization, whether online or offline, must
be implemented by each module’s owner. Unlike these
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systems, Bunker’s design was motivated by the need to
protect the privacy of network users.

9.2 Anonymization Techniques

Xu et al. [52] implemented a prefix-preserving anony-
mization scheme for IP addresses, i.e., addresses with
the same IP prefix share the same prefix after anonymiz-
ation. Pang et al. [35] designed a high-level language for
specifying anonymization policies, allowing researchers
to write short policy scripts to express trace transforma-
tions. Recent work has shown that traces can still leak
private information even after they are anonymized [34],
prompting the research community to propose a set
of guidelines and etiquette for sharing data traces [1].
Bunker’s goal is to create a tracing system that makes
it easy to develop trace analysis software while ensuring
that no raw data can be exposed from the closed-box VM.
Bunker does not protect against faulty anonymization
policies, nor does it ensure that anonymized data cannot
be subject to the types of attacks described in [34].

9.3 Using VMs for Making Systems Secure

An active research area is designing virtual ma-
chine architectures that are secure in the face of at-
tacks. Several solutions have been proposed, includ-
ing: using tamper-resistant hardware [28, 20]; design-
ing VMMs that are small enough for formal verifica-
tion [25, 40]; using programming language techniques
to provide memory safety and control-flow integrity in
commodity OS’es [26, 12]; and using hardware memory
protection to provide code integrity [43]. While these
systems attempt to secure a general purpose commod-
ity OS, Bunker was designed only to secure tracing soft-
ware. As a result, its interfaces are simple and narrow.

9.4 Protecting Access to Sensitive Data

Packet Vault [3] is a network tracing system that cap-
tures packets, encrypts them, and writes them to a CD.
A newer system design tailored for writing the encrypted
traces to tape appears in [2]. Packet Vault creates a per-
manent record of all network traffic traversing a link. Its
threat model differs from Bunker’s in that there is no at-
tempt to secure the system against physical attacks.

Armored Data Vault [24] is a system that implements
access control to previously collected network traces, by
using a secure co-processor to enforce security in the face
of malicious attackers. Like Bunker, network traces are
encrypted before being stored. The encryption key and
any raw data are stored inside the secure co-processor.
Bunker’s design differs from Armored Data Vault’s in
three important ways. First, Bunker’s goal is limited to
trace anonymization only and not to implementing ac-
cess control policies; this lets us use simple, off-the-shelf

anonymization code to minimize the likelihood of bugs
present in the system. Second, Bunker destroys the raw
data as soon as it is anonymized; the Armored Data Vault
stores its raw traces permanently while enforcing the data
access policy. Finally, Bunker uses commodity hard-
ware that can run unmodified off-the-shelf software. In-
stead, the authors of the Armored Data Vault had to port
their code to accommodate the specifics of the secure co-
processor, a process that required effort and affected the
system’s performance [24].

10 Conclusions

This paper presents Bunker, a network tracing archi-
tecture that combines the performance and software en-
gineering benefits of offline anonymization with the pri-
vacy offered by online anonymization. Bunker uses a
closed-box and safe-on-reboot architecture to protect raw
trace data against a large class of security attacks, includ-
ing physical attacks to the system. In addition to its secu-
rity benefits, our architecture improves ease of develop-
ment: using Bunker, one graduate student implemented a
network tracing system for gathering anonymized traces
of Hotmail e-mail in less than two months.

Our evaluation shows that Bunker has adequate per-
formance. We show that Bunker’s codebase is an order
of magnitude smaller than previous network tracing sys-
tems that perform online anonymization. Because most
of its data processing is performed offline, Bunker also
handles faults more gracefully than previous systems.
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Abstract
WheelFS is a wide-area distributed storage system in-
tended to help multi-site applications share data and gain
fault tolerance. WheelFS takes the form of a distributed
file system with a familiar POSIX interface. Its design al-
lows applications to adjust the tradeoff between prompt
visibility of updates from other sites and the ability for
sites to operate independently despite failures and long
delays. WheelFS allows these adjustments via semantic
cues, which provide application control over consistency,
failure handling, and file and replica placement.

WheelFS is implemented as a user-level file system and
is deployed on PlanetLab and Emulab. Three applications
(a distributed Web cache, an email service and large file
distribution) demonstrate that WheelFS’s file system in-
terface simplifies construction of distributed applications
by allowing reuse of existing software. These applica-
tions would perform poorly with the strict semantics im-
plied by a traditional file system interface, but by pro-
viding cues to WheelFS they are able to achieve good
performance. Measurements show that applications built
on WheelFS deliver comparable performance to services
such as CoralCDN and BitTorrent that use specialized
wide-area storage systems.

1 Introduction
There is a growing set of Internet-based services that are
too big, or too important, to run at a single site. Examples
include Web services for e-mail, video and image hosting,
and social networking. Splitting such services over mul-
tiple sites can increase capacity, improve fault tolerance,
and reduce network delays to clients. These services often
need storage infrastructure to share data among the sites.
This paper explores the use of a new file system specif-
ically designed to be the storage infrastructure for wide-
area distributed services.

A wide-area storage system faces a tension between
sharing and site independence. The system must support
sharing, so that data stored by one site may be retrieved
by others. On the other hand, sharing can be dangerous if
it leads to the unreachability of one site causing blocking
at other sites, since a primary goal of multi-site opera-
tion is fault tolerance. The storage system’s consistency

model affects the sharing/independence tradeoff: stronger
forms of consistency usually involve servers or quorums
of servers that serialize all storage operations, whose un-
reliability may force delays at other sites [23]. The storage
system’s data and meta-data placement decisions also af-
fect site independence, since data placed at a distant site
may be slow to fetch or unavailable.

The wide-area file system introduced in this paper,
WheelFS, allows application control over the sharing/in-
dependence tradeoff, including consistency, failure han-
dling, and replica placement. Each application can choose
a tradeoff between performance and consistency, in the
style of PRACTI [8] and PADS [9], but in the context of a
file system with a POSIX interface.

Central decisions in the design of WheelFS includ-
ing defining the default behavior, choosing which behav-
iors applications can control, and finding a simple way
for applications to specify those behaviors. By default,
WheelFS provides standard file system semantics (close-
to-open consistency) and is implemented similarly to pre-
vious wide-area file systems (e.g., every file or directory
has a primary storage node). Applications can adjust the
default semantics and policies with semantic cues. The set
of cues is small (around 10) and directly addresses the
main challenges of wide-area networks (orders of magni-
tude differences in latency, lower bandwidth between sites
than within a site, and transient failures). WheelFS allows
the cues to be expressed in the pathname, avoiding any
change to the standard POSIX interface. The benefits of
WheelFS providing a file system interface are compatibil-
ity with existing software and programmer ease-of-use.

A prototype of WheelFS runs on FreeBSD, Linux, and
MacOS. The client exports a file system to local applica-
tions using FUSE [21]. WheelFS runs on PlanetLab and
an emulated wide-area Emulab network.

Several distributed applications run on WheelFS and
demonstrate its usefulness, including a distributed Web
cache and a multi-site email service. The applications use
different cues, showing that the control that cues pro-
vide is valuable. All were easy to build by reusing ex-
isting software components, with WheelFS for storage
instead of a local file system. For example, the Apache
caching web proxy can be turned into a distributed, co-
operative Web cache by modifying one pathname in a
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configuration file, specifying that Apache should store
cached data in WheelFS with cues to relax consistency.
Although the other applications require more changes, the
ease of adapting Apache illustrates the value of a file sys-
tem interface; the extent to which we could reuse non-
distributed software in distributed applications came as a
surprise [38].

Measurements show that WheelFS offers more scal-
able performance on PlanetLab than an implementation of
NFSv4, and that for applications that use cues to indicate
they can tolerate relaxed consistency, WheelFS continues
to provide high performance in the face of network and
server failures. For example, by using the cues .Eventu-
alConsistency, .MaxTime, and .Hotspot, the distributed
Web cache quickly reduces the load on the origin Web
server, and the system hardly pauses serving pages when
WheelFS nodes fail; experiments on PlanetLab show that
the WheelFS-based distributed Web cache reduces origin
Web server load to zero. Further experiments on Emu-
lab show that WheelFS can offer better file downloads
times than BitTorrent [14] by using network coordinates
to download from the caches of nearby clients.

The main contributions of this paper are a new file
system that assists in the construction of wide-area dis-
tributed applications, a set of cues that allows applications
to control the file system’s consistency and availability
tradeoffs, and a demonstration that wide-area applications
can achieve good performance and failure behavior by us-
ing WheelFS.

The rest of the paper is organized as follows. Sections 2
and 3 outline the goals of WheelFS and its overall de-
sign. Section 4 describes WheelFS’s cues, and Section 5
presents WheelFS’s detailed design. Section 6 illustrates
some example applications, Section 7 describes the imple-
mentation of WheelFS, and Section 8 measures the per-
formance of WheelFS and the applications. Section 9 dis-
cusses related work, and Section 10 concludes.

2 Goals
A wide-area storage system must have a few key prop-
erties in order to be practical. It must be a useful building
block for larger applications, presenting an easy-to-use in-
terface and shouldering a large fraction of the overall stor-
age management burden. It must allow inter-site access to
data when needed, as long as the health of the wide-area
network allows. When the site storing some data is not
reachable, the storage system must indicate a failure (or
find another copy) with relatively low delay, so that a fail-
ure at one site does not prevent progress at other sites. Fi-
nally, applications may need to control the site(s) at which
data are stored in order to achieve fault-tolerance and per-
formance goals.

As an example, consider a distributed Web cache whose
primary goal is to reduce the load on the origin servers of

popular pages. Each participating site runs a Web proxy
and a part of a distributed storage system. When a Web
proxy receives a request from a browser, it first checks
to see if the storage system has a copy of the requested
page. If it does, the proxy reads the page from the stor-
age system (perhaps from another site) and serves it to the
browser. If not, the proxy fetches the page from the origin
Web server, inserts a copy of it into the storage system (so
other proxies can find it), and sends it to the browser.

The Web cache requires some specific properties from
the distributed storage system in addition to the general
ability to store and retrieve data. A proxy must serve data
with low delay, and can consult the origin Web server if
it cannot find a cached copy; thus it is preferable for the
storage system to indicate “not found” quickly if finding
the data would take a long time (due to timeouts). The
storage need not be durable or highly fault tolerant, again
because proxies can fall back on the origin Web server.
The storage system need not be consistent in the sense of
guaranteeing to find the latest stored version of document,
since HTTP headers allow a proxy to evaluate whether a
cached copy is still valid.

Other distributed applications might need different
properties in a storage system: they might need to see the
latest copy of some data, and be willing to pay a price in
high delay, or they may want data to be stored durably,
or have specific preferences for which site stores a doc-
ument. Thus, in order to be a usable component in many
different systems, a distributed storage system needs to
expose a level of control to the surrounding application.

3 WheelFS Overview
This section gives a brief overview of WheelFS to help the
reader follow the design proposed in subsequent sections.

3.1 System Model
WheelFS is intended to be used by distributed applica-
tions that run on a collection of sites distributed over the
wide-area Internet. All nodes in a WheelFS deployment
are either managed by a single administrative entity or
multiple cooperating administrative entities. WheelFS’s
security goals are limited to controlling the set of partici-
pating servers and imposing UNIX-like access controls on
clients; it does not guard against Byzantine failures in par-
ticipating servers [6, 26]. We expect servers to be live and
reachable most of the time, with occasional failures. Many
existing distributed infrastructures fit these assumptions,
such as wide-area testbeds (e.g., PlanetLab and RON),
collections of data centers spread across the globe (e.g.,
Amazon’s EC2), and federated resources such as Grids.

3.2 System Overview
WheelFS provides a location-independent hierarchy of di-
rectories and files with a POSIX file system interface. At
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any given time, every file or directory object has a single
“primary” WheelFS storage server that is responsible for
maintaining the latest contents of that object. WheelFS
clients, acting on behalf of applications, use the storage
servers to retrieve and store data. By default, clients con-
sult the primary whenever they modify an object or need
to find the latest version of an object. Accessing a single
file could result in communication with several servers,
since each subdirectory in the path could be served by a
different primary. WheelFS replicates an object’s data us-
ing primary/backup replication, and a background mainte-
nance process running on each server ensures that data are
replicated correctly. Each update to an object increments
a version number kept in a separate meta-data structure,
co-located with the data.

When a WheelFS client needs to use an object, it must
first determine which server is currently the primary for
that object. All nodes agree on the assignment of objects
to primaries to help implement the default strong consis-
tency. Nodes learn the assignment from a configuration
service—a replicated state machine running at multiple
sites. This service maintains a table that maps each object
to one primary and zero or more backup servers. WheelFS
nodes cache a copy of this table. Section 5 presents the de-
sign of the configuration service.

A WheelFS client reads a file’s data in blocks from
the file’s primary server. The client caches the file’s data
once read, obtaining a lease on its meta-data (including
the version number) from the primary. Clients have the
option of reading from other clients’ caches, which can
be helpful for large and popular files that are rarely up-
dated. WheelFS provides close-to-open consistency by
default for files, so that if an application works correctly
on a POSIX file system, it will also work correctly on
WheelFS.

4 Semantic cues
WheelFS provides semantic cues within the standard
POSIX file system API. We believe cues would also be
useful in the context of other wide-area storage layers with
alternate designs, such as Shark [6] or a wide-area version
of BigTable [13]. This section describes how applications
specify cues and what effect they have on file system op-
erations.

4.1 Specifying cues
Applications specify cues to WheelFS in pathnames; for
example, /wfs/.Cue/data refers to /wfs/data with the cue
.Cue. The main advantage of embedding cues in path-
names is that it keeps the POSIX interface unchanged.
This choice allows developers to program using an inter-
face with which they are familiar and to reuse software
easily.

One disadvantage of cues is that they may break soft-

ware that parses pathnames and assumes that a cue is a
directory. Another is that links to pathnames that contain
cues may trigger unintuitive behavior. We have not en-
countered examples of these problems.

WheelFS clients process the cue path components lo-
cally. A pathname might contain several cues, separated
by slashes. WheelFS uses the following rules to combine
cues: (1) a cue applies to all files and directories in the
pathname appearing after the cue; and (2) cues that are
specified later in a pathname may override cues in the
same category appearing earlier.

As a preview, a distributed Web cache could be
built by running a caching Web proxy at each of a
number of sites, sharing cached pages via WheelFS.
The proxies could store pages in pathnames such as
/wfs/.MaxTime=200/url, causing open() to fail after
200 ms rather than waiting for an unreachable WheelFS
server, indicating to the proxy that it should fetch from
the original Web server. See Section 6 for a more sophis-
ticated version of this application.

4.2 Categories
Table 1 lists WheelFS’s cues and the categories into which
they are grouped. There are four categories: placement,
durability, consistency, and large reads. These categories
reflect the goals discussed in Section 2. The placement
cues allow an application to reduce latency by placing
data near where it will be needed. The durability and con-
sistency cues help applications avoid data unavailability
and timeout delays caused by transient failures. The large
read cues increase throughput when reading large and/or
popular files. Table 2 shows which POSIX file system API
calls are affected by which of these cues.

Each cue is either persistent or transient. A persistent
cue is permanently associated with the object, and may
affect all uses of the object, including references that do
not specify the cue. An application associates a persistent
cue with an object by specifying the cue when first creat-
ing the object. Persistent cues are immutable after object
creation. If an application specifies a transient cue in a file
system operation, the cue only applies to that operation.

Because these cues correspond to the challenges faced
by wide-area applications, we consider this set of cues to
be relatively complete. These cues work well for the ap-
plications we have considered.

4.3 Placement
Applications can reduce latency by storing data near the
clients who are likely to use that data. For example, a
wide-area email system may wish to store all of a user’s
message files at a site near that user.

The .Site=X cue indicates the desired site for a newly-
created file’s primary. The site name can be a simple
string, e.g. .Site=westcoast, or a domain name such as
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Cue Category Cue Name Type Meaning (and Tradeoffs)
Placement .Site=X P Store files and directories on a server at the site named X.

.KeepTogether P Store all files in a directory subtree on the same set of servers.

.RepSites=NRS P Store replicas across NRS different sites.
Durability .RepLevel=NRL P Keep NRL replicas for a data object.

.SyncLevel=NSL T Wait for only NSL replicas to accept a new file or directory version, reduc-
ing both durability and delay.

Consistency .EventualConsistency T∗ Use potentially stale cached data, or data from a backup, if the primary
does not respond quickly.

.MaxTime=T T Limit any WheelFS remote communication done on behalf of a file system
operation to no more than T ms.

Large reads .WholeFile T Enable pre-fetching of an entire file upon the first read request.
.Hotspot T Fetch file data from other clients’ caches to reduce server load. Fetches

multiple blocks in parallel if used with .WholeFile.

Table 1: Semantic cues. A cue can be either Persistent or Transient (∗Section 4.5 discusses a caveat for .EventualConsistency).
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.S X X

.KT X X

.RS X X X X X X X X

.RL X X X X X X X X

.SL X X X X X X X X

.EC X X X X X X X X X X X

.MT X X X X X X X X X X X

.WF X X

.H X

Table 2: The POSIX file system API calls affected by each cue.

.Site=rice.edu. An administrator configures the corre-
spondence between site names and servers. If the path
contains no .Site cue, WheelFS uses the local node’s site
as the file’s primary. Use of random as the site name will
spread newly created files over all sites. If the site indi-
cated by .Site is unreachable, or cannot store the file due
to storage limitations, WheelFS stores the newly created
file at another site, chosen at random. The WheelFS back-
ground maintenance process will eventually transfer the
misplaced file to the desired site.

The .KeepTogether cue indicates that an entire sub-
tree should reside on as few WheelFS nodes as possible.
Clustering a set of files can reduce the delay for operations
that access multiple files. For example, an email system
can store a user’s message files on a few nodes to reduce
the time required to list all messages.

The .RepSites=NRS cue indicates how many different
sites should have copies of the data. NRS only has an
effect when it is less than the replication level (see Sec-
tion 4.4), in which case it causes one or more sites to
store the data on more than one local server. When pos-

sible, WheelFS ensures that the primary’s site is one of
the sites chosen to have an extra copy. For example, spec-
ifying .RepSites=2 with a replication level of three causes
the primary and one backup to be at one site, and another
backup to be at a different site. By using .Site and .Rep-
Sites, an application can ensure that a permanently failed
primary can be reconstructed at the desired site with only
local communication.

4.4 Durability
WheelFS allows applications to express durability
preferences with two cues: .RepLevel=NRL and
.SyncLevel=NSL.

The .RepLevel=NRL cue causes the primary to store
the object on NRL−1 backups; by default, NRL= 3. The
WheelFS prototype imposes a maximum of four replicas
(see Section 5.2 for the reason for this limit; in a future
prototype it will most likely be higher).

The .SyncLevel=NSL cue causes the primary to wait
for acknowledgments of writes from only NSL of the ob-
ject’s replicas before acknowledging the client’s request,
reducing durability but also reducing delays if some back-
ups are slow or unreachable. By default, NSL = NRL.

4.5 Consistency
The .EventualConsistency cue allows a client to use an
object despite unreachability of the object’s primary node,
and in some cases the backups as well. For reads and
pathname lookups, the cue allows a client to read from a
backup if the primary is unavailable, and from the client’s
local cache if the primary and backups are both unavail-
able. For writes and filename creation, the cue allows a
client to write to a backup if the primary is not available.
A consequence of .EventualConsistency is that clients
may not see each other’s updates if they cannot all reli-
ably contact the primary. Many applications such as Web
caches and email systems can tolerate eventual consis-
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tency without significantly compromising their users’ ex-
perience, and in return can decrease delays and reduce ser-
vice unavailability when a primary or its network link are
unreliable.

The cue provides eventual consistency in the sense that,
in the absence of updates, all replicas of an object will
eventually converge to be identical. However, WheelFS
does not provide eventual consistency in the rigorous form
(e.g., [18]) used by systems like Bayou [39], where all
updates, across all objects in the system, are committed
in a total order at all replicas. In particular, updates in
WheelFS are only eventually consistent with respect to
the object they affect, and updates may potentially be lost.
For example, if an entry is deleted from a directory under
the .EventualConsistency cue, it could reappear in the
directory later.

When reading files or using directory contents with
eventual consistency, a client may have a choice between
the contents of its cache, replies from queries to one or
more backup servers, and a reply from the primary. A
client uses the data with the highest version number that
it finds within a time limit. The default time limit is one
second, but can be changed with the .MaxTime=T cue (in
units of milliseconds). If .MaxTime is used without even-
tual consistency, the WheelFS client yields an error if it
cannot contact the primary after the indicated time.

The background maintenance process periodically rec-
onciles a primary and its backups so that they eventually
contain the same data for each file and directory. The pro-
cess may need to resolve conflicting versions of objects.
For a file, the process chooses arbitrarily among the repli-
cas that have the highest version number; this may cause
writes to be lost. For an eventually-consistent directory, it
puts the union of files present in the directory’s replicas
into the reconciled version. If a single filename maps to
multiple IDs, the process chooses the one with the small-
est ID and renames the other files. Enabling directory
merging is the only sense in which the .EventualConsis-
tency cue is persistent: if specified at directory creation
time, it guides the conflict resolution process. Otherwise
its effect is specific to particular references.

4.6 Large reads
WheelFS provides two cues that enable large-file read op-
timizations: .WholeFile and .Hotspot. The .WholeFile
cue instructs WheelFS to pre-fetch the entire file into
the client cache. The .Hotspot cue instructs the WheelFS
client to read the file from other clients’ caches, consult-
ing the file’s primary for a list of clients that likely have
the data cached. If the application specifies both cues, the
client will read data in parallel from other clients’ caches.

Unlike the cues described earlier, .WholeFile and
.Hotspot are not strictly necessary: a file system could
potentially learn to adopt the right cue by observing appli-
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Figure 1: Placement and interaction of WheelFS components.

cation access patterns. We leave such adaptive behavior to
future work.

5 WheelFS Design
WheelFS requires a design flexible enough to follow the
various cues applications can supply. This section presents
that design, answering the following questions:

• How does WheelFS assign storage responsibility
for data objects among participating servers? (Sec-
tion 5.2)

• How does WheelFS ensure an application’s desired
level of durability for its data? (Section 5.3)

• How does WheelFS provide close-to-open consis-
tency in the face of concurrent file access and fail-
ures, and how does it relax consistency to improve
availability? (Section 5.4)

• How does WheelFS permit peer-to-peer communica-
tion to take advantage of nearby cached data? (Sec-
tion 5.5)

• How does WheelFS authenticate users and perform
access control? (Section 5.6)

5.1 Components
A WheelFS deployment (see Figure 1) consists of clients
and servers; a single host often plays both roles. The
WheelFS client software uses FUSE [21] to present the
distributed file system to local applications, typically in
/wfs. All clients in a given deployment present the same
file system tree in /wfs. A WheelFS client communicates
with WheelFS servers in order to look up file names, cre-
ate files, get directory listings, and read and write files.
Each client keeps a local cache of file and directory con-
tents.

The configuration service runs independently on a
small set of wide-area nodes. Clients and servers com-
municate with the service to learn the set of servers and
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which files and directories are assigned to which servers,
as explained in the next section.

5.2 Data storage assignment
WheelFS servers store file and directory objects. Each ob-
ject is internally named using a unique numeric ID. A
file object contains opaque file data and a directory object
contains a list of name-to-object-ID mappings for the di-
rectory contents. WheelFS partitions the object ID space
into 2S slices using the first S bits of the object ID.

The configuration service maintains a slice table that
lists, for each slice currently in use, a replication policy
governing the slice’s data placement, and a replica list of
servers currently responsible for storing the objects in that
slice. A replication policy for a slice indicates from which
site it must choose the slice’s primary (.Site), and from
how many distinct sites (.RepSites) it must choose how
many backups (.RepLevel). The replica list contains the
current primary for a slice, and NRL−1 backups.

Because each unique replication policy requires a
unique slice identifier, the choice of S limits the maxi-
mum allowable number of replicas in a policy. In our cur-
rent implementation S is fairly small (12 bits), and so to
conserve slice identifiers it limits the maximum number
of replicas to four.

5.2.1 Configuration service

The configuration service is a replicated state machine,
and uses Paxos [25] to elect a new master whenever its
membership changes. Only the master can update the
slice table; it forwards updates to the other members. A
WheelFS node is initially configured to know of at least
one configuration service member, and contacts it to learn
the full list of members and which is the master.

The configuration service exports a lock interface to
WheelFS servers, inspired by Chubby [11]. Through this
interface, servers can acquire, renew, and release
locks on particular slices, or fetch a copy of the cur-
rent slice table. A slice’s lock grants the exclusive right
to be a primary for that slice, and the right to specify the
slice’s backups and (for a new slice) its replication pol-
icy. A lock automatically expires after L seconds unless
renewed. The configuration service makes no decisions
about slice policy or replicas. Section 5.3 explains how
WheelFS servers use the configuration service to recover
after the failure of a slice’s primary or backups.

Clients and servers periodically fetch and cache the
slice table from the configuration service master. A client
uses the slice table to identify which servers should be
contacted for an object in a given slice. If a client encoun-
ters an object ID for which its cached slice table does not
list a corresponding slice, the client fetches a new table.
A server uses the the slice table to find other servers that
store the same slice so that it can synchronize with them.

Servers try to always have at least one slice locked,
to guarantee they appear in the table of currently locked
slices; if the maintenance process notices that the server
holds no locks, it will acquire the lock for a new slice. This
allows any connected node to determine the current mem-
bership of the system by taking the union of the replica
lists of all slices.

5.2.2 Placing a new file or directory

When a client creates a new file or directory, it uses the
placement and durability cues specified by the application
to construct an appropriate replication policy. If .KeepTo-
gether is present, it sets the primary site of the policy to
be the primary site of the object’s parent directory’s slice.
Next the client checks the slice table to see if an existing
slice matches the policy; if so, the client contacts the pri-
mary replica for that slice. If not, it forwards the request
to a random server at the site specified by the .Site cue.

When a server receives a request asking it to create a
new file or directory, it constructs a replication policy as
above, and sets its own site to be the primary site for the
policy. If it does not yet have a lock on a slice matching
the policy, it generates a new, randomly-generated slice
identifier and constructs a replica list for that slice, choos-
ing from the servers listed in the slice table. The server
then acquires a lock on this new slice from the config-
uration service, sending along the replication policy and
the replica list. Once it has a lock on an appropriate slice,
it generates an object ID for the new object, setting the
first S bits to be the slice ID and all other bits to random
values. The server returns the new ID to the client, and
the client then instructs the object’s parent directory’s pri-
mary to add a new entry for the object. Other clients that
learn about this new object ID from its entry in the par-
ent directory can use the first S bits of the ID to find the
primary for the slice and access the object.

5.2.3 Write-local policy

The default data placement policy in WheelFS is to write
locally, i.e., use a local server as the primary of a newly
created file (and thus also store one copy of the contents
locally). This policy works best if each client also runs a
WheelFS server. The policy allows writes of large non-
replicated files at the speed of the local disk, and allows
such files to be written at one site and read at another with
just one trip across the wide-area network.

Modifying an existing file is not always fast, because
the file’s primary might be far away. Applications desiring
fast writes should store output in unique new files, so that
the local server will be able to create a new object ID in
a slice for which it is the primary. Existing software often
works this way; for example, the Apache caching proxy
stores a cached Web page in a unique file named after the
page’s URL.
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An ideal default placement policy would make deci-
sions based on server loads across the entire system; for
example, if the local server is nearing its storage capac-
ity but a neighbor server at the same site is underloaded,
WheelFS might prefer writing the file to the neighbor
rather than the local disk (e.g., as in Porcupine [31]). De-
veloping such a strategy is future work; for now, applica-
tions can use cues to control where data are stored.

5.3 Primary/backup replication
WheelFS uses primary/backup replication to manage
replicated objects. The slice assignment designates, for
each ID slice, a primary and a number of backup servers.
When a client needs to read or modify an object, by de-
fault it communicates with the primary. For a file, a mod-
ification is logically an entire new version of the file con-
tents; for a directory, a modification affects just one en-
try. The primary forwards each update to the backups,
after which it writes the update to its disk and waits for
the write to complete. The primary then waits for replies
from NSL−1 backups, indicating that those backups have
also written the update to their disks. Finally, the primary
replies to the client. For each object, the primary executes
operations one at a time.

After being granted the lock on a slice initially, the
WheelFS server must renew it periodically; if the lock ex-
pires, another server may acquire it to become the primary
for the slice. Since the configuration service only grants
the lock on a slice to one server at a time, WheelFS en-
sures that only one server will act as a primary for a slice
at any given time. The slice lock time L is a compromise:
short lock times lead to fast reconfiguration, while long
lock times allow servers to operate despite the temporary
unreachability of the configuration service.

In order to detect failure of a primary or backup, a
server pings all other replicas of its slices every five min-
utes. If a primary decides that one of its backups is un-
reachable, it chooses a new replica from the same site
as the old replica if possible, otherwise from a random
site. The primary will transfer the slice’s data to this new
replica (blocking new updates), and then renew its lock on
that slice along with a request to add the new replica to the
replica list in place of the old one.

If a backup decides the primary is unreachable, it will
attempt to acquire the lock on the slice from the configura-
tion service; one of the backups will get the lock once the
original primary’s lock expires. The new primary checks
with the backups to make sure that it didn’t miss any ob-
ject updates (e.g., because NSL<NRL during a recent up-
date, and thus not all backups are guaranteed to have com-
mitted that update).

A primary’s maintenance process periodically checks
that the replicas associated with each slice match the
slice’s policy; if not, it will attempt to recruit new repli-

cas at the appropriate sites. If the current primary wishes
to recruit a new primary at the slice’s correct primary site
(e.g., a server that had originally been the slice’s primary
but crashed and rejoined), it will release its lock on the
slice, and directly contact the chosen server, instructing it
to acquire the lock for the slice.

5.4 Consistency
By default, WheelFS provides close-to-open consistency:
if one application instance writes a file and waits for
close() to return, and then a second application in-
stance open()s and reads the file, the second applica-
tion will see the effects of the first application’s writes.
The reason WheelFS provides close-to-open consistency
by default is that many applications expect it.

The WheelFS client has a write-through cache for file
blocks, for positive and negative directory entries (en-
abling faster pathname lookups), and for directory and file
meta-data. A client must acquire an object lease from an
object’s primary before it uses cached meta-data. Before
the primary executes any update to an object, it must in-
validate all leases or wait for them to expire. This step
may be time-consuming if many clients hold leases on an
object.

Clients buffer file writes locally to improve perfor-
mance. When an application calls close(), the client
sends all outstanding writes to the primary, and waits
for the primary to acknowledge them before allowing
close() to return. Servers maintain a version num-
ber for each file object, which they increment after each
close() and after each change to the object’s meta-data.

When an application open()s a file and then reads it,
the WheelFS client must decide whether the cached copy
of the file (if any) is still valid. The client uses cached
file data if the object version number of the cached data
is the same as the object’s current version number. If the
client has an unexpired object lease for the object’s meta-
data, it can use its cached meta-data for the object to find
the current version number. Otherwise it must contact the
primary to ask for a new lease, and for current meta-data.
If the version number of the cached data is not current, the
client fetches new file data from the primary.

By default, WheelFS provides similar consistency for
directory operations: after the return of an application sys-
tem call that modifies a directory (links or unlinks a file
or subdirectory), applications on other clients are guaran-
teed to see the modification. WheelFS clients implement
this consistency by sending directory updates to the direc-
tory object’s primary, and by ensuring via lease or explicit
check with the primary that cached directory contents are
up to date. Cross-directory rename operations in WheelFS
are not atomic with respect to failures. If a crash occurs at
the wrong moment, the result may be a link to the moved
file in both the source and destination directories.
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The downside to close-to-open consistency is that if a
primary is not reachable, all operations that consult the
primary will delay until it revives or a new primary takes
over. The .EventualConsistency cue allows WheelFS to
avoid these delays by using potentially stale data from
backups or local caches when the primary does not re-
spond, and by sending updates to backups. This can result
in inconsistent replicas, which the maintenance process
resolves in the manner described in Section 4.5, leading
eventually to identical images at all replicas. Without the
.EventualConsistency cue, a server will reject operations
on objects for which it is not the primary.

Applications can specify timeouts on a per-object ba-
sis using the .MaxTime=T cue. This adds a timeout of
T ms to every operation performed at a server. Without
.EventualConsistency, a client will return a failure to
the application if the primary does not respond within T
ms; with .EventualConsistency, clients contact backup
servers once the timeout occurs. In future work we hope to
explore how to best divide this timeout when a single file
system operation might involve contacting several servers
(e.g., a create requires talking to the parent directory’s pri-
mary and the new object’s primary, which could differ).

5.5 Large reads
If the application specifies .WholeFile when reading a
file, the client will pre-fetch the entire file into its cache.
If the application uses .WholeFile when reading directory
contents, WheelFS will pre-fetch the meta-data for all of
the directory’s entries, so that subsequent lookups can be
serviced from the cache.

To implement the .Hotspot cue, a file’s primary main-
tains a soft-state list of clients that have recently cached
blocks of the file, including which blocks they have
cached. A client that reads a file with .Hotspot asks the
server for entries from the list that are near the client; the
server chooses the entries using Vivaldi coordinates [15].
The client uses the list to fetch each block from a nearby
cached copy, and informs the primary of successfully
fetched blocks.

If the application reads a file with both .WholeFile and
.Hotspot, the client will issue block fetches in parallel to
multiple other clients. It pre-fetches blocks in a random
order so that clients can use each others’ caches even if
they start reading at the same time [6].

5.6 Security
WheelFS enforces three main security properties. First,
a given WheelFS deployment ensures that only autho-
rized hosts participate as servers. Second, WheelFS en-
sures that requests come only from users authorized to
use the deployment. Third, WheelFS enforces user-based
permissions on requests from clients. WheelFS assumes
that authorized servers behave correctly. A misbehaving

client can act as any user that has authenticated them-
selves to WheelFS from that client, but can only do things
for which those users have permission.

All communication takes place through authenticated
SSH channels. Each authorized server has a public/pri-
vate key pair which it uses to prove its identity. A central
administrator maintains a list of all legitimate server pub-
lic keys in a deployment, and distributes that list to ev-
ery server and client. Servers only exchange inter-server
traffic with hosts authenticated with a key on the list, and
clients only send requests to (and use responses from) au-
thentic servers.

Each authorized user has a public/private key pair;
WheelFS uses SSH’s existing key management support.
Before a user can use WheelFS on a particular client,
the user must reveal his or her private key to the client.
The list of authorized user public keys is distributed to all
servers and clients as a file in WheelFS. A server accepts
only client connections signed by an authorized user key.
A server checks that the authenticated user for a request
has appropriate permissions for the file or directory being
manipulated—each object has an associated access con-
trol list in its meta-data. A client dedicated to a particular
distributed application stores its “user” private key on its
local disk.

Clients check data received from other clients against
server-supplied SHA-256 checksums to prevent clients
from tricking each other into accepting unauthorized
modifications. A client will not supply data from its cache
to another client whose authorized user does not have read
permissions.

There are several planned improvements to this security
setup. One is an automated mechanism for propagating
changes to the set of server public keys, which currently
need to be distributed manually. Another is to allow the
use of SSH Agent forwarding to allow users to connect se-
curely without storing private keys on client hosts, which
would increase the security of highly privileged keys in
the case where a client is compromised.

6 Applications
WheelFS is designed to help the construction of wide-area
distributed applications, by shouldering a significant part
of the burden of managing fault tolerance, consistency,
and sharing of data among sites. This section evaluates
how well WheelFS fulfills that goal by describing four
applications that have been built using it.

All-Pairs-Pings. All-Pairs-Pings [37] monitors the net-
work delays among a set of hosts. Figure 2 shows a sim-
ple version of All-Pairs-Pings built from a shell script and
WheelFS, to be invoked by each host’s cron every few
minutes. The script pings the other hosts and puts the re-
sults in a file whose name contains the local host name
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1 FILE=‘date +%s‘.‘hostname‘.dat
2 D=/wfs/ping
3 BIN=$D/bin/.EventualConsistency/

.MaxTime=5000/.HotSpot/.WholeFile
4 DATA=$D/.EventualConsistency/dat
5 mkdir -p $DATA/‘hostname‘
6 cd $DATA/‘hostname‘
7 xargs -n1 $BIN/ping -c 10 <

$D/nodes > /tmp/$FILE
8 cp /tmp/$FILE $FILE
9 rm /tmp/$FILE

10 if [ ‘hostname‘ = "node1" ]; then
11 mkdir -p $D/res
12 $BIN/process * > $D/res/‘date +%s‘.o
13 fi

Figure 2: A shell script implementation of All-Pairs-Pings us-
ing WheelFS.

and the current time. After each set of pings, a coordina-
tor host (“node1”) reads all the files, creates a summary
using the program process (not shown), and writes the
output to a results directory.

This example shows that WheelFS can help keep sim-
ple distributed tasks easy to write, while protecting the
tasks from failures of remote nodes. WheelFS stores each
host’s output on the host’s own WheelFS server, so that
hosts can record ping output even when the network is
broken. WheelFS automatically collects data files from
hosts that reappear after a period of separation. Finally,
WheelFS provides each host with the required binaries
and scripts and the latest host list file. Use of WheelFS in
this script eliminates much of the complexity of a previ-
ous All-Pairs-Pings program, which explicitly dealt with
moving files among nodes and coping with timeouts.

Distributed Web cache. This application consists
of hosts running Apache 2.2.4 caching proxies
(mod disk cache). The Apache configuration file
places the cache file directory on WheelFS:

/wfs/.EventualConsistency/.MaxTime=1000/
.Hotspot/cache/

When the Apache proxy can’t find a page in the cache
directory on WheelFS, it fetches the page from the ori-
gin Web server and writes a copy in the WheelFS di-
rectory, as well as serving it to the requesting browser.
Other cache nodes will then be able to read the page from
WheelFS, reducing the load on the origin Web server.
The .Hotspot cue copes with popular files, directing the
WheelFS clients to fetch from each others’ caches to in-
crease total throughput. The .EventualConsistency cue
allows clients to create and read files even if they cannot
contact the primary server. The .MaxTime cue instructs

WheelFS to return an error if it cannot find a file quickly,
causing Apache to fetch the page from the origin Web
server. If WheelFS returns an expired version of the file,
Apache will notice by checking the HTTP header in the
cache file, and it will contact the origin Web server for a
fresh copy.

Although this distributed Web cache implementation is
fully functional, it does lack features present in other sim-
ilar systems. For example, CoralCDN uses a hierarchy of
caches to avoid overloading any single tracker node when
a file is popular.

Mail service. The goal of Wheemail, our WheelFS-based
mail service, is to provide high throughput by spreading
the work over many sites, and high availability by replicat-
ing messages on multiple sites. Wheemail provides SMTP
and IMAP service from a set of nodes at these sites. Any
node at any site can accept a message via SMTP for any
user; in most circumstances a user can fetch mail from the
IMAP server on any node.

Each node runs an unmodified sendmail process to ac-
cept incoming mail. Sendmail stores each user’s messages
in a WheelFS directory, one message per file. The sep-
arate files help avoid conflicts from concurrent message
arrivals. A user’s directory has this path:

/wfs/mail/.EventualConsistency/.Site=X/
.KeepTogether/.RepSites=2/user/Mail/

Each node runs a Dovecot IMAP server [17] to serve users
their messages. A user retrieves mail via a nearby node
using a locality-preserving DNS service [20].

The .EventualConsistency cue allows a user to read
mail via backup servers when the primary for the user’s
directory is unreachable, and allows incoming mail to be
stored even if primary and all backups are down. The
.Site=X cue indicates that a user’s messages should be
stored at site X, chosen to be close to the user’s usual lo-
cation to reduce network delays. The .KeepTogether cue
causes all of a user’s messages to be stored on a single
replica set, reducing latency for listing the user’s mes-
sages [31]. Wheemail uses the default replication level of
three but uses .RepSites=2 to keep at least one off-site
replica of each mail. To avoid unnecessary replication,
Dovecot uses .RepLevel=1 for much of its internal data.

Wheemail has goals similar to those of Porcupine [31],
namely, to provide scalable email storage and retrieval
with high availability. Unlike Porcupine, Wheemail runs
on a set of wide-area data centers. Replicating emails over
multiple sites increases the service’s availability when a
single site goes down. Porcupine consists of custom-built
storage and retrieval components. In contrast, the use of a
wide-area file system in Wheemail allows it to reuse exist-
ing software like sendmail and Dovecot. Both Porcupine
and Wheemail use eventual consistency to increase avail-
ability, but Porcupine has a better reconciliation policy as
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its “deletion record” prevents deleted emails from reap-
pearing.

File Distribution. A set of many WheelFS clients can co-
operate to fetch a file efficiently using the large read cues:

/wfs/.WholeFile/.Hotspot/largefile

Efficient file distribution may be particularly useful
for binaries in wide-area experiments, in the spirit of
Shark [6] and CoBlitz [29]. Like Shark, WheelFS uses co-
operative caching to reduce load on the file server. Shark
further reduces the load on the file server by using a dis-
tributed index to keep track of cached copies, whereas
WheelFS relies on the primary server to track copies.
Unlike WheelFS or Shark, CoBlitz is a CDN, so files
cannot be directly accessed through a mounted file sys-
tem. CoBlitz caches and shares data between CDN nodes
rather than between clients.

7 Implementation
The WheelFS prototype consists of 19,000 lines of C++
code, using pthreads and STL. In addition, the implemen-
tation uses a new RPC library (3,800 lines) that imple-
ments Vivaldi network coordinates [15].

The WheelFS client uses FUSE’s “low level” interface
to get access to FUSE identifiers, which it translates into
WheelFS-wide unique object IDs. The WheelFS cache
layer in the client buffers writes in memory and caches
file blocks in memory and on disk.

Permissions, access control, and secure SSH con-
nections are implemented. Distribution of public keys
through WheelFS is not yet implemented.

8 Evaluation
This section demonstrates the following points about the
performance and behavior of WheelFS:

• For some storage workloads common in distributed
applications, WheelFS offers more scalable perfor-
mance than an implementation of NFSv4.

• WheelFS achieves reasonable performance under a
range of real applications running on a large, wide-
area testbed, as well as on a controlled testbed using
an emulated network.

• WheelFS provides high performance despite net-
work and server failures for applications that indicate
via cues that they can tolerate relaxed consistency.

• WheelFS offers data placement options that allow
applications to place data near the users of that data,
without the need for special application logic.

• WheelFS offers client-to-client read options that help
counteract wide-area bandwidth constraints.

• WheelFS offers an interface on which it is quick and
easy to build real distributed applications.

8.1 Experimental setup
All scenarios use WheelFS configured with 64 KB blocks,
a 100 MB in-memory client LRU block cache supple-
mented by an unlimited on-disk cache, one minute object
leases, a lock time of L = 2 minutes, 12-bit slice IDs, 32-
bit object IDs, and a default replication level of three (the
responsible server plus two replicas), unless stated oth-
erwise. Communication takes place over plain TCP, not
SSH, connections. Each WheelFS node runs both a stor-
age server and a client process. The configuration service
runs on five nodes distributed across three wide-area sites.

We evaluate our WheelFS prototype on two testbeds:
PlanetLab [7] and Emulab [42]. For PlanetLab experi-
ments, we use up to 250 nodes geographically spread
across the world at more than 140 sites (we determine the
site of a node based on the domain portion of its host-
name). These nodes are shared with other researchers and
their disks, CPU, and bandwidth are often heavily loaded,
showing how WheelFS performs in the wild. These nodes
run a Linux 2.6 kernel and FUSE 2.7.3. We run the config-
uration service on a private set of nodes running at MIT,
NYU, and Stanford, to ensure that the replicated state ma-
chine can log operations to disk and respond to requests
quickly (fsync()s on PlanetLab nodes can sometimes
take tens of seconds).

For more control over the network topology and host
load, we also run experiments on the Emulab [42] testbed.
Each Emulab host runs a standard Fedora Core 6 Linux
2.6.22 kernel and FUSE version 2.6.5, and has a 3 GHz
CPU. We use a WAN topology consisting of 5 LAN clus-
ters of 3 nodes each. Each LAN cluster has 100 Mbps,
sub-millisecond links between each node. Clusters con-
nect to the wide-area network via a single bottleneck link
of 6 Mbps, with 100 ms RTTs between clusters.

8.2 Scalability
We first evaluate the scalability of WheelFS on a mi-
crobenchmark representing a workload common to dis-
tributed applications: many nodes reading data written by
other nodes in the system. For example, nodes running a
distributed Web cache over a shared storage layer would
be reading and serving pages written by other nodes.
In this microbenchmark, N clients mount a shared file
system containing N directories, either using NFSv4 or
WheelFS. Each directory contains ten 1 MB files. The
clients are PlanetLab nodes picked at random from the
set of nodes that support both mounting both FUSE and
NFS file systems. This set spans a variety of nodes dis-
tributed across the world, from nodes at well-connected
educational institutions to nodes behind limited-upload
DSL lines. Each client reads ten random files from the file
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Figure 3: The median time for a set of PlanetLab clients to read
a 1 MB file, as a function of the number of concurrently reading
nodes. Also plots the median time for a set of local processes to
read 1 MB files from the NFS server’s local disk through ext3.

system in sequence, and measures the read latency. The
clients all do this at the same time.

For WheelFS, each client also acts as a server, and is
the primary for one directory and all files within that di-
rectory. WheelFS clients do not read files for which they
are the primary, and no file is ever read twice by the same
node. The NFS server is a machine at MIT running De-
bian’s nfs-kernel-server version 1.0.10-6 using the default
configuration, with a 2.8 GHz CPU and a SCSI hard drive.

Figure 3 shows the median time to read a file as N
varies. For WheelFS, a very small fraction of reads fail be-
cause not all pairs of PlanetLab nodes can communicate;
these reads are not included in the graph. Each point on
the graph is the median of the results of at least one hun-
dred nodes (e.g., a point showing the latency for five con-
current nodes represents the median reported by all nodes
across twenty different trials).

Though the NFS server achieves lower latencies when
there are few concurrent clients, its latency rises sharply as
the number of clients grows. This rise occurs when there
are enough clients, and thus files, that the files do not fit
in the server’s 1GB file cache. Figure 3 also shows results
for N concurrent processes on the NFS server, accessing
the ext3 file system directly, showing a similar latency
increase after 100 clients. WheelFS latencies are not af-
fected by the number of concurrent clients, since WheelFS
spreads files and thus the load across many servers.

8.3 Distributed Web Cache
Performance under normal conditions. These exper-
iments compare the performance of CoralCDN and the
WheelFS distributed Web cache (as described in Sec-
tion 6, except with .MaxTime=2000 to adapt to Planet-
Lab’s characteristics). The main goal of the cache is to
reduce load on target Web servers via caching, and secon-
darily to provide client browsers with reduced latency and
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Figure 5: The CDF for the client request latencies of both
CoralCDN and the WheelFS-based Web cache, running on Plan-
etLab.

increased availability.
These experiments use forty nodes from PlanetLab

hosted at .edu domains, spread across the continental
United States. A Web server, located at NYU behind an
emulated slow link (shaped using Click [24] to be 400
Kbps and have a 100 ms delay), serves 100 unique 41KB
Web pages. Each of the 40 nodes runs a Web proxy.
For each proxy node there is another node less than 10
ms away that runs a simulated browser as a Web client.
Each Web client requests a sequence of randomly selected
pages from the NYU Web server. This experiment, in-
spired by one in the CoralCDN paper [19], models a flash
crowd where a set of files on an under-provisioned server
become popular very quickly.

Figures 4 and 5 show the results of these experiments.
Figure 4 plots both the total rate at which the proxies send
requests to the origin server and the total rate at which
the proxies serve Web client requests (the y-axis is a log
scale). WheelFS takes about twice as much time as Coral-
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Figure 6: The WheelFS-based Web cache running on Emulab
with failures, using the .EventualConsistency cue. Gray regions
indicate the duration of a failure.

Figure 7: The WheelFS-based Web cache running on Emulab
with failures, with close-to-open consistency. Gray regions indi-
cate the duration of a failure.

CDN to reduce the origin load to zero; both reach simi-
lar sustained aggregate Web client service rates. Figure 5
plots the cumulative distribution function (CDF) of the
request latencies seen by the Web clients. WheelFS has
somewhat higher latencies than CoralCDN.

CoralCDN has higher performance because it incor-
porates many application-specific optimizations, whereas
the WheelFS-based cache is built from more general-
purpose components. For instance, a CoralCDN proxy
pre-declares its intent to download a page, preventing
other nodes from downloading the same page; Apache,
running on WheelFS, has no such mechanism, so several
nodes may download the same page before Apache caches
the data in WheelFS. Similar optimizations could be im-
plemented in Apache.

Performance under failures. Wide-area network prob-
lems that prevent WheelFS from contacting storage nodes
should not translate into long delays; if a proxy cannot
quickly fetch a cached page from WheelFS, it should
ask the origin Web server. As discussed in Section 6, the
cues .EventualConsistency and .MaxTime=1000 yield
this behavior, causing open() to either find a copy of
the desired file or fail in one second. Apache fetches from
the origin Web server if the open() fails.

To test how failures affect WheelFS application perfor-
mance, we ran a distributed Web cache experiment on the
Emulab topology in Section 8.1, where we could control
the network’s failure behavior. At each of the five sites
there are three WheelFS Web proxies. Each site also has a
Web client, which connects to the Web proxies at the same
site using a 10 Mbps, 20 ms link, issuing five requests at a
time. The origin Web server runs behind a 400 Kbps link,
with 150 ms RTTs to the Web proxies.

Figures 6 and 7 compare failure performance of
WheelFS with the above cues to failure performance of

 0.1

 1

 10

 100

 1000

 0  100  200  300  400  500  600  700

R
eq

ue
st

s/
se

c 
(l

og
)

Time (seconds)

Clients
Origin

Figure 8: The aggregate client service rate and origin server
load for the WheelFS-based Web cache, running on Emulab,
without failures.

close-to-open consistency with 1-second timeouts (.Max-
Time=1000). The y-axes of these graphs are log-scale.
Each minute one wide-area link connecting an entire site
to the rest of the network fails for thirty seconds and then
revives. This failure period is not long enough to cause
servers at the failed site to lose their slice locks. Web
clients maintain connectivity to the proxies at their lo-
cal site during failures. For comparison, Figure 8 shows
WheelFS’s performance on this topology when there are
no failures.

When a Web client requests a page from a proxy, the
proxy must find two pieces of information in order to find
a copy of the page (if any) in WheelFS: the object ID to
which the page’s file name resolves, and the file content
for that object ID. The directory information and the file
content can be on different WheelFS servers. For each
kind of information, if the proxy’s WheelFS client has
cached the information and has a valid lease, the WheelFS
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Figure 9: The throughput of Wheemail compared with the static
system, on the Emulab testbed.

client need not contact a server. If the WheelFS client
doesn’t have information with a valid lease, and is us-
ing eventual consistency, it tries to fetch the information
from the primary; if that fails (after a one-second time-
out), the WheelFS client will try fetch from a backup; if
that fails, the client will use locally cached information (if
any) despite an expired lease; otherwise the open() fails
and the proxy fetches the page from the origin server. If a
WheelFS client using close-to-open consistency does not
have cached data with a valid lease, it first tries to contact
the primary; if that fails (after timeout), the proxy must
fetch the page from the origin Web server.

Figure 6 shows the performance of the WheelFS Web
cache with eventual consistency. The graph shows a pe-
riod of time after the initial cache population. The gray re-
gions indicate when a failure is present. Throughput falls
as WheelFS clients encounter timeouts to servers at the
failed site, though the service rate remains near 100 re-
quests/sec. The small load spikes at the origin server af-
ter a failure reflect requests queued up in the network by
the failed site while it is partitioned. Figure 7 shows that
with close-to-open consistency, throughput falls signifi-
cantly during failures, and hits to the origin server increase
greatly. This shows that a cooperative Web cache, which
does not require strong consistency, can use WheelFS’s
semantic cues to perform well under wide-area condi-
tions.

8.4 Mail
The Wheemail system described in Section 6 has a num-
ber of valuable properties such as the ability to serve and
accept a user’s mail from any of multiple sites. This sec-
tion explores the performance cost of those properties by
comparing to a traditional mail system that lacks those
properties.

IMAP and SMTP are stressful file system benchmarks.
For example, an IMAP server reading a Maildir-formatted
inbox and finding no new messages generates over 600
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Figure 10: The average latencies of individual SMTP requests,
for both Wheemail and the static system, on Emulab.

FUSE operations. These primarily consist of lookups on
directory and file names, but also include more than 30 di-
rectory operations (creates/links/unlinks/renames), more
than 30 small writes, and a few small reads. A single
SMTP mail delivery generates over 60 FUSE operations,
again consisting mostly of lookups.

In this experiment we use the Emulab network topol-
ogy described in Section 8.1 with 5 sites. Each site has
a 1 Mbps link to a wide-area network that connects all
the sites. Each site has three server nodes that each run a
WheelFS server, a WheelFS client, an SMTP server, and
an IMAP server. Each site also has three client nodes,
each of which runs multiple load-generation threads. A
load-generation thread produces a sequence of SMTP and
IMAP requests as fast as it can. 90% of requests are
SMTP and 10% are IMAP. User mailbox directories are
randomly and evenly distributed across sites. The load-
generation threads pick users and message sizes with
probabilities from distributions derived from SMTP and
IMAP logs of servers at NYU; there are 47699 users, and
the average message size is 6.9 KB. We measure through-
put in requests/second, with an increasing number of con-
current client threads.

When measuring WheelFS, a load-generating thread at
a given site only generates requests from users whose mail
is stored at that site (the user’s “home” site), and connects
only to IMAP and SMTP servers at the local site. Thus
an IMAP request can be handled entirely within a home
site, and does not generate any wide-area traffic (during
this experiment, each node has cached directory lookup
information for the mailboxes of all users at its site). A
load-generating thread generates mail to random users,
connecting to a SMTP server at the same site; that server
writes the messages to the user’s directory in WheelFS,
which is likely to reside at a different site. In this experi-
ment, user mailbox directories are not replicated.

We compare against a “static” mail system in which
users are partitioned over the 15 server nodes, with the
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cues, running on Emulab. Also shown is the time for a single
client to download 50 MB directly using ttcp.

SMTP and IMAP servers on each server node storing mail
on a local disk file system. The load-generator threads at
each site only generate IMAP requests for users at the
same site, so IMAP traffic never crosses the wide area net-
work. When sending mail, a load-generating client picks
a random recipient, looks up that user’s home server, and
makes an SMTP connection to that server, often across the
wide-area network.

Figure 9 shows the aggregate number of requests served
by the entire system per second. The static system can
sustain 112 requests per second. Each site’s 1 Mbps wide-
area link is the bottleneck: since 90% of the requests are
SMTP (message with an average size 6.85 KB), and 80%
of those go over the wide area, the system as a whole is
sending 4.3 Mbps across a total link capacity of 5 Mbps,
with the remaining wide-area bandwidth being used by
the SMTP and TCP protocols.

Wheemail achieves up to 50 requests per second, 45%
of the static system’s performance. Again the 1 Mbps
WAN links are the bottleneck: for each SMTP request,
WheelFS must send 11 wide-area RPCs to the target
user’s mailbox site, adding an overhead of about 40% to
the size of the mail message, in addition to the continuous
background traffic generated by the maintenance process,
slice lock renewal, Vivaldi coordinate measurement, and
occasional lease invalidations.

Figure 10 shows the average latencies of individual
SMTP requests for Wheemail and the static system, as the
number of clients varies. Wheemail’s latencies are higher
than those of the static system by nearly 60%, attributable
to traffic overhead generated by WheelFS.

Though the static system outperforms Wheemail for
this benchmark, Wheemail provides many desirable prop-
erties that the static system lacks. Wheemail transparently
redirects a receiver’s mail to its home site, regardless of
where the SMTP connection occurred; additional storage

Application LoC Reuses
CDN 1 Apache+mod disk cache
Mail service 4 Sendmail+Procmail+Dovecot
File distribution N/A Built-in to WheelFS
All-Pairs-Pings 13 N/A

Table 3: Number of lines of changes to adapt applications to
use WheelFS.

can be added to the system without major manual recon-
figuration; and Wheemail can be configured to offer toler-
ance to site failures, all without any special logic having
to be built into the mail system itself.

8.5 File distribution
Our file distribution experiments use a WheelFS network
consisting of 15 nodes, spread over five LAN clusters con-
nected by the emulated wide-area network described in
Section 8.1. Nodes attempt to read a 50 MB file simulta-
neously (initially located at an originating, 16th WheelFS
node that is in its own cluster) using the .Hotspot and
.WholeFile cues. For comparison, we also fetch the file
using BitTorrent [14] (the Fedora Core distribution of ver-
sion 4.4.0-5). We configured BitTorrent to allow unlimited
uploads and to use 64 KB blocks like WheelFS (in this
test, BitTorrent performs strictly worse with its usual de-
fault of 256 KB blocks).

Figure 11 shows the CDF of the download times, under
WheelFS and BitTorrent, as well as the time for a single
direct transfer of 50 MB between two wide-area nodes (73
seconds). WheelFS’s median download time is 168 sec-
onds, showing that WheelFS’s implementation of cooper-
ative reading is better than BitTorrent’s: BitTorrent clients
have a median download time of 249 seconds. The im-
provement is due to WheelFS clients fetching from nearby
nodes according to Vivaldi coordinates; BitTorrent does
not use a locality mechanism. Of course, both solutions
offer far better download times than 15 simultaneous di-
rect transfers from a single node, which in this setup has
a median download time of 892 seconds.

8.6 Implementation ease
Table 3 shows the number of new or modified lines of
code (LoC) we had to write for each application (exclud-
ing WheelFS itself). Table 3 demonstrates that developers
can benefit from a POSIX file system interface and cues
to build wide-area applications with ease.

9 Related Work
There is a humbling amount of past work on distributed
file systems, wide-area storage in general and the tradeoffs
of availability and consistency. PRACTI [8] is a recently-
proposed framework for building storage systems with ar-
bitrary consistency guarantees (as in TACT [43]). Like
PRACTI, WheelFS maintains flexibility by separating
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policies from mechanisms, but it has a different goal.
While PRACTI and its recent extension PADS [9] are
designed to simplify the development of new storage or
file systems, WheelFS itself is a flexible file system de-
signed to simplify the construction of distributed appli-
cations. As a result, WheelFS’s cues are motivated by the
specific needs of applications (such as the .Site cue) while
PRACTI’s primitives aim at covering the entire spectrum
of design tradeoffs (e.g., strong consistency for operations
spanning multiple data objects, which WheelFS does not
support).

Most distributed file systems are designed to support
a workload generated by desktop users (e.g., NFS [33],
AFS [34], Farsite [2], xFS [5], Frangipani [12], Ivy [27]).
They usually provide a consistent view of data, while
sometimes allowing for disconnected operation (e.g.,
Coda [35] and BlueFS [28]). Cluster file systems such as
GFS [22] and Ceph [41] have demonstrated that a dis-
tributed file system can dramatically simplify the con-
struction of distributed applications within a large cluster
with good performance. Extending the success of clus-
ter file systems to the wide-area environment continues
to be difficult due to the tradeoffs necessary to combat
wide-area network challenges. Similarly, Sinfonia [3] of-
fers highly-scalable cluster storage for infrastructure ap-
plications, and allows some degree of inter-object con-
sistency via lightweight transactions. However, it targets
storage at the level of individual pieces of data, rather
than files and directories like WheelFS, and uses proto-
cols like two-phase commit that are costly in the wide
area. Shark [6] shares with WheelFS the goal of allowing
client-to-client data sharing, though its use of a central-
ized server limits its scalability for applications in which
nodes often operate on independent data.

Successful wide-area storage systems generally exploit
application-specific knowledge to make decisions about
tradeoffs in the wide-area environment. As a result, many
wide-area applications include their own storage lay-
ers [4, 14, 19, 31] or adapt an existing system [29, 40].
Unfortunately, most existing storage systems, even more
general ones like OceanStore/Pond [30] or S3 [1], are only
suitable for a limited range of applications and still require
a large amount of code to use. DHTs are a popular form
of general wide-area storage, but, while DHTs all offer
a similar interface, they differ widely in implementation.
For example, UsenetDHT [36] and CoralCDN [19] both
use a DHT, but their DHTs differ in many details and are
not interchangeable.

Some wide-area storage systems offer configuration
options in order to make them suitable for a larger range of
applications. Amazon’s Dynamo [16] works across multi-
ple data centers and provides developers with two knobs:
the number of replicas to read or to write, in order to con-
trol durability, availability and consistency tradeoffs. By

contrast, WheelFS’s cues are at a higher level (e.g., even-
tual consistency versus close-to-open consistency). Total
Recall [10] offers a per-object flexible storage API and
uses a primary/backup architecture like WheelFS, but as-
sumes no network partitions, focuses mostly on availabil-
ity controls, and targets a more dynamic environment.
Bayou [39] and Pangaea [32] provide eventual consis-
tency by default while the latter also allows the use of a
“red button” to wait for the acknowledgment of updates
from all replicas explicitly. Like Pangaea and Dynamo,
WheelFS provides flexible consistency tradeoffs. Addi-
tionally, WheelFS also provides controls in other cate-
gories (such as data placement, large reads) to suit the
needs of a variety of applications.

10 Conclusion
Applications that distribute data across multiple sites have
varied consistency, durability, and availability needs. A
shared storage system able to meet this diverse set of
needs would ideally provide applications a flexible and
practical interface, and handle applications’ storage needs
without sacrificing much performance when compared to
a specialized solution. This paper describes WheelFS, a
wide-area storage system with a traditional POSIX inter-
face augmented by cues that allow distributed applications
to control consistency and fault-tolerance tradeoffs.

WheelFS offers a small set of cues in four categories
(placement, durability, consistency, and large reads),
which we have found to work well for many common dis-
tributed workloads. We have used a WheelFS prototype
as a building block in a variety of distributed applications,
and evaluation results show that it meets the needs of
these applications while permitting significant code reuse
of their existing, non-distributed counterparts. We hope to
make an implementation of WheelFS available to devel-
opers in the near future.
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Abstract
This paper presents PADS, a policy architecture for build-
ing distributed storage systems. A policy architecture has
two aspects. First, a common set of mechanisms that al-
low new systems to be implemented simply by defining
new policies. Second, a structure for how policies, them-
selves, should be specified. In the case of distributed
storage systems, PADS defines a data plane that pro-
vides a fixed set of mechanisms for storing and trans-
mitting data and maintaining consistency information.
PADS requires a designer to define a control plane pol-
icy that specifies the system-specific policy for orches-
trating flows of data among nodes. PADS then divides
control plane policy into two parts: routing policy and
blocking policy. The PADS prototype defines a concise
interface between the data and control planes, it provides
a declarative language for specifying routing policy, and
it defines a simple interface for specifying blocking pol-
icy. We find that PADS greatly reduces the effort to de-
sign, implement, and modify distributed storage systems.
In particular, by using PADS we were able to quickly
construct a dozen significant distributed storage systems
spanning a large portion of the design space using just a
few dozen policy rules to define each system.

1 Introduction
Our goal is to make it easy for system designers to con-
struct new distributed storage systems. Distributed stor-
age systems need to deal with a wide range of hetero-
geneity in terms of devices with diverse capabilities (e.g.,
phones, set-top-boxes, laptops, servers), workloads (e.g.,
streaming media, interactive web services, private stor-
age, widespread sharing, demand caching, preloading),
connectivity (e.g., wired, wireless, disruption tolerant),
and environments (e.g., mobile networks, wide area net-
works, developing regions). To cope with these varying
demands, new systems are developed [12, 14, 19, 21,
22, 30], each making design choices that balance perfor-
mance, resource usage, consistency, and availability. Be-
cause these tradeoffs are fundamental [7, 16, 34], we do
not expect the emergence of a single “hero” distributed
storage system to serve all situations and end the need
for new systems.

This paper presents PADS, a policy architecture that

simplifies the development of distributed storage sys-
tems. A policy architecture has two aspects.

First, a policy architecture defines a common set of
mechanisms and allows new systems to be implemented
simply by defining new policies. PADS casts its mech-
anisms as part of a data plane and policies as part of a
control plane. The data plane encapsulates a set of com-
mon mechanisms that handle the details of storing and
transmitting data and maintaining consistency informa-
tion. System designers then build storage systems by
specifying a control plane policy that orchestrates data
flows among nodes.

Second, a policy architecture defines a framework for
specifying policy. In PADS, we separate control plane
policy into routing and blocking policy.

• Routing policy: Many of the design choices of dis-
tributed storage systems are simply routing decisions
about data flows between nodes. These decisions pro-
vide answers to questions such as: “When and where
to send updates?” or “Which node to contact on a
read miss?”, and they largely determine how a sys-
tem meets its performance, availability, and resource
consumption goals.

• Blocking policy: Blocking policy specifies predicates
for when nodes must block incoming updates or lo-
cal read/write requests to maintain system invariants.
Blocking is important for meeting consistency and
durability goals. For example, a policy might block
the completion of a write until the update reaches at
least 3 other nodes.

The PADS prototype is an instantiation of this archi-
tecture. It provides a concise interface between the con-
trol and data planes that is flexible, efficient, and yet sim-
ple. For routing policy, designers specify an event-driven
program over an API comprising a set of actions that set
up data flows, a set of triggers that expose local node in-
formation, and the abstraction of stored events that store
and retrieve persistent state. To facilitate the specifi-
cation of event-driven routing, the prototype defines a
domain-specific language that allows routing policy to
be written as a set of declarative rules. For defining a
control plane’s blocking policy, PADS defines five block-
ing points in the data plane’s processing of read, write,
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interface*
File system
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Fig. 1: Features covered by case-study systems. Each column corresponds to a system implemented on PADS, and the rows list
the set of features covered by the implementation. ∗Note that the original implementations of some systems provide interfaces that
differ from the object store or file system interfaces we provide in our prototypes.

and receive-update actions; at each blocking point, a de-
signer specifies blocking predicates that indicate when
the processing of these actions must block.

Ultimately, the evidence for PADS’s usefulness is sim-
ple: two students used PADS to construct a dozen dis-
tributed storage systems summarized in Figure 1 in a few
months. PADS’s ability to support these systems (1) pro-
vides evidence supporting our high-level approach and
(2) suggests that the specific APIs of our PADS prototype
adequately capture the key abstractions for building dis-
tributed storage systems. Notably, in contrast with the
thousands of lines of code it typically takes to construct
such a system using standard practice, given the PADS
prototype it requires just 6-75 routing rules and a hand-
ful of blocking conditions to define each new system with
PADS.

Similarly, we find it easy to add significant new
features to PADS systems. For example, we add co-
operative caching [5] to Coda by adding 13 rules.

This flexibility comes at a modest cost to absolute per-
formance. Microbenchmark performance of an imple-
mentation of one system (P-Coda) built on our user-level
Java PADS prototype is within ten to fifty percent of the
original system (Coda [14]) in most cases and 3.3 times
worse in the worst case we measured.

A key issue in interpreting Figure 1 is understanding
how complete or realistic these PADS implementations
are. The PADS implementations are not bug-compatible
recreations of every detail of the original systems, but we

believe they do capture the overall architecture of these
designs by storing approximately the same data on each
node, by sending approximately the same data across the
same network links, and by enforcing the same consis-
tency and durability semantics; we discuss our definition
of architectural equivalence in Section 6. We also note
that our PADS implementations are sufficiently complete
to run file system benchmarks and that they handle im-
portant and challenging real world details like configura-
tion files and crash recovery.

2 PADS overview
Separating mechanism from policy is an old idea. As
Figure 2 illustrates, PADS does so by defining a data
plane that embodies the basic mechanisms needed for
storing data, sending and receiving data, and maintain-
ing consistency information. PADS then casts policy
as defining a control plane that orchestrates data flow
among nodes. This division is useful because it allows
the designer to focus on high-level specification of con-
trol plane policy rather than on implementation of low-
level data storage, bookkeeping, and transmission de-
tails.

PADS must therefore specify an interface between the
data plane and the control plane that is flexible and effi-
cient so that it can accommodate a wide design space. At
the same time, the interface must be simple so that the
designer can reason about it. Section 3 and Section 4 de-
tail the interface exposed by the data plane mechanisms
to the control plane policy.
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Fig. 2: PADS approach to system development.

To meet these goals and to guide a designer, PADS di-
vides the control policy into a routing policy and a block-
ing policy. This division is useful because it introduces a
separation of concerns for a system designer.

First, a system’s trade-offs among performance, avail-
ability, and resource consumption goals largely map to
routing rules. For example, sending all updates to all
nodes provides excellent response time and availability,
whereas caching data on demand requires fewer network
and storage resources. As described in Section 3, a PADS
routing policy is an event-driven program that builds on
the data plane mechanisms exposed by the PADS API to
set up data flows among nodes in order to transmit and
store the desired data at the desired nodes.

Second, a system’s durability and consistency con-
straints are naturally expressed as conditions that must
be met when an object is read or updated. For example,
the enforcement of a specific consistency semantic might
require a read to block until it can return the value of
the most recently completed write. As described in Sec-
tion 4, a PADS blocking policy specifies these require-
ments as a set of predicates that block access to an object
until the predicates are satisfied.

Blocking policy works together with routing policy to
enforce the safety constraints and the liveness goals of
a system. Blocking policy enforce safety conditions by
ensuring that an operation blocks until system invariants
are met, whereas routing policy guarantee liveness by en-
suring that an operation will eventually unblock—by set-
ting up data flows to ensure the conditions are eventually
satisfied.

2.1 Using PADS

As Figure 2 illustrates, in order to build a distributed stor-
age system on PADS, a system designer writes a routing
policy and a blocking policy. She writes the routing pol-
icy as an event-driven program comprising a set of rules
that send or fetch updates among nodes when particular
events exposed by the underlying data plane occur. She
writes her blocking policy as a list of predicates. She
then uses a PADS compiler to translate her routing rules

into Java and places the blocking predicates in a config-
uration file. Finally, she distributes a Java jar file con-
taining PADS’s standard data plane mechanisms and her
system’s control policy to the system’s nodes. Once the
system is running at each node, users can access locally
stored data, and the system synchronizes data among
nodes according to the policy.

2.2 Policies vs. goals
A PADS policy is a specific set of directives rather than
a statement of a system’s high-level goals. Distributed
storage design is a creative process and PADS does not
attempt to automate it: a designer must still devise a
strategy to resolve trade-offs among factors like perfor-
mance, availability, resource consumption, consistency,
and durability. For example, a policy designer might de-
cide on a client-server architecture and specify “When
an update occurs at a client, the client should send the
update to the server within 30 seconds” rather than stat-
ing “Machine X has highly durable storage” and “Data
should be durable within 30 seconds of its creation” and
then relying on the system to derive a client-server archi-
tecture with a 30 second write buffer.

2.3 Scope and limitations
PADS targets distributed storage environments with mo-
bile devices, nodes connected by WAN networks, or
nodes in developing regions with limited or intermittent
connectivity. In these environments, factors like limited
bandwidth, heterogeneous device capabilities, network
partitions, or workload properties force interesting trade-
offs among data placement, update propagation, and con-
sistency. Conversely, we do not target environments like
well-connected clusters.

Within this scope, there are three design issues for
which the current PADS prototype significantly restricts
a designer’s choices

First, the prototype does not support security specifi-
cation. Ultimately, our policy architecture should also
define flexible security primitives, and providing such
primitives is important future work [18].

Second, the prototype exposes an object-store inter-
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face for local reads and writes. It does not expose other
interfaces such as a file system or a tuple store. We be-
lieve that these interfaces are not difficult to incorporate.
Indeed, we have implemented an NFS interface over our
prototype.

Third, the prototype provides a single mechanism for
conflict resolution. Write-write conflicts are detected and
logged in a way that is data-preserving and consistent
across nodes to support a broad range of application-
level resolvers. We implement a simple last writer wins
resolution scheme and believe that it is straightforward to
extend PADS to support other schemes [14, 31, 13, 28, 6].

3 Routing policy
In PADS, the basic abstraction provided by the data plane
is a subscription—a unidirectional stream of updates to
a specific subset of objects between a pair of nodes. A
policy designer controls the data plane’s subscriptions to
implement the system’s routing policy. For example, if
a designer wants to implement hierarchical caching, the
routing policy would set up subscriptions among nodes
to send updates up and to fetch data down the hierarchy.
If a designer wants nodes to randomly gossip updates,
the routing policy would set up subscriptions between
random nodes. If a designer wants mobile nodes to ex-
change updates when they are in communication range,
the routing policy would probe for available neighbors
and set up subscriptions at opportune times.

Given this basic approach, the challenge is to define
an API that is sufficiently expressive to construct a wide
range of systems and yet sufficiently simple to be com-
prehensible to a designer. As the rest of this section de-
tails, PADS provides three sets of primitives for specify-
ing routing policies: (1) a set of 7 actions that establish
or remove subscriptions to direct communication of spe-
cific subsets of data among nodes, (2) a set of 9 triggers
that expose the status of local operations and informa-
tion flow, and (3) a set of 5 stored events that allow a
routing policy to persistently store and access configura-
tion options and information affecting routing decisions
in data objects. Consequently, a system’s routing policy
is specified as an event-driven program that invokes the
appropriate actions or accesses stored events based on
the triggers received.

In the rest of this section, we discuss details of these
PADS primitives and try to provide an intuition for why
these few primitives can cover a large part of the design
space. We do not claim that these primitives are minimal
or that they are the only way to realize this approach.
However, they have worked well for us in practice.

3.1 Actions
The basic abstraction provided by a PADS action is sim-
ple: an action sets up a subscription to route updates

Routing Actions
Add Inval Sub srcId, destId, objS, [startTime],

LOG|CP|CP+Body
Add Body Sub srcId, destId, objS, [startTime]
Remove Inval Sub srcId, destId, objS
Remove Body Sub srcId, destId, objS
Send Body srcId, destId, objId, off, len, writerId, time
Assign Seq objId, off, len, writerId, time
B Action <policy defined>

Fig. 3: Routing actions provided by PADS. objId, off, and len
indicate the object identifier, offset, and length of the update
to be sent. startTime specifies the logical start time of the sub-
scription. writerId and time indicate the logical time of a par-
ticular update. The fields for the B Action are policy defined.

from one node to another or removes an established sub-
scription to stop sending updates. As Figure 3 shows, the
subscription establishment API (Add Inval Sub and Add
Body Sub) provides five parameters that allow a designer
to control the scope of subscriptions:
• Selecting the subscription type. The designer decides

whether invalidations or bodies of updates should be
sent. Every update comprises an invalidation and a
body. An invalidation indicates that an update of a
particular object occurred at a particular instant in log-
ical time. Invalidations aid consistency enforcement
by providing a means to quickly notify nodes of up-
dates and to order the system’s events. Conversely, a
body contains the data for a specific update.

• Selecting the source and destination nodes. Since sub-
scriptions are unidirectional streams, the designer in-
dicates the direction of the subscription by specifying
the source node (srcId) of the updates and the desti-
nation node (destId) to which the updates should be
transmitted.

• Selecting what data to send. The designer specifies
what data to send by specifying the objects of inter-
est for a subscription so that only updates for those
objects are sent on the subscription. PADS exports a
hierarchical namespace in which objects are identified
with unique strings (e.g., /x/y/z) and a group of related
objects can be concisely specified. (e.g., /a/b/*).

• Selecting the logical start time. The designer specifies
a logical start time so that the subscription can send
all updates that have occurred to the objects of interest
from that time. The start time is specified as a partial
version vector and is set by default to the receiver’s
current logical time.

• Selecting the catch-up method. If the start time for
an invalidation subscription is earlier than the sender’s
current logical time, the sender has two options: The
sender can transmit either a log of the updates that
have occurred since the start time or a checkpoint that
includes just the most recent update to each byterange
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Local Read/Write Triggers
Operation block obj, off, len,

blocking point, failed predicates
Write obj, off, len, writerId, time
Delete obj, writerId, time

Message Arrival Triggers
Inval arrives srcId, obj, off, len, writerId, time
Send body success srcId, obj, off, len, writerId, time
Send body failed srcId, destId, obj, off, len, writerId, time

Connection Triggers
Subscription start srcId, destId, objS, Inval|Body
Subscription caught-up srcId, destId, objS, Inval
Subscription end srcId, destId, objS, Reason, Inval|Body

Fig. 4: Routing triggers provided by PADS. blocking point and
failed predicates indicate at which point an operation blocked
and what predicate failed (refer to Section 4). Inval | Body
indicate the type of subscription. Reason indicates if the sub-
scription ended due to failure or termination.

since the start time. These options have different per-
formance tradeoffs. Sending a log is more efficient
when the number of recent changes is small compared
to the number of objects covered by the subscription.
Conversely, a checkpoint is more efficient if (a) the
start time is in the distant past (so the log of events is
long) or (b) the subscription set consists of only a few
objects (so the size of the checkpoint is small). Note
that once a subscription catches up with the sender’s
current logical time, updates are sent as they arrive,
effectively putting all active subscriptions into a mode
of continuous, incremental log transfer. For body sub-
scriptions, if the start time of the subscription is earlier
than the sender’s current time, the sender transmits a
checkpoint containing the most recent update to each
byterange. The log option is not available for send-
ing bodies. Consequently, the data plane only needs to
store the most recent version of each byterange.
In addition to the interface for creating subscriptions

(Add Inval Sub and Add Body Sub), PADS provides Re-
move Inval Sub and Remove Body Sub to remove estab-
lished subscriptions, Send Body to send an individual
body of an update that occurred at or after the speci-
fied time, Assign Seq to mark a previous update with a
commit sequence number to aid enforcement of consis-
tency [23], and B Action to allow the routing policy to
send an event to the blocking policy (refer to Section 4).
Figure 3 details the full routing actions API.

3.2 Triggers
PADS triggers expose to the control plane policy events
that occur in the data plane. As Figure 4 details, these
events fall into three categories.
• Local operation triggers inform the routing policy

when an operation blocks because it needs additional
information to complete or when a local write or delete
occurs.

Stored Events
Write event objId, eventName, field1, ..., fieldN
Read event objId
Read and watch event objId
Stop watch objId
Delete events objId

Fig. 5: PADS’s stored events interface. objId specifies the ob-
ject in which the events should be stored or read from. event-
Name defines the name of the event to be written and field*
specify the values of fields associated with it.

• Message receipt triggers inform the routing policy
when an invalidation arrives, when a body arrives, or
whether a send body succeeds or fails.

• Connection triggers inform the routing policy when
subscriptions are successfully established, when a sub-
scription has caused a receiver’s state to be caught up
with a sender’s state (i.e., the subscription has trans-
mitted all updates to the subscription set up to the
sender’s current time), or when a subscription is re-
moved or fails.

3.3 Stored events
Many systems need to maintain persistent state to make
routing decisions. Supporting this need is challenging
both because we want an abstraction that meshes well
with our event-driven programming model and because
the techniques must handle a wide range of scales. In
particular, the abstraction must not only handle simple,
global configuration information (e.g., the server identity
in a client-server system like Coda [14]), but it must also
scale up to per-file information (e.g., which nodes store
the gold copies of each object in Pangaea [26].)

To provide a uniform abstraction to address this range
of demands, PADS provides stored events primitives to
store events into a data object in the underlying persis-
tent object store. Figure 5 details the full API for stored
events. A Write Event stores an event into an object and
a Read Event causes all events stored in an object to be
fed as input to the routing program. The API also in-
cludes Read and Watch to produce new events whenever
they are added to an object, Stop Watch to stop producing
new events from an object, and Delete Events to delete all
events in an object.

For example, in a hierarchical information dissemi-
nation system, a parent p keeps track of what volumes
a child subscribes to so that the appropriate subscrip-
tions can be set up. When a child c subscribes to a new
volume v, p stores the information in a configuration
object /subInfo by generating a <write event, /subInfo,
child sub, p, c, v> action. When this information is
needed, for example on startup or recovery, the parent
generates a <read event, /subInfo> action that causes a
<child sub, p, c, v> event to be generated for each item
stored in the object. The child sub events, in turn, trig-
ger event handlers in the routing policy that re-establish
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subscriptions.

3.4 Specifying routing policy
A routing policy is specified as an event-driven program
that invokes actions when local triggers or stored events
are received. PADS provides R/OverLog, a language
based on the OverLog routing language [17] and a run-
time to simplify writing event-driven policies.1

As in OverLog, a R/OverLog program defines a set of
tables and a set of rules. Tables store tuples that represent
internal state of the routing program. This state does not
need to be persistently stored, but is required for policy
execution and can dynamically change. For example, a
table might store the ids of currently reachable nodes.
Rules are fired when an event occurs and the constraints
associated with the rule are met. The input event to a
rule can be a trigger injected from the local data plane,
a stored event injected from the data plane’s persistent
state, or an internal event produced by another rule on a
local machine or a remote machine. Every rule generates
a single event that invokes an action in the data plane,
fires another local or remote rule, or is stored in a table
as a tuple. For example, the following rule:

EVT clientReadMiss(@S, X, Obj, Off, Len):-
TRIG operationBlock(@X, Obj, Off, Len, BPoint, ),
TBL serverId(@X, S),
BPoint == “readNowBlock”.

specifies that whenever node X receives a operationBlock
trigger informing it of an operation blocked at the read-
NowBlock blocking point, it should produce a new event
clientReadMiss at server S, identified by serverId table.
This event is populated with the fields from the triggering
event and the constraints—the client id (X), the data to be
read (obj, off, len), and the server to contact (S). Note that
the underscore symbol ( ) is a wildcard that matches any
list of predicates and the at symbol (@) specifies the node
at which the event occurs. A more complete discussion
of OverLog language and execution model is available
elsewhere [17].

4 Blocking policy
A system’s durability and consistency constraints can be
naturally expressed as invariants that must hold when an
object is accessed. In PADS, the system designer speci-
fies these invariants as a set of predicates that block ac-
cess to an object until the conditions are satisfied. To that
end, PADS (1) defines 5 blocking points for which a sys-
tem designer specifies predicates, (2) provides 4 built-in
conditions that a designer can use as predicates, and (3)
exposes a B Action interface that allows a designer to
specify custom conditions based on routing information.

1Note that if learning a domain specific language is not one’s cup of
tea, one can define a (less succinct) policy by writing Java handlers for
PADS triggers and stored events to generate PADS actions and stored
events.

Predefined Conditions on Local Consistency State
isValid Block until node has received the body corre-

sponding to the highest received invalidation
for the target object

isComplete Block until object’s consistency state reflects
all updates before the node’s current logical
time

isSequenced Block until object’s total order is established
maxStaleness
nodes, count, t

Block until all writes up to
(operationStartTime-t) from count nodes in
nodes have been received.

User Defined Conditions on Local or Distributed State
B Action
event-spec

Block until an event with fields matching
event-spec is received from routing policy

Fig. 6: Conditions available for defining blocking predicates.

The set of predicates for each blocking point makes up
the blocking policy of the system.

4.1 Blocking points
PADS defines five points for which a policy can supply a
predicate and a timeout value to block a request until the
predicate is satisfied or the timeout is reached. The first
three are the most important:

• ReadNowBlock blocks a read until it will return data
from a moment that satisfies the predicate. Blocking
here is useful for ensuring consistency (e.g., block un-
til a read is guaranteed to return the latest sequenced
write.)

• WriteEndBlock blocks a write request after it has up-
dated the local object but before it returns. Blocking
here is useful for ensuring consistency (e.g., block un-
til all previous versions of this data are invalidated)
and durability (e.g., block here until the update is
stored at the server.)

• ApplyUpdateBlock blocks an invalidation received
from the network before it is applied to the local data
object. Blocking here is useful to increase data avail-
ability by allowing a node to continue serving local
data, which it might not have been able to if the data
had been invalidated. (e.g., block applying a received
invalidation until the corresponding body is received.)

PADS also provides WriteBeforeBlock to block a write
before it modifies the underlying data object and Read-
EndBlock to block a read after it has retrieved data from
the data plane but before it returns.

4.2 Blocking conditions
PADS provides a set of predefined conditions, listed in
Figure 6, to specify predicates at each blocking point.
A blocking predicate can use any combination of these
predicates. The first four conditions provide an interface
to the consistency bookkeeping information maintained
in the data plane on each node.

• IsValid requires that the last body received for an ob-
ject is as new as the last invalidation received for that
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object. isValid is useful for enforcing monotonic co-
herence on reads2 and for maximizing availability by
ensuring that invalidations received from other nodes
are not applied until they can be applied with their cor-
responding bodies [6, 20].

• IsComplete requires that a node receives all invalida-
tions for the target object up to the node’s current log-
ical time. IsComplete is needed because liveness poli-
cies can direct arbitrary subsets of invalidations to a
node, so a node may have gaps in its consistency state
for some objects. If the predicate for ReadNowBlock
is set to isValid and isComplete, reads are guaranteed
to see causal consistency.

• IsSequenced requires that the most recent write to the
target object has been assigned a position in a to-
tal order. Policies that want to ensure sequential or
stronger consistency can use the Assign Seq routing
action (see Figure 3) to allow a node to sequence other
nodes’ writes and specify the isSequenced condition
as a ReadNowBlock predicate to block reads of unse-
quenced data.

• MaxStaleness is useful for bounding real time stale-
ness.
The fifth condition on which a blocking predicate can

be based on is B Action. A B Action condition provides
an interface with which a routing policy can signal an
arbitrary condition to a blocking predicate. An operation
waiting for event-spec unblocks when the routing rules
produce an event whose fields match the specified spec.

Rationale. The first four, built-in consistency book-
keeping primitives exposed by this API were developed
because they are simple and inexpensive to maintain
within the data plane [2, 35] but they would be complex
or expensive to maintain in the control plane. Note that
they are primitives, not solutions. For example, to en-
force linearizability, one must not only ensure that one
reads only sequenced updates (e.g., via blocking at Read-
NowBlock on isSequenced) but also that a write operation
blocks until all prior versions of the object have been in-
validated (e.g., via blocking at WriteEndBlock on, say,
the B Action allInvalidated which the routing policy pro-
duces by tracking data propagation through the system).

Beyond the four pre-defined conditions, a policy-
defined B Action condition is needed for two reasons.
The most obvious need is to avoid having to predefine
all possible interesting conditions. The other reason for
allowing conditions to be met by actions from the event-
driven routing policy is that when conditions reflect dis-
tributed state, policy designers can exploit knowledge of
their system to produce better solutions than a generic
implementation of the same condition. For example, in

2Any read on an object will return a version that is equal to or newer
than the version that was last read.

the client-server system we describe in Section 6, a client
blocks a write until it is sure that all other clients caching
the object have been invalidated. A generic implemen-
tation of the condition might have required the client
that issued the write to contact all other clients. How-
ever, a policy-defined event can take advantage of the
client-server topology for a more efficient implementa-
tion. The client sets the writeEndBlock predicate to a
policy-defined receivedAllAcks event. Then, when an ob-
ject is written and other clients receive an invalidation,
they send acknowledgements to the server. When the
server gathers acknowledgements from all other clients,
it generates a receivedAllAcks action for the client that
issued the write.

5 Constructing P-TierStore
As an example of how to build a system with PADS, we
describe our implementation of P-TierStore, a system in-
spired by TierStore [6]. We choose this example because
it is simple and yet exercises most aspects of PADS.

5.1 System goals
TierStore is a distributed object storage system that tar-
gets developing regions where networks are bandwidth-
constrained and unreliable. Each node reads and writes
specific subsets of the data. Since nodes must often op-
erate in disconnected mode, the system prioritizes 100%
availability over strong consistency.

5.2 System design
In order to achieve these goals, TierStore employs a hi-
erarchical publish/subscribe system. All nodes are ar-
ranged in a tree. To propagate updates up the tree, every
node sends all of its updates and its children’s updates
to its parent. To flood data down the tree, data are parti-
tioned into “publications” and every node subscribes to a
set of publications from its parent node covering its own
interests and those of its children. For consistency, Tier-
Store only supports single-object monotonic reads coher-
ence.

5.3 Policy specification
In order to construct P-TierStore, we decompose the de-
sign into routing policy and blocking policy.

A 14-rule routing policy establishes and maintains the
publication aggregation and multicast trees. A full list-
ing of these rules is available elsewhere [3]. In terms
of PADS primitives, each connection in the tree is sim-
ply an invalidation subscription and a body subscription
between a pair of nodes. Every PADS node stores in con-
figuration objects the ID of its parent and the set of pub-
lications to subscribe to.

On start up, a node uses stored events to read the con-
figuration objects and store the configuration information
in R/OverLog tables (4 rules). When it knows of the ID
of its parent, it adds subscriptions for every item in the
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publication set (2 rules). For every child, it adds sub-
scriptions for “/*” to receive all updates from the child
(2 rules). If an application decides to subscribe to an-
other publication, it simply writes to the configuration
object. When this update occurs, a new stored event is
generated and the routing rules add subscriptions for the
new publication.

Recovery. If an incoming or an outgoing subscription
fails, the node periodically tries to re-establish the con-
nection (2 rules). Crash recovery requires no extra pol-
icy rules. When a node crashes and starts up, it sim-
ply re-establishes the subscriptions using its local logical
time as the subscription’s start time. The data plane’s
subscription mechanisms automatically detect which up-
dates the receiver is missing and send them.

Delay tolerant network (DTN) support. P-TierStore
supports DTN environments by allowing one or more
mobile PADS nodes to relay information between a par-
ent and a child in a distribution tree. In this configura-
tion, whenever a relay node arrives, a node subscribes to
receive any new updates the relay node brings and pushes
all new local updates for the parent or child subscription
to the relay node (4 rules).

Blocking policy. Blocking policy is simple because
TierStore has weak consistency requirements. Since
TierStore prefers stale available data to unavailable data,
we set the ApplyUpdateBlock to isValid to avoid applying
an invalidation until the corresponding body is received.

TierStore vs. P-TierStore. Publications in TierStore
are defined by a container name and depth to include all
objects up to that depth from the root of the publication.
However, since P-TierStore uses a name hierarchy to de-
fine publications (e.g., /publication1/*), all objects under
the directory tree become part of the subscription with no
limit on depth.

Also, as noted in Section 2.3, PADS provides a single
conflict-resolution mechanism, which differs from that
of TierStore in some details. Similarly, TierStore pro-
vides native support for directory objects, while PADS
supports a simple untyped object store interface.

6 Experience and evaluation
Our central thesis is that it is useful to design and build
distributed storage systems by specifying a control plane
comprising a routing policy and a blocking policy. There
is no quantitative way to prove that this approach is good,
so we base our evaluation on our experience using the
PADS prototype.

Figure 1 conveys the main result of this paper: using
PADS, a small team was able to construct a dozen signif-
icant systems with a large number of features that cover

a large part of the design space. PADS qualitatively re-
duced the effort to build these systems and increased our
team’s capabilities: we do not believe a small team such
as ours could have constructed anything approaching this
range of systems without PADS.

In the rest of this section, we elaborate on this ex-
perience by first discussing the range of systems stud-
ied, the development effort needed, and our debugging
experience. We then explore the realism of the sys-
tems we constructed by examining how PADS handles
key system-building problems like configuration, consis-
tency, and crash recovery. Finally, we examine the costs
of PADS’s generality: what overheads do our PADS im-
plementations pay compared to ideal or hand-crafted im-
plementations?

Approach and environment. The goal of PADS is to
help people develop new systems. One way to evaluate
PADS would be to construct a new system for a new de-
manding environment and report on that experience. We
choose a different approach—constructing a broad range
of existing systems—for three reasons. First, a single
system may not cover all of the design choices or test
the limits of PADS. Second, it might not be clear how
to generalize the experience from building one system to
building others. Third, it might be difficult to disentangle
the challenges of designing a new system for a new envi-
ronment from the challenges of realizing a design using
PADS.

The PADS prototype uses PRACTI [2, 35] to provide
the data plane mechanisms. We implement a R/OverLog
to Java compiler using the XTC toolkit [9]. Except where
noted, all experiments are carried out on machines with
3GHz Intel Pentium IV Xeon processors, 1GB of mem-
ory, and 1Gb/s Ethernet. Machines and network connec-
tions are controlled via the Emulab software [33]. For
software, we use Fedora Core 8, BEA JRockit JVM Ver-
sion 27.4.0, and Berkeley DB Java Edition 3.2.23.

6.1 System development on PADS

This section describes the design space we have covered,
how the agility of the resulting implementations makes
them easy to adapt, the design effort needed to construct
a system under PADS, and our experience debugging and
analyzing our implementations.

6.1.1 Flexibility
We constructed systems chosen from the literature to
cover large part of the design space. We refer to our im-
plementation of each system as P-system (e.g., P-Coda).
To provide a sense of the design space covered, we pro-
vide a short summary of each of the system’s properties
below and in Figure 1.

Generic client-server. We construct a simple client-
server (P-SCS) and a full featured client-server (P-FCS).
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Objects are stored on the server, and clients cache the
data from the server on demand. Both systems imple-
ment callbacks in which the server keeps track of which
clients are storing a valid version of an object and sends
invalidations to them whenever the object is updated.
The difference between P-SCS and P-FCS is that P-SCS
assumes full object writes while P-FCS supports partial-
object writes and also implements leases and coopera-
tive caching. Leases [8] increase availability by allowing
a server to break a callback for unreachable clients. Co-
operative caching [5] allows clients to retrieve data from
a nearby client rather than from the server. Both P-SCS
and P-FCS enforce sequential consistency semantics and
ensure durability by making sure that the server always
holds the body of the most recently completed write of
each object.

Coda [14]. Coda is a client-server system that supports
mobile clients. P-Coda includes the client-server pro-
tocol and the features described in Kistler et al.’s pa-
per [14]. It does not include server replication features
detailed in [27]. Our discussion focuses on P-Coda. P-
Coda is similar to P-FCS—it implements callbacks and
leases but not cooperative caching; also, it guarantees
open-to-close consistency3 instead of sequential consis-
tency. A key feature of Coda is its support for discon-
nected operation—clients can access locally cached data
when they are offline and propagate offline updates to
the server on reconnection. Every client has a hoard list
that specifies objects to be periodically fetched from the
server

TRIP [20]. TRIP is a distributed storage system for
large-scale information dissemination: all updates occur
at a server and all reads occur at clients. TRIP uses a
self-tuning prefetch algorithm and delays applying inval-
idations to a client’s locally cached data to maximize the
amount of data that a client can serve from its local state.
TRIP guarantees sequential consistency via a simple al-
gorithm that exploits the constraint that all writes are car-
ried out by a single server.

TierStore [6]. TierStore is described in Section 5.

Chain replication [32]. Chain replication is a server
replication protocol that guarantees linearizability and
high availability. All the nodes in the system are arranged
in a chain. Updates occur at the head and are only con-
sidered complete when they have reached the tail.

Bayou [23]. Bayou is a server-replication protocol that
focuses on peer-to-peer data sharing. Every node has a
local copy of all of the system’s data. From time to time,

3Whenever a client opens a file, it always gets the latest version of
the file known to the server, and the server is not updated until the file
is closed.

a node picks a peer to exchange updates with via anti-
entropy sessions.

Pangaea [26] Pangaea is a peer-to-peer distributed
storage system for wide area networks. Pangaea main-
tains a connected graph across replicas for each object,
and it pushes updates along the graph edges. Pangaea
maintains three gold replicas for every object to ensure
data durability.

Summary of design features. As Figure 1 further de-
tails, these systems cover a wide range of design features
in a number of key dimensions. For example,
• Replication: full replication (Bayou, Chain Replica-

tion, and TRIP), partial replication (Coda, Pangaea, P-
FCS, and TierStore), demand caching (Coda, Pangaea,
and P-FCS),

• Topology: structured topologies such as client-server
(Coda, P-FCS, and TRIP), hierarchical (TierStore),
and chain (Chain Replication); unstructured topolo-
gies (Bayou and Pangaea). Invalidation-based (Coda
and P-FCS) and update-based (Bayou, TierStore, and
TRIP) propagation.

• Consistency: monotonic-reads coherence (Pangaea
and TierStore), casual (Bayou), sequential (P-FCS and
TRIP), and linearizability (Chain Replication); tech-
niques such as callbacks (Coda, P-FCS, and TRIP) and
leases (Coda and P-FCS).

• Availability: Disconnected operation (Bayou, Coda,
TierStore, and TRIP), crash recovery (all), and net-
work reconnection (all).

Goal: Architectural equivalence. We build systems
based on the above designs from the literature, but con-
structing perfect, “bug-compatible” duplicates of the
original systems using PADS is not a realistic (or use-
ful) goal. On the other hand, if we were free to pick and
choose arbitrary subsets of features to exclude, then the
bar for evaluating PADS is too low: we can claim to have
built any system by simply excluding any features PADS
has difficulty supporting.

Section 2.3 identifies three aspects of system design—
security, interface, and conflict resolution—for which
PADS provides limited support, and our implementations
of the above systems do not attempt to mimic the original
designs in these dimensions.

Beyond that, we have attempted to faithfully imple-
ment the designs in the papers cited. More precisely, al-
though our implementations certainly differ in some de-
tails, we believe we have built systems that are archi-
tecturally equivalent to the original designs. We define
architectural equivalence in terms of three properties:

E1. Equivalent overhead. A system’s network bandwidth
between any pair of nodes and its local storage at any
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node are within a small constant factor of the target
system.

E2. Equivalent consistency. The system provides consis-
tency and staleness properties that are at least as strong
as the target system’s.

E3. Equivalent local data. The set of data that may be ac-
cessed from the system’s local state without network
communication is a superset of the set of data that may
be accessed from the target system’s local state. No-
tice that this property addresses several factors includ-
ing latency, availability, and durability.

There is a principled reason for believing that these prop-
erties capture something about the essence of a repli-
cation system: they highlight how a system resolves
the fundamental CAP (Consistency vs. Availability vs.
Partition-resilience) [7] and PC (Performance vs. Con-
sistency) [16] trade-offs that any distributed storage sys-
tem must make.

6.1.2 Agility
As workloads and goals change, a system’s requirements
also change. We explore how systems build with PADS
can be adapted by adding new features. We highlight
two cases in particular: our implementation of Bayou
and Coda. Even though they are simple examples, they
demonstrate that being able to easily adapt a system to
send the right data along the right paths can pay big div-
idends.

P-Bayou small device enhancement. P-Bayou is a
server-replication protocol that exchanges updates be-
tween pairs of servers via an anti-entropy protocol. Since
the protocol propagates updates for the whole data set to
every node, P-Bayou cannot efficiently support smaller
devices that have limited storage or bandwidth.

It is easy to change P-Bayou to support small devices.
In the original P-Bayou design, when anti-entropy is trig-
gered, a node connects to a reachable peer and subscribes
to receive invalidations and bodies for all objects using a
subscription set “/*”. In our small device variation, a
node uses stored events to read a list of directories from
a per-node configuration file and subscribes only for the
listed subdirectories. This change required us to modify
two routing rules.

This change raises an issue for the designer. If a small
device C synchronizes with a first complete server S1, it
will not receive updates to objects outside of its subscrip-
tion sets. These omissions will not affect C since C will
not access those objects. However, if C later synchro-
nizes with a second complete server S2, S2 may end up
with causal gaps in its update logs due to the missing up-
dates that C doesn’t subscribe to. The designer has three
choices: weaken consistency from causal to per-object
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coherence; restrict communication to avoid such situa-
tions (e.g., prevent C from synchronizing with S2); or
weaken availability by forcing S2 to fill its gaps by talk-
ing to another server before allowing local reads of po-
tentially stale objects. We choose the first, so we change
the blocking predicate for reads to no longer require the
isComplete condition. Other designers may make differ-
ent choices depending on their environment and goals.

Figure 7 examines the bandwidth consumed to syn-
chronize 3KB files in P-Bayou and serves two purposes.
First, it demonstrates that the overhead for anti-entropy
in P-Bayou is relatively small even for small files com-
pared to an ideal Bayou implementation (plotted by
counting the bytes of data that must be sent ignoring all
metadata overheads.) More importantly, it demonstrates
that if a node requires only a fraction (e.g., 10%) of the
data, the small device enhancement, which allows a node
to synchronize a subset of data, greatly reduces the band-
width required for anti-entropy.

P-Coda and cooperative caching. In P-Coda, on a
read miss, a client is restricted to retrieving data from the
server. We add cooperative caching to P-Coda by adding
13-rules: 9 to monitor the reachability of nearby nodes,
2 to retrieve data from a nearby client on a read miss, and
2 to fall back to the server if the client cannot satisfy the
data request.

Figure 8 shows the difference in read latency for
misses on a 1KB file with and without support for co-
operative caching. For the experiment, the rount-trip
latency between the two clients is 10ms, whereas the
round-trip latency between a client and server is almost
500ms. When data can be retrieved from a nearby client,
read performance is greatly improved. More importantly,
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with this new capability, clients can share data even when
disconnected from the server.

6.1.3 Ease of development
Each of these systems took a few days to three weeks to
construct by one or two graduate students with part time
effort. The time includes mapping the original system
design to PADS policy primitives, implementation, test-
ing, and debugging. Mapping the design of the original
implementation to routing and blocking policy was chal-
lenging at first but became progressively easier. Once the
design work was done, the implementation did not take
long.

Note that routing rules and blocking conditions are
extremely simple, low-level building bocks. Each rout-
ing rule specifies the conditions under which a single
tuple should be produced. R/Overlog lets us specify
routing rules succinctly—across all of our systems, each
routing rule is from 1 to 3 lines of text. The count of
blocking conditions exposes the complexity of the block-
ing predicates: each blocking predicate is an equation
across zero or more blocking condition elements from
Figure 6, so the count of at most 10 blocking condi-
tions for a policy indicates that across all of that policy’s
blocking predicates, a total of 10 conditions were used.
As Figure 1 indicates, each system was implemented in
fewer than 100 routing rules and fewer than 10 blocking
conditions.

6.1.4 Debugging and correctness
Three aspects of PADS help simplify debugging and rea-
soning about the correctness of PADS systems.

First, the conciseness of PADS policy greatly facili-
tates analysis, peer review, and refinement of design. It
was extremely useful to be able to sit down and walk
through an entire design in a one or two hour meeting.

Second, the abstractions themselves divide work in a
way that simplifies reasoning about correctness. For ex-
ample, we find that the separation of policy into routing
and blocking helps reduce the risk of consistency bugs.
A system’s consistency and durability requirements are
specified and enforced by simple blocking predicates, so
it is not difficult to get them right. We must then design
our routing policy to deliver sufficient data to a node to
eventually satisfy the predicates and ensure liveness.

Third, domain-specific languages can facilitate the
use of model checking [4]. As future work, we intend
to implement a translator from R/Overlog to Promela [1]
so that policies can be model checked to test the correct-
ness of a system’s implementation.

6.2 Realism
When building a distributed storage system, a system de-
signer needs to address issues that arise in practical de-
ployments such as configuration options, local crash re-

covery, distributed crash recovery, and maintaining con-
sistency and durability despite crashes and network fail-
ures. PADS makes it easy to tackle these issues for three
reasons.

First, since the stored events primitive allows routing
policies to access local objects, policies can store and
retrieve configuration and routing options on-the-fly. For
example, in P-TierStore, a nodes stores in a configuration
object the publications it wishes to access. In P-Pangaea,
the parent directory object of each object stores the list
of nodes from which to fetch the object on a read miss.

Second, for consistency and crash recovery, the un-
derlying subscription mechanisms insulate the designer
from low-level details. Upon recovery, local mechanisms
first reconstruct local state from persistent logs. Also,
PADS’s subscription primitives abstract away many chal-
lenging details of resynchronizing node state. Notably,
these mechanisms track consistency state even across
crashes that could introduce gaps in the sequences of in-
validations sent between nodes. As a result, crash re-
covery in most systems simply entails restoring lost sub-
scriptions and letting the underlying mechanisms ensure
that the local state reflects any updates that were missed.

Third, blocking predicates greatly simplify maintain-
ing consistency during crashes. If there is a crash and
the required consistency semantics cannot be guaranteed,
the system will simply block access to “unsafe” data. On
recovery, once the subscriptions have been restored and
the predicates are satisfied, the data become accessible
again.

In each of the PADS systems we constructed, we im-
plemented support for these practical concerns. Due
to space limitations we focus this discussion on the
behaviour of two systems under failure: the full fea-
tured client server system (P-FCS) and TierStore (P-
TierStore). Both are client-server based systems, but they
have very different consistency guarantees. We demon-
strate the systems are able to provide their corresponding
consistency guarantees despite failures.

Consistency, durability, and crash recovery in P-FCS
and P-TierStore Our experiment uses one server and
two clients. To highlight the interactions, we add a 50ms
delay on the network links between the clients and the
server. Client C1 repeatedly reads an object and then
sleeps for 500ms, and Client C2 repeatedly writes in-
creasing values to the object and sleeps for 2000ms. We
plot the start time, finish time, and value of each opera-
tion.

Figure 9 illustrates behavior of P-FCS under failures.
P-FCS guarantees sequential consistency by maintaining
per-object callbacks [11], maintaining object leases [8],
and blocking the completion of a write until the server
has stored the write and invalidated all other client
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Fig. 10: Demonstration of TierStore under a workload similar
to that in Figure 9.

caches. We configure the system with a 10 second lease
timeout. During the first 20 seconds of the experiment, as
the figure indicates, sequential consistency is enforced.
We kill (kill -9) the server process 20 seconds into the
experiment and restart it 10 seconds later. While the
server is down, writes block immediately but reads con-
tinue until the lease expires after which reads block as
well. When we restart the server, it recovers its local
state and then resumes processing requests. Both reads
and writes resume shortly after the server restarts, and the
subscription reestablishment and blocking policy ensure
that consistency is maintained.

We kill the reader, C1, at 50 seconds and restart it 15
seconds later. Initially, writes block, but as soon as the
lease expires, writes proceed. When the reader restarts,
reads resume as well.

Figure 10 illustrates a similar scenario using P-
TierStore. P-TierStore enforces monotonic reads coher-
ence rather than sequential consistency, and it propagates
updates via subscriptions when the network is available.
As a result, all reads and writes complete locally and
without blocking despite failures. During periods of no
failures, the reader receives updates quickly and reads re-
turn recent values. However, if the server is unavailable,

Ideal PADS Prototype
Subscription setup

Inval Subscription O(NSSPrevU pdates) O(Nnodes
with LOG catch-up +NSSPrevU pdates)
Inval Subscription O(NSSOb j) O(NSSOb j)
with CP from time=0
Inval Subscription O(NSSOb jU pd) O(Nnodes
with CP from time=VV +NSSOb jU pd)
Body Subscription O(NSSOb jU pd) O(NSSOb jU pd)

Transmitting updates
Inval Subscription O(NSSNewU pdates) O(NSSNewU pdates)
Body Subscription O(NSSNewU pdates) O(NSSNewU pdates)

Fig. 11: Network overheads of primitives. Here, Nnodes is the
number of nodes. NSSOb j is the number of objects in the sub-
scription set. NSSPrevU pdates and NSSOb jU pd are the number of
updates that occurred and the number objects in the subscrip-
tion set that were modified from a subscription start time to the
current logical time. NSSNewU pdates is the number of updates to
the subscription set that occur after the subscription has caught
up to the sender’s logical time.

writes still progress, and the reads return values that are
locally stored even if they are stale.

6.3 Performance
The programming model exposed to designers must have
predictable costs. In particular, the volume of data stored
and sent over the network should be proportional to the
amount of information a node is interested in.

We carry out performance evaluation of PADS in two
steps. First, we evaluate the fundamental costs associ-
ated with the PADS architecture. In particular, we ar-
gue that network overheads of PADS are within reason-
able bounds of ideal implementations and highlight when
they depart from ideal.

Second, we evaluate the absolute performance of the
PADS prototype. We quantify overheads associated with
the primitives via micro-benchmarks and compare the
performance of two implementations of the same sys-
tem: the original implementation with the one built over
PADS. We find that P-Coda is as much as 3.3 times worse
than Coda.

6.3.1 Fundamental overheads and scalability
Figure 11 shows the network cost associated with our
prototype’s implementation of PADS’s primitives and in-
dicates that our costs are close to the ideal of having ac-
tual costs be proportional to the amount of new infor-
mation transferred between nodes. Note that these ideal
costs may not be able always be achievable.

There are two ways that PADS sends extra informa-
tion.

First, during invalidation subscription setup in PADS
the sender transmits a version vector indicating the start
time of the subscription and catch-up information so that
the receiver can determine if the catch-up information
introduces gaps in the receiver’s consistency state. That
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Fig. 12: Network bandwidth cost to synchronize 1000 10KB
files, 100 of which are modified.

cost is then amortized over all the updates sent on the
connection. Also, this cost can be avoided by starting a
subscription at logical time 0 with a checkpoint rather
than a log for catching up to the current time. Note,
checkpoint catch-up is particularly cheap when interest
sets are small.

Second, in order to support flexible consistency, inval-
idation subscriptions also carry extra information such as
imprecise invalidations [2]. Imprecise invalidations sum-
marize updates to objects out of the subscription set and
are sent to mark logical gaps in the casual stream of in-
validations. The number of imprecise invalidations sent
depends on the workload and is never more than the num-
ber of invalidations of updates to objects in the subscrip-
tion set sent. The size of imprecise invalidations depends
on the locality of the workload and how compactly the
invalidations compress into imprecise invalidations.

Overall, we expect PADS to scale well to systems with
large numbers of objects or nodes—subscription sets and
imprecise invalidations ensure that the number of records
transferred is proportional to amount of data of interest
(and not to the overall size of the database), and the per-
node overheads associated with the version vectors used
to set up some subscriptions can be amortized over all of
the updates sent.

6.3.2 Quantifying the constants
We run experiments to investigate the constant factors
in the cost model and quantify the overheads associated
with subscription setup and flexible consistency. Fig-
ure 12 illustrates the synchronization cost for a simple
scenario. In this experiment, there are 10,000 objects
in the system organized into 10 groups of 1,000 objects
each, and each object’s size is 10KB. The reader registers
to receive invalidations for one of these groups. Then, the
writer updates 100 of the objects in each group. Finally,
the reader reads all the objects.

We look at four scenarios representing combinations
of coarse-grained vs. fine-grained synchronization and
of writes with locality vs. random writes. For coarse-
grained synchronization, the reader creates a single inval-

1KB objects 100KB objects
Coda P-Coda Coda P-Coda

Cold read 1.51 4.95 (3.28) 11.65 9.10 (0.78)
Hot read 0.15 0.23 (1.53) 0.38 0.43 (1.13)
Connected 36.07 47.21 (1.31) 49.64 54.75 (1.10)
Write
Disconnected 17.2 15.50 (0.88) 18.56 20.48 (1.10)
Write

Fig. 13: Read and write latencies in milliseconds for Coda and
P-Coda. The numbers in parantheses indicate factors of over-
head. The values are averages of 5 runs.

idation subscription and a single body subscription span-
ning all 1000 objects in the group of interest and receives
100 updated objects. For fine-grained synchronization,
the reader creates 1000 invalidation subscriptions, each
for one object, and fetches each of the 100 updated bod-
ies. For writes with locality, the writer updates 100 ob-
jects in the ith group before updating any in the i + 1st
group. For random writes, the writer intermixes writes
to different groups in a random order.

Four things should be noted. First, the synchroniza-
tion overheads are small compared to the body data trans-
ferred. Second, the “extra” overheads associated with
PADS subscription setup and flexible consistency over
the best case is a small fraction of the total overhead
in all cases. Third, when writes have locality, the over-
head of flexible consistency drops further because larger
numbers of invalidations are combined into an impre-
cise invalidation. Fourth, coarse-grained synchronization
has lower overhead than fine-grained synchronization be-
cause it avoids per-object subscription setup costs.

Similarly, Figure 7 compares the bandwidth overhead
associated with using a PADS system implementation
with an ideal implementation. As the figure indicates, the
bandwidth to propagate updates is close to ideal imple-
mentations. The extra overhead is due to the meta-data
sent with each update.

6.3.3 Absolute Performance
Our goal is to provide sufficient performance to be use-
ful. We compare the performance of a hand-crafted im-
plementation of a system (Coda) that has been in produc-
tion use for over a decade and a PADS implementation of
the same system (P-Coda). We expect to pay some over-
heads for three reasons. First, PADS is a relatively un-
tuned prototype rather than well-tuned production code.
Second, our implementation emphasizes portability and
simplicity, so PADS is written in Java and stores data
using BerkeleyDB rather than running on bare metal.
Third, PADS provides additional functionality such as
tracking consistency metadata, some of which may not
be required by a particular hand-crafted system.

Figure 13 compares the client-side read and write la-
tencies under Coda and P-Coda. The systems are set up
in a two client configuration. To measure the read la-
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tencies, client C1 has a collection of 1,000 objects and
Client C2 has none. For cold reads, Client C2 randomly
selects 100 objects to read. Each read fetches the object
from the server and establishes a callback for the object.
C2 re-reads those objects to measure the hot-read latency.
To measure the connected write latency, both C1 and C2
initially store the same collection of 1,000 objects. C2
selects 100 objects to write. The write will cause the
server to store the update and break a callback with C1
before the write completes at C2. Disconnected writes
are measured by disconnecting C2 from the server and
writing to 100 randomly selected objects.

The performance of PADS’s implementation is com-
parable to hand-crafted C implementation in most cases
and is at most 3 times worse in the worst case we mea-
sured.

7 Related work
PADS and PRACTI. We use a modified version of
PRACTI [2, 35] as the data plane for PADS. Writing a
new policy in PADS differs from constructing a system
using PRACTI alone for three reasons.

1. PADS adds key abstractions not present in PRACTI
such as the separation of routing policy from blocking
policy, stored events, and commit actions.

2. PADS significantly changes abstractions from those
provided in PRACTI. We distilled the interface be-
tween mechanism and policy to the handful of calls
in Figures 3, 4, and 5, and we changed the underly-
ing protocols and mechanisms to meet the needs of
the data plane required by PADS. For example, where
the original PRACTI protocol provides the abstraction
of connections between nodes, each of which carries
one subscription, PADS provides the more lightweight
abstraction of subscriptions which forced us to re-
design the protocol to multiplex subscriptions onto
a single connection between a pair of nodes in or-
der to efficiently support fine-grained subscriptions
and dynamic addition of new items to a subscrip-
tion. Similarly, where PRACTI provides the abstrac-
tion of bound invalidations to make sure that bodies
and updates propagate together, PADS provides the
more flexible blocking predicates, and where PRACTI
hard-coded several mechanisms to track the progress
of updates through the system, PADS simply triggers
the routing policy and lets the routing policy handle
whatever notifications are needed.

3. PADS provides R/OverLog which has proven to be a
convenient way to design about, write, and debug rout-
ing policies.

The whole is more important than the parts. Building
systems with PADS is much simpler than without. In
some cases this is because PADS provides abstractions

not present in PRACTI. In others, it is “merely” because
PADS provides a better way of thinking about the prob-
lem.

R/OverLog and OverLog R/OverLog extends Over-
Log [17] by (1) adding type information to events, (2)
providing an interface to pass triggers, actions, and
stored events as tuples between PADS and the R/OverLog
program, and (3) restricting the syntax slightly to allow
us to implement a R/OverLog-to-Java compiler that pro-
duces executables that are more stable and faster than
programs under the more general P2 [17] runtime sys-
tem.

Other frameworks. A number of other efforts have
defined frameworks for constructing distributed storage
systems for different environments. Deceit [29] focuses
on distributed storage across a well-connected cluster of
servers. Stackable file systems [10] seek to provide a
way to add features and compose file systems, but it fo-
cuses on adding features to local file systems.

Some systems, such as Cimbiosys [24], distribute
data among nodes not based on object identifiers or file
names, but rather on content-based filters. We see no
fundamental barriers to incorporating filters in PADS to
identify sets of related objects. This would allow sys-
tem designers to set up subscriptions and maintain con-
sistency state in terms of filters rather than object-name
prefixes.

PADS follows in the footsteps of efforts to define run-
time systems or domain-specific languages to ease the
construction of routing [17], overlay [25], cache consis-
tency protocols [4], and routers [15].

8 Conclusion
Our goal is to allow developers to quickly build new dis-
tributed storage systems. This paper presents PADS, a
policy architecture that allows developers to construct
systems by specifying policy without worrying about
complex low-level implementation details. Our experi-
ence has led us to make two conclusions: First, the ap-
proach of constructing a system in terms of a routing pol-
icy and a blocking policy over a data plane greatly re-
duces development time. Second, the range of systems
implemented with the small number of primitives ex-
posed by the API suggest that the primitives adequately
capture the key abstractions for building distributed stor-
age systems.
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Abstract
This paper presents Sora, a fully programmable soft-

ware radio platform on commodity PC architectures.
Sora combines the performance and fidelity of hardware
SDR platforms with the programmability and flexibil-
ity of general-purpose processor (GPP) SDR platforms.
Sora uses both hardware and software techniques to ad-
dress the challenges of using PC architectures for high-
speed SDR. The Sora hardware components consist of
a radio front-end for reception and transmission, and
a radio control board for high-throughput, low-latency
data transfer between radio and host memories. Sora
makes extensive use of features of contemporary proces-
sor architectures to accelerate wireless protocol process-
ing and satisfy protocol timing requirements, including
using dedicated CPU cores, large low-latency caches to
store lookup tables, and SIMD processor extensions for
highly efficient physical layer processing on GPPs. Us-
ing the Sora platform, we have developed a demonstra-
tion radio system called SoftWiFi. SoftWiFi seamlessly
interoperates with commercial 802.11a/b/g NICs, and
achieves equivalent performance as commercial NICs at
each modulation.

1 Introduction
Software defined radio (SDR) holds the promise of fully
programmable wireless communication systems, effec-
tively supplanting current technologies which have the
lowest communication layers implemented primarily in
fixed, custom hardware circuits. Realizing the promise
of SDR in practice, however, has presented developers
with a dilemma.

Many current SDR platforms are based on either pro-
grammable hardware such as field programmable gate
arrays (FPGAs) [6, 11] or embedded digital signal pro-
cessors (DSPs) [5, 13]. Such hardware platforms can
meet the processing and timing requirements of mod-
ern high-speed wireless protocols, but programming FP-
GAs and specialized DSPs are difficult tasks. Develop-
ers have to learn how to program to each particular em-

This work was performed when Ji Fang, He Liu, Yusheng Ye,
and Shen Wang were visiting students and Geoffrey M. Voelker was a
visiting researcher at Microsoft Research Asia.

bedded architecture, often without the support of a rich
development environment of programming and debug-
ging tools. Hardware platforms can also be expensive;
the WARP [6] educational price, for example, is over
US$9,750.

In contrast, SDR platforms based on general-purpose
processor (GPP) architectures, such as commodity PCs,
have the opposite set of tradeoffs. Developers pro-
gram to a familiar architecture and environment using
sophisticated tools, and radio front-end boards for in-
terfacing with a PC are relatively inexpensive. How-
ever, since PC hardware and software have not been
designed for wireless signal processing, existing GPP-
based SDR platforms can achieve only limited perfor-
mance [1, 22]. For example, the popular GNU Radio
platform [1] achieves only a few Kbps throughput on an
8MHz channel [21], whereas modern high-speed wire-
less protocols like 802.11 support multiple Mbps data
rates on a much wider 20MHz channel [7]. These con-
straints prevent developers from using such platforms to
achieve the full fidelity of state-of-the-art wireless pro-
tocols while using standard operating systems and appli-
cations in a real environment.

In this paper we present Sora, a fully programmable
software radio platform that provides the benefits of both
SDR approaches, thereby resolving the SDR platform
dilemma for developers. With Sora, developers can im-
plement and experiment with high-speed wireless pro-
tocol stacks, e.g., IEEE 802.11a/b/g, using commodity
general-purpose PCs. Developers program in familiar
programming environments with powerful tools on stan-
dard operating systems. Software radios implemented
on Sora appear like any other network device, and users
can run unmodified applications on their software ra-
dios with the same performance as commodity hardware
wireless devices.

An implementation of high-speed wireless protocols
on general-purpose PC architectures must overcome a
number of challenges that stem from existing hardware
interfaces and software architectures. First, transferring
high-fidelity digital waveform samples into PC memory
for processing requires very high bus throughput. Ex-
isting GPP platforms like GNU Radio use USB 2.0 or
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Gigabit Ethernet [1], which cannot satisfy this require-
ment for high-speed wireless protocols. Second, phys-
ical layer (PHY) signal processing has very high com-
putational requirements for generating information bits
from waveforms, and vice versa, particularly at high
modulation rates; indeed, back-of-the-envelope calcu-
lations for processing requirements on GPPs have in-
stead motivated specialized hardware approaches in the
past [17, 19]. Lastly, wireless PHY and media ac-
cess control (MAC) protocols have low-latency real-
time deadlines that must be met for correct operation.
For example, the 802.11 MAC protocol requires precise
timing control and ACK response latency on the order of
tens of microseconds. Existing software architectures on
the PC cannot consistently meet this timing requirement.

Sora uses both hardware and software techniques to
address the challenges of using PC architectures for
high-speed SDR. First, we have developed a new, in-
expensive radio control board (RCB) with a radio front-
end for transmission and reception. The RCB bridges
an RF front-end with PC memory over the high-speed
and low-latency PCIe bus [8]. With this bus standard,
the RCB can support 16.7Gbps (x8 mode) throughput
with sub-microsecond latency, which together satisfies
the throughput and timing requirements of modern wire-
less protocols while performing all digital signal pro-
cessing on host CPU and memory.

Second, to meet PHY processing requirements, Sora
makes full use of various features of widely adopted
multi-core architectures in existing GPPs. The Sora
software architecture also explicitly supports stream-
lined processing that enables components of the signal
processing pipeline to efficiently span multiple cores.
Further, we change the conventional implementation
of PHY components to extensively take advantage of
lookup tables (LUTs), trading off computation for mem-
ory. These LUTs substantially reduce the computational
requirements of PHY processing, while at the same time
taking advantage of the large, low-latency caches on
modern GPPs. Finally, Sora uses the SIMD (Single In-
struction Multiple Data) extensions in existing proces-
sors to further accelerate PHY processing. With these
optimizations, Sora can fully support the complete dig-
ital processing of 802.11b modulation rates on just one
core, and 802.11a/g on two cores.

Lastly, to meet the real-time requirements of high-
speed wireless protocols, Sora provides a new kernel ser-
vice, core dedication, which allocates processor cores
exclusively for real-time SDR tasks. We demonstrate
that it is a simple yet crucial abstraction that guarantees
the computational resources and precise timing control
necessary for SDR on a GPP.

We have developed a demonstration radio system,
SoftWiFi, based on the Sora platform. SoftWiFi cur-

rently supports the full suite of 802.11a/b/g modulation
rates, seamlessly interoperates with commercial 802.11
NICs, and achieves equivalent performance as commer-
cial NICs at each modulation.

In summary, the contributions of this paper are: (1)
the design and implementation of the Sora platform and
its high-performance PHY processing library; (2) the de-
sign and implementation of the SoftWiFi radio system
that can interoperate with commercial wireless NICs us-
ing 802.11a/b/g standards; and (3) the evaluation of Sora
and SoftWiFi on a commodity multi-core PC. To the best
of our knowledge, Sora is the first SDR platform that
enables users to develop high-speed wireless implemen-
tations, such as the IEEE 802.11a/b/g PHY and MAC,
entirely in software on a standard PC architecture.

The rest of the paper is organized as follows. Sec-
tion 2 provides background on wireless communication
systems. We then present the Sora architecture in Sec-
tion 3, and we discuss our approach for addressing the
challenges of building an SDR platform on a GPP sys-
tem in Section 4. We then describe the implementation
of the Sora platform in Section 5. Section 6 presents
the design and implementation of SoftWiFi, a fully func-
tional software WiFi radio based on Sora, and we eval-
uate its performance in Section 7. Finally, Section 9 de-
scribes related work and Section 10 concludes.

2 Background and Requirements
In this section, we briefly review the physical layer
(PHY) and media access (MAC) components of typi-
cal wireless communication systems. Although differ-
ent wireless technologies may have subtle differences
among one another, they generally follow similar de-
signs and share many common algorithms. In this sec-
tion, we use the IEEE 802.11a/b/g standards to exem-
plify characteristics of wireless PHY and MAC compo-
nents as well as the challenges of implementing them in
software.

2.1 Wireless PHY
The role of the PHY layer is to convert information bits
into a radio waveform, or vice versa. At the transmitter
side, the wireless PHY component first modulates the
message (i.e., a packet or a MAC frame) into a time se-
quence of baseband signals. Baseband signals are then
passed to the radio front-end, where they are multiplied
by a high frequency carrier and transmitted into the
wireless channel. At the receiver side, the radio front-
end detects signals in the channel and extracts the base-
band signal by removing the high-frequency carrier. The
extracted baseband signal is then fed into the receiver’s
PHY layer to be demodulated into the original message.

Advanced communication systems (e.g., IEEE
802.11a/b/g, as shown in Figure 1) contain multiple
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Figure 1: PHY operations of IEEE 802.11a/b/g transceiver.

functional blocks in their PHY components. These
functional blocks are pipelined with one another. Data
are streamed through these blocks sequentially, but with
different data types and sizes. As illustrated in Figure 1,
different blocks may consume or produce different types
of data in different rates arranged in small data blocks.
For example, in 802.11b, the scrambler may consume
and produce one bit, while DQPSK modulation maps
each two-bit data block onto a complex symbol which
uses two 16-bit numbers to represent the in-phase and
quadrature (I/Q) components.

Each PHY block performs a fixed amount of compu-
tation on every transmitted or received bit. When the
data rate is high, e.g., 11Mbps for 802.11b and 54Mbps
for 802.11a/g, PHY processing blocks consume a sig-
nificant amount of computational power. Based on the
model in [19], we estimate that a direct implementation
of 802.11b may require 10Gops while 802.11a/g needs
at least 40Gops. These requirements are very demand-
ing for software processing in GPPs.

PHY processing blocks directly operate on the dig-
ital waveforms after modulation on the transmitter side
and before demodulation on the receiver side. Therefore,
high-throughput interfaces are needed to connect these
processing blocks as well as to connect the PHY and
radio front-end. The required throughput linearly scales
with the bandwidth of the baseband signal. For example,
the channel bandwidth is 20MHz in 802.11a. It requires
a data rate of at least 20M complex samples per second
to represent the waveform [14]. These complex samples
normally require 16-bit quantization for both I and Q
components to provide sufficient fidelity, translating into
32 bits per sample, or 640Mbps for the full 20MHz chan-
nel. Over-sampling, a technique widely used for better
performance [12], doubles the requirement to 1.28Gbps

to move data between the RF frond-end and PHY blocks
for one 802.11a channel.

2.2 Wireless MAC
The wireless channel is a resource shared by all
transceivers operating on the same spectrum. As si-
multaneously transmitting neighbors may interfere with
each other, various MAC protocols have been developed
to coordinate their transmissions in wireless networks to
avoid collisions.

Most modern MAC protocols, such as 802.11, require
timely responses to critical events. For example, 802.11
adopts a CSMA (Carrier-Sense Multiple Access) MAC
protocol to coordinate transmissions [7]. Transmitters
are required to sense the channel before starting their
transmission, and channel access is only allowed when
no energy is sensed, i.e., the channel is free. The latency
between sense and access should be as small as possible.
Otherwise, the sensing result could be outdated and inac-
curate. Another example is the link-layer retransmission
mechanisms in wireless protocols, which may require an
immediate acknowledgement (ACK) to be returned in a
limited time window.

Commercial standards like IEEE 802.11 mandate a
response latency within tens of microseconds, which is
challenging to achieve in software on a general purpose
PC with a general purpose OS.

2.3 Software Radio Requirements
Given the above discussion, we summarize the require-
ments for implementing a software radio system on a
general PC platform:

High system throughput. The interfaces between the
radio front-end and PHY as well as between some
PHY processing blocks must possess sufficiently high
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Figure 2: Sora system architecture. All PHY and MAC
execute in software on a commodity multi-core CPU.

throughput to transfer high-fidelity digital waveforms.
To support a 20MHz channel for 802.11, the interfaces
must sustain at least 1.28Gbps. Conventional inter-
faces like USB 2.0 (≤ 480Mbps) or Gigabit Ethernet
(≤ 1Gbps) cannot meet this requirement [1].

Intensive computation. High-speed wireless protocols
require substantial computational power for their PHY
processing. Such computational requirements also in-
crease proportionally with communication speed. Un-
fortunately, techniques used in conventional PHY hard-
ware or embedded DSPs do not directly carry over to
GPP architectures. Thus, we require new software tech-
niques to accelerate high-speed signal processing on
GPPs. With the advent of many-core GPP architec-
tures [9], it is now reasonable to dedicate computational
power solely to signal processing. But, it is still chal-
lenging to build a software architecture to efficiently ex-
ploit the full capability of multiple cores.

Real-time enforcement. Wireless protocols have mul-
tiple real-time deadlines that need to be met. Conse-
quently, not only is processing throughput a critical re-
quirement, but the processing latency needs to meet re-
sponse deadlines. Some MAC protocols also require
precise timing control at the granularity of microseconds
to ensure certain actions occur at exactly pre-scheduled
time points. Meeting such real-time deadlines on a gen-
eral PC architecture is a non-trivial challenge: time shar-
ing operation systems may not respond to an event in a
timely manner, and bus interfaces, such as Gigabit Eth-
ernet, could introduce indefinite delays far more than a
few µs. Therefore, meeting these real-time requirements
requires new mechanisms on GPPs.

3 Architecture
We have developed a high-performance software radio
platform called Sora that addresses these challenges. It
is based on a commodity general-purpose PC architec-
ture. For flexibility and programmability, we push as
much communication functionality as possible into soft-
ware, while keeping hardware additions as simple and
generic as possible. Figure 2 illustrates the overall sys-
tem architecture.

3.1 Hardware Components

The hardware components in the Sora architecture are
a new radio control board (RCB) with an interchange-
able radio front-end (RF front-end). The radio front-
end is a hardware module that receives and/or trans-
mits radio signals through an antenna. In the Sora ar-
chitecture, the RF front-end represents the well-defined
interface between the digital and analog domains. It
contains analog-to-digital (A/D) and digital-to-analog
(D/A) converters, and necessary circuitry for radio trans-
mission. During receiving, the RF front-end acquires
an analog waveform from the antenna, possibly down-
converts it to a lower frequency, and then digitizes it into
discrete samples before transferring them to the RCB.
During transmitting, the RF front-end accepts a syn-
chronous stream of software-generated digital samples
and synthesizes the corresponding analog waveform be-
fore emitting it using the antenna. Since all signal pro-
cessing is done in software, the RF front-end design
can be rather generic. It can be implemented in a self-
contained module with a standard interface to the RCB.
Multiple wireless technologies defined on the same fre-
quency band can use the same RF front-end hardware,
and the RCB can connect to different RF front-ends de-
signed for different frequency bands.

The RCB is a new PC interface board for establish-
ing a high-throughput, low-latency path for transfer-
ring high-fidelity digital signals between the RF front-
end and PC memory. To achieve the required system
throughput discussed in Section 2.1, the RCB uses a
high-speed, low-latency bus such as PCIe [8]. With a
maximum throughput of 64Gbps (PCIe x32) and sub-
microsecond latency, it is well-suited for supporting
multiple gigabit data rates for wireless signals over a
very wide band or over many MIMO channels. Fur-
ther, the PCIe interface is now common in contemporary
commodity PCs.

Another important role of the RCB is to bridge the
synchronous data transmission at the RF front-end and
the asynchronous processing on the host CPU. The RCB
uses various buffers and queues, together with a large
on-board memory, to convert between synchronous and
asynchronous streams and to smooth out bursty trans-
fers between the RCB and host memory. The large
on-board memory further allows caching pre-computed
waveforms, adding additional flexibility for software ra-
dio processing.

Finally, the RCB provides a low-latency control path
for software to control the RF front-end hardware and
to ensure it is properly synchronized with the host CPU.
Section 5.1 describes our implementation of the RCB in
more detail.
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Figure 3: Software architecture of Sora soft-radio stack.

3.2 Sora Software
Figure 3 illustrates Sora’s software architecture. The
software components in Sora provide necessary sys-
tem services and programming support for implement-
ing various wireless PHY and MAC protocols in a
general-purpose operating system. In addition to fa-
cilitating the interaction with the RCB, the Sora soft-
radio stack provides a set of techniques to greatly im-
prove the performance of PHY and MAC processing on
GPPs. To meet the processing and real-time require-
ments, these techniques make full use of various com-
mon features in existing multi-core CPU architectures,
including the extensive use of lookup tables (LUTs),
substantial data-parallelism with CPU SIMD extensions,
the efficient partitioning of streamlined processing over
multiple cores, and exclusive dedication of cores for
software radio tasks.

4 High-Performance SDR Processing
In this section we describe the software techniques used
by Sora to achieve high-performance SDR processing.

4.1 Efficient PHY processing
In a memory-for-computation tradeoff, Sora relies upon
the large-capacity, high-speed cache memory in GPPs to
accelerate PHY processing with pre-calculated lookup
tables (LUTs). Contemporary modern CPU architec-
tures, such as Intel Core 2, usually have megabytes of
L2 cache with a low (10∼20 cycles) access latency. If
we pre-calculate LUTs for a large portion of PHY algo-
rithms, we can greatly reduce the computational require-
ment for on-line processing.

For example, the soft demapper algorithm used in de-
modulation needs to calculate the confidence level of
each bit contained in an incoming symbol. This task
involves rather complex computation proportional to the

modulation density. More precisely, it conducts an ex-
tensive search for all modulation points in a constella-
tion graph and calculates a ratio between the minimum
of Euclidean distances to all points representing one and
the minimum of distances to all points representing zero.
In this case, we can pre-calculate the confidence levels
for all possible incoming symbols based on their I and
Q values, and build LUTs to directly map the input sym-
bol to confidence level. Such LUTs are not large. For
example, in 802.11a/g with a 54Mbps modulation rate
(64-QAM), the size of the LUT for the soft demapper is
only 1.5KB.

As we detail later in Section 5.2.1, more than half
of the common PHY algorithms can indeed be rewrit-
ten with LUTs, each with a speedup from 1.5x to 50x.
Since the size of each LUT is sufficiently small, the sum
of all LUTs in a processing path can easily fit in the L2
caches of contemporary GPP cores. With core dedica-
tion (Section 4.3), the possibility of cache collisions is
very small. As a result, these LUTs are almost always in
caches during PHY processing.

To accelerate PHY processing with data-level paral-
lelism, Sora heavily uses the SIMD extensions in mod-
ern GPPs, such as SSE, 3DNow!, and AltiVec. Al-
though these extensions were designed for multimedia
and graphics applications, they also match the needs of
wireless signal processing very well because many PHY
algorithms have fixed computation structures that can
easily map to large vector operations. In Appendix A,
we show an example of an optimized digital filter imple-
mentation using SSE instructions. As our measurements
later show, such SIMD extensions substantially speed up
PHY processing in Sora.

4.2 Multi-core streamline processing
Even with the above optimizations, a single CPU core
may not have sufficient capacity to meet the process-
ing requirements of high-speed wireless communication
technologies. As a result, Sora must be able to use
more than one core in a multi-core CPU for PHY pro-
cessing. This multi-core technique should also be scal-
able because the signal processing algorithms may be-
come increasingly more complex as wireless technolo-
gies progress.

As discussed in Section 2, PHY processing typically
contains several functional blocks in a pipeline. These
blocks differ in processing speed and in input/output
data rates and units. A block is only ready to execute
when it has sufficient input data from the previous block.
Therefore, a key issue is how to schedule a functional
block on multiple cores when it is ready.

One possible approach is to run multiple PHY
pipelines on different cores (Figure 4(a)), and have
the scheduler dispatch batches of digital samples to a
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Figure 4: PHY pipeline scheduling: (a) parallel
pipelines, (b) dynamic scheduling, (c) static scheduling.

pipeline. This approach, however, does not work well
for SDR because wireless communication has strong de-
pendencies in a data stream. For example, in convolu-
tional encoding the output of each bit also depends on
the seven preceding bits in the input stream. Without
the scheduler knowing all of the data dependencies, it is
difficult to produce an efficient schedule.

An alternative scheduling approach is to have only
one pipeline and dynamically assign ready blocks to
available cores (Figure 4(b)), in a way similar to thread
scheduling in a multi-core system. Unfortunately, this
approach would introduce prohibitively high overhead.
On the one hand, any two adjacent blocks may be sched-
uled onto two different cores, thereby requiring synchro-
nized FIFO (SFIFO) communication between them. On
the other hand, most PHY processing blocks operate on
very small data items, e.g., 1–4 bytes each, and the pro-
cessing only takes a few operations (several to tens of in-
structions). Such frequent FIFO and synchronization op-
erations are not justifiable for such small computational
tasks.

Instead, Sora chooses a static scheduling scheme.
This decision is based on the observation that the sched-
ule of each block in a PHY processing pipeline is ac-
tually static: the processing pattern of previous blocks
can determine whether a subsequent block is ready or
not. Sora can thus partition the whole PHY processing
pipeline into several sub-pipelines and statically assign
them to different cores (Figure 4(c)). Within one sub-
pipeline, when a block has accumulated enough data for
the next block to be ready, it explicitly schedules the next
block. Adjacent sub-pipelines from different blocks are
still connected with an SFIFO, but the number of SFI-
FOs and their overhead are greatly reduced.

4.3 Real-time support
SDR processing is a time-critical task that requires strict
guarantees of computational resources and hard real-
time deadlines. As an alternative to relying upon the

Figure 5: Sora radio control board.

full generality of real-time operating systems, we can
achieve real-time guarantees by simply dedicating cores
to SDR processing in a multi-core system. Thus, suffi-
cient computational resources can be guaranteed without
being affected by other concurrent tasks in the system.

This approach is particularly plausible for SDR. First,
wireless communication often requires its PHY to con-
stantly monitor the channel for incoming signals. There-
fore, the PHY processing may need to be active all the
time. It is much better to always schedule this task on
the same core to minimize overhead like cache misses
or TLB flushes. Second, previous work on multi-core
OSes also suggests that isolating applications into dif-
ferent cores may have better performance compared to
symmetric scheduling, since an effective use of cache
resources and a reduction in locks can outweigh dedicat-
ing cores [10]. Moreover, a core dedication mechanism
is much easier to implement than a real-time scheduler,
sometimes even without modifying an OS kernel. For
example, we can simply raise the priority of a kernel
thread so that it is pinned on a core and it exclusively
runs until termination (Section 5.2.3).

5 Implementation
We have implemented both the hardware and software
components of Sora. This section describes our hard-
ware prototype and software stack, and presents mi-
crobenchmark evaluations of Sora components.

5.1 Hardware
We have designed and implemented the Sora radio con-
trol board (RCB) as shown in Figure 5. It contains
a Virtex-5 FPGA, a PCIe-x8 interface, and 256MB of
DDR2 SDRAM. The RCB can connect to various RF
front-ends. In our experimental prototype, we use a
third-party RF front-end, developed by Rice Univer-
sity [6], that is capable of transmitting and receiving a
20MHz channel at 2.4GHz or 5GHz.

Figure 6 illustrates the logical components of the Sora
hardware platform. The DMA and PCIe controllers in-
terface with the host and transfer digital samples be-
tween the RCB and PC memory. Sora software sends
commands and reads RCB states through RCB regis-
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ters. The RCB uses its on-board SDRAM as well as
small FIFOs on the FPGA chip to bridge data streams
between the CPU and RF front-end. When receiving,
digital signal samples are buffered in on-chip FIFOs and
delivered into PC memory when they fit in a DMA burst
(128 bytes). When transmitting, the large RCB memory
enables Sora software to first write the generated sam-
ples onto the RCB, and then trigger transmission with
another command to the RCB. This functionality pro-
vides flexibility to the Sora software for pre-calculating
and storing several waveforms before actually transmit-
ting them, while allowing precise control of the timing
of the waveform transmission.

While implementing Sora, we encountered a consis-
tency issue in the interaction between DMA operations
and the CPU cache system. When a DMA operation
modifies a memory location that has been cached in the
L2 cache, it does not invalidate the corresponding cache
entry. When the CPU reads that location, it can there-
fore read an incorrect value from the cache. One naive
solution is to disable cached accesses to memory regions
used for DMA, but doing so will cause a significant
degradation in memory access throughput.

We solve this problem with a smart-fetch strat-
egy, enabling Sora to maintain cache coherency with
DMA memory without drastically sacrificing through-
put. First, Sora organizes DMA memory into small slots,
whose size is a multiple of a cache line. Each slot begins
with a descriptor that contains a flag. The RCB sets the
flag after it writes a full slot of data, and cleared after
the CPU processes all data in the slot. When the CPU
moves to a new slot, it first reads its descriptor, causing
a whole cache line to be filled. If the flag is set, the data
just fetched is valid and the CPU can continue process-
ing the data. Otherwise, the RCB has not updated this
slot with new data. Then, the CPU explicitly flushes the
cache line and repeats reading the same location. This
next read refills the cache line, loading the most recent
data from memory.

5.2 Software
The Sora software is written in C, with some assem-
bly for performance-critical processing. The entire Sora

software stack is implemented on Windows XP as a net-
work device driver and it exposes a virtual Ethernet in-
terface to the upper TCP/IP stack. Since any software
radio implemented on Sora can appear as a normal net-
work device, all existing network applications can run
unmodified on it.

The Sora software currently consists of 23,325 non-
blank lines of C code. Of this total, 14,529 lines are for
system support, including driver framework, memory
management, streamline processing, etc. The remaining
8,796 lines comprise the PHY processing library.

5.2.1 PHY processing library
In the Sora PHY processing library, we extensively ex-
ploit the use of look-up tables (LUTs) and SIMD in-
structions to optimize the performance of PHY algo-
rithms. We have been able to rewrite more than half
of the PHY algorithms with LUTs. Some LUTs are
straightforward pre-calculations, others require more so-
phisticated implementations to keep the LUT size small.
For the soft-demapper example mentioned earlier, we
can greatly reduce the LUT size (e.g., 1.5KB for the
802.11a/g 54Mbps modulation) by exploiting the sym-
metry of the algorithm. In our SoftWiFi implementa-
tion described below, the overall size of the LUTs used
in 802.11a/g is around 200KB and 310KB in 802.11b,
both of which fit comfortably within the L2 caches of
commodity CPUs.

We also heavily use SIMD instructions in coding Sora
software. We currently use the SSE2 instruction set de-
signed for Intel CPUs. Since the SSE registers are 128-
bit wide while most PHY algorithms require only 8-bit
or 16-bit fixed-point operations, one SSE instruction can
perform 8 or 16 simultaneous calculations. SSE2 also
has rich instruction support for flexible data permuta-
tions, and most PHY algorithms, e.g., FFT, FIR Filter
and Viterbi, can fit naturally into this SIMD model. For
example, the Sora Viterbi decoder uses only 40 cycles to
compute the branch metric and select the shortest path
for each input. As a result, our Viterbi implementation
can handle 802.11a/g at the 54Mbps modulation with
only one 2.66GHz CPU core, whereas previous imple-
mentations relied on hardware implementations. Note
that other GPP architectures, like AMD and PowerPC,
have very similar SIMD models and instruction sets;
AMD’s Enhanced 3DNow!, for instance, includes SSE
instructions plus a set of DSP extensions. We expect
that our optimization techniques will directly apply to
these other GPP architectures as well. In Appendix A,
we show a simple example of a functional block using
SIMD instruction optimizations.

Table 1 summarizes some key PHY processing algo-
rithms we have implemented in Sora, together with the
optimization techniques we have applied. The table also
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Algorithm Configuration I/O Size (bit) Optimization
Method

Computation Required (Mcycles/sec)
Input Output Conv. Impl. Sora Impl. Speedup
IEEE 802.11b

Scramble 11Mbps 8 8 LUT 96.54 10.82 8.9x
Descramble 11Mbps 8 8 LUT 95.23 5.91 16.1x
Mapping and Spreading 2Mbps, DQPSK 8 44*16*2 LUT 128.59 73.92 1.7x
CCK modulator 5Mbps, CCK 8 8*16*2 LUT 124.93 81.29 1.5x

11Mbps, CCK 8 8*16*2 LUT 203.96 110.88 1.8x
FIR Filter 16-bit I/Q, 37 taps, 22MSps 16*2*4 16*2*4 SIMD 5,780.34 616.41 9.4x
Decimation 16-bit I/Q, 4x Oversample 16*2*4*4 16*2*4 SIMD 422.45 198.72 2.1x

IEEE 802.11a
FFT/IFFT 64 points 64*16*2 64*16*2 SIMD 754.11 459.52 1.6x
Conv. Encoder 24Mbps, 1/2 rate 8 16 LUT 406.08 18.15 22.4x

48Mbps, 2/3 rate 16 24 LUT 688.55 37.21 18.5x
54Mbps, 3/4 rate 24 32 LUT 712.10 56.23 12.7x

Viterbi 24Mbps, 1/2 rate 8*16 8 SIMD+LUT 68,553.57 1,408.93 48.7x
48Mbps, 2/3 rate 8*24 16 SIMD+LUT 117,199.6 2,422.04 48.4x
54Mbps, 3/4 rate 8*32 24 SIMD+LUT 131,017.9 2,573.85 50.9x

Soft demapper 24Mbps, QAM 16 16*2 8*4 LUT 115.05 46.55 2.5x
54Mbps, QAM 64 16*2 8*6 LUT 255.86 98.75 2.4x

Scramble & Descramble 54Mbps 8 8 LUT 547.86 40.29 13.6x

Table 1: Key algorithms in IEEE 802.11b/a and their performance with conventional and Sora implementations.

compares the performance of a conventional software
implementation (e.g., a direct translation from a hard-
ware implementation) and the Sora implementation with
the LUT and SIMD optimizations.

5.2.2 Lightweight, synchronized FIFOs
Sora allows different PHY processing blocks to stream-
line across multiple cores while communicating with
one another through shared memory FIFO queues. If
two blocks are running on different cores, their access
to the shared FIFO must be synchronized. The tradi-
tional implementation of a synchronized FIFO uses a
counter to synchronize the writer and reader, which we
refer to as a counter-based FIFO (CBFIFO) and illustrate
in Figure 7(a). However, this counter is shared by two
processor cores, and every write to the variable by one
core will cause a cache miss on the other core. Since
both the producer and consumer modify this variable,
two cache misses are unavoidable for each datum. It is
also quite common to have very fine data granularity in
PHY (e.g., 4–16 bytes as summarized in Table 1). There-
fore, such cache misses will result in significant over-
head when synchronization has to be performed very
frequently (e.g., once per micro-second) for such small
pieces of data.

In Sora, we implement another synchronized FIFO
that removes the sole shared synchronization variable.
The idea is to augment each data slot in the FIFO with
a header that indicates whether the slot is empty or not.
We pad each data slot to be a multiple of a cache line.
Thus, the consumer is always chasing the producer in
the circular buffer for filled slots, as outlined in Figure
7(b). This chasing-pointer FIFO (CPFIFO) largely mit-
igates the overhead even for very fine-grained synchro-
nization. If the speed of the producer and consumer is

1 // producer:
2 void write_fifo ( DATA_TYPE data ) {
3 while (cnt >= q_size); // spin wait
4 q[w_tail] = data;
5 w_tail = (w_tail+1) % q_size;
6 InterlockedIncrement (cnt); // increase cnt by 1
7 }
1 // consumer:
2 void read_fifo ( DATA_TYPE * pdata ) {
3 while (cnt==0); // spin wait
4 * pdata = q[r_head];
5 r_head = (r_head+1) % q_size;
6 InterlockedDecrement(cnt); // decrease cnt by 1
7 }

(a)

1 // producer:
2 void write_fifo ( DATA_TYPE data ) {
3 while (q[w_tail].flag>0); // spin wait
4 q[w_tail].data = data;
5 q[w_tail].flag = 1; // occupied
6 w_tail = (w_tail+1) % q_size;
7 }
1 // consumer:
2 void read_fifo ( DATA_TYPE * pdata ) {
3 while (q[r_head].flag==0); // spin
4 *data = q[r_head].data;
5 q[r_head].flag = 0; // release
6 r_head = (r_head + 1) % q_size;
7 }

(b)

Figure 7: Pseudo-code for synchronized (a) CBFIFOs
and (b) CPFIFOs.

the same and the two pointers are separated by a partic-
ular offset (e.g., two cache lines in the Intel architecture),
no cache miss will occur during synchronized streaming
since the local cache will prefetch the following slots be-
fore the actual access. If the producer and the consumer
have different processing speeds, e.g., the reader is faster
than the writer, then eventually the consumer will wait
for the producer to release a slot. In this case, each time
the producer writes to a slot, the write will cause a cache
miss at the consumer. But the producer will not suffer
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Mode Rx (Gbps) Tx (Gbps)
PCIe-x4 6.71 6.55
PCIe-x8 12.8 12.3

Table 2: DMA throughput performance of the RCB.

Method Memory Throughput
Cache Disabled 707.2Mbps

Smart-fetch 10.1Gbps

Table 3: Memory throughput.

a miss since the next free slot will be prefetched into its
local cache. Fortunately, such cache misses experienced
by the consumer will not cause significant impact on the
overall performance of the streamline processing since
the consumer is not the bottleneck element.

5.2.3 Real-time support
Sora uses exclusive threads (or ethreads) to dedicate
cores for real-time SDR tasks. Sora implements ethreads
without any modification to the kernel code. An ethread
is implemented as a kernel-mode thread, and it exploits
the processor affiliation that is commonly supported in
commodity OSes to control on which core it runs. Once
the OS has scheduled the ethread on a specified physical
core, it will raise its IRQL (interrupt request level) to a
level as high as the kernel scheduler, e.g., dispatch level
in Windows. Thus, the ethread takes control of the
core and prevents itself from being preempted by other
threads.

Running at such an IRQL, however, does not prevent
the core from responding to hardware interrupts. There-
fore, we also constrain the interrupt affiliations of all
devices attached to the host. If an ethread is running on
one core, all interrupt handlers for installed devices are
removed from the core, thus prevent the core from being
interrupted by hardware. To ensure the correct operation
of the system, Sora always ensures core zero is able to
respond to all hardware interrupts. Consequently, Sora
only allows ethreads to run on cores whose ID is greater
than zero.

5.3 Evaluation
We measure the performance of the Sora implementa-
tion with microbenchmark experiments. We perform all
measurements on a Dell XPS PC with an Intel Core 2
Quad 2.66GHz CPU (Section 7.1 details the complete
hardware configuration).

Throughput and latency. To measure PCIe through-
put, we instruct the RCB to read/write a number of de-
scriptors from/to main memory via DMA, and measure
the time taken. Table 2 summarizes the results, which
agree with the hardware specifications.

To precisely measure PCIe latency, we instruct the
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Figure 8: Overhead of synchronized FIFOs.

RCB to read a memory address in host memory. We
measure the time interval between issuing the request
and receiving the response data in hardware. Since the
memory read operation accesses the PCIe bus using a
round trip operation, we use half of the measured time
to estimate the one-way delay. This one-way delay is
360ns with a worst case variation of 4ns. We also con-
firm that the RCB hardware itself induces negligible de-
lay except for buffers on the data path. However, such
delay is tiny when the buffer is small. For example, the
DMA burst size is 128 bytes, which causes only 76ns
latency in PCIe-x8.

Table 3 compares measured memory throughput in
two different cases. The first row shows the read
throughput of uncacheable memory. It is only 707Mbps,
which is insufficient for 802.11 processing. The second
row shows the performance of the smart-fetch technique.
With smart-fetch, the memory throughput is a factor of
14 greater compared to the uncacheable case, and suffi-
cient for supporting high-speed protocol processing. We
note, however, that it is still slower than reading from
normal cacheable memory without having to be consis-
tent with DMA operations. This reduction is due to the
overhead of additional cache-line invalidations.

Synchronized FIFO. To measure the overhead of the
synchronized CBFIFO and CPFIFO implementations,
we process ten thousand data inputs through the FIFOs
first on one core, and then on two cores. We also vary
the number of cycles to process each datum to change
the ratio of synchronization time with processing time.
When processing with two cores, we allocate the same
computation to each core. Denote t1 and t2 as the com-
pletion times of processing on one core and two cores,
respectively. We then define the overhead of a synchro-
nized FIFO as t2−t1/2

t1/2
.

Figure 8 shows the results of this experiment. The x-
axis shows the total processing cycles required for each
datum, and the y-axis shows the overhead of the syn-
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chronized FIFO. We make following observations from
these results. First, partitioning work across cores gives
different overheads depending upon whether the cores
are on the same die. Two cores on the same die share the
same L2 cache, while cores on different dies are con-
nected via a shared front-side bus. Thus, streaming data
between functional blocks across cores on the same die
has significantly less overhead than streaming between
cores on different dies.

Second, the overhead decreases as the computation
time per datum increases, as expected. When the compu-
tation per datum is very short, the communication over-
head between cores dominates. The Intel CPU requires
about 10 cycles to access its local L2 cache, and 100 cy-
cles to access a remote cache. Therefore, when there are
40 cycles per datum, the overhead is at least 10

20 = 50%
when two cores are on one die, and 100

20 = 500% when
two cores are on different dies. The CPFIFO almost
achieves this lower bound. When there is more com-
putation required per datum, however, the data transfer
can be overlapped with computation, enabling the over-
head to be hidden. Finally, the CBFIFO generally has
significantly higher overhead compared to the CPFIFO
due to the additional synchronization overhead on the
shared variable, which the CPFIFO avoids.

6 Case study: SoftWiFi
To demonstrate the use of Sora, we have developed a
fully functional WiFi transceiver on the Sora platform
called SoftWiFi. Our SoftWiFi stack supports all IEEE
802.11a/b/g modulations and can communicate seam-
lessly with commercial WiFi network cards.

Figure 9 illustrates the Sora SoftWiFi implementa-
tion. The MAC state machine (SM) is implemented
as an ethread. Since 802.11 is a half-duplex radio,
the demodulation components can run directly within
a MAC SM thread. If a single core is insufficient for
all PHY processing (e.g., 802.11a/g), the PHY process-
ing can be partitioned across two ethreads. These two
ethreads are streamlined using a CPFIFO. An additional
thread, Snd thread, modulates the outgoing frames into
waveform samples in the background. These modulated
waveforms can be pre-stored in the RCB’s memory to
facilitate transmission. The Completion thread moni-
tors the Rcv buf and notifies upper software layers of
any correctly received frames. This thread also cleans
up the snd and rcv buffers after they are used.

SoftWiFi implements the basic access mode of
802.11. The detailed MAC SM is shown in Figure 10.
Normally, the SM is in the Frame Detection (FD) state.
In that state, the RCB constantly writes samples into
the Rx buf. The SM continuously measures the aver-
age energy to determine whether the channel is clean or
whether there is an incoming frame.
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Figure 9: SoftWiFi implementation.
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Figure 10: State machine of the SoftWiFi MAC.

The transmission of a frame follows the CSMA mech-
anism. When there is a pending frame, the SM first
needs to check if the energy on the channel is low. If
the channel is busy, the transmission should be deferred
and a backoff timer started. Each time the channel be-
comes free, the SM checks if any backoff time remains.
If the timer goes to zero, it transmits the frame.

SoftWiFi starts to receive a frame if it detects a high
energy in the FD state. In 802.11, it takes three steps in
the PHY layer to receive a frame. First, the PHY layer
needs to synchronize to the frame, i.e., find the start-
ing point of the frame (timing synchronization) and the
frequency offset and phase of the sample stream (car-
rier synchronization). Synchronization is usually done
by correlating the incoming samples with a pre-defined
preamble. Subsequently, the PHY layer needs to demod-
ulate the PLCP (Physical Layer Convergence Protocol)
header, which is always transmitted using a fixed low-
rate modulation mode. The PLCP header contains the
length of the frame as well as the modulation mode, pos-
sibly a higher rate, of the frame data that follows. Thus,
only after successful reception of the PLCP header will
the PHY layer know how to demodulate the remainder
of the frame.

After successfully receiving a frame, the 802.11 MAC
standard requires a station to transmit an ACK frame in
a timely manner. For example, 802.11b requires that an
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ACK frame be sent with a 10µs delay. However, this
ACK requirement is quite difficult for an SDR imple-
mentation to achieve in software on a PC. Both generat-
ing and transferring the waveform across the PC bus will
cause a latency of several microseconds, and the sum
is usually larger than mandated by the standard. Fortu-
nately, an ACK frame generally has a fixed pattern. For
example, in 802.11 all data in an ACK frame is fixed
except for the sender address of the corresponding data
frame. Thus, in SoftWiFi, we can precalculate most of
an ACK frame (19 bytes), and update only the address
(10 bytes). Further, we can do it early in the process-
ing, immediately after demodulating the MAC header,
and without waiting for the end of a frame. We then pre-
store the waveform into the memory of the RCB. Thus,
the time for ACK generation and transferring can over-
lap with the demodulation of the data frame. After the
MAC SM demodulates the entire frame and validates the
CRC32 checksum, it instructs the RCB to transmit the
ACK, which has already been stored on the RCB. Thus,
the latency for ACK transmission is very small.

In rare cases when the incoming data frame is quite
small (e.g., the frame contains only a MAC header and
zero payload), then SoftWiFi cannot fully overlap ACK
generation and the DMA transfer with demodulation to
completely hide the latency. In this case, SoftWiFi may
fail to send the ACK in time. We address this problem
in SoftWiFi by maintaining a cache of previous ACKs
in the RCB. With 802.11, all data frames from one node
will have exactly the same ACK frame. Thus, we can
use pre-allocated memory slots in the RCB to store ACK
waveforms for different senders (we currently allocate
64 slots). Now, when demodulating a frame, if the ACK
frame is already in the RCB cache, the MAC SM sim-
ply instructs the RCB to transmit the pre-cached ACK.
With this scheme, SoftWiFi may be late on the first small
frame from a sender, effectively dropping the packet
from the sender’s perspective. But retransmissions, and
all subsequent transmissions, will find the appropriate
ACK waveform already stored in the RCB cache.

We have implemented and tested the full 802.11a/g/b
SoftWiFi tranceivers, which support DSSS (Direct Se-
quence Spreading: 1 and 2Mbps in 11b), CCK (Com-
plementary Code Keying: 5.5 and 11Mbps in 11b), and
OFDM (Orthogonal Frequency Division Multiplexing:
6, 9 and up to 54Mbps in 11a/g). It took one student
about one month to develop and test 11b on Sora, and an-
other student one and half months to code and test 11a/g;
these efforts also include the time for implementing the
corresponding algorithms in the PHY library.

7 Evaluations
In this section we evaluate the end-to-end applica-
tion performance delivered by Sora. Our goals are to
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ing with a commercial WiFi card. Sora–Commercial
presents the transmission throughput when a Sora node
sends data. Commercial–Sora presents the through-
put when a Sora node receives data. Commercial–
Commercial presents the throughput when a commercial
NIC communicates with another commercial NIC.

show that Sora interoperates seamlessly with commer-
cial 802.11 devices, and that the Sora SoftWiFi imple-
mentation achieves equivalent performance. As a result,
we show that Sora can process signals sufficiently fast to
achieve full channel utilization, and that it can satisfy all
timing requirements of the 802.11 standards with a soft-
ware implementation on a GPP. We also characterize the
CPU utilization of the software processing. In the fol-
lowing, we sometimes use the label 11a/g to present data
for both 11a/g, since 11a and 11g have exactly the same
OFDM PHY specification.

7.1 Experimental setup
The experimental setup consists of two high-end Dell
XPS PCs (Intel Core 2 Quad 2.66GHz CPU, 4GB DDR2
400MHz SDRAM, and two PCIe-16x slots) and two lap-
tops, all running Window XP. Each Dell PC equips a
Sora radio control board (RCB) with an 802.11 RF board
(Section 5) and runs Sora and the SoftWiFi implemen-
tation. Each CPU core has 32KB instruction and 32KB
data L1 caches and a 2MB L2 cache. The Dell laptops
use commercial WiFi NICs. We have used several dif-
ferent WiFi NICs in our experiments, including Netgear,
Cisco and Intel devices. All give similar results. Thus,
we present results just for the Netgear WAG511 device
(based on the Atheros AR5212 chipset).

7.2 Throughput
Figure 11 shows the transmitting and receiving through-
put of a Sora SoftWiFi node when it communicates with
a commercial WiFi NIC. In the “Sora–Commercial”
configuration, the Sora node acts as a sender and gener-
ates 1400-byte UDP frames and unicast transmits them
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to a laptop equipped with a commercial NIC. In the
“Commercial–Sora” configuration, the Sora node acts
as a receiver, and the laptop generates the same work-
load. The “Commercial–Commercial” configuration
shows the throughput when both sender and receiver are
commercial NICs. In all configurations, the hosts were
at the same distance from each other and experienced
very little packet loss. Figure 11 shows the throughput
achieved for all configurations with the various modu-
lation modes in 11a/b/g. We show only three selective
rates in 11a/g for conciseness. The results are averaged
over five runs (the variance was very small).

We make a number of observations from these results.
First, the Sora SoftWiFi implementation operates seam-
lessly with commercial devices, showing that Sora Soft-
WiFi is protocol compatible. Second, Sora SoftWiFi
can achieve similar performance as commercial devices.
The throughputs for both configurations are essentially
equivalent, demonstrating that SoftWiFi (1) has the pro-
cessing capability to demodulate all incoming frames at
full modulation rates, and (2) it can meet the 802.11 tim-
ing constraints for returning ACKs within the delay win-
dow required by the standard. We note that the maximal
achievable application throughput for 802.11 is less than
80% of the PHY data rate, and the percentage decreases
as the PHY data rate increases. This limit is due to the
overhead of headers at different layers as well as the
MAC overhead to coordinate channel access (i.e., carrier
sense, ACKs, and backoff), and is a well-known prop-
erty of 802.11 performance.

7.3 CPU Utilization
What is the processing cost of onloading all digital sig-
nal processing into software on the host? Figure 12
shows the CPU utilization of a Sora SoftWiFi node to
support modulation/demodulation at the corresponding
rate. We normalize the utilization to the processing ca-
pability of one core. For receiving, higher modulation
rates require higher CPU utilization due to the increased
computational complexity of demodulating the higher
rates. We can see that one core of a contemporary multi-
core CPU can comfortably support all 11b modulation
modes. With the 11Mbps rate, Sora SoftWiFi requires
roughly 70% of the computational power of one core
for real-time SDR processing. However, 802.11a/g PHY
processing is more complex than 11b and may require
two cores for receive processing. In our software im-
plementation, the Viterbi decoder in 11a/g is the most
computationally-intensive component. It alone requires
more than 1.4 Gcycles/s at modulation rates higher than
24Mbps (Table 1). Therefore, it is natural to partition
the receive pipeline across two cores, with the Viterbi
decoder on one core and the remainder on another. With
the parallelism enabled by this streamline processing,
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Figure 12: CPU Utilization of Sora.

we reduce the delay to process one 11a/g symbol from
4.8µs to 3.9µs, meeting the requirement of the standard
(i.e. 4µs) for 54Mbps. Note that the CPU utilization is
not completely linear with the modulation rates in 11b
because the 5.5/11Mbps rates use a different modulation
scheme than with 1/2Mbps.

The CPU utilization for transmission, however, is
generally lower than the receiving case. Note that the
utilization is constant for all 11b rates. Since the trans-
mission part of 11b can be optimized effectively with
LUTs, for different rates we just use different LUTs. In
11a/g, since all samples need to pass an IFFT, the com-
putation requirements increase as the rate increases.

7.4 Detailed processing costs
The results in Figure 12 presented the overall CPU uti-
lization for a Sora SoftWiFi receiving node. As dis-
cussed in Section 6, a complete receiver has a number
of stages: frame detection, frame synchronization, and
demodulators for both the PLCP header and its data de-
pending on the modulation mode. How does CPU uti-
lization partition across these stages? Figure 13 shows
the computational cost for each component for receiv-
ing a 1400-byte UDP packet in each modulation mode;
again, we show only three representative modulation
rates for 11a/g. Frame detection (FD) has the lowest uti-
lization (11% of a 2.66GHz core for 11b and only 3.2%
for 11a/g) and is constant across all modulation modes
in each standard. Note that frame detection needs to ex-
ecute even if there is no communication since a frame
may arrive at any time. When Sora detects a frame,
it uses 29% of a core to synchronize to the start of a
frame (SYNC) for 11b, and it uses 20% of a core to syn-
chronize to an 11a/g frame. Then Sora can demodulate
the PLCP header, which is always transmitted using the
lowest modulation rate. It requires slightly less (27.5%)
computation overhead than synchronization for 11b; but
it needs much more computation (44%) for 11a. De-
modulation of the data (DATA) at the higher rates is the
most computationally expensive step in a receiver. It re-
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Figure 13: Detailed processing costs in WiFi PHY.

quires 75% of a core at 11Mbps for 11b, and the utiliza-
tion reaches exceeds one core (134%) for processing at
54Mbps in 11a/g. This result indicates that we need to
streamline the processing to at least two cores to support
this modulation.

8 Extensions

The flexibility of Sora allows us to develop interesting
extensions to current WiFi protocol.

8.1 Jumbo Frames

If the channel conditions are good, transmitting data
with larger frames can reduce the overhead of MAC/-
PHY headers, preambles and the per frame ACK. How-
ever, the maximal frame size of 802.11 is fixed at 2304
bytes. With simple modifications (changes in a few
lines), SoftWiFi can transmit and receive jumbo frames
with up to 32KB. Figure 14 shows the throughput of
sending UDP packets between two Sora SoftWiFi nodes
using the jumbo frame optimization across a range of
frame sizes (with 11b using the 11Mbps modulation
mode). When we increase the frame size from 1KB
to 6KB, the end-to-end throughput increase 39% from
5.9Mbps to 8.2Mbps. When we further increase the
frame size to 7KB, however, the throughput drops be-
cause the frame error rate also increases with the size.
So, at some point, the increasing error will offset the gain
of reducing the overhead. Note that our default commer-
cial NIC rejects frames larger than 2304 bytes, even if
those frames can be successfully demodulated.

In this experiment, we place the antennas close to each
other, clearly a best-case scenario. Our goal, though,
is not to argue that jumbo frames for 802.11 are nec-
essarily a compelling optimization. Rather, we want
to demonstrate that the full programmability offered by
Sora makes it both possible and straightforward to ex-
plore such “what if” questions on a GPP SDR platform.
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Figure 14: Throughput with Jumbo Frames between two
Sora SoftWiFi nodes.

10ms 50ms 100ms
/σ(µs) 0.85/0.5 0.96/0.54 0.98/0.46
Outlier 0.5% 0.4% 0.4%

Table 4: Timing error of Sora in TDMA.

8.2 TDMA MAC
To evaluate the ability of Sora to precisely control the
transmission time of a frame, we implemented a simple
TDMA MAC that schedules a frame transmission at a
predefined time interval. The MAC state machine (SM)
runs in an ethread, and it continuously queries a timer
to check if the pre-defined amount of time has elapsed.
If so, the MAC SM will instruct the RCB to send out a
frame. The modification is simple and straightforward
with about 20 lines of additional code.

Since our RCB can indicate to SoftWiFi when the
transmission completes, and we know the exact size of
the frame, we can calculate the exact time when the
frame transmits. Table 4 summarizes the results with
various scheduling intervals under a heavy load, where
we copy files on the local disk, download files from
a nearby server, and playback a HD video simultane-
ously. In the Table,  presents the average error and σ
presents the standard deviation of the error. The average
error is less than 1µs, which is sufficient for most wire-
less protocols. We also list outliers, which we define
as packet transmissions that occur later than 2µs from
the pre-defined schedule. Previous work has also imple-
mented TDMA MACs on a commodity WiFi NIC [20],
but their software architecture results in a timing error of
near 100µs.

8.3 Soft Spectrum Analyzer.
It is also easy for Sora to expose all PHY layer informa-
tion to applications. One application we have found use-
ful is a software spectrum analyzer for WiFi. We have
implemented such a simple spectrum analyzer that can
graphically display the waveform and modulation points
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Figure 15: Software Spectrum Analyzer built on Sora.

in a constellation graph, as well as the demodulated re-
sults, as shown in Figure 15. Commercial spectrum ana-
lyzers may have similar functionality and wider sensing
spectrum band, but they are also more expensive.

9 Related Work
In this section we discuss various efforts to implement
software defined radio functionality and platforms.

Traditionally, device drivers have been the primary
software mechanism for changing wireless functional-
ity on general purpose computing systems. For example,
the MadWiFi drivers for cards with Atheros chipsets [3],
HostAP drivers for Prism chipsets [2], and the rtx200
drivers for RaLink chipsets [4] are popular driver suites
for experimenting with 802.11. These drivers typically
allow software to control a wide range of 802.11 man-
agement tasks and non-time-critical aspects of the MAC
protocol, and allow software to access some device hard-
ware state and exercise limited control over device oper-
ation (e.g., transmission rate or power). However, they
do not allow changes to fundamental aspects of 802.11
like the MAC packet format or any aspects of PHY.

SoftMAC goes one step further to provide a platform
for implementing customized MAC protocols using in-
expensive commodity 802.11 cards [20]. Based on the
MadWiFi drivers and associated open-source hardware
abstraction layers, SoftMAC takes advantage of features
of the Atheros chipsets to control and disable default
low-level MAC behavior. SoftMAC enables greater flex-
ibility in implementing non-standard MAC features, but
does not provide a full platform for SDR. With the sepa-
ration of functionality between driver software and hard-
ware firmware on commodity devices, time critical tasks
and PHY processing remain unchangeable on the device.

GNU Radio is a popular software toolkit for building
software radios using general purpose computing plat-

forms [1]. It is derived from an earlier system called
SpectrumWare [22]. GNU Radio consists of a software
library and a hardware platform. Developers implement
software radios by composing modular pre-compiled
components into processing graphs using python scripts.
The default GNU Radio platform is the Universal Soft-
ware Radio Peripheral (USRP), a configurable FPGA ra-
dio board that connects to the host. As with Sora, GNU
Radio performs much of the SDR processing on the host
itself. Current USRP supports USB2.0 and a new ver-
sion USRP 2.0 upgrades to Gigabit Ethernet. Such in-
terfaces, though, are not sufficient for high speed wire-
less protocols in wide bandwidth channels. Existing
GNU Radio platforms can only sustain low-speed wire-
less communication due to both the hardware constraints
as well as software processing [21]. As a consequence,
users must sacrifice radio performance for its flexibility.

The WARP hardware platform provides a flexible and
high-performance software defined radio platform [6].
Based on Xilinx FPGAs and PowerPC cores, WARP
allows full control over the PHY and MAC layers and
supports customized modulations up to 36 Mbps. A va-
riety of projects have used WARP to experiment with
new PHY and MAC features, demonstrating the impact
a high-performance SDR platform can provide. KUAR
is another SDR development platform [18]. Similar to
WARP, KUAR mainly uses Xilinx FPGAs and PowerPC
cores for signal processing. But it also contains an em-
bedded PC as the control processor host (CPH), which
has a 1.4GHz Pentium M processor. Therefore, it allows
some communication systems to be implemented com-
pletely in software on CPH. They have demonstrated
some GNU Radio applications on KUAR. Sora provides
the same flexibility and performance as hardware-based
platforms, like WARP, but it also provides a familiar
and powerful programming environment with software
portability at a lower cost.

The SODA architecture represents another point in
the SDR design space [17]. SODA is an application
domain-specific multiprocessor for SDR. It is fully pro-
grammable and targets a range of radio platforms — four
such processors can meet the computational require-
ments of 802.11a and W-CDMA. Compared to WARP
and Sora, as a single-chip implementation it is more ap-
propriate for embedded scenarios. As with WARP, de-
velopers must program to a custom architecture to im-
plement SDR functionality.

10 Conclusions
This paper presents Sora, a fully programmable software
radio platform on commodity PC architectures. Sora
combines the performance and fidelity of hardware SDR
platforms with the programmability of GPP-based SDR
platforms. Using the Sora platform, we also present the
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design and implementation of SoftWiFi, a software ra-
dio implementation of the 802.11a/b/g protocols. We are
planning and implementing additional software radios,
such as 3GPP LTE (Long Term Evolution), W-CDMA,
and WiMax using the Sora platform. We have started
the implementation of 3GPP LTE in cooperation with
Beijing University of Posts and Telecommunications,
China, and we confirm the programming effort is greatly
reduced with Sora. For example, it has taken one student
only two weeks to develop the transmission half of LTE
PUSCH(Physical Uplink Shared Channel), which can be
a multi-month task on a traditional FPGA platform.

The flexibility provided by Sora makes it a convenient
platform for experimenting with novel wireless proto-
cols, such as ANC [16] or PPR [15]. Further, being able
to utilize multiple cores, Sora can scale to support even
more complex PHY algorithms, such as MIMO or SIC
(Successive Interference Cancellation) [23].

More broadly, we plan to make Sora available to the
wireless networking research community. Currently,
we are collaborating with Xi’an Jiao Tong University,
China, to design a new MIMO RF module that supports
eight channels. We are planning moderate production
of the Sora RCB and RF modules for use by other re-
searchers. The estimated cost for Sora hardware is about
$2,000 per set (RCB + one RF front-end). We also plan
to release the Sora software to the wireless network re-
search community. Our hope is that Sora can substan-
tially contribute to the adoption of SDR for wireless net-
working experimentation and innovation.
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Appendix A: SIMD example for FIR Filter
In this appendix, we show a small example of how to
use SSE instructions to optimize the implementation of a
FIR (Finite Impulse Response) filter in Sora. FIR filters
are widely used in various PHY layers. An n-tap FIR
filter is defined as

y[t] =
n−1

k=0

ck · x[t− k],
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Figure 16: Memory layout of the FIR coefficients.

where x[.] are the input samples, y[.] are the output sam-
ples, and ck are the filter coefficients. With SIMD in-
structions, we can process multiple samples at the same
time. For example, Intel SSE supports a 128-bit packed-
vector and each FIR sample takes 16 bits. Therefore,
we can perform m = 8 calculations simultaneously.
To facilitate SSE processing, the data layout in mem-
ory should be carefully designed. Figure 16 shows the
memory layout of the FIR coefficients. Each row forms
a packed-vector containing m components for SIMD op-
erations. The coefficient vector of the FIR filter is repli-
cated in each column in a zig-zag layout. Thus, the total
number of rows is (n + m − 1). There are also n tem-
porary variables containing the accumulated sum up to
each FIR tap for each sample.

Figure 17 shows the example code. It takes an ar-
ray of input samples, a coefficient array, and outputs the
filtered samples in an output sample buffer. The input
contains two separate sample streams, with the even and
odd indexed samples representing the I and Q samples,
respectively. The coefficient array is arranged similarly
to Figure 16, but with two sets of FIR coefficients for I
and Q samples, respectively.

Each iteration, four I and four Q samples are loaded
into an SSE register. It multiplies the data in each row
and adds the result to the corresponding temporal accu-
mulative sum variable (lines 59–68). A result is output
when all taps are calculated for the input samples (lines
18–57). When the input sample stream is long, there are
nm samples in the pipeline and m outputs are generated
in each iteration. Note that the output samples may not
be in the same order as the input — some algorithms do
not always require the output to have exactly the same
order as the input. A few shuffle instructions can be
added to place the output samples in original order if
needed.

1 int FirSSE ( PSAMPLE pSrc,
2 PSAMPLE pOutput,
3 int nSize, // number of complex samples
4 PSHORT pCoff, // filter coeffs
5 int iTaps, // the highest index of tap (n-1)
6 PSAMPLE pTempBuf, // for temp value store
7 )
8 {
9 _asm {

10 mov esi, pSrc;
11 mov ecx, nSize;
12 mov ebx, pOutput;
13 outerloop:
14 mov edx, pCoff;
15 mov edi, pTempBuf;
16

17 ;// load samples 4-I and 4-Q
18 movdqa xmm0, [esi];
19

20 ; // result_0
21 movdqa xmm4, xmm0;
22 pmullw xmm4, [edx];
23 paddsw xmm4, [edi];
24 ; // result_1
25 movdqa xmm5, xmm0;
26 pmullw xmm5, [edx + 16];
27 paddsw xmm5, [edi + 16];
28 ; // result_2
29 movdqa xmm6, xmm0;
30 pmullw xmm6, [edx + 32];
31 paddsw xmm6, [edi + 32];
32 ; // result_3
33 movdqa xmm7, xmm0;
34 pmullw xmm7, [edx + 48];
35 paddsw xmm7, [edi + 48];
36

37 ; // xmm4, xmm5, xmm6, xmm7 contains output
38 ; // perform shuffle and horizontal additions
39 movdqa xmm1, xmm4;
40 punpckldq xmm1, xmm6;
41 punpckhdq xmm4, xmm6;
42 paddsw xmm4, xmm1;
43

44 movdqa xmm1, xmm5;
45 punpckldq xmm1, xmm7;
46 punpckhdq xmm5, xmm7;
47 paddsw xmm5, xmm1;
48

49 movdqa xmm1, xmm4;
50 punpckldq xmm1, xmm5;
51 punpckhdq xmm4, xmm5;
52 paddsw xmm4, xmm1;
53

54 ; // output
55 ; // additional instructions may be added to
56 ; // adjust the sample orders
57 movdqa [ebx], xmm4;
58

59 ; // update temp buffers
60 mov eax, iTaps;
61 innerloop:
62 movdqa xmm1, xmm0;
63 pmullw xmm1, [edx + 64];
64 paddsw xmm1, [edi + 64];
65 movdqa [edi], xmm1;
66

67 add edx, 16;
68 add edi, 16;
69 dec eax;
70 jnz innerloop;
71

72 ;// advance to next sample group
73 add esi, 16;
74 add ebx, 16;
75 sub ecx, 4;
76 jg outerloop;
77 }
78 }

Figure 17: Pseudo-code of SSE optimized FIR Filter.
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Enabling MAC Protocol Implementations on
Software-Defined Radios
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Abstract

Over the past few years a range of new Media Access
Control (MAC) protocols have been proposed for wire-
less networks. This research has been driven by the
observation that a single one-size-fits-all MAC protocol
cannot meet the needs of diverse wireless deployments
and applications. Unfortunately, most MAC functional-
ity has traditionally been implemented on the wireless
card for performance reasons, thus, limiting the opportu-
nities for MAC customization. Software-defined radios
(SDRs) promise unprecedented flexibility, but their ar-
chitecture has proven to be a challenge for MAC proto-
cols.

In this paper, we identify a minimum set of core MAC
functions that must be implemented close to the radio
in a high-latency SDR architecture to enable high per-
formance and efficient MAC implementations. These
functions include: precise scheduling in time, carrier
sense, backoff, dependent packets, packet recognition,
fine-grained radio control, and access to physical layer
information. While we focus on an architecture where
the bus latency exceeds common MAC interaction times
(tens to hundreds of microseconds), other SDR architec-
tures with lower latencies can also benefit from imple-
menting a subset of these functions closer to the radio.
We also define an API applicable to all SDR architectures
that allows the host to control these functions, providing
the necessary flexibility to implement a diverse range of
MAC protocols. We show the effectiveness of our split-
functionality approach through an implementation on the
GNU Radio and USRP platforms. Our evaluation based
on microbenchmarks and end-to-end network measure-
ments, shows that our design can simultaneously achieve
high flexibility and high performance.

1 Introduction

Over the past few years, a range of new Media Access
Control (MAC) protocols have been proposed for use in
wireless networks. Much of this increased activity has
been driven by the observation that a single one-size-

fits-all MAC protocol cannot meet the needs of diverse
wireless deployments and applications and, thus, MAC
protocols need to be specialized (e.g. for use on long-
distance links, mesh networks). Unfortunately, the devel-
opment and deployment of new MAC designs has been
slow due to the limited programmability of traditional
wireless network interface hardware. The reason is that
key MAC functions are implemented on the network in-
terface card (NIC) for performance reasons, which often
uses proprietary software and custom hardware, making
the MAC hard, if even possible, to modify.

Software-defined radios (SDRs) have been proposed
as an attractive alternative. SDRs provide simple hard-
ware that translates signals between the RF and the digi-
tal domains. SDRs implement most of the network inter-
face functionality (e.g., the physical layer and link layer)
in software and, as a result, they make it feasible for
developers to modify this functionality. SDR architec-
tures [19, 6, 17, 20, 9] typically distribute processing of
the digitized signals across several processing units – in-
cluding FPGAs and CPUs located on the SDR device,
and the CPU of the host. The platforms differ in the pre-
cise nature of the processing units that are provided, how
those units are connected, and how computation is dis-
tributed across them.

Unfortunately, the high degree of flexibility offered
by SDRs does not automatically lead to flexibility in the
MAC implementation. The reason is that, in the SDR ar-
chitecture we are addressing, the use of multiple hetero-
geneous processing units with interconnecting buses, in-
troduces large delays and jitter into the processing path of
packets. Processing, queuing, and bus transfer delays can
easily add up to hundreds of microseconds [14]. Unfor-
tunately, the delay limits how quickly the MAC can re-
spond to incoming packets or changes in channel condi-
tions, and the jitter prevents precise control over the tim-
ing of packet transmissions. These restrictions severely
reduce the performance of many MAC protocols.

This paper presents a set of techniques that makes it
possible to implement diverse, high performance MAC
protocols that are easy to modify and customize from the
host. The key idea is a novel way of splitting core MAC
functionality between the host processing unit and pro-
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Figure 1: Generic SDR Architecture

cessing units on the hardware (e.g., FPGA). The paper
makes the following contributions:

• We identify a set of core MAC functions that must
be implemented close to the radio for performance
and efficiency reasons.

• We define a split-functionality architecture that al-
lows the functions to be implemented near the ra-
dio hardware, while maintaining control on the host
CPU through an API.

• We present an implementation of our architecture
using the GNU Radio [6] and USRP [17] SDR plat-
form. We also use our implementation to charac-
terize the performance-flexibility tradeoffs for key
MAC features. For example, our results show
three orders of magnitude greater precision for the
scheduling of packets and carrier sense, along with
a high level of accuracy in fast packet detection.

• Finally, we use our implementation for an end-to-
end evaluation of the split-functionality architec-
ture. We show how the system can support diverse
high-performance MAC implementations by imple-
menting 802.11-like and Bluetooth-like protocols
for experimentation over the air.

The rest of the paper is organized as follows. We dis-
cuss current radio architecture and its impact on MAC
protocol development in Section 2. In Sections 3 and
4, we explore the core MAC requirements and introduce
our split-functionality architecture. Section 5 provides
details for each component implementation with evalu-
ation results. Finally, we present end-to-end evaluation
results, related work, and a summary of our results in
Sections 6 through 8.

2 MAC Implementation Choices
A number of different software-defined radio architec-
tures have been developed. One common architecture
is shown in Figure 1. The frontend is responsible for
converting the signal between the RF domain and an
intermediate frequency, and the A/D and D/A compo-
nents convert the signal between the analog and the dig-
ital domain. Physical and higher layer processing of the

digitized signal are executed on one or more processing
units. Typically, there is at least an FPGA or DSP close
to the frontend. The frontend, D/A, A/D, and FPGA are
usually placed on a network card that is connected to the
host CPU by a standard bus (e.g., USB).

The distribution of functionality across the processing
units significantly impacts the radio’s performance, flex-
ibility, and ease of reprogramming. To achieve a high
level of flexibility and reprogramming, the majority of
processing (i.e., modulation) can be placed on the host
CPU where the functionality is easy to modify. We refer
to this architecture as host-PHY. This architecture is ex-
emplified by GNU Radio [6] and the USRP [17], which
place the majority of functionality in userspace, shown
in Figure 1. For greater performance, processing can be
implemented in the radio hardware on the FPGA or DSP.
We refer to this architecture as NIC-PHY. The WARP
platform [20] implements this architecture, placing the
PHY and MAC layers on the radio hardware for perfor-
mance reasons. It is fairly straightforward however, to
parameterize PHY layers (e.g. to control the frequency
band and coding an modulation options). Thus, it is pos-
sible control many aspects of the PHY layer from the
host, no matter where it is implemented.

Unfortunately, MAC protocols are less structured and
SDRs have fallen short in providing high-performance
flexible MAC implementation. The MAC is either im-
plemented near the radio hardware for performance, or
near the host for flexibility. We propose a novel split of
MAC functionality across the processing units in a host-
PHY architecture such that we can achieve a high level
of performance, while maintaining flexibility at both the
MAC and PHY layers. This is especially significant in
a host-PHY architecture, which has been considered in-
capable of supporting even core MAC protocol functions
(e.g., carrier sense) due to the large processing delays in-
herent to the architecture [14, 18]. In addition, our design
can enable many cross-layer optimizations, such as those
proposed between the MAC and PHY layers [5, 8, 7].
Such optimizations have used the host-PHY architecture
for easy PHY modifications, but given the lack of MAC
support, they typically ”fake” the MAC layer (e.g., by
combining the SDR with a commodity 802.11 NIC to do
the MAC processing [5]) or omit it all together [7, 8].
Although our work focuses on a host-PHY architecture,
several of the components we will present can be applied
to a NIC-PHY architecture.

In the next section, we explore delay and jitter mea-
surements in the host-PHY architecture, which are the
major limiting factor on performance of MAC imple-
mentations. The measurements are important in under-
standing the proper split of MAC functionality across the
heterogeneous processing units of an SDR.
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Avg SDev Min Max
User–>Kernel (µs) 24 10 22 213
Kernel–>User (µs) 27 89 13 7000
4096 Kernel<–>FPGA (µs) 291 62 204 360
512 Kernel<–>FPGA (µs) 148 35 90 193
GNU Radio<–>FPGA (µs) 612 789 289 9000

Table 1: Kernel level delay measurements.

2.1 Delay Measurements

Schmid et al [14] present delay measurement for SDRs
and their impact on MAC functionality in a host-PHY
architecture. However, they focus on user-level mea-
surements, largely ignoring precise measurement of de-
lays between the kernel and userspace, and kernel and
the radio hardware. Such measurements are important,
since they can provide insight into whether implementing
MAC functions in the kernel is sufficient to overcome the
performance problems associated with user level imple-
mentations. To obtain precise user and kernel-level mea-
surements, we modified the Linux kernel’s USB Request
Block (URB) and USB Device Filesystem URB (US-
BDEVFS URB) to include nanosecond precision times-
tamps taken at various times in the transmission and re-
ceive process. All user level timestamps are taken in user
space right before or after a URB is submitted (write) or
returned (read). At the kernel level, the measurement is
taken at the last point in the kernel’s USB driver before
the DMA write request is generated, or after a DMA read
request interrupts the driver. This is as close to the bus
transfer timing as possible.

We measured the round trip time between GNU Ra-
dio (in user space) and the FPGA using a ping command
on a control channel that we implement (Section 4.2).
Using the measurements described above, we are also
able to identify the sources of the delay by calculating
the user to kernel space delay, kernel to user space de-
lay, and round trip time between the kernel and FPGA
based on ping. We ran the user process at the highest pri-
ority to minimize scheduling delay. We used the default
4096 byte USB transfer block size for all experiments,
and then perform an additional kernel to FPGA RTT ex-
periment using a 512 byte transfer block size, the mini-
mum possible, in an attempt to minimize queuing delay.

The results presented in Table 1 are averaged over
1000 experiments. Focusing on the average times, we
see the cost of a GNU Radio ping is dominated by the
kernel-FPGA roundtrip time (291 out of 612 µs). The
user-kernel and kernel-user times are relatively modest
(24 and 27 µs). The remaining time (270 µs) is spent in
the GNU Radio chain. The high latency of the kernel-
FPGA roundtrip time is somewhat surprising, given that
the effective measured rate of the USB with the USRP is
32MB/s. The difference between the latencies for 4KB

and 512B shed some light on this. The difference in la-
tency is only a factor of two, suggesting that the set up
cost for transfers contributes significantly to the delay.
The kernel-FPGA time also includes the time it takes for
the data to pass through the USRP USB FX2 controller
buffers, and to be copied into the FPGA for parsing. The
time taken for the data to pass through the USRP USB
FX2 controller buffers and copied into the FPGA for
parsing also contributes to the kernel-FPGA RTT.

The standard deviations and the min/max values paint
a different picture. The user-to-kernel and kernel-FPGA
times fall in a fairly narrow range, so they only contribute
a limited amount of jitter. The kernel-to-user times how-
ever have a very high standard deviation, which results
in a high standard deviation for the GNU Radio ping de-
lays. This is clearly the result of process scheduling.

2.2 MAC Design Space

As discussed briefly in Section 2, the processing units
in the above SDR architecture have very different prop-
erties. Focusing on Figure 1, the host CPU is easy to
program and is readily accessible to users and develop-
ers. However, the path between the host CPU and the
radio front end has both high delay and jitter, as shown
by the measurements presented in Section 2.1. The round
trip times between the device driver on the host and the
FPGA is about 300 µs for 4KB of data, with relatively
modest jitter. The roundtrip from GNU Radio is about
double, but with significantly more jitter. As a result, a
host-based MAC protocol (be it in user space or in the
kernel) will not be able to precisely control packet tim-
ing, or implement small, precise inter-frame spacings,
which will hurt the performance of many MAC proto-
cols. We conclude that, time critical radio or MAC func-
tions should not be placed on the host CPU.

Processing close to the radio performed by a FPGA
or CPU on the NIC has the opposite properties. It has a
low latency path to the frontend (see USRP latencies in
Figure 1), making it attractive for delay sensitive func-
tions. Unfortunately, code running on the radio hardware
is much harder to change because it is often hardware-
specific and requires a more complex development envi-
ronment. Moreover, history shows that vendors do not
provide open access to their NICs, even if they are pro-
grammable. Access to the processors on the NIC is re-
stricted to its manufacturer and possibly large customers
who can, under license, customize the NIC code. This
is of course not a problem for research groups using
research platforms, which is why many researchers are
moving to software radios, but it is an important consid-
eration for widespread deployment. We conclude that in
order to be widely applicable, the control of flexible MAC
implementations should reside on the host.
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Interesting enough, the SDR NIC architecture in Fig-
ure 1 is not unlike the architecture of traditional NICs
(e.g., 802.11 cards). Today’s commodity NICs use ana-
log hardware to perform physical layer processing, but
they typically also have a CPU, FPGA, or custom proces-
sor. These commodity devices exhibit the same tradeoffs
we identified above for software radios: the delay be-
tween the processing on the host and the (analog) fron-
tend is substantially higher and less predictable than be-
tween the NIC processor and the front end.

Experience with commercial 802.11 cards supports
the conclusions we highlighted above. First, time sen-
sitive MAC functions such as sending ACKs are always
performed on the NIC, and only functions that are not de-
lay sensitive such as access point association are handled
by the host processor. Moreover, although most of the
MAC functionality on the NIC is implemented in soft-
ware, it can only be modified by a small number of ven-
dors (i.e. in practice the NIC is a black box). Researchers
have had some success in using commodity cards for
MAC research by moving specific MAC functions to the
host [13, 16, 10, 15], but the results are often unsatis-
factory. The host can only take control over certain func-
tions (e.g. interframe spacings must be longer than 60
microseconds), precision is limited (e.g. cannot elimi-
nate all effects of jitter), and the host implementation is
inefficient (as a result of polling) and is susceptible to
host loads.

The different properties of the host and NIC process-
ing units means that the placement of MAC functional-
ity will fundamentally affect four key MAC performance
metrics, including network performance, flexibility in
MAC implementation and runtime control, and ease of
development. Unfortunately, as discussed above, these
performance goals are in conflict with each other and
achieving the highest level for each is not possible. In
this paper, we present a split-functionality architecture
that implements key MAC functions on the radio hard-
ware, but provides full control to the host. This allows
us to simultaneously score very high on all four metrics,
and it also allows developers and users to make tradeoffs
across the metrics. While developers will always have to
make tradeoffs, the negatives associated with specific de-
sign choices are significantly reduced in our design. Note
that this does not imply that our design can support any
arbitrary or even all existing MAC designs. However, we
believe that it is capable of supporting most of the critical
features of modern MAC designs.

The focus of the paper is on SDR platforms be-
cause they provide maximal flexibility in key research
areas such as cross-layer MAC and PHY optimization
(e.g., [5, 7, 8]). Our evaluation is based on a platform that
uses the host-PHY architecture, but is not critical. Even
in NIC-PHY architectures that have good support for the

MAC on the NIC (e.g., in the form of a general-purpose
CPU), it is important to maintain control over the MAC
and PHY on the host to ensure easy customization. As
a result, the techniques we propose can be useful across
the entire spectrum of NIC designs.

3 Core MAC Functions

An ideal wireless protocol platform should support the
implementation of well-known MAC protocols as well as
novel MAC research designs. A study of current wireless
protocols, including WiFi (both Distributed and Point
Coordination Function), Zigbee, Bluetooth, and various
research protocols shows that they are based on a com-
mon, core set of techniques such as contention-based ac-
cess (CSMA), TDMA, CDMA, and polling. In this sec-
tion, we identify key core functions that a platform must
implement efficiently in order to support a wide range of
MAC protocols.

Precise Scheduling in Time: TDMA-based protocols
require precise scheduling to ensure that transmissions
occur during time slots. Imprecise timing can be tol-
erated by using long guard periods; however, this de-
grades performance. Surprisingly, modern contention-
based protocols also require precise scheduling to imple-
ment inter-frame spacing (i.e. DIFS, SIFS, PIFS), con-
tention windows, back-off periods, etc.

Carrier Sense: Contention-based protocols often use
carrier sense to detect other transmissions. Carrier
sense may use simple power detection (e.g., using sig-
nal strength) or may use actual bit decoding. Network
interfaces need to transmit shortly after the channel is
detected to be idle. Additional delay increases both the
frequency of collision and also the minimum packet size
required by the network.

Backoff: When a transmission fails in a contention-
based protocol, a backoff mechanism is used to resched-
ule the transmission under the assumption that the
loss was caused by a collision. Backoff is related to
precise scheduling, but focuses more closely on fast-
rescheduling of a transmission without the full packet
transmission process (e.g., modulation).

Fast Packet Recognition: Many MAC performance
optimizations could use the ability to quickly detect an
incoming packet and identify that it is relevant to the lo-
cal node in a timely and accurate manner. For example,
detecting and identifying an incoming packet before the
demodulation procedure can reduce resource use on the
processing units and on the bus.

Dependent Packets: Dependent packets are explicit
responses to received packets. A typical example is con-
trol packets that are associated with data packets, for
example for error control (e.g., ACKs) or for improved
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channel access (e.g., RTS/CTS). Network interfaces need
to generate these packets quickly and transmit them with
precise time scheduling relative to the previous packet.

Fine-grained Radio Control: Frequency-hopping
spread spectrum protocols such as Bluetooth and the re-
cently proposed MAXchop algorithm [11] require fine-
grained radio control to rapidly change channels accord-
ing to a pseudo-random sequence. Similarly, recent de-
signs [1] for minimizing interference require the ability
to control transmission power on a per-packet basis.

Access to physical layer information: Many MAC
protocol optimizations could benefit from access to
radio-level packet information. Examples include using
a received signal strength indicator (RSSI) to improve
access point handoff decisions and using information on
the confidence of each decoded bit to implement partial
packet recovery [7].

3.1 Implications
While it is difficult to argue that this (or any) list of core
functions is the correct one and is complete, we believe
that it is sufficient to implement a broad range of inter-
esting MAC protocols. To provide some degree of confi-
dence in this statement, we describe our implementation
of an 802.11-like CSMA protocol and a Bluetooth-like
TDMA protocol using our framework in Section 6. As
such, this is a reasonable first “toolbox” that MAC pro-
tocol developers can extend over time.

4 Split Functionality Architecture

As discussed in Section 2, implementing flexible high-
performance MAC protocols is challenging because the
high delays and jitter between the host CPU and frontend
affects the performance of the core MAC functions de-
scribed in the previous section. For example, most proto-
cols need either precise scheduling in time or dependent
packets. However, the delays inherent in a host MAC im-
plementation in the given SDR architecture would make
these functions inefficient or ineffective. In this section,
we first review the requirements associated with the core
MAC functions identified above, and we then present an
architecture that allows us to support high performance
MACs while maintaining host control.

4.1 Core Requirements
Implementing the core MAC functions from Section 3
raises three challenges.

Bus delay: The delay introduced by transmission of
data over the bus can be constant and predictable, de-
pending on the technology. A constant delay is relatively

easy to accommodate in supporting precision schedul-
ing, as discussed in Section 5.1. However, the bus delay
does impact the performance of carrier sense, dependent
packets, and fast packet recognition. The effect of bus
latency on performance for SDR NICs is discussed in
previous work [14].

Queuing delay: The delay introduced by queues may
be smaller than the bus transmission delay but has signif-
icant jitter, which makes precision scheduling difficult,
if not impossible. The jitter can modify the inter-packet
spacing through compression or dispersion as the data is
processed in the host and at the ends of the bus. In Sec-
tion 5.1.2, we present measurements that show that this
compression can be so significant in the given architec-
ture that spacing transmissions by under 1ms cannot be
achieved reliably using host-CPU based scheduling.

Stream-based architecture of SDRs: The frontend
operates on streams of samples, which can make fine-
grained radio control and access to physical layer infor-
mation from the host ineffective. The reason is that it
adds complexity to the interaction between a MAC layer
executing on a host CPU (or NIC CPU) and the radio
frontend since it is difficult to associate control informa-
tion or radio information with particular groups of sam-
ples (e.g., those belonging to a packet). This problem
consists of two components: (1) how to propagate in-
formation within the software environment that performs
physical and MAC layer processing, and (2) how to prop-
agate the information between the host and the frontend,
across the bus and SDR hardware. This first issue is
being addressed in the GNU Radio design with the in-
troduction of m-blocks [2], which is briefly discussed in
Section 7, but we must address the second issue.

4.2 Overcoming the Limitations

We now present an architecture that overcomes the above
limitations. The goal is to allow as much of the pro-
tocol to execute on the host as possible to achieve the
flexibility and ease of development goals, both of which
are important to a wireless platform for protocol devel-
opment, as identified in Section 2. However, we must
ensure that the high latency and jitter between the host
and radio frontend does not result in poor performance
and limited control, the other two criteria in Section 2.
This is done by introducing two architectural features,
per-block meta-data and a control channel, shown in
Figure 2. The novelty is not in the two new architectural
features, but in how we use them to implement the core
MAC functions (Section 3) in such a way that we main-
tain flexibility, while increasing performance (Section 5).
We first discuss both features in more detail.

Per block meta-data: Enabling the association of in-
formation with a packet is crucial to the support of nearly
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all of the core requirements in Section 3. Each packet is
modulated into blocks of samples, for which we intro-
duce per block meta-data. The meta-data stored in the
header includes a timestamp (inbound and outbound), a
channel flag (data/control), a payload length, and single
bit flags to mark events such as overrun, underrun, or to
request specific functions that we implement on the ra-
dio hardware. We limit the scope of the meta-data to the
minimum needed to support the core requirements, thus
minimizing the overhead on the bus.

Control Channel: The control channel allows us
to implement a rich API between the host and radio
hardware and allows for less frequent information to be
passed. It consists of control blocks that are interleaved
with the data blocks over the same bus. Control blocks
carry the same meta-data header as data blocks but have
the channel field in the header set to CONTROL. The
control block payload contains one or more command
subblocks. Each subblock specifies the command type,
the length of the subblock, and information relevant to
the specific command (e.g., a register number). Exam-
ples of commands include: reading or writing configu-
ration registers on the SDR device, changing the carrier
frequency, and setting the signal sampling rate.

With these two features, we can effectively partition
the core MAC functions into a part that runs on the radio
hardware close to the radio frontend, and a control part
that runs on the host. Of course, meta-data and control
channels are used in many contexts. The contribution lies
in how we use them to partition the core MAC functions,
which is the focus of the next section.

5 Core Component Design and
Evaluation

We now examine how the split-functionality approach
can be used to implement the core functions described
in Section 3. We also evaluate the performance of the
implementation of each core function. We focus our dis-
cussion on the GNU Radio and USRP platform.

5.1 Precise Scheduling in Time
Precision scheduling needs to be implemented close to
the radio to achieve the fine-grained timing required for
TDMA, spread spectrum, and contention based proto-
cols. This is especially important when a large amount of
jitter exists in the system from multiple stages of queuing
and process scheduling, explored in Section 2.1.

For nodes to synchronize to the time of a global ref-
erence point, such as a beacon transmission for synchro-
nization to the start of a round in a TDMA protocol, the
nodes need to accurately estimate the reference point.
Jitter at the transmitter can cause the actual transmission
of the beacon to vary from its target time by δt , the maxi-
mum transmission jitter. Moreover, the estimated time of
the beacon transmission as a global reference point will
vary by δr, the maximum reception jitter. The maximum
error is therefore δt + δr, which defines the minimum
guard time needed by a TDMA protocol. By minimiz-
ing δt and δr, we increase channel capacity.

5.1.1 Precision Scheduling Design

Our delay measurements in Section 2.1 suggest that
much of the delay jitter is created near the host. There-
fore, the triggering mechanism for packet transmissions
should reside beyond the introduction of the jitter. Like-
wise, to obtain an accurate local time at which a recep-
tion occurs, the time should be recorded prior to the in-
troduction of the jitter on the RX path. To enable preci-
sion scheduling, we use a free running clock on the radio
hardware to coordinate transmission/reception times as
follows.

Transmit: To reduce the transmission jitter (δt ), we
insert a timestamp on all sample blocks sent from the
host to the radio hardware. When the radio hardware
receives the sample block, it waits until the local clock
is equal to the timestamp value before transmitting the
samples. This allows for timing compression or disper-
sion of data in the system with no effect on the preci-
sion scheduling of the transmission. The host must en-
sure the transmission reaches the radio hardware before
the timestamp is equal to the hardware clock, else the
transmission is discarded. The host is notified on failure,
which can be treated as notification to schedule transmis-
sions earlier. To support traditional best-effort streaming,
we use a special timestamp value, called NOW, to trans-
mit the block immediately.

In practice, the samples for a packet will be frag-
mented across multiple blocks. To make sure that a sin-
gle packet’s transmission is continuous and that if the
packet is dropped all fragments are dropped, we imple-
ment start of packet and end of packet flags in the block
headers. The first block carrying the packet will have the
start of packet flag set and the timestamp for transmis-
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Figure 3: Evaluation setup using 3 USRPs.

sion. All remaining blocks carry a timestamp value of
NOW to ensure continuous transmission. The hardware
detects the last fragment using the end of packet flag, and
can also report underruns to the host by detecting a gap
between fragments.

A common solution to achieve precise transmission
spacing from the host is to leave the transmitter enabled
at all times and space transmissions with 0 valued sam-
ples. This solution is inefficient since it wastes both host
CPU cycles and bus bandwidth, and it does not eliminate
jitter on the receive side.

Receive: To reduce the receiver jitter (δr), the radio
hardware timestamps all incoming sample blocks with
the radio clock time at which the first sample in the block
was generated by the ADC. Given that the sampling rate
is set by the host, the host knows the exact spacing be-
tween samples. It can therefore calculate the exact time
at which any sample was received, eliminating δr and al-
lowing for full synchronization between transmitter and
receiver.

5.1.2 Precision Scheduling Evaluation

To evaluate precision scheduling, we compare the
timestamp-based release of packets using the split-
functionality approach with a timer-based implementa-
tion in GNU Radio and in the kernel. We enable the real-
time scheduling mechanism, which sets the GNU Radio
processes to the highest priority. Our experiment trans-
mits a frame used as a logical time reference, and then at-
tempts to transmit another frame at a controlled spacing
over the air. With no error, the actual spacing over the air
is equal to the targeted spacing. We measure the actual
spacings achieved using a monitoring node (Figure 3). A
USRP on the monitoring node measures the magnitude
of received complex samples at 8 megasamples per sec-
ond, resulting in a precision of 125 nanoseconds. With
no transmission jitter (δt ), the spacing between beacons
will exactly match their transmission rate, while any vari-
ability in scheduling will affect the spacings. The nodes
are connected via coaxial cable to avoid the impact of
external signals.

We compare the measured spacing of 50 transmis-
sions with targeting spacings from 100ms to 1µs. Fig-
ure 4 shows the host and kernel based implementations
to have approximately 1ms and 35µs of error, respec-
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tively. The timestamp-based mechanism achieves exact
spacing to our monitoring node’s precision. Therefore,
moving timestamps to the kernel improves accuracy, but
the error is still at least an order of magnitude greater
than in the split-functionality design. Section 6.1 quan-
tifies the benefits further through the implementation of
a Bluetooth-like TDMA protocol. In the evaluation, we
also measure δr with the split-functionality approach to
be within 312ns. The average results show one-sided er-
ror, illustrating that compression of data across the bus
dominates over dispersion. This is likely due to the mul-
tiple stages of buffers, including the buffers on the radio
hardware to read the data from the FX2 controller. While
dispersion is recorded, it occurs infrequently.

5.2 Carrier Sense
The performance of carrier sense is crucial to CSMA
protocols: the longer it takes to transmit a packet after
the channel goes idle, the greater the chance of colli-
sion. This turnaround time is referred to as the carrier
sense ‘blind spot” by Schmid et al. [14]. This blind spot
has 4 components: signal propagation delay, the delay
between the radio hardware and host for incoming sam-
ples, the processing delay involved in carrier detection at
the host, and the complete transmission delay once the
medium is detected idle at the host; this includes mod-
ulation of a packet and transferring the samples to the
radio hardware for transmission.

5.2.1 Carrier Sense Design

To significantly reduce the size of the carrier sense blind
spot, we must avoid the associated delays by placing the
decision at the radio hardware. However, the decision
process should be controlled by software running on the
host CPU to maintain flexibility. The first assumption we
can make is that if carrier sense is to be performed, the
host has data to transmit and can modulate it and pass
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Figure 5: Carrier sense blind spot measurement.

it to the radio hardware to pend on carrier sense. The
per block meta-data for the transmission has a single bit
flag set to indicate the block should be held until there
is no carrier using a locally computed RSSI value. The
host can control the carrier sense threshold via the con-
trol channel. We use an RSSI value recorded in the radio
hardware to implement a simple RSSI threshold carrier
sense mechanism.

5.2.2 Carrier Sense Evaluation

We now present an evaluation of the carrier sense com-
ponent in comparison to performing carrier sense at the
host. In the host implementation, the received signal
strength is estimated from the incoming sample stream
and uses thresholds to control outgoing transmissions.
We use the evaluation setup in Figure 3, described in
Section 5.1.2, to achieve a 125 nanosecond resolution
in measuring the archived carrier sense blind spot. The
two contending nodes exchange the channel using car-
rier sense 100 times and we measure the spacing be-
tween each transmission, as illustrated in Figure 5. The
first contending node, C1, finishes transmission T Xn, and
C2 takes T1 time to detect the channel as idle and be-
gin transmission T Xn+1. T1 represents the carrier sense
turnaround time, or blind spot.

We plot two example channel exchanges using both
implementations in Figure 6. Time is relative in the fig-
ure and we align the contending node’s end of transmis-
sion at time 100. We highlight the gap in both implemen-
tations, and present the average gap observed across 100
exchanges: 1.5µs and 1.98ms for the split-functionality
and host implementations, respectively. The host based
latency could be reduced closer to 1ms, or on the order
of tens of microseconds, by splitting the functionality to
the USRP device driver, or the kernel, respectively. In
our evaluation, the times were recorded at a higher-level
block in GNU Radio where a MAC protocol would re-
side. These measurements illustrate our design’s abil-
ity to reduce the carrier sense blind spot by three orders
of magnitude, while maintaining host control on a per-
packet basis. This can significantly increase the capac-
ity in the channel by reducing the time it takes to detect
it is idle. The host can even control the threshold on a
per-packet basis by placing a control packet with a new
threshold on the bus before the data packet.

 0

Split-functionality1.5µs average
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Figure 6: Measured carrier sense blind spots.

5.3 Backoff

In contention based protocols, backoff is used to reduce
collisions and increase fairness. Although the technique
varies by protocol, a common implementation is to re-
duce collisions by forcing a transmission delay and to
increase fairness by making this delay random. The
various delay components in SDRs prevent fine-grained
backoff at the host. As shown in Section 5.1, a host
backoff of less than 1ms is unachievable and values be-
tween 1ms and 100ms would be unpredictable. There-
fore, backoff at the host would require a large minimum
backoff time, which decreases channel capacity.

Despite our timestamping mechanism achieving mi-
crosecond level accuracy (Section 5.1.2), such a mecha-
nism alone is insufficient. If a new backoff time is to be
computed once a failure is reported to the MAC on the
host, the retransmission would incur at least a radio-to-
host RTT after the previous transmission, meaning the
minimum backoff in a host implementation is an RTT.
The average RTT measured in Section 2.1 was 612µs
with a standard deviation was 789µs and a maximum
observed value of 9ms. This is insufficient by current
protocol standards. Placing the backoff algorithm on the
radio hardware would require developers to make low
level changes. We therefore explore a split-functionality
approach for backoff.

5.3.1 Backoff Design

To enable flexible fine-grained backoff we build upon
the precision scheduling mechanism (Section 5.1) to in-
troduce a technique that leaves the backoff algorithm
and computations at the host, and the actual transmis-
sion delay on the radio hardware. The key observation
that enables our technique is that all backoff times, from
the initial transmission n 0 to n MAX RETRIES, can be pre-
calculated by the host. The host calculates the backoff
time for transmission n 0, and then assuming failure cal-
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culates all remaining backoffs from 1 to MAX RETRIES,
including each in the per packet meta-data.

A flag is set in the per block meta-data for the radio
hardware to interpret the timestamp value as the maxi-
mum number of retries (M), and the first M 32-bit words
pre-pended in the data payload to be interpreted as back-
off times for each retransmission. Each value is inter-
preted as a time-to-wait, where the transmission is sched-
uled at current clock+backoff. Moreover, we implement
a control channel command that allows the host to con-
figure the interpretation of a backoff value as an absolute
time-to-wait, or a channel idle time-to-wait (most com-
mon).

This technique does not affect scheduling of future
transmissions, as for example in 802.11 the contention
window is reset to the minimum on a successful trans-
mission. This means that the host can fully schedule a
transmission and before a success/failure notification is
given by the hardware, it can prepare the next transmis-
sion and buffer it on the radio hardware.

5.3.2 Backoff Evaluation

Given that the backoff technique uses the precision
scheduling mechanism, its accuracy is the same as the
precision scheduling mechanism and on the order of mi-
croseconds. We also use the backoff technique in our
split-functionality 802.11-like protocol evaluation found
in Section 6.

5.4 Fast Packet Recognition
Traditional software-defined radios, in the receive state,
stream captured samples at some decimated rate between
the radio hardware and the host. For many MAC pro-
tocols, such as CSMA-style designs, the radio cannot
determine when packets for the attached node will ar-
rive. As a result, the radio must remain in the receiving
state. The downside to this is that the demodulation pro-
cess uses significant memory and processor resources de-
spite the fact that incoming packets destined for the radio
are infrequent. As such radios become more ubiquitous
and common for implementation, resource usage will
become increasingly important, especially for energy-
constrained devices such as the battery-powered Kansas
University Agile Radio [9].

One simple solution would be to send samples when
the RSSI is above some threshold. However, this does
not filter out transmissions destined to other hosts and
external signals. A better solution would be to have
the radio hardware look for the packet preamble and
the destination address, then transfer a maximum packet
size worth of samples to the host after any match. At
first glance, it may seem that fast packet recognition
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is not a “necessary” function for implementing MAC
protocols, especially since the CPU and bus bandwidth
resource consumption can become insignificant rather
quickly (i.e., due to Moore’s Law). However, trends in
bus delay do not have this same property. As we will dis-
cuss further in Section 5.5, the ability to identify packets
and process them partially on the SDR hardware is crit-
ical to supporting low-latency MAC interactions (e.g.,
packet/ACK exchanges or RTS/CTS) in a high-latency
architecture.

5.4.1 Fast Packet Recognition Design

Our goal is to accurately detect packets at the radio hard-
ware without demodulating the signal (to keep flexibil-
ity), for which we perform signal detection. The most
relevant work in signal detection comes from the area of
radar and sonar system design. From this area, we bor-
row a well-known technique, called a matched filter, to
detect incoming packets at the radio hardware without
the demodulation stage. For the purpose of design dis-
cussion, we refer to the bottom half of Figure 7.

Matched filter: A matched filter is the optimal lin-
ear filter that maximizes the output signal to noise ratio
for use in correlating a known signal to the unknown re-
ceived signal. For use in packet detection, the known
signal would be the time-reversed complex conjugate of
the modulated framing bits. This known signal is stored
as the coefficients of the matched filter (Figure 7). The
received sample stream is convolved with the coefficients
to perform cross-correlation, where the output can be
treated as a correlation score between the unknown and
known signals. The correlation score is then compared
with a threshold to trigger the transfer of samples to the
host. The matched filter is flexible to different modula-
tion schemes (e.g., GMSK, PSK, QAM), but requires a
Fast Fourier transform for OFDM, given that the sym-
bols are in the frequency domain. This would require an
FFT implementation on the radio hardware.

To also detect that the frame is destined to the par-
ticular host, two different methods that have mathemat-
ically different properties can be used. Single Stage:
Use a frame format where the destination address is the
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first field after the framing bits, and use this complete
modulated sequence as the matched filter coefficients.
Dual Stages: detect the framing bits first, then change the
coefficients to the modulated destination address. Our
implementation uses the single stage approach for sim-
plification. However, a dual stage is more appropriate
for monitoring multiple addresses such as a local address
and a broadcast address.

5.4.2 Fast Packet Recognition Evaluation

We evaluate the effectiveness of the matched filter at de-
tecting incoming sequences using simulations where we
can control the noise level. Results are presented from
over the air experiments with the presence of interfer-
ence, multipath, and fading in Section 5.5.

To evaluate the effectiveness of the matched filter with
varying signal quality, we first run experiments with
controlled signal-to-noise ratios (SNR) using the GNU
Radio software. We introduce additive white Gaussian
noise (AWGN) to control the SNR in terms of dB:

SNR(dB) = 10∗ log10 ∗
Powersignal

Powernoise
(1)

To introduce noise, we compute the noise power based
on the specified snr and power in the signal:

SNR = 10(snr/10)

Powersignal =
Signalampl

2

Powernoise = Powersignal
SNR

For evaluation, 1000 frames of 1500 bytes are encoded
using the Gaussian minimum-shift keying (GMSK) mod-
ulation scheme. These frames are used as the ground
truth and mixed with the noise. We require that the
matched filter detect the framing bits and that the trans-
mission is destined for the attached host using the single-
stage scheme (Section 5.4.1). The success rate is defined
as the number of detected frames over the total number
of frames in the dataset (1000). For comparison, we also
include the success rate of the full GMSK decoder. At
a high noise level, even the full decoder will fail at de-
tecting the frames. The success rate, as a function of
the SNR, is shown in Figure 8. The results show that
the matched filter can detect the frames at a much higher
success rate than the decoder can, even at low SNR levels
where the noise power is greater than the signal power.

Given these results, and further real-world results
presented in Section 5.5, we conclude that using the
matched filter for detecting relevant packets is accurate
enough that the host will never miss an actual frame due
to the filter. In fact, the filter triggering samples to the
host can been seen from a different perspective as pro-
viding further confidence to the host that there is actually
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Figure 8: Success rate of the matched filter.

a frame within the sample stream. The host could then
perform additional processing in an attempt to decode
the frame successfully.

5.5 Dependent Packets
Dependent packets are packets generated in response to
another packet (e.g., an ACK or RTS packet). MAC pro-
tocols often leave the channel idle during the dependent
packet exchanges such as RTS-CTS and data-ACK ex-
changes. As a result, reducing the turnaround time of
such exchanges can significantly increase overall capac-
ity. In a host-based MAC, three sources contribute to the
delay associated with dependent packet generation: bus
transmission delay, queuing delay, and processing time.
In this section, we explore the use of a matched filter
along with additional techniques for triggering depen-
dent packet responses on the radio hardware. The tech-
nique minimizes processing time by placing the packet
detection as close to the radio as possible and avoids
bus transmission and queuing delays by triggering a pre-
modulated packet stored on the radio hardware.

5.5.1 Decoding Delay at the Host

We begin by quantifying the processing delay associated
with host-based dependent packet generation. Note that
we have already quantified bus delays in Section 2.1. We
measure decode time for various frame sizes at the maxi-
mum supported decoding rate of the USRP: 2Mbps. The
larger frame sizes would be representative of process-
ing time for data/ACK exchanges, and the smaller frame
sizes for RTS/CTS exchanges.

We use two 3.0GHz Pentium 4 machines running
GNU Radio with their USRPs transmitting/receiving us-
ing the GMSK modulation scheme. Using host based
timers, we record the minimum, average, and maxi-
mum time to decode 6 different frame sizes seen in Fig-
ure 9. The average decoding time is close to the mini-
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Figure 9: Decode times for various frame sizes.

mum recorded times for each frame size, however, rather
large delays can be experienced at each frame size, likely
due to the jitter introduced by queuing delays and pro-
cess scheduling. Therefore, if one were to implement
the matched filter at the radio hardware to detect in-
coming dependent packets and generate responses, any-
where from several milliseconds to 70 milliseconds can
be saved solely in host processing.

5.5.2 Generating Fast-Dependent Packets

As an optimization to circumvent the decoding delays
described, we develop a mechanism for fast-dependent
packet generation in the radio hardware. This is not nec-
essarily limited to host-PHY architectures. Although bus
delay is reduced in NIC-PHY architectures, they typi-
cally use slower processors that increases decoding de-
lays. Fast-dependent packet generation has three stages:
(1) fast-packet detection of the initiating packet (e.g.,
RTS), (2) conditionals specific to the protocol that trig-
ger the dependent packet, and (3) transmission of a pre-
modulated dependent packet. We discuss stages 2 and
3 in this section. Stage 1 was detailed in Section 5.4,
although it is important to point out that by running mul-
tiple matched filters in parallel, it is possible to detect and
respond to different initiating packets.

Stage 2: To introduce protocol dependent behavior
after stage 1 detects the initiating packet and its end
of transmission (the incoming signal drops to the noise
floor), protocol developers can introduce a set of condi-
tionals that control when a dependent packet is gener-
ated. In our current implementation this must be written
in a hardware description language (Verilog), which has
primitives similar to those in C/C++ (e.g., if, else, case,
etc.). A simple example is the conditional for generating
a CTS in Verilog. It checks that the receiver and channel
are idle: if(!receiving && RSSI < carrier sense thresh).

A more interesting example is the fast-ACK genera-
tor developed for our 802.11-like protocol (Section 6.3).

We write 3 simple conditional statements around an SNR
value. If any of the conditionals pass during the transmis-
sion, the radio hardware concludes that the host would
not have been able to decode the packet, and a fast-ACK
should not be triggered. The following are the 3 condi-
tionals, with reasons as to why the fast-ACK should not
be generated based on the conditional passing. (1) if(SNR
< lowest thresh): interference throughout the transmis-
sion. (2) if(last SNR val - SNR < drop thresh): interfer-
ence at the tail of the transmission, or fading. (3) if(SNR -
last SNR val> increase thresh): interference at the head
of the transmission, or multipath. The technique is illus-
trated in the overall system in Figure 7, where the cor-
relation threshold for a data packet raises a signal which
streams the samples to the SNR monitor. The final con-
ditional is to detect the carrier as idle; then the fast-ACK
is generated.

Stage 3: To satisfy fast-dependent packet generation,
the dependent packet must be pre-modulated and stored
on the radio hardware, for which we provide a mech-
anism on the control channel. Pre-modulation restricts
the dependent packet to not contain fields dependent on
the initiating packet (e.g., a MAC address). However, it
still permits many dependent packets like those in cur-
rent protocol standards (e.g., ACKs, RTS/CTS). For ex-
ample, despite 802.11’s requirement for a destination ad-
dress in an ACK packet, we can still develop and evaluate
an 802.11-like protocol where senders assume the desti-
nation of the ACK based on data transmissions. We re-
mind the reader that a goal of our work is to enable MAC
implementations and building blocks for novel MAC de-
signs, not to necessarily support every current protocol
to its specification. Future work could be in the de-
velopment of a technique which extracts part of an in-
coming signal (e.g., destination address) and then per-
forms additional processing to use this raw signal in a
pre-modulated dependent packet. This would essentially
enable dynamic fast-dependent packets, without the in-
teraction of the host. We do not explore this in the scope
of our work.

Fast-Dependent Packet Evaluation: To illustrate the
fast-dependent packet generator, we evaluate an imple-
mentation of the fast-ACK generator outlined in the de-
scription of stage 2. First, we use the control channel to
setup a matched filter which detects the framing bits and
the attached node’s address (satisfying stage 1). Then,
we pre-modulate an ACK that uses the broadcast address
as the destination address for all active nodes to parse it
(satisfying stage 3).

To evaluate the SNR monitoring technique, and fur-
ther evaluate the matched filter’s ability to detect packets
in a real world scenario, we use a 2 USRP-node setup
in the ISM band for presence of 802.11 and Bluetooth
devices, incorporating real world interference in our re-
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sults. We detected 6 active 802.11 devices within inter-
ference range, but ensured that none were within 40 feet
of either node. To test in adversarial conditions with mul-
tipath interference, the two USRPs were placed in sepa-
rate rooms with no direct line of sight. The matched fil-
ter and fast-ACK technique are enabled at the receiver,
for which we transmit 10000 frames to at 1Mbps. These
frames are considered the ground truth for the matched
filter, which we are trying to determine the accuracy of in
detecting the frames. Full decoding of the data packets at
the host is used as the ground truth for the fast-ACK gen-
erator. If the full decoder successfully decodes the frame,
and the SNR monitor triggers a fast-ACK, it is consid-
ered success. If the SNR monitor chose to not generate
a fast-ACK in this scenario, it is considered failure. An
additional failure scenario is triggering a fast-ACK when
the host could not decode the frame.

For the 10000 frames transmitted, we find that the
matched filter is able to detect the transmissions with
100% success rate, reinforcing the simulation results
from Section 5.4.2 with real world signal propagation
properties. Of the 10000 frames, 460 transmissions were
not decodable. Using the SNR monitoring technique we
detect 457 of the corrupted frames for a failure rate of
0.6%. Inspection of the 3 misses could not determine
the cause of transmission failure. The error rate of not
generating an ACK, when one should have been, is 4%.

There are implications to incorrectly generating
ACKs, which the MAC can be designed to recover from,
or higher layers such as TCP can be relied on. Our eval-
uation further explores the matched filter’s accuracy and
illustrates the ability to implement fast-dependent pack-
ets. Reducing the error rates seen by our technique is
future work, either by improving the SNR monitoring
technique, or introducing other fast-ACK techniques. An
example for improvement would be detecting multipath
during SNR monitoring, which is a property that can re-
duce decoding probability.

5.6 Access to Physical Layer Information
and Fine-grained Radio Control

The underlying radio hardware in an SDR platform has
many controls that are not configured by the transmitted
sample stream (e.g., transmission frequency and power),
and can make many observations that are not easily de-
rived from the input sample stream (e.g., RSSI). We use
our control channel between the SDR hardware and host
to expose these controls and physical layer information
to the MAC protocol implementation. Many existing net-
work interface use similar designs for setting the trans-
mission channel and obtaining RSSI measurements. One
key difference is that our interface operates on blocks of
samples instead of packets.

Physical Layer Information: Access to physical layer
information at all other layers in the processing chain is
important for supporting common cross-layer optimiza-
tions. This can be seen through recent work where per-bit
confidence levels are used to perform partial packet re-
covery [7]. In our design, information from the SDR can
be sent to the host using either the control channel or per
block meta-data. We use this mechanism to report RSSI
to the host. Note that the host could calculate RSSI us-
ing the raw samples, but an RSSI value which takes into
account the gain or attenuation in the RF stages is only
available at the radio hardware. The control protocol is
easily modified to support reporting additional proper-
ties, however, developers must reprogram the FPGA to
report the desired values.

Radio Control: We implement a set of radio hardware
control messages on the control channel (Section 4.2)
that can be synchronized with packet transmissions us-
ing the timestamp. For example, by placing a control
block with a timestamp T before a data packet on the
bus, which uses a NOW timestamp, the radio will be re-
configured at time T and the data packet will be trans-
mitted immediately after the reconfiguration. This can
be used to implement common techniques such as rapid
frequency hopping. Unfortunately on the USRP, the
daughterboards are tuned directly from the FX2 USB
controller using the I2C bus, which has no connection
to the FPGA. Therefore, we cannot issue daughterboard
commands from the FPGA using the control channel and
hardware clock to implement rapid frequency hopping.
The USRP2 tunes the daughterboards directly from the
FPGA. Therefore, if our design was implemented on the
USRP2, unavailable at the time, rapid frequency hopping
could be achieved.

6 MAC Evaluation

We now provide end-to-end results for a Bluetooth-like
TDMA protocol and 802.11-like CSMA protocol. The
protocols use the split-functionality design described in
Section 5 and we compare their performance with that of
full host-based implementations.

6.1 Bluetooth-like TDMA Protocol
To illustrate the effectiveness of the overall system
design, we implement a tightly timed Bluetooth-like
TDMA protocol. Like Bluetooth, the network (piconet)
consists of a master and a maximum of 7 slaves. The
slaves communicate with the master in a round-robin
fashion within a slot time of 625µs. Unlike Bluetooth,
our protocol fixes its frequency instead of hopping (a



USENIX Association	 NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation	 103

limitation of the USRP discussed in Section 5.6), varies
slightly in synchronization (bypasses pairing), and the
slot guard time is varied for evaluation.

Each slave in the network synchronizes with the start
of a round by listening for the master’s beacon, and cal-
culates the start of transmission (Section 5.1) as the log-
ical synchronization time T . The beacon frame also
carries the total number of registered slaves (N) and
the guard time (Tg). The slave can then compute the
total round time, which must account for the master:
Tr = N +1∗ (Ts +Tg), where Ts is the slot time (625µs).
The start of round k is computed as: Tk = T +Tr ∗ k. We
remind the reader that this is a logical time kept at each
node, taken from the beacon frame which is a global ref-
erence point. Global hardware clock synchronization is
explored in Section 6.2. Finally, each slave’s slot offset is
computed from its node ID (n), δn = n∗ (Ts +Tg), which
is then used to compute the local start time of slave n’s
slot in round k: Tn(k) = Rk +δn.

6.1.1 TDMA Results

We use two metrics in our evaluation: ability to main-
tain tight synchronization and overall throughput. The
synchronization error at the master is 15ns, computed by
measuring the actual spacing of 1000 beacons using a
monitoring node (discussed in Section 5.1.2). This il-
lustrates the tight timing of the master’s beacon trans-
missions. To measure the synchronization error at the
slaves, we record the calculated timestamps of 1000 bea-
cons at 4 slaves. Each timestamp should be exactly Tr
apart from the next. The absolute error in spacing rep-
resents shifts in the slave’s calculation of the start of the
round. We find the maximum error of the 1000 beacons
at all 4 slaves to be 312 nanoseconds, with an average
of 140ns. This answers the question of our platform’s
ability to obtain tight synchronization at both transmit-
ters (master) and receivers (slaves).

We compare a split-functionality implementation to a
host implementation, which differ in their guard times.
A guard time of 1µs is used for the split-functionality
implementation, which is nearly 3 times the maximum
error. We use our round trip host and radio hardware
delay measurements from Section 2.1, which accounts
for both transmissions and reception timing variability,
to estimate the host guard time needed. A guard time of
9ms would be needed to account for the maximum er-
ror, however, this delay occurs rarely and we therefore
present results using a generous guard time of 3ms (ap-
proximately 3 ∗ sdev) and a more realistic guard time of
6ms based on our recorded delay distribution.

We perform 100KB file transfers, varying the num-
ber of registered slaves and presenting averaged results
across 100 transfers in Figure 10. The split-functionality
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Figure 10: TDMA throughput comparison results.

implementation is able to achieve an average of 4 times
the throughput of the host based implementation. While
we had only been able to answer the question of ob-
taining synchronization, we find that throughout the full
transfers no slave drifts into another slot period using
only the initial beacon for synchronization, illustrating
the ability to maintain tight synchronization. These re-
sults are promising for the development of TDMA pro-
tocols on the platform.

6.2 Additional TDMA Protocols
Another common TDMA implementation is the use of
global clock synchronization. We extend the Bluetooth-
like protocol to use global clock synchronization on the
platform rather than the logical clock. The implementa-
tion design is as follows. The global clock in the network
is the clock of the master, to which all slaves synchronize
via beacon frames. In addition to the information sent
in each beacon frame described in Section 6.1, the mas-
ter includes the timestamp at which the beacon is locally
scheduled for transmission.

For global synchronization, the slave takes its esti-
mated local time of the master’s beacon transmission
and subtracts the incoming global clock timestamp in-
cluded in the beacon to calculate δ , the local clock offset
from the master. The error is within 312ns plus over-
the-air propagation delay. The MAC framework can now
synchronize to the global clock with a command packet
(Section 4.2) which adds δ to the local clock. Another
option is to use a timestamp transformation where the
MAC adds δ to all timestamps. Using this methodol-
ogy, we are able to achieve measurement results similar
to those in Figure 10 using global synchronization.

6.3 802.11-like CSMA Protocol
We implemented two 802.11-like CSMA MAC proto-
cols, one fully on the host CPU and one using our
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pairs Avg (Kbps) min max
plat f orm 1 408 387 415
host 1 215 190 240
plat f orm 2 205 201 210
host 2 112 101 130

Table 2: 802.11-like CSMA protocol per-pair results.

split-functionality optimizations including on-board car-
rier sense (Section 5.2), dependent packet ACK genera-
tion (Section 5.5), and backoff (Section 5.3). The MAC
implements 802.11’s clear channel assessment (CCA),
exponential backoff, and ACK’ing. Our protocol does
not implement SIFS and DIFS periods; this work is in
progress. For space reasons, we focus our description on
how the 802.11-like protocol uses our architecture.

The host-based implementation places all functional-
ity on the host CPU, including carrier sense, ACK gener-
ation, and the backoff. The optimized implementation
uses the matched filter and SNR monitoring for ACK
generation, and performs carrier sense and backoff on
the radio hardware. We configure the USRPs for a target
rate of 0.5Mbps, and run 100 1MB file transfers for each
implementation using a center frequency of 2.485GHz in
an attempt to avoid 802.11 interference. This allows us
to present results that highlight the differences in the im-
plementation without the effect of uncontrolled interfer-
ence. We also vary the number of nodes in the network,
where each pair of nodes performs a transfer.

The results for the two implementations are shown
in Table 2. We see significant performance increases
from the use of the split-functionality implementation.
This nearly doubles the throughput on average, likely
due to the time saved in decoding to generate the ACK,
and the delays associated with carrier sense and backoff.
We note that the matched filter detected every framing
sequence, and the fast-ACK generation technique only
failed 2 times over the total number of runs. To recover
from these failures, we implemented a feedback mecha-
nism on the host that checks the SNR monitoring tech-
nique’s decision and retransmits. This is needed since we
did not use a higher-layer recover mechanism like TCP.

7 Related Work

We review related work in the area of MAC development.
Existing platforms mostly use the extremes of the design
space where either the majority of functionality is fixed
on the network card (Traditional NICs), or perform all
processing at the host (Software-defined Radios).

7.1 Traditional NICs
Several efforts [13, 4, 16] have built new MAC protocols
on top of existing commercial NICs (e.g., 802.11 cards).
Unfortunately, commercial 802.11 cards implement the
bulk of the MAC functionality in proprietary microcode
on the card, limiting what functions can be changed by
researchers. As a result, this approach is not very sat-
isfactory: the range of MAC protocols that can be im-
plemented is limited and performance (e.g. throughput,
capacity) is often poor from the MAC needing to be im-
plemented on the host. For example, past efforts have
mostly implemented TDMA-based schemes.

7.2 Software-defined Radios
Software-defined radios (SDRs) provide a compelling
architecture for flexible wireless protocol development
since most aspects of both the MAC and physical layer
are, by design, implemented in software and thus in prin-
ciple, easy to modify. However, so far, SDR efforts
have focused on implementing the physical layer [19]
while MAC and higher layer protocol development has
received little attention.

Recent work by Schmid et al [14] examines the im-
pact of increased latency in software-defined radios us-
ing GNU Radio and the USRP. The authors address how
the bus latency creates “blind spots” that increase colli-
sion rates when carrier sense is performed at the host, and
how pre-computation of packets is not possible without
fully demodulating (at the host), resulting in larger inter-
frame spacing. Our design provides solutions for both of
these issues in Sections 5.2 and 5.4, respectively. Bus de-
lay measurements were also taken by Valentin et al [18].

On top of these hardware challenges, the original
streaming-based design of GNU Radio and the fixed size
data limitation on its blocks prevents packet process-
ing. Dhar et al [3] take the approach of integrating the
Click modular router [12] with GNU Radio. GNU Ra-
dio blocks are imported into Click to handle the physical
layer, while Click is used to implement the MAC layer.
Additionally, the authors interface with the USRP to pro-
vide a full SDR. Another approach extended the GNU
Radio architecture with m-blocks [2], blocks that allow
variable length data passing and include meta-data that
can be used to represent packets. Our work is comple-
mentary to the above efforts: while they focus on a MAC
development environment on the host, we focus on the
partitioning of MAC layer processing between the host
and radio hardware. Our architecture and results also do
not depend on a particular environment on the host.

A number of groups have developed software radios
with architectures that differ from the current GNU Ra-
dio and USRP design by including a CPU on the ra-
dio hardware (NC-CPU), either as a separate compo-



USENIX Association	 NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation	 105

nent or as a core on the FPGA. Examples include the
Rice University Wireless Open-Access Research Plat-
form (WARP) [20] and USRP2. These designs are more
expensive, but they offer additional flexibility for par-
titioning the MAC. However, there is still a non-trivial
delay (compared with traditional radios) due to physi-
cal layer processing and queueing. The NC-CPU is also
likely to be slower than the host CPU, increasing the pro-
cessing delay. Finally, in deployed products based on
this architecture, the NC-CPU is likely to be off-limit to
users, similar to the current situation with commercial
wireless cards. As a result, we expect that our architec-
ture will be useful this type of platform as well.

8 Conclusions

In this paper, we presented a set of techniques that sup-
port the implementation of diverse, high-performance
MAC protocols on software radios. The work is mo-
tivated by the observation that a single one-size fits all
MAC protocol cannot meet the demands of increasingly
diverse deployments and application loads. Software ra-
dios offer flexibility, but their architecture, specifically
the delay between the host and the radio frontend, has
traditionally been a problem for MAC protocols. We in-
troduce a split-functionally approach, which addresses
this problem, and show that it enables the implementa-
tion of a set of core MAC functions. An implementation
for the USRP and GNU Radio, along with the imple-
mentation of an 802.11-like and Bluetooth-like protocol,
shows the approach is effective. To our best knowledge,
these protocol implementations are the first high-speed,
bi-directional MAC implementations for the GNU soft-
ware radio platform. For future work, we plan to im-
plement a more diverse set of MAC protocols to further
evaluate our design and implement the architecture on
different SDR platforms to evaluate its generality.
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This paper describes Antfarm, a content distribution sys-

tem based on managed swarms. A managed swarm

couples peer-to-peer data exchange with a coordinator

that directs bandwidth allocation at each peer. Antfarm

achieves high throughput by viewing content distribution

as a global optimization problem, where the goal is to

minimize download latencies for participants subject to

bandwidth constraints and swarm dynamics. The sys-

tem is based on a wire protocol that enables the Antfarm

coordinator to gather information on swarm dynamics,

detect misbehaving hosts, and direct the peers’ allot-

ment of upload bandwidth among multiple swarms. Ant-

farm’s coordinator grants autonomy and local optimiza-

tion opportunities to participating nodes while guiding

the swarms toward an efficient allocation of resources.

Extensive simulations and a PlanetLab deployment show

that the system can significantly outperform centralized

distribution services as well as swarming systems such

as BitTorrent.

1 INTRODUCTION

Content distribution has emerged as a critical applica-

tion as demand for high fidelity multimedia content has

soared. Large multimedia files require effective content

distribution services. Past solutions to the content distri-

bution problem can be categorized into two approaches,

namely client-server systems and peer-to-peer swarming

systems, whose fundamental limitations render them in-

adequate for many deployment environments.

In the client-server approach to content distribution,

the content owner operates a set of servers that pro-

vide the content to every client without tapping into any

client-side resources. The presence of a central authority

simplifies the design of client-server systems, exempli-

fied by YouTube and Akamai: provisioning the network

simply requires purchasing sufficient bandwidth for the

desired quality of service and the targeted number of

clients; accounting and admission control can be handled

by the servers; clients can be prioritized and bandwidth

can be dedicated to desired transfers at fine granularity.

The chief drawback to the client-server approach is its

cost and feasibility: the distributor must bear the entire

bandwidth cost of distributing the content, and operating

a high-bandwidth data center for a large client population

can be prohibitively expensive [11].

Peer-to-peer swarms offer an emerging alternative,

where clients interested in downloading a file provide

content to other clients interested in the same file.

Swarming protocols transfer part of the bandwidth cost

from centralized servers to the participants and their ISPs

by taking advantage of the additional upload capacity of-

fered by downloading peers. This redistribution of costs

reduces the bandwidth burden on the servers, helps im-

prove download times for clients, and reduces ingress

bandwidth demand for ISPs. Swarming protocols pro-

posed to date, including BitTorrent [1], Avalanche [24],

and Dandelion [52], have been designed to resist techni-

cal and legal attacks by avoiding management and cen-

tralization. This design choice has led to protocols that

lack coordination among peers, rely solely on directly-

obtained measurements to avoid trusting information re-

layed by peers, and depend on randomization to thwart

adversaries. The highly decentralized nature of existing

unmanaged swarming systems leads to a performance

penalty for legitimate content distributors.

To understand why unmanaged swarming architec-

tures fail to make efficient use of bandwidth in multi-

swarm environments, imagine a content provider with

two movies to distribute to two sets of users using a set of

seeders1 over which they have full control and at which

both movies are replicated. Depending on the size of the

swarms and the nature of the peers that make up each

1In this paper, seeders are trusted servers managed by the coordi-

nator that distribute data blocks to peers. This is in contrast with Bit-

Torrent terminology, where seeders are altruistic peers that have fin-

ished downloading a file and provide content without further down-

loads themselves.
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swarm, the two swarms may have vastly different inter-

nal dynamics. Seeders and peers with blocks belonging

to multiple swarms face a difficult choice: which swarm

should they reward with their upload bandwidth? Simple

heuristics, such as round-robin, are unlikely to work well

because they do not take swarm dynamics into account.

The default BitTorrent behavior, which awards download

slots to the peers with a proven track of fast downloads,

works well within a single torrent, but can lead to whole-

sale starvation in a multi-torrent setting.

The fundamental problem is one of global optimiza-

tion: the seeders should award their bandwidth such that

download times across all swarms are minimized. Cur-

rent swarming protocols lack the mechanisms to com-

pute and operate at this point. Consequently, adminis-

trators that run torrent sites manually prune old torrents

and reallocate bandwidth to more popular downloads by

hand. This approach is not guaranteed to achieve a good

allocation of bandwidth, leads to the “heavy-tail” prob-

lem where old, unpopular torrents are difficult to find,

and does not scale.

This paper describes an efficient content distribution

system, called Antfarm, based on managed swarms. The

goal of Antfarm is to distribute a large set of files to a

potentially very large set of clients. Managed swarms

introduce a hybrid approach to swarming systems in that

they permit a coordinator, typically managed by the con-

tent distributor, to control the behavior of the swarms.

Antfarm is designed to maximize the system-wide

benefit of the critical resource, seeder bandwidth. Each

Antfarm peer provides resources to other participants, re-

ceives unforgeable tokens in return, and receives credit

for its cooperation by presenting these tokens to the

central coordinator. The Antfarm token protocol forces

each participant to divulge its upload contributions to the

swarm coordinator, which enables the coordinator to de-

termine swarm dynamics and allocate bandwidth to com-

peting swarms. This enables the coordinator to exert con-

trol while enabling peers to use microoptimizations, such

as optimistic unchoking for peer discovery, tit-for-tat for

peer selection, and rarest first, to improve the efficiency

of swarming downloads. Overall, the Antfarm transport

protocol makes the system resistant to attacks through

unforgeable tokens, reveals a coarse-grain view of the

network to the central coordinator, and enables the coor-

dinator to adopt and enforce a chosen bandwidth alloca-

tion strategy.

The key contribution of this paper is the design of an

efficient and scalable coordinator for multiple, concur-

rent swarms. Given the internal dynamics of a set of

swarms, we show how to optimize bandwidth among the

swarms such that average download latencies are mini-

mized across all peers. If desired, the algorithm can guar-

antee a minimum service level to certain swarms, avoid

starvation, and enforce prioritization among swarms.

Minimizing the average download latency in turn enables

a content distributor to achieve the best possible service

from the available bandwidth.

This paper makes two additional contributions for

achieving high throughput in a practical multiple-swarm

download service. First, the paper presents a wire-level

protocol for accurately measuring the internal dynamics

of individual swarms by making peer contributions evi-

dent to the coordinator, enabling the coordinator to opti-

mally allocate bandwidth among the competing swarms.

Second, a full implementation of the protocol, accompa-

nied by extensive simulations and a deployment on Plan-

etLab, quantifies the performance of Antfarm against a

client-server system and BitTorrent. In our experiments,

Antfarm achieves aggregate bandwidths up to a factor of

five higher than BitTorrent, and the protocol scales well

with increasing peers and swarms.

The rest of this paper is structured as follows. The

next section describes the Antfarm system and the cen-

tral optimization that underlies the approach. Section 3

outlines the protocol that Antfarm uses for data distri-

bution. Section 4 shows that the system achieves high

performance. Section 5 describes related work and high-

lights Antfarm’s differences, and Section 6 summarizes

our contributions.

2 APPROACH

Antfarm is based on a hybrid peer-to-peer architecture

that utilizes resources provided by peers according to

an optimal strategy for managing multiple swarms com-

puted by a coordinator. Each coordinator can manage

multiple swarms, a single peer may participate in swarms

managed bymultiple coordinators, and coordinatorsmay

be physically replicated to scale with the number of peers

and swarms. For simplicity, we assume a single coordi-

nator in the following discussion and address the issue of

scale in Section 3.

The coordinator’s central task is to achieve the shortest

possible download times across multiple swarms. Find-

ing the right allotment of bandwidth among swarms is

best viewed as a constrained optimization problem. The

primary constraint is the available bandwidth at the seed-

ers. The primary input to this optimization problem is the

inherent response curve of each swarm. The response

curve represents the swarm bandwidth as a function of

allocated seeder bandwidth. It depends on the number

of peers in the swarm, number of seeders, spare band-

width on upload and download links of swarm partici-

pants, and the distribution of unique blocks. Peers’ local

decisions also influence their swarms’ response curves,
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as peers can advertise a lower upload bandwidth capacity

than they are capable of providing. However, the Ant-

farm wire protocol, discussed in Section 3, encourages

peers to cooperate within their swarms, granting the co-

ordinator more available bandwidth to optimally allocate

among all swarms in the system.

Response curves embody the critical properties of

each swarm and have a characteristic shape—a fact we

exploit in this work. Figure 1 illustrates the characteris-

tic form of the response curve for a homogeneous swarm

with static membership; for illustration purposes in this

example, peer download capacities exceed upload ca-

pacities, and the set of peers does not change through-

out the download. When the seeder bandwidth is small,

the peers in the swarm have unused upload and down-

load capacity. In this regime of operation (region A),

the swarm’s aggregate bandwidth increases rapidly with

the seeder bandwidth, since peers can use their spare up-

load bandwidth to forward new blocks to other peers.

Each individual block the seeders feed into the swarm

will be shared among many peers, highly leveraging the

bandwidth committed by the seeder. Once the peers

in a homogeneous swarm have saturated their uplinks,

the marginal benefit from additional seeder bandwidth

drops significantly. In this regime (region B), any addi-

tional bandwidth that a peer receives only benefits that

peer, since saturated upload links render it unable to for-

ward the data to other peers. Finally, once downlinks of

swarm participants are saturated (region C), the swarm

has reached its maximum aggregate bandwidth. Further

bandwidth provided by the seeders will not impact down-

load latency. If download capacities are lower than up-

load capacities, region B will simply not exist, yielding a

response curve with only two regions.

A coordinator relies on two key properties of response

curves to maximize the achieved aggregate swarm band-

width while respecting the seeder bandwidth constraint.

First, response curves are monotonic: a swarm’s aggre-

gate bandwidth will never decrease as a result of increas-

ing the seeder bandwidth to the swarm. Second, response

curves are concave; that is, their derivatives monoton-

ically decrease over possible seeder bandwidths. Con-

cavity implies that a swarm’s aggregate bandwidth ex-

hibits diminishing returns as the seeders increase their

bandwidth to the swarm. When the seeders increase their

bandwidth beyond a swarm-specific threshold, the peers’

uplinks and downlinks saturate, decreasing their ability

to receive and forward data from the seeders and other

peers.

Real-life swarms are more complex than the idealized

swarms discussed above in that they may comprise het-

erogeneous hosts and exhibit peer churn. They neverthe-

less exhibit several critical properties that Antfarm ex-
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Figure 1: Response curves of a theoretical homogeneous

swarm and a measured heterogeneous swarm on Planet-

Lab. Aggregate bandwidth increases rapidly as seeder band-

width increases (A) until peer uplink capacity is exhausted (B)

and reaches its maximum when downlinks are saturated (C).

ploits. In heterogeneous swarms, where peer uplinks and

downlinks are nonuniform, the transitions between the

disparate regions of the response curves are smoother.

This is because different peers’ upload and download ca-

pacities saturate at different points, smoothing the dis-

continuous transition seen in a homogeneous swarm. In

addition to heterogeneity, real swarms exhibit peer churn,

where peers can join at any time and leave due to failure,

cancellation, or completion. Such membership changes

shift the response curve because their influence affects

the swarm’s dynamics, but do not violate the monotonic-

ity and concavity properties outlined above. Section 3

describes how Antfarm maintains an accurate view of

the system and adjusts its behavior in the presence of dy-

namic membership.

The monotonicity and concavity of swarm response

curves form the foundation of Antfarm’s multiple-swarm

optimization. Intuitively, when a seeder is supporting a

swarm that has a large number of saturated peers, such as

in regions B or C in Figure 1, it should reduce its band-

width to that swarm and divert it to a swarm whose peers

can readily share additional bandwidth. More generally,

given a response curve for each swarm Antfarm is cur-

rently distributing, the coordinator “climbs” each of the

curves, always preferring the steepest curve, until it has

allocated all seeder bandwidth. The resulting point of

operation on each curve represents the amount of band-

width the seeders plan to feed to each swarm and the ex-

pected aggregate bandwidth within each swarm based on

the seeder bandwidth. Given each swarm’s measured re-

sponse curve, this allocation of seeder bandwidth is opti-

mal [40]: decreasing the seeder bandwidth to one swarm

in favor of another will not improve the overall perfor-

mance of the system. Antfarm’s allocation of seeder
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Figure 2: Optimal bandwidth allocation for three concur-

rent swarms. The Antfarm coordinator awards seeder band-

width by hill-climbing the steepest response curves first until

all available bandwidth has been allocated.

bandwidth ensures that the content distributor achieves

the highest performance possible from its servers’ band-

width.

The optimization process described above may reach

a point at which the seeders have excess bandwidth to

award, yet the derivatives of multiple response curves

are identical, indicating that multiple swarms offer the

same global benefit (Figure 2). In such cases of equiva-

lent global benefit, Antfarm uses a tie-breaker algorithm

to maximize perceived improvement by peers. Suppose

that two swarms t1 and t2 have response curves with

equivalent slopes at seeder bandwidths s1 and s2, corre-

sponding to swarm aggregate bandwidths of a1 and a2,

with a1 > a2. While this indicates that awarding a block

to either swarm would improve average download times

across the entire network by an equal amount, the in-

cremental benefit to members of t1, which already en-

joy a larger aggregate throughput, is small compared to

the relative improvement that members of t2 would per-

ceive. Consequently, Antfarm breaks ties by awarding

bandwidth to swarms with lower bandwidth when mul-

tiple response curves have the same slope. This mecha-

nism ensures that the system maintains its primary goal

of minimizing download time, while the participants re-

ceive maximal marginal benefit whenever there is free-

dom in making a bandwidth allocation that is in line with

the primary goal.

3 IMPLEMENTATION

The Antfarm implementation is centered around a token-

based wire protocol that implicitly reveals peer dynam-

ics to the coordinator. This section provides an overview

of the Antfarm implementation, outlines the wire pro-

tocol and the use of tokens, and describes how tokens

are used in the larger context of bandwidth allocation.

We illustrate the common case first and treat the corner

cases stemming from token misuse, peer misbehavior,

and overall scalability in Sections 3.4 and 3.5.

3.1 Overview

An Antfarm deployment consists of two types of servers

provided by the content provider. Coordinators man-

age the system by issuing tokens, computing response

curves, and determining bandwidth allocations. Seed-

ers expend their bandwidth to distribute blocks of files

to peers. For small deployments, a single server machine

can act as both coordinator and seeder, while large de-

ployments will comprise multiple physical hosts.

Antfarm seeders are members of all swarms and dis-

tribute data blocks without downloading any themselves.

They may be under the direct administrative control of

the coordinator, or they may be deployed by ISPs to re-

duce their ingress bandwidth demand; in either case, they

may be geographically distributed to improve bandwidth

to peers. Seeders do not demand tokens from peers in

exchange for blocks because they do not place resource

demands on the system.

Peers interact with coordinators, seeders, and each

other to download files. Each peer in Antfarm is identi-

fied by a certificate acquired from the coordinator during

an initial, one-time registration. Once a connection with

a peer has been established and the peer has been au-

thenticated with the coordinator, wire messages identify

peers using a public IP address and port pair that is short-

hand for the verified certificate. Antfarm assumes that

peers are either rational, where the protocol will incen-

tivize them to contribute resources to the global pool, or

malicious, where they may behave in a Byzantine man-

ner; the protocol is resilient to such malicious hosts (see

Section 3.5).

The Antfarm wire protocol is designed around peer-

to-peer data exchange in return for tokens. A token is

a cheap, unforgeable capability that the bearer may ex-

change for a data block in a given swarm. Logically,

a token is composed of a unique, randomly generated ID

string, an expiration time after which the token is invalid,

a reference to the intended spender of the token, and a

reference to the file for which the token should be spent.

The coordinator records these four fields when it mints

a new token for a particular peer. A token can only be

spent by the peer to which it was issued in exchange for

blocks of the designated file; tokens are not interchange-

able between swarms.

Downloadable files in Antfarm are described by a

“.ant” swarm description, analogous to a “.torrent” file,

which contains the name of the file, the address and port
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of the coordinator managing the swarm, data block size,

and a hash of each data block.

3.2 A Peer’s Perspective

An Antfarm peer joins a swarm by opening a connection

to the swarm’s coordinator and authenticating itself us-

ing its peer certificate. Once a connection has been estab-

lished, all correspondencewith the coordinator and peers

occurs with the exchange of protocol messages summa-

rized in Table 1. When a new peer joins a swarm, the

coordinator sends the peer a subset of the peers in the

swarm and an initial allowance of tokens unless the new

peer has a history of malicious behavior. The peer can

similarly join additional swarms, acquiring peer lists and

initial tokens for each.

The basic data transmission protocol in Antfarm has

three phases consisting of peer and block selection, data-

for-token exchange, and bandwidth allocation.

Peers may determine their own criteria for selecting

peers and blocks. This enables Antfarm peers to per-

form optimizations based on local information, reduc-

ing the burden on the centralized coordinator. The de-

fault behavior in Antfarm for peer and block selection is

identical to BitTorrent. Peers retain a prioritized list of

other peers with which to exchange data blocks (to un-

choke). The priority order is determined by the running

average bandwidth achieved through that peer’s history

of interactions. Blocks are chosen using a rarest-first al-

gorithm; peers maintain a bitmap of blocks held by each

connected peer constructed from block acquisition noti-

fications sent by peers after each block transfer. Since

swarming systems that rely solely on local information

and randomized interactions may operate at reduced ef-

ficiency due to lack of information [30], the Antfarm

coordinator uses its global knowledge to influence peer

selection. The coordinator monitors each peer’s upload

history and identifies underutilized peers. It sends lists

of such peers as candidates for data exchange through an

asynchronous notification. This is an advisory notifica-

tion that causes the recipient to increase the priority of

the named, underutilized peers. This is a no-cost opti-

mization for Antfarm; a peer is under no obligation to

follow the recommendations and the protocol’s correct-

ness does not depend on the peer-selection algorithm.

This process of aiding peer selection could be improved

by the use of network proximity measures [19, 33, 41],

though our current implementation does not yet include

this optimization.

Once a peer (receiver) has chosen another peer

(sender) and determined a suitable block for download,

it sends a data-exchange request. If the sender has un-

choked the receiver, it sends the requested block to the re-

Connections

handshake Sent by peers to establish connections; in-

cludes the identifier of a file the sender wants to down-

load and the public port of the sender.

handshake response Sent in response to a handshake.

join swarm Sent to the coordinator to become a swarm

member.

leave swarm Sent to the coordinator to be removed from

a swarm.

time request Sent by a peer to the coordinator to get the

system time.

time response Sent in response to a time request; con-

tains the time according to the coordinator.

Node state

choke Informs the recipient that the sender is not accept-

ing block requests from the recipient.

unchoke Informs the recipient that the sender is now

accepting block requests from the recipient.

interested Informs the recipient that it has at least one

block that the sender needs.

not interested Informs the recipient that the recipient

does not have any blocks that the sender needs.

have block A notification sent to directly-connected

peers when a peer receives a new block.

bitfield Contains a bitfield of all the blocks the sender

possesses. Normally sent after establishing a new con-

nection.

Block transfers

request A request for a specific block.

block A block of file data, sent in response to a request.

Swarm info

peer request Sent by a peer to the coordinator to request

a set of peers in the swarm.

peer response A set of peers’ addresses and ports.

good peers Sent periodically by the coordinator to each

peer to notify them of peers to unchoke.

bad peers A notification containing a set of peers the

coordinator has identified as malicious.

allocation Sent by the coordinator to inform peers of the

desired allocation of their upload bandwidth.

Token management

new tokens Sent by the coordinator to deliver a set of

fresh tokens to a peer.

token receipt Receipt for a block transfer; sent from one

peer to another in response to a block message.

token ledger Contains a set of spent tokens sent to the

coordinator in exchange for fresh tokens.

token replace Contains a set of fresh tokens sent to the

coordinator in exchange for new tokens with later expi-

ration times.

Table 1: Antfarm wire protocol. A comprehensive list

of peer-peer and coordinator-peer messages. The protocol

comprises messages to establish connections, notify peers of

progress and status, exchange blocks, and handle tokens.
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ceiver. Upon completion of the transfer, a non-malicious

receiver checks the hash of the block against the hash

specified in the swarm description and sends an unex-

pired token to the sender of the data block. Each peer

maintains a purse of unused tokens issued by the coordi-

nator for use by that peer, and a ledger of tokens received

from other peers in exchange for data blocks. Tokens

flow from the purse of the receiver to the ledger of the

sender.

Peers communicate periodically with the coordinator

to refresh their purses and ledgers. Each unexpired to-

ken in the ledger entitles the peer to a fresh token for its

purse. This communication takes place every minute in

the current implementation. If a newly received token in

the ledger is going to expire before the next scheduled re-

fresh, or if the purse contains nearly expired unspent to-

kens, the peer can preemptively redeem selected tokens

for new tokens with later expiration times.

Peers following the above protocol will face a stream

of competing requests for data blocks. Peers use a leaky-

bucket algorithm to restrict upload bandwidth according

to the coordinator-prescribed allocation. Altruistic peers

that finish downloading a file may remain in the swarm

and continue to upload content, functioning similarly to

seeders.

3.3 The Coordinator’s Perspective

The coordinator collects statistics on peer network be-

havior, computes response curves and bandwidth alloca-

tions for each peer and seeder, and steers the swarm to-

ward an efficient operating point. It affects these through

manipulation of the token supply and direct interaction

with cooperative peers. Finally, it keeps track of mali-

cious and uncooperative participants, excising them from

the network when their misbehavior affects performance.

The primary task of the coordinator is to monitor

network characteristics and swarm dynamics by keep-

ing track of tokens for each data block transaction be-

tween peers. Each token the coordinator receives informs

the coordinator of the swarm in which a transaction oc-

curred, the specific peers involved in the transaction, and

a window of time in which the data block was transferred

based on the token’s minting and expiration times. This

information is sufficient to maintain two key parameters

for each peer p: the set of swarms Tp that p is a mem-

ber of and a rolling average of its upload bandwidth up.

In addition, the coordinator keeps track of the set of all

seeders S and two pieces of state for each swarm: a set

Pt of peers in swarm t and a response scatterplot for each

swarm, represented as a collection of data points with

associated time-decaying weights. Data points decay ac-

cording to 1/t and are removed after 30 minutes.
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Figure 3: Bandwidth allocation. The black dots denote the

allocation of bandwidth for swarm t before and after one it-

eration of allocation. For each ∆σ tasked to a seeder by the

hill-climbing algorithm, a randomly selected peer with spare

upload capacity is tasked with allocating a corresponding ∆δ.

The dotted line has a slope of 1, accounting for the seeders’

contribution to the swarm’s aggregate bandwidth.

The coordinator chooses swarms to grant bandwidth

based on collected swarm statistics. The response scat-

terplots are not immediately suitable for use in comput-

ing bandwidth allocation, as they contain artifacts due

to measurement errors and changes over time, creating

false local minima and maxima. The coordinator gen-

erates a response curve from a response scatterplot by

fitting a piecewise linear function that respects the mono-

tonicity and concavity constraints, contains a segment

for each measurement point, and minimizes error using

least-squares.

The coordinator computes the amount of bandwidth

each seeder and peer should dedicate to each swarm

based on the computed response curves, represented as

two matrices σ and δ. For each swarm t, σs,t captures

the amount of bandwidth seeder s will dedicate to t, and
δp,t captures the amount of bandwidth peer p is expected

to dedicate to t. This determines the critical allocation of

seeder upload bandwidth σt =
�

s∈S σs,t to swarm t in
order to achieve a swarm aggregate bandwidth (σt + δt),
where δt =

�
p∈Pt

δp,t is the bandwidth component re-

sulting from peer-to-peer uploads. The coordinator com-

putes this allocation periodically, every 5 minutes in our

current implementation, and also when the area under

the curve has changed by more than 10%. In comput-

ing σ and δ the coordinator operates under two hard con-

straints. First, δp =
�

i∈Tp
δp,t can never exceed p’s

upload capacity up. Second, the node must have the file

to seed; a peer will never be tasked to upload blocks of a

file it is not interested in downloading. The coordinator

determines σ and δ iteratively. Initially, σs,t = δp,t = 0
for all peers p, seeders s, and swarms t. The coordi-

nator determines the allocation of bandwidth through a
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greedy hill-climbing algorithm using the computed re-

sponse curves and its knowledge of the seeders’ upload

capacities, illustrated in Figure 3. It allocates bandwidth

in discrete units to the swarms whose response curves

have the highest gradient, breaking ties in favor of the

swarm with the lower value of (σ + δ), as described in

Section 2. For each increase in seeder bandwidth ∆σt to

swarm t, the algorithm chooses a peer at random from

Pt with spare upload bandwidth and tasks it with up-

loading an additional ∆δt to t, as prescribed by t’s re-

sponse curve. The coordinator continues the process un-

til all seeder bandwidth has been allocated. The final

peer allocation δ satisfies the two critical constraints de-

scribed above and ensures that peer transfers within each

swarm achieve the previously measured aggregate band-

width based on the seeders’ allocation σ.

Computation of bandwidth allocation is not a highly

time-critical task. Delays in network measurements and

peer interactions imply inherent delays between comput-

ing an allocation and seeing a change in the network.

Since the latency of computing the bandwidth allocation

is dwarfed by the latency of data exchange, the computa-

tion can be performed in the background. The optimiza-

tion algorithm is linear in the number of peers and grows

according to O(n lg n) with the number of swarms, en-

abling the system to scale. The primary metric that deter-

mines the quality of the solution is the freshness of data

on swarm dynamics.

Antfarm’s token protocol incentivizes peers to report

statistics to the coordinator in a timely manner. A to-

ken’s expiration time (5 minutes in the current imple-

mentation) and spender-specificity force peers to return

tokens to the coordinator in order to receive bandwidth

in the future. The circulation of tokens reveals enough

information to the coordinator to perform the allocation

described above.

Token-based economies can suffer from inflation, de-

flation, and bankruptcy if left unmonitored. Based on

analyses of scrip systems [32], the Antfarm coordina-

tor maintains a constant number of tokens per swarm per

peer (30 in the current implementation). New peers re-

ceive an initial allowance of 30 tokens. As unspent to-

kens expire, the coordinator redistributes an equal num-

ber of new tokens to random peers to prevent a token

deficit when peers depart with positive token balances.

Token unforgeability prohibits deflation, and token redis-

tribution enables bankrupt peers to acquire new blocks

and reintegrate themselves into the swarm.

The coordinator rewards peers that contribute to the

system both directly, by offering seeder bandwidth to

peers that have donated bandwidth to peers, and indi-

rectly, by suggesting which peers are underutilized. The

latter partly influences unchoking decisions as described

previously. The coordinator determines this list for each

peer by selecting a small subset of the top uploaders to

that swarm, chosen randomly from a probability distri-

bution determined by upload bandwidth.

Peer churn and changes in network conditions cause

response curves to become stale over time. In addi-

tion, transient measurement errors can skew response

curves, causing the system to operate suboptimally. Ant-

farm maintains response curves by actively exploring

the swarm’s response at different seeder bandwidths. In

each epoch, the coordinator randomly perturbs the cur-

rent bandwidth allocation by a small amount for each

swarm, on the order of 5 KB/s (kilobytes per second).

Such variances provide additional datapoints for the re-

sponse scatterplot, enabling the system to overcome false

local minima due to transient effects.

The coordinator does not enforce peers’ compliance

with the coordinator’s directives in allocating their up-

load bandwidth. A peer is free to shift bandwidth away

from one swarm in favor of another at its discretion. In

such a scenario, the coordinator will simply observe a

shift in the swarms’ dynamics, which will be reflected in

the response curves. In the next epoch, the coordinator

will perform a new bandwidth allocation that takes the

peer’s behavior into account.

3.4 Scalability

The Antfarm coordinator is optimized to ensure that the

logical centralization does not pose a CPU or bandwidth

scalability bottleneck.

Shuttling tokens to and from the coordinator for each

data block transaction is the main source of coordinator

bandwidth expenditure. To reduce the burden, Antfarm

does not rely on public-key cryptography to issue or ex-

change tokens. The Antfarm protocol minimizes the size

of tokens on the wire, transmitting only relevant fields

when tokens change hands. Only a token’s ID, file refer-

ence, and expiration time are sent on the wire when the

coordinator sends fresh tokens, and only the ID and expi-

ration time are sent on the wire when a peer sends another

peer a token. Spent tokens sent back to the coordinator

are representedwith only the token’s ID and the identifier

of the peer that spent the token. Using 4-byte token IDs,

each token exchange requires less than 24 bytes of to-

tal bandwidth and less than 16 bytes of bandwidth at the

coordinator for each data block of around 32-128 KB.

Antfarm uses highly compact versions of token iden-

tifiers to reduce bandwidth. A 4-byte ID is sufficient to

disincentivize forgery because the coordinatorwill detect

a malicious peer’s attempt to forge a token upon its first

failure to produce a legitimate token. In the event that a

peer correctly guesses an active token’s ID, it is unlikely
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to correctly identify the token’s intended spender. In the

worst case, should a peer successfully forge a token, it

will only gain one data block for its efforts, whereas fail-

ures will lead to remedial action against the peer, de-

scribed in Section 3.5. Thus, with 4-byte token IDs, sev-

eral million peers, and several hundred million tokens,

the likelihood of a successful, undetected token forgery

is around 10−8 when tokens are uniformly distributed.

With a skewed token distribution where some peers have

100 times more tokens than the average peer, the like-

lihood might rise as high as 10−6. Downloading ten

blocks with forged tokens is as likely as discovering a

collision for a cryptographically secure hash function.

The Antfarm coordinator expends its bandwidth to

send tokens to peers, receive spent tokens back from

peers, and periodically send swarm allocations and lists

of top contributors to peers and seeders. To alleviate the

bandwidth demands placed on the coordinator, the Ant-

farm protocol enables the coordinator to be distributed

hierarchically. A lead coordinator machine handles com-

puting response curves and determining swarm band-

width allocations. The remaining coordinators, called

token coordinators, issue tokens, collect tokens back

from peers, and periodically send each peer’s upload and

download rates to the lead coordinator each time the lead

coordinator computes bandwidth allocations. The lead

coordinator redirects each peer to a token coordinator

based on a hash of the peer’s IP address. When a token

coordinator receives a spent token from an assigned peer,

it applies the same hash function to the IP address of the

token’s original owner, a field in the token itself, so it can

verify the token with the token coordinator that issued it.

Thus, each token exchanged between peers involves at

most two token coordinators.

Token coordination is an embarrassingly parallel task.

The high ratio between token size and data block length

ensures that the coordinator bandwidth is leveraged sev-

eral thousand-fold. Section 4 shows that distributing the

coordinator incurs negligible overhead and that the par-

allel nature of token management enables the system to

grow linearly with the number of coordinator machines.

The coordinator performs two periodic CPU-bound

tasks: it computes response curves from scatterplots and

allocates seeders’ and peers’ bandwidth. These tasks are

computed centrally in order to derive bandwidth alloca-

tions based on the most recent measurements. Our cur-

rent implementation on a 2.2 GHz CPU with 3 GB of

memory takes 6 seconds to perform these computations

for 1,000,000 peers and 10,000 swarms whose populari-

ties follow a realistic Zipf distribution. The lead coordi-

nator can easily be replicated to mask network and host

failures.

3.5 Security

A formal treatment of the security properties of the un-

derlying Antfarm wire protocol is beyond the scope of

this paper. Past work on similar, though heavier-weight,

protocols [52] has established the feasibility of a secure

wire protocol. Consequently, the focus of this section is

to enunciate our assumptions, describe the overall goals

of the protocol, provide design alternatives, and outline

how to mitigate attacks targeting the bandwidth alloca-

tion algorithm.

Antfarm makes standard cryptographic assumptions

on the difficulty of reversing one-way hashes and as-

sumes that peers cannot snoop on or impersonate other

peers at the IP level. Violation of the first assumption

would render the Antfarm wire protocol, as well as most

cryptographic algorithms, insecure; consequently, much

effort has gone into the design of secure hash functions.

Violation of the second assumption is unlikely without

ISP collusion, and damage is limited to IP addresses that

an attacker can successfully snoop and masquerade.

Antfarm requires peers to contribute bandwidth to

their swarms, engage in legitimate token-for-block trans-

actions with other peers, and report accurate statistics to

the coordinator. The token protocol, coupled with verifi-

cation at the coordinator, ensures detection of dishonest

peers with relatively low overhead.

In order to measure accurate response curves, the co-

ordinator verifies that all token transactions occur within

the intended swarm, by the intended peer, and within the

intended period of time. The coordinator detects token

forgery upon receiving an invalid token from a peer by

simply comparing the token ID against its own registry

of active tokens. Similarly, the coordinator compares its

own record of the intended sender with the spender as

reported by the peer returning the token to prevent peers

from spending maliciously obtained tokens. Peers are

required to report the actual spender in order to receive

a fresh replacement token. The coordinator detects all

counterfeit tokens, but when it detects an invalid token,

it is unable to differentiate the peer sending the token

from its ledger from the peer that originally spent the to-

ken as the culprit. Therefore, it notifies both peers of the

forgery so the honest peer can blacklist the culprit.

To hold peers more accountable for their actions when

the coordinator is unable to precisely identify malicious

peers, Antfarm peers employ a strikes system to record

and act on undesirable behavior. Peers maintain a tally

of strikes against other peers and disconnect from peers

that have exceeded a threshold. By default, misbehaviors

that can stem from network congestion, such as a late

response to a block request or payment with a recently

expired token, result in one strike against the offending
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peer. Circulating a counterfeit token results in automatic

termination of the connection. In general, when the co-

ordinator is unable to determine the identity of a mali-

cious peer, it appeals to the strikes system rather than

erroneously penalizing an honest peer. While it is pos-

sible to build a centralized reputation system for peers,

the current Antfarm implementation avoids this to reduce

burden on the coordinator.

Using cryptographically signed tokens can provide

stronger guarantees than Antfarm currently does at the

cost of additional overhead and complexity. In such a

scheme, the coordinator can sign all minted tokens be-

fore issuing them to peers, enabling peers to verify that

they are exchanging legitimate tokens with each other

during each transaction. In addition, if the spender of

a token were required to sign the token before send-

ing it, peers could prove the identities of token double-

spenders. Token signatures would prevent malicious

peers from snooping packets and tampering with tokens

without the recipient’s knowledge. Antfarm does not im-

plement a cryptographic scheme because the added over-

head is not accompanied by a clear increase in perfor-

mance.

It is possible for Antfarm peers to collude in order to

coerce the coordinator into providing their swarm with

more bandwidth. In particular, peers could band together

and send each other large numbers of tokens without

sending each other blocks in exchange. The resulting in-

flated estimate of that swarm’s aggregate bandwidth can

lead the system to deviate from a desired allocation. Sev-

eral techniques mitigate such attacks. First, the coordi-

nator never issues more tokens than strictly necessary to

download the file, thereby bounding the impact of fake

transactions by the number of Sybils. Second, forcing

participants to register with a form of hard identity, such

as credit card numbers, can mitigate Sybils [12]. Finally,

the coordinator can mandate that peers trade with a di-

verse set of peers, reducing the effect of collusion among

a small fraction of the swarm. Although the token proto-

col does not eliminate the possibility of malicious behav-

ior, its simplicity and ability to detect malicious activity

limit the harm peers can inflict.

3.6 Summary

The Antfarm protocol strikes a balance between micro-

managing peers and granting them freedom over block

transfers. Tokens that must be returned to the coordi-

nator enable the coordinator to collect accurate statistics

on swarm dynamics and peer behavior. Systems such as

BitTorrent, which grant peers full autonomy, do so at the

expense of control and efficiency. At the other extreme,

a centralized solution that precomputes the entire down-

load schedule for all participants would limit peers’ abil-

ity to quickly determine which peers have blocks they

require and retrieve them without intervention. Antfarm

provides a hybrid approach that leaves peers free to de-

termine their own local behavior while extracting suffi-

cient information from the network to compute the glob-

ally optimal allocation of available bandwidth among

swarms.

4 EVALUATION

We have implemented the full protocol described in this

paper, as well as a simulator of the Antfarm and BitTor-

rent protocols. The Antfarm deployment runs on Win-

dows, Linux, and Mac OS X. Both the implementation

and the simulator contain optimizations present in ver-

sion 5.0.9 of BitTorrent, including optimistic unchoke,

regular unchoke, and local-rarest-block-first. For the ex-

periments in this section, Antfarm’s system parameters

(block size=64KB, optimistic unchoke interval=30s, reg-

ular unchoke interval=10s) are identical to those found in

this version of BitTorrent. We pick upload and download

bandwidths representative of cable-connected end nodes.

This section evaluates the performance of the Ant-

farm protocol in comparison to BitTorrent and tradi-

tional client-server approaches. Through simulations, we

illustrate scenarios under which BitTorrent misuses its

seeder capacity and show howAntfarm can achieve qual-

itatively higher performance by allocating seeder band-

width to swarms that provide the highest return. A Plan-

etLab deployment confirmsAntfarm’s allocation strategy

under realistic network conditions. Lastly, this section

shows that Antfarm’s coordinator can scale to support

large deployments using modest resources.

4.1 Simulations

The differences between Antfarm and BitTorrent in a

multi-swarm setting stem from the way the two protocols

allocate their bandwidth to competing swarms. Whereas

BitTorrent seeders allocate their bandwidth greedily to

peers that absorb the most bandwidth, Antfarm allocates

the precious seeder bandwidth preferentially to swarms

whose response curves demonstrate the most benefit. As

a result, there is a qualitative and significant difference

between the two protocols; under some scenarios, Bit-

Torrent can starve swarms and perform much worse than

Antfarm, while in others with ample bandwidth, seeder

allocation may have little impact on client download

times. Figure 4 shows Antfarm’s performance in com-

parison to BitTorrent and a traditional client-server sys-

tem similar to YouTube for two swarm distribution sce-

narios. In the bimodal scenario, there is a single swarm
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Figure 4: Aggregate bandwidth for a client-server system,

BitTorrent, and Antfarm. When seeder bandwidth is plen-

tiful, even a client-server model can deliver high throughput.

When seeder bandwidth is limited, Antfarm outperforms Bit-

Torrent by allocating bandwidth to swarms that receive the

most benefit. Error bars indicate 95% confidence intervals.

of 30 peers and 30 swarms of one peer each. The Zipf

scenario comprises swarms of sizes 50, 25, 16, 12, 10, 8,

and 5, and 400 singleton participants. Each set of three

bars shows the average aggregate bandwidth for a corre-

sponding scenario and seeder bandwidth.

Overall, Antfarm achieves the highest aggregate

download bandwidth. In scenarios where there is ample

seeder bandwidth, the differences between the three sys-

tems are negligible and even a client-server approach is

competitive with BitTorrent and Antfarm. As available

seeder bandwidth per peer drops, however, swarming

drastically outperforms the client-server approach, high-

lighting the efficiency of peer-to-peer over a client-server

system using comparable resources. For the scaled-down

but realistic Zipf scenario, Antfarm achieves a factor of

5 higher aggregate download bandwidth than BitTorrent.

BitTorrent misallocates bandwidth by preferentially un-

choking hosts based on their recent behavior, regardless

of their potential to share blocks. In contrast, Antfarm

steers the seeder’s capacity to swarms where blocks can

be further shared among peers.

Antfarm’s dynamic bandwidth allocation adapts well

to changes in swarm dynamics. A well-known phe-

nomenon is that when swarms become large, they are

often able to saturate their peers’ uplinks, and some-

times even their downlinks, without the aid of seeder

bandwidth. Such self-sufficient swarms yield flat re-

sponse curves. Antfarm’s allocation strategy naturally

avoids dedicating bandwidth to self-sufficient swarms

when there are other swarms that can benefit more. In

contrast, BitTorrent does not take swarm dynamics into

account, and can end up dedicating seeder bandwidth at

the exclusion of available peer bandwidth, leading to a

shortage of seeder bandwidth for other, needier swarms.

Figure 5: Bandwidth of a singleton swarm and a large, self-

sufficient swarm. Even though a self-sufficient swarm can sat-

urate its peers’ bandwidth without seeder bandwidth, BitTor-

rent awards bandwidth to peers in the swarm. In contrast, Ant-

farm awards seeder bandwidth to the singleton swarm because

it receives high marginal benefit.

Figure 5 shows an exaggerated scenario that illustrates

this effect. The figure shows the average download band-

widths of peers in BitTorrent and Antfarm of the two

swarms. In this scenario, the seeder has a capacity of

100 KB/s, and each peer downloads a 10 MB file with

30 KB/s download capacity and 10 KB/s upload capac-

ity. The self-sufficient swarm saturates peers’ uplinks

without seeder bandwidth and has a fresh peer arrive

every second, resulting in a swarm of approximately

1000 peers. The Antfarm coordinator determines that the

self-sufficient swarm does not benefit from seeder band-

width, and awards bandwidth to the singleton swarm in-

stead. Under Antfarm, the singleton peer is able to com-

plete its download in an average of 6 minutes. BitTorrent

fails to provide the singleton swarm any bandwidth over

the course of the 20 minute simulation.

The problems with BitTorrent’s allocation strategy are

compounded in larger, more realistic scenarios. While

large swarms are often self-sufficient, smaller non-

singleton swarms can receive large multiplicative ben-

efits from the seeder because their peers have available

upload capacity to forward blocks. In contrast to the

previous experiment, which examined the impact on a

swarm at the tail end of the popularity distribution, Fig-

ure 6 illustrates the impact of seeder bandwidth alloca-

tion on a file of medium popularity. The figure shows the

total amount of seeder bandwidth that Antfarm and Bit-

Torrent allocate to a set of self-sufficient swarms, a new

swarm of 5 peers, and 32 singleton swarms. It also shows

the resulting average download bandwidths of peers in

each swarm. The peers have 30 KB/s download capaci-

ties and 20 KB/s upload capacities, and the self-sufficient

swarms have peer interarrival times of 3, 6, 12, 24, 50,

and 100 seconds. In the left-hand graph, BitTorrent ded-
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Figure 6: BitTorrent versus Antfarm serving the middle of the popularity distribution. The shaded region indicates a new

swarm of 5 peers. Swarms to its left are self-sufficient; swarms to its right are singletons. BitTorrent (left) starves the new swarm,

favoring to dedicate bandwidth to the many peers in self-sufficient swarms. Antfarm (right) allocates enough seeder bandwidth

to the new swarm to saturate its peers’ upload bandwidths, and allocates the rest to singleton swarms because they receive high

marginal benefit.
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Figure 7: Time versus bandwidth for Antfarm. The figures show seeder and aggregate bandwidths of the bimodal experiment

with seeder bandwidths of 800 KB/s (left) and 80 KB/s (right). Antfarm follows drastically different bandwidth allocation strategies

(dashed and dotted lines) to achieve high throughput (solid lines).

icates almost all of its bandwidth to the self-sufficient

swarms, whose peers are already saturated, and some

randomly to singleton swarms, which are unable to for-

ward blocks. The right-hand graph shows that Antfarm

awards enough bandwidth to the new swarm to saturate

its peers’ uplinks and dedicates the rest of its bandwidth

evenly among several singleton swarms because they re-

ceive high marginal benefit. BitTorrent’s optimistic un-

choking protocol causes it to dedicate its bandwidth to

only a few singleton swarms over the 20 minute sim-

ulation. Overall, Antfarm achieves an order of magni-

tude increase in average download speed for the affected

swarms without a corresponding penalty for the popular

swarms.

Figure 7 shows Antfarm’s bandwidth allocation over

time to provide insight into Antfarm’s strategy. The left-

hand graph shows that when seeder bandwidth is plenti-

ful, Antfarm spends the vast majority of its bandwidth on

small swarms since they receive the most marginal ben-

efit. When seeder bandwidth is constrained, as shown in

the right-hand graph, Antfarm achieves high aggregate

bandwidth by preferentially seeding large swarms that

can leverage their upload capacity to multiply the bene-

fits from the seeder. As peers of the large swarm com-

plete their downloads at 5000 seconds, the seeder shifts

its bandwidth to the singleton swarms. The staircase be-

havior is due to different swarms completing at different

times.

Overall, Antfarm qualitatively outperforms BitTorrent

in a multi-torrent setting by allocating bandwidth based

on dynamically measured response curves and preferen-

tially serving those swarms that benefit most from seeder

bandwith.

4.2 PlanetLab Deployment

We tested Antfarm’s performance through a Planet-

Lab [5] deployment. To demonstrate Antfarm’s response

curves in practice, Figure 8 shows a measured response

curve of a swarm comprised of 25 PlanetLab nodes, each
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Figure 8: A response curve for a swarm consisting of

25 PlanetLab nodes, each with an upload capacity of

50 KB/s. Each data point is based on the average swarm aggre-

gate bandwidth over 10 minutes. Real-world response curves

confirm simulations.

with an upload capacity of 50 KB/s. The graph plots both

the response scatterplot and the response curve as com-

puted by the coordinator from the token exchange. The

results confirm the simulations.

Figure 9 compares the aggregate bandwidth achieved

by Antfarm, BitTorrent, and traditional client-server

downloads across 300 PlanetLab nodes, each with an up-

load capacity of 50 KB/s. Swarms have size 100, 50, 25,

12, 6, 3, and 1. In practice, the stock BitTorrent imple-

mentation uploads only a few hand-picked files concur-

rently; to evaluate BitTorrent in the presence of many

swarms, we measured two values by running multiple

seeder instances, each with its own upload capacity. Bit-

Torrent Equal indicates the aggregate system bandwidth

when the BitTorrent seeder splits its upload bandwidth

equally among all swarms, including singleton swarms.

BitTorrent Proportional shows performance when the

seeder allocates to each swarm an upload bandwidth pro-

portional to the size of the swarm.

Antfarm outperforms BitTorrent by allocating its

bandwidth to the swarms that receive the most benefit.

Antfarm’s advantages over BitTorrent become more pro-

nounced in systems with many swarms accompanied by

relatively small seeder uplink capacities, a realistic sce-

nario for a distribution center with a large number of files

and a bandwidth bottleneck. In these experiments, Ant-

farm outperforms traditional client-server by a factor of

between 50 and 100, BitTorrent Equal by a factor of 8

to 18, and BitTorrent Proportional by a factor of 1.2 to 3.

4.3 Scalability

In this section, we examine how the Antfarm coordinator

scales. We examine the steady-state bandwidth cost of

running a coordinator in a setting where peers download

a file made up of 64 KB blocks with upload and down-
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Figure 9: PlanetLab experiments showing aggregate band-

width in Antfarm versus BitTorrent and client-server.

300 PlanetLab nodes are distributed among swarms ranging in

size from 1 to 100. Antfarm achieves high average performance

by making efficient use of limited bandwidth.
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Figure 10: Aggregate bandwidth of swarms managed by

varying sizes of coordinator clusters. Each coordinator ma-

chine runs on a PlanetLab node with an artificial bandwidth

cap of 100 KB/s to limit scalability. The task of the token co-

ordinator is embarrassingly parallel; the system capacity scales

linearly with the size of the coordinator cluster.

load capacities of 64 KB/s.

Figure 10 shows the bandwidth consumption at the co-

ordinator as a function of the number of peers based on

experiments run on PlanetLab. In the experiment, the

lead coordinator and each token coordinator ran on its

own PlanetLab node, and peers were simulated across

other PlanetLab nodes, engaging in the Antfarm proto-

col without sending actual data. The results show that

even for large numbers of peers, the bandwidth consump-

tion at the coordinator is modest. A coordinator running

on a single PlanetLab host suffices for deployments of

80,000 peers or more. To demonstrate the scalability

of the hierarchically distributed coordinator, we test a

coordinator distributed across multiple PlanetLab hosts

in a system with an aggregate bandwidth approaching
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5 GB/s. To maximize generated load, peers omit the data

exchange but engage in the token protocol with the coor-

dinator. Further, we artificially limit the bandwidth avail-

able to each physical coordinator node to 100 KB/s to

gain insight into the performance of multiple coordinator

nodes running with severe bandwidth constraints. The

bottom curve shows the capacity of a single, artificially-

bottlenecked coordinator node, which is able to handle

the tokens and peer lists of approximately 9000 peers be-

fore its performance reaches a plateau. Adding a second

such coordinator node doubles the capacity of the sys-

tem. Because the token coordinators engage in a mas-

sively parallel task with little communication overhead,

increasing the number of coordinators linearly increases

the maximum supported number of peers.

5 RELATED WORK

There has been much past work on content distribution,

which can be grouped roughly into work on content dis-

tribution networks, token-based systems, and multicast

and streaming systems.

CDNs: Content distribution networks are scalable

systems used to alleviate server load, reduce download

times, and avoid network hotspots. Akamai [31], for ex-

ample, is a widely deployed infrastructure-based CDN

that many content providers rely on to distribute their

content. Similarly, cooperativeweb caching [7,25,27,57,

58] removes load from origin servers. ECHOS [34] pro-

poses distributing servers using a peer-to-peer network of

set-top boxes distributed at the Internet’s periphery, man-

aged by a single entity that can optimize system perfor-

mance, but does not address bandwidth management at

the servers. Although distributed CDNs scale, the band-

width cost of operating them resides entirely with the

content provider and distributor.

Peer-to-peer CDNs effectively shift bandwidth costs

from the content provider to clients. BitTorrent [8] is one

of the most popular client-based peer-to-peer CDNs, and

studies consistently show that BitTorrent traffic consti-

tutes a significant fraction of Internet traffic [43, 53]. Pi-

atek et al. [46] augment the BitTorrent protocol to enable

peers to share reputation information through one level

of intermediary nodes; it does not address the issue of

multiple swarms. CoBlitz [44] is an HTTP-based content

distribution network that splits a file into chunks, which

are cached at distributed nodes. Choffnes et al. [15] re-

duce cross-ISP traffic in peer-to-peer systems by harvest-

ing data from existing CDNs for locality information.

Shark [3] and ChunkCast [9] reduce client-perceived

download latency via a structured overlay, and Coral [23]

and Bamboo [50] assist clients in finding nearby copies

of data. Antfarm similarly shifts cost to clients; however,

it retains control of network behavior by carefully allo-

cating bandwidth to each swarm.

Further, many systems such as the Data Oriented

Transfer (DOT) architecture [42, 54] use peer-to-peer

swarming to speed up downloads.

Token-based Incentives: Early model and analysis

by Qiu and Srikant [49] of BitTorrent’s incentive mech-

anism showed that the system converges to a Nash equi-

librium where all peers upload at their capacity. How-

ever, more recent work, BitTyrant [45], BitThief [35],

and Sirivianos et al. [51], has demonstrated that average

download times currently depend on significant altruism

from high capacity peers that, when withheld, reduces

performance for all users. Further, BitTorrent’s tit-for-

tat mechanism only operates within an individual swarm;

it does not provide information on how to allocate re-

sources, such as seeder bandwidth, among swarms.

Dandelion [52] and BAR gossip [36] avoid the prob-

lem of relying on altruism to distribute data. They

use a cryptographic fair exchange mechanism that re-

quires a client to upload content to other clients in ex-

change for virtual credit, which can be redeemed for fu-

ture service. Microcurrencies [10, 37, 47, 59] similarly

rely on cryptographically protected tokens for fair re-

source exchange, and optionally provide additional fea-

tures such as spender anonymity. Antfarm’s token sys-

tem is domain-specific and significantly lighter-weight

than these approaches.

Decentralized resource allocation in peer-to-peer sys-

tems requires incentives for participants to contribute re-

sources. Ngan et al. [39] suggest cooperative audits to

ensure that participants contribute storage commensurate

with their usage. Samsara [16] considers storage allo-

cation in a peer-to-peer storage system and introduces

cryptographically signed storage claims to ensure that

any user of remote storage devotes a like amount of stor-

age locally. Both techniques center around audits of re-

sources that are spatial in nature.

Karma [56] and SHARP [22] resource allocation can

apply to renewable resources such as bandwidth. Karma

employs a global credit bank, with which clients main-

tain accounts. The value of a client’s account increases

when it contributes and decreases when it consumes. A

client can only consume resources if its account con-

tains sufficient credit. SHARP operates at the granular-

ity of autonomous systems or sites. To join the system a

SHARP site must negotiate resource contracts with one

or more existing group members. These contracts, in ef-

fect, specify the system’s expectations of the site and the

site’s promise of available resources to the system. Ac-

countable claims make it possible to monitor each partic-

ipant’s compliance with its contracts, simplifying audits

and making collusion more difficult in SHARP relative
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to other decentralized peer-to-peer systems.

Streaming and Multicast: Multicast and streaming

are alternative designs for distributing content. For in-

stance, the seminal work by Deering proposed IP mul-

ticast to efficiently deliver content to multiple destina-

tions [20]. Deployment difficulties with global IP multi-

cast [18] led to application-level multicast systems such

as End System Multicast [14], Your Own Internet Distri-

bution (YOID) [21], and others [60].

Several techniques have been proposed to dis-

tribute data efficiently using application-level multi-

cast. Overcast [26] distributes content by construct-

ing a bandwidth-optimized overlay tree among dedicated

infrastructure nodes. SplitStream [13] distributes con-

tent via a peer-to-peer overlay that disseminates content

along branches of trees constructed on top of a peer-to-

peer substrate. Bullet [29] and Bullet′ [28] also use a ran-

domized overlay mesh to distribute data. Chainsaw [48]

is a peer-to-peermulticast based on an unstructured over-

lay mesh in which peers explicitly request packets from

neighbors. This mechanism ensures that peers are able to

receive all packets and avoid receiving duplicate packets.

ChunkySpread [55] is a hybrid that uses both structured

and unstructured overlays to distribute content. Antfarm

differs from streamingmulticast systems in that it aims to

maximize aggregate system bandwidth for multiple con-

current batch downloads.

Another set of work proposes augmenting BitTorrent-

like protocols to accommodate streaming video in a peer-

to-peer setting. BASS [17] exemplifies this approach by

adding peer-to-peer interactions to a client-server model

where peers stream video from the server while trading

blocks with other peers to alleviate load on the server

in the future. Antfarm also incorporates a peer-to-peer

protocol to alleviate load, but manages the interactions

via the coordinator to achieve high throughput for mul-

tiple swarms. Siddhartha et al. [4] propose a BitTorrent-

like protocol with small neighborhoods of topographi-

cally close peers for exchanging blocks, using heuristics

to handle swarms of heterogeneous link capacities.

Finally, many streaming and multicast architectures

use coding to increase content delivery reliability [2,

6, 24, 38]. Integrating coding techniques into Antfarm

could further improve performance.

6 CONCLUSIONS

In this paper we introduced Antfarm, a peer-to-peer con-

tent distribution system for the batch dissemination of

large files. Antfarm explores a novel space in the de-

sign of swarming protocols; whereas past systems avoid

all vestiges of centralization for both technical and legal

reasons and suffered from lack of coordination across

swarms, Antfarm examines how modest planning by

a centralized coordinator can help a set of competing

swarms achieve high performance.

The key to Antfarm’s performance is its restatement

of the download management task as an optimization

problem. The hill-climbing algorithm we propose effec-

tively leverages available bandwidth, accommodates de-

sired minimum bandwidth limits, avoids starvation, and

enforces desired swarm priorities. The wire-level pro-

tocol enables performance information to be extracted

from the network, enabling a practical deployment that

reacts to changing network and swarm conditions. Even

though the approach embodies a logically centralized co-

ordinator, the computational requirements of the coordi-

nator are modest, the bandwidth requirement is feasibly

small, and the coordinator carries out an embarrassingly

parallel task that is easy to replicate across datacenters.

PlanetLab deployments and simulations indicate that the

system is practical, scalable, and capable of achieving

significantly higher bandwidth than previous approaches.
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Abstract

We present HashCache, a configurable cache storage
engine designed to meet the needs of cache storage
in the developing world. With the advent of cheap
commodity laptops geared for mass deployments, de-
veloping regions are poised to become major users of
the Internet, and given the high cost of bandwidth in
these parts of the world, they stand to gain signifi-
cantly from network caching. However, current Web
proxies are incapable of providing large storage capac-
ities while using small resource footprints, a requirement
for the integrated multi-purpose servers needed to ef-
fectively support developing-world deployments. Hash-
Cache presents a radical departure from the conventional
wisdom in network cache design, and uses 6 to 20 times
less memory than current techniques while still provid-
ing comparable or better performance. As such, Hash-
Cache can be deployed in configurations not attainable
with current approaches, such as having multiple ter-
abytes of external storage cache attached to low-powered
machines. HashCache has been successfully deployed in
two locations in Africa, and further deployments are in
progress.

1 Introduction

Network caching has been used in a variety of contexts
to reduce network latency and bandwidth consumption,
ranging from FTP caching [31], Web caching [15, 4], re-
dundant traffic elimination [20, 28, 29], and content dis-
tribution [1, 10, 26, 41]. All of these cases use local
storage, typically disk-based, to reduce redundant data
fetches over the network. Large enterprises and ISPs
particularly benefit from network caches, since they can
amortize their cost and management over larger user pop-
ulations. Cache storage system design has been shaped
by this class of users, leading to design decisions that fa-
vor first-world usage scenarios. For example, RAM con-
sumption is proportional to disk size due to in-memory

indexing of on-disk data, which was developed when
disk storage was relatively more expensive than it is now.
However, because disk size has been growing faster than
RAM sizes, it is now much cheaper to buy terabytes of
disk than a machine capable of indexing that much stor-
age, since most low-end servers have lower memory lim-
its.

This disk/RAM linkage makes existing cache storage
systems problematic for developing world use, where it
may be very desirable to have terabytes of cheap stor-
age (available for less than US $100/TB) attached to
cheap, low-power machines. However, if indexing a ter-
abyte of storage requires 10 GB of RAM (typical for
current proxy caches), then these deployments will re-
quire server-class machines, with their associated costs
and infrastructure. Worse, this memory is dedicated for
use by a single service, making it difficult to deploy con-
solidated multi-purpose servers. When low-cost laptops
from the One Laptop Per Child project [22] or the Class-
mate from Intel [13] cost only US $200 each, spending
thousands of dollars per server may exceed the cost of
laptops for an entire school.

This situation is especially unfortunate, since band-
width in developing regions is often more expensive,
both in relative and absolute currency, than it is in the
US and Europe. Africa, for example, has poor terrestrial
connectivity, and often uses satellite connectivity, back-
hauled through Europe. One of our partners in Nigeria,
for example, shares a 2 Mbps link, which costs $5000 per
month. Even the recently-planned “Google Satellite,” the
O3b, is expected to drop the cost to only $500/Mbps per
month by 2010 [21]. With efficient cache storage, one
can reduce the network connectivity expenses.

The goal of this project is to develop network cache
stores designed for developing-world usage. In this pa-
per, we present HashCache, a configurable storage sys-
tem that implements flexible indexing policies, all of
which are dramatically more efficient than traditional
cache designs. The most radical policy uses no main



124	 NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation	 USENIX Association

memory for indexing, and obtains performance compa-
rable to traditional software solutions such as the Squid
Web proxy cache. The highest performance policy per-
forms equally with commercial cache appliances while
using main-memory indexes that are only one-tenth their
size. Between these policies are a range of distinct poli-
cies that trade memory consumption for performance
suitable for a range of workloads in developing regions.

1.1 Rationale For a New Cache Store
HashCache is designed to serve the needs of developing-
world environments, starting with classrooms but work-
ing toward backbone networks. In addition to good per-
formance with low resource consumption, HashCache
provides a number of additional benefits suitable for
developing-world usage: (a) many HashCache policies
can be tailored to use main memory in proportion to sys-
tem activity, instead of cache size; (b) unlike commer-
cial caching appliances, HashCache does not need to be
the sole application running on the machine; (c) by sim-
ply choosing the appropriate indexing scheme, the same
cache software can be configured as a low-resource end-
user cache appropriate for small classrooms, as well as
a high-performance backbone cache for higher levels of
the network; (d) in its lowest-memory configurations,
HashCache can run on laptop-class hardware attached to
external multi-terabyte storage (via USB, for example), a
scenario not even possible with existing designs; and (e)
HashCache provides a flexible caching layer, allowing it
to be used not only for Web proxies, but also for other
cache-oriented storage systems.

A previous analysis of Web traffic in developing re-
gions shows great potential for improving Web perfor-
mance [8]. According to the study, kiosks in Ghana and
Cambodia, with 10 to 15 users per day, have downloaded
over 100 GB of data within a few months, involving 12
to 14 million URLs. The authors argue for the need
for applications that can perform HTTP caching, chunk
caching for large downloads and other forms of caching
techniques to improve the Web performance. With the
introduction of personal laptops into these areas, it is rea-
sonable to expect even higher network traffic volumes.

Since HashCache can be shared by many applications
and is not HTTP-specific, it avoids the problem of dimin-
ishing returns seen with large HTTP-only caches. Hash-
Cache can be used by both a Web proxy and a WAN ac-
celerator, which stores pieces of network traffic to pro-
vide protocol-independent network compression. This
combination allows the Web cache to store static Web
content, and then use the WAN accelerator to reduce
redundancy in dynamically-generated content, such as
news sites, Wikipedia, or even locally-generated content,
all of which may be marked uncacheable, but which tend
to only change slowly over time. While modern Web

pages may be large, they tend to be composed of many
small objects, such as dozens of small embedded images.
These objects, along with tiny fragments of cached net-
work traffic from a WAN accelerator, put pressure on tra-
ditional caching approaches using in-memory indexing.

A Web proxy running on a terabyte-sized HashCache
can provide a large HTTP store, allowing us to not only
cache a wide range of traffic, but also speculatively pre-
load content during off-peak hours. Furthermore, this
kind of system can be driven from a typical OLPC-class
laptop, with only 256MB of total RAM. One such lap-
top can act as a cache server for the rest of the laptops in
the deployment, eliminating the need for separate server-
class hardware. In comparison, using current Web prox-
ies, these laptops could only index 30GB of disk space.

The rest of this paper is structured as follows. Sec-
tion 2 explains the current state of the art in network
storage design. Section 3 explains the problem, explores
a range of HashCache policies, and analyzes them. Sec-
tion 4 describes our implementation of policies and the
HashCache Web proxy. Section 5 presents the perfor-
mance evaluation of the HashCache Web Proxy and com-
pares it with Squid and a modern high-performance sys-
tem with optimized indexing mechanisms. Section 6 de-
scribes the related work, Section 7 describes our current
deployments, and Section 8 concludes with our future
work.

2 Current State-of-the-Art
While typical Web proxies implement a number of fea-
tures, such as HTTP protocol handling, connection man-
agement, DNS and in-memory object caching, their per-
formance is generally dominated by their filesystem or-
ganization. As such, we focus on the filesystem com-
ponent because it determines the overall performance
of a proxy in terms of the peak request rate and object
cacheability. With regard to filesystems, the two main
optimizations employed by proxy servers are hashing
and indexing objects by their URLs, and using raw disk
to bypass filesystem inefficiencies. We discuss both of
these aspects below.

The Harvest cache [4] introduced the design of stor-
ing objects by a hash of their URLs, and keeping an in-
memory index of objects stored on disk. Typically, two
levels of subdirectories were created, with the fan-out of
each level configurable. The high-order bits of the hash
were used to select the appropriate directories, and the
file was ultimately named by the hash value. This ap-
proach not only provided a simple file organization, but
it also allowed most queries for the presence of objects to
be served from memory, instead of requiring disk access.
The older CERN [15] proxy, by contrast, stored objects
by creating directories that matched the components of
the URL. By hashing the URL, Harvest was able to con-
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System Naming Storage Memory
Management Management

CERN URL Regular Filesystem
Filesystem Data Structures

Harvest Hash Regular LRU, Filesystem
Filesystem Data Structures

Squid Hash Regular LRU & others
Filesystem

Commercial Hash Log LRU

Table 1: System Entities for Web Caches

trol both the depth and fan-out of the directories used
to store objects. The CERN proxy, Harvest, and its de-
scendant, Squid, all used the filesystems provided by the
operating system, simplifying the proxy and eliminating
the need for controlling the on-disk layout.

The next step in the evolution of proxy design was us-
ing raw disk and custom filesystems to eliminate multiple
levels of directory traversals and disk head seeks associ-
ated with them. The in-memory index now stored the
location on disk where the object was stored, eliminating
the need for multiple seeks to find the start of the object. 1

The first block of the on-disk file typically includes
extra metadata that is too big to be held in memory, such
as the complete URL, full response headers, and location
of subsequent parts of the object, if any, and is followed
by the content fetched from the origin server. In order to
fully utilize the disk writing throughput, those blocks are
often maintained consecutively, using a technique simi-
lar to log-structured filesystem(LFS) [30]. Unlike LFS,
which is expected to retain files until deleted by the user,
cache filesystems can often perform disk cache replace-
ment in LIFO order, even if other approaches are used
for main memory cache replacement. Table 1 summa-
rizes the object lookup and storage management of vari-
ous proxy implementations that have been used to build
Web caches.

The upper bound on the number of cacheable objects
per proxy is a function of available disk cache and phys-
ical memory size. Attempting to use more memory than
the machine’s physical memory can be catastrophic for
caches, since unpredictable page faults in the applica-
tion can degrade performance to the point of unusabil-
ity. When these applications run as a service at network
access points, which is typically the case, all users then
suffer extra latency when page faults occur.

The components of the in-memory index vary from
system to system, but a representative configuration for
a high-performance proxy is given in Table 2. Each
entry has some object-specific information, such as its
hash value and object size. It also has some disk-related

1This information was previously available on the iMimic Network-
ing Web site and the Volera Cache Web site, but both have disappeared.
No citable references appear to exist

Entity Memory per
Object (Bytes)

Hash 4 - 20
LFS Offset 4
Size in Blocks 2
Log Generation 1
Disk Number 1
Bin Pointers 4
Chaining Pointers 8
LRU List Pointers 8
Total 32 - 48

Table 2: High Performance Cache - Memory Usage

information, such as the location on disk, which disk,
and which generation of log, to avoid problems with log
wrapping. The entries typically are stored in a chain per
hash bin, and a doubly-linked LRU list across all index
entries. Finally, to shorten hash bin traversals (and the
associated TLB pressure), the number of hash bins is typ-
ically set to roughly the number of entries.

Using these fields and their sizes, the total consump-
tion per index entry can be as low as 32 bytes per object,
but given that the average Web object is roughly 8KB
(where a page may have tens of objects), even 32 bytes
per object represents an in-memory index storage that is
1/256 the size of the on-disk storage. With a more re-
alistic index structure, which can include a larger hash
value, expiration time, and other fields, the index entry
can be well over 80 bytes (as in the case of Squid), caus-
ing the in-memory index to exceed 1% of the on-disk
storage size. With a single 1TB drive, the in-memory in-
dex alone would be over 10GB. Increasing performance
by using multiple disks would then require tens of giga-
bytes of RAM.

Reducing the RAM needed for indexing is desirable
for several scenarios. Since the growth in disk capaci-
ties has been exceeding the growth of RAM capacity for
some time, this trend will lead to systems where the disk
cannot be fully indexed due to a lack of RAM. Dedicated
RAM also effectively limits the degree of multiprogram-
ming of the system, so as processors get faster relative
to network speeds, one may wish to consolidate multi-
ple functions on a single server. WAN accelerators, for
example, cache network data [5, 29, 34], so having very
large storage can reduce bandwidth consumption more
than HTTP proxies alone. Similarly, even in HTTP prox-
ies, RAM may be more useful as a hot object cache than
as an index, as is the case in reverse proxies (server ac-
celerators) and content distribution networks. One goal
in designing HashCache is to determine how much index
memory is really necessary.
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Figure 1: HashCache-Basic: objects with hash value i go
to the ith bin for the first block of a file. Later blocks are
in the circular log.

3 Design

In this section, we present the design of HashCache
and show how performance can be scaled with avail-
able memory. We begin by showing how to eliminate the
in-memory index while still obtaining reasonable perfor-
mance, and then we show how selective use of minimal
indexing can improve performance. A summary of poli-
cies is shown in Table 3.

3.1 Removing the In-Memory Index
We start by removing the in-memory index entirely, and
incrementally introducing minimal metadata to system-
atically improve performance. To remove the in-memory
index, we have to address the two functions the in-
memory index serves: indicating the existence of an ob-
ject and specifying its location on disk. Using filesys-
tem directories to store objects by hash has its own per-
formance problems, so we seek an alternative solution –
treating the disk as a simple hashtable.

HashCache-Basic, the simplest design option in the
HashCache family, treats part of the disk as a fixed-size,
non-chained hash table, with one object stored in each
bin. This portion is called the Disk Table. It hashes the
object name (a URL in the case of a Web cache) and then
calculates the hash value modulo the number of bins to
determine the location of the corresponding file on disk.
To avoid false positives from hash collisions, each stored
object contains metadata, including the original object
name, which is compared with the requested object name
to confirm an actual match. New objects for a bin are
simply written over any previous object.

Since objects may be larger than the fixed-size bins
in the Disk Table, we introduce a circular log that con-
tains the remaining portion of large objects. The object
metadata stored in each Disk Table bin also includes the
location in the log, the object size, and the log generation
number, and is illustrated in Figure 1.

The performance impact of these decisions is as
follows: in comparison to high-performance caches,

Hash 1

Hash 2

Hash 3

Hash 4

Hash 8

Hash 7

Hash 6

Hash 5

Log

Table of Sets

Figure 2: HashCache-Set: Objects with hash value i

search through the i

N

th
set for the first block of a file.

Later blocks are in the circular log. Some arrows are
shown crossed to illustrate that objects that map on to a
set can be placed anywhere in the set.

HashCache-Basic will have an increase in hash collisions
(reducing cache hit rates), and will require a disk access
on every request, even cache misses. Storing objects will
require one seek per object (due to the hash randomiz-
ing the location), and possibly an additional write to the
circular log.

3.2 Collision Control Mechanism
While in-memory indexes can use hash chaining to elim-
inate the problem of hash values mapped to the same bin,
doing so for an on-disk index would require many ran-
dom disk seeks to walk a hash bin, so we devise a sim-
pler and more efficient approach while retaining most of
the benefits.

In HashCache-Set, we expand the Disk Table to be-
come an N-way set-associative hash table, where each
bin can store N elements. Each element still contains
metadata with the full object name, size, and location in
the circular log of any remaining part of the object. Since
these locations are contiguous on disk, and since short
reads have much lower latency than seeks, reading all of
the members of the set takes only marginally more time
than reading just one element. This approach is shown in
Figure 2, and reduces the impact of popular objects map-
ping to the same hash bin, while only slightly increasing
the time to access an object.

While HashCache-Set eliminates problems stemming
from collisions in the hash bins, it still has several prob-
lems: it requires disk access for cache misses, and lacks
an efficient mechanism for cache replacement within the
set. Implementing something like LRU within the set us-
ing the on-disk mechanism would require a potential disk
write on every cache hit, reducing performance.

3.3 Avoiding Seeks for Cache Misses
Requiring a disk seek to determine a cache miss is a ma-
jor issue for workloads with low cache hit rates, since an
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Bits Per RAM GB per Read Write Miss
Policy Object Disk TB Seeks Seeks Seeks Comments
Squid 576-832 9 - 13 ∼ 6 ∼ 6 0 Harvest descendant
Commercial 256-544 4 - 8.5 < 1 ∼ 0 0 custom filesystem
HC-Basic 0 0 1 1 1 high collision rate
HC-Set 0 0 1 1 1 adds N-way sets to reduce collisions
HC-SetMem 11 0.17 1 1 0 small in-mem hash eliminates miss seeks
HC-SetMemLRU < 11 < 0.17 1 1 < 1 only some sets kept in memory
HC-Log 47 0.73 1 ∼ 0 0 writes to log, log position added to entry
HC-LogLRU 15-47 0.23 - 0.67 1 + ǫ ∼ 0 0 log position for only some entries in set
HC-LogLRU + Prefetch 23-55 0.36 - 0.86 < 1 ∼ 0 0 reads related objects together
HC-Log + Prefetch 55 0.86 < 1 ∼ 0 0 reads related objects together

Table 3: Summary of HashCache policies, with Squid and commercial entries included for comparison.
Main memory consumption values assume an average object size of 8KB. Squid memory data appears in
http://www.comfsm.fm/computing/squid/FAQ-8.html

index-less cache would spend most of its disk time con-
firming cache misses. This behavior would add extra la-
tency for the end-user, and provide no benefit. To address
the problem of requiring seeks for cache misses, we in-
troduce the first HashCache policy with any in-memory
index, but employ several optimizations to keep the in-
dex much smaller than traditional approaches.

As a starting point, we consider storing in main mem-
ory an H-bit hash values for each cached object. These
hash values can be stored in a two-dimensional array
which corresponds to the Disk Table, with one row for
each bin, and N columns corresponding to the N-way
associativity. An LRU cache replacement policy would
need forward and reverse pointers per object to maintain
the LRU list, bringing the per-object RAM cost to (H +
64) bits assuming 32-bit pointers. However, we can re-
duce this storage as follows.

First, we note that all the entries in an N-entry set share
the same modulo hash value (%S) where S is the number
of sets in the Disk Table. We can drop the lowest log(S)
bits from each hash value with no loss, reducing the hash
storage to only H - log(S) bits per object.

Secondly, we note that cache replacement policies
only need to be implemented within the N-entry set, so
LRU can be implemented by simply ranking the entries
from 0 to N-1, thereby using only log(N) bits per entry.

We can further choose to keep in-memory indexes for
only some sets, not all sets, so we can restrict the number
of in-memory entries based on request rate, rather than
cache size. This approach keeps sets in an LRU fashion,
and fetches the in-memory index for a set from disk on
demand. By keeping only partial sets, we need to also
keep a bin number with each set, LRU pointers per set,
and a hash table to find a given set in memory.

Deciding when to use a complete two-dimensional ar-
ray versus partial sets with bin numbers and LRU point-
ers depends on the size of the hash value and the set as-
sociativity. Assuming 8-way associativity and the 8 most

significant hash bits per object, the break-even point is
around 50% – once more than half the sets will be stored
in memory, it is cheaper to remove the LRU pointers and
bin number, and just keep all of the sets. A discussion of
how to select values for these parameters is provided in
Section 4.

If the full array is kept in memory, we call it
HashCache-SetMem, and if only a subset are kept in
memory, we call it HashCache-SetMemLRU. With a
low hash collision rate, HashCache-SetMem can deter-
mine most cache misses without accessing disk, whereas
HashCache-SetMemLRU, with its tunable memory con-
sumption, will need disk accesses for some fraction of
the misses. However, once a set is in memory, per-
forming intra-set cache replacement decisions requires
no disk access for policy maintenance. Writing objects
to disk will still require disk access.

3.4 Optimizing Cache Writes
With the previous optimizations, cache hits require one
seek for small files, and cache misses require no seeks
(excluding false positives from hash collisions) if the as-
sociated set’s metadata is in memory. Cache writes still
require seeks, since object locations are dictated by their
hash values, leaving HashCache at a performance dis-
advantage to high-performance caches that can write all
content to a circular log. This performance problem is
not an issue for caches with low request rates, but will
become a problem for higher request rate workloads.

To address this problem, we introduce a new pol-
icy, HashCache-Log, that eliminates the Disk Table and
treats the disk as a log, similar to the high-performance
caches. For some or all objects, we store an additional
offset (32 or 64 bits) specifying the location on disk. We
retain the N-way set associativity and per-set LRU re-
placement because they eliminate disk seeks for cache
misses with compact implementation. While this ap-
proach significantly increases memory consumption, it
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can also yield a large performance advantage, so this
tradeoff is useful in many situations. However, even
when adding the log location, the in-memory index is
still much smaller than traditional caches. For exam-
ple, for 8-way set associativity, per-set LRU requires 3
bits per entry, and 8 bits per entry can minimize hash
collisions within the set. Adding a 32-bit log position
increases the per-entry size from 11 bits to 43 bits, but
virtually eliminates the impact of write traffic, since all
writes can now be accumulated and written in one disk
seek. Additionally, we need a few bits (assume 4) to
record the log generation number, driving the total to 47
bits. Even at 47 bits per entry, HashCache-Log still uses
indexes that are a factor of 6-12 times smaller than cur-
rent high-performance proxies.

We can reduce this overhead even further if we ex-
ploit Web object popularity, where half of the objects are
rarely, if ever, re-referenced [8]. In this case, we can
drop half of the log positions from the in-memory index,
and just store them on disk, reducing the average per-
entry size to only 31 bits, for a small loss in performance.
HashCache-LogLRU allows the number of log position
entries per set to be configured, typically using N

2
log

positions per N-object set. The remaining log offsets in
the set are stored on the disk as a small contiguous file.
Keeping this file and the in-memory index in sync re-
quires a few writes reducing the performance by a small
amount. The in-memory index size, in this case, is 9-20
times smaller than traditional high-performance systems.

3.5 Prefetching Cache Reads
With all of the previous optimizations, caching storage
can require as little as 1 seek per object read for small
objects, with no penalty for cache misses, and virtually
no cost for cache writes that are batched together and
written to the end of the circular log. However, even
this performance can be further improved, by noting that
prefetching multiple objects per read can amortize the
read cost per object.

Correlated access can arise in situations like Web
pages, where multiple small objects may be embedded
in the HTML of a page, resulting in many objects being
accessed together during a small time period. Grouping
these objects together on disk would reduce disk seeks
for reading and writing. The remaining blocks for these
pages can all be coalesced together in the log and written
together so that reading them can be faster, ideally with
one seek.

The only change necessary to support this policy is
to keep a content length (in blocks) for all of the re-
lated content written at the same time, so that it can be
read together in one seek. When multiple related objects
are read together, the system will perform reads at less
than one seek per read on average. This approach can

Policy Throughput
HC-Basic rr = t

1+ 1

rel
+(1−chr)·cbr

HC-Set rr = t

1+ 1

rel
+(1−chr)·cbr

HC-SetMem rr = t

chr·(1+ 1

rel
)+(1−chr)·cbr

HC-LogN rr = t
2·chr+(1−chr)·cbr

HC-LogLRU rr = t·rel

2·chr+(1−chr)·cbr

HC-Log rr = t·rel

2·chr+(1−chr)·cbr

Commercial rr = t·rel
2·chr+(1−chr)·cbr

Table 4: Throughputs for techniques, rr = peak request
rate, chr = cache hit rate, cbr = cacheability rate, rel =
average number of related objects, t = peak disk seek rate
– all calculations include read prefetching, so the results
for Log and Grouped are the same. To exclude the effects
of read prefetching, simply set rel to one.

be applied to many of the previously described Hash-
Cache policies, and only requires that the application us-
ing HashCache provide some information about which
objects are related. Assuming prefetch lengths of no
more than 256 blocks, this policy only requires 8 bits
per index entry being read. In the case of HashCache-
LogLRU, only the entries with in-memory log position
information need the additional length information. Oth-
erwise, this length can also be stored on disk. As a result,
adding this prefetching to HashCache-LogLRU only in-
creases the in-memory index size to 35 bits per object,
assuming half the entries of each set contain a log posi-
tion and prefetch length.

For the rest of this paper, we assume all the policies to
have this optimization except HashCache-LogN which is
the HashCache-Log policy without any prefetching.

3.6 Expected Throughput
To understand the throughput implications of the vari-
ous HashCache schemes, we analyze their expected per-
formance under various conditions using the parameters
shown in Table 4.

The maximum request rate(rr) is a function of the
disk seek rate, the hit rate, the miss rate, and the write
rate. The write rate is required because not all objects
that are fetched due to cache misses are cacheable. Ta-
ble 4 presents throughputs for each system as a function
of these parameters. The cache hit rate(chr) is simply a
number between 0 and 1, as is the cacheability rate (cbr).
Since the miss rate is (1 - chr), the write rate can be rep-
resented as (1 - chr) · cbr. The peak disk seek rate(t)
is a measured quantity that is hardware-dependent, and
the average number of related objects(rel) is always a
positive number. Due to space constraints, we omit the
derivations for these calculations. These throughputs are
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conservative estimates because we do not take into ac-
count the in-memory hot object cache, where some por-
tion of the main memory is used as a cache for frequently
used objects, which can further improve throughput.

4 HashCache Implementation

We implement a common HashCache filesystem I/O
layer so that we can easily use the same interface with
different applications. We expose this interface via
POSIX-like calls, such as open(), read(), write(), close(),
seek(), etc., to operate on files being cached. Rather than
operate directly on raw disk, HashCache uses a large file
in the standard Linux ext2/ext3 filesystem, which does
not require root privilege. Creating this zero-filled large
file on a fresh ext2/ext3 filesystem typically creates a
mostly contiguous on-disk layout. It creates large files
on each physical disk and multiplexes them for perfor-
mance. The HashCache filesystem is used by the Hash-
Cache Web proxy cache as well as other applications we
are developing.

4.1 External Indexing Interface
HashCache provides a simple indexing interface to sup-
port other applications. Given a key as input, the inter-
face returns a data structure containing the file descrip-
tors for the Disk Table file and the contiguous log file
(if required), the location of the requested content, and
metadata such as the length of the contiguous blocks be-
longing to the item, etc. We implement the interface for
each indexing policy we have described in the previous
section. Using the data returned from the interface one
can utilize the POSIX calls to handle data transfers to
and from the disk. Calls to the interface can block if disk
access is needed, but multiple calls can be in flight at the
same time. The interface consists of roughly 600 lines of
code, compared to 21000 lines for the HashCache Web
Proxy.

4.2 HashCache Proxy
The HashCache Web Proxy is implemented as an
event-driven main process with cooperating helper pro-
cesses/threads handling all blocking operations, such as
DNS lookups and disk I/Os, similar to the design of
Flash [25]. When the main event loop receives a URL re-
quest from a client, it searches the in-memory hot-object
cache to see if the requested content is already in mem-
ory. In case of a cache miss, it looks up the URL us-
ing one of the HashCache indexing policies. Disk I/O
helper processes use the HashCache filesystem I/O inter-
face to read the object blocks into memory or to write
the fetched object to disk. To minimize inter-process
communication (IPC) between the main process and the
helpers, only beacons are exchanged on IPC channels
and the actual data transfer is done via shared memory.

4.3 Flexible Memory Management
HTTP workloads will often have a small set of objects
that are very popular, which can be cached in main mem-
ory to serve multiple requests, thus saving disk I/O. Gen-
erally, the larger the in-memory cache, the better the
proxy’s performance. HashCache proxies can be config-
ured to use all the free memory on a system without un-
duly harming other applications. To achieve this goal, we
implement the hot object cache via anonymous mmap()
calls so that the operating system can evict pages as
memory pressure dictates. Before the HashCache proxy
uses the hot object cache, it checks the memory residency
of the page via the mincore() system call, and sim-
ply treats any missing page as a miss in the hot object
cache. The hot object cache is managed as an LRU list
and unwanted objects or pages no longer in main mem-
ory can be unmapped. This approach allows the Hash-
Cache proxy to use the entire main memory when no
other applications need it, and to seamlessly reduce its
memory consumption when there is memory pressure in
the system.

In order to maximize the disk writing throughput, the
HashCache proxy buffers recently-downloaded objects
so that many objects can be written in one batch (often
to a circular log). These dirty objects can be served from
memory while waiting to be written to disk. This dirty
object cache reduces redundant downloads during flash
crowds because many popular HTTP objects are usually
requested by multiple clients.

HashCache also provides for grouping related objects
to disk so that they can be read together later, providing
the benefits of prefetching. The HashCache proxy uses
this feature to amortize disk seeks over multiple objects,
thereby obtaining higher read performance. One com-
mercial system parses HTML to explicitly find embed-
ded objects [7], but we use a simpler approach – simply
grouping downloads by the same client that occur within
a small time window and that have the same HTTP Re-
ferrer field. We have found that this approach works well
in practice, with much less implementation complexity.

4.4 Parameter Selection
For the implementation, we choose some design param-
eters such as the block size, the set size, and the hash
size. Choosing the block size is a tradeoff between space
usage and the number of seeks necessary to read small
objects. In Table 5, we show an analysis of object sizes
from a live, widely-used Web cache called CoDeeN [41].
We see that nearly 75% of objects are less than 8KB,
while 87.2% are less than 16KB. Choosing an 8KB block
would yield better disk usage, but would require multiple
seeks for 25% of all objects. Choosing the larger block
size wastes some space, but may increase performance.

Since the choice of block size influences the set size,
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Size (KB) % of objects < size
8 74.8
16 87.2
32 93.8
64 97.1
128 98.8
256 99.5

Table 5: CDF of Web object sizes

we make the decisions based on the performance of cur-
rent disks. Table 6 shows the average number of seeks
per second of three recent SATA disks (18, 60 and 150
GB each). We notice the sharp degradation beyond
64KB, so we use that as the set size. Since 64KB can
hold 4 blocks of 16KB each or 8 blocks of 8KB each, we
opt for an 8KB block size to achieve 8-way set associa-
tivity. With 8 objects per set, we choose to keep 8 bits
of hash value per object for the in-memory indexes, to
reduce the chance of collisions. This kind of an analy-
sis can be automatically performed during initial system
configuration, and are the only parameters needed once
the specific HashCache policy is chosen.

5 Performance Evaluation
In this section, we present experimental results that com-
pare the performance of different indexing mechanisms
presented in Section 3. Furthermore, we present a
comparison between the HashCache Web Proxy Cache,
Squid, and a high-performance commercial proxy called
Tiger, using various configurations. Tiger implements
the best practices outlined in Section 2 and is currently
used in commercial service [6]. We also present the im-
pact of the optimizations that we included in the Hash-
Cache Web Proxy Cache. For fair comparison, we use
the same basic code base for all the HashCache variants,
with differences only in the indexing mechanisms.

5.1 Workload
To evaluate these systems, we use the Web Poly-
graph [37] benchmarking tool, the de facto industry stan-
dard for testing the performance of HTTP intermediaries
such as content filters and caching proxies. We use the
Polymix [38] environment models, which models many
key Web traffic characteristics, including: multiple con-
tent types, diurnal load spikes, URLs with transient pop-
ularity, a global URL set, flash crowd behavior, an un-
limited number of objects, DNS names in URLs, object
life-cycles (expiration and last-modification times), per-
sistent connections, network packet loss, reply size vari-
ations, object popularity (recurrence), request rates and
inter-arrival times, embedded objects and browser behav-
ior, and cache validation (If-Modified-Since requests and
reloads).

Read Size (KB) Seeks/sec Latency/seek (ms)
1 78 12.5
4 76 12.9
8 76 13.1
16 74 13.3
32 72 13.7
64 70 14.1
128 53 19.2

Table 6: Disk performance statistics

We use the latest standard workload, Polymix-4 [38],
which was used at the Fourth Cache-off event [39] to
benchmark many proxies. The Polygraph test harness
uses several machines for emulating HTTP clients and
others to act as Web servers. This workload offers a
cache hit ratio (CHR) of 60% and a byte hit ratio (BHR)
of 40% meaning that at most 60% of the objects are
cache hits while 40% of bytes are cache hits. The aver-
age download latency is 2.5 seconds (including RTT). A
large number of objects are smaller than 8.5 KB. HTML
pages contain 10 to 20 embedded (related) objects, with
an average size of 5 to 10 KB. A small number (0.1 %)
of large downloads (300 KB or more) have higher cache
hit rates. These numbers are very similar to the charac-
teristics of traffic in developing regions [8].

We test three environments, reflecting the kinds of
caches we expect to deploy. These are the low-end sys-
tems that reflect the proxy powered by a laptop or simi-
lar system, large-disk systems where a larger school can
purchase external storage to pre-load content, and high-
performance systems for ISPs and network backbones.

5.2 Low-End System Experiments
Our first test server for the proxy is designed to mimic
a low-memory laptop, such as the OLPC XO Laptop, or
a shared low-powered machine like an OLPC XS server.
Its configuration includes a 1.4 GHz CPU with 512 KB
of L2 cache, 256 MB RAM, two 60GB 7200 RPM SATA
drives, and the Fedora 8 Linux OS. This machine is far
from the standard commercial Web cache appliance, and
is likely to be a candidate machine for the developing
world [23].

Our tests for this machine configuration run at 40-275
requests per second, per disk, using either one or two
disks. Figure 3 shows the results for single disk perfor-
mance of the Web proxy using HashCache-Basic (HC-
B), HashCache-Set (HC-S), HashCache-SetMem (HC-
SM), HashCache-Log without object prefetching (HC-
LN), HashCache-Log with object prefetching (HC-L),
Tiger and Squid. The HashCache tests use 60 GB caches.
However, Tiger and Squid were unable to index this
amount of storage and still run acceptably, so were lim-
ited to using 18 GB caches. This smaller cache is still
sufficient to hold the working set of the test, so Tiger and
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Figure 3: Peak Request Rates for Different policies for
low end SATA disk.

policy SATA SCSI SCSI
7200 10000 15000

HC-Basic 40 50 85
HC-Set 40 50 85
HC-SetMem 66 85 140
HC-LogN 132 170 280
HC-LogLRU 264 340 560
HC-Log 264 340 560
Commercial 264 340 560

Table 7: Expected throughputs (reqs/sec) for policies
for different disk speeds– all calculations include read
prefetching

Squid do not suffer in performance as a result. Table 7
gives the analytical lowerbounds for performance of each
of these policies for this workload and the disk perfor-
mance. The tests for HashCache-Basic and HashCache-
Set achieve only 45 reqs/sec. The tests for HashCache-
SetMem achieve 75 reqs/sec. Squid scales better than
HashCache-Basic and HashCache-Set and achieves 60
reqs/sec. HashCache-Log (with prefetch), in compari-
son, achieves 275 reqs/sec. The Tiger proxy, with its
optimized indexing mechanism, achieves 250 reqs/sec.
This is less than HashCache-Log because Tiger’s larger
index size reduces the amount of hot object cache avail-
able, reducing its prefetching effectiveness.

Figure 4 shows the results from tests conducted
on HashCache-SetMem and two configurations of
HashCache-SetMemLRU using 2 disks. The perfor-
mance of the HashCache-SetMem system scales to 160
reqs/sec, which is slightly more than double its perfor-
mance with a single disk. The reason for this difference
is that the second disk does not have the overhead of han-
dling all access logging for the entire system. The two
other graphs in the figure, labeled HC-SML30 and HC-
SML40, are the 2 versions of HashCache-SetMemLRU
where only 30% and 40% of all the set headers are
cached in main memory. As mentioned earlier, the
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policies on low end SATA disks.
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hash table and the LRU list overhead of HashCache-
SetMemLRU is such that when 50% of set headers are
cached, it takes about the same amount of memory when
using HashCache-SetMem. These experiments serve to
show that HashCache-SetMemLRU can provide further
savings when working set sizes are small and one does
not need all the set headers in main memory at all times
to perform reasonably well.

These experiments also demonstrate HashCache’s
small systems footprint. Those measurements are shown
in Figure 5 for the single-disk experiment. In all cases,
the disk is the ultimate performance bottleneck, with
nearly 100% utilization. The user and system CPU re-
main relatively low, with the higher system CPU lev-
els tied to configurations with higher request rates.
The most surprising metric, however, is Squid’s high
memory usage rate. Given that its storage size was
only one-third that used by HashCache, it still exceeds
HashCache’s memory usage in HashCache’s highest-
performance configuration. In comparison, the lowest-
performance HashCache configurations, which have per-
formance comparable to Squid, barely register in terms
of memory usage.
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Request Rate Throughput Hit Time All Time Miss Time CHR % BHR %
per sec Mb/s msec msec msec

HashCache-Log 2200 116.98 77 1147 2508 56.91 41.06
Tiger 2300 121.40 98 1150 2512 56.49 41.40
Squid 400 21.38 63 1109 2509 57.25 41.22

Table 8: Performance on a high end system
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Figure 6: Low End Systems Hit Ratios

Figure 6 shows the cache hit ratio (by object) and the
byte hit ratios (bandwidth savings) for the HashCache
policies at their peak request rate. Almost all configu-
rations achieve the maximum offered hit ratios, with the
exception of HashCache-Basic, which suffers from hash
collision effects.

While the different policies offer different tradeoffs,
one might observe that the performance jump between
HashCache-SetMem and HashCache-Log is substantial.
To bridge this gap one can use multiple small disks in-
stead of one large disk to increase performance while
still using the same amount of main memory. These
experiments further demonstrate that for low-end ma-
chines, HashCache can not only utilize more disk stor-
age than commercial cache designs, but can also achieve
comparable performance while using less memory. The
larger storage size should translate into greater network
savings, and the low resource footprint ensures that the
proxy machine need not be dedicated to just a single
task. The HashCache-SetMem configuration can be used
when one wants to index larger disks on a low-end ma-
chine with a relatively low traffic demand. The lowest-
footprint configurations, which use no main-memory in-
dexing, HashCache-Basic and HashCache-Set, would
even be appropriate for caching in wireless routers or
other embedded devices.

5.3 High-End System Experiments
For our high-end system experiments, we choose hard-
ware that would be more appropriate in a datacenter.
The processor is a dual-core 2GHz Xeon, with 2MB of
L2 cache. The server has 3.5GB of main memory, and
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Figure 7: High End System Performance Statistics

five 10K RPM Ultra2 SCSI disks, of 18GB each. These
disks perform 90 to 95 random seeks/sec. Using our an-
alytical models, we expect a performance of at least 320
reqs/sec/disk with HashCache-Log. On this machine we
run HashCache-Log, Tiger and Squid. From the Hash-
Cache configurations, we chose only HashCache-Log
because the ample main memory of this machine would
dictate that it can be used for better performance rather
than maximum cache size.

Figure 7 shows the resource utilization of the three
systems at their peak request rates. HashCache-Log con-
sumes just enough memory for hot object caching, write
buffers and also the index, still leaving about 65% of the
memory unused. At the maximum request rate, the work-
load becomes completely disk bound. Since the working
set size is substantially larger than the main memory size,
expanding the hot object cache size produces diminish-
ing returns. Squid fails to reach 100% disk throughput
simultaneously on all disks. Dynamic load imbalance
among its disks causes one disk to be the system bottle-
neck, even though the other four disks are underutilized.
The load imbalance prevents it from achieving higher re-
quest rates or higher average disk utilization.

The performance results from this test are shown in
Table 8, and they confirm the expectations from the ana-
lytical models. HashCache-Log and Tiger perform com-
parably well at 2200-2300 reqs/sec, while Squid reaches
only 400 reqs/sec. Even at these rates, HashCache-Log
is purely disk-bound, while the CPU and memory con-
sumption has ample room for growth. The per-disk per-
formance of HashCache-Log of 440 reqs/sec/disk is in
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1TB Configuration Request Rate Throughput Hit Time All Time Miss Time CHR % BHR %
per sec Mb/s msec msec msec

HashCache-SetMem 75 3.96 27 1142 2508 57.12 40.11
HashCache-Log 300 16.02 48 1139 2507 57.88 40.21
HashCache-LogLRU 300 16.07 68 1158 2510 57.15 40.08

2TB Configuration Request Rate Throughput Hit Time All Time Miss Time CHR % BHR %
per sec Mb/s msec msec msec

HashCache-SetMem 150 7.98 32 1149 2511 57.89 40.89
HashCache-Log 600 32.46 56 1163 2504 57.01 40.07
HashCache-LogLRU 600 31.78 82 1171 2507 57.67 40.82

Table 9: Performance on large disks
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Figure 8: Sizes of disks that can be indexed by 2GB
memory

line with the best commercial showings – the highest-
performing system at the Fourth Cacheoff achieved less
than an average of 340 reqs/sec/disk on 10K RPM
SCSI disks. The absolute best throughput that we find
from the Fourth Cacheoff results is 625 reqs/sec/disk
on two 15K RPM SCSI disks, and on the same
speed disks HashCache-Log and Tiger both achieve 700
reqs/sec/disk, confirming the comparable performance.

These tests demonstrate that the same HashCache
code base can provide good performance on low-
memory machines while matching or exceeding the per-
formance of high-end systems designed for cache ap-
pliances. Furthermore, this performance comes with a
significant savings in memory, allowing room for larger
storage or higher performance.

5.4 Large Disk Experiments
Our final set of experiments involves using HashCache
configurations with large external storage systems. For
this test, we use two 1 TB external hard drives attached to
the server via USB. These drives perform 67-70 random
seeks per second. Using our analytical models, we would
expect a performance of 250 reqs/sec with HashCache-
Log. In other respects, the server is configured compara-
bly to our low-end machine experiment, but the memory
is increased from 256MB to 2GB to accommodate some
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Figure 9: Large Disk System Performance Statistics

of the configurations that have larger index requirements,
representative of low-end servers being deployed [24].

We compare the performance of HashCache-SetMem,
HashCache-Log and HashCache-LogLRU with one or
two external drives. Since the offered cache hit rate for
the workload is 60%, we cache 6 out of the 8 log off-
sets in main memory for HashCache-LogLRU. For these
experiments, the Disk Table is stored on a disk separate
from the ones keeping the circular log. Also, since filling
the 1TB hard drives at 300 reqs/second would take exces-
sively long, we randomly place 50GB of data across each
drive to simulate seek-limited behavior.

Unfortunately, even with 2GB of main memory, Tiger
and Squid are unable to index these drives, so we were
unable to test them in any meaningful way. Figure 8
shows the size of the largest disk that each of the sys-
tems can index with 2 GB of memory. In the figure, HC-
SM and HC-L are HashCache-SetMem and HashCache-
Log, respectively. The other HashCache configurations,
Basic and Set have no practical limit on the amount of
externally-attached storage.

The Polygraph results for these configurations are
shown in Table 9, and the resource usage details are in
Figure 9. With 2TB of external storage, both HashCache-
Log and HashCache-LogLRU are able to perform 600
reqs/sec. In this configuration, HashCache-Log uses
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slightly more than 60% of the system’s memory, while
HashCache-LogLRU uses slightly less. The hit time for
HashCache-LogLRU is a little higher than HashCache-
Log because in some cases it requires 2 seeks (one for the
position, and one for the content) in order to perform a
read. The slightly higher cache hit rates exhibited on this
test versus the high-end systems test are due the Poly-
graph environment – without filling the cache, it has a
smaller set of objects to reference, yielding a higher of-
fered hit ratio.

The 1TB test achieves half the performance of the 2TB
test, but does so with correspondingly less memory uti-
lization. The HashCache-SetMem configuration actually
uses less than 10% of the 2GB overall in this scenario,
suggesting that it could have run with our original server
configuration of only 256MB.

While the performance results are reassuring, these ex-
periments prove that HashCache can index disks that are
much larger than conventional policies could handle. At
the same time, HashCache performance meets or exceeds
what other caches would produce on much smaller disks.
This scenario is particularly important for the develop-
ing world, because one can use these inexpensive high-
capacity drives to host large amounts of content, such
as a Wikipedia mirror, WAN accelerator chunks, HTTP
cache, and any other content that can be preloaded or
shipped on DVDs later.

6 Related Work
Web caching in its various forms has been studied ex-
tensively in the research and commercial communities.
As mentioned earlier, the Harvest cache [4] and CERN
caches [17] were the early approaches. The Harvest
design persisted, especially with its transformation into
the widely-used Squid Web proxy [35]. Much re-
search has been performed on Squid, typically aimed
at reorganizing the filesystem layout to improve perfor-
mance [16, 18], better caching algorithms [14], or better
use of peer caches [11]. Given the goals of HashCache,
efficiently operating with very little memory and large
storage, we have avoided more complexity in cache re-
placement policies, since they typically use more mem-
ory to make the decisions. In the case of working sets that
dramatically exceed physical memory, cache policies are
also likely to have little real impact. Disk cache replace-
ment policies also become less effective when storage
sizes grow very large. We have also avoided Bloom-
filter approaches [2] that would require periodic rebuilds,
since scanning terabyte-sized disks can sap disk perfor-
mance for long periods. Likewise, approaches that re-
quire examining multiple disjoint locations [19, 32] are
also not appropriate for this environment, since any small
gain in reducing conflict misses would be offset by large
losses in checking multiple locations on each cache miss.

Some information has been published about commer-
cial caches and workloads in the past, including the
design considerations for high-speed environments [3],
proxy cache performance in mixed environments [9],
and workload studies of enterprise user populations [12].
While these approaches have clearly been successful in
the developed world, many of the design techniques have
not typically transitioned to the more price-sensitive por-
tions of the design space. We believe that HashCache
demonstrates that addressing problems specific to the de-
veloping world can also open interesting research oppor-
tunities that may apply to systems that are not as price-
sensitive or resource-constrained.

In terms of performance optimizations, two previ-
ous systems have used some form of prefetching, in-
cluding one commercial system [7], and one research
project [33]. Based on published metrics, HashCache
performs comparably to the commercial system, despite
using a much similar approach to grouping objects, and
despite using a standard filesystem for storage instead
of raw disk access. Little scalability information is pre-
sented on the research system, since it was tested only
using Apache mod proxy at 8 requests per second. Oth-
erwise, very little information is publically available re-
garding how high-performance caches typically oper-
ate from the extremely competitive commercial period
for proxy caches, centered around the year 2000. In
that year, the Third Cache-Off [40] had a record num-
ber of vendors participate, representing a variety of dif-
ferent caching approaches. In terms of performance,
HashCache-Log compares favorably to all of them, even
when normalized for hardware.

Web caches also get used in two other contexts:
server accelerators and content distribution networks
(CDNs) [1, 10, 26, 41]. Server accelerators, also known
as reverse proxies, typically reside in front of a Web
server and offload cacheable content, allowing the Web
server to focus on dynamically-generated content. CDNs
geographically distribute the caches reducing latency to
the client and bandwidth consumption at the server. In
these cases, the proxy typically has a very high hit rate,
and is often configured to serve as much content from
memory as possible. We believe that HashCache is
also well-suited for this approach, because in the Set-
MemLRU configuration, only the index entries for popu-
lar content need to be kept in memory. By freeing the
main memory from storing the entire index, the extra
memory can be used to expand the size of the hot object
cache.

Finally, in terms of context in developing world
projects, HashCache is simply one piece of the infras-
tructure that can help these environments. Advances in
wireless network technologies, such as WiMax [42] or
rural WiFi [27, 36] will help make networking available
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to larger numbers of people, and as demand grows, we
believe that the opportunities for caching increase. Given
the low resource usage of HashCache and its suitability
for operation on shared hardware, we believe it is well-
suited to take advantage of networking advancements in
these communities.

7 Deployments
HashCache is currently deployed at two different lo-
cations in Africa, at the Obafemi Awolowo University
(OAU) in Nigeria and at the Kokrobitey Institute (KI)
in Ghana. At OAU, it runs on their university server
which has a 100 GB hard drive, 2 GB memory and a dual
core Xeon processor. For Internet connection, they pay
$5,000 per month for a 2 Mbps satellite link to an ISP in
Europe and the link has a high variance ICMP ping time
from Princeton ranging 500 to 1200 ms. We installed
HashCache-Log on the machine but were asked to limit
resource usage for HashCache to 50 GB disk space and
no more than 300 MB of physical memory. The server
is running other services such as a E-mail service and a
firewall for the department and it is also used for general
computation for the students. Due to privacy issues we
were not able to analyze the logs from this deployment
but the administrator has described the system as useful
and also noticed the significant memory and CPU usage
reduction when compared to Squid.

At KI, HashCache runs on a wireless router for a small
department on a 2 Mbps LAN. The Internet connection
is through a 256 Kbps sub-marine link to Europe and the
link has a ping latency ranging from 200 to 500 ms. The
router has a 30 GB disk and 128 MB of main memory
and we were asked to use 20 GB of disk space and as
little memory as possible. This prompted us to use the
HashCache-Set policy as there are only 25 to 40 people
using the router every day. Logging is disabled on this
machine as well since we were asked not to consume
network bandwidth on transferring the logs.

In both these deployments we have used HashCache
policies to improve the Web performance while consum-
ing minimum amount of resource. Other solutions like
Squid would not have been able to meet these resource
constraints while providing any reasonable service. Peo-
ple at both places told us that the idea of a faster Internet
to popular Web sites seemed like a distant dream until we
discussed the complete capabilities of HashCache. We
are currently working with OLPC to deploy HashCache
at more locations with the OLPC XS servers.

8 Conclusion and Future Work
In this paper we have presented HashCache, a high-
performance configurable cache storage for the devel-
oping regions. HashCache provides a range of config-
urations that scale from using no memory for indexing

to ones that require only one-tenth as much as current
high-performance approaches. It provides this flexibil-
ity without sacrificing performance – its lowest-resource
configuration has performance comparable to free soft-
ware systems, while its high-end performance is compa-
rable to the best commercial systems. These configura-
tions allow memory consumption and performance to be
tailored to application needs, and break the link between
storage size and in-memory index size that has been com-
monly used in caching systems for the past decade. The
benefits of HashCache’s low resource consumption al-
low it to share hardware with other applications, share
the filesystem, and to scale to storage sizes well beyond
what present approaches provide.

On top of the HashCache storage layer, we have built
a Web caching proxy, the HashCache Proxy, which can
run using any of the HashCache configurations. Us-
ing industry-standard benchmarks and a range of hard-
ware configurations, we have shown that HashCache per-
forms competitively with existing systems across a range
of workloads. This approach provides an economy of
scale in HashCache deployments, allowing it to be pow-
ered from laptops, low-resource desktops, and even high-
resource servers. In all cases, HashCache either performs
competitively or outperforms other systems suited to that
class of hardware.

With its operation flexibility and a range of available
performance options, HashCache is well suited to pro-
viding the infrastructure for caching applications in de-
veloping regions. Not only does it provide competitive
performance with the stringent resource constraint , but
also enables new opportunities that were not possible
with existing approaches. We believe that HashCache
can become the basis for a number of network caching
services, and are actively working toward this goal.
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Abstract
Many peer-to-peer distributed applications can benefit

from accurate predictions of Internet path performance.
Existing approaches either 1) achieve high accuracy for
sophisticated path properties, but adopt an unscalable
centralized approach, or 2) are lightweight and decentral-
ized, but work only for latency prediction.

In this paper, we present the design and implementa-
tion of iPlane Nano, a library for delivering Internet path
information to peer-to-peer applications. iPlane Nano
is itself a peer-to-peer application, and scales to a large
number of end hosts with little centralized infrastructure
and with a low cost of participation. The key enabling
idea underlying iPlane Nano is a compact model of Inter-
net routing. Our model can accurately predict end-to-end
PoP-level paths, latencies, and loss rates between arbi-
trary hosts on the Internet, with 70% of AS paths pre-
dicted exactly in our evaluation set. Yet our model can
be stored in less than 7MB and updated with approxi-
mately 1MB/day. Our evaluation of iPlane Nano shows
that it can provide significant performance improvements
for large-scale applications. For example, iPlane Nano
yields near-optimal download performance for both small
and large files in a P2P content delivery system.

1 Introduction
Peer-to-peer (P2P) systems offer a number of potential

advantages to the network systems designer, such as scal-
ability, resilience, and perhaps most importantly, cost-
effectiveness: P2P systems require little or no fixed in-
frastructure, and yet can scale to millions of end hosts.
These advantages have provoked considerable interest
in the P2P design paradigm among researchers [10, 14,
44]. There have also been several widespread deploy-
ments, including BitTorrent file sharing [11], Skype’s
use of detour routing for voice over IP [52], and multi-
player game servers that reduce bandwidth costs by us-
ing well-provisioned players to distribute objects to other
peers [4].

In this paper, we argue that a key missing piece of in-
frastructure for P2P applications is scalable and inexpen-
sive access to accurate information about Internet paths.
P2P applications by their nature select among a large
number of alternative paths; more accurate information

∗University of California, San Diego
†University of Washington
‡University of Massachusetts Amherst

can help streamline that search process. For example, a
P2P content distribution network [45, 38, 25] might bene-
fit from directing requests to a replica with a low latency,
low loss path. Similarly, an IP layer detour routing ser-
vice would benefit from structural information about the
Internet, to quickly find a path around a network fail-
ure [59, 23].

While server-based solutions for providing timely in-
formation about the Internet have been proposed and built
in the past [30, 1], they are less appropriate in the P2P
case. The iPlane [30] query engine, for example, runs as
a service, but since its algorithms require multi-gigabyte
memory resident data structures to generate predictions,
it would be difficult and costly to scale, especially for
a popular P2P application with millions of end hosts.
iPlane’s memory footprint means it cannot even run on
PlanetLab [41]. Further, iPlane’s data cannot be easily
distributed given its size and running the service on a few
nodes in turn significantly limits the rate at which queries
can be served.While network coordinate systems [13] do
scale, they only predict latency, and not the full range of
topology-aware performance metrics needed by P2P ap-
plications.

To address this gap, we have designed and built a
system called iPlane Nano, or iNano. iNano uses the
same input data and provides the same query interface
as iPlane, but is designed as a lightweight library that can
run on client machines, and even on small devices such
as Internet-capable smart phones. To make this work, we
have developed a compact model of Internet topology,
routing policy, and link performance metrics that can be
represented in less than 7MB, and updated with approxi-
mately 1MB/day. Yet this model is rich enough to be able
to accurately predict end to end routes, latencies, and loss
rates between arbitrary end hosts on the Internet. In our
evaluation, we find that iNano predicts 70% of AS paths
exactly, estimates latencies with less than 20ms of error
for over 60% of paths, and estimates loss rates with less
than 10% error for over 80% of paths.

Because iNano’s data set is the same for all end hosts,
both the model and its incremental daily updates can be
efficiently distributed using standard file sharing tech-
niques, such as via BitTorrent swarms. Our evaluation
shows that although our predictions are based on only a
tiny fraction of the total information available about the
Internet, iNano can significantly improve application per-
formance. For example, iNano yields near-optimal me-
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dian download performance for both small and large files
in a P2P content delivery system.

In summary, our primary contribution is to develop
an accurate yet lightweight approach for Internet perfor-
mance prediction. To this end, we develop:
• A pocket-sized, annotated link-level map of the Inter-

net, that can be represented in 7MB and updated daily
with 1MB of data.

• Techniques to infer and concisely represent informa-
tion stored in the forwarding tables of Internet routers,
but in orders of magnitude lesser space.

• Implementation of iNano, a system that enables
Internet-scale P2P applications to discover properties
of Internet paths.

• Case studies using CDNs, VoIP, and detour routing to
demonstrate the utility of iNano.

2 Motivation and Design Goals
2.1 Goals

iNano targets network applications that choose among
multiple candidate paths to improve data transfer perfor-
mance. The design goals of iNano and their motivations
are as follows.

Rich path metrics: iNano should enable distributed
applications to orchestrate their actions based on sophis-
ticated path information. Application-perceived path per-
formance may depend on one or more path metrics such
as latency, loss rate, or bottleneck capacity. For exam-
ple, TCP performance depends upon the latency as well
as loss rate along the path, so a CDN re-director or Bit-
Torrent tracker may wish to use both metrics in its deci-
sions. A VoIP server such as in Skype may wish to pick
a relay node according to the mean-opinion-score (MOS)
metric [5] that depends upon loss rate and latency. Live
video streaming systems [3, 2, 10] that set up an over-
lay network among participating end-hosts may wish to
incorporate path metrics such as latency, loss rate, and
bottleneck capacity in the construction of the overlay. A
combination of these metrics determines the quality of
the video a client receives as well as its initial buffering
delay.

Scalable lookup: iNano should scale to every end-
host in the Internet. The trend towards massively dis-
tributed applications such as CDNs, BitTorrent, and
Skype suggests that the potential demand for path per-
formance prediction requests may be comparable to DNS
or web search. Given the frequent occurrence of detour
routes [48, 29], it is conceivable that every transfer is pre-
ceded by a query about alternative paths to the destina-
tion. Furthermore, the lookups must be local to be ef-
fective; otherwise, the delay incurred may outweigh the
resultant improvement in data transfer performance.

Low infrastructure cost: iNano should incur a low

infrastructure cost to set up and maintain. A server-based
infrastructure will need to be continually provisioned as
demand increases and will incur significant cost to de-
ploy and maintain. Instead, iNano should leverage the
property of P2P applications—users not only create de-
mand but also contribute resources to the system—by
using computing cycles and bandwidth on participating
end-hosts rather than on dedicated servers.

Structural information: iNano should enable net-
work applications to base their decisions on the structure
of the path. For example, recent proposals have advo-
cated locality-aware peer selection in peer-to-peer sys-
tems by either choosing paths that minimize the AS path
length [9] or by jointly optimizing network cost and ap-
plication performance [57]. Knowing the route can also
enable applications to perform detour [48, 7] or multipath
routing [58, 24] for reliability or performance objectives.
Structural information can also be used to route around
network failures [59, 23].

Arbitrary end-hosts: iNano should enable an appli-
cation to infer path information between an arbitrary pair
of end-hosts, not just from itself to others. Many of
the examples above involving redirection in peer-to-peer
content distribution, VoIP relays, multicast overlay con-
struction, and detour routing require this capability. Fur-
thermore, iNano should provide forward as well as re-
verse path information between arbitrary end-hosts—a
goal that is challenging even for paths originating locally
because of the asymmetric nature of Internet routing.

2.2 Exploring design alternatives

Why can’t existing techniques achieve the above goals?
To appreciate the challenge, let us consider a few natural
design alternatives as shown in Table 1.

A1 is the well-studied network coordinates approach
to infer latencies between end-hosts without on-demand
measurement. In this approach, each end-host is assigned
a coordinate, typically in a metric space, and the latency
between two end-hosts is estimated as the distance be-
tween their coordinates. Distributed systems such as Vi-
valdi [13] implement the coordinate approach in a scal-
able manner. However, the only information they provide
to an application running on an end-host is the latency on
paths from that end-host to the rest of the Internet. Al-
though the coordinate system could potentially be mod-
ified to predict latencies between arbitrary end-hosts by
periodically disseminating a coordinate for every Inter-
net prefix, it is unclear how to extend this approach to
other path metrics such as loss rate or bottleneck capac-
ity. Also, since coordinate systems rely only on end-to-
end measurements, they do not provide information on
the route traversed by a path.

A2 is an approach where applications issue queries
about path performance to a network information ser-
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Design alternative Rich path
metrics

Structural in-
formation

Arbitrary
end-hosts

Scalable Infrastructure
cost

A1 Network coordinates × × ×
√

0
A2 Information plane (e.g.,

iPlane) servers

√
PoP path

√
× High

A3 Information plane as
“network newspaper”

√
PoP path

√
× Low

A4 Uncoordinated end-host
measurements

√
PoP path × × Low

A5 iNano
√

PoP path
√ √

Low

Table 1: Qualitative comparison of design alternatives for Internet path performance prediction.

vice hosted on centralized or replicated query servers.
This approach is suggested and made plausible by prior
work, namely iPlane, that developed techniques to accu-
rately predict the path and path metrics between an arbi-
trary pair of end-hosts. However, scaling replicated query
servers to handle requests from all end-hosts—a work-
load comparable to DNS—is challenging and would in-
cur a huge infrastructure cost to set up and maintain. The
number of query servers provisioned will need to grow
in proportion to the number of end-hosts issuing queries,
making this approach impractical for typical P2P appli-
cations.

A3 replicates a query server on each end-host. This
approach dubbed as “network newspaper” in [30] would
disseminate an atlas of measured Internet paths to end-
hosts to enable them to locally service their queries. The
atlas can be refreshed daily by sending incremental up-
dates; since most Internet paths do not change over a day
[40], daily updates are expected to be small. Unfortu-
nately, iPlane’s atlas of paths is several gigabytes in size,
making this approach unlikely to be adopted in practice.
An alternative is to delegate this task to a local agent (like
a local DNS nameserver) in each subnet, but the boot-
strapping overhead would pose a barrier to widespread
deployment and use. Another alternative is for each client
to only download its “view” of the network, i.e., proper-
ties of paths originating at itself, but this approach does
not allow an end-host to predict properties of paths be-
tween arbitrary end-hosts, e.g., as required to enable de-
tour routing.

A4, where each end-host conducts its own measure-
ments as needed, also suffers from the problem of not
being able to predict properties of paths between arbi-
trary end-hosts. Furthermore, such uncoordinated mea-
surements might impose an unreasonable measurement
overhead, e.g., measurement of loss rates and bandwidth
capacities require many large-sized packet probes to be
sent into the network. A centralized coordinator and ag-
gregator of measurements like iPlane amortizes this over-
head, but makes dissemination a challenge as discussed in
A2 and A3.

3 iNano Design
Our system, iNano, combines the best of the above alter-
natives. For scalability, iNano replicates query servers at
each end-host. To predict rich path metrics, iNano uses
a structural technique like iPlane that predicts the PoP-
level 1 path between an arbitrary pair of end-hosts. How-
ever, the data required to make such predictions needs to
be compact, like coordinates or like the AS-level Internet
graph, unlike a huge atlas of measured paths.

The key insight in iNano is a novel model for predict-
ing paths and their properties between arbitrary end-hosts
using a compact Internet atlas. iPlane uses a path compo-
sition technique to perform path predictions. To predict
the path from a source to a destination, the path compo-
sition technique composes two path segments that inter-
sect with each other. The first segment is from a path out
from the source to an arbitrary destination. The second
segment is from a path measured from one of iPlane’s
vantage points to the destination’s prefix. Depending on
which intersecting pair of segments is chosen, the path
obtained by composition is often similar to the actual
route from source to destination.

Instead of using an atlas of measured paths like
iPlane’s, iNano uses an atlas of measured links. The
space required by the former representation is propor-
tional to the number of vantage points while the lat-
ter representation requires space linear in the number of
nodes and edges in the underlying Internet graph. Conse-
quently, iNano’s atlas fits in less than 7MB, almost three
orders of magnitude smaller than iPlane’s atlas, enabling
it to be distributed to lightly powered end-hosts. The key
challenge in making this approach work is to make accu-
rate predictions about Internet path performance from an
atlas of observed links.

iNano’s approach of distributing a compact atlas and
locally resolving queries at end-hosts avoids significant
investment in server infrastructure. The approach also of-
floads the bandwidth cost of disseminating the atlas and
its periodic updates; the atlas can be swarmed among
end-hosts using, for example, BitTorrent. The genera-

1A Point-of-Presence (PoP) of an AS is the set of routers in that AS
in the same location.
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tion of the atlas itself is the only centralized component
in iNano. A central coordinator distributes the task of
issuing measurements to participating end-hosts and ag-
gregates the measured paths into a set of measured links.

iNano’s current measurement infrastructure is largely
the same as that of iPlane [30] but processes the mea-
surements in a completely different manner to make path
performance predictions in keeping with the goals stated
in Section 2. Although we use end-host measurements
in building the atlas, we use as a starting point tracer-
outes from PlanetLab [41] to destinations in 140K pre-
fixes, which include roughly 90% of prefixes at the Inter-
net’s edge. The interfaces discovered in the traceroutes
are clustered together such that interfaces in the same
Point of Presence (PoP) within an AS are in the same
cluster; routers in the same PoP within an AS are similar
from a routing perspective. To map the IP address of an
interface to its corresponding AS, iNano uses the map-
ping from prefixes to their origin ASes as seen in BGP
feeds [33] and also resolves aliases [53] to ensure dif-
ferent interfaces on the same router are mapped to the
same AS. The clustering of interfaces in each AS into
PoPs is performed using a combination of alias resolu-
tion, mapping DNS names to locations [55], and identi-
fying colocated interfaces based on similarity in reverse
path lengths.

iNano processes the gathered traceroutes in combina-
tion with the PoP clustering information to build an at-
las of inter-cluster links. To annotate links in this atlas
with performance metrics, iNano performs measurements
to infer the latencies and loss rates of inter-cluster links.
iNano uses the frontier search algorithm described in [30]
to partition the set of links across the PlanetLab vantage
points, with some redundancy to account for measure-
ment noise. Each node then attempts to measure the la-
tency and loss rates of links assigned to it. The tech-
nique for measuring loss rates is the same as that used
by iPlane. Measuring latencies of links is hard due to the
wide prevalence of asymmetric routing [40, 21]. iNano
tackles this challenge using a two-pronged approach—
first, by identifying symmetric paths, and second, by
leveraging measurements of symmetric paths to measure
latencies of other links that do not appear on symmetric
routes. iNano’s link latency measurement techniques are
described in [28]. To estimate the end-to-end latency and
loss rate between a source and destination, iNano predicts
the forward and reverse paths between these end-hosts
and composes the properties of the inter-cluster links on
the predicted paths.

4 Route Prediction
In this section, we develop an inference algorithm that
predicts routes by composing observed links between
routers. The set of observed links yields a graph cap-

turing the Internet’s physical topology. In order to pre-
dict an end-to-end route accurately, we need to compactly
model the routing decisions made by routers along can-
didate paths in this graph.

This inference and modeling problem is not easy. In-
ferring routes would be easy using a naive model that ex-
plicitly stores the information contained in the forwarding
tables of routers in the graph. However, that defeats our
primary goal of predicting routes using a compact graph
representation. Thus, the key challenge to developing a
compact model is to understand and describe the proce-
dure routers use to compute routes, i.e., to concisely de-
scribe how Internet routing works!

4.1 The Problem: Modeling Internet Routing

Compactly modeling Internet routing would be trivial if
routers simply used shortest path routing. The weights
used for shortest path computation could be inferred us-
ing existing approaches [31]. However, Internet route se-
lection is driven by a number of factors such as routing
policies driven by economic considerations, traffic engi-
neering driven by load balancing goals, and performance
considerations that can not be characterized as shortest
path routing. Furthermore, end-to-end Internet routes are
computed by a set of complex interacting protocols (such
as BGP, OSPF, and RIP) rather than a single protocol.

Fortunately, we are aided by a large body of prior
research on understanding and reverse-engineering the
routing decision process, as well as the knowledge the
research community has acquired on how Internet rout-
ing works in practice. These result in the following com-
monly accepted “textbook” principles about how Internet
routing works.

1. Policy preference: ASes use local preferences to se-
lect routes. Typically, an AS prefers routes through
its customers over those through its peers, and either
of those over routes through its providers 2. Further,
ASes do not export all of their paths to their neigh-
bors; for instance, ASes do not export paths through
their peers to other peers/providers. Commonly
used export policies and AS preferences are be-
lieved to result in valley-free Internet routes [19], in
which any path that traverses a provider-to-customer
edge or a peer-to-peer edge does not later traverse a
customer-to-provider or peer-to-peer edge.

2. Shortest AS path: After applying local preferences,
if a router has multiple candidate paths that it prefers
equally, the default is to select the route containing
the fewest ASes. Typically, several paths may have
the same local preference and AS path length.

2Customer ASes pay their providers while peers connect to each
other at no cost.
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GRAPH(s, d):
N  ← {d}
for each v ∈ G

if v is a neighbor of d, thenD(v, d) = c(v, d);
elseD(v, d) = [∞,∞] ;

Do
Pick w /∈ N  such thatD(w, d) is a minimum
N  ← N  ∪ {w};
for each neighbor v of w

ifD(v, d) > D(w, d) ⊕ c(v, w), then
D(v, d) = D(w, d) ⊕ c(v, w);
P (v, d) = v.P (w, d);

until N = N 

Figure 1: The algorithm used by GRAPH to predict a valley-
free route from s to d in a graph G. ⊕ is the operator that de-
fines how edge weights compose in our application of Dijkstra’s
shortest path algorithm.

3. Exit policies: Among these, routes are chosen so as
to meet intradomain objectives, e.g. by choosing the
nearest exit point to the next AS (referred to as early-
exit or hot potato routing) along the path. In some
cases that often involve explicit compensation or ne-
gotiation among adjacent ASes to reduce their com-
bined costs, ASes adopt a late-exit policy.

How well does the above procedure describe Internet
routing? To evaluate this, we develop a simple algorithm
based on dynamic programming that underlies various
forms of shortest path computation. The algorithm in-
corporates the above criteria to compute an on-demand
route, based on a graph representation of the Internet.

Our first attempt, GRAPH, reduces the representation
size by over two orders of magnitude, but has poor predic-
tion accuracy. This suggests that exceptions to the above
criteria are common and must be carefully integrated into
the model, as we describe in Sections 4.3.1–4.3.4.

4.2 GRAPH: A first cut

We present the algorithm in three steps. First, we describe
a basic algorithm using dynamic programming (similar to
Dijkstra’s shortest path algorithm) that captures the pref-
erence for short AS paths, assuming early-exit between
every pair of ASes. Second, we augment the algorithm
to model late-exit when necessary. Third, we augment
the algorithm to model common export policies and local
preferences for routes.

4.2.1 Basic algorithm

Figure 1 shows the pseudocode for GRAPH, an algorithm
that predicts the route between a source s and a destina-
tion d. It chooses the shortest AS path among all valley-
free paths between s and d; further, it uses early-exit at
every AS. The algorithm is similar to Dijkstra’s shortest
path algorithm. Unlike conventional Dijkstra however,

the route computation 1) backtracks from the destination
to all sources, and 2) uses a two-tuple cost metric.

The cost of a route from each node v to the destina-
tion d, represented as D(v, d), is a strictly ordered two-
tuple [number of AS hops to the destination, cost to exit
the current AS], with the first component considered as
the more significant value. For two adjacent nodes v
and w connected by a link of latency l(v, w), the cost
of the edge between them, represented as c(v, w), is de-
fined as [0, l(v, w)] if v and w are in the same AS, and
as [1, 0] otherwise. The ⊕ operator in the algorithm re-
sets the second component to 0 upon crossing an AS
boundary as follows. If v and w belong to the same AS,
D(w, d) ⊕ c(v, w) is defined as D(w, d) + [0, l(v, w)],
where ‘+’ does the usual component-wise addition. If v
and w belong to adjacent ASes,D(w, d)⊕ c(v, w) is de-
fined as [D(w, d)[1]+1, 0]. It is straightforward to verify
that this definition of cost preserves the invariant that if a
node u ∈ N , then P (u, d) is a shortest path from u to
d. As in Dijkstra’s algorithm, this invariant ensures the
correctness of the algorithm.

4.2.2 Incorporating late-exit

It is straightforward to extend the above algorithm to han-
dle pairs of ASes that use late-exit instead of early-exit.
We model late-exit as two adjacent ASes v, w (such as
AS6380 and AS6389 – both of which are owned by Bell
South) jointly computing the path through them in or-
der to minimize the overall transit latency. To infer late
exit, we use the technique proposed in [54]. We sim-
ply redefine the ⊕ operator in the following way. An
inter-AS edge (v, w) corresponding to a late-exit route
has c(v, w) = [0, l(v, w)], meaning that it is treated as an
intra-AS edge. We do however have to increment the AS
hop count by two when we backtrack out of the AS con-
taining v. This is accomplished by maintaining another
component in the cost tuple that corresponds to the num-
ber of consecutive late-exit transitions. This component
corresponds to the number of AS hops that are not yet ac-
counted for in the AS path length component of the cost
metric. Whenever an AS transition is traversed where late
exit is not applied, this third component is added into the
AS path length component and reset to zero.

4.2.3 Incorporating export policies

Next, we incorporate constraints corresponding to com-
monly used export policies. We infer AS relation-
ships, such as which are peers and which have paid cus-
tomer/provider transit , using a combination of CAIDA’s
inferences [16] and Gao’s technique [19]. We model the
default export policy in which an AS advertises any paths
through customer ASes to all its neighbors, and it exports
paths from peers and providers to only its customers. It
is well-known that this export policy leads to valley-free
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Figure 2: Route prediction from S to D so as to satisfy
customer<peer<provider preferences. Dark nodes are down
nodes, and light nodes are up nodes. Bold lines go from cus-
tomers to their providers, dashed lines connect peers, and faded
dotted lines go from providers to their customers. GRAPH tra-
verses all the customer-to-provider edges in the first phase to
finalize routes from 3 and 4 to D. Only peering links are tra-
versed in the second phase making 2 choose a path through 3
over a shorter one via 4. Finally, provider-to-customer edges
are traversed.

routes.
To compute valley-free routes, instead of having a sin-

gle node for each cluster (PoP) i, we instead introduce
two nodes in the graph: an up node upi and a down
node downi, and GRAPH computes the path from ups to
downd. The idea is that the construction of edges will
force every path to transition from up nodes to down
nodes at most once, thereby guaranteeing the path is
valley-free. Let i and j be two clusters observed as adja-
cent.

1. If i and j belong to the same AS, there is an undi-
rected edge between upi and upj and one between
downi and downj .

2. If i’s AS is a provider of j’s AS, there is a directed
edge from upj to upi and another directed edge from
downi to downj . This edges capture that a customer
will not provide transit between two providers.

3. If i and j belong to peer ASes, there is a directed
edge from upi to downj and from upj to downi.
These edges capture that i’s AS will use paths
through j only for itself and its customers (and sim-
ilarly for j’s AS and paths through i).

Finally, for each IP address i, there is a directed edge
from upi to downi. It is easy to verify that all routes in the
graph are valley-free by construction (after transitioning
from up to down, a transition from down to up can no
longer occur).

4.2.4 Incorporating local preferences

Next, we incorporate local preferences in selecting AS
paths. We assume that an AS prefers paths through its
customers over those through its peers, which are in turn
preferable to paths through provider ASes. To incor-
porate these preferences, instead of calculating paths to
the destination from all ASes and all routers in a batch,
GRAPH computes routes in three phases.

Figure 2 illustrates the phased approach. GRAPH first
limits the graph to contain only the set of down nodes,
along with the edges connecting them, and computes the
optimal paths from these nodes to the destination. This
frontier reaches precisely the routers in those ASes that
get paid for providing transit to the destination. Once
all such nodes have been visited and their best paths dis-
covered, the algorithm is allowed to reach any additional
nodes that can be reached only using peering; by con-
struction, only one peering is traversed. Finally, the algo-
rithm is allowed to use any link (e.g., provider links) to
reach all remaining addresses.

Results preview: As we show in detail in Section 6,
GRAPH—despite taking into account many aspects of
default routing behavior—correctly predicts only 30%
of the AS paths for our measured dataset. In contrast,
the path composition approach [30] (that dominates our
achievable accuracy) achieves 70% accuracy using the
entire set of observed routes.

On the other hand, the storage overhead of GRAPH
is directly proportional to the number of observed Inter-
net links. As we will see in the evaluation section, this
is two orders of magnitude more compact than the path
composition approach. Thus, the challenge is to improve
GRAPH’s accuracy while keeping it compact.

4.3 Addressing sources of prediction error

A careful examination of the above results reveals that
GRAPH’s inaccuracies arise partly from our failure to
model certain other aspects of Internet routing behav-
ior and partly from errors in inferred AS relationships.
GRAPH’s deficiencies are due to the following reasons.

1. Asymmetry: A significant fraction of Internet routes
are asymmetric [40, 21]. While GRAPH reflects
some asymmetry, e.g., due to early exit routing, it
does not fully capture asymmetric policy behavior.

2. Inaccurate export policy: If GRAPH fails to identify
a peer-to-peer relationship between two ASes, it is
overly lenient in inferring export policy and predicts
non-existent routes that would be filtered in practice.

3. Incorrect local preferences: An AS’s customer may
be a provider for specific paths. For example, two
ASes may have different relationships in different
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regions because one AS may have larger network
presence than the other in one region and vice-versa
in another region. Incorrect local preferences could
result in an AS selecting a less preferable route, e.g.,
via a customer.

4. Traffic engineering: ASes may engineer routes in
order to improve routing for their customer traffic
compared to transit traffic.

We address each of these challenges by adding infor-
mation in our data set back into the graph.

4.3.1 Addressing asymmetry

Due to the asymmetric nature of Internet routing, adding
routes originating from the source to the atlas signifi-
cantly improves the accuracy of predicted routes [29]. To
reduce the likelihood of predicting non-existent routes,
iNano splits the graph into two subgraphs: 1) TO DST
that consists of all directed links observed on the tracer-
outes from iNano’s vantage points to all prefixes, and
2) FROM SRC that consists of all directed links on the
traceroutes contributed to iNano by participating end-
host sources.

For each cluster, we introduce a directed edge from its
corresponding node in FROM SRC to its corresponding
node in TO DST. iNano then predicts the route using the
Dijkstra-style algorithm that backtracks from the down
node corresponding to the destination in TO DST to the
up node corresponding to the source in FROM SRC. If it
fails to find such a route, a likely scenario if the atlas lacks
sufficient paths from the source prefix, then it attempts
to find a path from the down node corresponding to the
destination in TO DST to the up node corresponding to
the source in TO DST.

4.3.2 Inferring export policies

GRAPH predicts non-existent routes that would be filtered
given accurate AS relationships. Recall that we inferred
the AS relationships automatically by analyzing observed
behavior. Now, instead of explicitly distilling the AS re-
lationships from the observed routes, we explore an al-
ternate strategy that trades off a small amount of space
for improved prediction accuracy. We seed iNano with
known templates of export policy, e.g., if we observe a
path that traverses the ASes Cogent, AT&T, and Sprint,
we know that AT&T exports paths from Sprint to Cogent.

To implement this strategy, the valley-free check in
GRAPH is replaced with the following 3-tuple check.
iNano explicitly stores the list of all 3-tuples correspond-
ing to three consecutive ASes observed in traceroutes as
well as BGP feeds (discounting prepending). Ideally, we
would consider a predicted route valid only if all con-
stituent segments of size three satisfy the 3-tuple check by
appearing in the list, meaning that the path was exported
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Figure 3: Predicting the path from S to D. Thicker lines show
preferences, dashed lines show non-provider links, and dark
lines show the prediction. iNano cannot choose 1 − 5 − 4 be-
cause the 3-tuple does not appear and cannot choose 1− 7− 4
because 7 is not a provider for 4. It predicts 1 − 2 − 3 − 4
because of the preference for 2 over 5.

at every intermediate AS. In Figure 3, we see that, even
though it is shorter, iNano cannot choose path 1−5−4 be-
cause the 3-tuple (1, 5, 4) does not appear in any BGP ad-
vertisement or traceroute. iNano easily incorporates the
check in the backtracking step of the algorithm. How-
ever, since visibility into ASes at the edge is limited, we
might fail to observe all of the export policies for the
edge ASes. iNano thus performs this check only for 3-
segments in which the degree of the middle AS in the
Internet’s AS-level graph is greater than a threshold (5 in
the current implementation). Finally, we assume commu-
tativity among triples, so that if we observe (AS1, AS2,
AS3), we include (AS3, AS2, AS1) as well.

4.3.3 Improving local preferences

Recall that we infer AS relationships and incorporate the
customer<peer<provider preference order in the route
prediction algorithm. Unfortunately, AS relation infer-
ence by itself is difficult and error-prone. For example,
AS relationship inference based on Gao’s algorithm [19]
predicts that half of the edges observed between the top
hundred ASes ranked by degree correspond to sibling re-
lationships, which seems rather implausible. The 3-tuple
check by itself is not sufficient; although it ensures that
predicted routes consist only of observed tuples, it does
not take AS preferences into account when multiple op-
tions are available.

iNano uses a relationship-agnostic method to infer AS
preferences based only on observed routes. We infer
these preferences using the entire set of observed paths,
but include only the results of the inferences within the
compressed link-level representation of the atlas. The
technique works as follows. For each observed AS route
r, let r1, . . . , rm be the set of alternative routes available
from the source, visible in the topology but not taken. For
each route ri, if r and ri share the first k ASes but differ
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at the (k +1)’th AS, then the k’th AS is said to prefer the
(k + 1)th AS on r over the (k + 1)th AS on ri. Each
alternative route in the set r1, . . . , rm similarly yields a
preference.

iNano stores the preferences obtained above as 3-
tuples (AS1, AS2 > AS3), where AS1 prefers a route
through AS2 over a route through AS3 when both routes
are of the same length. In Figure 3, iNano selects the path
1 − 2 − 3 − 4 over the path 1 − 5 − 3 − 4 because of a
preference (1, 2 > 5). In some cases, we observe both
3-tuples (AS1, AS2 > AS3) and (AS1, AS3 > AS2). So,
we include the preference (AS1, AS2 > AS3) only if it
was observed at least three times as often as the prefer-
ence (AS1, AS3 > AS2). If not, we ignore both pref-
erences; we conjecture that such wavering preferences
are likely due to load balancing by AS1. While some
AS preferences might be restricted to paths from specific
source prefixes or to specific destination prefixes, iNano’s
model of Internet routing currently captures only prefer-
ences valid across sources and destinations. However, as
we show in our evaluation, this suffices to significantly
improve prediction accuracy.

4.3.4 Incorporating traffic engineering

In many cases, we observe an edge from AS1 to AS2 on
some route in the atlas, but never see this edge on a route
terminating at AS2, i.e., when the destination is in AS2.
This occurs when an AS provides transit using one policy
but routes to its own prefixes using a different policy, e.g.,
AS2 provides transit from AS1 to other ASes but does not
send out BGP updates to AS1 for its own prefixes. The
optimizations described above, the 3-tuple check and AS
preferences, are insufficient to handle such cases.

To address the problem, iNano explicitly maintains in-
formation about provider ASes. For each AS, we deter-
mine its upstream neighbor ASes, i.e., the set of ASes ob-
served immediately prior to this AS in the atlas. We also
determine the set of providers for each AS, i.e., the set of
ASes observed upstream of this AS when it is the origin.
For the latter, we use both our traceroute data as well as
BGP snapshots [33, 47]. For 1,352 ASes out of a total of
27,515 ASes in the atlas, we find the set of providers to be
a proper subset of the set of upstream neighbors. In such
cases, the previous algorithms could give the wrong path.
We refine the approach further to determine the provider
and upstream neighbor sets on a per-prefix basis. In Fig-
ure 3, iNano cannot select the path 1−7−4, even though
it is shorter, because 7 is not a provider for 4.

5 Implementation of iNano
Our implementation of iNano can roughly be divided
into two logical components—server-side and client-side.
The primary function of the server-side implementation
is to gather measurements and to build the link-based at-

las as described in the previous section. In addition, the
iNano server bootstraps the distribution of the atlas to
end-hosts.

The client-side implementation comprises a library
providing information about Internet paths. The library
performs four functions—fetching the atlas, augmenting
the atlas with local measurements, servicing queries for
path information from applications, and keeping the atlas
up-to-date.

Fetching the Atlas: On startup, the iNano library
fetches the atlas required for making predictions. The
atlas fetched includes the following datasets: the set
of inter-cluster links annotated with latencies and loss
rates, data to map IP addresses to prefixes and ASes,
AS degrees, AS 3-tuples, AS preferences, and the set of
providers for each AS. Having all end-hosts fetch the at-
las from iNano’s server would require an extremely large
amount of bandwidth to be provisioned at the server. This
would significantly drive up the cost required to run and
maintain iNano.

Therefore, we instead rely on swarming the atlas
across clients in order to distribute it. iNano’s central
server serves as the seed for the dissemination of the at-
las. In addition, every end-host running the iNano library
makes available the portion of the atlas it has downloaded
for other end-hosts to download. We have made our im-
plementation sufficiently modular that any peer-to-peer
filesharing protocol can be plugged in for distribution of
the atlas. Our current implementation uses CoBlitz [39]
and we are working on a version that uses BitTorrent [11].

Client-side Measurements: As previously explained
in Section 4.3.1, iNano explicitly incorporates path asym-
metry into its prediction model to improve the accuracy
of path prediction. To enable this, iNano’s library in-
cludes a measurement toolkit used to gather measure-
ments of the Internet from the perspective of end-hosts.
The library uses this toolkit to issue traceroutes daily to
destinations in a few hundred prefixes, chosen at random
from all the routable prefixes in the Internet. The new
links discovered as part of these traceroutes are added to
the FROM SRC plane of the atlas. The library also up-
loads the measured traceroutes to the central server. The
server incorporates these measurements into the atlas dis-
tributed out to all end-hosts. Buggy or malicious clients
could distort the atlas by contributing incorrect or fab-
ricated measurements. While such discrepancies could
be inferred by comparing with measurements from other
clients, we leave such inference to future work.

Serving Queries: Once the atlas is fetched and aug-
mented with client-side measurements, the library starts
up a local query server. This query server implements the
prediction algorithm developed in Section 4. The API
exported by the library enables applications to query for
information on paths between (src, dst) IP address pairs
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Dataset
No. of entries Compressed file

size (in MB)
Atlas Delta Atlas Delta

Inter-cluster links
309K 121K 1.99 0.49

with latencies
Link loss rates 47K 65K 0.21 0.29
Prefix to cluster 140K 0 0.76 0

Prefix to AS 287K 0 1.67 0
AS degrees 28K 0 0.09 0

AS three-tuples 1.05M 230K 1.23 0.56
AS preferences 9K 0 0.03 0

Provider mappings 33K 0 0.63 0
Total 6.61 1.34

Table 2: Current size of iNano’s atlas, in terms of number of
entries, compressed bytes on disk, and the delta between con-
secutive days.

in batches of arbitrary sizes. In future work, we plan to
support remote queries so that only one local host need
download the atlas.

Keeping Atlas Up-to-date: Paths and path proper-
ties on the Internet change over time. Hence, iNano’s
atlas needs to be kept up-to-date to reflect current net-
work conditions. Fortunately, the stationarity of Internet
routing keeps the bandwidth cost of such updates low. A
significant fraction of Internet routes are stationary [40]
across days and path properties are stationary [60, 30] on
the timescale of several hours. Therefore, as we show
later in our evaluation, the difference between the atlases
of consecutive days can typically be represented in ap-
proximately 1MB. As a result, once an end-host fetches
the complete atlas, it can maintain an up-to-date atlas
thereafter by downloading a daily 1MB update also as
a swarmed file download.

6 Evaluation
In this section, we evaluate the accuracy of iNano’s pre-
dictions of paths and path properties, and study the con-
tribution that each of iNano’s components makes towards
its predictive ability. We also quantify the stationarity of
iNano’s atlas across days, iNano’s storage requirements,
and how the atlas size would grow with additional van-
tage points.

6.1 Size of the atlas

First, we discuss the typical size of iNano’s atlas and then
evaluate how this size would scale with measurements
from more vantage points.

6.1.1 What is the current size of the atlas?

We describe a typical day’s atlas that we use for most
of the evaluation in this section. We leverage PlanetLab
nodes as vantage points for gathering the iNano atlas. The
atlas we use in our evaluation comprises traceroutes from
197 PlanetLab nodes to one destination each in 140K pre-
fixes. All of these traceroutes were gathered over the

course of a day. After alias resolution and clustering, 85K
distinct clusters are present in the atlas, with 309K links
between them. The dataset obtained by combining these
inter-cluster links annotated with latencies and loss rates,
observed AS 3-tuples, inferred AS preferences, and the
mapping of ASes to their providers is roughly 6.6MB in
size. AS 3-tuples, the dataset with the most number of en-
tries, are highly amenable to compression because only
2500 ASes, less than 10% of all the ASes in the atlas,
occur as the middle component of any 3-tuple. Table 2
shows the size associated with each of these components
of the atlas.

6.1.2 Does iNano’s atlas scale w.r.t vantage points?

iNano uses measurements from end-hosts to improve pre-
diction accuracy for asymmetric routes. However, adding
more measurements could significantly inflate the size of
iNano’s atlas, questioning the basic tenet of our work—is
the atlas still tractable if it includes measurements from
millions of end-hosts?

To study this question, we use the DIMES measure-
ment infrastructure [50]. The DIMES project runs an In-
ternet measurement agent on a few thousand end-hosts
distributed worldwide. We issued traceroutes from 845
DIMES agents to 100 randomly chosen destinations each
over the course of a week.

The addition of measurements from more vantage
points primarily impacts the number of inter-cluster links
and the number of AS three-tuples in the atlas. As stated
previously, measurements from PlanetLab find approxi-
mately 309K links and 1.05M AS three-tuples. Including
the measurements from the 845 DIMES agents into the
atlas added approximately 16K links and 14K AS three-
tuples in total. Even though the addition of links from
more vantage points is likely to be sublinear in practice,
we extrapolate linearly to get a conservative estimate of
the increase in the size of the atlas if we had measure-
ments from all of the Internet’s edge. Including tracer-
outes from end-hosts in all 100K prefixes at the Internet’s
edge would increase the number of links in the atlas from
309K to approximately 2.2M (16K new links added for
every 845 hosts), an eight-fold increase, and the num-
ber of AS three-tuples from 1.05M to 2.7M (14K new
three-tuples for every 845 hosts), a three-fold increase.
Assuming this data is as compressible as the PlanetLab
data, this would add 18MB to the atlas and 5MB to the
daily update. It is future work to determine how much of
this data is truly needed, discarding information that adds
little in terms of added accuracy.

6.2 Stationarity of measurements

iNano refreshes its atlas once every day. To eval-
uate whether the interval of a day between up-
dates suffices, we examine the stationarity of the
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Figure 4: Similarity of PoP-level paths across consecutive days
for routes measured from 195 PlanetLab nodes to destinations
in 140K prefixes.

two kinds of measurements—traceroutes and loss rate
measurements—used to construct iNano’s atlas. Our link
latencies do not capture transmission and queueing de-
lays, and hence, are extremely stable. We then present
the size of the difference between successive atlases that
arises as a result of the stationarity in measurements.

6.2.1 How stationary are routes?

We studied the stationarity of routing by comparing the
traceroutes measured from each of 195 PlanetLab nodes
to destinations in 140K prefixes on successive days.
Since iNano only considers the Internet topology at the
granularity of clusters corresponding to PoPs, we map
traceroutes to cluster-level paths for comparison. We
compared every path between a PlanetLab node and a
destination on one day with the same path the next day
using the path similarity metric [22, 29]. The similarity
metric compares two paths as the ratio of the size of the
intersection to the size of the union, of the sets of clusters
in each of the paths; the ordering of clusters in the paths
is not considered. The maximum value of this metric is
1 when both paths pass through exactly the same set of
clusters, and the minimum value is 0 when the paths are
completely disjoint. Figure 4 shows the distribution of
PoP-level path similarity we obtained by comparing paths
across consecutive days, grouping the similarity values
into bins of 0.05. 91% of the paths on the first day have
a similarity of at least 0.75 with the corresponding paths
measured the next day, 68% have a similarity of at least
0.9, and 50% remain identical.

The main prior work on studying path stationarity has
been by Paxson [40] and Zhang et al. [60]. Both observed
more stationarity in routes than we do—Paxson found
68% of paths to be identical across days at the granu-
larity of routers, and Zhang et al. found the same number
to be more than 75%. We believe the difference in our
findings is due to our significantly larger dataset. Pax-
son’s measurement dataset included traceroutes between
27 vantage points and Zhang et al. used traceroutes be-
tween 220 vantage points. In contrast, our analysis of

path stationarity uses traceroutes from 195 vantage points
to 140K destinations each.

6.2.2 How stationary are loss rates?

To evaluate the stationarity of packet loss, we probed
paths from 201 PlanetLab nodes to destinations in 5000
randomly chosen prefixes each. We sent out 100 ICMP
probes of size 1KB on each path, with successive probes
separated by 2 seconds, and determined the fraction of
probes for which we received no response. We repeated
these loss measurements 6 hours later. We found that
66% of paths on which we originally observed packet
loss continued to be lossy 6 hours later. We also repeated
these measurements 12 hours and 24 hours after the orig-
inal measurements. The fraction of lossy paths that con-
tinued to remain so decreased from 66% to 53% when
the interval between measurements was increased from 6
hours to 12 hours but remained steady at 53% when the
interval was increased further to 24 hours.

6.2.3 How stationary is iNano’s atlas?

As a result of the significant stationarity seen in both
paths and path properties over the interval of a day, the
difference between iNano’s atlases on consecutive days
is much smaller in size than the atlas itself. To update
the atlas from the previous day, iNano ships the union
of the old entries not present any more and new entries
added to the inter-cluster links, link loss rates, and ob-
served AS three-tuples datasets. The size of the link loss
rates delta is larger than the loss rates dataset itself be-
cause we have to update a link’s loss rate not just when
it changes from being lossless to lossy (or vice-versa), as
in our study on stationarity of loss above, but also when
the link’s loss rate changes. All the other datasets do not
change on a day-to-day basis and hence, are updated in
full only once a month. Table 2 shows that the typical
difference is 1.34MB in size, less than one-fifth the typ-
ical size of a complete atlas. This implies that once an
end-host downloads iNano’s atlas, it can keep its local in-
formation up-to-date by fetching a significantly smaller
update daily thereafter.

6.3 Accuracy of Predictions

We next evaluate the accuracy of iNano’s predictions
of both paths and path properties. From the 197 van-
tage points used in gathering the atlas described in Sec-
tion 6.1.1, we choose a subset of 37 at random as our rep-
resentative end-hosts. We pick 100 random traceroutes
performed from each of them. After discarding paths that
do not reach the destination or have AS-level loops, we
are left with a validation set of 2816 paths. To predict the
paths and path properties from one of the 37 sources, we
include links from all traceroutes from the remaining 196
vantage points in the TO DST plane and links from 100
other randomly chosen traceroutes from this source in the
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Figure 5: AS path prediction accuracy for measured traces as
components are incorporated into iNano. RouteScope is the
algorithm from [32], GRAPH is the algorithm described in
Section 4.2, and path-based is the iPlane algorithm. Improved
path-based incorporates iNano’s techniques into the iPlane al-
gorithm.

FROM SRC plane.

6.3.1 Can iNano predict AS paths accurately?

We evaluate the accuracy of iNano’s ability to predict the
AS paths in our validation set. We evaluate the accuracy
of iNano’s path prediction only at AS-level and not at
PoP-level because our dataset clustering router interfaces
into PoPs is complete. As a result, when our clustering
indicates that two PoP-level paths are not identical, it is
hard to say whether the difference is because of the in-
completeness of our clustering data or they are indeed
different. In contrast, our mapping from IPs to ASes is
significantly more comprehensive.

Figure 5 shows the improvement in accuracy of AS
path prediction as each component of iNano is incorpo-
rated into the GRAPH algorithm. The fraction of paths for
which we predict the AS path exactly right increases from
31% with GRAPH to 70% with all components of iNano
included. Each of the four techniques that iNano uses
significantly improves iNano’s ability to predict paths. In
fact, our final predictive model achieves the same AS path
accuracy as iPlane’s path composition technique, which
uses a path-based dataset two orders of magnitude larger
than iNano’s link-based atlas. Furthermore, iNano out-
does path composition in the ability to predict AS path
length.

Figure 5 also compares iNano’s AS path prediction ac-
curacy with that of RouteScope [32], the only prior work
that predicts AS paths from a graph representation of In-
ternet topology. First, RouteScope computes relation-
ships between ASes using an observed set of AS paths
as input. However, to predict the path between a (src,
dst) pair, it needs only the AS-level graph of the Internet.
RouteScope computes the set of shortest AS paths deter-
mined to be valley-free between the AS of src and the AS

of dst. For the problem setting targeted by iNano, a single
predicted path is required to estimate end-to-end perfor-
mance. Therefore, to evaluate the utility of RouteScope
in this setting, we choose one path at random from the
set of paths returned by RouteScope for each (src, dst)
pair. RouteScope’s accuracy at predicting AS path length
is only as good as that of GRAPH, and its accuracy at
predicting the correct AS path is worse than GRAPH’s.
iNano’s significantly better accuracy stems from its mod-
eling of Internet routing at PoP-level instead of AS-level
and its modeling of routing with techniques beyond sim-
ple valley-free routing.

iNano’s techniques are also applicable to a structural
approach that works by composing path segments. We
incorporate these techniques into iPlane’s path composi-
tion algorithm to improve the accuracy of prediction us-
ing an atlas of paths. When two path segments are being
spliced together, we check whether the sequence of ASes
prior to, at, and after the point of intersection exists in
our database of 3-tuples. We also ensure that AS prefer-
ences are enforced when multiple candidate intersections
pass the 3-tuple check. Figure 5 shows that the modified
path composition technique increases iPlane’s ability to
predict AS paths from 70% to 81%.

The ability to predict paths using either iNano or path
composition is limited by two factors, the comprehen-
siveness of the atlas measured from our vantage points
and the accuracy of our inferred routing policies. We
quantified the contribution of the former to the inaccu-
racy in path predictions as follows. For each path in our
validation set, we determined whether all the inter-cluster
links on the path were present in the corresponding atlas
used to predict the path. 7% of paths were such that at
least one of the inter-cluster links along the path was not
observed in the atlas used for prediction. Therefore, if we
had better coverage of the Internet’s topology with mea-
surements from more vantage points, the accuracy of path
prediction could increase to up to 77% using iNano and
to up to 88% using path composition.

6.3.2 How accurately can iNano estimate path prop-
erties?

Next, we evaluate iNano’s ability to estimate latencies
along paths to arbitrary end-hosts. For each of the paths
used in our evaluation of path prediction accuracy, we
compose iNano’s link latency estimates along the pre-
dicted forward and reverse paths to derive an estimate
for the end-to-end latency. Figure 6 shows the error in
iNano’s latency estimates. We derive latency estimates
for the same paths using the path-composition technique
of iPlane [30] and using Vivaldi [13], a popular network
coordinate system. iNano’s median latency estimation er-
ror is 11ms, as compared to a median error of 20ms with
Vivaldi. The path composition technique yields an even
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Figure 6: Accuracy of latency estimates along paths to arbitrary
destinations.

Figure 7: Accuracy of techniques in predicting 10 closest desti-
nations (in terms of delay).

lower median error of 6ms, partly because of its better
accuracy at predicting paths and partly because estimates
of latencies along path segments tend to be more accurate
than the sum of individual links.

However, the order of the three lines is reversed in the
tail. iNano yields better latency estimates than the path
composition technique in the tail because of differences
in the methodology used to obtain link latencies for the
former and path segment latencies for the latter. Our tech-
niques for inferring link latencies identify and use mea-
surements obtained by symmetric traversal of links [28],
whereas our latency estimates of path segments do not.
Like in iPlane [30], our latency estimates for path seg-
ments are obtained by just subtracting RTTs measured in
traceroutes. The fact that Vivaldi produces better latency
estimates in the tail than both iNano and path composi-
tion shows the significant room for improvement in our
latency estimates for both links and path segments.

Applications such as peer selection and detour routing
benefit from the ability to discern which destinations have
low latency from a source. We therefore also assess la-
tency estimation from the perspective of ranking different
destinations in terms of latency from a common source.
To quantify each technique’s predictive ability on this cri-
terion, we use the following metric. From each source,
we determine the 10 closest nodes in terms of actual mea-

Figure 8: Accuracy of loss rate estimates along paths to arbi-
trary destinations.

sured RTT among the 100 destinations per source in our
validation set. We then do the same using estimated la-
tencies and compute the intersection between the actual
and predicted sets of 10 closest nodes. Figure 7 plots the
cardinality of this intersection for each source in our val-
idation set. iNano’s ability to rank paths is significantly
better than that of Vivaldi, while being comparable to the
path-based approach.

We next consider how well iNano can predict loss
rates. We measured the loss rates along each of our vali-
dation paths and also measured the loss rate of each inter-
cluster link in our atlas. We then use iNano to estimate
the loss rate by composing the loss rates of the links along
the predicted forward and reverse paths. Figure 8 plots
the accuracy of iNano’s loss rate estimates. Since coordi-
nate systems, such as Vivaldi, can only estimate latency,
we restrict our comparison to iPlane’s path composition
technique in the case of loss rate. iNano approximates
path-based estimates with a much smaller atlas.

7 Applications
Our motivation in building iNano is to provide informa-
tion on Internet paths to peer-to-peer applications. There-
fore, we investigate the utility of the iNano library by
using it in three sample peer-to-peer applications—peer-
to-peer file transfer, voice-over-IP, and detour routing
around failures.

7.1 P2P file transfer

The next generation of content distribution networks
(CDNs) are moving away from server-based deployments
to client-based models. In contrast to services like Aka-
mai [6], several alternatives [45, 38, 25] have recently
emerged that perform content delivery by utilizing client
end-hosts for storage and bandwidth. In such client-based
CDNs, which are not centrally managed, a common prob-
lem is to determine the best replica for a given client.
iNano enables clients to make this decision locally.

To evaluate the utility of iNano in client-based content-
delivery systems, we emulated such a system as follows.
We considered 199 PlanetLab nodes as clients. We re-
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(a)

(b)

Figure 9: Evaluation of peer selection in a peer-to-peer file
transfer system for file sizes of (a) 30KB and (b) 1.5MB. Each
point is a median of 10 samples, with each sample obtained with
a different randomly selected set of replicas.

solved an Akamai-zed DNS name from these nodes to
discover 199 Akamai servers. For each client, we then
determined the set of replicas that host the content of its
interest by choosing 5 Akamai servers at random 3, inde-
pendently for every client. We then determined the best
replica for every client using four different sources of
path information—1) measured latencies, 2) latency es-
timates from Vivaldi [13], 3) latency estimates from OA-
SIS [18], a server-selection system used by many CDNs
deployed on PlanetLab, and 4) latency and loss rate es-
timates from iNano. We also consider the strategy of
choosing replicas at random. We evaluated each strat-
egy by downloading from every client a file from each
replica. We compare the download times for each strat-
egy with the optimal, which is the minimum of the down-
load times from the 5 replicas associated with the client.

Figure 9 shows the results of this experiment. First, we
downloaded a 30KB file wherein we only used iNano’s
estimates of path latency, because short TCP transfers
are dominated by latency [8]. iNano closely tracks the
performance obtained with measured latencies and is sig-
nificantly better than the performance obtained with the
use of Vivaldi or OASIS. We then repeated this experi-

3We used such a setup instead of using PlanetLab nodes as replicas
because the locations of PlanetLab nodes are hard-coded into OASIS.

Figure 10: Evaluation of relay selection for voice-over-IP using
iNano’s estimates of latency and loss rate.

ment for a 1.5MB file. In this setting, we use iNano’s
latency and loss rate estimates in combination to choose
the replica that would maximize TCP throughput based
on the PFTK model [37]. iNano’s predictions of loss rates
enable it to choose replicas that deliver significantly bet-
ter download performance than that obtained using mea-
sured latencies. Vivaldi and OASIS, restricted to model-
ing path latency, continue to yield poorer performance.

Unlike our experimental evaluation, in practice, a P2P
CDN may perform a transfer in parallel across multiple
paths assuming that at least one of those paths will pro-
vide good performance. iNano can be of benefit to such
applications in two ways. First, in applications that trans-
mit video, iNano can reduce the bootstrapping time for
the video to load by helping prune down a potentially
large set of path alternatives to a small set of good paths
used for the transfer, without performing any measure-
ments. Second, by enabling the application to focus in
on the good paths quickly, iNano reduces the redundant
traffic sent by the application that either gets dropped on
lossy paths or is used just for measurement.

7.2 Voice-over-IP

Voice-over-IP (VoIP) has emerged as a popular peer-to-
peer application in recent years. VoIP applications such
as Skype [52] allow end-hosts that are both behind NATs
to talk to each other by routing packets via another end-
host that serves as a relay. Picking the right relay is vital
to ensure reasonable quality of the end-to-end call [46].

We emulated a VoIP application by considering 119
PlanetLab nodes as representative end-hosts. We chose
1200 (source, destination) pairs at random and emulated
a VoIP call between each such pair by sending a 10KBps
constant bitrate UDP packet stream from the source to
the destination. For each call, we consider all end-hosts
other than the source and destination to be potential re-
lays. We use iNano to pick the 10 relays that minimize
the predicted loss rate and then choose the one amongst
these that minimizes end-to-end latency. We compare this
strategy of choosing relays with three other strategies—
1) closest to source based on measured latency, 2) closest
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Figure 11: Ability to route around failures using iNano’s path
predictions and using detour nodes at random. Note y axis is on
log scale to the base 2.

to destination based on measured latency, and 3) random.
Figure 10 compares the quality of the relay nodes cho-

sen by using iNano’s estimates of latency and loss rate
with the choices made using the other strategies. Paths
via relay nodes chosen by iNano see significantly less
packet loss compared to the alternatives.

7.3 Detouring around failures

Several Internet measurement studies [40, 60, 15, 20]
have shown that the typical availability of an Internet
path is “two-nines”, i.e., 99%. This level of availability
falls well short of that measured for the telephone net-
work [26]. One of the solutions proposed to mitigate
this problem is detour routing [48]. When a source is
unable to reach a destination, the source can attempt to
contact the destination instead by routing its packets via
another end-host that serves as a detour. Previous solu-
tions for improving availability with detour routing im-
plement one of three approaches—1) constantly moni-
tor paths between all pairs of end-hosts [7], 2) constantly
monitor paths between all pairs of detour nodes [1] and
have end-hosts route through nearby detour nodes, or 3)
detour via a small randomly chosen set of end-hosts [20].
All-pairs monitoring is infeasible at Internet-scale, mon-
itoring paths only between detour nodes ignores failures
on paths from end-hosts to nearby detour nodes, and a
small randomly chosen set of detours will not suffice for
widespread outages.

We explore a new way of routing around failures by
choosing detour nodes that maximize the disjointness be-
tween the detour path and the direct path. When a source
is unable to reach a destination, we use iNano to predict
the direct path from the source to the destination as well
as the detour path via each of the available intermedi-
aries. We then rank the detour paths based on the number
of PoPs and ASes shared by their predicted paths. We
choose the (k+1)th detour node in this ranking to be the
one that minimizes first the number of PoPs and second
the number of ASes in common with the direct path and
the k previously chosen detours. A strategy for recover-

ing from failures by using N detours would try the first
N detours in the ranking; the lower the value of N the
less overhead incurred.

To compare the efficacy of the above strategy for rout-
ing around failures with SOSR’s [20] strategy of using a
few detours at random, we gathered the following mea-
surements of path availability. We used 35 PlanetLab
nodes and performed traceroutes continually for a week
from each of them to destinations in 1000 randomly cho-
sen prefixes, once every 15 minutes. Whenever a Planet-
Lab node was unable to reach a destination, we measured
the availability of the detour path via the other 34 Plan-
etLab nodes. We consider for our analysis only the cases
when at least 10% of our sources were simultaneously
unable to reach the destination but at least 10% could.

Figure 11 compares our ability to route around failures
by intelligently choosing detours using iNano’s path pre-
dictions as opposed to choosing detours at random. For
the same number of detour paths, using iNano reduces
the fraction of cases when the destination is unreachable
by roughly a factor of 2. For example, the use of 5 detour
paths leaves the destinations unreachable in 2% of cases
compared to 4% of cases with the random strategy.

8 Related Work
Our work benefits from a decade of work in Internet
performance prediction [49, 17] and network measure-
ment [51, 55]. Compared to most prior work, our goal
is different: accurate prediction of sophisticated Internet
performance metrics from lightweight end-hosts, which
requires us to aggressively explore the trade-off between
accuracy and representation size.

8.1 Latency prediction

IDMaps [17] pioneered the idea of a network informa-
tion service that provides latency information between ar-
bitrary end-hosts on the Internet. IDMaps issues pings
from a set of vantage points to all participating end-
hosts and also measures latencies between all pairs of
vantage points. As more vantage points are added, the
size of IDMaps’ measurement data grows proportional to
the square of the number of vantage points. Therefore,
IDMaps uses a spanner-graph representation to compress
its data. iNano tackles a different compression problem,
that of compactly representing information encoded in
the forwarding tables of all routers in the Internet.

Ng et al. [35] showed that Internet nodes could be em-
bedded in a Euclidean coordinate space. The strength
of the approach is that it is 1) simple because it treats
the underlying network as a blackbox, and 2) lightweight
because only a few bytes of coordinates per node need
be stored. A large body of work has since refined this
basic approach to provide decentralization [36, 13], im-
proved computational efficiency [56], resilience to mea-
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surement error [12, 13], security [12], and accuracy.
The techniques used to minimize error include Simplex
minimization [12, 36], Principal Component Analysis
(PCA) [27, 56], and spring relaxation [13].

The network coordinates approach poses two problems
for our goals. First, the approach has been shown capable
of predicting latencies, but it is unclear how to adapt the
approach to other metrics that do not obey linear compo-
sition, such as loss rate. Second, the approach is funda-
mentally limited in accuracy. For example, about half of
all Internet routes are known to be asymmetric [40] and
a significant fraction are known to possess shorter detour
routes [48]. However, common embedding techniques
based on metric spaces will predict symmetric latencies
and fail to predict detour routes when triangle inequality
is violated. This limits the applicability of the approach
for many applications.

8.2 Prediction of multiple metrics

Sequoia [43] attempts to embed nodes on to a “virtual
prediction tree”. Edges of the tree are annotated with
latency and the latency between two nodes is predicted
as the length of the path connecting them. Unlike other
coordinate systems, Sequoia is also extensible to band-
width. However, it continues to use metric embeddings
that predict symmetric routes with no detour routes. Aka-
mai’s SureRoute [1] service optimizes transfers between
end-hosts by routing through a mesh of detour nodes.
End-hosts are routed through nearby detour nodes and
the optimal path through the mesh of detour nodes is de-
termined by constant monitoring. However, the perfor-
mance along a path between two end-hosts is not nec-
essarily the same as on the path via their nearby detour
nodes.

8.3 Structural inference

iNano’s structural inference approach has been previ-
ously used in iPlane. However, unlike iNano, iPlane
adopts a centralized architecture that scales poorly to 1)
Internet-scale query loads, and 2) more vantage points.
iPlane uses an atlas of observed paths, whose size is pro-
portional to the number of vantage points times the num-
ber of destinations probed times the average path length.
With iPlane’s current set of vantage points and destina-
tions, the size of its atlas is already over 1GB. As more
vantage points contribute measurements, iPlane’s accu-
racy will increase, but at the cost of blowing up the size
of its atlas. iPlane’s large atlas has the implication that
its query engine can only be hosted on dedicated servers
but not on typical end-hosts. iNano’s atlas instead com-
prises link-level, not path-level, information of the Inter-
net structure. Routing policies encoded in iPlane’s set of
observed paths are replaced by iNano’s compact repre-
sentation of the same.

8.4 AS path inference

iNano’s main focus is on predicting path performance be-
tween arbitrary end-hosts, while predicting the path be-
tween them. Prior work has looked at a part of this prob-
lem, inference of AS paths.

Mao et al. [32] describe a structural inference ap-
proach, RouteScope, to infer AS-level paths. They use
constrained optimization to model aspects of interdo-
main policy routing such as customer<peer<provider
and valley-free routing, and use additional measurement
techniques to observe routes from multihomed prefixes.
Our evaluation in Section 6 shows that iNano’s ability
to predict AS paths is significantly better than that of
RouteScope, with iNano predicting the AS path correctly
for more than twice as many paths in our validation set.

Qiu and Gao [42] build on RouteScope by using
observed AS paths as constraints in predicting paths.
Muhlbauer et al. [34] attempt to develop a hybrid model
of Internet routing that lies in between a blackbox and
a structure inference approach. They introduce “quasi-
routers” to model the presence of multiple border routers
in an AS based on an observed set of routes. Their ap-
proach can predict the training set exactly and achieves
50% prediction accuracy for unobserved routes. Both
these pieces of work require a set of AS paths to make
predictions; an atlas of paths is not compact enough to
serve iNano’s goal of distributing the atlas to end-hosts.

9 Conclusions
Our contribution is a practical one. Today, there is
a gap between research techniques for Internet perfor-
mance prediction, and the scalability and low-overhead
desired by large-scale P2P applications. iPlane Nano is a
lightweight Internet path performance prediction engine
that applications can use today at low cost. To make this
work, we develop a model of Internet routing that can
predict PoP-level paths between arbitrary end-hosts with
an atlas that is less than 7MB in size and can be updated
with roughly 1MB/day. The compact nature of the at-
las enables applications to have their clients download
the atlas and process queries locally. Furthermore, be-
cause the atlas is the same for all end-hosts, it can be
disseminated to clients at low cost by using common P2P
filesharing protocols, and thus largely using client band-
widths. Our evaluation of iPlane Nano demonstrated the
accuracy of its predictions and its utility in improving the
performance of P2P applications.
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Abstract
This paper argues for a new approach to building Byzan-
tine fault tolerant replication systems. We observe that
although recently developed BFT state machine replica-
tion protocols are quite fast, they don’t tolerate Byzantine
faults very well: a single faulty client or server is capa-
ble of rendering PBFT, Q/U, HQ, and Zyzzyva virtually
unusable. In this paper, we (1) demonstrate that exist-
ing protocols are dangerously fragile, (2) define a set of
principles for constructing BFT services that remain use-
ful even when Byzantine faults occur, and (3) apply these
principles to construct a new protocol, Aardvark. Aard-
vark can achieve peak performance within 40% of that of
the best existing protocol in our tests and provide a sig-
nificant fraction of that performance when up to f servers
and any number of clients are faulty. We observe useful
throughputs between 11706 and 38667 requests per sec-
ond for a broad range of injected faults.

1 Introduction
This paper is motivated by a simple observation: al-
though recently developed BFT state machine replica-
tion protocols have driven the costs of BFT replication
to remarkably low levels [1, 8, 12, 18], the reality is that
they don’t tolerate Byzantine faults very well. In fact, a
single faulty client or server can render these systems ef-
fectively unusable by inflicting multiple orders of mag-
nitude reductions in throughput and even long periods
of complete unavailability. Performance degradations of
such degree are at odds with what one would expect from
a system that calls itself Byzantine fault tolerant—after
all, if a single fault can render a system unavailable, can
that system truly be said to tolerate failures?

To illustrate the the problem, Table 1 shows the mea-
sured performance of a variety of systems both in the
absence of failures and when a single faulty client sub-
mits a carefully crafted series of requests. As we show
later, a wide range of other behaviors—faulty primaries,
recovering replicas, etc.—can have a similar impact. We

believe that these collapses are byproducts of a single-
minded focus on designing BFT protocols with ever
more impressive best-case performance. While this fo-
cus is understandable—after years in which BFT repli-
cation was dismissed as too expensive to be practical,
it was important to demonstrate that high-performance
BFT is not an oxymoron—it has led to protocols whose
complexity undermines robustness in two ways: (1) the
protocols’ design includes fragile optimizations that al-
low a faulty client or server to knock the system off of
the optimized execution path to an expensive alternative
path and (2) the protocols’ implementation often fails to
handle properly all of the intricate corner cases, so that
the implementations are even more vulnerable than the
protocols appear on paper.

The primary contribution of this paper is to advocate a
new approach, robust BFT (RBFT), to building BFT sys-
tems. Our goal is to change the way BFT systems are de-
signed and implemented by shifting the focus from con-
structing high-strung systems that maximize best case
performance to constructing systems that offer accept-
able and predictable performance under the broadest pos-
sible set of circumstances—including when faults occur.

System Peak Throughput Faulty Client
PBFT [8] 61710 0

Q/U [1] 23850 0†

HQ [12] 7629 N/A‡

Zyzzyva [18] 65999 0

Aardvark 38667 38667

Table 1: Observed peak throughput of BFT systems in a
fault-free case and when a single faulty client submits a
carefully crafted series of requests. We detail our mea-
surements in Section 7.2. † The result reported for Q/U is
for correct clients issuing conflicting requests. ‡ The HQ
prototype demonstrates fault-free performance and does
not implement many of the error-handling steps required
to handle inconsistent MACs.
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RBFT explicitly considers performance during both
gracious intervals—when the network is synchronous,
replicas are timely and fault-free, and clients correct—
and uncivil execution intervals in which network links
and correct servers are timely, but up to f = n−1

3 
servers and any number of clients are faulty. The last
row of Table 1 shows the performance of Aardvark, an
RBFT state machine replication protocol whose design
and implementation are guided by this new philosophy.

In some ways, Aardvark is very similar to traditional
BFT protocols: clients send requests to a primary who
relays requests to the replicas who agree (explicitly or
implicitly) on the sequence of requests and the corre-
sponding results—not unlike PBFT [8], High through-
put BFT [19], Q/U [1], HQ [12], Zyzzyva [18], ZZ [32],
Scrooge [28], etc.

In other ways, Aardvark is very different and chal-
lenges conventional wisdom. Aardvark utilizes signa-
tures for authentication, even though, as Castro correctly
observes, “eliminating signatures and using MACs in-
stead eliminates the main performance bottleneck in pre-
vious systems” [7]. Aardvark performs regular view
changes, even though view changes temporarily prevent
the system from doing useful work. Aardvark utilizes
point to point communication, even though renouncing
IP-multicast gives up throughput deliberately.

We reach these counter-intuitive choices by following
a simple and systematic approach: without ever compro-
mising safety, we deliberately refocus both the design
of the system and the engineering choices involved in
its implementation on the stress that failures can impose
on performance. In applying this strategy for RBFT to
construct Aardvark, we choose an extreme position in-
spired by maxi-min strategies in game theory [26]: we
reject any optimization for gracious executions that can
decrease performance during uncivil executions.

Surprisingly, these counter-intuitive choices impose
only a modest cost on its peak performance. As Table 1
illustrates, Aardvark sustains peak throughput of 38667
requests/second, which is within 40% of the best perfor-
mance we measure on the same hardware for four stat-
of-the-art protocols. At the same time, Aardvark’s fault
tolerance is dramatically improved. For a broad range
of client, primary, and server misbehaviors we prove that
Aardvark’s performance remains within a constant fac-
tor of its best case performance. Testing of the prototype
shows that these changes significantly improve robust-
ness under a range of injected faults.

Once again, however, the main contribution of this pa-
per is neither the Aardvark protocol nor implementation.
It is instead a new approach that can—and we believe
should—be applied to the design of other BFT protocols.
In particular, we (1) demonstrate that existing protocols
and their implementations are fragile, (2) argue that BFT

protocols should be designed and implemented with a fo-
cus on robustness, and (3) use Aardvark to demonstrate
that the RBFT approach is viable: we gain qualitatively
better performance during uncivil intervals at only mod-
est cost to performance during gracious intervals.

In Section 2 we describe our system model and the
guarantees appropriate for high assurance systems. In
Section 3 we elaborate on the need to rethink Byzan-
tine fault tolerance and identify a set of design principles
for RBFT systems. In Section 4 we present a system-
atic methodology for designing RBFT systems and an
overview of Aardvark. In Section 5 we describe in detail
the important components of the Aardvark protocol. In
Section 6 we present an analysis of Aardvark’s expected
performance. In Section 7 we present our experimental
evaluation. In Section 8 we discuss related work.

2 System model
We assume the Byzantine failure model where faulty
nodes (servers or clients) can behave arbitrarily [21] and
a strong adversary can coordinate faulty nodes to com-
promise the replicated service. We do, however, assume
the adversary cannot break cryptographic techniques like
collision-resistant hashing, message authentication codes
(MACs), encryption, and signatures. We denote a mes-
sage X signed by principal p’s public key as Xσp

. We
denote a message X with a MAC appropriate for princi-
pals p and r as Xµr,p

. We denote a message containing
a MAC authenticator—an array of MACs appropriate for
verification by every replica—as Xµr

Our model puts no restriction on clients, except that
their number be finite: in particular, any number of
clients can be arbitrarily faulty. However, the system’s
safety and liveness properties are guaranteed only if at
most f = n−1

3  servers are faulty.
Finally, we assume an asynchronous network where

synchronous intervals, during which messages are deliv-
ered with a bounded delay, occur infinitely often.

Definition 1 (Synchronous interval). During a syn-
chronous interval any message sent between correct pro-
cesses is delivered within a bounded delay T if the sender
retransmits according to some schedule until it is deliv-
ered.

3 Recasting the problem
The foundation of modern BFT state machine replication
rests on an impossibility result and on two principles that
assist us in dealing with it. The impossibility result, of
course, is FLP [13], which states that no solution to con-
sensus can be both safe and live in an asynchronous sys-
tems if nodes can fail. The two principles, first applied
by Lamport to his Paxos protocol [20], are at the core
of Castro and Liskov’s seminal work on PBFT [7]. The
first states that synchrony must not be needed for safety:
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as long as a threshold of faulty servers is not exceeded,
the replicated service must always produce linearizable
executions, independent of whether the network loses,
reorders, or arbitrarily delays messages. The second rec-
ognizes, given FLP, that synchrony must play a role in
liveness: clients are guaranteed to receive replies to their
requests only during intervals in which messages sent to
correct nodes are received within some fixed (but poten-
tially unknown) time interval from when they are sent.

Within these boundaries, the engineering of BFT pro-
tocols has embraced Lampson’s well-known recommen-
dation: “Handle normal and worst case separately as a
rule because the requirements for the two are quite dif-
ferent. The normal case must be fast. The worst case
must make some progress” [22]. Ever since PBFT, the
design of BFT systems has then followed a predictable
pattern: first, characterize what defines the normal (com-
mon) case; then, pull out all the stops to make the system
perform well for that case. While different systems don’t
completely agree on what defines the common case [16],
on one point they are unanimous: the common case in-
cludes only gracious executions, defined as follows:

Definition 2 (Gracious execution). An execution is gra-
cious iff (a) the execution is synchronous with some
implementation-dependent short bound on message de-
lay and (b) all clients and servers behave correctly.

The results of this approach continue to be spectac-
ular. Since Zyzzyva last year reported a throughput of
over 85,000 null requests per second [18], several new
protocols have further improved on that mark [16, 28].

Despite these impressive results, we argue that a sin-
gle minded focus on aggressively tuning BFT systems
for the best case of gracious execution, a practice that
we have engaged in with relish [18], is increasingly mis-
guided, dangerous, and even futile.

It is misguided, because it encourages the design and
implementation of systems that fail to deliver on their ba-
sic promise: to tolerate Byzantine faults. While provid-
ing impressive throughput during gracious executions,
today’s high-performance BFT systems are content to
guaranteeing weak liveness guarantees (e.g. “eventual
progress”) in the presence of Byzantine failures. Unfor-
tunately, as we previewed in Figure 1 and show in detail
in Section 7.2, these guarantees are weak indeed. Al-
though current BFT systems can survive Byzantine faults
without compromising safety, we contend that a system
that can be made completely unavailable by a simple
Byzantine failure can hardly be said to tolerate Byzan-
tine faults.

It is dangerous, because it encourages fragile opti-
mizations. Fragile optimizations are harmful in two
ways. First, as we will see in Section 7.2, they make it
easier for a faulty client or server to knock the system off

its hard-won optimized execution path and enter an alter-
native, much more expensive one. Second, they weigh
down the system with subtle corner cases, increasing the
likelihood of buggy or incomplete implementations.

It is (increasingly) futile, because the race to optimize
common case performance has reached a point of dimin-
ishing return where many services’ peak demands are al-
ready far under the best-case throughput offered by ex-
isting BFT replication protocols. For such systems, good
enough is good enough, and further improvements in best
case agreement throughput will have little effect on end-
to-end system performance.

In our view, a BFT system fulfills its obligations
when it provides acceptable and dependable performance
across the broadest possible set of executions, including
executions with Byzantine clients and servers. In par-
ticular, the temptation of fragile optimizations should be
resisted: a BFT system should be designed around an
execution path that has three properties: (1) it provides
acceptable performance, (2) it is easy to implement, and
(3) it is robust against Byzantine attempts to push the sys-
tem away from it. Optimizations for the common case
should be accepted only as long as they don’t endanger
these properties.

FLP tells us that we cannot guarantee liveness in an
asynchronous environment. This is no excuse to cling to
gracious executions only. In particular, there is no theo-
retical reason why BFT systems should not be expected
to perform well in what we call uncivil executions:

Definition 3 (Uncivil execution). An execution is
uncivil iff (a) the execution is synchronous with some
implementation-dependent short bound on message de-
lay, (b) up to f servers and an arbitrary number of clients
are Byzantine, and (c) all remaining clients and servers
are correct.

Hence, we propose to build RBFT systems that pro-
vide adequate performance during uncivil executions.
Although we recognize that this approach is likely to re-
duce the best case performance, we believe that for a
BFT system a limited reduction in peak throughput is
preferable to the devastating loss of availability that we
report in Figure 1 and Section 7.2.

Increased robustness may come at effectively no ad-
ditional cost as long as a service’s peak demand is be-
low the throughput achievable through RBFT design:
as a data point, our Aardvark prototype reaches a peak
throughput of 38667 req/s.

Similarly, when systems have other bottlenecks, Am-
dahl’s law limits the impact of changing the performance
of agreement. For example, we report in Section 7 that
PBFT can execute almost 62,000 null requests per sec-
ond, suggesting that agreement consumes 16.1µs per re-
quest. If, rather than a null service, we replicate a service
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for which executing an average request consumes 100µs
of processing time, then peak throughput with PBFT set-
tles to about 8613 requests per second. For the same ser-
vice, a protocol with twice the agreement overhead of
PBFT (i.e., 32.2µs per request), would still achieve peak
throughput of about 7564 requests/second: in this hy-
pothetical example, doubling agreement overhead would
reduce peak end-to-end throughput by about 12%.

4 Aardvark: RBFT in action
Aardvark is a new BFT system designed and imple-
mented to be robust to failures. The Aardvark pro-
tocol consists of 3 stages: client request transmission,
replica agreement, and primary view change. This is the
same basic structure of PBFT [8] and its direct descen-
dants [4, 18, 19, 33, 32], but revisited with the goal of
achieving an execution path that satisfies the properties
outlined in the previous section: acceptable performance,
ease of implementation, and robustness against Byzan-
tine disruptions. To avoid the pitfalls of fragile opti-
mizations, we focus at each stage of the protocol on how
faulty nodes, by varying both the nature and the rate of
their actions and omissions, can limit the ability of cor-
rect nodes to perform in a timely fashion what the proto-
col requires of them. This systematic methodology leads
us to the three main design differences between Aardvark
and previous BFT systems: (1) signed client requests, (2)
resource isolation, and (3) regular view changes.

Signed client requests. Aardvark clients use digital
signatures to authenticate their requests. Digital signa-
tures provide non-repudiation and ensure that all correct
replicas make identical decisions about the validity of
each client request, eliminating a number of expensive
and tricky corner cases found in existing protocols that
make use of weaker (though faster) message authentica-
tion code (MAC) authenticators [7] to authenticate client
requests. The difficulty with utilizing MAC authentica-
tors is that they do not provide the non-repudiation prop-
erty of digital signatures—one node validating a MAC
authenticator does not guarantee that any other nodes
will validate that same authenticator [2].

As we mentioned in the Introduction, digital signa-
tures are generally seen as too expensive to use. Aard-
vark uses them only for client requests where it is pos-
sible to push the expensive act of generating the signa-
ture onto the client while leaving the servers with the
less expensive verification operation. Primary-to-replica,
replica-to-replica, and replica-to-client communication
rely on MAC authenticators. The quorum-driven nature
of server-initiated communication ensures that a single
faulty replica is unable to force the system into undesir-
able execution paths.

Because of the additional costs associated with verify-
ing signatures in place of MACs, Aardvark must guard

Replica

Replica

Replica

Replica

Clients

Figure 1: Physical network in Aardvark.

against new denial-of-service attacks where the system
receives a large numbers of requests with signatures that
need to be verified. Our implementation limits the num-
ber of signature verifications a client can inflict on the
system by (1) utilizing a hybrid MAC-signature construct
to put a hard limit on the number of faulty signature veri-
fications a client can inflict on the system and (2) forcing
a client to complete one request before issuing the next.

Resource isolation. The Aardvark prototype imple-
mentation explicitly isolates network and computational
resources.

As illustrated by Fig. 1, Aardvark uses separate net-
work interface controllers (NICs) and wires to connect
each pair of replicas. This step prevents a faulty server
from interfering with the timely delivery of messages
from good servers, as happened when a single broken
NIC shut down the immigration system at the Los An-
geles International Airport [9]. It also allows a node to
defend itself against brute force denial of service attacks
by disabling the offending NIC. However, using phys-
ically separate NICs for communication between each
pair of servers incurs a performance hit, as Aardvark can
no longer use hardware multicast to optimize all-to-all
communication.

As Figure 2 shows, Aardvark uses separate work
queues for processing messages from clients and indi-
vidual replicas. Employing a separate queue for client
requests prevents client traffic from drowning out the
replica-to-replica communications required for the sys-
tem to make progress. Similarly, employing a sepa-
rate queue for each replica allows Aardvark to sched-
ule message processing fairly, ensuring that a replica is
able to efficiently gather the quorums it needs to make
progress. Aardvark can also easily leverage separate
hardware threads to process incoming client and replica
requests. Taking advantage of hardware parallelism al-
lows Aardvark to reclaim part of the costs paid to verify
signatures on client requests.
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Replica 
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Figure 2: Architecture of a single replica. The replica
utilizes a separate NIC for communicating with each
other replica and a final NIC to communicate with the
collection of clients. Messages from each NIC are placed
on separate worker queues.

We use simple brute force techniques for resource
scheduling. One could consider network-level schedul-
ing techniques rather than distinct NICs in order to iso-
late network traffic and/or allow rate-limited multicast.
Our goal is to make Aardvark as simple as possible, so
we leave exploration of these techniques and optimiza-
tions for future work.

Regular view changes. To prevent a primary from
achieving tenure and exerting absolute control on sys-
tem throughput, Aardvark invokes the view change op-
eration on a regular basis. Replicas monitor the perfor-
mance of the current primary, slowly raising the level of
minimal acceptable throughput. If the current primary
fails to provide the required throughput, replicas initiate
a view change.

The key properties of this technique are:
1. During uncivil intervals, system throughput remains

high even when replicas are faulty. Since a primary
maintains its position only if it achieves some increas-
ing level of throughput, Aardvark bounds throughput
degradation caused by a faulty primary by either forc-
ing the primary to be fast or selecting a new primary.

2. As in prior systems, eventual progress is guaranteed
when the system is eventually synchronous.
Previous systems have treated view change as an op-

tion of last resort that should only be used in desperate
situations to avoid letting throughput drop to zero. How-
ever, although the phrase “view change” carries conno-
tations of a complex and expensive protocol, in reality
the cost of a view change is similar to the regular cost
of agreement. Performing view changes regularly intro-
duces short periods of time during which new requests
are not being processed, but the benefits of evicting a
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Figure 3: Basic communication pattern in Aardvark.

misbehaving primary outweigh the periodic costs associ-
ated with performing view changes.

5 Protocol description
Figure 3 shows the agreement phase communication pat-
tern that Aardvark shares with PBFT. Variants of this
pattern are employed in other recent BFT RSM proto-
cols [1, 12, 16, 18, 28, 32, 33], and we believe that, just
as Aardvark illustrates how to adapt PBFT via RBFT
system design, new Robust BFT systems based on these
other protocols can and should be constructed. We orga-
nize the following discussion around the numbered steps
of the communication pattern of Figure 3.
5.1 Client request transmission
The fundamental challenge in transmitting client re-
quests is ensuring that, upon receiving a client request,
every replica comes to the same conclusion about the
authenticity of the request. We ensure this property by
having clients sign requests.

To guard against denial of service, we break the pro-
cessing of a client request into a sequence of increasingly
expensive steps. Each step serves as a filter, so that more
expensive steps are performed less often. For instance,
we ask clients to include also a MAC on their signed
requests and have replicas verify only the signature of
those requests whose MAC checks out. Additionally,
Aardvark explicitly dedicates a single NIC to handling
incoming client requests so that incoming client traffic
does not interfere with replica-to-replica communication.

5.1.1 Protocol Description
The steps taken by an Aardvark replica to authenticate a
client request follow.

1. Client sends a request to a replica.

A client c requests an operation o be performed by the
replicated state machine by sending a request message
REQUEST, o, s, cσc , cµc,p to the replica p it believes
to be the primary. If the client does not receive a timely
response to that request, then the client retransmits the re-
quest REQUEST, o, s, cσc

, cµc,r
to all replicas r. Note

that the request contains the client sequence number s
and is signed with signature σc. The signed message is
then authenticated with a MAC µc,r for the intended re-
cipient.
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Figure 4: Decision tree followed by replicas while veri-
fying a client request. The narrowing width of the edges
portrays the devastating losses suffered by the army of
client requests as it marches through the steppes of the
verification process. Apologies to Minard.

Upon receiving a client request, a replica proceeds to
verify it by following a sequence of steps designed to
limit the maximum load a client can place on a server, as
illustrated by Figure 4:

(a) Blacklist check. If the sender c is not blacklisted, then
proceed to step (b). Otherwise discard the message.

(b) MAC check. If µc,p is valid, then proceed to step (c).
Otherwise discard the message.

(c) Sequence check. Examine the most recent cached re-
ply to c with sequence number scache. If the request
sequence number sreq is exactly scache + 1, then pro-
ceed to step (d). Otherwise

(c1) Retransmission check. Each replica uses an ex-
ponential back off to limit the rate of client reply
retransmissions. If a reply has not been sent to c re-
cently, then retransmit the last reply sent to c. Oth-
erwise discard the message.

(d) Redundancy check. Examine the most recent cached
request from c. If no request from c with sequence
number sreq has previously been verified or the re-
quest does not match the cached request, then proceed

to step (e). Otherwise (the request matches the cached
request from c) proceed to step (f).

(e) Signature check. If σc is valid, then proceed to step
(f). Additionally, if the request does not match the
previously cached request for sreq , then blacklist c.
Otherwise if σc is not valid, then blacklist the node x
that authenticated µx,p and discard the message.

(f) Once per view check. If an identical request has been
verified in a previous view, but not processed during
the current view, then act on the request. Otherwise
discard the message.
Primary and non-primary replicas act on requests in

different ways. A primary adds requests to a PRE-
PREPARE message that is part of the three-phase com-
mit protocol described in Section 5.2. A non-primary
replica r processes a request by authenticating the signed
request with a MAC µr,p for the primary p and sending
the message to the primary. Note that non-primary repli-
cas will forward each request at most once per view, but
they may forward a request multiple times provided that
a view change occurs between each occurrence.

Note that a REQUEST message that is verified as au-
thentic might contain an operation that the replicated ser-
vice that runs above Aardvark rejects because of an ac-
cess control list (ACL) or other service-specific security
violation. From the point of view of Aardvark, such mes-
sages are valid and will be executed by the service, per-
haps resulting in an application level error code.

A node p only blacklists a sender c of a
REQUEST, o, s, cσc

, cµc,p
message if the MAC µc,p

is valid but the signature σc is not. A valid MAC is suf-
ficient to ensure that routine message corruption is not
the cause of the invalid signature sent by c, but rather
that c has suffered a significant fault or is engaging in
malicious behavior. A replica discards all messages it re-
ceives from a blacklisted sender and removes the sender
from the blacklist after 10 minutes to allow reintegration
of repaired machines.

5.1.2 Resource scheduling
Client requests are necessary to provide input to the RSM
while replica-to-replica communication is necessary to
process those requests. Aardvark leverages separate
work queues for providing client requests and replica-
to-replica communication to limit the fraction of replica
resources that clients are able to consume, ensuring that a
flood of client requests is unable to prevent replicas from
making progress on requests already received. Of course,
as in a non-BFT service, malicious clients can still deny
service to other clients by flooding the network between
clients and replicas. Defending against these attacks is
an area of active independent research [23, 30].

We deploy our prototype implementation on dual core
machines. As Figure 2 shows, one core verifies client re-
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quests and the second runs the replica protocol. This ex-
plicit assignment allows us to isolate resources and take
advantage of parallelism to partially mask the additional
costs of signature verification.

5.1.3 Discussion
RBFT aims at minimizing the costs that faulty clients can
impose on replicas. As Figure 4 shows, there are four ac-
tions triggered by the transmission of a client request that
can consume significant replica resources: MAC verifi-
cation (MAC check), retransmission of a cached reply,
signature verification (signature check), and request pro-
cessing (act on request). The cost a faulty client can
cause increases as the request passes each successive
check in the verification process, but the rate at which
a faulty client can trigger this cost decreases at each step.

Starting from the final step of the decision tree, the de-
sign ensures that the most expensive message a client can
send is a correct request as specified by the protocol, and
it limits the rate at which a faulty client can trigger expen-
sive signature checks and request processing to the max-
imum rate a correct client would. The sequence check
step (c) ensures that a client can trigger signature veri-
fication or request processing for a new sequence num-
ber only after its previous request has been successfully
executed. The redundancy check (d) prevents repeated
signature verifications for the same sequence number by
caching each client’s most recent request. Finally, the
once per view check (f) permits repeated processing of
a request only across different views to ensure progress.
The signature check (e) ensures that only requests that
will be accepted by all correct replicas are processed.
The net result of this filtering is that, for every k cor-
rect requests submitted by a client, each replica performs
at most k + 1 signature verifications, and any client that
imposes a k+1st signature verification is blacklisted and
unable to instigate additional signature verifications until
it is removed from the blacklist.

Moving up the diagram, a replica responds to retrans-
mission of completed requests paired with valid MACs
by retransmitting the most recent reply sent to that client.
The retransmission check (c1) imposes an exponential
back off on retransmissions, limiting the rate at which
clients can force the replica to retransmit a response. To
help a client learn the sequence number it should use, a
replica resends the cached reply at this limited rate for
both requests that are from the past but also for requests
that are too far into the future.

Any request that fails the MAC check (b) is immedi-
ately discarded. MAC verifications occur on every in-
coming message that claims to have the right format un-
less the sender is blacklisted, in which case the blacklist
check (a) results in the message being discarded. The
rate of MAC verification operations is thus limited by the

rate at which messages purportedly from non-blacklisted
clients are pulled off the network, and the fraction of pro-
cessing wasted is at most the fraction of incoming re-
quests from faulty clients.

5.2 Replica agreement
Once a request has been transmitted from the client to
the current primary, the replicas must agree on the re-
quest’s position in the global order of operations. Aard-
vark replicas coordinate with each other using a standard
three phase commit protocol [8].

The fundamental challenge in the agreement phase is
ensuring that each replica can quickly collect the quo-
rums of PREPARE and COMMIT messages necessary to
make progress. Conditioning expensive operations on
the gathering of a quorum of messages makes it eas-
ier to ensure robustness in two ways. First, it is pos-
sible to design the protocol so that incorrect messages
sent by a faulty replica will never gain the support of a
quorum of replicas. Second, as long as there exists a
quorum of timely correct replicas, a faulty replica that
sends correct messages too slowly, or not at all, cannot
impede progress. Faulty replicas can introduce overhead
also by sending messages too quickly: to protect them-
selves, correct replicas in Aardvark schedule messages
from other replicas in a round-robin fashion.

Not all expensive operations in Aardvark are triggered
by a quorum. In particular, a correct replica that has
fallen behind its peers may ask them for the state it is
missing by sending them a catchup message (see Sec-
tion 5.2.1). Aardvark replicas defer processing such mes-
sages to idle periods. Note that this state-transfer pro-
cedure is self-tuning: if the system is unable to make
progress because it cannot assemble quorums of PRE-
PARE and COMMIT messages, then it will devote more
time to processing catchup messages.

5.2.1 Agreement protocol
The agreement protocol requires replica-to-replica com-
munication. A replica r filters, classifies, and finally acts
on the messages it receives from another replica accord-
ing to the decision tree shown in Figure 5:

(a) Volume Check. If replica q is sending too many mes-
sages, blacklist q and discard the message. Other-
wise continue to step (b). Aardvark replicas use a dis-
tinct NIC for communicating with each replica. Using
per-replica NICs allows an Aardvark replica to silence
replicas that flood the network and impose excessive
interrupt processing load. In our prototype, we disable
a network connection when q’s rate of message trans-
mission in the current view is a factor of 20 higher than
for any other replica. After disconnecting q for flood-
ing, r reconnects q after 10 minutes, or when f other
replicas are disconnected for flooding.
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Figure 5: Decision tree followed by a replica when han-
dling messages received from another replica. The width
of the edges indicates the rate at which messages reach
various stages in the processing.

(b) Round-Robin Scheduler. Among the pending mes-
sages, select the the next message to process from the
available messages in round-robin order based on the
sending replica . Discard received messages when the
buffers are full.

(c) MAC Check. If the selected message has a valid
MAC, then proceed to step (d) otherwise, discard the
message.

(d) Classify Message. Classify the authenticated message
according to its type:

• If the message is PRE-PREPARE, then process it im-
mediately in protocol step 3 below.

• If the message is PREPARE or COMMIT, then add it
to the appropriate quorum and proceed to step (e).

• If the message is a catchup message, then proceed
to step (f).

• If the message is anything else, then discard the
message.

(e) Quorum Check. If the quorum to which the message
was added is complete, then act as appropriate in pro-
tocol steps 4-6 below.

(f) Idle Check. If the system has free cycles, then process
the catchup message. Otherwise, defer processing un-
til the system is idle.
Replica r applies the above steps to each message it

receives from the network. Once messages are appropri-

ately filtered and classified, the agreement protocol con-
tinues from step 2 of the communication pattern in Fig-
ure 3.

2. Primary forms a PRE-PREPARE mes-
sage containing a set of valid requests and
sends the PRE-PREPARE to all replicas.

The primary creates and transmits a PRE-PREPARE,
v, n, REQUEST, o, s, cσc

µp
message where v is the

current view number, n is the sequence number for
the PRE-PREPARE, and the authenticator is valid for all
replicas. Although we show a single request as part
of the PRE-PREPARE message, multiple requests can be
batched in a single PRE-PREPARE [8, 14, 18, 19].

3. Replica receives PRE-PREPARE from the
primary, authenticates the PRE-PREPARE,
and sends a PREPARE to all other replicas.

Upon receipt of PRE-PREPARE, v, n,
REQUEST, o, s, cσc

µp
from primary p, replica r

verifies the message’s authenticity following a process
similar to the one described in Section 5.1 for verifying
requests. If r has already accepted the PRE-PREPARE
message, r discards the message preemptively. If r has
already processed a different PRE-PREPARE message
with n = n during view v, then r discards the message.
If r has not yet processed a PRE-PREPARE message for n
during view v, r first checks that the appropriate portion
of the MAC authenticator µp is valid. If the replica has
not already done so, it then checks the validity of σc.
If the authenticator is not valid r discards the message.
If the authenticator is valid and the client signature
is invalid, then the replica blacklists the primary and
requests a view change. If, on the other hand, the
authenticator and signature are both valid, then the
replica logs the PRE-PREPARE message and forms a
PREPARE, v, n, h,rµr

to be sent to all other replicas
where h is the digest of the set of requests contained in
the PRE-PREPARE message.

4. Replica receives 2f PREPARE mes-
sages that are consistent with the PRE-
PREPARE message for sequence number n
and sends a COMMIT message to all other
replicas.

Following receipt of 2f matching PREPARE mes-
sages from non-primary replicas r that are consistent
with a PRE-PREPARE from primary p, replica r sends
a COMMIT,v, n, rµr

message to all replicas. Note
that the PRE-PREPARE message from the primary is the
2f + 1st message in the PREPARE quorum.
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5. Replica receives 2f + 1 COMMIT mes-
sages, commits and executes the request,
and sends a REPLY message to the client.

After receipt of 2f +1 matching COMMIT,v, n, rµr

from distinct replicas r, replica r commits and executes
the request before sending REPLY, v, u,rµr,c

to client c
where u is the result of executing the request and v is the
current view.

6. The client receives f + 1 matching RE-
PLY messages and accepts the request as
complete.

We also support Castro’s tentative execution optimiza-
tion [8], but we omit these details here for simplicity.
They do not introduce any new issues for our RBFT de-
sign and analysis.

Catchup messages. State catchup messages are not an
intrinsic part of the agreement protocol, but fulfill an im-
portant logistical priority of bringing replicas that have
fallen behind back up to speed. If replica r receives a
catchup message from a replica q that has fallen behind,
then r sends q the state that q to catch up and resume
normal operations. Sending catchup messages is vital to
allow temporarily slow replicas to avoid becoming per-
manently non-responsive, but it also offers faulty replicas
the chance to impose significant load on their non-faulty
counterparts. Aardvark explicitly delays the processing
of catchup messages until there are idle cycles available
at a replica—as long as the system is making progress,
processing a high volume of requests, there is no need to
spend time bringing a slow replica up to speed!

5.2.2 Discussion
We now discuss the Aardvark agreement protocol
through the lens of RBFT, starting from the bottom
of Figure 5. Because every quorum contains at least
a majority of correct replicas, faulty replicas can only
marginally alter the rate at which correct replicas take
actions (e) that require a quorum of messages. Fur-
ther, because a correct replica processes catchup mes-
sages (f) only when otherwise idle, faulty replicas can-
not use catchup messages to interfere with the process-
ing of other messages. When client requests are pend-
ing, catchup messages are processed only if too many
correct replicas have fallen behind and the processing
of quorum messages needed for agreement has stalled—
and only until enough correct replicas to enable progress
have caught up. Also note that the queue of pending
catchup messages is finite, and a replica discards excess
catchup messages.

A replica processes PRE-PREPARE messages at the
rate they are sent by the primary. If a faulty primary
sends them too slowly or too quickly, throughput may

be reduced, hastening the transition to a new primary as
described in Section 5.3.

Finally, a faulty replica could simply bombard its cor-
rect peers with a high volume of messages that are even-
tually discarded. The round-robin scheduler (b) lim-
its the damage that can result from this attack: if c of
its peers have pending messages, then a correct replica
wastes at most 1

c of the cycles spent checking MACs
and classifying messages on what it receives from any
faulty replica. The round-robin scheduler also discards
messages that overflow a bounded buffer, and the vol-
ume check (a) similarly limits the rate at which a faulty
replica can inject messages that the round-robin sched-
uler will eventually discard.

5.3 Primary view changes
Employing a primary to order requests enables batch-
ing [8, 14] and avoids the need to trust clients to obey
a back off protocol [1, 10]. However, because the pri-
mary is responsible for selecting which requests to exe-
cute, the system throughput is at most the throughput of
the primary. The primary is thus in a unique position to
control both overall system progress [3, 4] and fairness
to individual clients.

The fundamental challenge to safeguarding perfor-
mance against a faulty primary is that a wide range of pri-
mary behaviors can hurt performance. For example, the
primary can delay processing requests, discard requests,
corrupt clients’ MAC authenticators, introduce gaps in
the sequence number space, unfairly delay or drop some
clients’ requests but not others, etc.

Hence, rather than designing specific mechanism to
defend against each of these threats, past BFT sys-
tems [8, 18] have relied on view changes to replace an
unsatisfactory primary with a new, hopefully better, one.
Past systems trigger view changes conservatively, only
changing views when it becomes apparent that the cur-
rent primary is unlikely to allow the system to make even
minimal progress.

Aardvark uses the same view change mechanism de-
scribed in PBFT [8]; in conjunction with the agreement
protocol, view changes in PBFT are sufficient to ensure
eventual progress. They are not, however, sufficient to
ensure acceptable progress.

5.3.1 Adaptive throughput
Replicas monitor the throughput of the current primary.
If a replica judges the primary’s performance to be in-
sufficient, then the replica initiates a view change. More
specifically, replicas in Aardvark expect two things from
the primary: a regular supply of PRE-PREPARE mes-
sages and high sustained throughput. Following the com-
pletion of a view change, each replica starts a heart-
beat timer that is reset whenever the next valid PRE-
PREPARE message is received. If a replica does not
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receive the next valid PRE-PREPARE message before
the heartbeat timer expires, the replica initiates a view
change. To ensure eventual progress, a correct replica
doubles the heartbeat interval each time the timer ex-
pires. Once the timer is reset because a PRE-PREPARE
message is received, the replica resets the heartbeat timer
back to its initial value. The value of the heartbeat timer
is application and environment specific: our implemen-
tation uses a heartbeat of 40ms, so that a system that tol-
erates f failures demands a minimum of 1 PRE-PREPARE
every every 2f×40ms.

The periodic checkpoints that, at pre-determined inter-
vals, correct replicas must take to bound their state offer
convenient synchronization points to assess the through-
put that the primary is able to deliver. If the observed
throughput in the interval between two successive check-
points falls below a specified threshold, initially 90% of
the maximum throughput observed during the previous
n views, the replica initiates a view change to replace the
current primary. At each checkpoint interval following
an initial grace period at the beginning of each view, 5s in
our prototype, the required throughput is increased by a
factor of 0.01. Continually raising the bar that the current
primary must reach in order to stay in power guarantees
that a view change will eventually be replaced, restarting
the process with the next primary. Conversely, if the sys-
tem workload changes, the required throughput adjusts
over n views to reflect the performance that a correct pri-
mary can provide.

The combined effect of Aardvark’s new expectations
on the primary is that during the first 5s of a view the
primary is required to provide throughput of at least 1 re-
quest per 40ms or face eviction. The throughput of any
view that lasts longer than 5s is at least 90% of the max-
imum throughput observed during the previous n views.

5.3.2 Fairness

In addition to hurting overall system throughput, primary
replicas can influence which requests are processed. A
faulty primary could be unfair to a specific client (or
set of clients) by neglecting to order requests from that
client. To limit the magnitude of this threat, replicas
track fairness of request ordering. When a replica re-
ceives from a client a request that it has not seen in a
PRE-PREPARE message, it adds the message to its re-
quest queue and, before forwarding the request to the
primary, it records the sequence number k of the most re-
cent PRE-PREPARE received during the current view. The
replica monitors future PRE-PREPARE messages for that
request, and if it receives two PRE-PREPAREs for another
client before receiving a PREPARE for client c, then it de-
clares the current primary to be unfair and initiates a view
change. This ensures that two clients issuing comparable

workloads observe throughput values within a constant
factor of each other.

5.3.3 Discussion
The adaptive view change and PRE-PREPARE heart-
beats leave a faulty primary with two options: it can pro-
vide substandard service and be replaced promptly, or it
can remain the primary for an extended period of time
and provide service comparable to what a non-faulty pri-
mary would provide. A faulty primary that does not
make any progress will be caught very quickly by the
heartbeat timer and summarily replaced. To avoid being
replaced, a faulty primary must issue a steady stream of
PRE-PREPARE messages until it reaches a checkpoint
interval, when it is going to be replaced until it has pro-
vided the required throughput. To do just what is needed
to keep ahead of its reckoning for as long as possible,
a faulty primary will be forced to to deliver 95% of the
throughput expected from a correct primary.

Periodic view changes may appear to institutionalize
overhead, but their cost is actually relatively small. Al-
though the term view change evokes images of substan-
tial restructuring, in reality a view change costs roughly
as much as a single instance of agreement with respect
to message/protocol complexity: when performed every
100+ requests, periodic view changes have marginal per-
formance impact during gracious or uncivil intervals.

6 Analysis
In this section, we analyze the throughput characteristics
of Aardvark when the number of client requests is large
enough to saturate the system and a fraction g of those
requests is correct. We show that Aardvark’s throughput
during long enough uncivil executions is within a con-
stant factor of its throughput during gracious executions
of the same length provided there are sufficient correct
clients to saturate the servers.

For simplicity, we restrict our attention to an Aardvark
implementation on a single-core machine with a proces-
sor speed of κ GHz. We consider only the computational
costs of the cryptographic operations—verifying signa-
tures, generating MACs, and verifying MACs, requiring
θ, α, and α cycles, respectively. Since these operations
occur only when a message is sent or received, and the
cost of sending or receiving messages is small, we expect
similar results when modeling network costs explicitly.

We begin by computing Aardvark’s peak throughput
during a gracious view, i.e. a view that occur during a
gracious execution, in Theorem 1. We then show in
Theorem 2 that during uncivil views, i.e. views that oc-
cur during uncivil executions, with a correct primary
Aardvark’s throughput is at least g times the through-
put achieved during a gracious view; as long as the pri-
mary is correct faulty replicas are unable to adversely
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impact Aardvark’s throughput. Finally, we show that the
throughput of an uncivil execution is at least the fraction
of correct replicas times g times the throughput achieved
during a gracious view.

We begin in Theorem 1 by computing tpeak , Aard-
vark’s peak throughput during a gracious view, i.e. a view
that occurs during a gracious execution. We then show
in Theorem 2 that during uncivil views in which the pri-
mary replica is correct, Aardvark’s peak throughput is
only reduced to g × tpeak : in other words, ignoring low
level network overheads faulty replicas are unable to cur-
tail Aardvark’s throughput when the primary is correct.
Finally, we show in Theorem 3 that the throughput across
all views of an uncivil execution is within a constant fac-
tor of n−fn × g × tpeak .

Theorem 1. Consider a gracious view during which
the system is saturated, all requests come from cor-
rect clients, and the primary generates batches of re-
quests of size b. Aardvark’s throughput is then at least

κ

θ+
(4n−2b−4)

b α
operations per second.

Proof. We examine the actions required by each server
to process one batch of size b. For each request in the
batch, every server verifies one signature. The primary
also verifies one MAC per request. For each batch, the
primary generates n−1 MACs to send the PRE-PREPARE
and verifies n − 1 MACs upon receipt of the PREPARE
messages; replicas instead verify one MAC in the pri-
mary’s PRE-PREPARE , generate (n − 1) MACs when
they send the PREPARE messages, and verify (n − 2)
MACs when they receive them. Finally, each server first
sends and then receives n − 1 COMMIT messages, for
which it generates and verifies a total of n − 2 MACs,
and generates a final MAC for each request in the batch
to authenticate the response to the client. The total com-
putational load per request is thus θ+ (4n+2b−4)

b α at the
primary, and θ + (4n+b−4)

b α at a replica. The system’s
throughput at saturation during a sufficiently long view
in a gracious interval is thus at least κ

θ+
(4n+2b−4)

b α
re-

quests/sec.

Theorem 2. Consider an uncivil view in which the pri-
mary is correct and at most f replicas are Byzantine.
Suppose the system is saturated, but only a fraction of
the requests received by the primary are correct. The
throughput of Aardvark in this uncivil view is within a
constant factor of its throughput in a gracious view in
which the primary uses the same batch size.

Proof. Let θ and α denote the cost of verifying, respec-
tively, a signature and a MAC. We show that if g is the
fraction of correct requests, the throughput during un-
civil views with a correct primary approaches g of the
gracious view’s throughput as the ratio α

θ tends to 0.

In an uncivil view, faulty clients may send unfaith-
ful requests to every server. Before being able to form
a batch of b correct requests, the primary may have
to verify b

g signatures and MACs, and correct replicas
may verify b

g signatures and an additional ( bg )(1 − g)
MACs. Because a correct server processes messages
from other servers in round-robin order, it will pro-
cess at most two messages from a faulty server per
message that it would have processed had the server
been correct. The total computational load per request
is thus 1

g (θ + b(1+g)+4g(n−1+f)
b α) at the primary, and

1
g (θ+

b+4g(n−1+f)
b α) at a replica. The system’s through-

put at saturation during a sufficiently long view in an
uncivil interval with a correct primary thus is at least

gκ

θ+
(b(1+g)+4g(n−1+f)

b α
requests per second: as the ratio

α
θ tends to 0, the ratio between the uncivil and gracious
throughput approaches g.

Theorem 3. For sufficiently long uncivil executions and
for small f the throughput of Aardvark, when properly
configured, is within a constant factor of its throughput
in a gracious execution in which primary replicas use the
same batch size.

Proof. First consider the case in which all the uncivil
views have correct primary replicas. Assume that in a
properly configured Aardvark tbaseViewTimeout is set so
that during an uncivil interval, a view change to a cor-
rect primary completes within tbaseViewTimeout . Since
a primary’s view lasts at least tgracePeriod , as the ra-
tio α

θ tends to 0, the ratio between the throughput dur-
ing a gracious view and an uncivil interval approaches
g

tgracePeriod
tbaseViewTimeout+tgracePeriod

Now consider the general case. If the uncivil interval
is long enough, at most fn of its views will have a Byzan-
tine primary. Aardvark’s heartbeat timer provides two
guarantees. First, a Byzantine server that does not pro-
duce the throughput that is expected of a correct server
will not last as primary for longer than a grace period.
Second, a correct server is always retained as a primary
for at least the length of a grace period. Furthermore,
since the throughput expected of a primary at the begin-
ning of a view is a constant fraction of the maximum
throughput achieved by the primary replicas of the last
n views, faulty primary replicas cannot arbitrarily lower
the throughput expected of a new primary. Finally, since
the view change timeout is reset after a view change
that results in at least one request being executed in the
new view, no view change attempt takes longer then
tmaxViewTimeout = 2f tbaseViewTimeout . It follows that,
during a sufficiently long uncivil interval, the throughput
will be within a factor of tgracePeriod

tmaxViewTimeout+tgracePeriod

n−f
n of

that of Theorem 2, and, as α
θ tends to 0, the ratio between
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Figure 6: Latency vs. throughput for various BFT sys-
tems.

the throughput during uncivil and gracious intervals ap-
proaches g

tgracePeriod
tmaxViewTimeout+tgracePeriod

(n−f)
n .

7 Evaluation
We evaluate the performance of Aardvark, PBFT, HQ,
Q/U and Zyzzyva on an Emulab cluster [31]. This clus-
ter consists of machines with dual 3GHz Intel Pentium 4
Xeon processors, 1GB of memory, and 1 Gb/s Ethernet
connections.

The code bases used to report our results are provided
by the respective systems’ authors. James Cowling pro-
vided us the December 2007 public release of the PBFT
code base [5] as well as a copy of the HQ co-debase.
We used version 1.3 of the Q/U co-debase, provided to
us by Michael Abd-El-Malek in October 2008 [27]. The
Zyzzyva co-debase is the version used in the SOSP 2007
paper [18]. Whenever feasible, we rely on the exist-
ing pre-configurations for each system to handle f = 1
Byzantine failure.

Our evaluation makes three points: (a) despite our
choice to utilize signatures, change views regularly, and
forsake IP multicast, Aardvark’s peak throughput is com-
petitive with that of existing systems; (b) existing sys-
tems are vulnerable to significant disruption as a result
of a broad range of Byzantine behaviors; and (c) Aard-
vark is robust to a wide range of Byzantine behaviors.
When evaluating existing systems, we attempt to iden-
tify places where the prototype implementation departs
from the published protocol.
7.1 Aardvark
Aardvark’s peak throughput is competitive with that of
state of the art systems as shown in Figure 6. Aard-
vark’s throughput peaks 38667 operations per second,
while Zyzzyva and PBFT observe maximum throughputs
of 65999 and 61710 operations per second, respectively.

Figures 7 and 8 explore the impact of regular view
changes on the latency observed by Aardvark clients in
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running Aardvark with 210 total clients. The sporadic
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an experiment with 210 clients each issuing 100,000 re-
quests. Figure 7 shows the per request latency observed
by a single client during the run. The periodic latency
spikes correspond to view changes. When a client is-
sues a request as the view change is initiated, the request
is not processed until the request arrives at the new pri-
mary following a client timeout and retransmission. In
most cases a single client retransmission is sufficient, but
additional retransmissions may be required when mul-
tiple view changes occur in rapid succession. Figure 8
shows the CDF for latencies of all client requests in the
same experiment. We see that 99.99% of the requests
have latency under 15ms, and only a small fraction of
all requests incur the higher latencies induced by view
changes. We configure an Aardvark client with a re-
transmission timeout of 150ms and we have not explored
other settings.
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System Peak Throughput
Aardvark 38667

PBFT 61710

PBFT w/ client signatures 31777

Aardvark w/o signatures 57405

Aardvark w/o regular view changes 39771

Table 2: Peak throughput of Aardvark and incremental
versions of the Aardvark protocol

7.1.1 Putting Aardvark together
Aardvark incorporates several key design decisions that
enable it to perform well in the presence of Byzantine
failure. We study the performance impact of these de-
cisions by measuring the throughput of several PBFT
and Aardvark variations, corresponding to the evolution
between these two systems. Table 2 reports these peak
throughputs.

While requiring clients in PBFT to sign requests re-
duces throughput by 50%, we find that the cost of requir-
ing Aardvark clients to use the hybrid MAC-signature
scheme imposes a smaller 33% hit to system through-
put. Explicitly separating the work queues for client
and replica communication makes it easy for Aardvark
to utilize the second processor in our test bed machines,
which reduces the additional costs Aardvark pays to ver-
ify signed client requests. This parallelism is the pri-
mary source of the 30% improvement we observe be-
tween PBFT with signatures and Aardvark.

Peak throughput for Aardvark with and without reg-
ular view changes is comparable. The reason for this
is rather straightforward: when both the new and old
primary replicas are non-faulty, a view change requires
approximately the same amount of work as a single in-
stance of consensus. Aardvark views led by a non-faulty
primary are sufficiently long that the throughput costs as-
sociated with performing a view change are negligible.

7.2 Evaluating faulty systems
In this section we evaluate Aardvark and existing sys-
tems in the context of failures. It is impossible to test
every possible Byzantine behavior; consequently we use
our knowledge of the systems to construct a set of work-
loads that we believe to be close to the worst case for
Aardvark and other systems. While other faulty behav-
iors are possible and may stress the evaluated systems in
different ways, we believe that our results are indicative
of both the frailty of existing systems and the robustness
of Aardvark.

7.2.1 Faulty clients
We focus our attention on two aspects of client behavior
that have significant impact on system throughput: re-
quest dissemination and network flooding.

Request dissemination. Table 1 in the Introduction
explores the impact of faulty client behavior related to re-
quest distribution on the PBFT, HQ, Zyzzyva, and Aard-
vark prototypes. We implement different client behaviors
for the different systems in order to stress test the design
decisions the systems have made.

In PBFT and Zyzzvya, the clients send requests that
are authenticated with MAC authenticators. The faulty
client includes an inconsistent authenticator on requests
so that request verification will succeed at the primary
but fail for all other replicas. When the primary includes
the client request in a PRE-PREPARE message, the repli-
cas are unable to verify the request.

We developed this workload because, on paper, the
protocols specify what appears to be an expensive pro-
cessing path to handle this contingency. In this situa-
tion PBFT specifies a view change while Zyzzyva in-
vokes a conflict resolution procedure that blocks progress
and requires replicas to generate signatures. In theory
these procedures should have a noticeable, though finite,
impact on performance. In particular, PBFT progress
should stall until a timeout forces a new view ([6] pp. 42–
43), at which point other clients can make some progress
until the faulty client stalls progress again. In Zyzzyva,
the servers should pay extra overheads for signatures and
view changes.

In practice the throughput of both prototype imple-
mentations drops to 0. In Zyzzyva the reconciliation pro-
tocol is not fully implemented; in PBFT the client be-
havior results in repeated view changes, and we have not
observed our experiment to finish. While the full PBFT
and Zyzzyva protocol specifications guarantee liveness
under eventual synchrony, the protocol steps required to
handle these cases are sufficiently complex to be difficult
to implement, easy to overlook, or both.

In HQ, our intended attack is to have clients send cer-
tificates during the WRITE-2 phase of the protocol with
an inconsistent MAC authenticator. The response speci-
fied by the protocol is a signed WRITE-2-REFUSED mes-
sage which is subsequently used by the client to initiate
a call to initiate a request processed by an internal PBFT
protocol. This set of circumstances presents a point in
the HQ design where a single client, either faulty or sim-
ply unlucky, can force the replicas to generate expensive
signatures resulting in a degradation in system through-
put. We are unable to evaluate the precise impact of this
client behavior because the replica processing necessary
to handle inconsistent MAC authenticators from clients
is not implemented.

Q/U clients, in the lack of contention, are unable to
influence each other’s operations. During contention,
replicas are required to perform barrier and commit op-
erations that are rate limited by a client-initiated expo-
nential back off. During the barrier and commit opera-



166	 NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation	 USENIX Association

tions, a faulty client that sends inconsistent certificates
to the replicas can theoretically complicate the process
further. We implement a simpler scenario in which all
clients are correct, yet they issue contending requests to
the replicas. In this setting with only 20 clients, Q/U pro-
vides 0 throughput. Q/U’s focus on performance in the
absence of both failures and contention makes it espe-
cially vulnerable in practice—clients that issue contend-
ing requests can decimate system throughput, whether
the clients are faulty or not.

To avoid corner cases where different replicas make
different judgments about the legitimacy of a request,
Aardvark clients sign requests. In Aardvark, the closest
analogous client behaviors to those discussed above for
other systems are sending requests with a valid MAC and
invalid signature or sending requests with invalid MACs.
We implement both attacks and find the results to be
comparable. In Table 1 we report the results for requests
with invalid MACs.

Network flooding. In Table 3 we demonstrate the im-
pact of a single faulty client that floods the replicas with
messages. During these experiments correct clients issue
requests sufficient to saturate each system while a single
faulty client implements a brute force denial of service
attack by repeatedly sending 9KB UDP messages to the
replicas. For PBFT and Zyzzyva, 210 clients are suffi-
cient to saturate the servers while Q/U and HQ are satu-
rated with 30 client processes.

The PBFT and Zyzzyva prototypes suffer dramatic
performance degradation as their incoming network re-
sources are consumed by the flooding client; process-
ing the incoming client requests disrupt the replica-
to-replica communication necessary for the systems to
make progress. In both cases, the pending client re-
quests eventually overflows internal queues and crashes
the servers. Q/U and HQ suffer smaller degradations in
throughput from the spamming replicas. The UDP traffic
is dropped by the network stack with minimal processing
because they are not valid TCP packets. The slowdowns
observed in Q/U and HQ correspond to the displaced net-
work bandwidth.

The reliance on TCP communication in Q/U and HQ
changes rather than solves the challenge presented by a
flooding client. For example, a single faulty client that
repeatedly requests TCP connections crashes both the
Q/U and HQ servers.

In each of these systems, the vulnerability to network
flooding is a byproduct of the prototype implementation
and is not fundamental to the protocol design. Network
isolation techniques such as those described in Section 5
could similarly be applied to these systems.

In the case of Aardvark, the decision to use separate
NICs and work queues for client and replica requests

System Peak Throughput
Network Flooding
UDP TCP

PBFT 61710 crash -
Q/U 23850 23110 crash

HQ 7629 4470 0

Zyzzyva 65999 crash -
Aardvark 38667 7873 -

Table 3: Observed peak throughput of BFT systems in
the fault free case and under heavy client retransmis-
sion load. UDP network flooding corresponds to a single
faulty client sending 9KB messages. TCP network flood-
ing corresponds to a single faulty client sending requests
to open TCP connections and is shown for TCP based
systems.

System Peak Throughput 1 ms 10 ms 100 ms
PBFT 61710 5041 4853 1097

Zyzzyva 65999 27776 5029 crash

Aardvark 38667 38542 37340 37903

Table 4: Throughput during intervals in which the pri-
mary delays sending PRE-PREPARE message (or equiva-
lent) by 1, 10, and 100 ms.

ensures that a faulty client is unable to prevent replicas
from processing requests that have already entered the
system. The throughput degradation observed by Aard-
vark tracks the fraction of requests that replicas receive
that were sent by non-faulty clients.

7.2.2 Faulty Primary
In systems that rely on a primary, the primary controls
the sequence of requests that are processed during the
current view.

In Table 4 we show the impact on PBFT, Zyzzyva,
and Aardvark prototypes of a primary that delays send-
ing PRE-PREPARE messages by 1, 10, or 100 ms. The
throughput of both PBFT and Zyzzyva degrades dramat-
ically as the slow primary is not slow enough to trigger
their view change conditions. This throughput degrada-
tion is a consequence of the protocol design and spec-
ification of when view changes should occur. With an
extremely slow primary, Zyzzyva eventually succumbs
to a memory leak exacerbated by holding on to requests
for an extended period of time. The throughput achieved
by Aardvark indicates that adaptively performing view
changes in response to observed throughput is a good
technique for ensuring performance.

In addition to controlling the rate at which requests
are inserted into the system, the primary is also respon-
sible for controlling which requests are inserted into the
system. Table 5 explores the impact that an unfair pri-
mary can have on the throughput of a targeted node. In
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System Starved Throughput Normal Throughput
PBFT 1.25 1446

Zyzzyva 0 1718

Aardvark 358 465

Table 5: Average throughput for a starved client that is
shunned by a faulty primary versus the average per-client
throughput for any other client.

the case of PBFT and Aardvark, the primary sends a
PRE-PREPARE for the targeted client’s request only af-
ter receiving the the request 9 times. This heuristic pre-
vents the PBFT primary from triggering a view change
and demonstrates dramatic degradation in throughput for
the targeted client in comparison to the other clients in
the system. For Zyzzyva, the unfair primary ignores
messages from the targeted client entirely. The result-
ing throughput is 0 because the implementation is in-
complete, and replicas in the Zyzzyva prototype do not
forward received requests to the primary as specified by
the protocol. Aardvark’s fairness detection and periodic
view changes limit the impact of the unfair primary.

7.2.3 Non-Primary Replicas
We implement a faulty replica that fails to process pro-
tocol messages and insted blasts network traffic at the
other replicas and show the results in Table 6. In the
first experiments, a faulty replica blasts 9KB UDP mes-
sages at the other replicas. The PBFT and Zyzzyva pro-
totypes again show very low performance as the incom-
ing traffic from the spamming replica displaces much of
the legitimate traffic in the system, denying the system
both requests from the clients and also replica messages
required to make progress. Aardvark’s use of separate
worker queues ensures that the replicas process the mes-
sages necessary to make progress. In the second exper-
iment, the faulty The Q/U and HQ replicas again open
TCP connections, consuming all of the incoming con-
nections on the other replicas and denying the clients ac-
cess to the service.

Once again, the shortcomings of the systems are a
byproduct of implementation and not protocol design.
We speculate that improved network isolation techniques
would make the systems more robust.

8 Related work
We are not the first to notice significantly reduced per-
formance for BFT protocols during periods of failures or
bad network performance or to explore how timing and
failure assumptions impact performance and liveness of
fault tolerant systems.

Singh et al. [29] show that PBFT [8], Q/U [1],
HQ [12], and Zyzzyva [18] are all sensitive to network
performance. They provide a thorough examination of

System Peak Throughput
Replica Flooding
UDP TCP

PBFT 61710 251 -
Q/U 23850 19275 crash

HQ 7629 crash crash

Zyzzyva 65999 0 -
Aardvark 38667 11706 -

Table 6: Observed peak throughput and observed
throughput when one replica floods the network with
messages. UDP flooding consists of a replica sending
9KB messages to other replicas rather than following the
protocol. TCP flooding consists of a replica repeatedly
attempting to open TCP connections on other replicas.

the gracious executions of the four canonical systems
through a ns2 [25] network simulator. Singh et al. ex-
plore performance properties when the participants are
well behaved and the network is faulty; we focus our at-
tention on the dual scenario where the participants are
faulty and the network is well behaved.

Aiyer et al. [3] and Amir et al. [4] note that a slow
primary can result in dramatically reduced throughput.
Aiyer et al. combat this problem by frequently rotating
the primary. Amir et al. address the challenge instead by
introducing a pre-agreement protocol requiring several
all-to-all message exchanges and utilizing signatures for
all authentication. Their solution is designed for envi-
ronments where throughout of 800 requests per second
is considered good. Condie et al. [11] address the ability
of a well placed adversary to disrupt the performance of
an overlay network by frequently restructuring the over-
lay, effectively changing its view.

The signature processing and scheduling of replica
messages in Aardvark is similar in flavor to the early
rejection techniques employed by the LOCKSS sys-
tem [15, 24] in order to improve performance and limit
the damage an adversary can inflict on system.

PBFT [8], Q/U [1], HQ [12], and Zyzzyva [18] are re-
cent BFT replication protocols that focus on optimizing
performance during gracious executions and collectively
demonstrate that BFT replication systems can provide
excellent performance during gracious executions. We
instead focus on increasing the robustness of BFT sys-
tems by providing good performance during uncivil exe-
cutions. Hendricks et al. [17] explore the use of erasure
coding increase the efficiency of BFT replicated storage;
they emphasizes increasing the bandwidth and storage
efficiency of a replication protocol similar to Q/U and
not the fault tolerance of the replication protocol.

9 Conclusion
We claim that high assurance systems require BFT pro-
tocols that are more robust to failures than existing sys-
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tems. Specifically, BFT protocols suitable for high as-
surance systems must provide adequate throughput dur-
ing uncivil intervals in which the network is well behaved
but an unknown number of clients and up to f servers are
faulty. We present Aardvark, the first BFT state machine
protocol designed and implemented to provide good per-
formance in the presence of Byzantine faults. Aardvark
gives up some throughput during gracious executions, for
significant improvement in performance during uncivil
executions.

Aardvark is far from being the last word in robust
BFT replication: we believe that improvements to the
design and implementation of Aardvark, as well as to
the methodology that led us to it, are both possible and
likely. Specific challenges that remain for future work
include formally verifying the design and implementa-
tions of BFT systems, developing a notion of optimal-
ity for robust BFT systems that captures the fundamen-
tal tradeoffs betwee fault-free and fault-full performance,
and extending BFT replication to deployable large scale
applications.

10 Acknowledgements
The authors would like to thank our shepherd, Petros Ma-
niatis, for his detailed comments and the anonymous re-
viewers for their insightful reviews. This work was sup-
ported in part by NSF grants CSR-PDOS-0509338 and
CSR-PDOS-0720649.

References
[1] ABD-EL-MALEK, M., GANGER, G., GOODSON, G., REITER,

M., AND WYLIE, J. Fault-scalable Byzantine fault-tolerant ser-
vices. In SOSP (2005).

[2] AIYER, A. S., ALVISI, L., BAZZI, R. A., AND CLEMENT, A.
Matrix signatures: From macs to digital signatures in distributed
systems. In DISC (2008).

[3] AIYER, A. S., ALVISI, L., CLEMENT, A., DAHLIN, M., MAR-
TIN, J.-P., AND PORTH, C. BAR fault tolerance for cooperative
services. In SOSP (Oct. 2005).

[4] AMIR, Y., COAN, B., KIRSCH, J., AND LANE, J. Byzantine
replication under attack. In DSN (2008).

[5] BFT project homepage. http://www.pmg.csail.mit.
edu/bft/#sw.

[6] CASTRO, M. Practical Byzantine Fault Tolerance. PhD thesis,
2001.

[7] CASTRO, M., AND LISKOV, B. Practical Byzantine fault toler-
ance. In OSDI (1999).

[8] CASTRO, M., AND LISKOV, B. Practical Byzantine fault toler-
ance and proactive recovery. ACM Trans. Comput. Syst. (2002).

[9] At LAX, computer glitch delays 20,000 passengers.
http://travel.latimes.com/articles/la-trw-lax12aug12.

[10] CHOCKLER, G., MALKHI, D., AND REITER, M. Backoff pro-
tocols for distributed mutual exclusion and ordering. In ICDCS
(2001).

[11] CONDIE, T., KACHOLIA, V., SANKARARAMAN, S., HELLER-
STEIN, J. M., AND MANIATIS, P. Induced churn as shelter from
routing-table poisoning. In NDSS (2006).

[12] COWLING, J., MYERS, D., LISKOV, B., RODRIGUES, R., AND
SHRIRA, L. HQ replication: A hybrid quorum protocol for
Byzantine fault tolerance. In OSDI (2006).

[13] FISCHER, M., LYNCH, N., AND PATERSON, M. Impossibility
of distributed consensus with one faulty process. JACM (1985).

[14] FRIEDMAN, R., AND RENESSE, R. V. Packing messages as a
tool for boosting the performance of total ordering protocls. In
HPDC (1997).

[15] GIULI, T. J., MANIATIS, P., BAKER, M., ROSENTHAL, D.
S. H., AND ROUSSOPOULOS, M. Attrition defenses for a peer-
to-peer digital preservation system. In USENIX (2005).
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Abstract

Many distributed services are hosted at large, shared, geograph-
ically diverse data centers, and they use replication to achieve
high availability despite the unreachability of an entire data
center. Recent events show that non-crash faults occur in these
services and may lead to long outages. While Byzantine-Fault
Tolerance (BFT) could be used to withstand these faults, cur-
rent BFT protocols can become unavailable if a small frac-
tion of their replicas are unreachable. This is because exist-
ing BFT protocols favor strong safety guarantees (consistency)
over liveness (availability).

This paper presents a novel BFT state machine replication
protocol called Zeno that trades consistency for higher avail-
ability. In particular, Zeno replaces strong consistency (lin-
earizability) with a weaker guarantee (eventual consistency):
clients can temporarily miss each other’s updates but when the
network is stable the states from the individual partitions are
merged by having the replicas agree on a total order for all re-
quests. We have built a prototype of Zeno and our evaluation
using micro-benchmarks shows that Zeno provides better avail-
ability than traditional BFT protocols.

1 Introduction

Data centers are becoming a crucial computing platform
for large-scale Internet services and applications in a va-
riety of fields. These applications are often designed as
a composition of multiple services. For instance, Ama-
zon’s S3 storage service and its e-commerce platform use
Dynamo [15] as a storage substrate, or Google’s indices
are built using the MapReduce [14] parallel processing
framework, which in turn can use GFS [18] for storage.

Ensuring correct and continuous operation of these
services is critical, since downtime can lead to loss of
revenue, bad press, and customer anger [5]. Thus, to
achieve high availability, these services replicate data
and computation, commonly at multiple sites, to be able
to withstand events that make an entire data center un-
reachable [15] such as network partitions, maintenance
events, and physical disasters.

When designing replication protocols, assumptions
have to be made about the types of faults the protocol
is designed to tolerate. The main choice lies between a
crash-fault model, where it is assumed nodes fail cleanly
by becoming completely inoperable, or a Byzantine-fault
model, where no assumptions are made about faulty

components, capturing scenarios such as bugs that cause
incorrect behavior or even malicious attacks. A crash-
fault model is typically assumed in most widely deployed
services today, including those described above; the pri-
mary motivation for this design choice is that all ma-
chines of such commercial services run in the trusted en-
vironment of the service provider’s data center [15].

Unfortunately, the crash-fault assumption is not al-
ways valid even in trusted environments, and the con-
sequences can be disastrous. To give a few recent exam-
ples, Amazon’s S3 storage service suffered a multi-hour
outage, caused by corruption in the internal state of a
server that spread throughout the entire system [2]; also
an outage in Google’s App Engine was triggered by a bug
in datastore servers that caused some requests to return
errors [19]; and a multi-day outage at the Netflix DVD
mail-rental was caused by a faulty hardware component
that triggered a database corruption event [28].

Byzantine-fault-tolerant (BFT) replication protocols
are an attractive solution for dealing with such faults. Re-
cent research advances in this area have shown that BFT
protocols can perform well in terms of throughput and la-
tency [23], they can use a small number of replicas equal
to their crash-fault counterparts [9, 37], and they can be
used to replicate off-the-shelf, non-deterministic, or even
distinct implementations of common services [29, 36].

However, most proposals for BFT protocols have fo-
cused on strong semantics such as linearizability [22],
where intuitively the replicated system appears to the
clients as a single, correct, sequential server. The price to
pay for such strong semantics is that each operation must
contact a large subset (more than 2

3 , or in some cases 4
5 )

of the replicas to conclude, which can cause the system to
halt if more than a small fraction ( 1

3 or 1
5 , respectively) of

the replicas are unreachable due to maintenance events,
network partitions, or other non-Byzantine faults. This
contrasts with the philosophy of systems deployed in cor-
porate data centers [15, 21, 34], which favor availability
and performance, possibly sacrificing the semantics of
the system, so they can provide continuous service and
meet tight SLAs [15].

In this paper we propose Zeno, a new BFT replication
protocol designed to meet the needs of modern services
running in corporate data centers. In particular, Zeno fa-
vors service performance and availability, at the cost of
providing weaker consistency guarantees than traditional
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BFT replication when network partitions and other infre-
quent events reduce the availability of individual servers.

Zeno offers eventual consistency semantics [17],
which intuitively means that different clients can be un-
aware of the effects of each other’s operations, e.g., dur-
ing a network partition, but operations are never lost
and will eventually appear in a linear history of the
service—corresponding to that abstraction of a single,
correct, sequential server—once enough connectivity is
re-established.

In building Zeno we did not start from scratch, but in-
stead adapted Zyzzyva [23], a state-of-the-art BFT repli-
cation protocol, to provide high availability. Zyzzyva
employs speculation to conclude operations fast and
cheaply, yielding high service throughput during favor-
able system conditions—while connectivity and repli-
cas are available—so it is a good candidate to adapt
for our purposes. Adaptation was challenging for sev-
eral reasons, such as dealing with the conflict between
the client’s need for a fast and meaningful response and
the requirement that each request is brought to comple-
tion, or adapting the view change protocols to also enable
progress when only a small fraction of the replicas are
reachable and to merge the state of individual partitions
when enough connectivity is re-established.

The rest of the paper is organized as follows. Section 2
motivates the need for eventual consistency. Section 3
defines the properties guaranteed by our protocol. Sec-
tion 4 describe how Zeno works and Section 5 sketches
the proof of its correctness. Section 6 evaluates how our
implementation of Zeno performs. Section 7 presents re-
lated work, and Section 8 concludes.

2 The Case for Eventual Consistency

Various levels and definitions of weak consistency have
been proposed by different communities [16], so we need
to justify why our particular choice is adequate. We
argue that eventual consistency is both necessary for
the guarantees we are targetting, and sufficient from the
standpoint of many applications.

Consider a scenario where a network partition occurs,
that causes half of the replicas from a given replica group
to be on one side of the partition and the other half on the
other side. This is plausible given that replicated sys-
tems often spread their replicas over multiple data cen-
ters for increased reliability [15], and that Internet parti-
tions do occur in practice [6]. In this case, eventual con-
sistency is necessary to offer high availability to clients
on both sides of the partition, since it is impossible to
have both sides of the partitions make progress and si-
multaneously achieve a consistency level that provided
a total order on the operations (“seen” by all client re-
quests) [7]. Intuitively, the closest approximation from

that idealized consistency that could be offered is even-
tual consistency, where clients on each side of the parti-
tion agree on an ordering (that only orders their opera-
tions with respect to each other), and, when enough con-
nectivity is re-established, the two divergent states can
be merged, meaning that a total order between the oper-
ations on both sides can be established, and subsequent
operations will reflect that order.

Additionally, we argue that eventual consistency is
sufficient from the standpoint of the properties required
by many services and applications that run in data cen-
ters. This has been clearly stated by the designers of
many of these services [3, 13, 15, 21, 34]. Applications
that use an eventually consistent service have to be able
to work with responses that may not include some previ-
ously executed operations. To give an example of appli-
cations that use Dynamo, this means that customers may
not get the most up-to-date sales ranks, or may even see
some items they deleted reappear in their shoping carts,
in which case the delete operation may have to be redone.
However, those events are much preferrable to having a
slow, or unavailable service.

Beyond data-center applications, many other exam-
ples of eventually consistent services has been deployed
in common-use systems, for example, DNS. Saito and
Shapiro [30] provide a more thourough survey of the
theme.

3 Algorithm Properties

We now informally specify safety and liveness properties
of a generic eventually consistent BFT service. The for-
mal definitions appear in a separate technical report due
to lack of space [31].

3.1 Safety
Informally, our safety properties say that an eventu-
ally consistent system behaves like a centralized server
whose service state can be modelled as a multi-set. Each
element of the multi-set is a history (a totally ordered
subset of the invoked operations), which captures the in-
tuitive notion that some operations may have executed
without being aware of each other, e.g., on different sides
of a network partition, and are therefore only ordered
with respect to a subset of the requests that were exe-
cuted. We also limit the total number of divergent his-
tories, which in the case of Zeno cannot exceed, at any
time, ⌊ N−|failed|

f+1−|failed| ⌋, where |failed| is the current number
of failed servers, N is the total number of servers and f
is the maximum number of servers that can fail.

We also specify that certain operations are commit-
ted. Each history has a prefix of committed operations,
and the committed prefixes are related by containment.
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Hence, all histories agree on the relative order of their
committed operations, and the order cannot change in
the future. Aside from this restriction, histories can be
merged (corresponding to a partition healing) and can be
forked, which corresponds to duplicating one of the sets
in the multi-set.

Given this state, clients can execute two types of op-
erations, weak and strong, as follows. Any operation be-
gins its execution cycle by being inserted at the end of
any non-empty subset of the histories. At this and any
subsequent time, a weak operation may return, with the
corresponding result reflecting the execution of all the
operations that precede it. In this case, we say that the
operation is weakly complete. For strong operations, they
must wait until they are committed (as defined above) be-
fore they can return with a similar way of computing the
result. We assume that each correct client is well-formed:
it never issues a new request before its previous (weak or
strong) request is (weakly or strongly, respectively) com-
plete.

The merge operation takes two histories and produces
a new history, containing all operations in both histo-
ries and preserving the ordering of committed operations.
However, the weak operations can appear in arbitrary or-
dering in the merged histories, preserving the causal or-
der of operations invoked by the same client. This im-
plies that weak operations may commit in a different or-
der than when they were weakly completed.

3.2 Liveness
On the liveness side, our service guarantees that a request
issued by a correct client is processed and a response is
returned to the client, provided that the client can com-
municate with enough replicas in a timely manner.

More precisely, we assume a default round-trip delay
∆ and we say that a set of servers Π′ ⊆ Π, is eventually
synchronous if there is a time after which every two-way
message exchange within Π′ takes at most ∆ time units.
We also assume that every two correct servers or clients
can eventually reliably communicate. Now our progress
requirements can be put as follows:

(L1) If there exists an eventually synchronous set of f +1
correct servers Π′, then every weak request issued
by a correct client is eventually weakly complete.

(L2) If there exists an eventually synchronous set of 2 f +
1 correct servers Π′, then every weakly complete
request or a strong request issued by a correct client
is eventually committed.

In particular, (L1) and (L2) imply that if there is a
an eventually synchronous set of 2 f + 1 correct replicas,
then each (weak or strong) request issued by a correct
client will eventually be committed.

As we will explain later, ensuring (L1) in the pres-
ence of partitions may require unbounded storage. We
will present a protocol addition that bounds the storage
requirements at the expense of relaxing (L1).

4 Zeno Protocol

4.1 System model
Zeno is a BFT state machine replication protocol. It
requires N = (3 f + 1) replicas to tolerate f Byzantine
faults, i.e., we make no assumption about the behavior
of faulty replicas. Zeno also tolerates an arbitrary num-
ber of Byzantine clients. We assume no node can break
cryptographic techniques like collision-resistant digests,
encryption, and signing. The protocol we present in this
paper uses public key digital signatures to authenticate
communication. In a separate technical report [31], we
present a modified version of the protocol that uses more
efficient symmetric cryptography based on message au-
thentication codes (MACs).

The protocol uses two kinds of quorums: strong quo-
rums consisting of any group of 2 f + 1 distinct replicas,
and weak quorums of f + 1 distinct replicas.

The system easily generalizes to any N ≥ 3 f + 1,
in which case the size of strong quorums becomes
⌈N+ f+1

2 ⌉, and weak quorums remain the same, indepen-
dent of N. Note that one can apply our techniques in
very large replica groups (where N ≫ 3 f + 1) and still
make progress as long as f + 1 replicas are available,
whereas traditional (strongly consistent) BFT systems
can be blocked unless at least ⌈N+ f+1

2 ⌉ replicas, grow-
ing with N, are available.

4.2 Overview
Like most traditional BFT state machine replication pro-
tocols, Zeno has three components: sequence number as-
signment (Section 4.4) to determine the total order of op-
erations, view changes (Section 4.5) to deal with leader
replica election, and checkpointing (Section 4.8) to deal
with garbage collection of protocol and application state.

The execution goes through a sequence of configu-
rations called views. In each view, a designated leader
replica (the primary) is responsible for assigning mono-
tonically increasing sequence numbers to clients’ opera-
tions. A replica j is the primary for the view numbered v
iff j = v mod N.

At a high level, normal case execution of a request
proceeds as follows. A client first sends its request to
all replicas. A designated primary replica assigns a se-
quence number to the client request and broadcasts this
proposal to the remaining replicas. Then all replicas ex-
ecute the request and return a reply to the client.
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Name Meaning
v current view number
n highest sequence number executed
h history, a hash-chain digest of the requests
o operation to be performed
t timestamp assigned by the client to each request
s flag indicating if this is a strong operation
r result of the operation

D(.) cryptographic digest function
CC highest commit certificate
ND non-deterministic argument to an operation
OR Order Request message

Table 1: Notations used in message fields.

Once the client gathers sufficiently many matching
replies—replies that agree on the operation result, the
sequence number, the view, and the replica history—it
returns this result to the application. For weak requests,
it suffices that a single correct replica returned the re-
sult, since that replica will not only provide a correct
weak reply by properly executing the request, but it will
also eventually commit that request to the linear history
of the service. Therefore, the client need only collect
matching replies from a weak quorum of replicas. For
strong requests, the client must wait for matching replies
from a strong quorum, that is, a group of at least 2 f + 1
distinct replicas. This implies that Zeno can complete
many weak operations in parallel across different parti-
tions when only weak quorums are available, whereas
it can complete strong operations only when there are
strong quorums available.

Whenever operations do not make progress, or if repli-
cas agree that the primary is faulty, a view change pro-
tocol tries to elect a new primary. Unlike in previous
BFT protocols, view changes in Zeno can proceed with
the concordancy of only a weak quorum. This can allow
multiple primaries to coexist in the system (e.g., during
a network partition) which is necessary to make progress
with eventual consistency. However, as soon as these
multiple views (with possibly divergent sets of opera-
tions) detect each other (Section 4.6), they reconcile their
operations via a merge procedure (Section 4.7), restoring
consistency among replicas.

In what follows, messages with a subscript of the form
σc denote a public-key signature by principal c. In all
protocol actions, malformed or improperly signed mes-
sages are dropped without further processing. We inter-
changeably use terms “non-faulty” and “correct” to mean
system components (e.g., replicas and clients) that follow
our protocol faithfully. Table 1 collects our notation.

We start by explaining the protocol state at the repli-
cas. Then we present details about the three protocol
components. We used Zyzzyva [23] as a starting point
for designing Zeno. Therefore, throughout the presenta-
tion, we will explain how Zeno differs from Zyzzyva.

4.3 Protocol State
Each replica i maintains the highest sequence number
n it has executed, the number v of the view it is cur-
rently participating in, and an ordered history of requests
it has executed along with the ordering received from
the primary. Replicas maintain a hash-chain digest hn
of the n operations in their history in the following way:
hn+1 = D(hn,D(REQn+1)), where D is a cryptographic
digest function and REQn+1 is the request assigned se-
quence number n + 1.

A prefix of the ordered history upto sequence number
ℓ is called committed when a replica gathers a commit
certificate (denoted CC and described in detail in Sec-
tion 4.4) for ℓ; each replica only remembers the highest
CC it witnessed.

To prevent the history of requests from growing with-
out bounds, replicas assemble checkpoints after every
CHKP INTERVAL sequence numbers. For every check-
point sequence number ℓ, a replica first obtains the CC
for ℓ and executes all operations upto and including ℓ. At
this point, a replica takes a snapshot of the application
state and stores it (Section 4.8).

Replicas remember the set of operations received from
each client c in their request[c] buffer and only the last
reply sent to each client in their reply[c] buffer. The re-
quest buffer is flushed when a checkpoint is taken.

4.4 Sequence Number Assignment
To describe how sequence number assignment works, we
follow the flow of a request.

Client sends request. A correct client c sends a request
�REQUEST,o,t,c,s�σc to all replicas, where o is the op-
eration, t is a sequence number incremented on every re-
quest, and s is the strong operation flag.

Primary assigns sequence number and broadcasts or-
der request (OR) message. If the last operation ex-
ecuted for this client has timestamp t ′ = t − 1, then
primary i assigns the next available sequence number
n + 1 to this request, increments n, and then broadcasts
a �OR,v,n,hn,D(REQ), i,s,ND�σi message to backup
replicas. ND is a set of non-deterministic application
variables, such as a seed for a pseudorandom num-
ber generator, used by the application to generate non-
determinism.

Replicas receive OR. When a replica j receives an
OR message and the corresponding client request, it first
checks if both are authentic, and then checks if it is in
view v. If valid, it calculates h′n+1 = D(hn,D(REQ)) and
checks if h′n+1 is equal to the history digest in the OR
message. Next, it increments its highest sequence num-
ber n, and executes the operation o from REQ on the ap-
plication state and obtains a reply r. A replica sends the
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reply ��SPECREPLY,v,n,hn,D(r),c,t�σ j , j,r,OR� im-
mediately to the client if s is false (i.e., this is a weak
request). If s is true, then the request must be com-
mitted before replying, so a replica first multicasts a
�COMMIT,OR, j�σ j to all others. When a replica re-
ceives at least 2 f + 1 such COMMIT messages (in-
cluding its own) matching in n, v, hn, D(REQ), it
forms a commit certificate CC consisting of the set of
COMMIT messages and the corresponding OR, stores
the CC, and sends the reply to the client in a message
��REPLY,v,n,hn,D(r),c,t�σ j , j,r,OR�. The primary fol-
lows the same logic to execute the request, potentially
committing it, and sending the reply to the client. Note
that the commit protocol used for strong requests will
also add all the preceding weak requests to the set of
committed operations.

Client receives responses. For weak requests, if a
client receives a weak quorum of SPECREPLY messages
matching in their v, n, h, r, and OR, it considers the re-
quest weakly complete and returns a weak result to the
application. For strong requests, a client requires match-
ing REPLY messages from a strong quorum to consider
the operation complete.

Fill Hole Protocol. Replicas only execute requests—
both weak and strong—in sequence number order. How-
ever, due to message loss or other network disrup-
tions, a replica i may receive an OR or a COMMIT

message with a higher-than-expected sequence num-
ber (that is, OR.n > n + 1); the replica discards such
messages, asking the primary to “fill it in” on what
it has missed (the OR messages with sequence num-
bers between n + 1 and OR.n) by sending the primary
a �FILLHOLE,v,n,OR.n, i� message. Upon receipt, the
primary resends all of the requested OR messages back
to i, to bring it up-to-date.

Comparison to Zyzzyva. There are four important
differences between Zeno and Zyzzyva in the normal ex-
ecution of the protocol.

First, Zeno clients only need matching replies from a
weak quorum, whereas Zyzzyva requires at least a strong
quorum; this leads to significant increase in availability,
when for example only between f +1 and 2 f replicas are
available. It also allows for slightly lower overhead at the
client due to reduced message processing requirements,
and to a lower latency for request execution when inter-
node latencies are heterogeneous.

Second, Zeno requires clients to use sequential times-
tamps instead of monotonically increasing but not nec-
essarily sequential timestamps (which are the norm in
comparable systems). This is required for garbage col-
lection (Section 4.8). This raises the issue of how to deal

with clients that reboot or otherwise lose the informa-
tion about the latest sequence number. In our current im-
plementation we are not storing this sequence number
persistently before sending the request. We chose this
because the guarantees we obtain are still quite strong:
the requests that were already committed will remain in
the system, this does not interfere with requests from
other clients, and all that might happen is the client los-
ing some of its initial requests after rebooting or old-
est uncommitted requests. As future work, we will de-
vise protocols for improving these guarantees further, or
for storing sequence numbers efficiently using SSDs or
NVRAM.

Third, whereas Zyzzyva offers a single-phase perfor-
mance optimization, in which a request commits in only
three message steps under some conditions (when all
3 f +1 replicas operate roughly synchronously and are all
available and non-faulty), Zeno disables that optimiza-
tion. The rationale behind this removal is based on the
view change protocol (Section 4.5) so we defer the dis-
cussion until then. A positive side-effect of this removal
is that, unlike with Zyzzyva, Zeno does not entrust po-
tentially faulty clients with any protocol step other than
sending requests and collecting responses.

Finally, clients in Zeno send the request to all replicas
whereas clients in Zyzzyva send the request only to the
primary replica. This change is required only in the MAC
version of the protocol but we present it here to keep
the protocol description consistent. At a high level, this
change is required to ensure that a faulty primary can-
not prevent a correct request that has weakly completed
from committing—the faulty primary may manipulate a
few of the MACs in an authenticator present in the re-
quest before forwarding it to others, and during commit
phase, not enough correct replicas correctly verify the
authenticator and drop the request. Interestingly, we find
that the implementations of both PBFT and Zyzzyva pro-
tocols also require the clients to send the request directly
to all replicas.

Our protocol description omits some of the pedantic
details such as handling faulty clients or request retrans-
missions; these cases are handled similarly to Zyzzyva
and do not affect the overheads or benefits of Zeno when
compared to Zyzzyva.

4.5 View Changes
We now turn to the election of a new primary when the
current primary is unavailable or faulty. The key point
behind our view change protocol is that it must be able
to proceed when only a weak quorum of replicas is avail-
able unlike view change algorithms in strongly consistent
BFT systems which require availability of a strong quo-
rum to make progress. The reason for this is the follow-
ing: strongly consistent BFT systems rely on the quorum



174	 NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation	 USENIX Association

intersection property to ensure that if a strong quorum Q
decides to change view and another strong quorum Q′ de-
cides to commit a request, there is at least one non-faulty
replica in both quorums ensuring that view changes do
not “lose” requests committed previously. This implies
that the sizes of strong quorums are at least 2 f + 1, so
that the intersection of any two contains at least f + 1
replicas, including—since no more than f of those can
be faulty—at least one non-faulty replica. In contrast,
Zeno does not require view change quorums to intersect;
a weak request missing from a view change will be even-
tually committed when the correct replica executing it
manages to reach a strong quorum of correct replicas,
whereas strong requests missing from a view change will
cause a subsequent provable divergence and application-
state merge.

View Change Protocol. A client c retransmits the re-
quest to all replicas if it times out before completing its
request. A replica i receiving a client retransmission first
checks if the request is already executed; if so, it simply
resends the SPECREPLY/REPLY to the client from its re-
ply[c] buffer. Otherwise, the replica forwards the request
to the primary and starts a IHateThePrimary timer.

In the latter case, if the replica does not receive
an OR message before it times out, it broadcasts
�IHATETHEPRIMARY,v�σi to all replicas, but contin-
ues to participate in the current view. If a replica
receives such accusations from a weak quorum, it
stops participating in the current view v and sends a
�VIEWCHANGE,v + 1,CC,O�σi to other replicas, where
CC is the highest commit certificate, and O is i’s or-
dered request history since that commit certificate, i.e.,
all OR messages for requests with sequence numbers
higher than the one in CC. It then starts the view change
timer.

The primary replica j for view v+1 starts a timer with
a shorter timeout value called the aggregation timer and
waits until it collects a set of VIEWCHANGE messages
for view v + 1 from a strong quorum, or until its aggre-
gation timer expires. If the aggregation timer expires and
the primary replica has collected f +1 or more such mes-
sages, it sends a �NEWVIEW,v + 1,P�σ j to other repli-
cas, where P is the set of VIEWCHANGE messages it
gathered (we call this a weak view change, as opposed to
one where a strong quorum of replicas participate which
is called a strong view change). If a replica does not
receive the NEWVIEW message before the view change
timer expires, it starts a view change into the next view
number.

Note that waiting for messages from a strong quorum
is not needed to meet our eventual consistency specifi-
cation, but helps to avoid a situation where some opera-
tions are not immediately incorporated into the new view,

which would later create a divergence that would need to
be resolved using our merge procedure. Thus it improves
the availability of our protocol.

Each replica locally calculates the initial state for the
new view by executing the requests contained in P ,
thereby updating both n and the history chain digest hn.
The order in which these requests are executed and how
the initial state for the new view is calculated is related
to how we merge divergent states from different replicas,
so we defer this explanation to Section 4.7. Each replica
then sends a �VIEWCONFIRM,v + 1,n,hn, i�σi to all oth-
ers, and once it receives such VIEWCONFIRM messages
matching in v + 1, n, and h from a weak or a strong quo-
rum (for weak or strong view changes, respectively) the
replica becomes active in view v+1 and stops processing
messages for any prior views.

The view change protocol allows a set of f + 1 cor-
rect but slow replicas to initiate a global view change
even if there is a set of f + 1 synchronized correct repli-
cas, which may affect our liveness guarantees (in par-
ticular, the ability to eventually execute weak requests
when there is a synchronous set of f +1 correct servers).
We avoid this by prioritizing client requests over view
change requests as follows. Every replica maintains a
set of client requests that it received but have not been
processed (put in an ordered request) by the primary.
Whenever a replica i receives a message from j re-
lated to the view change protocol (IHATETHEPRIMARY,
VIEWCHANGE, NEWVIEW, or VIEWCONFIRM) for a
higher view, i first forwards the outstanding requests to
the current primary and waits until the corresponding
ORs are received or a timer expires. For each pending re-
quest, if a valid OR is received, then the replica sends the
corresponding response back to the client. Then i pro-
cesses the original view change related messages from j
according to the protocol described above. This guaran-
tees that the system makes progress even in the presence
of continuous view changes caused by the slow replicas
in such pathological situations.

Comparison to Zyzzyva. View changes in Zeno differ
from Zyzzyva in the size of the quorum required for a
view change to succeed: we require f + 1 view change
messages before a new view can be announced, whereas
previous protocols required 2 f + 1 messages. Moreover,
the way a new view message is processed is also dif-
ferent in Zeno. Specifically, the start state in a new
view must incorporate not only the highest CC in the
VIEWCHANGE messages, but also all ORDERREQ that
appear in any VIEWCHANGE message from the previ-
ous view. This guarantees that a request is incorporated
within the state of a new view even if only a single replica
reports it; in contrast, Zyzzyva and other similar proto-
cols require support from a weak quorum for every re-
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quest moved forward through a view change. This is re-
quired in Zeno since it is possible that only one replica
supports an operation that was executed in a weak view
and no other non-faulty replica has seen that operation,
and because bringing such operations to a higher view is
needed to ensure that weak requests are eventually com-
mitted.

The following sections describe additions to the view
change protocols to incorporate functionality for detect-
ing and merging concurrent histories, which are also ex-
clusive to Zeno.

4.6 Detecting Concurrent Histories

Concurrent histories (i.e., divergence in the service state)
can be formed for several reasons. This can occur when
the view change logic leads to the presence of two repli-
cas that simultaneously believe they are the primary, and
there are a sufficient number of other replicas that also
share that belief and complete weak operations proposed
by each primary. This could be the case during a network
partition that splits the set of replicas into two subsets,
each of them containing at least f + 1 replicas.

Another possible reason for concurrent histories is that
the base history decided during a view change may not
have the latest committed operations from prior views.
This is because a view change quorum (a weak quorum)
may not share a non-faulty replica with prior commit-
ment quorums (strong quorums) and remaining replicas;
as a result, some committed operations may not appear in
VIEWCHANGE messages and, therefore, may be missing
from the new starting state in the NEWVIEW message.

Finally, a misbehaving primary can also cause diver-
gence by proposing the same sequence numbers to dif-
ferent operations, and forwarding the different choices
to disjoint sets of replicas.

Basic Idea. Two request history orderings hi
1,h

i
2, . . .

and h j
1,h

j
2, . . ., present at replicas i and j respectively,

are called concurrent if there exists a sequence num-
ber n such that hi

n �= h j
n; because of the collision resis-

tance of the hash chaining mechanism used to produce
history digests, this means that the sequence of requests
represented by the two digests differ as well. A replica
compares history digests whenever it receives protocol
messages such as OR, COMMIT, or CHECKPOINT (de-
scribed in Section 4.8) that purport to share the same his-
tory as its own.

For clarity, we first describe how we detect divergence
within a view and then discuss detection across views.
We also defer details pertaining to garbage collection of
replica state until Section 4.8.

4.6.1 Divergence between replicas in same view

Suppose replica i is in view vi, has executed up to
sequence number ni, and receives a properly authen-
ticated message �OR,vi,n j,hn j ,D(REQ), p,s,ND�σp

or �COMMIT,�OR,vi,n j,hn j ,D(REQ), p,s,ND�σp , j�σ j

from replica j.
If ni < n j, i.e., j has executed a request with

sequence number n j, then the fill-hole mecha-
nism is started, and i receives from j a message
�OR,v′,ni,hni ,D(REQ′),k,s,ND�σk , where v′ ≤ vi and
k = primary(v′).

Otherwise, if ni ≥ n j, both replicas have executed a
request with sequence number n j and therefore i must
have the some �OR,v′,n j,hn j ,D(REQ′),k,s,ND�σk mes-
sage in its log, where v′ ≤ vi and k = primary(v′).

If the two history digests match (the local hn j or hni ,
depending on whether ni ≥ n j, and the one received in
the message), then the two histories are consistent and
no concurrency is deduced.

If instead the two history digests differ, the histories
must differ as well. If the two OR messages are authen-
ticated by the same primary, together they constitute a
proof of misbehavior (POM); through an inductive argu-
ment it can be shown that the primary must have assigned
different requests to the same sequence number n j. Such
a POM is sufficient to initiate a view change and a merge
of histories (Section 4.7).

The case when the two OR messages are authenticated
by different primaries indicates the existence of diver-
gence, caused for instance by a network partition, and
we discuss how to handle it next.

4.6.2 Divergence across views

Now assume that replica i receives a message from
replica j indicating that v j > vi. This could happen due to
a partition, during which different subsets changed views
independently, or due to other network and replica asyn-
chrony. Replica i requests the NEWVIEW message for
v j from j. (The case where v j < vi is similar, with the
exception that i pushes the NEWVIEW message to j in-
stead.)

When node i receives and verifies the
�NEWVIEW,v j,P�σp message, where p is the issu-
ing primary of view v j, it compares its local history to
the sequence of OR messages obtained after ordering
the OR message present in the NEWVIEW message
(according to the procedure described in Section 4.7).
Let nl and nh be the lowest and highest sequence
numbers of those OR messages, respectively.

Case 1: [ni < nl] Replica i is missing future requests,
so it sends j a FILLHOLE message requesting the OR
messages between ni and nl . When these are received, it
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compares the OR message for ni to detect if there was di-
vergence. If so, the replica obtained a proof of divergence
(POD), consisting of the two OR messages, which it can
use to initiate a new view change. If not, it executes the
operations from ni to nl and ensures that its history af-
ter executing nl is consistent with the CC present in the
NEWVIEW message, and then handles the NEWVIEW

message normally and enters v j. If the histories do not
match this also constitutes a POD.

Case 2: [nl ≤ ni ≤ nh] Replica i must have the cor-
responding ORDERREQ for all requests with sequence
numbers between nl and ni and can therefore check if
its history diverges from that which was used to gener-
ate the new view. If it finds no divergence, it moves to
v j and calculates the start state based on the NEWVIEW

message (Section 4.5). Otherwise, it generates a POD
and initiates a merge.

Case 3: [ni > nh] Replica i has corresponding OR
messages for all sequence numbers appearing in the
NEWVIEW and can check for divergence. If no diver-
gence is found, the replica has executed more requests in
a lower view vi than v j. Therefore, it generates a Proof
of Absence (POA), consisting of all OR messages with
sequence numbers in [nl,ni] and the NEWVIEW message
for the higher view, and initiates a merge. If divergence
is found, i generates a POD and also initiates a merge.

Like traditional view change protocols, a replica i does
not enter v j if the NEWVIEW message for that view did
not include all of i’s committed requests. This is im-
portant for the safety properties providing guarantees for
strong operations, since it excludes a situation where re-
quests could be committed in v j without seeing previ-
ously committed requests.

4.7 Merging Concurrent Histories
Once concurrent histories are detected, we need to merge
them in a deterministic order. The solution we propose
is to extend the view change protocol, since many of the
functionalities required for merging are similar to those
required to transfer a set of operations across views.

We extend the view change mechanism so that view
changes can be triggered by either PODs, POMs or
POAs. When a replica obtains a POM, a POD, or a POA
after detecting divergence, it multicasts a message of the
form �POMMSG,v,POM�σi , �PODMSG,v,POD�σi , or
�POAMSG,v,POA�σi in addition to the VIEWCHANGE

message for v. Note here that v in POM and POD is
one higher than the highest view number present in the
conflicting ORDERREQ messages, or one higher than the
view number in the NEWVIEW component in the case of
a POA.

Upon receiving an authentic and valid POMMSG

or PODMSG or a POAMSG, a replica broadcasts a

VIEWCHANGE along with the triggering POM, POD, or
POA message.

The view change mechanism will eventually lead to
the election of a new primary that is supposed to multi-
cast a NEWVIEW message. When a node receives such
a message, it needs to compute the start state for the next
view based on the information contained in that message.
The new start state is calculated by first identifying the
highest CC present among all VIEWCHANGE messages;
this determines the new base history digest hn for the start
sequence number n of the new view.

But nodes also need to determine how to order the dif-
ferent OR messages that are present in the NEWVIEW

message but not yet committed. Contained OR mes-
sages (potentially including concurrent requests) are or-
dered using a deterministic function of the requests that
produces a total order for these requests. Having a fixed
function allows all nodes receiving the NEWVIEW mes-
sage to easily agree on the final order for the concurrent
OR present in that message. Alternatively, we could let
the primary replica propose an ordering, and disseminate
it as an additional parameter of the NEWVIEW message.

Replicas receiving the NEWVIEW message then exe-
cute the requests in the OR messages according to that
fixed order, updating their histories and history digests.
If a replica has already executed some weak operations
in an order that differs from the new ordering, it first rolls
back the application state to the state of the last check-
point (Section 4.8) and executes all operations after the
checkpoint, starting with committed requests and then
with the weak requests ordered by the NEWVIEW mes-
sage. Finally, the replica broadcasts a VIEWCONFIRM

message. As mentioned, when a replica collects match-
ing VIEWCONFIRM messages on v, n, and hn it becomes
active in the new view.

Our merge procedure re-executes the concurrent op-
erations sequentially, without running any additional or
alternative application-specific conflict resolution proce-
dure. This makes the merge algorithm slightly simpler,
but requires the application upcall that executes client op-
erations to contain enough information to identify and re-
solve concurrent operations. This is similar to the design
choice made by Bayou [33] where special concurrency
detection and merge procedure are part of each service
operation, enabling servers to automatically detect and
resolve conflicts.

Limiting the number of merge operations. A faulty
replica can trigger multiple merges by producing a new
POD for each conflicting request in the same view, or
generating PODs for requests in old views where itself
or a colluding replica was the primary. To avoid this
potential performance problem, replicas remember the
last POD, POM, or a POA every other replica initiated,
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and reject a POM/POD/POA from the same or a lower
view coming from that replica. This ensures that a faulty
replica can initiate a POD/POM/POA only once from
each view it participated in. This, as we show in Sec-
tion 5, helps establish our liveness properties.

Recap comparison to Zyzzyva. Zeno’s view changes
motivate our removal of the single-phase Zyzzyva op-
timization for the following reason: suppose a strong
client request REQ was executed (and committed) at se-
quence number n at 3 f + 1 replicas. Now suppose there
was a weak view change, the new primary is faulty, and
only f +1 replicas are available. A faulty replica among
those has the option of reporting REQ in a different or-
der in its VIEWCHANGE message, which enables the
primary to order REQ arbitrarily in its NEWVIEW mes-
sage; this is possible because only a single—potentially
faulty—replica need report any request during a Zeno
view change. This means that linearizability is violated
for this strong, committed request REQ. Although it may
be possible to design a more involved view change to
preserve such orderings, we chose to keep things sim-
ple instead. As our results show, in many settings where
eventual consistency is sufficient for weak operations,
our availability under partitions tramps any benefits from
increased throughput due to the Zyzzyva’s optimized
single-phase request commitment.

4.8 Garbage Collection
The protocol we have presented so far has two important
shortcomings: the protocol state grows unboundedly, and
weak requests are never committed unless they are fol-
lowed by a strong request.

To address these issues, Zeno periodically takes
checkpoints, garbage collecting its logs of requests and
forcing weak requests to be committed.

When a replica receives an ORDERREQ message from
the primary for sequence number M, it checks if M
mod CHKP INTERVAL = 0. If so, it broadcasts the
COMMIT message corresponding to M to other repli-
cas. Once a replica receives 2 f + 1 COMMIT mes-
sages matching in v, M, and hM , it creates the com-
mit certificate for sequence number M. It then sends
a �CHECKPOINT,v,M,hM,App�σ j to all other replicas.
The App is a snapshot of the application state after ex-
ecuting requests upto and including M. When it receives
f +1 matching CHECKPOINT messages, it considers the
checkpoint stable, stores this proof, and discards all or-
dered requests with sequence number lower than n along
with their corresponding client requests.

Also, in case the checkpoint procedure is not run
within the interval of TCHKP time units, and a replica has
some not yet committed ordered requests, the replica also
initiates the commit step of the checkpoint procedure.

This is done to make sure that pending ordered requests
are committed when the service is rarely used by other
clients and the sequence numbers grow very slowly.

Our checkpoint procedure described so far poses a
challenge to the protocol for detecting concurrent his-
tories. Once old requests have been garbage-collected,
there is no way to verify, in the case of a slow replica (or
a malicious replica pretending to be slow) that presents
an old request, if that request has been committed at that
sequence number or if there is divergence.

To address this, clients send sequential timestamps to
uniquely identify each one of their own operations, and
we added a list of per-client timestamps to the checkpoint
messages, representing the maximum operation each
client has executed up to the checkpoint. This is in con-
trast with previous BFT replication protocols, including
Zyzzyva, where clients identified operations using times-
tamps obtained by reading their local clocks. Concretely,
a replica sends �CHECKPOINT,v,M,hM ,App,CSet�σ j ,
where CSet is a vector of �c,t� tuples, where t is the
timestamp of the last committed operation from c.

This allows us to detect concurrent requests, even if
some of the replicas have garbage-collected that request.
Suppose a replica i receives an OR with sequence num-
ber n that corresponds to client c’s request with times-
tamp t1. Replica i first obtains the timestamp of the
last executed operation of c in the highest checkpoint
tc=CSet[c]. If t1 ≤ tc, then there is no divergence since
the client request with timestamp t1 has already been
committed. But if t1 > tc, then we need to check if some
other request was assigned n, providing a proof of diver-
gence. If n < M, then the CHECKPOINT and the OR form
a POD since some other request was assigned n. Else, we
can perform regular conflict detection procedure to iden-
tify concurrency (see Section 4.6).

Note that our checkpoints become stable only when
there are at least 2 f +1 replicas that are able to agree. In
the presence of partitions or other unreachability situa-
tions where only weak quorums can talk to each other, it
may not be possible to gather a checkpoint, which im-
plies that Zeno must either allow the state concerning
tentative operations to grow without bounds, or weaken
its liveness guarantees. In our current protocol we chose
the latter, and so replicas stop participating once they
reach a maximum number of tentative operations they
can execute, which could be determined based on their
available storage resources (memory as well as the disk
space). Garbage collecting weak operations and the re-
sulting impact on conflict detection is left as a future
work.



178	 NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation	 USENIX Association

5 Correctness

In this section, we sketch the proof that Zeno satisfies the
safety properties specified in Section 3. A proof sketch
for liveness properties is presented in a separate technical
report [31].

In Zeno, a (weak or strong) response is based on iden-
tical histories of at least f + 1 replicas, and, thus, at
least one of these histories belongs to a correct replica.
Hence, in the case that our garbage collection scheme
is not initiated, we can reformulate the safety require-
ments as follows: (S1) the local history maintained by
a correct replica consists of a prefix of committed re-
quests extended with a sequence of speculative requests,
where no request appears twice, (S2) a request associ-
ated with a correct client c appears, in a history at a
correct replica only if c has previously issued the re-
quest, and (S3) the committed prefixes of histories at
every two correct replicas are related by containment,
and (S4) at any time, the number of conflicting histories
maintained at correct replica does not exceed maxhist =
⌊(N − f ′)/( f − f ′ + 1)⌋, where f ′ is the number of cur-
rently failed replicas and N is the total number of replicas
required to tolerate a maximum of f faulty replicas. Here
we say that two histories are conflicting if none of them
is a prefix of the other.

Properties (S1) and (S2) are implied by the state main-
tenance mechanism of our protocol and the fact that only
properly signed requests are put in a history by a correct
replica. The special case when a prefix of a history is
hidden behind a checkpoint is discussed later.

A committed prefix of a history maintained at a correct
replica can only be modified by a commitment of a new
request or a merge operation. The sub-protocol of Zeno
responsible for committing requests are analogous to the
two-phase conservative commitment in Zyzzyva [23],
and, similarly, guarantees that all committed requests are
totally ordered. When two histories are merged at a cor-
rect replica, the resulting history adopts the longest com-
mitted prefix of the two histories. Thus, inductively, the
committed prefixes of all histories maintained at correct
replicas are related by containment (S3).

Now suppose that at a given time, the number of con-
flicting histories maintained at correct replica is more
than maxhist. Our weak quorum mechanism guaran-
tees that each history maintained at a correct process is
supported by at least f + 1 distinct processes (through
sending SPECREPLY and REPLY messages). A correct
process cannot concurrently acknowledge two conflict-
ing histories. But when f ′ replicas are faulty, there can
be at most ⌊(n− f ′)/( f − f ′ + 1)⌋ sets of f + 1 replicas
that are disjoint in the set of correct ones. Thus, at least
one correct replica acknowledged two conflicting histo-
ries — a contradiction establishes (S4).

Checkpointing. Note that our garbage collection
scheme may affect property (S1): the sequence of tenta-
tive operations maintained at a correct replica may poten-
tially include a committed but already garbage-collected
operation. This, however, cannot happen: each round of
garbage collection produces a checkpoint that contains
the latest committed service state and the logical times-
tamp of the latest committed operation of every client.
Since no correct replica agrees to commit a request from
a client unless its previous requests are already commit-
ted, the checkpoint implies the set of timestamps of all
committed requests of each client. If a replica receives an
ordered request of a client c corresponding to a sequence
number preceding the checkpoint state, and the times-
tamp of this request is no later than the last committed
request of c, then the replica simply ignores the request,
concluding that the request is already committed. Hence,
no request can appear in a local history twice.

6 Evaluation

We have implemented a prototype of Zeno as an exten-
sion to the publicly available Zyzzyva source code [24].

Our evaluation tries to answer the following questions:
(1) Does Zeno incur more overhead than existing proto-
cols in the normal case? (2) Does Zeno provide higher
availability compared to existing protocols when there
are more than f unreachable nodes? (3) What is the cost
of merges?

Experimental setup. We set f = 1, and the minimum
number of replicas to tolerate it, N = 3 f +1 = 4. We vary
the number of clients to increase load. Each physical ma-
chine has a dual-core 2.8 GHz AMD processor with 4GB
of memory, running a 2.6.20 Linux kernel. Each replica
as well as a client runs on a dedicated physical machine.
We use Modelnet [35] to simulate a network topology
consisting of two hubs connected via a bi-directional link
unless otherwise mentioned. Each hub has two servers in
all of our experiments but client location varies as per the
experiment. Each link has one-way latency of 1 ms and
a 100 Mbps bandwidth.

Transport protocols. Zyzzyva, like PBFT, uses multi-
cast to reduce the cost of sending operations from clients
to all replicas, so it uses UDP as a transport protocol and
implements a simple backoff and retry policy to handle
message loss. This is not optimized for periods of con-
gestion and high message loss, such as those we ante-
cipate during merges when the replicas that were parti-
tioned need to bring each other up-to-date. To address
this, Zeno uses TCP as the transport layer during the
merge procedure but continues to use Zyzzyva’s UDP-
based transport during normal operation and multicast-
ing communication that is sent to all replicas.
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Partition. We simulate network partitions by separat-
ing the two hubs from each other. We vary the duration of
the partitions from 1 to 5 minutes, based on the observa-
tion by Chandra et al. [12] that a large fraction (> 75%)
of network disconnectivity events range from 30 to 500
seconds.

6.1 Implementation
Replacing PKI with MACs. Our Zeno prototype uses
MACs instead of the slower digital signatures to imple-
ment message authentication for the common-case, but
still uses signatures for view changes. Using MACs in-
duces some small mechanistic design changes over the
protocol description in Section 4; these changes are stan-
dard practice in similar protocols including Zyzzyva, and
are presented in [31].

Merge. Replicas detect divergence by following the al-
gorithm specified in Section 4.7. We implemented an
optimization to the merge protocol where replicas first
move to the higher view and then propagate their local
uncommitted requests to the primary of the higher view.
The primary of the higher view orders these requests as if
they are received from the client and hence merges these
requests in the history.

6.2 Results
We generate a workload with a varying fraction of strong
and weak operations. If each client issued both strong
and weak operations, then most clients would block soon
after network partitions started. Instead, we simulate two
kind of clients: (i) weak clients only issue weak requests
and (ii) strong clients always pose strong requests. This
allows us to vary the ratio of weak operations (denoted
by α) in the total workload with a limited number of
clients in the system and long network partitions. We
use a micro-benchmark that executes a no-op when the
execute upcall for the client operation is invoked.

We have also built a simple application on top of Zeno,
emulating a shopping cart service with operations to add,
remove, and checkout items based on a key-value data
store. We also implement a simple conflict detection and
merge procedure. Due to lack of space, the design and
evaluation of this service is presented in the technical re-
port [31].

Protocol Batch=1 Batch=10

Zyzzyva (single phase) 62 Kops/s 88 Kops/s
Zeno (weak) 60 Kops/s 86 Kops/s
Zeno (strong) 40 Kops/s 82 Kops/s

Zyzzyva (commit opt) 40 Kops/s 82 Kops/s

Table 2: Peak throughput of Zeno and Zyzzyva.

6.2.1 Maximum throughput in the normal case

We compare the normal case performance of Zeno with
Zyzzyva. In both systems we used the optimization of
batching requests to reduce protocol overhead. In this
experiment, the clients and servers are connected by a
1 Gbps switch with 0.1 ms round trip latency. We ex-
pect the peak throughput of Zeno with weak operations
to approximately match the peak throughput of Zyzzyva
since both can be completed in a single phase. However,
the performance of Zeno with strong operations will be
lower than the peak throughput of Zyzzyva since Zeno
requires an extra phase to commit a strong operation.

Our results presented in Table 2 show that Zeno
and Zyzzyva’s throughput are similar, with Zyzzyva
achieving slightly (3–6%) higher throughput than Zeno’s
throughput for weak operations. The results also show
that, with batching, Zeno’s throughput for strong op-
erations is also close to Zyzzyva’s peak throughput:
Zyzzyva has 7% higher throughput when the single
phase optimization is employed. However, when a single
replica is faulty or slow, Zyzzyva cannot achieve the sin-
gle phase throughput and Zeno’s throughput for strong
operations is identical to Zyzzyva’s performance with a
faulty replica.

6.2.2 Partition with no concurrency

For all the remaining experiments, we use Modelnet
setup and disable multicast since Modelnet does not sup-
port it. We use a client population of 4 nodes, each send-
ing a new request of minimal payload (2 Bytes) as soon
as it has completed the previous request. This generates
a steady load of approximately 500 requests/sec on the
system. This is similar to an example SLA provided in
Dynamo [15]. We use a batch size of 1 for both Zyzzyva
and Zeno, since it is sufficient to handle the incoming
request load.

In this experiment, all clients reside in the first LAN.
We initiate a partition at 90 seconds which continues for
a minute. Since there are no clients in the second LAN,
there are no requests processed in it and hence there is no
concurrency, which avoids the cost of merging. Replicas
with id 0 (primary for view initial view 0) and 1 reside
in the first LAN while replicas with ids 2 and 3 reside in
the second LAN. We also present the results of Zyzzyva
to compare the performance in both normal cases as well
as under the given failure.

Varying α . We vary the mix of weak and strong opera-
tions in the workload, and present the results in Figure 1.
First, strong operations block as soon as the failure starts
which is expected since not enough replicas are reach-
able from the first LAN to complete the strong opera-
tion. However, as soon as the partition heals, we observe
that strong operations start to be completed. Note also
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Figure 1: Two replicas are disconnected via a partition,
that starts at time 90 and continues for 60 seconds. Pa-
rameter α represents the fraction of weak operations in
the workload. Note that the throughput of weak and
strong operations in Zeno is presented separately for clar-
ity.

that Zyzzyva also blocks as soon as the failure starts and
resumes as soon as it ends.

Second, weak operations continue to be processed and
completed during the partition and this is because Zeno
requires (for f = 1) only 2 non-faulty replicas to com-
plete the operation. The fraction of total requests com-
pleted increases as α increases, essentially improving the
availability of such operations despite network partitions.

Third, when replicas in the other LAN are reachable
again, they need to obtain the missing requests from the
first LAN. Since the number of weak operations per-
formed in the first LAN increases as α increases, the time
to update the lagging replicas in the other partition also
goes up; this puts a temporary strain on the network, ev-
idenced by the dip in the throughput of weak operations
when the partition heals. However, this dip is brief com-
pared to the duration of the partition. We explore the
impact of the duration of partitions next.

Varying partition duration. Using the same setup, we
now vary partition durations between 1 and 5 minutes
for α = 75%. For each partition duration, we measure
the period of unavailability for both weak and strong op-
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Figure 2: Varying partition durations with no concurrent
operations. Baseline represents the minimal unavailabil-
ity expected for strong operations, which is equal to the
partition duration.

erations. The unavailability is measured as the number
of seconds for which the observed throughput, on either
side of the partition, was less than 10% of the average
throughput observed before the partition started. Also,
the distance from the “Strong” line to the baseline (x = y)
indicates how soon after healing the partition can strong
operations be processed again.

Figure 2 presents the results. We observe that weak
operations are always available in this experiment since
all weak operations were completed in the first LAN and
the replicas in the first LAN are up-to-date with each
other to process the next weak operation. Strong oper-
ations are unavailable for the entire duration of the par-
tition due to unavailability of the replicas in the second
LAN and the additional unavailability is introduced by
Zeno due to the operation transfer mechanism. However,
the additional delay is within 4% of the partition duration
(12 seconds for a 5 minute partition). Our current proto-
type is not yet optimized and we believe that the delay
could be further reduced.

Varying request size. In this experiment, we simulate
a partition for 60 seconds but increase the payload sizes
from 2 Bytes to 1 KB, with an equally sized reply. The
cumulative bandwidth of requests to be transferred from
one LAN to the other is a function of the weak request
offered load, the size of the requests, and the duration of
the partition. With 60 seconds of partition and an offered
load of 500 req/s, the cumulative request payload ranges
from approximately 60 KB to 30 MB for 2 Bytes and
1 KB request size respectively. The results we obtained
are very similar to those in Figure 1 so we do not repeat
them. These show that the time to bring replicas in the
second LAN up-to-date does not increase significantly
with the increase in request size. Given that we have 100
Mbps links connecting replicas to each other, bandwidth
is not a limiting resource for shipping operations at these
offered loads.
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Figure 3: Network partition for 60 seconds starting at
time 90 seconds. Note that the throughput of weak and
strong operations in Zeno is presented separately for clar-
ity.

6.2.3 Partition with concurrency

In this experiment, we keep half the clients on each side
of a partition. This ensures that both partitions observe
a steady load of weak operations that will cause Zeno
to first perform a weak view change and later merge the
concurrent weak operations completed in each partition.
Hence, this microbenchmark additionally evaluates the
cost of weak view changes and the merge procedure. As
before, the primary for the initial view resides in the first
LAN. We measure the overall throughput of weak and
strong operations completed in both partitions. Again,
we compare our results to Zyzzyva.

Varying α . Figure 3 presents the results for the
throughput of different systems while varying the value
of α . We observe three main points.

When α = 0, Zeno does not give additional bene-
fits since there are no weak operations to be completed.
Also, as soon as the partition starts, strong operations are
blocked and resume after the partition heals. As above,
Zyzzyva provides greater throughput thanks to its single-
phase execution of client requests, but it is as powerless
to make progress during partitions as Zeno in the face of
strong operations only.

When α = 25%, we have only one client sending weak

operations in one LAN. Since there are no conflicts, this
graph matches that of Figure 1.

When α ≥ 50%, we have at least two weak clients, at
least one in each LAN. When a partition starts, we ob-
serve that the throughput of weak operations first drops;
this happens because weak clients in the second parti-
tion cannot complete operations as they are partitioned
from the current primary. Once they perform the neces-
sary view changes in the second LAN, they resume pro-
cessing weak operations; this is observed by an increase
in the overall throughput of weak operations completed
since both partitions can now complete weak operations
in parallel – in fact, faster than before the partition due
to decreased cryptographic and message overheads and
reduced round trip delay of clients in the second parti-
tion from the primary in their partition. The duration
of the weak operation unavailability in the non-primary
partition is proportional to the number of view changes
required. In our experiment, since replicas with ids 2
and 3 reside in the second LAN, two view changes were
required (to make replica 2 the new primary).

When the partition heals, replicas in the first view de-
tect the existence of concurrency and construct a POD,
since replicas in the second LAN are in a higher view
(with v = 2). At this point, they request a NEWVIEW

from the primary of view 2, move to view 2, and then
propagate their locally executed weak operations to the
primary of view 2. Next, replicas in the first LAN need
to fetch the weak operations that completed in the sec-
ond LAN and needs to complete them before the strong
operations can make progress. This results in additional
delay before the strong operations can complete, as ob-
served in the figure.

Varying partition duration. Next, we simulate parti-
tions of varying duration as before, for α = 75%. Again,
we measure the unavailability of both strong and weak
operations using the earlier definition: unavailability is
the duration for which the throughput in either parti-
tion was less than 10% of average throughput before
the failure. With a longer partition duration, the cost of
the merge procedure increases since the weak operations
from both partitions have to be transferred prior to com-
pleting the new client operations.

Figure 4 presents the results. We observe that weak
operations experience some unavailability in this sce-
nario, whose duration increases with the length of the
partition. The unavailability for weak operations is
within 9% of the total time of the partition.

The unavailability of strong operations is at least the
duration of the network partition plus the merge cost
(similar to that for weak operations). The additional un-
availability due to the merge operation is within 14% of
the total time of the partition.
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Figure 4: Varying partition durations with concurrent
operations. Baseline represents the minimal unavailabil-
ity expected for strong operations, which is equal to the
partition duration.

Varying execution cost and request load. In this ex-
periment, we vary the execution cost of each operation as
well as increase the request load, by increasing the num-
ber of clients, to estimate the cost of merges when the
system is loaded. For example, the system was operat-
ing at peak cpu utilization with 20 clients and operations
with 200 µs/operation or more. Here, we set α = 100%.
We present results with a partition duration of 60 seconds
in Figure 5. We observe that as the cost of operations
system load increases, the unavailability of weak opera-
tions also goes up. This is expected because the set of
weak operations performed in one partition must be re-
executed at the replicas in the other partition during the
merge procedure. As the client load and the cost of op-
eration execution increases, the time taken to re-execute
the operation also increases. In particular, when the sys-
tem is operating at 100% cpu utilization, the cost of re-
executing the operations will take as much as time as the
duration of the partition, and therefore the unavailability
in these cases is higher than the partition duration. If,
however, the system is not operating at peak utilization,
the cost of merging is lower than the partition duration.

Varying request size. We ran an experiment with a 5
minute partition, and varying request sizes from 2 Bytes
to 1 KB. The results with different request sizes were
similar to those shown in Figure 3 so we do not plot them.
We observed that increasing the payload size does not
significantly affect the merge duration. This is due to the
high speed network connection between replicas.

Summary. Our microbenchmark results show that
Zeno significantly improves the availability of weak op-
erations and the cost of merging is reasonable as long
as the system is not overloaded. This allows Zeno to
quickly start processing strong operations soon after par-
titions heal.

6.2.4 Mix of strong and weak operations

In this experiment, we allow each client to issue a mix of
strong and weak operations. Note that as soon as a client
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Figure 5: Varying execution cost of operations with in-
creasing request load. 60 second partition duration.

issues a strong operation in a partition, it will be blocked
until the partition heals. We use a client population of 40
nodes. Each client issues a strong operation with proba-
bility p, weak operations with probability 0.8− p, and
exits from the system with a fixed probability of 0.2.
We implement a fixed think time of 10 seconds between
operations issued by each client. The think times and
the exit probability are obtained from the SpecWeb2005
banking benchmark [10]. Next, we vary p to estimate
the impact of failure events such as network partitions on
the overall user experience. To give an idea of reference
values for p, we looked into the types and frequencies
of distinct operations in existing benchmarks. In an e-
banking benchmark, and assigning the billing operations
to be strong operations, the recommended frequency of
such operations follows p = 0.13 [10]. In the case of
an e-commerce benchmark, if the checkout operation is
considered strong while the remaining, such as login, ac-
cessing account information and customizations are con-
sidered as weak operations, then we obtain p = 0.05 [1].
Our experimental results cover these values.

We simulate a partition duration of 60 seconds and cal-
culate the number of clients blocked and the length of
time they were blocked during the partition. Figure 6
presents the cumulative distribution function of clients
on the y-axis and the maximum duration a client was
blocked on the x-axis. This metric allows us to see how
clients were affected by the partition. With Zyzzyva, all
clients will be blocked for the entire duration of the par-
tition. However, with Zeno, a large fraction of clients
do not observe any wait time and this is because they
exit from the system after doing a few weak operations.
For example, more than 70% of clients do not observe
any wait time as long as the probability of performing a
strong operation is less than 15%. In summary, this result
shows that Zeno significantly improves the user experi-
ence and masks the failure events from being exposed
to the user as long as the workload contains few strong
operations.
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7 Related Work

The trade-off between consistency, availability and tol-
erance to network partitions in computing services has
become folklore long ago [7].

Most replicated systems are designed to be “strongly”
consistent, i.e., provide clients with consistency guaran-
tees that approximate the semantics of a single, correct
server, such as single-copy serializability [20] or lineariz-
ability [22].

Weaker consistency criteria, which allow for better
availability and performance at the expense of letting
replicas temporarily diverge and users see inconsistent
data, were later proposed in the context of replicated ser-
vices tolerating crash faults [17, 30, 33, 38]. We improve
on this body of work by considering the more challeng-
ing Byzantine-failure model, where, for instance, it may
not suffice to apply an update at a single replica, since
that replica may be malicious and fail to propagate it.

There are many examples of Byzantine-fault tolerant
state machine replication protocols, but the vast major-
ity of them were designed to provide linearizable seman-
tics [4,8,11,23]. Similarly, Byzantine-quorum protocols
provide other forms of strong consistency, such as safe,
regular, or atomic register semantics [27]. We differ from
this work by analyzing a new point in the consistency-
availability tradeoff, where we favor high availability and
performance over strong consistency.

There are very few examples of Byzantine-fault toler-
ant systems that provide weak consistency.

SUNDR [25] and BFT2F [26] provide similar forms
of weak consistency (fork and fork*, respectively) in
a client-server system that tolerates Byzantine servers.
While SUNDR is designed for an unreplicated service
and is meant to minimize the trust placed on that server,
BFT2F is a replicated service that tolerates a subset of
Byzantine-faulty servers. A system with fork consis-
tency might conceal users’ actions from each other, but if
it does, users get divided into groups and the members of
one group can no longer see any of another group’s file
system operations.

These two systems propose quite different consistency
guarantees from the guarantees provided by Zeno, be-
cause the weaker semantics in SUNDR and BFT2F have
very different purposes than our own. Whereas we are
trying to achieve high availability and good performance
with up to f Byzantine faults, the goal in SUNDR and
BFT2F is to provide the best possible semantics in the
presence of a large fraction of malicious servers. In the
case of SUNDR, this means the single server can be ma-
licious, and in the case of BFT2F this means tolerating
arbitrary failures of up to 2

3 of the servers. Thus they
associate client signatures with updates such that, when
such failures occur, all the malicious servers can do is
conceal client updates from other clients. This makes the
approach of these systems orthogonal and complemen-
tary to our own.

Another example of a system that provides weak con-
sistency in the presence of some Byzantine failures can
be found in [32]. However, the system aims at achieving
extreme availability but provides almost no guarantees
and relies on a trusted node for auditing.

To our knowledge, this paper is the first to consider
eventually-consistent Byzantine-fault tolerant generic
replicated services.

8 Future Work and Conclusions

In this paper we presented Zeno, a BFT protocol that
privileges availability and performance, at the expense
of providing weaker semantics than traditional BFT pro-
tocols. Yet Zeno provides eventual consistency, which
is adequate for many of today’s replicated services, e.g.,
that serve as back-ends for e-commerce websites. Our
evaluation of an implementation of Zeno shows it pro-
vides better availability than existing BFT protocols,
and that overheads are low, even during partitions and
merges.

Zeno is only a first step towards liberating highly avail-
able but Byzantine-fault tolerant systems from the expen-
sive burden of linearizability. Our eventual consistency
may still be too strong for many real applications. For
example, the shopping cart application does not neces-
sarily care in what order cart insertions occur, now or
eventually; this is probably the case for all operations
that are associative and commutative, as well as oper-
ations whose effects on system state can easily be rec-
onciled using snapshots (as opposed to merging or to-
tally ordering request histories). Defining required con-
sistency per operation type and allowing the replication
protocol to relax its overheads for the more “best-effort”
kinds of requests could provide significant further bene-
fits in designing high-performance systems that tolerate
Byzantine faults.
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Abstract
This paper presents SPLAY, an integrated system that
facilitates the design, deployment and testing of large-
scale distributed applications. Unlike existing systems,
SPLAY covers all aspects of the development and evalua-
tion chain. It allows developers to express algorithms in
a concise, simple language that highly resembles pseudo-
code found in research papers. The execution environ-
ment has low overheads and footprint, and provides a
comprehensive set of libraries for common distributed
systems operations. SPLAY applications are run by a
set of daemons distributed on one or several testbeds.
They execute in a sandboxed environment that shields the
host system and enables SPLAY to also be used on non-
dedicated platforms, in addition to classical testbeds like
PlanetLab or ModelNet. A controller manages applica-
tions, offering multi-criterion resource selection, deploy-
ment control, and churn management by reproducing the
system’s dynamics from traces or synthetic descriptions.
SPLAY’s features, usefulness, performance and scalabil-
ity are evaluated using deployment of representative ex-
periments on PlanetLab and ModelNet clusters.

1 Introduction
Developing large-scale distributed applications is a
highly complex, time-consuming and error-prone task.
One of the main difficulties stems from the lack of ap-
propriate tool sets for quickly prototyping, deploying and
evaluating algorithms in real settings, when facing unpre-
dictable communication and failure patterns. Nonethe-
less, evaluation of distributed systems over real testbeds
is highly desirable, as it is quite common to discover dis-
crepancies between the expected behavior of an applica-
tion as modeled or simulated and its actual behavior when
deployed in a live network.

While there exist a number of experimental testbeds
to address this demand (e.g., PlanetLab [11], Model-
Net [35], or Emulab [38]), they are unfortunately not used
as systematically as they should. Indeed, our first-hand
experience has convinced us that it is far from straight-
forward to develop, deploy, execute and monitor appli-
cations for them and the learning curve is usually slow.
Technical difficulties are even higher when one wants to
deploy an application on several testbeds, as deployment

∗This work is supported in part by the Swiss National Foundation
under agreement number 102819.

†Contact author: lorenzo.leonini@unine.ch
‡This work was carried out during the tenure of an ERCIM “Alain
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scripts written for one testbed may not be directly usable
for another, e.g., between PlanetLab and ModelNet. As a
side effect of these difficulties, the performance of an ap-
plication can be greatly impacted by the technical quality
of its implementation and the skills of the person who
deploys it, overshadowing features of the underlying al-
gorithms and making comparisons potentially unsound
or irrelevant. More dramatically, the complexity of us-
ing existing testbeds discourages researchers, teachers, or
more generally systems practitioners from fully exploit-
ing these technologies.

These various factors outline the need for novel
development-deployment systems that would straightfor-
wardly exploit existing testbeds and bridge the gap be-
tween algorithmic specifications and live systems. For
researchers, such a system would significantly shorten
the delay experienced when moving from simulation to
evaluation of large-scale distributed systems (“time-to-
paper” gap). Teachers would use it to focus their lab work
on the core of distributed programming—algorithms and
protocols—and let students experience distributed sys-
tems implementation in real settings with little effort.
Practitioners could easily validate their applications in the
most adverse conditions.

There already exist several systems to ease the de-
velopment or deployment process of distributed applica-
tions. Tools like Mace [23] or P2 [26] assist the developer
by generating code from a high-level description, but do
not provide any facility for its deployment or evaluation.
Tools such as Plush [9] or Weevil [37] help for the de-
ployment process, but are restricted to situations where
the user has control over the nodes composing the testbed
(i.e., the ability to run programs remotely using ssh or
similar).

To address these limitations, we propose SPLAY, an in-
frastructure that simplifies the prototyping, development,
deployment and evaluation of large-scale systems. Un-
like existing tools, SPLAY covers the whole chain of dis-
tributed systems design and evaluation. It allows develop-
ers to specify distributed applications in a concise manner
using a platform-independent, lightweight and efficient
language based on Lua [20]. For instance, a complete
implementation of the Chord [33] distributed hash table
(DHT) requires approximately 100 lines of code.

SPLAY provides a secure and safe environment for ex-
ecuting and monitoring applications, and allows for a
simplified and unified usage of testbeds such as Planet-
Lab, ModelNet, networks of idle workstations, or per-
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sonal computers. SPLAY applications execute in a safe,
sandboxed environment with controlled access to local
resources (file system, network, memory) and can be in-
stantiated on a large set of nodes with a single com-
mand. SPLAY supports multi-user resource reservation
and selection, orchestrates the deployment and monitors
the whole system. It is particularly easy with SPLAY to
reproduce a given live experiment or to control several
experiments at the same time.

An important component of SPLAY is its churn man-
ager, which can reproduce the dynamics of a distributed
system based on real traces or synthetic descriptions.
This aspect is of paramount importance, as natural churn
present in some testbeds such as PlanetLab is not repro-
ducible, hence preventing a fair comparison of protocols
under the very same conditions.

SPLAY is designed for a broad range of usages, includ-
ing: (i) deploying distributed systems whose lifetime is
specified at runtime and usually short, e.g., distributing
a large file using BitTorrent [17]; (ii) executing long-
running applications, such as an indexing service based
on a DHT or a cooperative web cache, for which the
population of nodes may dynamically evolve during the
lifetime of the system (and where failed nodes must be
replaced automatically); or (iii) experimenting with dis-
tributed algorithms, e.g., in the context of hands-on net-
working class, by leveraging the isolation properties of
SPLAY to enable execution of (possibly buggy) code on a
shared testbed without interference.
Contributions. This paper introduces a distributed in-
frastructure that greatly simplifies the prototyping, devel-
opment, deployment, and execution of large-scale dis-
tributed systems and applications. SPLAY includes sev-
eral original features—notably churn management, sup-
port for mixed deployments, and platform-independent
language and libraries—that make the evaluation and
comparison of distributed systems much easier and fairer
than with existing tools.

We show how SPLAY applications can be concisely
expressed with a specialized language that closely re-
sembles the pseudo-code usually found in research pa-
pers. We have implemented several well-known systems:
Chord [33], Pastry [31], Scribe [15], SplitStream [14],
BitTorrent [17], Cyclon [36], Erdös-Renyi epidemic
broadcast [19] and various types of distribution trees [13].

Our system has been thoroughly evaluated along all its
aspects: conciseness and ease of development, efficiency,
scalability, stability and features. Experiments convey
SPLAY’s good properties and the ability of the system to
help practitioner and researcher alike through the whole
distributed system design, implementation and evaluation
chain.
Roadmap. The remaining of this paper is organized
as follows. We first discuss related work in Section 2.
Section 3 gives an overview of the SPLAY architecture
and elaborates on its design choices and rationales. In

Section 4, we illustrate the development process of a
complete application (the Chord DHT [33]). Section 5
presents a complete evaluation of SPLAY, using repre-
sentative experiments and deployments (including tests
of the Chord implementation of Section 4). Finally, we
conclude in Section 6.

2 Related Work
SPLAY shares similarities with a large body of work in
the area of concurrent and distributed systems. We only
present systems that are closely related to our approach.
Development tools. On the one hand, a set of new
languages and libraries have been proposed to ease and
speed up the development process of distributed applica-
tions.

Mace [23] is a toolkit that provides a wide set of tools
and libraries to develop distributed applications using an
event-driven approach. Mace defines a grammar to spec-
ify finite state machines, which are then compiled to C++
code, implementing the event loop, timers, state tran-
sitions, and message handling. The generated code is
platform-dependent: this can prove to be a constraint in
heterogeneous environments. Mace focuses on applica-
tion development and provides good performance results
but it does not provide any built-in facility for deploying
or observing the generated distributed application.

P2 [26] uses a declarative logic language named Over-
Log to express overlays in a compact form by specifying
data flows between nodes, using logical rules. While the
resulting overlay descriptions are very succinct, specifi-
cations in P2 are not natural to most network program-
mers (programs are largely composed of table declara-
tion statements and rules) and produce applications that
are not very efficient. Similarly to Mace, P2 does not
provide any support for deploying or monitoring applica-
tions: the user has to write his/her own scripts and tools.

Other domain-specific languages have been proposed
for distributed systems development. In RTAG [10], pro-
tocols are specified as a context-free grammar. Incoming
messages trigger reduction of the rules, which express
the sequence of events allowed by the protocol. Mor-
pheus [8] and Prolac [24] target network protocols devel-
opment. All these systems share the goal of SPLAY to
provide easily readable yet efficient implementations, but
are restricted to developing low-level network protocols,
while SPLAY targets a broader range of distributed sys-
tems.
Deployment tools. On the other hand, several tools
have been proposed to provide runtime facilities for dis-
tributed applications developers by easing the deploy-
ment and monitoring phase.

Neko [34] is a set of libraries that abstract the net-
work substrate for Java programs. A program that uses
Neko can be executed without modifications either in
simulations or in a real network, similarly to the NEST
testbed [18]. Neko addresses simple deployment issues,
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by using daemons on distant nodes to launch the virtual
machines (JVMs). Nonetheless, Neko’s network library
has been designed for simplicity rather than efficiency (as
a result of using Java’s RMI), provides no isolation of de-
ployed programs, and does not have built-in support for
monitoring. This restricts its usage to controlled settings
and small-scale experiments.

Plush [9] is a set of tools for automatic deployment and
monitoring of applications on large-scale testbeds such as
PlanetLab [11]. Applications can be remotely compiled
from source code on the target nodes. Similarly to Neko
and SPLAY, Plush uses a set of application controllers
(daemons) that run on each node of the system, and a
centralized controller is responsible for managing the ex-
ecution of the distributed application.

Along the same lines, Weevil [37] automates the cre-
ation of deployment scripts. A set of models is provided
by the user to describe the experiment. An interesting
feature of Weevil lies in its ability to replay a distributed
workload (such as a set of request for a distributed mid-
dleware infrastructure). These inputs can either be syn-
thetically generated, or recorded from a previous run or
simulation. The deployment phase does not include any
node selection mechanism: the set of nodes and the map-
ping of application instances to these nodes must be pro-
vided by the user. The created scripts allow deployment
and removal of the application, as well as the retrieval of
outputs at the end of an experiment.

Plush and Weevil share a set of limitations that make
them unsuitable for our goals. First, and most impor-
tantly, these systems propose high-end features for expe-
rienced users on experimental platforms such as Planet-
Lab, but cannot provide resource isolation due to their
script-based nature. This restricts their usage to con-
trolled testbeds, i.e., platforms on which the user has
been granted some access rights, as opposed to non-
dedicated environments such as networks of idle work-
stations where it might not be desirable or possible to
create accounts on the machines, and where the nature of
the testbed imposes to restrict the usage of their resources
(e.g., disk or network usage).Second, they do not provide
any management of the dynamics (churn) of the system,
despite its recognized usefulness [29] for distributed sys-
tem evaluation.
Testbeds. A set of experimental platforms, hereafter
denoted as testbeds, have been built and proposed to the
community. These testbeds are complementary to the
languages and deployment systems presented in the first
part of this section: they are the medium on which these
tools operate.

Distributed simulation platforms such as WiDS [25] al-
low developers to run their application on top of an event-
based network simulation layer. Distributed simulation
is known to scale poorly, due to the high load of syn-
chronization between nodes of the testbed hosting com-
municating processes. WiDS alleviates this limitation by

relaxing the synchronization model between processes
on distinct nodes. Nonetheless, event-based simulation
testbeds such as WiDS do not provide mechanisms to de-
ploy or manage the distributed application under test.

Network emulators such as Emulab [38], Model-
Net [35], FlexLab [30] or P2PLab [28] can reproduce
some of the characteristics of a networked environment:
delays, bandwidth, packet drops, etc. They basically al-
low users to evaluate unmodified applications across vari-
ous network models. Applications are typically deployed
in a local-area cluster and all communications are routed
through some proxy node(s), which emulate the topology.
Each machine in the cluster can host several end-nodes
from the emulated topology.

The PlanetLab [11] testbed (and forks such as Ever-
lab [22]) allows experimenting in live networks by host-
ing applications on a large set of geographically dispersed
hosts. It is a very valuable infrastructure for testing dis-
tributed applications in the most adverse conditions.

SPLAY is designed to complement these systems.
Testbeds are useful but, often, complex platforms. They
require the user to know how to deploy applications, to
have a good understanding of the target topology, and to
be able to properly configure the environment for exe-
cuting his/her application (for instance, one needs to use
a specific library to override the IP address used by the
application in a ModelNet cluster). In PlanetLab, it is
time-consuming and error-prone to choose a set of non-
overloaded nodes on which to test the application, to de-
ploy and launch the program, and to retrieve the results.
Finally, considering mixed deployments that use several
testbeds at the same time for a single experiment would
require to write even much more complex scripts (e.g.,
taking into account problems such as port range forward-
ing). With SPLAY, as soon as the administrator who de-
ployed the infrastructure has set up the network, using a
complex testbed is as straightforward for the user as run-
ning an application on a local machine.

3 The SPLAY Framework
We present the architecture of our system: its main com-
ponents, its programming language, libraries and tools.
3.1 Architecture
The SPLAY framework consists of about 15,000 lines of
code written in C, Lua, Ruby, and SQL, plus some third-
party support libraries. Roughly speaking, the architec-
ture is made of three major components. These compo-
nents are depicted in Figure 1.
• The controller, splayctl, is a trusted entity that con-
trols the deployment and execution of applications.
• A lightweight daemon process, splayd, runs on every
machine of the testbed. A splayd instantiates, stops,
and monitors SPLAY applications when instructed by the
controller.
• SPLAY applications execute in sandboxed processes
forked by splayd daemons on participating hosts.
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Figure 1: An illustration of two SPLAY applications (BitTorrent
and Chord) at runtime.

Many SPLAY applications can run simultaneously on
the same host. The testbed can be used transparently by
multiple users deploying different applications on over-
lapping sets of nodes, unless the controller has been con-
figured for a single-user testbed. Two SPLAY applica-
tions on the same node are unaware of each other (they
cannot even exchange data via the file system); they can
only communicate by message passing as for remote pro-
cesses. Figure 1 illustrates the deployment of multiple ap-
plications with a host participating to both a Chord DHT
and a BitTorrent swarm.

An important point is that SPLAY applications can be
run locally with no modification to their code, while
still using all libraries and language features proposed
by SPLAY. Users can simply and quickly debug and test
their programs locally, prior to deployment.

We now discuss in more details the different compo-
nents of the SPLAY architecture.
Controller. The controller plays an essential role in our
system. It is implemented as a set of cooperating pro-
cesses and executes on one or several trusted servers. The
only central component is a database that stores all data
pertaining to participating hosts and applications.

The controller (see Figure 2) keeps track of all active
SPLAY daemons and applications in the system. Upon
startup, a daemon initiates a secure connection (SSL) to a
ctl process. For scalability reasons, there can be many
ctl processes spread across several trusted hosts. These
processes only need to access the shared database.

SPLAY daemons open connections to log processes
on behalf of the applications, if the logging library is
used. This library is described in section 3.4.

The deployment of a distributed application is achieved
by submitting a job through a command-line or Web-
based interface. SPLAY also provides a Web services API
that can be used by other projects. Once registered in
the database, jobs are handled by jobs processes. The
nodes participating in the deployment can be specified
explicitly as a list of hosts, or one can simply indicate
the number of nodes on which deployment has to take
place, regardless of their identity. One can also specify
requirements in terms of resources that must be available
at the participating nodes (e.g., bandwidth) or in terms
of geographical location (e.g., nodes in a specific country
or within a given distance from a position). Incremental
deployment, i.e., adding nodes at different times, can be
performed using several jobs or with the churn manager.

churn

splayctl

Web interface

Web services

blacklist

unseen

jobs

log

log

ctl

ctl

Script

ctl

splayd

splayd

Trace

splayd

splayd

Command line

SQL DB

Figure 2: Architecture of the SPLAY controller (note that all
components may be distributed on different machines).

Each daemon is associated with records in the database
that store information about the applications and active
hosts running them, or scheduled for execution. The con-
troller monitors the daemons and uses a session mecha-
nism to tolerate short-term disconnections (i.e., a daemon
is considered alive if it shows activity at least once during
a given time period). Only after a long-term disconnec-
tion (typically one hour) does the controller reset the sta-
tus of the daemon and clean up the associated entries in
the database. This task is under the responsibility of the
unseen process. The blacklist process manages in
the database a list of forbidden network addresses and
masks; it piggybacks updates of this list onto messages
sent to connected daemons.

Communication between the daemon and the con-
troller follows a simple request/answer protocol. The first
request originates from the daemon that connects to the
controller. Every subsequent command comes from the
controller. For brevity, we only present here a minimal
set of commands.

The jobs process dequeues jobs from the database
and searches for a set of hosts matching the constraints
specified by the user. The controller sends a REGIS-
TER message to the daemons of every selected node. In
case the identity of the nodes is not explicitly specified,
the system selects a set larger than the one originally re-
quested to account for failed or overloaded nodes. Upon
accepting the job, a daemon sends to the controller the
range of ports that are available to the application. Once
it receives enough replies, the controller first sends to ev-
ery selected daemon a LIST message with the addresses
of some participating nodes (e.g., a single rendez-vous
node or a random subset , depending on the application)
to bootstrap the application, followed by a START mes-
sage to begin execution. Supernumerary daemons that
are slow to answer and active applications that must be
terminated receive a FREE message. The state machine
of a SPLAY job is as follows:

idle running

START

STOP

REGISTER

FREE

LIST

FREE

selected

The reason why we initially select a larger set of
nodes than requested clearly appears when considering
the availability of hosts on testbeds like PlanetLab, where
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transient failures and overloads are the norm rather than
the exception. Figure 3 shows both the cumulative and
discretized distributions of round-trip times (RTT) for a
20 KB message over an already established TCP con-
nection from the controller to PlanetLab hosts. One can
observe that only 17.10% of the nodes reply within 250
milliseconds, and over 45% need more than 1 second. Se-
lecting a larger set of candidates allows us to choose the
most responsive nodes for deploying the application.
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Figure 3: RTT between the controller and PlanetLab hosts over
pre-established TCP connections, with a 20 KB payload.

Daemons. SPLAY daemons are installed on participat-
ing hosts by a local user or administrator. The local ad-
ministrator can configure the daemon via a configuration
file, specifying various instance parameters (e.g., daemon
name, access key, etc.) and restrictions on the resources
available for SPLAY applications. These restrictions en-
compass memory, network, and disk usage. If an applica-
tion exceeds these limitations, it is killed (memory usage)
or I/O operations fail (disk or network usage). The con-
troller can specify stricter—but not weaker—restrictions
at deployment time.

Upon startup, a SPLAY daemon receives a blacklist of
forbidden addresses expressed as IP or DNS masks. By
default, the addresses of the controllers are blacklisted so
that applications cannot actively connect to them. Black-
lists can be updated by the controller at runtime (e.g.,
when adding a new daemon or for protecting a particu-
lar machine).

The daemon also receives the address of a log process
to connect to for logging, together with a unique identifi-
cation key. SPLAY applications instantiated by the local
daemon can only connect to that log process; other pro-
cesses will reject any connection request.
3.2 Churn Management
In order to fully understand the behavior and robust-
ness of a distributed protocol, it is necessary to evalu-
ate it under different churn conditions. Theses condi-
tions can range from rare but unpredictable hardware fail-
ures, to frequent application-level disconnections, as usu-
ally found in user-driven peer-to-peer systems, or even
to massive failures scenarios. It is also important to al-
low comparison of competing algorithms under the very
same churn scenarios. Relying on the natural, non-
reproducible churn of testbeds such as PlanetLab often
proves to be insufficient.

There exist several characterizations of churn that can
be leveraged to reproduce realistic conditions for the pro-

tocol under test. First, synthetic descriptions issued from
analytical studies [27] can be used to generate churn sce-
narios and replay them in the system. Second, several
traces of the dynamics of real networks have been made
publicly available by the community (e.g., see the repos-
itory at [1]); they cover a wide range of applications
such as a highly churned file-sharing system [12] or high-
performance computing clusters [32].
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Figure 4: Example of a synthetic churn description: script
(left), binned number of joins/leave (right, bottom) and total
number of nodes (right, top).

SPLAY incorporates a component, churn (see Fig-
ure 2), dedicated to churn management. This component
can send instructions to the daemons for stopping and
starting processes on-the-fly. Churn can be specified as
a trace, in a format similar to that used by [1], or as a syn-
thetic description written in a simple script language. The
trace indicates explicitly when each node enters or leaves
the system while the script allows users to express phases
of the application’s lifetime, such as a steady increase or
decrease of the number of peers over a given time du-
ration, periods with continuous churn, massive failures,
join flash crowds, etc. An example script is shown in
Figure 4 together with a representation of the evolution
of the node population and the number of arrivals and de-
partures during each one-minute period: an initial set of
nodes joins after 30 seconds, then the system stabilizes
before a regular increase, a period with a constant popu-
lation but a churn that sees half of the nodes leave and an
equal number join, a massive failure of half of the nodes,
another increase under high churn, and finally the depar-
ture of all the nodes.

Section 5.5 presents typical uses of the churn manage-
ment mechanism in the evaluation of a large-scale dis-
tributed system. It is noteworthy that the churn manage-
ment system relieves the need for fault injection systems
such as Loki [16]. Another typical use of the churn man-
agement system is for long-running applications, e.g., a
DHT that serves as a substrate for some other distributed
application under test and needs to stay available for the
whole duration of the experiments. In such a scenario,
one can ask the churn manager to maintain a fixed-size
population of nodes and to automatically bootstrap new
ones as faults occur in the testbed.
3.3 Language and Applications
SPLAY applications are written in the Lua language [20],
whose features are extended by SPLAY’s libraries. This
design choice was dictated by four majors factors. First,
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the most important reason is that Lua has unique features
that allow to simply and efficiently implement sandbox-
ing. As mentioned earlier, sandboxing is a sound basis
for execution in non-dedicated environments, where re-
sources need to be constrained and where the hosting op-
erating system must be shielded from possibly buggy or
ill-behaved code. Second, one of SPLAY’s goals is to
support large numbers of processes within a single host
of the testbed. This calls for a low footprint for both
the daemons and the associated libraries. This excludes
languages such as Java that require several megabytes
of memory just for their execution environment. Third,
SPLAY must ensure that the achieved performance is as
good as the host system permits, and the features offered
to the distributed system designer shall not interfere with
the performance of the application. Fourth, SPLAY allows
deployment of applications on any hardware and on any
operating systems. This requires a “write-once, run ev-
erywhere” approach that calls for either an interpreted or
bytecode-based language. Lua’s unique features allow us
to meet these goals of lightness, simplicity, performance,
security and generality.

Lua was designed from the ground up to be an effi-
cient scripting language with very low footprint. Accord-
ing to recent benchmarks [2], Lua is among the fastest
interpreted scripting languages. It is reflective, impera-
tive, and procedural with extensible semantics. Lua is dy-
namically typed and has automatic memory management
with incremental garbage collection. The small footprint
from Lua results from its design that provides flexible
and extensible meta-features, rather than a complete set
of general-purpose facilities. The full interpreter is less
than 200 kB and can be easily embedded. Applications
can use libraries written in different languages (especially
C/C++). This allows for low-level programming if need
be. Our experiments (Section 5) highlight the lightness
of SPLAY applications using Lua, in terms of memory
footprint, load, and scalability.

Lua’s interpreter can directly execute source code,
as well as hardware-dependent (but operating system-
independent) bytecode. In SPLAY, the favored way of
submitting applications is in the form of source code, but
bytecode programs are also supported (e.g., for intellec-
tual property protection).

Isolation and sandboxing are achieved thanks to Lua’s
support for first-class functions with lexical scoping and
closures, which allow us to restrict access to I/O and net-
working libraries. We modify the behavior of these func-
tions to implement the restrictions imposed by the admin-
istrator or by the user at the time he/she submits the ap-
plication for deployment over SPLAY.

Lua also supports cooperative multitasking by the
means of coroutines, which are at the core of SPLAY’s
event-based model (discussed below).
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Figure 5: Overview of the main SPLAY libraries.

3.4 The Libraries
SPLAY includes an extensible set of shared libraries (see
Figure 5) tailored for the development of distributed ap-
plications and overlays. These libraries are meant to be
also used outside of the deployment system, when de-
veloping the application. We briefly describe the major
components of these libraries.

Networking. The luasocket library provides basic
networking facilities. We have wrapped it into a restricted
socket library, sb_socket, which includes a security
layer that can be controlled by the local administrator (the
person who has instantiated the local daemon process)
and further restricted remotely by the controller. This se-
cure layer allows us to limit: (1) the total bandwidth avail-
able for SPLAY applications (instantaneous bandwidth
can be limited using shaping tools if need be); (2) the
maximum number of sockets used by an application and
(3) the addresses that an application can or cannot con-
nect to. Restrictions are specified declaratively in con-
figuration files by the local user that starts the daemon,
or at the controller via the command-line and Web-based
APIs.

We have implemented higher-level abstractions for
simplifying communication between remote processes.
Our API supports message passing over TCP and UDP,
as well as access to remote function and variables us-
ing RPCs. Calling a remote function is almost as sim-
ple as calling a local one (see code in next section). All
arguments and return values are transparently serialized.
Communication errors are reported using a second return
value, as allowed by Lua.

Finally, communication libraries can be instructed to
drop a given proportion of the packets (specified upon
deployment): this can be used to simulate lossy links and
study their impact on an application.

Sandboxed virtual filesystem. Overlays and dis-
tributed applications often need to use the local file sys-
tem. For instance, when instantiating the BitTorrent pro-
tocol to replicate a large file on a set of nodes, temporary
data must be written to disk as chunks are being received.
Following our goal to not impact the hosting operating
system, we need to ensure that a SPLAY application can-
not access or overwrite any data on the host file system.
To this end, SPLAY includes a library, sb_fs, that wraps
the standard io library and provides restricted access to
the file system in an OS-independent fashion.

Our wrapped library simulates a file system inside a
single directory. The library transparently maps a com-
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plete path name to the underlying files that stores the ac-
tual data, and applications can only read the files located
in their private directory. The wrapped file handles en-
force additional restrictions, such as limitations on the
disk space and the number of opened files.

Events, threads and locks. SPLAY proposes a thread-
ing model based on Lua’s coroutines combined with
event-based programming. Unlike preemptive threads,
coroutines yield the processor to each other (cooperative
multitasking). This happens at special points in base li-
braries, typically when performing an operation that may
block (e.g., disk or network I/O). This is typically trans-
parent to the application developer. Although a single
SPLAY application will not benefit from a multicore pro-
cessor, coroutines are preferable to system-level threads
for two reasons: their portability and their recognized ef-
ficiency (low latency and high throughput) for programs
that use many network connections (using either non-
blocking or RPC-based programming), which is typical
of distributed systems programming. Moreover, using a
single process (at the operating system level) has a lower
footprint, especially from a sandboxing perspective, and
allows deploying more applications on each splayd.

Shared data accesses are also safer with coroutines, as
race conditions can only occur if the current thread yields
the processor. This requires, however, a good understand-
ing of the behavior of the application (we illustrate a com-
mon pitfall in Section 4). SPLAY provides a lock library
as a simple alternative to protect shared data from con-
current accesses by multiple coroutines.

We have also developed an event library, events, that
controls the main execution loop of the application, the
scheduler, the communication between coroutines, time-
outs, as well as event generation, waiting, and recep-
tion. To integrate with the event library, we have wrapped
the socket library to produce a non-blocking, coroutine-
aware version sb_socket. All these layers are trans-
parent to the SPLAY developer who only sees a restricted,
non-blocking socket library.

Logging. An important objective of SPLAY is to be able
to quickly prototype and experiment with distributed al-
gorithms. To that end, one must be able to easily debug
and collect statistics about the SPLAY application at run-
time. The log library allows the developer to print infor-
mation either locally (screen, file) or, more interestingly,
send it over the network to a log collector managed by the
controller. If need be, the amount of data sent to the log
collector can be restricted by a splayd, as instructed by
the controller. As with most log libraries, facilities are
provided to manage different log levels and dynamically
enable or disable logging.

Other libraries. SPLAY provides a few other libraries
with facilities useful for developing distributed systems
and applications. The llenc and json libraries [3] sup-
port automatic and efficient serialization of data to be sent

to remote nodes over the network. We developed the first
one, llenc, to simplify message passing over stream-
oriented protocols (e.g., TCP). The library automatically
performs message demarcation, computing buffer sizes
and waiting for all packets of a message before deliv-
ery. It uses the json library to automate encoding of any
type of data structures using a compact and standardized
data-interchange format. The crypto library includes
cryptographic functions for data encryption and decryp-
tion, secure hashing, signatures, etc. The misc library
provides common containers, functions for format con-
version, bit manipulation, high-precision timers and dis-
tributed synchronization.

The memory footprint of these libraries is remarkably
small. The base size of a SPLAY application is less than
600 kB with all the abovementioned libraries loaded. It
is easy for administrators to deploy additional third-party
software with the daemons, in the form of libraries. Lua
has been design to seamlessly interact with C/C++, and
other languages that bind to C can be used as well. For
instance, we successfully linked some Splay application
code with a third-party video transcoding library in C, for
experimenting with adaptive video multicast. Obviously,
the administrator is responsible for providing sandboxing
in these libraries if required.
4 Developing Applications with SPLAY
This section illustrates the development of an application
for SPLAY. We use the well-known Chord overlay [33]
for its familiarity to the community. As we will see,
the specification of this overlay is remarkably concise
and close to the pseudo-code found in the original paper.
We have successfully deployed this implementation on
a ModelNet cluster and PlanetLab; results are presented
in Section 5.2. The goal here is to provide the reader
with a complete chain of development, deployment, and
monitoring of a well-known distributed application. Note
that local testing and debugging is generally done outside
of the deployment framework (but still, using SPLAY li-
braries).

Chord is a distributed hash table (DHT) that maps keys
to nodes in a peer-to-peer infrastructure. Any node can
use the DHT substrate to determine the current live node
that is responsible for a given key. When joining the net-
work, a node receives a unique identifier (typically by
hashing its IP address and port number) that determines
its position in the identifier space. Nodes are organized
in a ring according to their identifiers, and every node
is responsible for the keys that fall between itself (inclu-
sive) and its predecessor (exclusive). In addition to keep-
ing track of their successors and predecessors on the ring,
each node maintains a “finger” table whose entries point
to nodes at an exponentially increasing distance from the
current node’s position. More precisely, the ith entry of a
node with identifier n designates the live node responsi-
ble for key n + 2i. Note that the successor is effectively
the first entry in the finger table.



192	 NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation	 USENIX Association

4 function join(n0) −− n0: some node in the ring
5 predecessor = nil
6 finger[1] = call(n0, {’find successor’, n.id})
7 call(finger[1], {’notify’, n})
8 end
9 function stabilize() −− periodically verify n’s successor

10 local x = call(finger[1], ’predecessor’)
11 if x and between(x.id, n.id, finger[1].id, false, false) then
12 finger[1] = x −− new successor
13 end
14 call(finger[1], {’notify’, n})
15 end
16 function notify(n0) −− n0 thinks it might be our predecessor
17 if not predecessor or between(n0.id, predecessor.id, n.id, false, false) then
18 predecessor = n0 −− new predecessor
19 end
20 end
21 function fix fingers() −− refresh fingers
22 refresh = (refresh % m) + 1 −− 1 ≤ refresh ≤ m
23 finger[refresh] = find successor((n.id + 2ˆ(refresh − 1)) % 2ˆm)
24 end
25 function check predecessor() −− checks if predecessor has failed
26 if predecessor and not ping(predecessor) then
27 predecessor = nil
28 end
29 end

Listing 1: SPLAY code for Chord overlay (stabilization).

Listing 1 shows the code for the construction and main-
tenance of the Chord overlay. For clarity, we only show
here the basic algorithm that was proposed in [33] (the
reader can appreciate the similarity between this code and
Figure 6 of the referenced paper).

Function join() allows a node to join the Chord
ring. Only its successor is set: its predecessor and suc-
cessor’s predecessor will be updated as part of the sta-
bilization process. Function stabilize() periodi-
cally verifies that a node is its own successor’s pre-
decessor and notifies the successor. SPLAY base li-
brary’s between call determines the inclusion of a
value in a range, on a ring. Function notify() tells
a node that its predecessor might be incorrect. Func-
tion fix_fingers() iteratively refreshes fingers. Fi-
nally, function check_predecessor() periodically
checks if a node’s predecessor has failed.

These functions are identical in their behavior and very
similar in their form to those published in [33]. Yet,
they correspond to executable code that can be readily
deployed. The implementation of Chord illustrates a sub-
tle problem that occurs frequently when developing dis-
tributed applications from a high-level pseudo-code de-
scription: the reception of multiple messages may trigger
concurrent operations that perform conflicting modifica-
tions on the state of the node. SPLAY’s coroutine model
alleviates this problem in some, but not all, situations.
During the blocking call to ping() on line 26 of List-
ing 1, a remote call to notify() can update the pre-
decessor, which may be erased on line 27 until the next
remote call to notify(). This is not a major issue as
it may only delay stabilization, not break consistency. It
can be avoided by adding an extra check after the ping
or, more generally, by using the locks provided by the

SPLAY standard libraries (not shown here).
30 function find successor(id) −− ask node to find id’s successor
31 if between(id, n.id, finger[1].id, false, true) −− inclusive for second bound
32 return finger[1]
33 end
34 local n0 = closest preceding node(id)
35 return call(n0, {’find successor’, id})
36 end
37 function closest preceding node(id) −− finger preceding id
38 for i = m, 1, −1 do
39 if finger[i] and between(finger[i].id, n.id, id, false, false) then
40 return finger[i]
41 end
42 end
43 return n
44 end

Listing 2: SPLAY code for Chord overlay (lookup).

Listing 2 shows the code for Chord lookup.
Function find_successor() looks for the
successor of a given identifier, while function
closest_preceding_node() returns the highest
predecessor of a given identifier found in the finger table.
Again, one can appreciate the similarity with the original
pseudo-code.

This almost completes our minimal Chord implemen-
tation, with the exception of the initialization code shown
in Listing 3. One can specifically note the registration of
periodic stabilization tasks and the invocation of the main
event loop.

1 require ”splay.base” −− events, misc, socket (core libraries)
2 rpc = require ”splay.rpc” −− rpc (optional library)
3 between, call, ping = misc.between c, rpc.call, rpc.ping −− aliases

45 timeout = 5 −− stabilization frequency
46 m = 24 −− 2m nodes and key with identifiers of length m
47 n = job.me −− our node {ip, port, id}
48 n.id = math.random(1, 2ˆm) −− random position on ring
49 predecessor = nil −− previous node on ring {id, ip, port}
50 finger = {[1] = n} −− finger table with m entries
51 refresh = 0 −− next finger to refresh
52 n0 = job.nodes[1] −− first peer is rendez−vous node
53 rpc.server(n.port) −− start rpc server
54 events.thread(function() join(n0) end) −− join chord ring
55 events.periodic(stabilize, timeout) −− periodically check successor, ...
56 events.periodic(check predecessor, timeout) −− predecessor, ...
57 events.periodic(fix fingers, timeout) −− and fingers
58 events.loop() −− execute main loop

Listing 3: SPLAY code for Chord overlay (initialization).

While this code is quite classical in its form, the re-
markable features are the conciseness of the implemen-
tation, the closeness to pseudo-code, and the ease with
which one can communicate with other nodes of the sys-
tem by RPC. Of course, most of the complexity is hidden
inside the SPLAY infrastructure.

The presented implementation is not fault-tolerant. Al-
though the goal of this paper is not to present the design
of a fault-tolerant Chord, we briefly elaborate below on
some steps needed to make Chord robust enough for run-
ning on error-prone platforms such as PlanetLab. The
first step is to take into account the absence of a reply to
an RPC. Consider the call to predecessor in method
stabilize(). One simply needs to replace this call
by the code of Figure 4.
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1 function stabilize() −− rpc.a call() returns both status and results
2 local ok, x = rpc.a call(finger[1], ’predecessor’, 60) −− RPC, 1m timeout
3 if not ok then
4 suspect(finger[1]) −− will prune the node out of local routing tables
5 else
6 (...)

Listing 4: Fault-tolerant RPC call

We omit the code of function suspect() for brevity.
Depending on the reliability of the links, this function
prunes the suspected node after a configurable number
of missed replies. One can tune the RPC timeout accord-
ing to the target platform (here, 1 minute instead of the
standard 2 minutes), or use an adaptive strategy (e.g., ex-
ponentially increasing timeouts). Finally, as suggested
by [33] and similarly to the leafset structure used in Pas-
try [31], we replace the single successor and predecessor
by a list of 4 peers in each direction on the ring.

Our Chord implementation without fault-tolerance is
only 58 lines long, which represents an increase of 18%
over the pseudo-code from the original paper (which does
not contain initialization code, while our code does). Our
fault-tolerant version is only 100 lines long, i.e., 73%
more than the base implementation (29% for fault tol-
erance, and 44% for the leafset-like structure). We de-
tail the procedure for deployment and the results obtained
with both versions on a ModelNet cluster and on Planet-
Lab, respectively, in Section 5.2.

5 Evaluation
This section presents a thorough evaluation of SPLAY
performance and capabilities. Evaluating such an infras-
tructure is a challenging task as the way users will use
it plays an important role. Therefore, our goal in this
evaluation is twofold: (1) to present the implementation,
deployment and observation of real distributed systems
by using SPLAY’s capability to easily reproduce experi-
ments that are commonly used in evaluations and (2) to
study the performance of SPLAY itself, both by compar-
ing it to other widely-used implementations and by eval-
uating its costs and scalability. The overall objective is to
demonstrate the usefulness and benefits of SPLAY rather
than evaluate the distributed applications themselves. We
first demonstrate in Section 5.1 SPLAY’s capabilities to
easily express complex system in a concise manner. We
present in Section 5.2 the deployment and performance
evaluation of the Chord DHT proposed in Section 4, us-
ing a ModelNet [35] cluster and PlanetLab [11]. We then
compare in Section 5.3 the performance and scalability of
the Pastry [31] DHT written with SPLAY against a legacy
Java implementation, FreePastry [4]. Sections 5.4 and 5.5
evaluate SPLAY’s ability to easily (1) deploy applications
in complex network settings (mixed PlanetLab and Mod-
elNet deployment) and (2) reproduce arbitrary churn con-
ditions. Section 5.6 focuses on SPLAY performance for
deploying and undeploying applications on a testbed. We
conclude in Section 5.7 with an evaluation of SPLAY’s
performance with resource-intensive applications (tree-

based content dissemination and long-term running of a
cooperative Web cache).
Experimental setup. Unless specified otherwise, our ex-
perimentations were performed either on PlanetLab, us-
ing a set of 400 to 450 hosts, or on our local cluster (11
nodes, each equipped with a 2.13 Ghz Core 2 Duo pro-
cessor and 2 GB of memory, linked by a 1 Gbps switched
network). All nodes run GNU/Linux 2.6.9. A separate
node running FreeBSD 4.11 is used as a ModelNet router,
when required by the experiment. Our ModelNet con-
figuration emulates 1,100 hosts connected to a 500-node
transit-stub topology. The bandwidth is set to 10Mbps for
all links. RTT between nodes of the same domain is 10
ms, stub-stub and stub-transit RTT is 30 ms, and transit-
transit (i.e., long range links) RTT is 100 ms. These set-
tings result in delays that are approximately twice those
experienced in PlanetLab.

5.1 Development complexity
We developed the following applications using SPLAY:
Chord [33] and Pastry [31], two DHTs; Scribe [15], a
publish-subscribe system; SplitStream [14], a bandwidth-
intensive multicast protocol; a cooperative web-cache
based on Pastry; BitTorrent [17], a content distribution
infrastructure;1 and Cyclon [36], a gossip-based member-
ship management protocol. We have also implemented
a number of classical algorithms, such as epidemic dif-
fusion on Erdös-Renyi random graphs [19] and vari-
ous types of distribution trees [13] (n-ary trees, paral-
lel trees). As one can note from the following figure, all
implementations are extremely concise in terms of lines
of code (LOC). Note that we did not try to compact the
code in a way that would impair readability. Numbers and
darker bars represent LOC for the protocol, while lighter
bars represent protocols acting as a substrate (Scribe and
our Web cache are based on Pastry, SplitStream is based
on both Pastry and Scribe):

Chord
Pastry
Scribe

SplitStream
WebCache
BitTorrent

Cyclon
Epidemic

Trees

                                                                   58 (base) + 17 (FT) + 26 (leafset) = 100
        265

      79
      58

      85
        420

      93
      35

      47

Pastry

Pastry

Pastry

Scribe

(base)

Although the number of lines is clearly just a rough
indicator of the expressiveness of a system, it is still a
valuable metric to estimate programming efforts. Our
implementations are systematically more compact than
those written with Mace [23] (by approximately a factor
of two) and comparable to P2’s [26] specifications. A
well-documented protocol such as Chord only took a few
hours to implement and debug. In contract, BitTorrent,
being a complex and underspecified protocol, required
several days of development. In both cases, the develop-
ment process greatly benefited from the short deployment
and testing phase, made almost trivial by SPLAY.
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Figure 6: Performance results of Chord, deployed on a ModelNet cluster and on PlanetLab.

5.2 Testing the Chord Implementation
This section presents the deployment and performance re-
sults of the Chord implementation from Section 4. We
proceed with two deployments. First, the exact code pre-
sented in this paper is deployed in a ModelNet testbed
with no node failure. Second, a slightly modified version
of this code is run on PlanetLab. This version includes the
extensions presented at the end of Section 4: use of a leaf
set instead of a single successor and a single predecessor,
fault-tolerant RPCs, and shorter stabilization intervals.
Chord on ModelNet. To parameterize the deployment
of the Chord implementation presented in Section 4 on
a testbed, we create a descriptor that describes resources
requirements and limitations. The descriptor allows to
further restrict memory, disk and network usage, and it
specifies what information an application should receive
when instantiated:

--[[ BEGIN SPLAY RESOURCES RESERVATION
nb_splayd 1000
nodes head 1

END SPLAY RESOURCES RESERVATION ]]

This descriptor requests 1,000 instances of the appli-
cation and specifies that each instance will receive three
essential pieces of information: (1) a single-element list
containing the first node in the deployment sequence (to
act as rendezvous node); (2) the rank of the current pro-
cess in the deployment sequence; and (3) the identity of
the current process (host and port). This information is
useful to bootstrap the system without having to rely on
external mechanisms such as a directory service. In the
case of Chord, we use this information to have hosts join
the network one after the other, with a delay between con-
secutive joins to ensure that a single ring is created. A
staggered join strategy allows better experiments repro-
ducibility, but a massive join scenario would succeed as
well. The following code is added:

events.sleep(job.position) −− 1s between joins
if #job.position > 1 then −− first node is rendez−vous node

join(job.nodes[1])
end

Finally, we register the Lua script and the deployment
descriptor using one of the command line, Web service or
Web-based interfaces.

Each host runs 27 to 91 Chord nodes (we show in Sec-
tion 5.3 that SPLAY can handle many more instances on a
single host). During the experiment, each node injects 50
random lookup requests in the system. We then undeploy

the overlay, and process the results obtained from the log-
ging facility. Figure 6(a) presents the distribution of route
lengths. Figure 6(b) presents the cumulative distribution
of latencies. The average number of hops is below log2 N

2
and the look-up time remains small. This supports our
observations that SPLAY is efficient and does not intro-
duce additional delays or overheads.
Chord on PlanetLab. Next, we deploy our Chord im-
plementation with extensions on 380 PlanetLab nodes
and compare its performance with MIT’s fine-tuned C++
Chord implementation [5] in terms of delays when look-
ing up random keys in the DHT. In both cases, we let
the Chord overlay stabilizes before starting the measure-
ments. Figure 6(c) presents the cumulative distribution of
delays for 5000 random lookups (average route length is
4.1 for both systems). We observe that MIT Chord out-
performs Chord for SPLAY, because it relies on a cus-
tom network layer that uses, amongst other optimiza-
tions, network coordinates for constructing latency-aware
finger tables. In contrast, we did not include such opti-
mizations in our implementation.

5.3 SPLAY Performance
We evaluate the performance of applications using
SPLAY in two ways. First, we evaluate the efficiency of
the network libraries, based on the delays experienced by
a sample application on a high-performance testbed. Sec-
ond, we evaluate scalability: how many nodes can be run
on a single host and what is the impact on performance.
For these tests we chose Pastry [31] because: (i) it com-
bines both TCP and UDP communications; (ii) it requires
efficient network libraries and transport layers, each node
being potentially opening sockets and sending data to
a large number of other peers; (iii) it supports network
proximity-based peer selection, and as such can be af-
fected by fluctuating or unstable delays (for instance due
to overload or scheduling issues).

We compare our version of Pastry with FreePastry
2.0 [4], a complete implementation of the Pastry proto-
col in Java. Our implementation is functionally identi-
cal to FreePastry and uses the very same protocols, e.g.,
locality-aware routing table construction and stabilization
mechanisms to repair broken routing table entries. The
only notable differences reside in the message formats
(no wire compatibility) and the choice of alternate routes
upon failure.

We deployed FreePastry using all optimizations ad-
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Figure 7: Comparisons of two implementations of Pastry: FreePastry and Pastry for SPLAY.

vised by the authors, that is, running multiple nodes
within the same JVM, replacing Java serialization with
raw serialization, and keeping a pool of opened TCP con-
nections to peers to avoid reopening recently used con-
nections. We used 3 JVMs on our dual cores machines,
each running multiple Pastry nodes. With a large set of
nodes, our experiments have shown that this configura-
tion yields slightly better results than using a single JVM,
both in terms of delay and load.

Figure 7(a) presents the cumulative delay distribution
in a converged Pastry ring. The distribution of route
lengths (not shown) is slightly better with FreePastry
thanks to optimizations in the routing table management.
Delays obtained with Pastry on SPLAY are much lower
than the delays obtained with FreePastry. This experi-
ment shows that SPLAY, while allowing for concise and
readable protocol implementations, does not trade sim-
plicity for efficiency. We also notice that Java-based pro-
grams are often too heavyweight to be used with multi-
ple instances on a single host.2 This is further conveyed
by our second experiment that compares the evolution of
delays of FreePastry (Figure 7(b)) and Pastry for SPLAY
(Figure 7(c)) as the number of nodes on the testbed in-
creases. We use a percentile-based plotting method that
allows expressing the evolution of a cumulative distribu-
tion of delays with respect to the number of nodes. We
can observe that: (1) delays start increasing exponentially
for FreePastry when there are more than 1,600 nodes run-
ning in the cluster, that is 145 nodes per host (recall that
all nodes on a single host are hosted by only 3 JVMs and
share most of their memory footprint); (2) it is not possi-
ble to run more than 1,980 FreePastry nodes, as the sys-
tem will start swapping, degrading performance dramat-
ically; (3) SPLAY can handle 5,500 nodes (500 on each
host) without significant drop in performance (other than
the O(log N) route lengths evolution, N being the num-
ber of nodes).

Figure 8 presents the load (i.e., average number of pro-
cesses with “runnable” status, as reported by the Linux
scheduler) and memory consumption per instance for
varying number of instances. Each process is a Pastry
node and issues a random request every minute. We ob-
serve that the memory footprint of an instance is lower
than 1.5 MB, with just a slight increase during the ex-
periment as nodes fill their routing table. It takes 1,263
Pastry instances before the host system starts swapping

memory to disk. Load (averaged over the last minute)
remains reasonably low, which explains the small delays
presented by Figure 7(c).
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Figure 8: Memory consumption and load evolution on a single
node hosting several instances of Pastry for SPLAY.

5.4 Complex Deployments
SPLAY is designed to be used within a large set of differ-
ent testbeds. Despite this diversity, it is sometimes also
desirable to experiment with more than a single testbed at
a time. For instance, one may want to evaluate a complex
system with a set of peers linked by high bandwidth, non-
lossy links, emulated by ModelNet, and a set of peers fac-
ing adverse network conditions on PlanetLab. A typical
usage would be to test a broker-based publish-subscribe
infrastructure deployed on reliable nodes, along with a
set of client nodes facing churn and lossy network links.

Such a mixed deployment requires a deep understand-
ing of the system for setting it up using scripting and
common tools, as the user has to care about NAT and
firewalls traversal, port forwarding, etc. The experiment
presented in this section shows that such a complex mixed
deployment can be achieved using SPLAY as if it were on
a single testbed. The only precondition is that the admin-
istrator of the part of the testbed that is behind a NAT
or firewall defines (and opens) a range of ports that all
splayds will use to communicate with other daemons
outside the testbed. Notably for a ModelNet cluster, this
operation can easily be done at the time Modelnet is in-
stalled on the nodes of the testbed and it does not requires
additional access rights. All other communication details
are dealt with by SPLAY itself: no modification is needed
to the application code.

Figure 9 presents the delay distribution for a deploy-
ment of 1,000 nodes on PlanetLab, on ModelNet, and in
a mixed deployment over both testbeds at the same time
(i.e., 500 nodes on each). We notice that the delays of the
mixed deployment are distributed between the delays of
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PlanetLab and the higher delays of our ModelNet cluster.
The “steps” on the ModelNet cumulative delays repre-
sentation are a result of routes of increasing number of
hops (both in Pastry and in the emulated topology), and
the fixed delays for ModelNet links.
5.5 Using Churn Management
This section evaluates the use of the churn management
module, both using traces and synthetic descriptions. Us-
ing churn is as simple as launching a regular SPLAY ap-
plication with a trace file as extra argument. SPLAY pro-
vides a set of tools to generate and process trace files.
One can, for instance, speed-up a trace, increase the churn
amplitude whilst keeping its statistical properties, or gen-
erate a trace from a synthetic description.
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Figure 10: Using churn management to reproduce massive
churn conditions for the SPLAY Pastry implementation.

Figure 10 presents a typical experiment of a massive
failure using the synthetic description. We ran Pastry on
our local cluster with 1,500 nodes and, after 5 minutes,
triggered a sudden failure of half of the network (750
nodes). This models, for example, the disconnection of a
inter-continental link or a WAN link between two corpo-
rate LANs. We observe that the number of failed lookups
reaches almost 50% after the massive failure due to rout-
ing table entries referring to unreachable nodes. Pastry
recovers all its routing capabilities in about 5 minutes
and we can observe that delays actually decrease after
the failure because the population has shrunk (delays are
shown for successful routes only). While this scenario
is amongst the simplest ones, churn descriptions allow
users to experiment with much more complex scenarios,
as discussed in Section 3.2.

Our second experiment is representative of a complex
test scenario that would usually involve much engineer-
ing, testing and post-processing. We use the churn trace
observed in the Overnet file sharing peer-to-peer sys-
tem [12]. We want to observe the behavior of Pastry,

deployed on PlanetLab, when facing churn rates that are
much beyond the natural churn rates suffered in Planet-
Lab. As we want increasing levels of Churn, we simply
“speed-up” the trace, that is, with a speed-up factor of 2x,
5x or 10, a minute in the original trace is mapped to 30,
12 or 6 seconds respectively. Figure 11 presents both the
churn description and the evolution of delays and failure
rates, for increasing levels of churn. The churn descrip-
tion shows the population of nodes and the number of
joins/leaves as a function of time, and performance ob-
servations plot the evolution of the delay distribution as
a function of time. We observe that (1) Pastry handles
churn pretty well as we do not observe a significant fail-
ure rate when as much as 14% of the nodes are changing
state within a single minute; (2) running this experiment
is neither more complex nor longer than on a single clus-
ter without churn, as we did for Figure 7(a). Based on
our own experience, we estimate that it takes at least one
order of magnitude less human efforts to conduct this ex-
periment using SPLAY than with any other deployment
tools. We strongly believe that the availability of tools
such as SPLAY will encourage the community to further
test and deploy their protocols under adverse conditions,
and to compare systems using published churn models.
5.6 Deployment Performance

This section presents an evaluation of the deployment
time of an application on an adversarial testbed, Planet-
Lab. This further conveys our position from Section 3.1
that one needs to initially select a larger set of nodes than
requested to ensure that one can rely on reasonably re-
sponsive nodes for deploying the application. Tradition-
ally, such a selection process is done by hand, or using
simple heuristics based on the load or response time of
the nodes. SPLAY relieves the need for the user to pro-
ceed with this selection. Figure 12 presents the deploy-
ment time for the Pastry application on PlanetLab. We
vary the number of additionally probed daemons from
10% to 100% of the requested nodes. We observe that
a larger set results in lower delays for deploying an appli-
cation (hence, presumably, lower delays for subsequent
application communications). Nonetheless, the selection
of a reasonably large superset for a proper selection of
peers is a tradeoff between deployment delay and redun-
dant messages sent over the network. Based on experi-
ments, we use by default an initial superset of 125% of
requested nodes.
5.7 Resource-intensive Experiments
Our two last experimental demonstrations deal with
resource-intensive applications, both for short-term and
long-term runs. They further conveys SPLAY’s ability to
run in high performance settings and production environ-
ments, as well as demonstrating that the obtained perfor-
mance is similar to the one achieved with a dedicated
implementation (particularly from the network point of
view). We run the following two experiments: (1) the
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Figure 11: Study of the effect of churn on Pastry deployed on PlanetLab. Churn is derived from the trace of the Overnet file sharing
system and sped up for increasing volatility.
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evaluation of a cooperative data distribution algorithm
based on parallel trees using both SPLAY and a native (C)
implementation on ModelNet and (2) a distributed coop-
erative Web cache for HTTP accesses, which has been
running for several weeks under a constant and signifi-
cant load.
Dissemination using trees. This experiment compares
two versions of a simple cooperative protocol [13] based
on parallel n-ary trees written with SPLAY and in C. We
create n = 2 distinct trees in the same manner as Split-
Stream [14] does: each of the 63 nodes is an inner mem-
ber in one tree and a leaf in the other. The data to be trans-
mitted is split into blocks, which are propagated along
one of the 2 trees according to a round-robin policy. This
experiment allows us to observe how SPLAY compares
against a native application, CRCP, written in C [6]. Us-
ing a tree for this comparison bears the advantage of high-
lighting the additional delays and overheads of the plat-
form and its network libraries (such as the sandboxing
of network operations). These overheads accumulate at
each level of the tree, from the root to the leaves.

Tests were run in a ModelNet testbed configured with
a symmetric bandwidth of 1 Mbps for each node. Results
are shown in Figure 13 for binary trees, a 24 MB file, and
different block sizes (16 KB, 128 KB, 512 KB). We ob-
serve that both implementations produce similar results,
which tends to demonstrate that the overhead of SPLAY’s
language and libraries is negligible. Differences in shape
are due to CRCP nodes sending chunks sequentially to
their children, while SPLAY nodes send chunks in paral-
lel. In our settings (i.e., homogeneous bandwidth), this
should not change the completion time of the last peer as
links are saturated at all times.
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Figure 13: File distribution using trees.

Long-term experiment: cooperative Web cache. Our
last experiment presents the performance over time of a
cooperative Web cache built using SPLAY following the
same base design as Squirrel [21]. This experiment high-
lights the ability of SPLAY to support long-run applica-
tions under constant load. The cache uses our Pastry DHT
implementation deployed in a cluster, with 100 nodes
that proxy requests and store remote Web resources for
speeding up subsequent accesses. For this experiment,
we limit the number of entries stored by each nodes to
100. Cached resources are evicted according to an LRU
policy or when they are older than 120 seconds. The co-
operative Web cache has been run for three weeks. Fig-
ure 14 presents the evolution of HTTP requests delay dis-
tribution for a period of 100 hours along with the cache
hit ratio. We injected a continuous stream of 100 requests
per second extracted from real Web access traces [7] cor-
responding to 1.7 million hits to 42,000 different URLs.
We observe a steady cache hit ratio of 77.6%. The experi-
enced delays distribution has remained stable throughout
the whole run of the application. Most accesses (75th per-
centile) are cached and served in less than 25 to 100 ms,
compared to non-cached accesses that require 1 to 2 sec-
onds on average.

6 Conclusion

SPLAY is an infrastructure that aims at simplifying the
development, deployment and evaluation of large-scale
distributed applications. It incorporates several novel fea-
tures not found in existing tools and testbeds. SPLAY
applications are specified using in a high-level, efficient
scripting language very close to pseudo-code commonly
used by researchers in their publications. They execute
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Figure 14: Cooperative Web cache: evolution of delays and
cache hit ratios during a 4 days period.

in a sandboxed environment and can thus be readily de-
ployed on non-dedicated hosts. SPLAY also includes a
comprehensive set of shared libraries tailored for the de-
velopment of distributed protocols. Application specifi-
cations are based on an event-driven model and are ex-
tremely concise.

SPLAY can seamlessly deploy applications in real (e.g.,
PlanetLab) or emulated (e.g., ModelNet) networks, as
well as mixed environments. An original feature of
SPLAY is its ability to inject churn in the system using
a trace or a synthetic description to test applications in
the most realistic conditions. Our thorough evaluation of
SPLAY demonstrates that it allows developers to easily
express complex systems in a concise yet readable man-
ner, scales remarkably well thanks to its low footprint,
exhibits very good performance in various deployment
scenarios, and compares favorably against native appli-
cations in our experiments. SPLAY is publicly available
from http://www.splay-project.org.
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Abstract

Network emulation subjects real applications and pro-

tocols to controlled network conditions. Most existing

network emulators are fundamentally link emulators, not

path emulators: they concentrate on faithful emulation

of the transmission and queuing behavior of individual

network hops in isolation, rather than a path as a whole.

This presents an obstacle to constructing emulations of

observed Internet paths, for which detailed parameters

are difficult or impossible to obtain on a hop-by-hop ba-

sis. For many experiments, however, the experimenter’s

primary concern is the end-to-end behavior of paths, not

the details of queues in the interior of the network.

End-to-end measurements of many networks, includ-

ing the Internet, are readily available and potentially pro-

vide a good data source from which to construct realistic

emulations. Directly using such measurements to drive

a link emulator, however, exposes a fundamental dis-

connect: link emulators model the capacity of resources

such as link bandwidth and router queues, but when re-

producing Internet paths, we generally wish to emulate

the measured availability of these resources.

In this paper, we identify a set of four principles for

emulating entire paths. We use these principles to de-

sign and implement a path emulator. All parameters to

our model can be measured or derived from end-to-end

observations of the Internet. We demonstrate our emu-

lator’s ability to accurately recreate conditions observed

on Internet paths.

1 Introduction

In network emulation, a real application or protocol, run-

ning on real devices, is subjected to artificially induced

network conditions. This gives experimenters the oppor-

tunity to develop, debug, and evaluate networked sys-

tems in an environment that is more representative of the

Internet than a LAN, yet more controlled and predictable

than running live across deployed networks such as the

Internet. Due to these properties, network emulation has

become a popular tool in the networking and distributed

systems communities.

Network emulators work by forwarding packets from

an application under test through a set of queues that ap-

proximate the behavior of router queues. By adjusting

the parameters of these queues, an experimenter can con-

trol the emulated capacity of a link, delay packets, and in-

troduce packet loss. Popular network emulators include

Dummynet [22], ModelNet [27], NIST Net [7], and Em-

ulab (which uses Dummynet) [32]. These emulators fo-

cus on link emulation, meaning that they concentrate on

faithful emulation of individual links and queues.

In many cases, particularly in distributed systems, the

system under test runs on hosts at the edges of the net-

work. Experiments on these systems are concerned with

the end-to-end characteristics of the paths between hosts,

not with the behavior of individual queues in the net-

work. For such experiments, detailed modeling of in-

dividual queues is not a necessity, so long as end-to-end

properties are preserved. One way to create emulations

with realistic conditions is to use parameters from real

networks, such as the Internet, but it can be difficult or

impossible to obtain the necessary level of detail to recre-

ate real networks on a hop-by-hop basis. Thus, in order

to run experiments using conditions from real networks,

there is a clear need for a new type of emulator that mod-

els paths as a whole rather than individual queues.

In this paper, we identify a set of principles for path

emulation and present the design and implementation of

a new path emulator. This emulator uses an abstract and

straightforward model of path behavior. Rather than re-

quiring parameters for each hop in the path, it uses a

much smaller set of parameters to describe the entire

path. The parameters for our model can be estimated or

derived from end-to-end measurements of Internet paths.

In addition to the simplicity and efficiency benefits, this

end-to-end focus makes our emulator suitable for recre-

ating observed Internet paths inside a network testbed,

such as Emulab, where experiments are predictable, re-

peatable, and controlled.

1.1 Path Emulation Approaches

One approach to emulating paths is to use multiple in-

stances of a link emulator, creating a series of queues for
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the traffic under test to pass through, much like the series

of routers it would pass through on a real path. Model-

Net and Emulab in particular are designed for use in this

fashion. Building a path emulator in this way, however,

requires a router-level topology. While such topologies

can be generated from models or obtained for particu-

lar networks, obtaining detailed topologies for arbitrary

Internet paths is very difficult. Worse, to construct an ac-

curate emulation, capacity, queue size, and background

traffic for each link in the path must be known, making

reconstruction of Internet paths intractable.

Another alternative is to approximate a path as a single

link, using the desired end-to-end characteristics such as

available bandwidth, and observed round-trip time, to set

the parameters of a single link emulator. Because these

properties can be measured from the edges of the net-

work, this is an attractive approach. A recent survey of

the distributed systems literature [29] shows that many

distributed or network systems papers published in top

venues [4, 5, 8, 18, 19, 23, 26, 30]—nearly one third of

those surveyed—include a topology in which a single

hop is used to approximate a path.

On the surface, this seems like a reasonable approxi-

mation: distributed systems tend to be sensitive to high-

level network characteristics such as bandwidth, latency,

and packet loss rather than the fine-grained queuing be-

havior of every router along a path. However, as we dis-

cuss in Section 2 and demonstrate in Section 4, using a

single link emulator to model a measured path can of-

ten fail even simple tests of accuracy. This is due to a

fundamental mismatch between the fact that link emula-

tors model the capacity of links, and the fact that end-

to-end measurements reveal the availability of resources

on those links. This difference can result in flows being

unable to achieve the bandwidth set by the experimenter

or seeing unrealistic round-trip times, and these errors

can be quite large. This model also does not capture in-

teractions between paths, such as shared bottlenecks, or

within paths, such as the reactivity of background flows.

1.2 Path Emulation Principles

What is needed is a new approach to emulation that

models entire Internet paths rather than individual links

within those paths. We have identified four principles for

designing such an emulator:

• Model capacity and available bandwidth sepa-

rately. Existing link emulators model links with

limited capacity. We show why this is not always

sufficient to create a path emulation with a partic-

ular target available bandwidth. We provide the

mathematical basis for deciding how much capacity

and howmuch cross-traffic are necessary to produce

the desired effect.

• Pick appropriate queue sizes. Much work has

been done in choosing “good” values for queue

sizes in real routers, but the issues that apply to em-

ulation are somewhat different. We define concrete

upper and lower bounds for queue sizes in emula-

tion and simulation. These bounds are derived from

the delay and available bandwidth parameters of the

emulated paths to ensure that the configured band-

width is actually achievable.

• Use an abstracted model of the reactivity of

background flows. Real networks have cross-

traffic that reacts in complex ways to foreground

traffic. Available bandwidth can change in reaction

to foreground flows, and thus is a function of the

load offered by the system under test. Discovering

the characteristics of background traffic from the

edge of the network is very difficult—even the de-

gree of statistical multiplexing is obscured by TCP

unfairness in the presence of disparate RTTs [15].

We show that we can model reactivity by concen-

trating only on the effect that the reactivity of the

background flows has on foreground flows.

• Model shared bottlenecks. When modeling a set

of paths, it is likely that some of those paths share

bottlenecks, and that this will affect the properties

seen by foreground flows. Such bottleneck sharing

occurs naturally in router-level emulation, but must

be explicitly modeled in an abstracted emulation.

Note that any of these principles can, individually, be

applied to a link emulator; indeed, our path emulator

implementation, presented in Section 3, is based on the

Dummynet link emulator. Our contribution lies in iden-

tifying all four principles as being fundamental to path

emulation, and in implementing a path emulator based on

them so that they can be empirically evaluated. Although

our focus in this paper is on emulation, these principles

are also applicable to simulation.

2 Path Modeling

Our path model grows out of these four principles. It

takes as input a set of five parameters: base round-

trip time (RTT), available bandwidth (ABW), capacity,

shared bottlenecks, and functions describing the reactiv-

ity of background traffic. As shown in Section 3.3, it is

possible to measure each of these parameters from end

hosts on the Internet, making it feasible to build recon-

structions of real paths. We discuss the ways in which

these parameters are interrelated, and contrast our model

with the approach of using end-to-end measurements as

input to a single link emulator, showing the deficiencies

of such an approach and how our model corrects them.
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Our model focuses on accommodating foreground

TCP flows, leaving emulation for other types of fore-

ground flows as future work. We also concentrate on em-

ulating stationary conditions for paths; in principle, any

or all parameters to our model can be made time-varying

to capture more dynamic network behavior.

2.1 Base RTT

The round-trip time (RTT) of a path is the time it takes

for a packet to be transferred in one direction plus the

time for an acknowledgment to be transferred in the op-

posite direction. We model the RTT of a path by break-

ing it into two components: the “base RTT” [6] (RTTbase)

and the queuing delay of the bottleneck link.

The base RTT includes the propagation, transmission,

and processing delay for the entire path and the queuing

delay of all non-bottleneck links. When the queue on

the bottleneck link is empty, the RTT of the path is sim-

ply the base RTT. In practice, the minimum RTT seen

on a path is a good approximation of its base RTT. Be-

cause transmission and propagation delays are constant,

and processing delays for an individual flow tend to be

stable, a period of low RTT indicates a period of little or

no queuing delay.

The base RTT represents the portion of delay that is

relatively insensitive to network load offered by the fore-

ground flows. This means that we do not need to emulate

these network delays on a detailed hop-by-hop basis: a

fixed delay for each path is sufficient.

2.2 Capacity, Available Bandwidth, and
Queuing

The bottleneck link controls the bandwidth available on

the path, contributes queuing delay to the RTT, and

causes packet loss when its queue fills. Thus, three prop-

erties of this link are closely intertwined: link capacity,

available bandwidth, and queue size.

We make the common assumption that there is only

one bottleneck link on a path in a given direction [9] at a

given time, though we do not assume that the same link

is the bottleneck in both directions.

2.2.1 Capacity and Available Bandwidth

Existing link emulators fundamentally emulate limited

capacity on links. The link speed given to the emula-

tor is used to determine the rate at which packets drain

from the emulator’s bandwidth queue, in the same way

that a router’s queue empties at a rate governed by the

capacity of the outgoing link. The quantity that more di-

rectly affects distributed applications, however, is avail-

able bandwidth, which we consider to be the maximum

rate sustainable by a foreground TCP flow. This is the

rate at which the foreground flow’s packets empty from

the bottleneck queue. Assuming the existence of com-

peting traffic, this rate is lower than the link’s capacity.

It is not enough to emulate available bandwidth us-

ing a capacity mechanism. Suppose that we set the ca-

pacity of a link emulator using the available bandwidth

measured on some Internet path: inside of the emulator,

packets will drain more slowly than they do in the real

world. This difference in rate can result in vastly dif-

ferent queuing delays, which is not only disastrous for

latency-sensitive experiments, but as we will show, can

cause inaccurate bandwidth in the emulator as well.

Let qf and qr be the sizes of the bottleneck queues in

the forward and reverse directions, respectively, and let

Cf andCr be the capacities. The maximum time a packet

may spend in a queue is
q
C
, giving us a maximum RTT

that can be observed on the path:

RTTmax = RTTbase +
qf

Cf

+
qr

Cr

(1)

If we were to use ABWf and ABWr—the available

bandwidth measured from some real Internet path—to

setCf andCr, Equation 1 would yield much larger queu-

ing delays within the emulator than seen on the real path

(assuming the queues sizes on the path and in the emula-

tor are the same).

For instance, consider a real path with RTTbase =
50ms, a bottleneck of symmetric capacity Cf = Cr =
43Mbps (a T-3 link) and available bandwidth ABWf =
ABWr = 4.3Mbps. For a small qf and qr of 64KB (fil-

lable by a single TCP flow), the RTT on the path is

bounded at 74ms, since the forward and reverse direc-

tions each contribute at most 12ms of queuing delay.

However, if we set Cf = Cr = 4.3Mbps within an em-

ulator (keeping queue sizes the same), each direction of

the path can contribute up 120ms of queuing delay. The

total resulting RTT could reach as high as 290ms.

This unrealistically high RTT can lead to two prob-

lems. First, it fails to accurately emulate the RTT of the

real path, causing problems for latency-sensitive appli-

cations. Second, it can also affect the bandwidth avail-

able to TCP, a problem we discuss in more detail in

Section 2.2.2.

One approach reducing the maximum queuing delay

would be to simply reduce the qf and qr inside of the

emulator. This may result in queues that are simply too

small. In the example above, to reduce the queuing delay

within the path emulator to the same level as the Inter-

net path, we would we would have to reduce the queue

size by a factor of 10 to 6.4KB. A queue this small will

cause packet loss if a stream sends a small burst of traf-

fic, preventing TCP from achieving the requested avail-

able bandwidth. We also discuss minimum queue size in

more detail in Section 2.2.2.



202	 NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation	 USENIX Association

The solution to these queuing problems is to separate

the notions of capacity and available bandwidth in our

path emulation model: they are independent parameters

to each path. When we wish to emulate a path with com-

peting traffic at the bottleneck, we set C > ABW. To

model links with no background traffic, we can still set

C = ABW, as is done implicitly in a link emulator.

Of course, when C > ABW, we must fill the excess

capacity to limit foreground flows to the desired ABW.

A common solution to this problem has been to add

a number of background TCP flows to the bottleneck.

The problem with this technique is one of measurement.

When the emulation is constructed using end-to-end ob-

servations of a real path, discovering the precise behav-

ior or even the number of competing background flows is

not possible from the edges of the network. Adding reac-

tive background flows to our emulation would not mirror

the reactivity on the real network, and would result in an

inexact ABW in the emulator.

Since there is not enough information to replicate the

background traffic at the bottleneck, we separately em-

ulate its rate and its reactivity. We can precisely emu-

late a particular level of background traffic using non-

responsive, constant-bit-rate traffic. This mechanism al-

lows us to provide an independent mechanism for emu-

lating reactivity, described in Section 2.3. The reactivity

model can change the level of background traffic to em-

ulate responsiveness while providing a precise available

bandwidth to the application at every point in time.

2.2.2 Queue Size

Much work has been done in choosing appropriate val-

ues for queue sizes in real routers [1], but the set of con-

straints for emulation are somewhat different: we have a

relatively small set of foreground flows and a specific tar-

get ABW that we wish to achieve. Although queue sizes

can be provided directly as parameters to our model, we

typically calculate them from other parameters. We do

this for two reasons. First, it is difficult to measure the

bottleneck queue size from the endpoints of the network

due to interference from cross-traffic. Second, the bot-

tleneck queue size affects applications only through ad-

ditional latency or reduced bandwidth it might cause.

Because our primary concern is emulating application-

visible effects, we include a method for selecting a queue

size that enables accurate emulation of those effects.

We look at queue sizes in two ways: in terms of space

(their capacity in bytes or packets) and in terms of time

(the maximum queuing delay they may induce). This

leads to two constraints on queue size:

• The queue must be large enough in space that a TCP

stream is able to get the full desired ABW; it should

not drop bursts of packets.

• The queue must not be so large in time that the

queuing delay from a full queue causes excessive

RTTs, as seen in Equation 1.

Lower bound. Finding the lower bound is straight-

forward. Current best practices suggest that for a small

number of flows, a good lower bound on queue size is

the sum of the bandwidth-delay products of all flows

traversing that link [1]. Here, a “small number” of flows

is fewer than about 500. Because we are concerned

only with flows of a foreground application, the num-

ber of flows on a specific path will typically be much

smaller than this. For a TCP flow f , the window size

wf is roughly equal to its bandwidth-delay product, and

is capped by wmax, the maximum window size allowed

by the TCP implementation. Thus, for a given path in a

given direction, we sum over the set of flows F , giving

us a lower bound on q:

q≥ ∑
f∈F

min(wf ,wmax) (2)

This bound applies to the queues in both directions on

the path, q f and qr. Intuitively, the queue must be large

enough to hold at least one window’s worth of packets

for each flow traversing the queue.

Upper bound. The upper bound is more complex.

The maximum RTT tolerable for a given flow on a given

path, before it becomes window-limited, is given by

(using the empirically derived TCP performance model

demonstrated by Padhye et al. [16]):

RTTmax =
wmax

ABW
(3)

where ABW is the available bandwidth we wish the flow

to experience. If the RTT grows above this limit, the

bandwidth-delay product exceeds the maximum window

size wmax, and the flow’s bandwidth will be limited by

TCP itself, rather than the ABW we have set in the em-

ulator. Since our goal is to accurately emulate the given

ABW, this would result in an incorrect emulation.

It is important to note that a single flow along a path

cannot cause itself to become window-limited, as it will

either fill up the bottleneck queue before it reaches wmax,

or stabilize on an average queue occupancy no larger than

wmax. Two or more flows, however, can induce this be-

havior in each other by filling a queue to a greater depth

than can be sustained by either one. Even flows crossing

a bottleneck in opposite directions can cause excessive

RTTs, as each flow’s ACK packets must wait in a queue

with the other flow’s data packets. The value of wmax

may be defined by several factors, including limitations

of the TCP header and configuration options in the TCP

stack, but is essentially known and fixed for a given ex-

periment.
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Flows may travel in both directions along a path, and

while both will see the same RTT, they may have differ-

ent RTTmax values if the ABW on the path is not symmet-

ric. Without loss of generality, we define the “forward”

direction of the path to be the one with the higher ABW.

From Equation 3, flows in this direction have the smaller

RTTmax, and since we do not want either flow to become

window-limited, we use ABWf to find the upper bound.

Because most (Reno-derived) TCP stacks tend to

reach a steady state in which the bottleneck queue is

full [16], bottleneck queues tend to be nearly full, on av-

erage. Thus, we can expect flows to experience RTTs

near the maximum given by Equation 1 in steady-state

operation. For our emulation of ABW to be accurate,

then, Equation 1 (the maximum observable RTT) must

be less than or equal to Equation 3 (the maximum toler-

able RTT). If we set the two capacities to be equal and

solve for the queue sizes, this gives us:

qf +qr ≤C ·

�

wmax

ABWf

−RTTbase

�

(4)

Because all terms on the right side are either fixed or pa-

rameters of the path, we have a bound on the total queue

size for the path. (It is not necessary for the forward and

reverse capacities to be equal to solve the equation. We

do so here for simplicity and clarity.)

Setting the Queue Size. To select sizes for the queues

on a path, we must simply split the total upper bound in

Equation 4 between the two directions, in such a way that

neither violates Equation 2.

These two bounds have a very important property: it is

not necessarily possible to satisfy both when C = ABW.

When either bound is not met, the emulation will not pro-

vide the desired network characteristics. The capacity C

acts as a scaling factor on the upper bound. By adjust-

ing it while holding ABW constant, we can raise or lower

the maximum allowable queue size, making it possible

to satisfy both equations.

Figure 1 illustrates this principle by showing valid

queue sizes as a function of capacity. As capacity

changes, the upper bound increases while the lower

bound remains constant. When capacity is at or near

available bandwidth, the upper bound is below the lower

bound, which means that no viable queue size can be se-

lected. As capacity increases, these lines intersect and

yield an expanding region of queue sizes that fulfill both

constraints. This underscores the importance of emulat-

ing available bandwidth and capacity separately.

Asymmetry. Throughput artifacts due to violations

of Equation 3 are exacerbated when traffic on the path

is bidirectional and the available bandwidth is asymmet-

ric. In this case, the flows in each direction can tolerate

different maximum RTTs, with the flow in the forward

(higher ABW) direction having the smaller upper bound.
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Figure 1: The relationship between capacity and the bounds

on queue size for a path with ABWf = ABWr = 10Mbps,

RTTbase = 20ms, and wmax = 65KB. Low capacities prevent

any viable queue size.

This means that it is disproportionately affected by high

RTTs. Others have described this phenomenon [2], and

we demonstrate it empirically in Section 4.1.

To determine how common paths with asymmetric

ABW are in practice, we measured the available band-

width on 7,939 paths between PlanetLab [17] nodes. Of

those paths, 30% had greater ABW in one direction than

the other by a ratio of at least 2:1, and 8% had a ratio of

at least 10:1. Because links with asymmetric capacities

(e.g., DSL and cable modems) are most common as last-

mile links, and because PlanetLab has few nodes at such

sites, it is highly likely that most of this asymmetry is

a result of bottlenecks carrying asymmetric traffic. Our

experiments in Section 4 shows that on a path with an

available bandwidth asymmetry ratio as small as 1.5:1,

a simple link emulation model that does not separate ca-

pacity and ABW, and does not set queue sizes carefully,

can result in a 30% error in achieved throughput.

2.2.3 Putting It Together

Figure 2 shows an overview of our model as described

thus far. We model the bottleneck of a path with a queue

that drains at a fixed rate, and a constant bit-rate cross-

traffic source. The rate at which the queue drains is the

capacity, and the difference between the injection rate of

the cross-traffic and the capacity is the available band-

width. The remainder of the delay on the path is mod-

eled by delaying packets for a constant amount of time

governed by RTTbase. The two halves of the path are

modeled independently to allow for asymmetric paths.
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Figure 2: Modeling a single path, in both the forward and re-

verse directions.

2.3 Interactions Between Flows

In addition to emulating the behavior of the foreground

flows’ packets in the bottleneck queue, we must also em-

ulate two important interactions: the interaction of mul-

tiple foreground flows on different paths that share bot-

tlenecks, and the interaction of foreground flows with re-

sponsive background traffic.

Shared Bottlenecks. To properly emulate sets of

paths, we must take into account bottlenecks that are

shared by more than one path. Consider the simple case

in Figure 3. If we do not model the bottleneck BL2

(shared by the paths from source S to destinations D2

and D3), we will allow multiple paths to independently

use bandwidth that should be shared between them. Do-

ing so could result in the application getting significantly

more bandwidth within the emulator than it would on the

real paths [21].

We do not, however, need to know the full router-level

topology of a set of paths in order to know that they share

bottlenecks. Existing techniques [12] can detect the ex-

istence of such bottlenecks from the edges of the net-

work, by correlating the observed timings of simultane-

ous packet transmissions on the paths.

To model paths that share a bottleneck, we abstract

shared bottlenecks in a simple manner: instead of giv-

ing each path an independent bandwidth queue, we allow

multiple paths to share the same queue. Traffic leaving a

node is placed into the appropriate queue based on which

destinations, if any, share bottlenecks from that source.

This is illustrated in Figure 4: the two bottleneck links

in the original topology are represented as bottleneck

queues inside the path emulator. While paths sharing a

bottleneck link share a bottleneck queue, each still has

its own base RTT applied separately. Because base RTT

represents links in the path other than the bottleneck link,

links with a shared bottleneck do not necessarily have the

same RTT. With this model, it is also possible for a path

to pass through a different shared bottleneck in each di-

rection.

D2

D1

BL2

BL1

S

D3

Figure 3: A router-level topology, showing two bottleneck

links. One (BL2) is shared by two paths from source S: the

paths to destinations D2 and D3.

D1

S

BL1�queue

D3

......

BL2�queue

Emulator

... ...

D2

Figure 4: An abstracted view of Figure 3, with the bottleneck

links represented as bottleneck queues.

Reactivity of Background Traffic. Flows traversing

real Internet paths interact with cross-traffic, and this

cross-traffic typically has some reactivity to the fore-

ground flows. Thus, ABW on a path is not constant, even

under the assumption that the set of background flows

does not change. Simply setting a static ABW for a path

can miss important effects: if more than one flow is sent

along the path, the aggregate ABW available to all fore-

ground flows may be greater, as the background traffic

backs off further in reaction to the increased load. This

is particularly important when the bottleneck is shared

between two or more paths; the load on the bottleneck is

the sum of the load on all paths that pass through it.

While it is possible to create reactivity in the emula-

tion by sending real, reactive cross-traffic (such as com-

peting TCP flows) across the bottlenecks, doing so in a

way that faithfully reproduces conditions on an observed

link is problematic. The number, size, and RTT of these

background flows all affect their reactivity, and such de-

tail is not easily observed from endpoints. We turn to our

guiding principle of abstraction, and model the reactivity

of the background traffic to our foreground flows, rather

than the details of the background traffic itself.

We look at ABW as a function of offered load:

ABWd(Ld) gives the aggregate bandwidth available in

direction d (forward or reverse) of a given path, as a
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Name Type Description

Cf , Cr fixed Capacity of the bottleneck in the forward and reverse directions. Fixed to value

sufficient to make satisfaction of queue bounds possible for most experiments.

ABWf (|Ff |),
ABWr(|Fr|)

measured Table giving available bandwidth for the forward and reverse directions, as a func-

tion of the number of flows traversing the path in that direction.

RTTbase measured Base RTT of the path, split evenly between the two directions.

Sp∈P measured A subset of paths p from the set of all paths P that share a common bottleneck.

Multiple instances of this parameter may be given.

qf ,qr derived The queue size for each bottleneck is derived from the measured values of ABW,

RTTbase, and the fixed capacity. If ABW is adjusted based on the reactivity table,

queue size is as well.

Table 1: The parameters to our path emulation. All parameters except Sp∈P are given on a per-path basis.

function of the offered load Ld in that direction on that

path. A set of such functions, one for each direction on

each path, is supplied as a parameter to the emulation.

Note that this offered load—and with it the available

bandwidth—will likely vary over time during the emu-

lated experiment. The ABW function can be created ana-

lytically based on a model or it can be measured directly

from a real path, by offering loads at different levels and

observing the resulting throughput. The emulation can

then provide—with high accuracy—exactly the desired

ABW. Once we have used the reactivity functions to de-

termine the aggregate bandwidth available on a path, we

can set both the capacity and queue sizes as described in

Section 2.2.2.

Because an ABW function is a parameter of a particu-

lar path, when multiple paths share a bottleneck, we must

combine their functions. There are multiple ways that the

ABW functions may be combined. Ideally, we would like

to account for every possible combination of flows using

every possible set of paths that share the bottleneck. The

combinatorial explosion this creates, however, quickly

makes this infeasible for even a modest number of paths.

Instead, the simple strategy that we currently employ is

to take the mean of the ABW values for each individual

path sharing the bottleneck, weighted by the number of

flows on each path. We are exploring the possibility that

more complicated approaches may yield more realistic

results.

3 Implementing a Path Emulator

Although the model we have discussed is applicable to

both simulation and emulation, we chose to do our ini-

tial implementation in an emulator. Our prototype path

emulator is implemented as a set of enhancements to the

Dummynet [22] link emulator. We constructed our pro-

totype within the Emulab network testbed [32], but it is

not fundamentally linked to that platform.

3.1 Basis: The Dummynet Link Emulator

Dummynet is a popular link emulator implemented in the

FreeBSD kernel. It intercepts packets coming through

an incoming network interface and places them in its in-

ternal objects—called pipes—to emulate the effects of

delay, limited bandwidth, and probabilistic random loss.

Each pipe has one or more queues associated with it.

Given the capacity or the delay of a pipe, Dummynet

schedules packets to be emptied from the corresponding

queues and places them on the outgoing interface.

Dummynet can be configured to send a packet through

multiple pipes on its path from an incoming interface to

an outgoing interface. One pipe may enforce the base

delay of the link, and a subsequent pipe may model the

capacity of the link being emulated. Dummynet uses the

IPFW packet filter to direct packets into pipes, and can

therefore use many different criteria to map packets to

pipes.

In network emulation testbeds, “shaping nodes” are in-

terposed on emulated links, each acting as a transparent

bridge between the endpoints. In Emulab, the shaping

nodes’ Dummynet is configured with one or more pipes

to handle traffic in each direction on the emulated link,

allowing for asymmetric link characteristics. Shaping

nodes can also be used in LAN topologies by placing a

shaping node between each node and switch implement-

ing the LAN. Thus traffic between any two nodes passes

through two shaping nodes: one between the source and

the LAN, and one between the LAN and the destination.

3.2 Enhancements for Path Emulation

To turn Dummynet into a path emulator, we made a num-

ber of enhancements to it. The parameters to the result-

ing path emulator are summarized in Table 1.

Capacity and Available Bandwidth. Dummynet im-

plements bandwidth shaping in terms of a bandwidth

pipe, which contains a bandwidth queue that is drained at

a specified rate, modeling some capacity C. To separate
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the emulation of capacity from available bandwidth, we

modified Dummynet to insert “placeholder” packets into

the bandwidth queues at regular, configurable intervals.

These placeholder packets are neither received from nor

sent to an actual network interface; their purpose is sim-

ply to adjust the rate at which foreground flows’ packets

move through the queue. The placeholders are sent at a

constant bit rate ofC−ABW, setting the bandwidth avail-

able to the experimenter’s foreground flows. ABW can

be set as a function of offered load, using the mechanism

described below.

Base Delay. We leave Dummynet’s mechanism for

emulating the constant base delay unchanged. Packets

pass through “delay” queues, where they remain for a

fixed amount of time.

Queue Size. We use Equation 4 to set the queue size

for the bandwidth queues in each direction of each path,

dividing the number of bytes equally between the for-

ward and reverse directions. Because the model assumes

that packets are dropped almost exclusively by the bottle-

neck router, modeled by the bandwidth queues, the size

of the delay queues is effectively infinite.

Background Traffic Reactivity. We implement the

ABWf and ABWr functions as a set of tables that are pa-

rameters to the emulator. Each path is associated with a

distinct table in each direction. We measure the offered

load on a path by counting the number of foreground

flows traversing that path. We do this for two reasons.

First, it makes the measurement problem more tractable,

allowing us to measure a relatively small, discrete set of

possible offered loads on the real path. Second, our goal

is to recreate inside the emulator the behavior that one

would see by sending the same flows on the real network.

The complex feedback system created by the interaction

of foreground flows with background flows is captured

most simply by measuring entire flows, as it is strongly

related to TCP dynamics. It does have a downside, how-

ever, in that it makes the assumption that the foreground

flows will be full-speed TCP flows. During an execution

of the emulator, a traffic monitor counts the number of

active foreground flows on each path, and informs the

emulator which table entry to use to set the aggregate

ABW for the path. This target ABW is achieved inside

the emulator by adjusting the rate at which placeholder

packets enter the bandwidth queue. Our implementation

also readjusts bottleneck queue sizes in reaction to these

changes in available bandwidth.

Shared Bottlenecks. We implement shared bottle-

necks by allowing a bandwidth pipe to shape traffic to

more than one destination simultaneously. For each end-

point host in the topology, the emulator takes as a pa-

rameter a set of “equivalence classes”: sets of destina-

tion hosts that share a common bottleneck, and thus a

common bandwidth pipe. Packets are directed into the

proper bandwidth pipe using IPFW rules. Our current

implementation only supports bottlenecks that share a

common source. We are in the process of extending our

prototype to implement other kinds of bottlenecks, such

as those that share a destination.

3.3 Gathering Data from the Real World

To create and run experiments with the path emulator, we

need a source of input data for the parameters shown in

Table 1. Although it is possible to synthesize values for

these parameters, we concentrate here on gathering them

from end-to-end measurements of the Internet.

We developed a system for gathering data for these

parameters using hosts in PlanetLab [17], which gives

us a large number of end-site vantage points around the

world. Each node in the emulation is paired with a

PlanetLab node; measurements taken from the Planet-

Lab node are used to configure the paths to and from the

emulated node.

To gather values for RTTbase, we use simple ping

packets, sent frequently over long periods of time [10].

The smallest RTT seen for a path is presumed to be an

event in which the probe packet encountered no signif-

icant queuing delay, and thus representative of the base

RTT.

To detect shared bottlenecks from a source to a set of

destinations, we make use of a wavelet-based conges-

tion detection tool [12]. This tool sends UDP probes

from a source node to all destination nodes of inter-

est and records the variations in one-way delays expe-

rienced by the probe packets. Random noise introduced

in the delays by non-bottleneck links is removed using

a wavelet-based noise-removal technique. The paths are

then grouped into different clusters, with all the paths

from the source to the set of destinations going through

the same shared bottleneck appearing in a single clus-

ter. The shared bottlenecks found by this procedure are

passed to the emulator as the Sp∈P sets.

Our goal is that a TCP flow through the emulator

should achieve the same throughput as a TCP flow sent

along the real path. So, we use a definition of ABW that

differs slightly from the standard one—we equate the

available bandwidth on a path to the throughput achieved

by a TCP flow. We also need to measure how this ABW

changes in response to differing levels of foreground traf-

fic. While we cannot observe the background traffic on

the bottleneck directly, we can observe how different

levels of foreground traffic result in different amounts

of bandwidth available to that foreground traffic. Al-

though packet-pair and packet-train [9, 13, 20] measure-

ment tools are efficient, they do not elicit reactions from

background traffic. For this reason, we use the follow-

ing methodology to concurrently estimate the ABW and
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reactivity of background traffic on a particular path.

To measure the reactivity of Internet cross-traffic to the

foreground flows, we run a series of tests using iperf

between each pair of PlanetLab nodes, with the number

of concurrent flows ranging from one to ten. We use the

values obtained from these tests between all paths of in-

terest to build the reactivity tables for the path emulator.

However, running such a test takes time: only one test

can be active on each path at a time, and iperf must run

long enough to reach a steady state. Thus, our measure-

ments necessarily represent a large number of snapshots

taken at different times, rather than a consistent snapshot

taken at a single time. The cross-traffic on the bottleneck

may vary significantly during this time frame. So, the

reactivity numbers are an approximation of the behavior

of cross-traffic at the bottleneck link. This is a general

problem with measurements that must perturb the envi-

ronment to differing levels. The time required to gather

these measurements is also the main factor limiting the

scale of our emulations.

Another problem that arises is the proper ABW value

for shared bottlenecks. Because paths that share a bottle-

neck do not necessarily have the same RTTs, they may

evoke different levels of response from reactive back-

ground traffic. It is not feasible to measure every possible

combination of flows on different paths through the same

shared bottleneck. Thus, we use the approximation dis-

cussed in Section 2.3 to set ABW for shared bottlenecks.

Our current implementation does not measure the bot-

tleneck link capacitiesCf andCr on PlanetLab paths, due

to the difficulty of obtaining accurate packet timings on

heavily loaded PlanetLab nodes [25]. We set the capac-

ity of all bottleneck links to 100Mbps. In practice, we

find that for C ≫ ABW, the exact value of C makes little

difference on the emulation, and thus we typically set it

to a fixed value. We demonstrate this in Section 4.3.

4 Evaluation

The goal of our evaluation is to show that our path emu-

lator accurately reproduces measurements taken from In-

ternet paths. We demonstrate, using micro-benchmarks

and a real application, that our path emulator meets this

goal under conditions in which approximating the path

using a single link emulator fails to do so. In the ex-

periments described below, we concentrate on accurately

reproducing TCP throughput and observed RTT.

All of our experiments were run in Emulab on PCs

with 3GHz Pentium IV processors and 2GB of RAM.

The nodes running application traffic used the Fedora

Core Linux distribution with a 2.6.12 kernel, with its de-

fault BIC-TCP implementation. The link emulator was

Dummynet running in the FreeBSD 5.4 kernel, and our

path emulator is a set of modifications to it. All mea-

surements of Internet paths were taken using PlanetLab

hosts.

4.1 Effect on TCP Throughput

We begin by running a micro-benchmark, iperf, a bulk-

transfer tool that simply tries to achieve as much through-

put as possible using a single TCP flow.

We performed a series of experiments to compare the

behavior of iperf when run on real Internet paths, an

unmodified Dummynet link emulator, and our path em-

ulator. We used a range of ABW and RTT values, some

taken from measurements on PlanetLab and some syn-

thetic. The ABW values from PlanetLab were measured

using iperf, and thus the emulators’ accuracy can be

judged by how closely iperf’s performance in the em-

ulated environment matches the ABW parameter. In the

link emulator, we set the capacity to the desired ABW (as

there is only one bandwidth parameter), and in the path

emulator, we set capacity to 100Mbps. The link emu-

lator uses Dummynet’s default queue size of 73KB, and

the path emulator’s queue size was set using Equation 4.

Reactivity tables and shared bottlenecks were not used

for these experiments. We started two TCP flows simul-

taneously on the emulated path, one in each direction,

and report the mean of five 60-second runs.

The results of these experiments are shown in Table 2.

It is clear from the percent errors that the path emulation

achieves higher accuracy than the link emulator in many

scenarios. While both achieve within 10% of the speci-

fied throughput in the first test (a low-bandwidth, sym-

metric path), as path asymmetry and bandwidth-delay

product increase, the effects discussed in Section 2.2

cause errors in the link emulator. While our path em-

ulator remains within approximately 10% of the target

ABW, the link emulator diverges by as much as 66%.

The forward direction, with its higher throughput, tends

to suffer disproportionately higher error rates. Because

the measured values come from real Internet paths, they

do not represent unusual or extreme conditions.

The first two rows of synthetic results demonstrate

that, even in cases of symmetric bandwidth, the failure to

differentiate between capacity and available bandwidth

hurts the link emulator’s accuracy. The third demon-

strates divergence under highly asymmetric conditions.

To evaluate the importance of selecting proper queue

sizes, we reran two earlier experiments in our path em-

ulator, this time setting the queue sizes greater than the

upper limits allowed by Equation 4. These results are

shown in the bottommost section of Table 2 (labeled

“Bad Queue Size”). The RTT for each flow grows until

the flows reach their maximum window sizes, preventing

them from utilizing the full ABW of the emulated path

and resulting in large errors.
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Configured Configured Achieved ABW

ABW (Kbps) Base Delay Queue Tput (Kbps) Error (%)

Test Type Forward Reverse (ms) Emulator size (KB) Forward Reverse Forward Reverse

Measured

2,251 2,202 64
link 73 2,070 2,043 8.0 7.2

path 957 2,202 2,163 2.1 1.8

4,061 2,838 29
link 73 2,774 2,599 31.7 8.4

path 957 3,822 2,706 5.8 4.6

6,436 2,579 12
link 73 3,176 2,358 50.6 8.5

path 844 6,169 2,448 4.1 5.0

25,892 17,207 4
link 73 20,608 15,058 20.4 12.5

path 197 23,237 15,644 10.2 9.1

Synthetic

8,000 8,000 45
link 73 6,228 6,207 22.0 22.4

path 237 7,493 7,420 6.3 7.2

12,000 12,000 30
link 73 9,419 9,398 21.5 21.6

path 158 11,220 11,208 6.5 6.6

10,000 3,000 30
link 73 3,349 2,705 66.5 9.8

path 265 9,150 2,690 8.5 10.3

25,892 17,207 4
link — — — — —

Bad Queue path 390 21,012 15,916 18.8 7.5

Size
10,000 3,000 30

link — — — — —

path 488 7,641 2,768 23.6 7.7

Table 2: Throughput achieved by simultaneous TCP flows along both directions of a number of paths, using a link emulator and

using our path emulator.
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Figure 5: RTT over the lifetime of a 30-second TCP flow. Note that the range of the Y-axis in the center graph is seven times larger

than the other two graphs.

4.2 Effect on Round-Trip Time

In addition to TCP throughput, our path emulator also

has a significant effect on the RTT observed by a flow,

producing RTTs much more similar to those on real paths

than those seen in a simple link emulator. To evaluate this

difference, we measured the path between the PlanetLab

nodes at Harvard and those at Washington University in

St. Louis (WUSTL). The ABW was 409Kbps from Har-

vard to WUSTL, and 4,530Kbps from WUSTL to Har-

vard. The base RTT was 50ms. To isolate the effects of

distinguishing ABW and capacity from other differences

between the emulators, we set the queue size in both to

the same value (our Linux kernel’s maximum window

size of 32KB), and exercised only one direction of the

path.

Figure 5 shows the round-trip times seen during a 30-

second iperf run from Harvard to WUSTL, and the

round-trip times seen under both link and path emulation.

Both emulators achieved the target bandwidth, but dra-

matically differ in the round-trip times and packet-loss

characteristics of the flows. Figure 5(b) and Figure 5(c)

show the round-trip times observed on the link and path

emulators respectively. As TCP tends to keeps the bot-

tleneck queue full, it quickly plateaus at the length of the

queue in time. Because the link emulator’s queue drains

at the rate of ABW, rather than the much larger rate ofC,

packets spend much longer in the queue in the link emu-

lator. The average RTT for the link emulator was 629ms,

an order of magnitude higher than the average RTT of

53.1ms observed on the actual path (Figure 5(a)). Be-

cause the path emulator separates capacity and ABW, it
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Figure 6: Experiments on an emulated path with 6.5Mbps

available bandwidth in the forward direction. A constant queue

size is maintained while capacity is varied.

gives an average RTT of 53.2ms, which is within 1% of

the value on the real path. The standard deviation inside

of the path emulator is 3.0ms, somewhat lower than the

5.1ms seen on the real path.

To get comparable RTTs from the link emulator, its

queue would have to be much smaller, around 2.5KB,

which is not large enough to hold two full-size TCP

packets. We reran this experiment in the link emulator

using this smaller queue size, and a unidirectional TCP

flow was able to achieve close to the target 409Kbps

throughput. However, when we ran bidirectional flows,

the flow along the reverse direction was only able to

achieve a throughput of around 200Kbps, despite the fact

that the ABW in that direction was set to 4,530Kbps (the

value measured on the real path). This demonstrates that

adjusting queue size by itself is not sufficient to fix ex-

cessive RTTs, as it can cause significant errors in ABW

emulation.

4.3 Sensitivity Analysis of Capacity

As we saw in Figure 1, once the capacity has grown suf-

ficiently large, it is possible to satisfy both the upper and

lower bounds on queue size. Our next experiment tests

how sensitive the emulator is to capacity values larger

than this intersection point.

We ran several trials with a fixed available bandwidth

(6.5Mbps) but varying levels of capacity. All other pa-

rameters were left constant. Figure 6 shows the relative

error in achievable throughput as we vary the capacity.

While error peaks when capacity is very near available

bandwidth, outside of that range, changing the capacity

has very little effect on the emulation. This justifies the

decision in our implementation to use a fixed, large ca-

pacity, rather than measuring it for each path.
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Figure 7: Time taken by participants in a BitTorrent swarm to

download a file. Download times are shown for each node for

both path and simple link emulation.

4.4 BitTorrent Application Results

We demonstrated in Section 4.1 that using path param-

eters in a simple link emulator causes artifacts in many

situations. We now show that these artifacts cause inac-

curacies when running real applications and are not just

revealed using measurement traffic. Though this experi-

ment uses multiple paths, to isolate the effects of capacity

and queue size, it does not model shared bottlenecks or

reactivity.

Figure 7 shows the download times of a group of Bit-

Torrent clients using simple link emulation and path em-

ulation with the same parameters, which were gathered

from PlanetLab paths. Each pair of bars shows the time

taken to download a fixed file on one of the twelve nodes.

The simple link emulator limits available bandwidth in-

accurately under some circumstances, which increases

the download duration on many of the nodes. As seen in

the figure, each node downloads an average of 6% slower

in the link emulator than it does when under path emu-

lator. The largest difference is 12%. This shows that the

artifacts we observe with micro-benchmarks also affect

the behavior of real applications.

4.5 Network Reactivity

Our next experiment examines the fidelity of our reactiv-

ity model. We ran reactivity tests on a set of thirty paths

between PlanetLab nodes. For each path, we measured

aggregate available bandwidth with a varying number of

foreground iperf flows, ranging from one to eight. We

used this data as input to our emulator, in the form of

reactivity tables, then repeated the experiments inside of

the emulator. In this experiment, the paths are tested in-

dependently at different times, so no shared bottlenecks

are exercised.
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Figure 8: A CDF showing percentage of error over paths with

multiple foreground flows.

By comparing the throughputs achieved inside of the

emulator to those obtained on the real path, we can test

the accuracy of our reactivity model. Figure 8 shows the

results of this experiment. For each trial (a specific num-

ber of foreground flows over a specific path), we com-

puted the error as the percentage difference between the

aggregate bandwidth measured on PlanetLab and that

recreated inside the emulator. Our emulator was quite

accurate; 80% of paths were emulated to within 20% of

the target bandwidth.

There are some outliers, however, with significant er-

ror. These point to limitations of our implementation,

which currently sets capacities to 100Mbps and has a

1MB limit on the bottleneck queue size. Some paths in

this experiment had very high ABW: as high as 78Mbps

in aggregate for eight foreground flows. As we saw in

Figure 6, when ABW is close to capacity, significant er-

rors can result. With high bandwidths and multiple flows,

the lower bound on queue sizes (Equation 2) also be-

comes quite large, producing two sources of error. First,

if this bound becomes larger than our 1MB implemen-

tation limit, we are unable to provide sufficient queue

space for all flows to achieve full throughput. Second,

our limits on capacity limit the amount we can adjust the

upper bound on queue size, Equation 4, meaning that we

may end up in a situation where it is not possible to sat-

isfy both the upper and lower bounds.

It would be possible to raise these limits in our im-

plementation by improving bandwidth shaping efficiency

and allowing larger queue sizes. The underlying issues

are fundamental ones, however, and would reappear at

higher bandwidths: our emulator requires that capacity

be significantly larger than the available bandwidth to be

emulated, and providing emulation for large numbers of

flows with high ABW requires large queues.
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Figure 9: A CDF showing bandwidth achieved at shared bot-

tlenecks.

4.6 Shared Bottlenecks

Finally, we examine the effects of shared bottlenecks on

bandwidth. We again measured the paths between a set

of PlanetLab nodes, finding their bandwidth, reactivity,

and shared bottlenecks After characterizing the paths in

the real world, we configured two emulations. The first

is a simple link emulation, approximating each path with

an independent link emulator. The second uses our full

path emulator, including its modeling of shared bottle-

necks and reactivity. In order to stress and measure the

system, we simultaneously ran an instance of iperf in

both directions between every pair of nodes. This causes

competition on the shared bottlenecks and also ensures

that every path is being exercised in both directions at

the same time.

Figure 9 shows a CDF of the bandwidth achieved at

the bottlenecks in both the link emulator and our path

emulator, demonstrating that failure to model shared bot-

tlenecks results in higher bandwidth. To isolate the ef-

fects of shared bottlenecks and reactivity, only flows

passing through those bottlenecks are shown. In the link

emulator, each flow receives the full bandwidth mea-

sured for the path. In the path emulator, flows pass-

ing through shared bottlenecks are forced to compete

for this bandwidth, and as a result, each receives less

of it. Modeling of reactivity plays an important role

here: in the path emulator, each shared bottleneck is

being exercised by multiple flows, and thus the aggre-

gate bandwidth available is affected by the response of

the cross-traffic. The few cases in which the path em-

ulator achieves higher bandwidth than the link emulator

are caused by highly asymmetric paths, where the effects

demonstrated in Section 4.1 dominate.
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5 Related Work

There is a large body of work on measuring the Internet

and characterizing its paths. The focus of our work is not

to create novel measurement techniques, but to create ac-

curate emulations based on existing techniques. Our con-

tribution lies in the identification of principles that can be

used to accurately emulate paths, given these measure-

ments.

Our emulator builds on the Emulab [32] and Dum-

mynet [22] link emulators to reproduce measured end-

to-end path characteristics. ModelNet [27] also emulates

router-level topologies on a link-by-link basis. Capacity

and delay are set for each link on the path. To create

shared bottlenecks with a certain degree of reactivity, it

is up to the experimenter to carefully craft a router topol-

ogy and introduce cross-traffic on a particular link of the

path. ModelNet includes tools for simplifying router-

level topologies, but does not abstract them as heavily

as we do in this work. NIST Net [7], a Linux-based net-

work emulator, is an alternative to Dummynet. However,

it is also a link emulator and does not distinguish be-

tween capacity and available bandwidth. Our model ab-

stracts the important characteristics of the path, thereby

simplifying their specification and faithfully reproducing

those network conditions without the need for a detailed

router-level topology.

Appenzeller et al. [1] show that the queuing buffer re-

quirements for a router can be reduced provided that a

large number of TCP flows are passing through the router

and they are desynchronized. They also provide reason-

ing as to why setting the queue sizes to the bandwidth-

delay product works for a reasonably small number of

TCP flows. We use the bandwidth delay product as the

lower limit on the queue sizes of the paths being mod-

eled. We are also concerned about low capacity links

(asymmetric or otherwise) causing large queuing delays

that adversely affect the throughput of TCP. Our model

separates capacity from available bandwidth and deter-

mines queue sizes such that the TCP flows on the path

do not become window-size limited.

Researchers have investigated the effects of capac-

ity and available bandwidth asymmetry on TCP perfor-

mance [2, 3, 11, 14]. They proposed modifications to ei-

ther the bottleneck router forwarding mechanism, or the

end node TCP stack. We do not seek to minimize the

queue sizes at the router, but rather to calculate the right

queue size for a path to enable the foreground TCP flows

to fully utilize the ABW during emulation. We mod-

ify neither router forwarding nor the TCP stack and our

model is independent of the TCP implementation used

on the end nodes.

Harpoon [24], Swing [28], and Tmix [31] are frame-

works that characterize the traffic passing through a link

and then generate statistically similar traffic for emu-

lating that link or providing realistic workloads. Our

work, in contrast, does not seek to characterize or re-

create background traffic in great detail. We characterize

cross-traffic at a much higher level, solely in terms of

its reactivity to foreground flows. We are able to do this

characterization with end-to-end measurements, and do

not need to directly observe the packets comprising the

cross-traffic.

6 Conclusion and Future Work

We have presented and evaluated a new path emulator

that can accurately recreate the observed end-to-end con-

ditions of Internet paths. The path model within our

emulator is based on four principles that combine to

enable accurate emulation over a wide range of condi-

tions. We have compared our approach to two alterna-

tives that make use of simple link emulation. Unlike

router-level emulation of paths, our approach is suitable

for reconstructing real paths solely from measurements

taken from the edges of a network. As we have shown,

using a single link emulator to approximate a measured

multi-hop path can fail to produce accurate results. Our

path model corrects these problems, enabling recreations

of real paths in the repeatable, controlled environment of

an emulator.

Much of our future work will concentrate on improv-

ing the reactivity portion of our model. Our method of

measuring reactivity is currently the most intensive part

of our data gathering: it uses the most bandwidth, and

takes the most time. Improving it will allow our system

to run at larger scale. Viewing ABW as a function of

the number of full-speed foreground TCP flows limits us

both to TCP and to applications that are able to fill their

network paths. In future refinements of our design, we

hope to characterize ABW in terms of lower-level met-

rics that are not intrinsically linked to TCP’s congestion

control behavior. Finally, our averaging of ABW values

for paths that share a bottleneck could use more study

and validation.

Another future direction will be the expansion of our

work to the simulation domain. Simulators handle links

and paths in much the same way as do emulators, and the

model we describe in Section 2 can be directly applied to

them as well.
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Abstract

MODIST is the first model checker designed for transparently
checking unmodified distributed systems running on unmod-
ified operating systems. It achieves this transparency via a
novel architecture: a thin interposition layer exposes all ac-
tions in a distributed system and a centralized, OS-independent
model checking engine explores these actions systematically.
We made MODIST practical through three techniques: an ex-
ecution engine to simulate consistent, deterministic executions
and failures; a virtual clock mechanism to avoid false positives
and false negatives; and a state exploration framework to incor-
porate heuristics for efficient error detection.
We implemented MODIST on Windows and applied it to

three well-tested distributed systems: Berkeley DB, a widely
used open source database; MPS, a deployed Paxos implemen-
tation; and PACIFICA, a primary-backup replication protocol
implementation. MODIST found 35 bugs in total. Most im-
portantly, it found protocol-level bugs (i.e., flaws in the core
distributed protocols) in every system checked: 10 in total, in-
cluding 2 in Berkeley DB, 2 in MPS, and 6 in PACIFICA.

1 Introduction
Despite their growing popularity and importance, dis-
tributed systems remain difficult to get right. These sys-
tems have to cope with a practically infinite number of
network conditions and failures, resulting in complex
protocols and even more complex implementations. This
complexity often leads to corner-case errors that are dif-
ficult to test, and, once detected in the field, impossible
to reproduce.
Model checking has been shown effective at detect-

ing subtle bugs in real distributed system implementa-
tions [19, 27]. These tools systematically enumerate the
possible execution paths of a distributed system by start-
ing from an initial state and repeatedly performing all
possible actions to this state and its successors. This
state-space exploration makes rare actions such as net-
work failures appear as often as common ones, thereby
quickly driving the target system (i.e., the system we
check) into corner cases where subtle bugs surface.
To make model checking effective, it is crucial to ex-

pose the actions a distributed system can perform and do
so at an appropriate level. Previous model checkers for
distributed systems tended to place this burden on users,
who have to either write (or rewrite) their systems in a

restricted language that explicitly annotates event han-
dlers [19], or heavily modify their system to shoehorn it
into a model checker [27].
This paper presents MODIST, a system that checks un-

modified distributed systems running on unmodified op-
erating systems. It simulates a variety of network con-
ditions and failures such as message reordering, network
partitions, and machine crashes. The effort required to
start checking a distributed system is simply to provide
a simple configuration file specifying how to start the
distributed system. MODIST spawns this system in the
native environment the system runs within, infers what
actions the system can do by transparently interposing
between the application and the operating system (OS),
and systematically explores these actions with a cen-
tralized, OS-independent model checking engine. We
have carefully engineered MODIST to ensure the exe-
cutions MODIST explores and the failures it injects are
consistent and deterministic: inconsistency creates false
positives that are painful to diagnose; non-determinism
makes it hard to reproduce detected errors.
Real distributed systems tend to rely on timeouts for

failure detection (e.g., leases [14]); many of these time-
outs hide in branch statements (e.g., “if(now > t +
timeout)”). To find bugs in the rarely tested timeout
handling code, MODIST provides a virtual clock mech-
anism to explore timeouts systematically using a novel
static symbolic analysis technique. Compared to the
state-of-the-art symbolic analysis techniques [3, 4, 13,
31], our method reduces analysis complexity using the
following two insights: (1) programmers use time val-
ues in simple ways (e.g., arithmetic operations) and (2)
programmers check timeouts soon after they query the
current time (e.g., by calling gettimeofday()).
We implemented MODIST on Windows. We applied

it to three well-tested distributed systems: Berkeley DB,
a widely used open-source database; MPS, a Paxos im-
plementation that has managed production data centers
with more than 100K machines for over two years; and
PACIFICA, a primary-backup replication protocol imple-
mentation. MODIST found 35 bugs in total. In particular,
it found protocol-level bugs (i.e., flaws in the core proto-
cols) in every system checked: 10 in total, including 2 in
Berkeley DB, 2 in MPS, and 6 in PACIFICA. We mea-
sured the speed of MODIST and found that (1) MODIST
incurs reasonable overhead (up to 56.5%) as a checking



214	 NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation	 USENIX Association

tool and (2) it can speed up a checked execution (up to
216 times faster) using its virtual clock.
MODIST provides a customizable framework for in-

corporating various state-space exploration strategies.
Using this framework, we implemented dynamic partial
order reduction (DPOR) [9], random exploration, depth-
first exploration, and their variations. Among these,
DPOR is a strategy well-known in the model checking
community for avoiding redundancy in exploration. To
evaluate these strategies, we measured their protocol-
level coverage (i.e., unique protocol states explored).
The results show that, while DPOR achieves good cov-
erage for a small bounded state space, it scales poorly
as the state space grows; a more balanced variation of
DPOR, with a set of randomly selected paths as starting
points, achieves the best coverage.
This paper is organized as follows. We present an

overview of MODIST (§2), then describe its implemen-
tation (§3) and evaluation (§4). Next we discuss related
work (§5) and conclude (§6).

2 Overview
A typical distributed system that MODIST checks has
multiple processes,∗ each running multiple threads.
These processes communicate with each other by send-
ing and receiving messages through socket connections.
MODIST can re-order messages and inject failures to
simulate an asynchronous and unreliable network. The
processes may write data to disk, and MODIST will
generate different possible crash scenarios by permuting
these disk writes.
The remainder of this section gives an overview of

MODIST, covering its architecture (§2.1), its checking
process(§ 2.2), the checks it enables (§ 2.3), and its user
interface (§2.4).

2.1 Architecture

Figure 1 illustrates the architecture of MODIST applied
to a 4-node distributed system. The master node runs
multiple threads (the curved lines in the figure) and might
send or receive messages (the solid boxes). For each
process in the target system, MODIST inserts an inter-
position frontend between the process and its native op-
erating system to intercept and control non-deterministic
decisions involving thread and network operations.
MODIST further employs a backend that runs in a dif-

ferent address space and communicates with the fron-
tends via RPC. This design minimizes MODIST’s pertur-
bation of the target system, allowing us to build a generic
backend that runs on a POSIX-compliant operating sys-
tem, and makes it possible to build the frontends for
MODIST on different operating systems. The backend

∗In this paper we use node and process interchangeably.
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Figure 1: MODIST architecture. All MODIST compo-
nents are shaded. The target system consists of one mas-
ter, two replication nodes, and one client. MODIST’s
frontend interposes between each process in the target
system and the operating system to intercept and control
non-deterministic actions, such as message interleaving
and thread interleaving. MODIST’s backend runs in a
separate address space to schedule these actions.

consists of five components: a dependency tracker, a fail-
ure simulator, a virtual clock manager, a model checking
engine, and a global assertion checker.

Interposition. MODIST’s interposition frontend is a
thin layer that exposes what actions a distributed sys-
tem can do and lets MODIST’s backend deterministically
schedule them. Specifically, it does so in two steps: (1)
when the target system is about to execute an action,
the frontend pauses it and reports it to the backend; and
(2) upon the backend’s command, the frontend either re-
sumes or fails the paused action, turning the target sys-
tem into a “puppet” of the backend.
We place the interposition layer at the OS-application

boundary to avoid modifying either the target system or
the underlying operating system. In addition, despite
variations in OS-application interfaces, they provide sim-
ilar functions, allowing us to build a generic backend.
Since the interposition layer runs inside the target sys-

tem, we explicitly design it to be simple and mostly state-
less, and leave the logic and the state in the backend,
thereby reducing the perturbation of the target system.

Dependency Tracking. MODIST’s dependency
tracker oversees how actions interfere with each other. It
uses these dependencies to compute the set of enabled
actions, i.e., the actions, if executed, that will not block
in the OS. For example, a recv() is enabled if there is
a message to receive, and disabled otherwise. The model
checking engine (described below) only schedules en-
abled actions, because scheduling a disabled action will
deadlock the target system (analogous to a cooperative
thread scheduler scheduling a blocked thread).

Failure Simulation. MODIST’s failure simulator or-
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# command working dir inject failure?
master.exe ./master/ 1
node.exe ./node1/ 1
node.exe ./node2/ 1
client.exe test1 ./client/ 0

Figure 2: A configuration file that spawns the distributed
system in Figure 1. We used this file to check PACIFICA.

chestrates many rare events that may occur in a dis-
tributed system, including message reordering, mes-
sage loss, network partition, and machine crashes; these
events can expose bugs in the often-untested failure han-
dling code. The failure simulator lets MODIST inject
these failures as needed, consistently to avoid false posi-
tives, and deterministically to let users reliably reproduce
errors (cf. §2.2).

Virtual Clock. MODIST’s virtual clock manager has
two main functions: (1) to discover timers in the target
system and fire them as requested by MODIST’s model
checking engine to trigger more bugs, and (2) to ensure
that all processes in the target system observe a consis-
tent clock to avoid false positives. Since the clock is vir-
tual, MODIST can “fast forward” the clock as needed,
often making a checked execution faster than a real one.

Model Checking. MODIST’s model checking engine
acts as an “omnipresent” scheduler of the target system.
It systematically explores a distributed system’s execu-
tions by enumerating the actions, failures, and timers ex-
posed by the other MODIST components. It uses a set
of search heuristics and state-space reduction techniques
to improve the efficiency of its exploration. We elabo-
rate the model checking process in next section and the
search strategies in §3.6.

Global Assertion. MODIST’s global assertion mecha-
nism lets users check distributed properties on consistent
global snapshots; these properties cannot be checked by
observing only the local states at each individual node.
Its implementation leverages our previous work [25].

2.2 Checking Process

With all MODIST’s components in place, we now de-
scribe MODIST’s checking process. To begin checking a
distributed system, the user only needs to prepare a sim-
ple configuration file that specifies how to start the target
system. Figure 2 shows a configuration file for the 4-
node replication system shown in Figure 1; it is a real
configuration that we used to check PACIFICA. Each line
in the configuration tells MODIST how to start a process
in the target system. A typical configuration consists
of 2 to 10 processes. The “inject failure” flag is useful
when users do not want to check failures for a process.
For example, client.exe is an internal test program

init state = checkpoint(create init state());
q.enqueue(init state, init state.actions);

while(!q.empty()) {
<state, action> = q.dequeue();
try {
next state = checkpoint(action(restore(state)));
global assert(next state); //check user-provided global assertions
if (next state has never been seen before)
q.enqueue(next state, next state.actions);

} catch (Error e) {
// save trace and report error
. . .

}
}

Figure 3: Model checking pseudo-code.

that does not handle any failures, so we turned off failure
checking for this process.

With a configuration file, users can readily start check-
ing their systems by running modist <config>.
MODIST then instruments the executables referred to in
the configuration file to interpose between the applica-
tion and the operating system, and starts its model check-
ing loop to explore the possible states and actions in the
target system: a state is an instantaneous snapshot of the
target system, while an action can be to resume a paused
WinAPI function via the interposition layer, to inject a
failure via the failure simulator, or to fire a timer via the
virtual clock manager.

Figure 3 shows the pseudo-code of MODIST’s model
checking loop. MODIST first spawns the processes
specified in the configuration to create an initial state,
and adds all �initial state,action� pairs to a state queue,
where action is an action that the target system can do in
the initial state. Next, MODIST takes a �state,action�
pair off the state queue, restores the system to state,
and performs action. If the action generates an error,
MODIST will save a trace and report the error. Other-
wise, MODIST invokes the user-provided global asser-
tions on the resultant global state. MODIST further adds
new state/action pairs to the state queue based on one of
MODIST’s search strategies (cf. §3.6 for details.) Then,
it takes off another �state,action� pair and repeats.

To implement the above process, MODIST needs to
checkpoint and restore states. It uses a stateless ap-
proach [12]: it checkpoints a state by remembering the
actions that created the state and restores it by redoing all
the actions. Compared to a stateful approach that check-
points a state by saving all the relevant memory bits, a
stateless approach requires little modifications to the tar-
get system, as previous work has shown [12, 19, 28, 39].
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2.3 Checks

The checks that MODIST performs include generic
checks that require no user intervention as well as user-
written system-specific checks.
Currently, MODIST detects two classes of generic er-

rors. The first is “fail-stop” errors, which manifest them-
selves when the target system unexpectedly crashes in
the absence of an injected crash from MODIST. These
crashes can be segmentation faults due to memory er-
rors or program aborts because MODIST has brought the
target system into an erroneous state. MODIST detects
these unexpected crashes by catching the corresponding
signals. The second is “divergence” errors [12], which
manifest themselves when the target system deadlocks
or goes into an infinite loop. MODIST catches these er-
rors using timeouts. When MODIST schedules one of the
actions of the target system, it waits for a user-specified
timeout interval (10 seconds by default) until the target
system gets back to it; otherwise, MODIST will flag a
divergence error.
Because MODIST checks the target system by execut-

ing it, MODIST can easily check the effects of real ex-
ecutions and find errors. Thus, we can always combine
MODIST with other dynamic error detection tools (e.g.,
Purify [16] and Valgrind [29]) to check more generic
properties; we leave these checks for future work.
In addition to generic checks, MODIST can perform

system-specific checks via user-provided assertions, in-
cluding local assertions (via the assert() statements)
inserted into the target system and global assertions that
run in the centralized model checking engine. Given
these assertions, MODIST will amplify them by driving
the target code into many possible states where these as-
sertions may fail. In general, the more assertions users
add, the more effective MODIST will be.

2.4 Advanced User Interface

As with most other automatic error detection tools, the
more system-specific knowledge MODIST has, the more
effective it will be. For users who want to check their
system more thoroughly, MODIST provides the follow-
ing methods for incorporating domain knowledge.
Users can add more program assertions in the code for

a more thorough check. In addition to these local asser-
tions, users can enrich the set of checks by specifying
global assertions in MODIST. These assertions check
distributed properties on any consistent global snapshot.
Users can make MODIST more effective by reducing

their system’s state space. A simple trick is to bound the
number of failures MODIST injects per execution. Our
previous work [38, 39] showed that tricky bugs are often
caused by a small number of failures at critical moments.
Obviously, without bounds on the number of failures, a
distributed system may keep failing without making any

progress. In addition, developers tend to find bugs trig-
gered by convoluted failures uninteresting [38].
Users can provide hints to let MODIST focus on the

states (among an infinite number of states) that users con-
sider most interesting. Users can do so in two ways: (1)
extend one of MODIST’s search algorithms through the
well-defined state queue interface, and (2) construct a
test case to test some unusual parts of the state space.

3 Implementation
We implemented MODIST on Windows by intercepting
calls to WinAPI [36], the Windows Application Pro-
gramming Interface. We chose WinAPI because it is
the predominant programming interface used by almost
all Windows applications and libraries, including the de-
fault POSIX implementation on Windows. While we
built MODIST on Windows, we expect that porting to
other operating systems, such as Linux, BSD, and So-
laris, should be easy because WinAPI is more compli-
cated than the POSIX API provided by most other oper-
ating systems. For example, WinAPI has several times
as many functions as POSIX. Moreover, many WinAPI
functions operate in both synchronous and asynchronous
mode, and the completion notifications of asynchronous
IO (AIO) may be delivered through several mechanisms,
such as events, select, or IO completion ports [36].
When we implemented MODIST we tried to adhere to

the following two goals:
1. Consistent and deterministic execution. The ex-

ecutions MODIST explores and the failures it in-
jects should be consistent and deterministic to
avoid difficult-to-diagnose false positives and non-
deterministic errors.

2. Tailor for distributed systems. We explicitly designed
MODIST to check distributed systems. Having this
goal in mind, we customized our implementation for
distributed systems and avoided being overly general.

These goals were reflected at many places in our im-
plementation. In the rest of this section, we describe
MODIST’s implementation in details, highlighting the
decisions entailed by these goals.

3.1 Interposition

MODIST’s interposition layer transparently intercepts
the WinAPI functions in the target system and allows
MODIST’s backend to control it deterministically. There
are two main issues regarding interposition. First, inter-
position complexity: since the interposition layer runs in-
side the address space of the target system, it should be as
simple as possible to avoid perturbing the target system,
or introducing inconsistent or non-deterministic execu-
tions. Second, IO abstraction: as previously mentioned,
WinAPI is a wide interface with rich semantics; Win-
dows networking IO is particularly complex. To avoid
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Category # of functions # of LOC

Network 28 1816
Time 7 161
File System 9 640
Mem 5 126
Thread 33 1433

Shared 1290

Total 82 5466

Table 1: Interposition complexity. This table shows the
lines of code for WinAPI wrappers, broken down by cat-
egories. The “Shared” row refers to the code shared
among all API categories. Most wrappers are fairly small
(67 lines on average).

excessive complexity in MODIST’s backend, the interpo-
sition layer should abstract out the semantics irrelevant to
checking and abstract the WinAPI networking interface
to a simpler form.

Interposition complexity. To reduce the interposition
complexity, we implemented the interposition layer us-
ing the binary instrumentation toolkit from our previous
work [25]. This toolkit takes a list of annotated WinAPI
functions we want to hook and automatically generates
much of the wrapper code for interposition. Under the
hood, it intercepts calls to dynamically linked libraries
by overwriting the function addresses in relocation tables
(import tables in Windows terminology).
Since we check distributed systems, we only need

to intercept WinAPIs relevant to these systems. Ta-
ble 1 shows the categories of WinAPIs we currently
hook: (1) networking APIs, such as WSARecv()
(receiving a message), for exploring network condi-
tions; (2) time APIs, such as GetSystemTime(),
for discovering timers; (3) file system APIs, such as
WriteFile() and FlushFileBuffers(), for in-
jecting disk failures and simulating crashes, (4) memory
APIs, such as malloc(), for injecting memory fail-
ures; and (5) thread APIs, such as CreateThread()
and SetEvent(), for scheduling threads.
Most WinAPI wrappers are simple: they notify

MODIST’s backend about the WinAPI calls using an
RPC call, wait for the reply from the backend, and,
upon receiving the reply, they either call the underlying
WinAPIs or inject failures. Table 1 shows the total lines
of code in all manually-written wrappers. Each wrapper
on average consists of only 67 lines of code.

IO abstraction. Controlling the Windows networking
IO interface is complex for three reasons: (1) there are
many networking functions; (2) these functions heavily
use AIO, whose executions are hidden inside the kernel

and not exposed to MODIST; and (3) these functions
may produce non-deterministic results due to failures
in the network. We addressed these issues using three
methods: (1) abstracting similar network operations into
one generic operation to narrow the networking IO in-
terface, (2) exposing AIO to MODIST by running it syn-
chronously in a proxy thread, and (3) carefully placing
error injection points to avoid non-determinism.
To demonstrate our methods, we show in Figure 4 the

wrapper for WSARecv(), a WinAPI function to syn-
chronously or asynchronously receive data from a socket.
For simplicity, we omit error-handling code and assume
AIO completion is delivered using events only (events
are similar to binary semaphores.)
Our wrapper first checks whether the network con-

nection represented by the socket argument s is already
broken by MODIST (line 5–8). If so, it simply returns
an error to avoid inconsistently returning success on a
broken socket. It then handles AIO (line 9–24) by cre-
ating a generic network IO structure net io (line 10–
14), hijacking the application’s IO completion event (line
16–18), spawning a proxy thread (line 21), and issuing
the AIO to the OS (line 23). The proxy thread will
invoke function mc::net io::run() (line 29–55).
This function first notifies MODIST about the IO (line
34). Upon MODIST’s reply, it either injects a failure
(line 36–40), or waits for the OS to complete the IO
(line 40–51). Function run() then reports the IO re-
sult to MODIST, which in this example is the length of
the data received (47–50). Finally, it calls the wrapper to
SetEvent() to wake up any real threads in the target
system that are waiting for the IO to complete.
This wrapper example demonstrates the abstraction

we use between MODIST’s interposition frontend and
the backend. A network IO is split into an io issue
and an io result RPC. The first RPC, io issue,
expresses the IO intent of the target system to MODIST
before it proceeds to a potentially blocking IO, letting
MODIST avoid scheduling a disabled (i.e., blocked) IO.
Its second purpose is to serve as a failure injection point.
The second RPC, io result, lets MODIST update the
control information it tracks.
These RPC methods take the message sizes and the

network connections as arguments, but not the spe-
cific message buffers or sockets, which may change
across different executions. This approach ensures that
MODIST’s backend sees the same RPC calls when it re-
plays the actions to recreate the same state as when it
initially created the state. If MODIST detects a non-
deterministic replay (e.g., a WSARecv() receives fewer
bytes than expected), it will retry the IO by default.
There are two additional nice features about our IO

abstraction: (1) it allows wrapper code sharing and
therefore reduces the interposition complexity (Table 1,
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1 : // the OS uses lpOverlap to deliver IO completion
2 : int mc WSARecv(SOCKET s, LPWSABUF buf, DWORD nbuf,
3 : . . ., LPWSAOVERLAPPED lpOverlap, . . .) {
4 : // check if MODIST has broken this connection
5 : if(mc socket is broken(s)) {
6 : ::WSASetLastError(WSAENETRESET);
7 : return SOCKET ERROR;
8 : }
9 : if(overlap) { // Asynchronous mode
10: mc::net io *io = . . .;
11: io−>orig lpOverlap = lpOverlap;
12: io−>op = mc::RECV MESSAGE; // set IO type
13: io−>connection = . . .; // Identify connection using
14: // source <ip, port> and destination <ip, port>
15:
16: // Hijack application’s IO completion notification event
17: io−>orig event = lpOverlap−>hEvent;
18: lpOverlap−>hEvent = io−>proxy event;
19:
20: // Create a proxy thread and run mc::net io::run
21: io−>start proxy thread();
22: // Issue asynchronous receive to the OS
23: return ::WSARecv(s,buf,nbuf,. . .,io−>proxy lpOverlap,. . .);
24: }
25: // Synchronous mode
26: . . .
27: }
28: // mc::net io code is shared among all networking IO
29: void mc::net io::run() {// called by proxy thread
30: mc::rpc client *rpc = mc::current thread rpc client();
31:
32: // This RPC blocks this thead. It returns only when MODIST
33: // wants to (1) inject a failure, or (2) complete the IO
34: int ret = rpc−>io issue(this−>op, this−>connection);
35:
36: if(ret == mc::FAILURE) {
37: // MODIST wants to inject a failure
38: this−>orig lpOverlap−>Internal // Fake an IO failure
39: = STATUS CONNECTION RESET;
40: . . . // Ask the OS to cancel the IO
41: } else { // MODIST wants to complete this IO
42: // Wait for the OS to actually complete the IO, because the
43: // data to receive may still be in the real network.
44: // This wait will not block forever, since MODIST’s
45: // dependency tracker knows there are bytes to receive
46: ::WaitForSingleObject(this−>proxy event, INFINITE);
47:
48: // Report the bytes actually sent or received, so MODIST’s
49: // dep. tracker knows how many bytes are in the network.
50: int msg size = this−>orig lpOverlap−>InternalHigh;
51: rpc−>io result(this−>op, this−>connection, msg size);
52: }
53: // deliver IO notification to application. mc SetEvent is
54: // a wrapper to WinAPI SetEvent;
55: mc SetEvent(this−>orig event);
56: }

Figure 4: Simplified WSARecv() wrapper.

“Shared” row), (2) it abstracts away the OS-specific fea-
tures and enables the backend to be OS-agnostic.

3.2 Dependency Tracking

MODIST’s dependency tracker monitors how actions
might affect each other. The notion of dependency is

from [12]: two actions are dependent if one can enable
or disable the other or if executing them in a different
order leads to a different state. MODIST uses these de-
pendencies to avoid false deadlocks (described below), to
simulate failures (§3.3), and to reduce state space (§3.6).
To avoid false deadlocks, MODIST needs to compute

the set of enabled actions that will not block in the OS.
For determinism, MODIST schedules one action at a time
and pauses all other actions (cf. §2.2). If MODIST in-
correctly schedules a disabled action (such as a blocking
WSARecv()), it will deadlock the target system because
the scheduled action is blocked in the OS while all other
actions are paused by MODIST.
Since the dependency tracker tries to infer whether

the OS scheduler would block a thread in a WinAPI
call (recall that the interposition layer exposes AIOs as
threads), it unsurprisingly resembles an OS scheduler
and replicates a small amount of the control data in the
OS and the network. To illustrate how it works, con-
sider the WSARecv() wrapper in Figure 4. The de-
pendency tracker will track precisely how many bytes
are sent and received for each network connection us-
ing the io result RPC (line 50). If a thread tries to
receive a message (line 34) when none is available, the
dependency tracker will mark this thread as disabled and
place it on the wait queue of the connection. Later, when
a WSASend() occurs at the other end of the connec-
tion, the dependency tracker will remove this thread from
the wait queue and mark it as enabled. When MODIST
schedules this thread by replying to its RPC io issue,
the thread will not block at line 45 because there is data
to receive. In addition to network control data, the depen-
dency tracker also tracks threads, locks, and semaphores.

3.3 Failure Simulation

When requested by the model checking engine,
MODIST’s failure simulator injects five categories of
failures: API failures (e.g., WriteFile() returns
“disk error”), message reordering,∗ message loss, net-
work partitions, and machine crashes. Simulating API
failures is the easiest: MODIST simply tells the interpo-
sition layer to return an error code. Reordering messages
is also easy since the model checking engine already ex-
plores different orders of actions. To simulate different
crash scenarios, we used techniques from our previous
work [38, 39] to permute the disk writes that a system
issues.
Simulating network failures is more complicated due

to the consistency and determinism requirement. We first
tried a naı̈ve approach: simply closing sockets to simu-
late connection failures. This approach did not work well
because we frequently experienced inconsistent failures:

∗Message reordering is not a failure, but since it is often caused by
abnormal network delay, for convenience we consider it as a failure.



USENIX Association	 NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation	 219

the “macro” failures we want to inject (e.g., network par-
tition) map to not one but a set of “micro” failures we
can inject through the interposition layer (e.g., a failed
WSARecv()). For example, to break a TCP connection,
we must carefully fail all pending asynchronous IOs as-
sociated with the connection at both endpoints. Other-
wise, the target system may see an inconsistent connec-
tion status and crash, thus generating a false positive.
We also frequently experienced non-deterministic

failures because the OS detects failures using non-
deterministic timeouts. Consider the following ac-
tions:
1. Process P1 calls WSASend(P2, message).
2. Process P2 calls asynchronous WSARecv(P1).
3. MODIST breaks the connection between P1 and P2.
P2 may or may not receive the message, depending on
when P2’s OS times out the broken connection.
Our current approach ensures that failure simulation is

consistent and deterministic as follows. We know the
exact set of real or proxy threads that are paused by
MODIST in rpc->io issue() (Figure 4, line 34).
To simulate a network failure, we inject failures to all
these threads, and we do so immediately to avoid any
non-deterministic kernel timeouts. Note that doing so in
the example above will not cause us to miss the scenario
where P2 receives the message before the connection
breaks; MODIST will simply explore this scenario in a
different execution where it completes P2’s asynchronous
WSARecv() first (by replying to P2’s io issue()
RPC), and then breaks the connection between P1 and
P2.

3.4 Virtual Clock

MODIST’s virtual clock manager injects timeouts when
requested by the model checking engine and provides
a consistent view of the clock to the target system. A
side benefit of virtual clock is that, the target system may
run faster because the virtual clock manager can fast for-
ward time. For example, when the target system calls
sleep(1000), the virtual clock manager can add 1000
to its current virtual clock and let the target system wake
up immediately.

Discovering Timeouts. To detect bugs in rarely tested
timeout handling code, we want to discover as many
timers as possible. This task is made difficult be-
cause system code extensively uses implicit timerswhere
the code first gets the current time (e.g., by calling
gettimeofday()), then checks if a timeout occurs
(e.g., using an if-statement). Figure 5 shows a real ex-
ample in Berkeley DB.
Since implicit timers do not use OS APIs to check

timeouts, they are difficult to discover by a model
checker. Previous work [19, 27, 38] requires users to
manually annotate implicit timers.

// db-4.7.25.NC/repmgr/repmgr sel.c
int repmgr compute timeout(ENV *env, timespec * timeout)
{
db timespec now, t;
. . . // Set t to the first due time.
if (have timeout) {

os gettime(env, &now, 1); // Query current time.
if (now >= t) // Timeout check, immediately follows the query.

*timeout = 0; // Timeout occurs.
else

*timeout = t − now; // No timeout.
}
. . .

}

Figure 5: An implicit timer in Berkeley DB (after macro
expansion and minor editing).

To discover implicit timers automatically, we devel-
oped a static symbolic analysis technique. It is based on
the following two observations:
1. Programmers use time in simple ways. For ex-

ample, they explicitly label time values (e.g.,
db timespec in Figure 5), they do simple arith-
metic on time values, and they generally do not cast
time values to pointers and other unusual types. This
observation implies that simple static analysis is suf-
ficient to track how a time value flows.

2. Programmers check timeouts soon after they query
the current time. The intuition is that programmers
want the current time to be “fresh” when they check
timeouts. This observation implies that our analysis
only needs to track a short flow of a time value (e.g.,
within three function calls) and may stop when the
flow becomes long.

We analyzed how time values are used in Berkeley DB
version 4.7.25. We found that Berkeley DB mostly uses
“+,” “-,” and occasionally “*” and “/” (for conversions,
e.g., from seconds to milliseconds). In 12 out of 13 im-
plicit timers, the time query and time check are within a
few lines.
Our analysis resembles symbolic execution [3, 4, 13,

31]. It has three steps: (1) statically analyze the code
of the target system and find all system calls that re-
turn time values; (2) track how the time values flow to
variables; and (3) upon a branch statement involving a
tracked time value, use a simple constraint solver to gen-
erate symbolic values to make both branches true. To
show the idea, we use a source code instrumentation ex-
ample. In Figure 5, our analysis can track how time flows
from “ os gettime” to “if (now >= t),” and re-
place the “ os gettime” line in Figure 5 with

mc::rpc client *rpc = mc::current thread rpc client()
now = rpc−>gettime(/*timer=*/t);
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This RPC call tells the virtual clock manager that a timer
fires at t; the virtual clock manager can then return a
time value smaller than t for one execution, and greater
than t for another execution, to explore both possible
execution paths. We implemented our analysis using the
Phoenix compiler framework [30].
Since our analysis is static, it avoids the runtime over-

head of instrumenting each load and store for tracking
symbolic values and thus is much simpler than dynamic
symbolic execution tools [3, 4, 13, 31], which often take
iterations to become stable [3, 4]. Note our analysis is
unsound, as with other symbolic analysis tools, in that
it may miss some timers and thus miss bugs. However,
it will not introduce false positives because the virtual
clock manager ensures the consistency of time.

Ensuring Consistent Clock. A consistent clock is cru-
cial to avoid false positives. For example, the safety of
the lease mechanism [14] requires that the lessee time-
outs before the lessor; reversing the order may trigger
“bugs” that never occur in practice. We actually encoun-
tered a painful false positive due to a violation of this
safety requirement when checking PACIFICA.
To maintain consistent time, the virtual clock manager

sorts all timers in the target system from earliest to last
based on when these timers will fire. When the model
checking engine decides to fire a timer, it will systemat-
ically choose one of several timers that fall in the range
of [T,T + E], where T is the earliest timer and E is a
configurable clock error allowed by the target system.
This mechanism lets MODIST explore interesting timer
behaviors while not deviating too much from real timer-
triggered executions.

3.5 Global Assertion

We have implemented global assertions leveraging our
previous work D3S [25]. D3S enables transparent predi-
cate checking of a running distributed system. It provides
a simple programming interface for developers to spec-
ify global assertions, interposes both user-level functions
and OS system calls in the target system to expose its
runtime state as state tuples, and collects such tuples as
globally consistent snapshots for evaluating assertions.
To use D3S, developers need to specify the functions be-
ing interposed, the state tuples being retrieved from func-
tion parameters, and a sequential program that takes a
complete state snapshot as input to evaluate the predi-
cate. D3S compiles such assertions into a state exposing
module, which is injected into all processes of the target
system, and a checking module, which contains the eval-
uation programs and outputs checking results for every
constructed snapshot.
MODIST incorporates D3S to enable global asser-

tions, with two noticeable modifications. First, we sim-
plify D3S by letting each node transmit state tuples syn-

chronously to MODIST’s checking process, which ver-
ifies assertions immediately. Previously, because nodes
may transmit state tuples concurrently, D3S must, before
checking assertions, buffer each received tuple until all
tuples causally dependent before that tuple have been re-
ceived. Since MODIST runs one action at a time, it no
longer needs to buffer tuples. Second, while D3S uses a
Lamport clock [23] to totally order state tuples into snap-
shots, MODIST uses a vector clock [26] to check more
global snapshots.

3.6 State Space Exploration

MODIST maintains a queue of the state/action pairs to
be explored. Due to the complexity of a distributed sys-
tem, it is often infeasible for MODIST to exhaust the state
space. Thus, it is key to decide which state/action pairs
to add to the queue and the order in which they are ex-
plored.
MODIST tags each action with a vector clock and im-

plements a customizable modular framework for explor-
ing the state space so different reduction techniques and
heuristics can be incorporated. This is largely inspired by
our observation that the effectiveness of various strate-
gies and heuristics is often application-dependent.
The basic state exploration process is simple:

MODIST takes the first state/action pair �s,a� from the
queue, steers the system execution to state s if that is not
the current state, applies the action a, reaches a new state
s�, and examines the new resulting state for errors. It then
calls a customizable function explore, which takes the
entire path from the initial state to s and then s�, where
each state is tagged with its vector clock and each state
transition is tagged with the action corresponding to the
transition. For s�, all enabled actions are provided to the
function. The function then produces a list of state/action
pairs and indicates whether the list should be added to the
front of the queue or the back. MODIST then inserts the
list into the queue and repeats the steps.
MODIST has a natural bias towards exploring �s,a�

pairs where s is the state MODIST is in. This default
strategy will save the cost of replaying the trace to reach
the state in the selected state/action pair.
Now we show how various state exploration strate-

gies and heuristics can be implemented in the MODIST
framework.
Random. Random exploration with a bounded maxi-
mum path length explores a random path up to a bounded
path length and then starts from the initial state for an-
other random path. The explore function works as fol-
lows: if the current path has not exceeded the bound,
the function will randomly pick an enabled action a� at
the new state s� and has �s�,a�� inserted to the end of
the queue (note that the queue is empty). If the current
path has reached the bound, the function will randomly
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choose an enabled action a0 in the initial state s0, and has
�s0,a0� inserted to the end of the queue.
DFS and BFS. For Depth First Search (DFS) and
Breadth First Search (BFS), the explore function sim-
ply inserts �s�,a�� for every enabled action a� in state s�.
For DFS, the new list is inserted at the front of the queue,
while for BFS at the back. Clearly, DFS is more attrac-
tive since MODIST does not have to replay traces often
to recreate states.
DPOR. For dynamic partial order reduction (DPOR), the
explore function works as follows. Let a be the last
action causing the transition from s to s�. The function
looks at every state sp before s on the path and the ac-
tion ap taken at that state. If a is enabled at sp (i.e., if s
and sp are concurrent judged by the vector clocks) and a
does not commute with ap (i.e., the different orders of the
two actions could lead to different executions), we record
�sp,a� in the list of pairs to explore. Once all states are
examined, the function returns the list and has MODIST
insert the list in the queue.
By specifying how the list is inserted, the function

could choose to use DFS or BFS on top of DPOR. Also,
by ordering the pairs in the list differently, MODIST will
be instructed to explore the newly added branches in dif-
ferent orders (e.g., top-down or bottom-up). The default
is DFS again to avoid the cost of recreating states. We
further introduce Bounded DPOR to refer to the varia-
tion of DPOR with bounds on DFS for a more balanced
state-space exploration.
The explore function can be constructed to favor cer-

tain actions (e.g., crash events) over others, to bound the
exploration in various ways (e.g., the path length and the
number of certain actions on the path), and to focus on a
subset of possible actions.

4 Evaluation
We have applied MODIST to three distributed systems:
(1) Berkeley DB, a widely used open-source database
(a version with replication); (2) MPS, a closed source
Paxos [22] implementation built by a Microsoft product
team and has been deployed in commercial data centers
for more than two years; and (3) PACIFICA, a mature
implementation of a primary-backup replication proto-
col we developed. We picked Berkeley DB and MPS
because of their wide deployment and importance and
PACIFICA because it provides an interesting case study
where the developers apply model checking to their own
systems.
Table 2 summarizes the errors we found, all of which

are previously unknown bugs. We found a total of 35
errors, 10 of which are protocol-level bugs that occur
only under rare interleavings of messages and crashes;
these bugs reflect flaws in the underlying communica-
tion protocols of the systems. Implementation bugs are

System KLOC Protocol Impl. Total

Berkeley DB 172.1 2 5 7
MPS 53.5 2 11 13
PACIFICA 12 6 9 15

Total 237.6 10 25 35

Table 2: Summary of errors found. The KLOC (thou-
sand lines of code) column shows the sizes of the systems
we checked. We separate protocol-level bugs (Protocol)
and implementation-level bugs (Impl.), in addition to re-
porting the total (Total). 31 of the 35 bugs have been
confirmed by the developers.

those that can be caused by injecting API failures. All
MPS and PACIFICA bugs were confirmed by the devel-
opers. Three out of seven Berkeley DB bugs, includ-
ing one protocol-level bug, were confirmed by Berkeley
DB developers; we are having the rest confirmed. These
unconfirmed bugs are likely real bugs because we can
reproduce them without MODIST by manually tweak-
ing the executions and killing processes according to the
traces from MODIST.
While other tools (e.g., a static analyzer) can also find

implementation bugs, MODIST has the advantage of not
generating false positives. In addition, it can expose the
effects of these bugs, helping prioritize fixing.
In the rest of this section, we describe our error detec-

tion methodology, the bugs we found, MODIST’s cov-
erage results and runtime overhead, and the lessons we
have learned.

4.1 Experimental Methodology

Test driver. Model checking is most effective at check-
ing complicated interactions between a small number of
objects. Thus, in all tests we run, we use several pro-
cesses servicing a bounded number of requests. Since
the systems we check came with test cases, we simply
use them with minor modifications.
Global assertions. By default, MODIST checks fail-
stop errors. To check the correctness properties of a dis-
tributed system, MODIST supports user supplied global
assertions (§2). For the replication systems we checked,
we added two types of assertions. The first type was
global predicates for the safety properties. For example,
all replicas agree on the same sequence of commands.
The second type of predicates check for liveness. True
liveness conditions cannot be checked by execution mon-
itoring so we instead approximate them by checking for
progress in the system: we expect the target system to
make progress in the absence of failures. In the end, we
did not find any bug that violated the safety properties in
any of the systems, probably reflecting the relative ma-
turity of these systems. However, we did find bugs that
violated liveness global assertions in every system.
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Search strategy. MODIST has a set of built-in search
strategies; no single strategy works the best. We have
combined these strategies in our experiments for discov-
ering bugs effectively. For example, we can first perform
random executions (Random) on the system and inject
the API failures randomly to get the shallow implemen-
tation bugs. We can then use the DPOR strategy with
randomly chosen initial paths to explore message orders
systematically. We can further add crash and recovery
events on top of the message interleaving, starting from
a single crash and gradually increasing the number of
crashes, to exercise the system’s handling of crash and
recovery. We can run these experiments concurrently and
fine-tune the strategies.
Terminology. Distributed systems use different termi-
nologies to describe the roles the nodes play in the sys-
tems. In this paper, we will use primary and secondary
to distinguish the replicas in the systems. They are called
master and client respectively in Berkeley DB docu-
ments. In the Paxos literature, a primary is also called
a leader.

4.2 Berkeley DB: a Replicated Database

Berkeley DB is a widely used open source transactional
storage engine. Its latest version supports replication for
applications that must be highly available. In a Berkeley
DB replication group, the primary supports both reads
and writes while secondaries support reads only. New
replicas can join the replication group at any time.
We checked the latest Berkeley DB production re-

lease: 4.7.25.NC.We use ex_rep_mgr, an example ap-
plication that comes with Berkeley DB as the test driver.
This application manages its data using the Berkeley DB
Replication Manager. Our test setup has 3 to 5 pro-
cesses. They first run an election. Once the election com-
pletes, the elected primary inserts data into the replicated
database, reads it back, and verifies that it matches the
data inserted.

Results and Discussions. We found seven bugs in
Berkeley DB: four were triggered by injecting API fail-
ures, one was a dangling pointer error triggered by the
primary waiting for multiple ACK messages simultane-
ously from the secondaries, and the remaining two were
protocol-level bugs, which we describe below.
The first protocol-level bug causes a replica to crash

due to an “unexpected” message. The timing dia-
gram of this bug is depicted in Figure 6. Replica C
is the original primary. Suppose a new election is
launched, resulting in replica A becoming the new pri-
mary. Replica A will broadcast a REP_NEWMASTER
message, which means “I am the new primary.” After
replica B receives this message, it tries to synchronize
with the new primary and sends A a REP_UPDATA_REQ
message to get the up-to-date data. Meanwhile, C
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Figure 6: Timing Diagram of Message Exchanges in a
Berkeley DB Replication Bug.

processes REP_NEWMASTER by first broadcasting a
REP_DUPMASTER message, which means “duplicate
primary detected,” and then degrading itself to a sec-
ondary. Broadcasting a REP_DUPMASTER message
is necessary to ensure that all other replicas know
that C is not primary anymore. When A processes
REP_DUPMASTER, it has to give up its primary role
because it cannot make sure that it is the latest pri-
mary. Soon A receives the delayed but not-outdated
REP_UPDATA_REQ message from B. Replica A pan-
ics at once, because such message should only be re-
ceived by primary. Such panics occur whenever a de-
layed REP_UPDATA_REQ message arrives at a recently
degraded primary.
The second protocol level bug is more severe: it causes

permanent failures in leader election due to a primary
crash when all secondaries believe they cannot be pri-
maries. Suppose replica A is the original primary and is
synchronizing data with secondaries B and C. Normally
synchronization works as follows. A sends a REP_PAGE
message with the modified database page to B and C.
Upon receipt of this message, B and C transit to log re-
covery state by setting the REP_F_RECOVER_LOG flag.
A then sends a REP_LOG message with the updated log
records. However, if A crashes before it sends REP_LOG,
B and C will never be able to elect a new primary be-
cause, in Berkeley DB’s replication protocol, a replica in
log recovery is not allowed to be a primary.

4.3 MPS: Replicated State Machine Library

MPS is a practical implementation of a replicated state
machine library. The library has been used for over two
years in production clusters of more than 100K machines
for maintaining important system metadata consistently
and reliably. It consists of 8.5K lines of C++ code for
the communication protocol, and 45K for utilities such
as networking and storage.
At the core of MPS is a distributed Paxos protocol for

consensus [22]. The protocol is executed on a set of ma-
chines called replicas. The goal of the protocol is to have
replicas agree on a sequence of deterministic commands
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Figure 7: The Timing Diagram of Message Exchange in
MPS Bug 1.

and execute the commands in the same sequence order.
Because all replicas start with the same initial state and
execute the same sequence of commands, consistency
among replicas is guaranteed.
The MPS consensus protocol is leader (primary)

based. While the protocol ensures safety despite the ex-
istence of multiple primaries, a single primary is needed
for the protocol to make progress. A replica can act as
a primary using a certain ballot number. A primary ac-
cepts requests from clients and proposes those requests
as decrees, where decree numbers indicate the positions
of the requests in the sequence of commands that is going
to be executed by the replicated state machine. A decree
is considered committed when the primary gets acknowl-
edgment from a quorum (often a majority) of replicas in-
dicating that they have accepted and persistently stored
the decree.
If a replica receives a message that indicates that a

decree unknown to the replica is committed, then the
replica enters a learning phase, in which it learns the
missing decrees from other replicas.
When an existing primary is considered to have failed,

a new primary can be elected. The new primary will use
a higher ballot number and carry out a prepare phase to
learn the decrees that could have been committed and
ensure no conflicting decrees are proposed. For each
replica, a proposal with a higher ballot number over-
writes any previous proposal with lower ballot numbers.
Our test setup consists of 3 replicas, proposing a small

number of decrees.

Results and Discussions. We found 13 bugs in MPS,
11 are implementation bugs that crash replicas, and the
other two bugs are protocol-level bugs.
The first protocol-level bug reveals a scenario that

leads to state transitions that are not expected by the de-
velopers (as demonstrated by the assertion that rules out
the transition). MPS has a simple set of states and state
transitions. A replica is normally in a stable state. When
it gets indication that its state is falling behind (i.e., miss-
ing decrees), it enters a learning state. In the learning
state, it fetches the decrees from a quorum of replicas.
Once it brings its state up to date with what it receives
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Figure 8: The Timing Diagram of Message Exchange in
MPS Bug 2.

from a quorum of replicas, it checks whether it should
become a primary: if the primary lease expires, then
the replica will compete to be a primary by entering a
preparing state; otherwise, it will return to a stable state.
There is an assertion in the code (and also in the design
document for MPS) that the state transition from stable
to preparing is impossible.
Figure 7 shows the MODIST-generated scenario that

triggers the assertion failure. The following is a list of
steps that lead to the violation. Consider the case where
the system consists of three replicas A, B, and C, where
any two of them form a quorum. Replica A enters the
learning state because it realizes that it does not have
the information related to some decree numbers. This
could be due to the receipt of a message that indicates
that the last committed decree number is at least k, while
A knows only up to some decree number less than k. A
then sends a status query to B and C. A receives the re-
sponse from B and learns all the missing decrees. Since
A and B form a quorum, A enters the stable state. C
was the primary. C’s response to A status query was de-
layed, and the primary lease becomes expired on A. At
some later point, C’s response arrives. The implementa-
tion will handle that message as if A were in the learning
state. After A is done, it notices that the primary lease
has expired and transitions into the preparing state, caus-
ing the unexpected state transition. As a result, A crashes
and reboots.
The second protocol-level bug is a violation of a global

liveness assertion. It is triggered during primary election
under the following scenario: replica A has accepted a
decree with ballot number 2 and decree number 1, while
replica B only has ballot number 1, but accepted a decree
of decree number 2.
The following series of events lead to this problematic

scenario: B is a primary with ballot number 1, it pro-
poses a decree with decree number 1 and the decree is
accepted by all replicas including A and B. It then pro-
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poses another decree with decree number 2, which is ac-
cepted only on B. B fails before A gets the proposal. A
then becomes a primary with ballot number 2, learns the
decree with decree number 1, re-proposes it with a ballot
number 2.
Figure 8 shows the timing diagram continuing from

this scenario. B comes back, receives the prepare request
from A, and sends a rejection to A because B thinks A
is not up-to-date given that B has a higher decree num-
ber. After getting the rejection, A enters a learning state.
In the learning state, even if B returns the decree with
decree number 2, A will reject it because it has a lower
ballot number. A will consider itself up-to-date and enter
the preparing state again with a yet higher ballot number.
This continues as A keeps increasing its ballot number,
but unable to have new decrees committed, triggering a
liveness violation.
The problem in this scenario is due to the inconsis-

tency of the views on what constitutes a newer state be-
tween the preparing phase and the learning phase: one
view uses a higher ballot number, while the other uses
a higher decree number. The inconsistency is exposed
when one has a higher decree number, but a lower ballot
number than the other.

4.4 PACIFICA: a Primary-Backup Replication Pro-
tocol

PACIFICA [24] is a large-scale storage system for semi-
structured data. It implements a Primary-Backup pro-
tocol for data replication. We used MODIST to check
an implementation of PACIFICA’s replication protocol.
This implementation consists of 5K lines of C++ code
for the communication protocol and 7K for utilities.
PACIFICA uses a variety of familiar components in-

cluding two-phase commit for consistent replica updates,
perfect failure detection, replica group reconfiguration to
handle node failures, and replica reconciliation for nodes
rejoining a replica group.
Our test setup for PACIFICA has 4 processes: 1 mas-

ter that maintains global metadata, 2 replica nodes that
implement the replication protocol, and 1 client that up-
dates the system and drives the checking process. Fig-
ure 2 shows the configuration file.

Results and Discussions. We found 15 bugs in PACI-
FICA: 9 are implementation bugs that cause crashes and
6 are protocol-level bugs. We managed to find more
protocol-level bugs in PACIFICA than in other systems
for two reasons: (1) since we built the system, we could
quickly fix the bugs MODIST found then re-run MODIST
to go after other bugs; and (2) we could check more
global assertions for PACIFICA.
The most interesting bug we found in PACIFICA pre-

vents PACIFICA from making progress. It is triggered by
a node crash followed by a replication group reconfigu-
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Figure 9: Partial order state coverage of different explo-
ration strategies.

ration. A primary replica keeps a list of prepared updates
(i.e., updates that have been prepared on all replicas, but
not yet committed); a secondary replica does not have
this data structure. When a primary crashes, a secondary
will try to take over and become the new primary. If the
crash happens in the middle of a commit operation that
leaves some commands prepared but not yet committed,
the new primary will try to re-commit all prepared up-
dates by sending the “prepare” messages to the remain-
ing secondary replicas. Unfortunately, PACIFICA did not
put these newly prepared updates into the prepared up-
date list. This prevents all the following updates from
getting committed because of a hole in the prepared up-
date list.

4.5 State Coverage

To evaluate the state-space exploration strategies de-
scribed in §3.6, we measured state coverage: the number
of unique states a strategy could explore after running a
fixed number of execution paths. We examined the cov-
erage of two types of states:
1. Partial order traces [12]. Since two paths with the

same partial order are equivalent, the number of dif-
ferent partial order traces provides an upper bound
on the number of unique behaviors a strategy can ex-
plore.

2. Protocol states. These states capture the more impor-
tant protocol behaviors of a distributed system.
We did two experiments, both on MPS: one with a

small partial order state space and the other with a nearly
unbounded state space. These two state spaces give an
idea of how sensitive the strategies are to state-space
sizes. No crash was injected during the evaluation.
In the first experiment, we made the state space small

using a configuration of two nodes, each receiving up
to two messages. Figure 9 shows the number of unique
partial order traces with respect to the number of paths
explored. (Note that both axes are in log scale.) DPOR
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Figure 10: Protocol state coverage of different explo-
ration strategies.

shows a clear advantage: it exhausted all 115,425 traces
after 134,627 paths (the small redundancy was due to an
approximation in our DPOR implementation.) The Ran-
dom strategy explored 6,614 unique traces or 5.7% of the
entire state space after 200,000 paths. DFS is the worst:
all the 200,000 paths were partial order equivalent and
corresponded to only one partial order trace.
In the second experiment, we used a nearly unbounded

partial order state space with three MPS nodes send-
ing and receiving an unbounded number of messages.
We bounded the maximum decree (two decrees) and the
maximum path length (40,000 actions) to make the exe-
cution paths finite. Since the state space was large, it was
unlikely that Random ever explored a partial order trace
twice. As a result, DPOR behaved the same as Random.
(This result is not shown.)
While partial order state coverage provides an up-

per bound on the unique behaviors a strategy explores,
different partial order traces may still be redundant
and map to the same protocol state. Thus, we fur-
ther measured the protocol state coverage of different
exploration strategies. We defined the protocol state
of MPS as a tuple �state,ballot,decree�, where the
state could be initializing, learning, stable
primary, or stable secondary.∗

Figure 10 shows the protocol states covered by the
first 50,000 paths explored in each strategy, using the
MPS configuration from the second experiment. DFS
had the worst coverage: it found no new states after ex-
ploring the first path. The reason is, when the state space
is large, DFS tends to explore a large number of paths
that differ only at the final few steps; these paths are
often partial-order equivalent. DPOR performed almost
equally badly: it found less than 30 protocol states. This
result is not surprising for two reasons: (1) different par-

∗We also measured the coverage of global protocol states, which
consist of protocol states of each node in a consistent global snapshot.
The results were similar and not shown.

tial order traces might correspond to the same protocol
state and (2) DPOR is DFS-based, thus suffers the same
problem as DFS when the state space is large.
In Bounded DPOR, protocol-level redundancy is par-

tially conquered by the bounds on backtracks. As
shown in Figure 10, the protocol-level state coverage of
Bounded DPOR was larger than that of DPOR by an or-
der of magnitude, in the first 50,000 paths.
Surprisingly, the Random strategy yielded better cov-

erage than DFS, DPOR, and even Bounded DPOR. The
reason is that Random is more balanced: it explores ac-
tions anywhere along a path uniformly, therefore it has a
better chance to jump to a new path early on and explores
a different area of the state space.
These results prompted us to develop a hybrid Random

+ Bounded DPOR search strategy that works as follows.
It starts with a random path and explores the state space
with Bounded DPOR. We further bound the total num-
ber of backtracks so that the Bounded DPOR exploration
ends. Then, a new round of Bounded DPOR exploration
starts with a new random path. Random + Bounded
DPOR inherits both the balance of Random and the thor-
oughness of DPOR to cover the corner cases. Both the
round number of DPOR explorations and the bound of
the total number of backtracks are customizable, reflect-
ing a bias towards Random or towards DPOR. As shown
in Figure 10, the Random + Bounded DPOR strategy
with a round number 100 performed the best.

4.6 Performance

In our performance measurements, we focused on three
metrics: (1) MODIST’s path exploration speed; (2) the
speedup due to the virtual clock fast-forward; and (3)
the runtime overhead MODIST adds to the target system,
including interposition, RPC, and backend scheduling.
We set up our experiments as follows. We ran

MODIST with two different search strategies: RAN-
DOM and DPOR. For each search strategy, we let
MODIST explore 1K execution paths and recorded the
running times. We repeated this experiment 50 times and
took the average. We used Berkeley DB and MPS as
our benchmarks, using identical configurations as those
used for error detection. We ran our experiments on a 64-
bit Windows Server 2003 machine with dual Intel Xeon
5130 CPU and 4GB memory. We measured all time val-
ues using QueryPerformanceCounter(), a high-
resolution performance counter.
It appears that we should measure MODIST’s over-

head by comparing a system’s executions with MODIST
to those without. However, due to nondeterminism, we
cannot compare these two directly: the executions with-
out MODIST may run different program paths than those
with MODIST. Moreover, repeated executions of the
same testcase without MODIST may differ; we did ob-
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System Strategy Real (s) Sleep (s) Speedup Overhead (absolute and relative)

Berkeley DB RANDOM 1,717±14 38,204±193 25.7±0.2 302±1s (17.7±0.1%)
Berkeley DB DPOR 1,658±24 36,402±5,137 22.1±3.2 301±17s (18.2±0.9%)
MPS RANDOM 1,661±20 240,568±1,405 216±2 825±11s (49.9±0.2%)
MPS DPOR 1,853±116 295,435±45,659 159±19 1,048±108s (56.5±2.6%)

Table 3: MODIST’s performance. All numbers are of the form average± standard deviation.

serve a large variance in MPS’s execution times and final
protocol states. Thus, we evaluated MODIST’s overhead
by running a system with MODIST and measuring the
time spent in MODIST’s components.
Table 3 shows the performance results. The Real col-

umn shows the time it took for MODIST to explore 1K
paths of Berkeley DB and MPS with RANDOM and
DPOR strategies; the exploration speed is roughly two
seconds per path and does not change much for the two
different search strategies. The Sleep column shows the
time MODIST saved using its virtual clock when the
target systems were asleep; we would have spent this
amount of extra time had we run the same executions
without MODIST. As shown in the table, the real execu-
tion time is much smaller that the sleep time, translated
into significant speedups (Column Speedup, computed
as Sleep/Real). The Overhead column in this table
shows the time spent in MODIST’s interposition, RPC,
and backend scheduling. For Berkeley DB, MODIST ac-
counts for about 18% of the real execution time. For
MPS, MODIST accounts for a higher percentage of exe-
cution time (up to 56.5%) because the MPS testcase we
used is almost the worst case for MODIST: it only exer-
cises the underlying communication protocol and does
no real message processing. Nonetheless, we believe
such overhead is reasonable for an error detection tool.

4.7 Lessons

This section discusses the lessons we learned.
Real distributed protocols are buggy. We found

many protocol-level bugs and we found them in every
system we target, suggesting that real distributed proto-
cols are buggy. Amusingly, these protocols are based
on theoretically sound protocols; the bugs are introduced
when developers filled in the unspecified parts in the pro-
tocols in practice.
Controlling all non-determinism is hard. System-

atic checking requires control of non-determinism in the
target system. This task is very hard given the non-
determinism in the OS and network, the wide API inter-
face, the many possible failures and their combinations,
and MODIST’s goal of reducing intrusiveness to the tar-
get system. We have had bitter experiences debugging

non-deterministic errors in Berkeley DB, which uses pro-
cess id, memory address, and time to generate random
numbers, and in MPS, which randomly interferes with
the default Windows firewall. Among all, making the
Windows socket APIs deterministic was the most diffi-
cult; the interface shown in §3 went through several it-
erations. Our own experiences show that controlling all
non-determinism is much harder than merely capturing
it as in replay-debugging tools.
Avoid false positives at all cost. False positives may

take several days to diagnose. Thus, we want to avoid
them, even at the risk of missing errors.
Leverage domain knowledge. In a sense, this entire

paper boils down to leveraging the domain knowledge
of distributed systems to better model-check them. The
core idea of model checking is simple: explore all pos-
sible executions; a much more difficult task is to imple-
ment this idea effectively in an application domain.
When in doubt, reboot. When we checked MPS, we

were surprised by how robust it was. MPS uses a de-
fensive programming technique that works particularly
well in the context of distributed replication protocols.
MPS extensively uses local assertions, reboots when any
assertion fails, and relies on the replication protocol to
recover from these eager reboots. This recovery mecha-
nism makes MPS robust against a wide range of failures.
Of course, rebooting is not without penalty: if a primary
reboots, there could be noticeable performance degrada-
tion, and the system also becomes less fault tolerant.

5 Related Work

5.1 Model Checking

Model checkers have previously been used to find er-
rors in both the design and the implementation of soft-
ware [1, 6, 12, 17–19, 27, 28, 34, 38, 39]. Traditional
model checkers require users to write an abstract model
of the target system, which often incurs large up-front
cost when checking large systems. In contrast, MODIST
is an implementation-level model checker that checks
code directly, thus avoids this cost. Below we compare
MODIST to implementation-level model checkers.
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Model checkers for distributed system. MODIST is
most related to model checkers that check real distributed
system implementations. CMC [27] is a stateful model
checker that checks C code directly. It has been used
to check network protocol implementations [27] and file
systems [38]. However, to check a system, CMC re-
quires invasive modifications to run the system inside
CMC’s address space [39]. MaceMC [19] uses bounded
depth first search combined with random walk to find
safety and liveness bugs in a number of network pro-
tocol implementations written in a domain-specific lan-
guage. Compared to these two checkers, MODIST di-
rectly checks live, unmodified distributed systems run-
ning in their native execution environments, thus avoids
the invasive modifications required by CMC, and the lan-
guage restrictions [20] enforced by MaceMC.

CrystalBall [37] detects and avoids errors in deployed
distributed systems using an efficient global state col-
lection and exploration technique. While CrystalBall is
based on MaceMC and thus checks only systems writ-
ten in the Mace language [20], its core technique may
be portable to MODIST’s model checking framework to
improve the reliability of general distributed systems.

Other software model checkers. We compare
MODIST to other closely related implementation-level
model checkers. Our transparent checking approach
is motivated by our previous work EXPLODE [39].
However, EXPLODE focuses on storage systems and
does not check distributed systems.

To our best knowledge, VeriSoft [12] is the first
implementation-level model checker. It systematically
explores the interleavings of concurrent C programs, and
uses partial order reduction to soundly reduce the number
of states it explores. It has been used to check industrial-
strength programs [5].

Chess [28] is a stateless model checker for explor-
ing the interleavings of multi-threaded programs. To
avoid perturbing the target system, it also interposes on
WinAPIs. In addition, Chess uses a context-bounding
heuristic and a starvation-free scheduler to make its
checking more efficient. It has been applied to several
industry-scale systems and found many bugs.

ISP [35] is an implementation-level model checker for
MPI programs. It controls a MPI program by intercept-
ing calls to MPI methods and reduces the state-space it
explores using new partial order reduction algorithms.

All three systems focus on checking interleavings
of concurrent programs, thus do not address issues on
checking real distributed systems, such as providing a
transparent, distributed checking architecture and en-
abling consistent and deterministic failure simulation

5.2 Replay-based debugging

A number of systems [11, 21, 32], including our pre-
vious work [15, 25], use deterministic replay to debug
distributed system. These approaches attack a different
problem: when a bug occurs, how to capture its manifes-
tation so that developers can reproduce the bug. Com-
bined with fault injection, these tools can be used to de-
tect bugs. Like these systems, MODIST also provides re-
producibility of errors. Unlike these systems, MODIST
aims to proactively drive the target system into corner-
cases for errors in the testing phase before the system is
deployed. MODIST uses the instrumentation library in
our previous work [25] to interpose on WinAPIs.

5.3 Other error detection techniques

We view testing as complementary to our approach. Test-
ing is usually less comprehensive than our approach, but
works “out of the box.” Thus, there is no reason not to
use both testing and MODIST together.
There has been much recent work on static bug finding

(e.g., [1, 2, 7, 8, 10, 33]). Roughly speaking, because dy-
namic checking runs code, it is limited to just executed
paths, but can more effectively check deeper properties
implied by the code (e.g., two replicas are consistent).
The protocol-level errors we found would be difficult to
find statically. We view static analysis as complemen-
tary: easy enough to apply such that there is no reason
not to use them together with MODIST.
Recently, symbolic execution [3, 4, 13, 31] has been

used to detect errors in real systems. This technique is
good at detecting bugs caused by tricky input values,
whereas our approach is good at detecting bugs caused
by the non-deterministic events in the environment.

6 Conclusions
MODIST represents an important step in achieving the
ideal of model checking unmodified distributed system
in a transparent and effective way. Its effectiveness has
been demonstrated by the subtle bugs it uncovered in
well-tested production and deployed systems.
Our experience shows that it requires a combination of

art, science, and engineering. It is an art because various
heuristics must be developed for finding delicate bugs
effectively, taking into account the peculiarity of com-
plex distributed systems; it is a science because a sys-
tematic, modular approach with a carefully designed ar-
chitecture is a key enabler; it involves heavy engineering
effort to interpose between the application and the OS,
to model and control low-level system behavior, and to
handle system-level non-determinism.
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Abstract

We propose a new approach for developing and de-
ploying distributed systems, in which nodes predict dis-
tributed consequences of their actions, and use this in-
formation to detect and avoid errors. Each node con-
tinuously runs a state exploration algorithm on a re-
cent consistent snapshot of its neighborhood and pre-
dicts possible future violations of specified safety prop-
erties. We describe a new state exploration algorithm,
consequence prediction, which explores causally related
chains of events that lead to property violation.

This paper describes the design and implementation
of this approach, termed CrystalBall. We evaluate Crys-
talBall on RandTree, BulletPrime, Paxos, and Chord
distributed system implementations. We identified new
bugs in mature Mace implementations of three systems.
Furthermore, we show that if the bug is not corrected
during system development, CrystalBall is effective in
steering the execution away from inconsistent states at
runtime.

1 Introduction

Complex distributed protocols and algorithms are used in
enterprise storage systems, distributed databases, large-
scale planetary systems, and sensor networks. Errors
in these protocols translate to denial of service to some
clients, potential loss of data, and monetary losses. The
Internet itself is a large-scale distributed system, and
there are recent proposals [19] to improve its routing re-
liability by further treating routing as a distributed con-
sensus problem [26]. Design and implementation prob-
lems in these protocols have the potential to deny vital
network connectivity to a large fraction of users.

Unfortunately, it is notoriously difficult to develop re-
liable high-performance distributed systems that run over
asynchronous networks. Even if a distributed system is
based on a well-understood distributed algorithm, its im-

a b c d

Figure 1: Execution path coverage by a) classic model check-
ing, b) replay-based or live predicate checking, c) CrystalBall
in deep online debugging mode, and d) CrystalBall in execution
steering mode. A triangle represents the state space searched by
the model checker; a full line denotes an execution path of the
system; a dashed line denotes an avoided execution path that
would lead to an inconsistency.

plementation can contain errors arising from complexi-
ties of realistic distributed environments or simply cod-
ing errors [27]. Many of these errors can only manifest
after the system has been running for a long time, has de-
veloped a complex topology, and has experienced a par-
ticular sequence of low-probability events such as node
resets. Consequently, it is difficult to detect such errors
using testing and model checking, and many of such er-
rors remain unfixed after the system is deployed.

We propose to leverage increases in computing power
and bandwidth to make it easier to find errors in dis-
tributed systems, and to increase the resilience of the
deployed systems with respect to any remaining errors.
In our approach, distributed system nodes predict con-
sequences of their actions while the system is running.
Each node runs a state exploration algorithm on a consis-
tent snapshot of its neighborhood and predicts which ac-
tions can lead to violations of user-specified consistency
properties. As Figure 1 illustrates, the ability to detect
future inconsistencies allows us to address the problem
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of reliability in distributed systems on two fronts: de-
bugging and resilience.

• Our technique enables deep online debugging be-
cause it explores more states than live runs alone
or model checking from the initial state. For each
state that a running system experiences, our tech-
nique checks many additional states that the system
did not go through, but that it could reach in simi-
lar executions. This approach combines benefits of
distributed debugging and model checking.

• Our technique aids resilience because a node can
modify its behavior to avoid a predicted inconsis-
tency. We call this approach execution steering.
Execution steering enables nodes to resolve non-
determinism in ways that aim to minimize future
inconsistencies.

To make this approach feasible, we need a fast
state exploration algorithm. We describe a new algo-
rithm, termed consequence prediction, which is efficient
enough to detect future violations of safety properties in
a running system. Using this approach we identified bugs
in Mace implementations of a random overlay tree, and
the Chord distributed hash table. These implementations
were previously tested as well as model-checked by ex-
haustive state exploration starting from the initial system
state. Our approach therefore enables the developer to
uncover and correct bugs that were not detected using
previous techniques. Moreover, we show that, if a bug is
not detected during system development, our approach is
effective in steering the execution away from erroneous
states, without significantly degrading the performance
of the distributed service.

1.1 Contributions

We summarize the contributions of this paper as follows:

• We introduce the concept of continuously executing
a state space exploration algorithm in parallel with a
deployed distributed system, and introduce an algo-
rithm that produces useful results even under tight
time constraints arising from runtime deployment;

• We describe a mechanism for feeding a consis-
tent snapshot of the neighborhood of a node in a
large-scale distributed system into a running model
checker; the mechanism enables reliable conse-
quence prediction within limited time and band-
width constraints;

• We present execution steering, a technique that en-
ables the system to steer execution away from pos-
sible inconsistencies;

• We describe CrystalBall, the implementation of
our approach on top of the Mace framework [21].
We evaluate CrystalBall on RandTree, Bullet′,
Paxos, and Chord distributed system implementa-
tions. CrystalBall detected several previously un-
known bugs that can cause system nodes to reach
inconsistent states. Moreover, if the developer is not
in a position to fix these bugs, CrystalBall’s execu-
tion steering predicts them in a deployed system and
steers execution away from them, all with an accept-
able impact on the overall system performance.

1.2 Example

We next describe an example of an inconsistency ex-
hibited by a distributed system, then show how Crystal-
Ball predicts and avoids it. The inconsistency appears
in the Mace [21] implementation of the RandTree over-
lay. RandTree implements a random, degree-constrained
overlay tree designed to be resilient to node failures and
network partitions. Trees built by an earlier version of
this protocol serve as a control tree for a number of large-
scale distributed services such as Bullet [23] and Ran-
Sub [24]. In general, trees are used in a variety of mul-
ticast scenarios [3, 7] and data collection/monitoring en-
vironments [17]. Inconsistencies in these environments
translate to denial of service to users, data loss, incon-
sistent measurements, and suboptimal control decisions.
The RandTree implementation was previously manually
debugged both in local- and wide-area settings over a pe-
riod of three years, as well as debugged using an existing
model checking approach [22], but, to our knowledge,
this inconsistency has not been discovered before (see
Section 4 for some of the additional bugs that Crystal-
Ball discovered).
RandTree Topology. Nodes in a RandTree overlay form
a directed tree of bounded degree. Each node maintains
a list of its children and the address of the root. The node
with the numerically smallest IP address acts as the root
of the tree. Each non-root node contains the address of
its parent. Children of the root maintain a sibling list.
Note that, for a given node, its parent, children, and sib-
lings are all distinct nodes. The seemingly simple task
of maintaining a consistent tree topology is complicated
by the requirement for groups of nodes to agree on their
roles (root, parent, child, sibling) across asynchronous
networks, in the face of node failures, and machine slow-
downs.
Joining the Overlay. A node nj joins the overlay by
issuing a Join request to one of the designated nodes.
If the node receiving the join request is not the root, it
forwards the request to the root. If the root already has
the maximal number of children, it asks one of its chil-
dren to incorporate the node into the overlay. Once the
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Safety property: children and siblings are disjoint lists

Figure 2: An inconsistency in a run of RandTree

request reaches a node np whose number of children is
less than maximum allowed, node np inserts nj as one of
its children, and notifies nj about a successful join using
a JoinReply message (if np is the root, it also notifies its
other children about their new sibling nj using an Up-
dateSibling message).
Example System State. The first row of Figure 2 shows
a state of the system that we encountered by running
RandTree in the ModelNet cluster [43] starting from the
initial state. We examine the local states of nodes n1,
n9, and n13. For each node n we display its neighbor-
hood view as a small graph whose central node is n itself,
marked with a circle. If a node is root and in a “joined”
state, we mark it with a triangle in its own view.

The state in the first row of Figure 2 is formed by n13

joining as the only child of n9 and then n1 joining and
assuming the role of the new root with n9 as its only child
(n13 remains as the only child of n9). Although the fi-
nal state shown in first row of Figure 2 is simple, it takes
13 steps of the distributed system (such as atomic han-
dler executions, including application events) to reach
this state from the initial state.
Scenario Exhibiting Inconsistency. Figure 2 describes
a sequence of actions that leads to a state that violates the
consistency of the tree. We use arrows to represent the
sending and the receiving of some of the relevant mes-
sages. A dashed line separates distinct distributed system
states (for simplicity we skip certain intermediate states
and omit some messages).

The sequence begins by a silent reset of node n13

(such reset can be caused by, for example, a power fail-
ure). After the reset, n13 attempts to join the overlay
again. The root n1 accepts the join request and adds n13

as its child. Up to this point node n9 received no infor-

mation on actions that followed the reset of n13, so n9

maintains n13 as its own child. When n1 accepts n13 as
a child, it sends an UpdateSibling message to n9. At this
point, n9 simply inserts n13 into the set of its sibling. As
a result, n13 appears both in the list of children and in
the list of siblings of n9, which is inconsistent with the
notion of a tree.
Challenges in Finding Inconsistencies. We would
clearly like to avoid inconsistencies such as the one ap-
pearing in Figure 2. Once we have realized the pres-
ence of such inconsistency, we can, for example, mod-
ify the handler for the UpdateSibling message to re-
move the new sibling from the children list. Previously,
researchers had successfully used explicit-state model
checking to identify inconsistencies in distributed sys-
tems [22] and reported a number of safety and liveness
bugs in Mace implementations. However, due to an ex-
ponential explosion of possible states, current techniques
capable of model checking distributed system implemen-
tations take a prohibitively long time to identify inconsis-
tencies, even for seemingly short sequences such as the
ones needed to generate states in Figure 2. For exam-
ple, when we applied the Mace Model Checker’s [22]
exhaustive search to the safety properties of RandTree
starting from the initial state, it failed to identify the in-
consistency in Figure 2 even after running for 17 hours
(on a 3.4-GHz Pentium-4 Xeon that we used for all our
experiments in Section 4). The reason for this long run-
ning time is the large number of states reachable from the
initial state up to the depth at which the bug occurs, all
of which are examined by an exhaustive search.

1.3 CrystalBall Overview

Instead of running the model checker from the initial
state, we propose to execute a model checker concur-
rently with the running distributed system, and contin-
uously feed current system states into the model checker.
When, in our example, the system reaches the state at the
beginning of Figure 2, the model checker will predict the
state at the end of Figure 2 as a possible future inconsis-
tency. In summary, instead of trying to predict all possi-
ble inconsistencies starting from the initial state (which
for complex protocols means never exploring states be-
yond the initialization phase), our model checker predicts
inconsistencies that can occur in a system that has been
running for a significant amount of time in a realistic en-
vironment.

As Figure 1 suggests, compared to the standard model
checking approach, this approach identifies inconsisten-
cies that can occur within much longer system execu-
tions. Compared to simply running the system for a long
time, our approach has two advantages.

1. Our approach systematically covers a large number
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of executions that contain low-probability events,
such as node resets that ultimately triggered the in-
consistency in Figure 2. It can take a very long time
for a running system to encounter such a scenario,
which makes testing for possible bugs difficult. Our
technique therefore improves system debugging by
providing a new technique that combines some of
the advantages of testing and static analysis.

2. Our approach identifies inconsistencies before they
actually occur. This is possible because the model
checker can simulate packet transmission in time
shorter than propagation latency, and because it can
simulate timer events in time shorter than than the
actual time delays. This aspect of our approach
opens an entirely new possibility: adapt the behav-
ior of the running system on the fly and avoid an in-
consistency. We call this technique execution steer-
ing. Because it does not rely on a history of past in-
consistencies, execution steering is applicable even
to inconsistencies that were previously never ob-
served in past executions.

Figure 3: An Example execution sequence that avoids
the inconsistency from Figure 2 thanks to execution
steering.

Example of Execution Steering. In our example, a
model checking algorithm running in n1 detects the vi-
olation at the end of Figure 2. Given this knowledge,
execution steering causes node n1 not to respond to the
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Figure 4: High-level overview of CrystalBall

join request of n13 and to break the TCP connection with
it. Node n13 eventually succeeds joining the random tree
(perhaps after some other nodes have joined first). The
stale information about n13 in n9 is removed once n9

discovers that the stale communication channel with n13

is closed, which occurs the first time when n9 attempts to
communicate with n13. Figure 3 presents one scenario il-
lustrating this alternate execution sequence. Effectively,
execution steering has exploited the non-determinism
and robustness of the system to choose an alternative ex-
ecution path that does not contain the inconsistency.

2 CrystalBall Design

We next sketch the design of CrystalBall (see [44] for
details). Figure 4 shows the high-level overview of a
CrystalBall-enabled node. We concentrate on distributed
systems implemented as state machines, as this is a
widely-used approach [21, 25, 26, 37, 39].

The state machine interfaces with the outside world
via the runtime module. The runtime receives the mes-
sages coming from the network, demultiplexes them, and
invokes the appropriate state machine handlers. The
runtime also accepts application level messages from
the state machines and manages the appropriate network
connections to deliver them to the target machines. This
module also maintains the timers on behalf of all services
that are running.

The CrystalBall controller contains a checkpoint man-
ager that periodically collects consistent snapshots of a
node’s neighborhood. The controller feeds them to the
model checker, along with a checkpoint of the local state.
The model checker runs the consequence prediction al-
gorithm which checks user- or developer-defined proper-
ties and reports any violation in the form of a sequence
of events that leads to an erroneous state.

CrystalBall can operate in two modes. In the deep on-
line debugging mode the controller only outputs the in-
formation about the property violation. In the execution
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steering mode the controller examines the report from
the model checker, prepares an event filter that can avoid
the erroneous condition, checks the filter’s impact, and
installs it into the runtime if it is deemed to be safe.

2.1 Consistent Neighborhood Snapshots

To check system properties, the model checker requires
a snapshot of the system-wide state. Ideally, every node
would have a consistent, up-to-date checkpoint of ev-
ery other participant’s state. Doing so would give ev-
ery node high confidence in the reports produced by the
model checker. However, given that the nodes could be
spread over a high-latency wide-area network, this goal
is unattainable. In addition, the sheer amount of band-
width required to disseminate checkpoints might be ex-
cessive.

Given these fundamental limitations, we use a solution
that aims for scalability: we apply model checking to a
subset of all states in a distributed system. We lever-
age the fact that in scalable systems a node typically
communicates with a small subset of other participants
(“neighbors”) and perform model checking only on this
neighborhood. In some distributed hash table implemen-
tations, a node keeps track of O(log n) other nodes; in
mesh-based content distribution systems nodes commu-
nicate with a constant number of peers; or this number
does not explicitly grow with the size of the system. In a
random overlay tree, a node is typically aware of the root,
its parent, its children, and its siblings. We therefore ar-
range for a node to distribute its state checkpoints to its
neighbors, and we refer to them as snapshot neighbor-
hood. The checkpoint manager maintains checkpoints
and snapshots. Other CrystalBall components can re-
quest an on-demand snapshot to be gathered by invoking
an appropriate call on the checkpoint manager.
Discovering and Managing Snapshot Neighborhoods.
To propagate checkpoints, the checkpoint manager needs
to know the set of a node’s neighbors. This set is depen-
dent upon a particular distributed service. We use two
techniques to provide this list. In the first scheme, we
ask the developer to implement a method that will re-
turn the list of neighbors. The checkpoint manager then
periodically queries the service and updates its snapshot
neighborhood.

Since changing the service code might not always be
possible, our second technique uses a heuristic to deter-
mine the snapshot neighborhood. Specifically, we peri-
odically query the runtime to obtain the list of open con-
nections (for TCP), and recent message recipients (for
UDP). We then cluster connection endpoints according
to the communication times, and selects a sufficiently
large cluster of recent connections.

Enforcing Snapshot Consistency. To avoid false pos-
itives, we ensure that the neighborhood snapshot corre-
sponds to a consistent view of a distributed system at
some point of logical time. There has been a large body
of work in this area, starting with the seminal paper by
Chandy and Lamport [5]. We use one of the recent algo-
rithms for obtaining consistent snapshots [29], in which
the general idea is to collect a set of checkpoints that
do not violate the happens-before relationship [25] es-
tablished by messages sent by the distributed service.

Instead of gathering a global snapshot, a node peri-
odically sends a checkpoint request to the members of
its snapshot neighborhood. Even though nodes receive
checkpoints only from a subset of nodes, all distributed
service and checkpointing messages are instrumented to
carry the checkpoint number (logical clock) and each
neighborhood snapshot is a fragment of a globally con-
sistent snapshot. In particular, a node that receives a mes-
sage with a logical timestamp greater than its own logical
clock takes a forced checkpoint. The node then uses the
forced checkpoint to contribute to the consistent snap-
shot when asked for it.

Node failures are commonplace in distributed systems,
and our algorithm has to deal with them. The check-
point manager proclaims a node to be dead if it experi-
ences a communication error (e.g., a broken TCP con-
nection) with it while collecting a snapshot. An addi-
tional cause for an apparent node failure is a change of
a node’s snapshot neighborhood in the normal course of
operation (e.g., when a node changes parents in the ran-
dom tree). In this case, the node triggers a new snapshot
gather operation.
Checkpoint Content. Although the total footprint of
some services might be very large, this might not nec-
essarily be reflected in checkpoint size. For example,
the Bullet′ [23] file distribution application has non-
negligible total footprint, but the actual file content trans-
ferred in Bullet′ does not play any role in consistency de-
tection. In general, the checkpoint content is given by a
serialization routine. The developer can choose to omit
certain parts of the state from serialized content and re-
construct them if needed at de-serialization time. As a re-
sult, checkpoints are smaller, and the code compensates
the lack of serialized state when a local state machine
is being created from a remote node’s checkpoint in the
model checker. We use a set of well-known techniques
for managing checkpoint storage (quotas) and control-
ling the bandwidth used by checkpoints (bandwidth lim-
its, compression).

2.2 Consequence Prediction Algorithm

The key to enabling fast prediction of future inconsisten-
cies in CrystalBall is our consequence prediction algo-
rithm, presented in Figure 5. For readability, we present
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1 proc findConseq(currentState : G, property : (G → boolean))
2 explored = emptySet(); errors = emptySet();
3 localExplored = emptySet();
4 frontier = emptyQueue();
5 frontier.addLast(currentState);
6 while (!STOP CRITERION)
7 state = frontier.popFirst();
8 if (!property(state))
9 errors.add(state); // predicted inconsistency found

10 explored.add(hash(state));
11 foreach ((n,s) ∈ state.L) // node n in local state s
12 // process all network handlers
13 foreach (((s,m),(s’,c)) ∈ HM where (n,m) ∈ state.I)
14 // node n handles message m according to st. machine
15 addNextState(state,n,s,s’,{m},c);
16 // process local actions only for fresh local states
17 if (!localExplored.contains(hash(n,s)))
18 foreach (((s,a),(s’,c)) ∈ HA)
19 addNextState(state,n,s,s’,{},c);
20 localExplored.add(hash(n,s));
21

22 proc addNextState(state,n,s,s’,c0,c)
23 nextState.L = (state.L \ {(n,s)}) ∪ {(n,s’)};
24 nextState.I = (state.I \ c0) ∪ c;
25 if (!explored.contains(hash(nextState)))
26 frontier.addLast(nextState);

Figure 5: Consequence Prediction Algorithm

the algorithm as a refinement of a generic state-space
search. The notation is based on a high-level semantics
of a distributed system, shown in Figure 6. (Our concrete
model checker implementation uses an iterative deep-
ening algorithm which combines memory efficiency of
depth-first search, while favoring the states in the near fu-
ture, as in breadth-first search.) The STOP CRITERION
in Figure 5 in our case is given by time constraints and
external commands to restart the model checker upon the
arrival of a new snapshot.

In Line 8 of Figure 5 the algorithm checks whether the
explored state satisfies the desired safety properties. The
developer can use a simple language [22] that involves
loops, existential and comparison operators, state vari-
ables, and function invocations to specify the properties.
Exploring Independent Chains. We can divide the
actions in a distributed system into event chains, where
each chain starts with an application or scheduler event
and continues by triggering network events. We call two
chains independent if no event of the first chain changes
state of a node involved in the second chain. Conse-
quence Prediction avoids exploring the interleavings of
independent chains. Therefore, the test in Line 17 of Fig-
ure 5 makes the algorithm re-explore the scheduler and
application events of a node if and only if the previous
events changed the local state of the node. For depen-
dent chains, if a chain event changes local state of a node,
Consequence Prediction therefore explores all other ac-
tive chains which have been initiated from this node.

N − node identifiers
S − node states
M − message contents
N × M − (destination process, message)-pair
C = 2N×M − set of messages with destination
A − local node actions (timers, application calls)

system state : (L, I) ∈ G, G = 2N×S × 2N×M

local node states : L ⊆ N × S (function from N to S)
in-flight messages (network) : I ⊆ N × M

behavior functions for each node :
message handler : HM ⊆ (S × M) × (S × C)
internal action handler : HA ⊆ (S × A) × (S × C)

transition function for distributed system :

node message handler execution :
((s1, m), (s2, c)) ∈ HM

before: (L0 ⊎ {(n, s1)}, I0 ⊎ {(n, m)}) �

after: (L0 ⊎ {(n, s2)}, I0 ∪ c)

internal node action (timer, application calls) :
((s1, a), (s2, c)) ∈ HA

before: (L0 ⊎ {(n, s1)}, I) �

after: (L0 ⊎ {(n, s2)}, I ∪ c)

Figure 6: A Simple Model of a Distributed System

Note that hash(n, s) in Figure 5 implies that we have
separate tables corresponding to each node for keeping
hashed local states. If a state variable is not necessary
to distinguish two separate states, the user can annotate
the state variable that he or she does not want include
in the hash function, improving the performance of Con-
sequence Prediction. Instead of holding all encountered
hashes, the hash table could be designed as a bounded
cache to fit into the L2 cache or main memory, favor-
ing access speed while admitting the possibility of re-
exploring previously seen states.

Although simple, the idea of removing from the search
actions of nodes with previously seen states eliminates
many (uninteresting) interleavings from search and has
a profound impact on the search depth that the model
checker can reach with a limited time budget. This
change was therefore key to enabling the use of the
model checker at runtime. Knowing that consequence
prediction avoids considering certain states, the question
remains whether the remaining states are sufficient to
make the search useful. Ultimately, the answer to this
question comes from our evaluation (Section 4).

2.3 Execution Steering

CrystalBall’s execution steering mode enables the sys-
tem to avoid entering an erroneous state by steering its
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execution path away from predicted inconsistencies. If a
protocol was designed with execution steering in mind,
the runtime system could report a predicted inconsis-
tency as a special programming language exception, and
allow the service to react to the problem using a service-
specific policy. However, to measure the impact on exist-
ing implementations, this paper focuses on generic run-
time mechanisms that do not require the developer to in-
sert exception-handling code.
Event Filters. Recall that a node in our framework op-
erates as a state machine and processes messages, timer
events, and application calls via handlers. Upon noticing
that running a certain handler can lead to an erroneous
state, CrystalBall installs an event filter, which temporar-
ily blocks the invocation of the state machine handler for
messages from the relevant sender.

The rationale is that a distributed system often con-
tains a large amount of non-determinism that allows it
to proceed even if certain transitions are disabled. For
example, if the offending message is a Join request in
a random tree, ignoring the message can prevent violat-
ing a local state property. The joining nodes can later
retry the procedure with an alternative potential parent
and successfully join the tree. Similarly, if handling a
message causes an equivalent of a race condition man-
ifested as an inconsistency, delaying message handling
allows the system to proceed to the point where handling
the message becomes safe again. Note that state machine
handlers are atomic, so CrystalBall is unlikely to inter-
fere with any existing recovery code.
Point of Intervention. In general, execution steering
can intervene at several points in the execution path. Our
current policy is to steer the execution as early as pos-
sible. For example, if the erroneous execution path in-
volves a node issuing a Join request after resetting, the
system’s first interaction with that node occurs at the
node which receives its join request. If this node dis-
covers the erroneous path, it can install the event filter.
Non-Disruptiveness of Execution Steering. Ideally,
execution steering would always prevent inconsistencies
from occurring, without introducing new inconsistencies
due to a change in behavior. In general, however, guar-
anteeing the absence of inconsistencies is as difficult as
guaranteeing that the entire program is error-free. Crys-
talBall therefore makes execution steering safe in prac-
tice through two mechanisms:

1. Sound Choice of Filters. It is important that
the chosen corrective action does not sacrifice the
soundness of the state machine. A sound filtering is
the one in which the observed sequence of events
after filtering is a subset of possible sequence of
events without filtering. The breaking of a TCP
connection is common in a distributed system using
TCP. Therefore, such distributed systems include

failure-handling code that deals with broken TCP
connections. This makes sending a TCP RST signal
a good candidate for a sound event filter, and is the
filter we choose to use in CrystalBall. In the case
of communication over UDP, the filter simply drops
the UDP packet, which could similarly happen in
normal operation of the network.

2. Exploration of Corrected Executions. Before al-
lowing the event filter to perform an execution steer-
ing action, CrystalBall runs the consequence predic-
tion algorithm to check the effect of the event filter
action on the system. If the consequence prediction
algorithm does not suggest that the filter actions are
safe, CrystalBall does not attempt execution steer-
ing and leaves the system to proceed as usual.

Rechecking Previously Discovered Violations. An
event filter reflects possible future inconsistencies reach-
able from the current state, and leaving an event filter in
place indefinitely could deny service to some distributed
system participants. CrystalBall therefore removes the
filters from the runtime after every model checking run.
However, it is useful to quickly check whether the previ-
ously identified error path can still lead to an erroneous
condition in a new model checking run. This is espe-
cially important given the asynchronous nature of the
model checker relative to the system messages, which
can prevent the model checker from running long enough
to rediscover the problem. To prevent this from happen-
ing, the first step executed by the model checker is to
replay the previously discovered error paths. If the prob-
lem reappears, CrystalBall immediately reinstalls the ap-
propriate filter.
Immediate Safety Check. CrystalBall also supports
immediate safety check, a mechanism that avoids incon-
sistencies that would be caused by executing the current
handler. Such imminent inconsistencies can happen even
in the presence of execution steering because 1) conse-
quence prediction explores states given by only a subset
of all distributed system nodes, and 2) the model checker
runs asynchronously and may not always detect incon-
sistencies in time. The immediate safety check specula-
tively runs the handler, checks the consistency properties
in the resulting state, and prevents actual handler execu-
tion if the resulting state is inconsistent.

We have found that exclusively using immediate
safety check would not be sufficient for avoiding incon-
sistencies. The advantages of installing event filters are:
i) performance benefits of avoiding the bug sooner, e.g.,
reducing unnecessary message transmission, ii) faster re-
action to an error, which implies greater chance of avoid-
ing a “point of no return” after which error avoidance
is impossible, and iii) the node that is supposed to ul-
timately avoid the inconsistency by immediate safety
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check might not have all the checkpoints needed to no-
tice the violation; this can result in false negatives (as
shown in Figure 9).
Liveness Issues. It is possible that by applying an event
filter would affect liveness properties of a distributed sys-
tem. In our experience, due to a large amount of non-
determinism (e.g., the node is bootstrapped with a list
of multiple nodes it can join), the system usually finds
a way to make progress. We focus on enforcing safety
properties, and we believe that occasionally sacrificing
liveness is a valid approach. According to a negative re-
sult by Fischer, Lynch, and Paterson [12], it is impossible
to have both in an asynchronous system anyway. (For ex-
ample, the Paxos [26] protocol guarantees safety but not
liveness.)

2.4 Scope of Applicability

CrystalBall does not aim to find all errors; it is rather
designed to find and avoid important errors that can
manifest in real runs of the system. Results in Sec-
tion 4 demonstrate that CrystalBall works well in prac-
tice. Nonetheless, we next discuss the limitations of our
approach and characterize the scenarios in which we be-
lieve CrystalBall to be effective.
Up-to-Date Snapshots. For Consequence Prediction to
produce results relevant for execution steering and imme-
diate safety check, it needs to receive sufficiently many
node checkpoints sufficiently often. (Thanks to snapshot
consistency, this is not a problem for deep online debug-
ging.) We expect the stale snapshots to be less of an issue
with stable properties, e.g., those describing a deadlock
condition [5]. Since the node’s own checkpoint might
be stale (because of enforcing consistent neighborhood
snapshots for checking multi-node properties), immedi-
ate safety check is perhaps more applicable to node-local
properties.

Higher frequency of changes in state variables re-
quires higher frequency of snapshot exchanges. High-
frequency snapshot exchanges in principle lead to: 1)
more frequent model checker restarts (given the difficulty
in building incremental model checking algorithms), and
2) high bandwidth consumption. Among the examples
for which our techniques is appropriate are overlays in
which state changes are infrequent.
Consequence Prediction as a Heuristic. Consequence
Prediction is a heuristic that explores a subset of the
search space. This is an expected limitation of explicit-
state model checking approaches applied to concrete im-
plementations of large software systems. The key ques-
tion in these approaches is directing the search towards
most interesting states. Consequence Prediction uses in-
formation about the nature of the distributed system to
guide the search; the experimental results in Section 4

show that it works well in practice, but we expect that
further enhancements are possible.

3 Implementation Highlights

We built CrystalBall on top of the Mace [21] framework.
Mace allows distributed systems to be specified suc-
cinctly and outputs high-performance C++ code. We im-
plemented our consequence prediction within the Mace
model checker, and run the model checker as a separate
thread that communicates future inconsistencies to the
runtime. Our current implementation of the immediate
safety check executes the handler in a copy of the state
machine’s virtual memory (using fork()), and holds the
transmission of messages until the successful completion
of the consistency check. Upon encountering an incon-
sistency in the copy, the runtime does not execute the
handler in the primary state machine. In case of appli-
cations with high messaging/state change rates in which
the performance of immediate safety check is critical, we
could obtain a state checkpoint [41] before running the
handler and rollback to it in case of an encountered in-
consistency. Another option would be to employ operat-
ing system-level speculation [32].

4 Evaluation

Our experimental evaluation addresses the following
questions: 1) Is CrystalBall effective in finding bugs in
live runs? 2) Can any of the bugs found by Crystal-
Ball also be identified by the MaceMC model checker
alone? 3) Is execution steering capable of avoiding in-
consistencies in deployed distributed systems? 4) Are the
CrystalBall-induced overheads within acceptable levels?

4.1 Experimental Setup

We conducted our live experiments using ModelNet [43].
ModelNet allows us to run live code in a cluster of
machines, while application packets are subjected to
packet delay, loss, and congestion typical of the Inter-
net. Our cluster consists of 17 older machines with dual
3.4 GHz Pentium-4 Xeons with hyper-threading, 8 ma-
chines with dual 2.33 GHz dual-core Xeon 5140s, and 3
machines with 2.83 GHz Xeon X3360s (for Paxos exper-
iments). Older machines have 2 GB of RAM, while the
newer ones have 4 GB and 8 GB. These machines run
GNU/Linux 2.6.17. One 3.4 GHz Pentium-4 machine
running FreeBSD 4.9 served as the ModelNet packet for-
warder for these experiments. All machines are intercon-
nected with a full-rate 1-Gbps Ethernet switch.

We consider two deployment scenarios. For our large-
scale experiments with deep online debugging, we mul-
tiplex 100 logical end hosts running the distributed ser-
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vice across the 20 Linux machines, with 2 participants
running the model checker on 2 different machines. We
run with 6 participants for small-scale debugging exper-
iments, one per machine.

We use a 5,000-node INET [6] topology that we fur-
ther annotate with bandwidth capacities for each link.
The INET topology preserves the power law distribution
of node degrees in the Internet. We keep the latencies
generated by the topology generator; the average net-
work RTT is 130ms. We randomly assign participants
to act as clients connected to one-degree stub nodes in
the topology. We set transit-transit links to be 100 Mbps,
while we set access links to 5 Mbps/1 Mbps inbound-
/outbound bandwidth. To emulate the effects of cross
traffic, we instruct ModelNet to drop packets at random
with a probability chosen uniformly at random between
[0.001,0.005] separately for each link.

4.2 Deep Online Debugging Experience

We have used CrystalBall to find inconsistencies (vio-
lations of safety properties) in two mature implemented
protocols in Mace, namely an overlay tree (RandTree)
and a distributed hash table (Chord [42]). These im-
plementation were not only manually debugged both
in local- and wide-area settings, but were also model
checked using MaceMC [22]. We have also used our
tool to find inconsistencies in Bullet′, a file distribu-
tion system that was originally implemented in MACE-
DON [37], and then ported to Mace. We found 13 new
subtle bugs in these three systems that caused violation
of safety properties.

System Bugs found LOC Mace/C++
RandTree 7 309 / 2000

Chord 3 254 / 2200
Bullet′ 3 2870 / 19628

Table 1: Summary of inconsistencies found for each system
using CrystalBall. LOC stands for lines of code and reflects
both the MACE code size and the generated C++ code size.
The low LOC counts for Mace service implementations are
a result of Mace’s ability to express these services succinctly.
This number does not include the line counts for libraries and
low-level services that services use from the Mace framework.

Table 1 summarizes the inconsistencies that Crystal-
Ball found in RandTree, Chord and Bullet′. Typical
elapsed times (wall clock time) until finding an incon-
sistency in our runs have been from less than an hour up
to a day. This time allowed the system being debugged
to go through complex realistic scenarios.1 CrystalBall

1During this time, the model checker ran concurrently with a nor-
mally executing system. We therefore do not consider this time to be
wasted by the model checker before deployment; rather, it is the time
consumed by a running system.

identified inconsistencies by running consequence pre-
diction from the current state of the system for up to sev-
eral hundred seconds. To demonstrate their depth and
complexity, we detail four out of 13 inconsistencies we
found in the three services we examined.

4.2.1 Example RandTree Bugs Found

We next discuss bugs we identified in the RandTree over-
lay protocol presented in Section 1.2. We name bugs ac-
cording to the consistency properties that they violate.
Children and Siblings Disjoint. The first safety prop-
erty we considered is that the children and sibling lists
should be disjoint. CrystalBall identified the scenario
from Figure 2 in Section 1.2 that violates this property.
The problem can be corrected by removing the stale in-
formation about children in the handler for the Update-
Sibling message. CrystalBall also identified variations of
this bug that requires changes in other handlers.
Recovery Timer Should Always Run. An important
safety property for RandTree is that the recovery timer
should always be scheduled. This timer periodically
causes the nodes to send Probe messages to the peer list
members with which it does not have direct connection.
It is vital for the tree’s consistency to keep nodes up-to-
date about the global structure of the tree. The property
was written by the authors of [22] but the authors did not
report any violations of it. We believe that our approach
discovered it in part because our experiments considered
more complex join scenarios.

Scenario exhibiting inconsistency. CrystalBall found a
violation of the property in a state where node A joins it-
self, and changes its state to “joined” but does not sched-
ule any timers. Although this does not cause problems
immediately, the inconsistency happens when another
node B with smaller identifier tries to join, at which point
A gives up the root position, selects B as the root, and
adds B it to its peer list. At this point A has a non-empty
peer list but no running timer.

Possible correction. Keep the timer scheduled even
when a node has an empty peer list.

4.2.2 Example Chord Bug Found

We next describe a violation of a consistency property
in Chord [42], a distributed hash table that provides key-
based routing functionality. Chord and other related dis-
tributed hash tables form a backbone of a large number of
proposed and deployed distributed systems [17, 35, 38].
Chord Topology. Each Chord node is assigned a Chord
id (effectively, a key). Nodes arrange themselves in an
overlay ring where each node keeps pointers to its prede-
cessor and successor. Even in the face of asynchronous
message delivery and node failures, Chord has to main-
tain a ring in which the nodes are ordered according to
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Figure 7: An inconsistency in a run of Chord. Node C has its
predecessor pointing to itself while its successor list includes
other nodes.

their ids, and each node has a set of “fingers” that enables
it to reach exponentially larger distances on the ring.
Joining the System. To join the Chord ring, a node A

first identifies its potential predecessor by querying with
its id. This request is routed to the appropriate node P ,
which in turn replies to A. Upon receiving the reply,
A inserts itself between P and P ’s successor, and sends
the appropriate messages to its predecessor and succes-
sor nodes to update their pointers. A “stabilize” timer
periodically updates these pointers.
Property: If Successor is Self, So Is Predecessor. If
a predecessor of a node A equals A, then its successor
must also be A (because then A is the only node in the
ring). This is a safety property of Chord that had been
extensively checked using MaceMC, presumably using
both exhaustive search and random walks.

Scenario exhibiting inconsistency: CrystalBall found
a state where node A has A as a predecessor but has an-
other node B as its successor. This violation happens
at depths that are beyond those reachable by exhaustive
search from the initial state. Figure 7 shows the scenario.
During live execution, several nodes join the ring and all
have a consistent view of the ring. Three nodes A, B,
and C are placed consecutively on the ring, i.e., A is pre-
decessor of B and B is predecessor of C. Then B expe-
riences a node reset and other nodes which have estab-
lished TCP connection with B receive a TCP RST. Upon
receiving this error, node A removes B from its internal
data structures. As a consequence, Node A considers C

as its immediate successor.
Starting from this state, consequence prediction de-

tects the following scenario that leads to violation. C

experiences a node reset, losing all its state. C then tries
to rejoin the ring and sends a FindPred message to A.

Because nodes A and C did not have an established TCP
connection, A does not observe the reset of C. Node A

replies to C by a FindPredReply message that shows A’s
successor to be C. Upon receiving this message, node C

i) sets its predecessor to A; ii) stores the successor list in-
cluded in the message as its successor list; and iii) sends
an UpdatePred message to A’s successor which, in this
case, is C itself. After sending this message, C receives
a transport error from A and removes A from all of its
internal structures including the predecessor pointer. In
other words, C’s predecessor would be unset. Upon re-
ceiving the (loopback) message to itself, C observes that
the predecessor is unset and then sets it to the sender of
the UpdatePred message which is C. Consequently, C

has its predecessor pointing to itself while its successor
list includes other nodes.

Possible corrections. One possibility is for nodes to
avoid sending UpdatePred messages to themselves (this
appears to be a deliberate coding style in Mace Chord).
If we wish to preserve such coding style, we can alterna-
tively place a check after updating a node’s predecessor:
if the successor list includes nodes in addition to itself,
avoid assigning the predecessor pointer to itself.

4.2.3 Example Bullet′ Bug Found

Next, we describe our experience of applying Crystal-
Ball to the Bullet′ [23] file distribution system. The
Bullet′ source sends the blocks of the file to a subset of
nodes in the system; other nodes discover and retrieve
these blocks by explicitly requesting them. Every node
keeps a file map that describes blocks that it currently
has. A node participates in the discovery protocol driven
by RandTree, and peers with other nodes that have the
most disjoint data to offer to it. These peering relation-
ships form the overlay mesh.

Bullet′ is more complex than RandTree, Chord (and
tree-based overlay multicast protocols) because of 1) the
need for senders to keep their receivers up-to-date with
file map information, 2) the block request logic at the re-
ceiver, and 3) the finely-tuned mechanisms for achieving
high throughput under dynamic conditions. The starting
point for our exploration was property 1):
Sender’s File Map and Receivers View of it Should
Be Identical. Every sender keeps a “shadow” file map
for each receiver informing it which are the blocks it
has not told the receiver about. Similarly, a receiver
keeps a file map that describes the blocks available at
the sender. Senders use the shadow file map to compute
“diffs” on-demand for receivers containing information
about blocks that are “new” relative to the last diff.

Senders and receivers communicate over non-
blocking TCP sockets that are under control of MaceTcp-
Transport. This transport queues data on top of the TCP
socket buffer, and refuses new data when its buffer is full.
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Scenario exhibiting inconsistency: In a live run last-
ing less than three minutes, CrystalBall quickly identi-
fied a mismatch between a sender’s file map and the re-
ceiver’s view of it. The problem occurs when the diff
cannot be accepted by the underlying transport. The
code then clears the receiver’s shadow file map, which
means that the sender will never try again to inform the
receiver about the blocks containing that diff. Interest-
ingly enough, this bug existed in the original MACE-
DON implementation, but there was an attempt to fix
it by the UCSD researchers working on Mace. The at-
tempted fix consisted of retrying later on to send a diff
to the receiver. Unfortunately, since the programmer left
the code for clearing the shadow file map after a failed
send, all subsequent diff computations will miss the af-
fected blocks.

Possible corrections. Once the inconsistency is identi-
fied, the fix for the bug is easy and involves not clearing
the sender’s file map for the given receiver when a mes-
sage cannot be queued in the underlying transport. The
next successful enqueuing of the diff will then correctly
include the block info.

4.3 Comparison with MaceMC

To establish the baseline for model checking perfor-
mance and effectiveness, we installed our safety prop-
erties in the original version of MaceMC [22]. We then
ran it for the three distributed services for which we iden-
tified safety violations. After 17 hours, exhaustive search
did not identify any of the violations caught by Crystal-
Ball, and reached the depth of only Some of the specific
depths reached by the model checker are as follows 1)
RandTree with 5 nodes: 12 levels, 2) RandTree with 100
nodes: 1 level, 3) Chord with 5 nodes: 14 levels, and
Chord with 100 nodes: 2 levels. This illustrates the limi-
tations of exhaustive search from the initial state.

In another experiment, we additionally employed
random walk feature of MaceMC. Using this setup,
MaceMC identified some of the bugs found by Crystal-
Ball, but it still failed to identify 2 Randtree, 2 Chord, and
3 Bullet′ bugs found by CrystalBall. In Bullet′, MaceMC
found no bugs despite the fact that the search lasted 32
hours. Moreover, even for the bugs found, the long list of
events that lead to a violation (on the order of hundreds)
made it difficult for the programmer to identify the error
(we spent five hours tracing one of the violations involv-
ing 30 steps). Such a long event list is unsuitable for
execution steering, because it describes a low probabil-
ity way of reaching the final erroneous state. In contrast,
CrystalBall identified violations that are close to live ex-
ecutions and therefore more likely to occur in the imme-
diate future.

4.4 Execution Steering Experience

We next evaluate the capability of CrystalBall as a run-
time mechanism for steering execution away from previ-
ously unknown bugs.

4.4.1 RandTree Execution Steering

To estimate the impact of execution steering on de-
ployed systems, we instructed the CrystalBall controller
to check for violations of RandTree safety properties (in-
cluding the one described in Section 4.2.1). We ran a
live churn scenario in which one participant (process in a
cluster) per minute leaves and enters the system on aver-
age, with 25 tree nodes mapped onto 25 physical cluster
machines. Every node was configured to run the model
checker. The experiment ran for 1.4 hours and resulted
in the following data points, which suggest that in prac-
tice the execution steering mechanism is not disruptive
for the behavior of the system.

When CrystalBall is not active, the system goes
through a total of 121 states that contain inconsisten-
cies. When only the immediate safety check but not the
consequence prediction is active, the immediate safety
check engages 325 times, a number that is higher be-
cause blocking a problematic action causes further prob-
lematic actions to appear and be blocked successfully.
Finally, we consider the run in which both execution
steering and the immediate safety check (as a fallback)
are active. Execution steering detects a future inconsis-
tency 480 times, with 65 times concluding that chang-
ing the behavior is unhelpful and 415 times modifying
the behavior of the system. The immediate safety check
fallback engages 160 times. Through a combined action
of execution steering and immediate safety check, Crys-
talBall avoided all inconsistencies, so there were no un-
caught violations (false negatives) in this experiment.

To understand the impact of CrystalBall actions on the
overall system behavior, we measured the time needed
for nodes to join the tree. This allowed us to empirically
address the concern that TCP reset and message block-
ing actions can in principle cause violations of liveness
properties (in this case extending the time nodes need to
join the tree). Our measurements indicated an average
node join times between 0.8 and 0.9 seconds across dif-
ferent experiments, with variance exceeding any differ-
ence between the runs with and without CrystalBall. In
summary, CrystalBall changed system actions 415 times
(2.77% of the total of 14956 actions executed), avoided
all specified inconsistencies, and did not degrade system
performance.
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Figure 8: Scenario that exposes a previously reported Paxos
violation of a safety property (two different values are chosen
in the same instance).

4.4.2 Paxos Execution Steering

Paxos [26] is a well known fault-tolerant protocol for
achieving consensus in distributed systems. Recently,
it has been successfully integrated in a number of de-
ployed [4, 28] and proposed [19] distributed systems. In
this section, we show how execution steering can be ap-
plied to Paxos to steer away from realistic bugs that have
occurred in previously deployed systems [4, 28]. The
Paxos protocol includes five steps:

1. A leader tries to take the leadership position by
sending Prepare messages to acceptors, and it in-
cludes a unique round number in the message.

2. Upon receiving a Prepare message, each acceptor
consults the last promised round number. If the
message’s round number is greater than that num-
ber, the acceptor responds with a Promise message
that contains the last accepted value if there is any.

3. Once the leader receives a Promise message from
the majority of acceptors, it broadcasts an Accept
request to all acceptors. This message contains
the value of the Promise message with the highest
round number, or is any value if the responses re-
ported no proposals.

4. Upon the receipt of the Accept request, each accep-
tor accepts it by broadcasting a Learn message con-
taining the Accepted value to the learners, unless it
had made a promise to another leader in the mean-
while.

5. By receiving Learn messages from the majority of
the nodes, a learner considers the reported value as
chosen.

The implementation we used was a baseline Mace
Paxos implementation that includes a minimal set of fea-
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Figure 9: In 200 runs that expose Paxos safety violations due
to two injected errors, CrystalBall successfully avoided the in-
consistencies in all but 1 and 4 cases, respectively.

tures. In general, a physical node can implement one or
more of the roles (leader, acceptor, learner) in the Paxos
algorithm; each node plays all the roles in our experi-
ments. The safety property we installed is the original
Paxos safety property: at most one value can be chosen,
across all nodes. The first bug we injected [28] is related
to an implementation error in step 3, and we refer to it
as bug1: once the leader receives the Promise message
from the majority of nodes, it creates the Accept request
by using the submitted value from the last Promise mes-
sage instead of the Promise message with highest round
number. Because the rate at which the violation (due to
the injected error) occurs was low, we had to schedule
some events to lead the live run toward the violation in
a repeatable way. The setup we use comprises 3 nodes
and two rounds, without any artificial packet delays. As
illustrated in Figure 8, in the first round the communi-
cation between node C and the other nodes is broken.
Also, a Learn packet is dropped from A to B. At the end
of this round, A chooses the value proposed by itself (0).
In the second round, the communication between A and
other nodes is broken. At the end of this round, the value
proposed by B (1) is chosen by B itself.

The second bug we injected (inspired by [4]) involves
keeping a promise made by an Acceptor, even after
crashes and reboots. As pointed in [4], it is often diffi-
cult to implement this aspect correctly, especially under
various hardware failures. Hence, we inject an error in
the way a promise is kept by not writing it to disk (we
refer to it as bug2). To expose this bug we use a scenario
similar to the one used for bug1, with the addition of a
reset of node B.

To stress test CrystalBall’s ability to avoid inconsis-
tencies at runtime, we repeat the live scenarios in the
cluster 200 times (100 times for each bug) while vary-
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ing the time between rounds uniformly at random be-
tween 0 and 20 seconds. As we can see in Figure 9,
CrystalBall’s execution steering is successful in avoid-
ing the inconsistency at runtime 74% and 89% of the
time for bug1 and bug2, respectively. In these cases,
CrystalBall starts model checking after node C recon-
nects and receives checkpoints from other participants.
After running the model checker for 3.3 seconds, C suc-
cessfully predicts that the scenario in the second round
would result in violation of the safety property, and it
then installs the event filter. The avoidance by execution
steering happens when C rejects the Propose message
sent by B. Execution steering is more effective for bug2
than for bug1, as the former involves resetting B. This
in turn leaves more time for the model checker to redis-
cover the problem by: i) consequence prediction, or ii)
replaying a previously identified erroneous scenario. Im-
mediate safety check engages 25% and 7% of the time,
respectively (in cases when model checking did not have
enough time to uncover the inconsistency), and prevents
the inconsistency from occurring later, by dropping the
Learn message from C at node B. CrystalBall could not
prevent the violation for only 1% and 4% of the runs, re-
spectively. The cause for these false negatives was the
incompleteness of the set of checkpoints.

4.5 Performance Impact of CrystalBall

Memory, CPU, and bandwidth consumption. Be-
cause consequence prediction runs in a separate process
that is most likely mapped to a different CPU core on
modern processors, we expect little impact on the ser-
vice performance. In addition, since the model checker
does not cache previously visited states (it only stores
their hashes) the memory is unlikely to become a bottle-
neck between the model-checking CPU core and the rest
of the system.

One concern with state exploration such as model-
checking is the memory consumption. Figure 10 shows
the consequence prediction memory footprint as a func-
tion of search depth for our RandTree experiments. As
expected, the consumed memory increases exponentially
with search depth. However, since the effective Crystal-
Ball’s search depth in is less than 7 or 8, the consumed
memory by the search tree is less than 1MB and can thus
easily fit in the L2 or L3 (most recently) cache of the
state of the art processors. Having the entire search tree
in-cache reduces the access rate to main memory and im-
proves performance.

In the deep online debugging mode, the model checker
was running for 950 seconds on average in the 100-node
case, and 253 seconds in the 6-node case. When running
in the execution steering mode (25 nodes), the model
checker ran for an average of about 10 seconds. The
checkpointing interval was 10 seconds.
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Figure 11: CrystalBall slows down Bullet′ by less than 10%
for a 20 MB file download.

The average size of a RandTree node checkpoint is
176 bytes, while a Chord checkpoint requires 1028 bytes.
Average per-node bandwidth consumed by checkpoints
for RandTree and Chord (100-nodes) was 803 bps and
8224 bps, respectively. These figures show that over-
heads introduced by CrystalBall are low. Hence, we did
not need to enforce any bandwidth limits in these cases.
Overhead from Checking Safety Properties. In prac-
tice we did not find the overhead of checking safety prop-
erties to be a problem because: i) the number of nodes in
a snapshot is small, ii) the most complex of our proper-
ties have O(n2) complexity, where n is the number of
nodes, and iii) the state variables fit into L2 cache.
Overall Impact. Finally, we demonstrate that having
CrystalBall monitor a bandwidth-intensive application
featuring a non-negligible amount of state such as Bullet′

does not significantly impact the application’s perfor-
mance. In this experiment, we instructed 49 Bullet′ in-
stances to download a 20 MB file. Bullet′ is not a CPU
intensive application, although computing the next block
to request from a sender has to be done quickly. It
is therefore interesting to note that in 34 cases during
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this experiment the Bullet′ code was competing with the
model checker for the Xeon CPU with hyper-threading.
Figure 11 shows that in this case using CrystalBall re-
duced performance by less than 5%. Compressed Bullet′

checkpoints were about 3 kB in size, and the bandwidth
that was used for checkpoints was about 30 Kbps per
node (3% of a node’s outbound bandwidth of 1 Mbps).
The reduction in performance is therefore primarily due
to the bandwidth consumed by checkpoints.

5 Related Work

Debugging distributed systems is a notoriously difficult
and tedious process. Developers typically start by us-
ing an ad-hoc logging technique, coupled with strenuous
rounds of writing custom scripts to identify problems.
Several categories of approaches have gone further than
the naive method, and we explain them in more detail in
the remainder of this section.
Collecting and Analyzing Logs. Several approaches
(Magpie [2], Pip [34]) have successfully used exten-
sive logging and off-line analysis to identify performance
problems and correctness issues in distributed systems.
Unlike these approaches, CrystalBall works on deployed
systems, and performs an online analysis of the system
state.
Deterministic Replay with Predicate Checking. Fri-
day [14] goes one step further than logging to en-
able a gdb-like replay of distributed systems, including
watch points and checking for global predicates. WiDS-
checker [28] is a similar system that relies on a combi-
nation of logging/checkpointing to replay recorded runs
and check for user predicate violations. WiDS-checker
can also work as a simulator. In contrast to replay-
and simulation-based systems, CrystalBall explores ad-
ditional states and can steer execution away from erro-
neous states.
Online Predicate Checking. Singh et al. [40] have
advocated debugging by online checking of distributed
system state. Their approach involves launching queries
across the distributed system that is described and
deployed using the OverLog/P2 [40] declarative lan-
guage/runtime combination. D3S [27] enables develop-
ers to specify global predicates which are then automati-
cally checked in a deployed distributed system. By using
binary instrumentation, D3S can work with legacy sys-
tems. Specialized checkers perform predicate-checking
topology on snapshots of the nodes’ states. To make
the snapshot collection scalable, the checker’s snapshot
neighborhood can be manually configured by the devel-
oper. This work has shown that it is feasible to collect
snapshots at runtime and check them against a set of
user-specified properties. CrystalBall advances the state-
of-the-art in online debugging in two main directions:

1) it employs an efficient algorithm for model checking
from a live state to search for bugs “deeper” and “wider”
than in the live run, and it 2) enables execution steering to
automatically prevent previously unidentified bugs from
manifesting themselves in a deployed system.
Model Checking. Model checking techniques for finite
state systems [16, 20] have proved successful in anal-
ysis of concurrent finite state systems, but require the
developer to manually abstract the system into a finite-
state model which is accepted as the input to the system.
Early efforts on explicit-state model checking of C and
C++ implementations [31, 30, 46] have primarily con-
centrated on a single-node view of the system.

MODIST [45] and MaceMC [22] represent the state-
of-the-art in model checking distributed system imple-
mentations. MODIST [45] is capable of model check-
ing unmodified distributed systems; it orchestrates state
space exploration across a cluster of machines. MaceMC
runs state machines for multiple nodes within the same
process, and can determine safety and liveness viola-
tions spanning multiple nodes. MaceMC’s exhaustive
state exploration algorithm limits in practice the search
depth and the number of nodes that can be checked. In
contrast, CrystalBall’s consequence prediction allows it
to achieve significantly shorter running times for similar
depths, thus enabling it to be deployed at runtime. In
[22] the authors acknowledge the usefulness of prefix-
based search, where the execution starts from a given
supplied state. Our work addresses the question of ob-
taining prefixes for prefix-based search: we propose to
directly feed into the model checker states as they are
encountered in live system execution. Using CrystalBall
we found bugs in code that was previously debugged in
MaceMC and that we were not able to reproduce using
MaceMC’s search. In summary, CrystalBall differs from
MODIST and MaceMC by being able to run state space
exploration from live state. Further, CrystalBall supports
execution steering that enables it to automatically pre-
vent the system from entering an erroneous state.

Cartesian abstraction [1] is a technique for over-
approximating state space that treats different state com-
ponents independently. The independence idea is also
present in our consequence prediction, but, unlike over-
approximating analyses, bugs identified by consequence
search are guaranteed to be real with respect to the model
explored. The idea of disabling certain transitions in
state-space exploration appears in partial-order reduction
(POR) [15],[13]. Our initial investigation suggests that a
POR algorithm takes considerably longer than the con-
sequence prediction algorithm. The advantage of POR
is its completeness, but completeness is of second-order
importance in our case because no complete search can
terminate in a reasonable amount of time for state spaces
of distributed system implementations.
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Runtime Mechanisms. In the context of operating sys-
tems, researchers have proposed mechanisms that safely
re-execute code in a changed environment to avoid er-
rors [33]. Such mechanisms become difficult to deploy
in the context of distributed systems. Distributed transac-
tions are a possible alternative to execution steering, but
involve several rounds of communication and are inap-
plicable in environments such as wide-area networks. A
more lightweight solution involves forming a FUSE [11]
failure group among all nodes involved in a join process.
Making such approaches feasible would require collect-
ing snapshots of the system state, as in CrystalBall. Our
execution steering approach reduces the amount of work
for the developer because it does not require code mod-
ifications. Moreover, our experimental results show an
acceptable computation and communication overhead.

In Vigilante [9] and Bouncer [8], end hosts cooper-
ate to detect and inform each other about worms that
exploit even previously unknown security holes. Hosts
protect themselves by generating filters that block bad
inputs. Relative to these systems, CrystalBall deals with
distributed system properties, and predicts inconsisten-
cies before they occur.

Researchers have explored modifying actions of con-
current programs to reduce data races [18] by inserting
locks in an approach that does not employ running static
analysis at runtime. Approaches that modify state of a
program at runtime include [10, 36]; these approaches
enforce program invariants or memory consistency with-
out computing consequences of changes to the state.

6 Conclusions

We presented a new approach for improving the relia-
bility of distributed systems, where nodes predict and
avoid inconsistencies before they occur, even if they have
not manifested in any previous run. We believe that
our approach is the first to give running distributed sys-
tem nodes access to such information about their future.
To make our approach feasible, we designed and im-
plemented consequence prediction, an algorithm for se-
lectively exploring future states of the system, and de-
veloped a technique for obtaining consistent information
about the neighborhood of distributed system nodes. Our
experiments suggest that the resulting system, Crystal-
Ball, is effective in finding bugs that are difficult to de-
tect by other means, and can steer execution away from
inconsistencies at runtime.
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van, Dejan Kostić, Jeff Chase, and David Becker. Scala-
bility and Accuracy in a Large-Scale Network Emulator.
In OSDI, December 2002.

[44] Maysam Yabandeh, Nikola Knežević, Dejan Kostić, and
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Abstract
Replicated state machines are an important and widely-
studied methodology for tolerating a wide range of
faults. Unfortunately, while replicas should be dis-
tributed geographically for maximum fault tolerance,
current replicated state machine protocols tend to mag-
nify the effects of high network latencies caused by ge-
ographic distribution. In this paper, we examine how to
use speculative execution at the clients of a replicated
service to reduce the impact of network and protocol la-
tency. We first give design principles for using client
speculation with replicated services, such as generating
early replies and prioritizing throughput over latency. We
then describe a mechanism that allows speculative clients
to make new requests through replica-resolved specula-
tion and predicated writes. We implement a detailed case
study that applies this approach to a standard Byzantine
fault tolerant protocol (PBFT) for replicated NFS and
counter services. Client speculation trades in 18% max-
imum throughput to decrease the effective latency under
light workloads, letting us speed up run time on single-
client micro-benchmarks 1.08–19× when the client is
co-located with the primary. On a macro-benchmark, re-
duced latency gives the client a speedup of up to 5×.

1 Introduction
As more of society depends on services running on com-
puters, tolerating faults in these services is increasingly
important. Replicated state machines [34] provide a gen-
eral methodology to tolerate a wide variety of faults,
including hardware failures, software crashes, and ma-
licious attacks. Numerous examples exist for how to
build such replicated state machines, such as those based
on agreement [8, 11, 22, 25] and those based on quo-
rums [1, 11].

For replicated state machines to provide increased
fault tolerance, the replicas should fail independently.
Various aspects of failure independence can be achieved
by using multiple computers, independently written soft-

ware [2, 33], and separate administrative domains. Geo-
graphic distribution is one important way to achieve fail-
ure independence when confronted with failures such as
power outages, natural disasters, and physical attacks.

Unfortunately, distributing the replicas geographically
increases the network latency between replicas, and
many protocols for replicated state machines are highly
sensitive to latency. In particular, protocols that toler-
ate Byzantine faults must wait for multiple replicas to
reply, so the effective latency of the service is limited
by the latency of the slowest replica being waited for.
Agreement-based protocols further magnify the effects
of high network latency because they use multiple mes-
sage rounds to reach agreement. Some implementations
may also choose to delay requests and batch them to-
gether to improve throughput.

Our work uses speculative execution to allow clients
of replicated services to be less sensitive to high laten-
cies caused by network delays and protocol messages.
We observe that faults are generally rare, and, in the ab-
sence of faults, the response from even a single replica
is an excellent predictor of the final, collective response
from the replicated state machine. Based on this observa-
tion, clients in our system can proceed after receiving the
first response, thereby hiding considerable latency in the
common case in which the first response is correct, es-
pecially if at least one replica is located nearby. When
responses are completely predictable, clients can even
continue before they receive any response.

To provide safety in the rare case in which the first
response is incorrect, a client in our system may only
continue executing speculatively, until enough responses
are collected to confirm the prediction. By tracking all
effects of the speculative execution and not externaliz-
ing speculative state, our system can undo the effects of
the speculation if the first response is later shown to be
incorrect.

Because client speculation hides much of the la-
tency of the replicated service from the client, replicated
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servers in our system are freed to optimize their behavior
to maximize their throughput and minimize load, such as
by handling agreement in large batches.

We show how client speculation can help clients of
a replicated service tolerate network and protocol la-
tency by adding speculation to the Practical Byzantine
Fault Tolerance (PBFT) protocol [8]. We demonstrate
how performance improves for a counter service and an
NFSv2 service on PBFT from decreased effective latency
and increased concurrency in light workloads. Specula-
tion improves the client throughput of the counter service
2–58× across two different network topologies. Specu-
lation speeds up the run time of NFS micro-benchmarks
1.08–19× and up to 5× on a macro-benchmark when
co-locating a replica with the client. When replicas are
equidistant from each other, our benchmarks speed up by
1.06–6× and 2.2×, respectively. The decrease in latency
that client speculation provides does have a cost: under
heavy workloads, maximum throughput is decreased by
18%.

We next describe our general approach to adding client
speculation to a system with a replicated service.

2 Client speculation in replicated services
2.1 Speculative execution

Speculative execution is a general latency-hiding tech-
nique. Rather than wait for the result of a slow operation,
a computer system may instead predict the outcome of
that operation, checkpoint its state, and speculatively ex-
ecute further operations using the predicted result. If the
speculation is correct, the checkpoint is committed and
discarded. If the speculation is incorrect, it is aborted,
and the system rolls back its state to the checkpoint and
re-executes further operations using the correct result.

In general, speculative execution is beneficial only if
the time to checkpoint state is less than the time to per-
form the operation that generates the result. Further, the
outcome of that operation must be predictable. Incorrect
speculations waste resources since all work that depends
on a mispredicted result is thrown away. This waste low-
ers throughput, especially when multiple entities are par-
ticipating in a distributed system, since the system might
have been able to service other entities in lieu of doing
work for the incorrect speculation. Thus, the decision of
whether or not to speculate on the result of an operation
often boils down to determining which operations will be
slow and which slow operations have predictable results.

2.2 Applicability to replicated services

Replicated services are an excellent candidate for client-
based speculative execution. Clients of replicated state
machine protocols that tolerate Byzantine faults must
wait for multiple replicas to reply. That may mean wait-
ing for multiple rounds of messages to be exchanged

among replicas in an agreement-based protocol. If repli-
cas are separated by geographic distances (as they should
be in order to achieve failure independence), network
latency introduces substantial delay between the time a
client starts an operation and the time the client receives
the reply that commits the operation. Thus, there is sub-
stantial time available to benefit from speculative execu-
tion, especially if one replica is located near the client.

Replicated services also provide an excellent predictor
of an operation’s result. Under the assumption that faults
are rare, a client’s request will generate identical replies
from every replica, so the first reply that a client receives
is an excellent predictor of the final, collective reply from
the replicated state machine (which we refer to as the
consensus reply). After receiving the first reply to any
operation, a client can speculate based on 1 reply with
high confidence. For example, when an NFS client tries
to read an uncached file, it cannot predict what data will
be returned, so it must wait for the first reply before it
can continue with reasonable data.

The results of some remote operations can be pre-
dicted even before receiving any replies; for instance, an
NFS client can predict with high likelihood of success
that file system updates will succeed and that read oper-
ations will return the same (possibly stale) values in its
cache [28]. For such operations, a client may speculate
based on 0 replies since it can predict the result of a re-
mote operation with high probability.

2.3 Protocol adjustments

Based on the above discussion, it becomes clear that
some replicated state machine protocols will benefit
more from speculative execution than others. For this
reason, we propose several adjustments to protocols that
increase the benefit of client-based speculation.

2.3.1 Generate early replies

Since the maximum latency that can be hidden by spec-
ulative execution, in the absence of 0-reply speculation,
is the time between when the client receives the first re-
ply from any replica and when the client receives enough
replies to determine the consensus response, a protocol
should be designed to get the first reply to the client as
quickly as possible. The fastest reply is realized when
the client sends its request to the closest replica, and that
replica responds immediately. Thus, a protocol that sup-
ports client speculation should have one or more replicas
immediately respond to a client with the replica’s best
guess for the final outcome of the operation, as long as
that guess can accurately predict the consensus reply.

Assuming each replica stores the complete state of the
service, the closest replica can always immediately per-
form and respond to a read-only request. However, that
reply is not guaranteed to be correct in the presence of
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concurrent write operations. It could be wrong if the
closest replica is behind in the serial order of operations
and returns a stale value, or in quorum protocols where
the replica state has diverged and is awaiting repair [1].
We describe optimizations in Section 3.2.2 that allow
early responses from any replica in the system, along
with techniques to minimize the likelihood of an incor-
rect speculative read response.

It is more difficult to allow any replica to immediately
execute a modifying request in an agreement protocol.
Backup replicas depend on the primary replica to de-
cide a single ordering of requests. Without waiting for
that ordering, a backup could guess at the order, spec-
ulatively executing requests as it receives them. How-
ever, it is unlikely that each replica will perceive the same
request ordering under workloads with concurrent writ-
ers, especially with geographic distribution of replicas.
Should the guessed order turn out wrong (beyond ac-
ceptable levels [23]), the replica must roll back its state
and re-execute operations in the committed order, hurt-
ing throughput and likely causing its response to change.

For agreement protocols like PBFT, a more elegant so-
lution is to have only the primary execute the request
early and respond to the client. As we explain in Sec-
tion 3.3, such predictions are correct unless the primary
is faulty. This solution enables us to avoid speculation or
complex state management on the replicas that would re-
duce throughput. Used in this way, the primary should be
located near the most active clients in a system to reduce
their latency.

2.3.2 Prioritize throughput over latency

There exist a myriad of replicated state machine proto-
cols that offer varying trade-offs between throughput and
latency [1, 8, 11, 22, 30, 32, 37]. Given client support for
speculative execution, it is usually best to choose a pro-
tocol that improves throughput over one that improves
latency. The reason is that speculation can do much to
hide replica latency but little to improve replica through-
put.

As discussed in the previous section, speculative ex-
ecution can hide the latency that occurs between the re-
ceipt of an early reply from a replica and the receipt of
the reply that ends the operation. Thus, as long as a spec-
ulative protocol provides for early replies from the clos-
est or primary replica, reducing the latency of the overall
operation does not ordinarily improve user-perceived la-
tency.

Speculation can only improve throughput in the case
where replicas are occasionally idle by allowing clients
to issue more operations concurrently. If the replicas are
fully loaded, speculation may even decrease throughput
because of the additional work caused by mispredictions
or the generation of early replies. Thus, it seems pru-

dent to choose a protocol that has higher latency but
higher potential throughput, perhaps through batching,
and stable performance under write contention [8, 22],
rather than protocols that optimize latency over through-
put [1, 11].

An important corollary of this observation is that client
speculation allows one to choose simpler protocols. With
speculation, a complex protocol that is highly optimized
to reduce latency may perform approximately the same
as a simpler, higher latency protocol from the viewpoint
of a user. A simpler protocol has many benefits, such
as allowing a simpler implementation that is quicker to
develop, is less prone to bugs, and may be more secure
because of a smaller trusted computing base.

2.3.3 Avoid speculative state on replicas

To ensure correctness, speculative execution must avoid
output commits that externalize speculative output (e.g.,
by displaying it to a user) since such output can not be
undone once externalized. The definition of what consti-
tutes external output, however, can change. For instance,
sending a network message to another computer would
be considered an output commit if that computer did not
support speculation. However, if that computer could be
trusted to undo, if necessary, any changes that causally
depend on the receipt of the message, then the message
would not be an output commit. One can think of the
latter case as enlarging the boundary of speculation from
just a single computer to encompass both the sender and
receiver.

What should be the boundary of speculation for a
replicated service? At least three options are possible:
allow all replicas and clients of the service to share spec-
ulative state, allow replicas to share speculative state with
individual clients but not to propagate one client’s spec-
ulative state to other clients, and disallow replicas from
storing speculative state.

Our design uses the third option, with the smallest
boundary of speculation, for several reasons. First, the
complexity of the system increases as more parts partic-
ipate in a speculation. The system would need to use
distributed commit and rollback [14] to involve replicas
and other clients in the speculation, and the interaction
between such a distributed commit and the normal repli-
cated service commit would need to be examined care-
fully. Second, as the boundary of speculation grows
larger, the cost of a misprediction is higher; all repli-
cas and clients that see speculative state must roll back
all actions that depend on that state when a prediction is
wrong. Finally, it may be difficult to precisely track de-
pendencies as they propagate through the data structures
of a replica, and any false dependencies in a replica’s
state may force clients to trust each other in ways not re-
quired by the data they share in the replicated service.
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For example, if the system takes the simple approach of
tainting the entire replica state, then one client’s mispre-
diction would force the replica to roll back all later oper-
ations, causing unrelated clients to also roll back.

2.3.4 Use replica-resolved speculation

Even with this small boundary of speculation, we would
still like to allow clients to issue new requests that de-
pend on speculative state (which we call speculative re-
quests). Speculative requests allow a client to continue
submitting requests when it would otherwise be forced to
block. These additional requests can be handled concur-
rently, increasing throughput when the replicas are not
already fully saturated.

One complication here is that, to maintain correctness,
if one of the prior operations on which the client is spec-
ulating fails, any dependent operations that the client is-
sues must also abort. There is currently no mechanism
for a replica to determine whether or not a client received
a correct speculative response. Thus, the replica is un-
able to detect whether or not to execute subsequent de-
pendent speculative requests.

To overcome this flaw, we propose replica-resolved
speculation through predicated writes, in which replicas
are given enough information to determine whether the
speculations on which requests depend will commit or
abort. With predicated writes, an operation that modifies
state includes a list of the active speculations on which
it depends, along with the predicted responses for those
speculations. Replicas log each committed response they
send to clients and compare each predicted response in
a predicated write with the actual response sent. If all
predicated responses match the saved versions, the spec-
ulative request is consistent with the replica’s responses,
and it can execute the new request. If the responses do
not match, the replica knows that the client will abort
this operation when rolling back a failed speculation, so
it discards the operation. This approach assumes a pro-
tocol in which all non-faulty replicas send the same re-
sponse to a request.

Note that few changes may need to be made to a pro-
tocol to handle speculative requests that modify data. An
operation O that depends on a prior speculation Os, with
predicted response r, may simply be thought of as a sin-
gle deterministic request to the replicated service of the
predicated form: if response(Os) = r, then do O.
This predicate must be enforced on the replicas. How-
ever, as shown in Section 5, predicate checking may be
performed by a shim layer between the replication pro-
tocol and the application without modifying the protocol
itself.

Figure 1: PBFT-CS Protocol Communication. The early
response from the primary is shown with a dashed hollow
arrow, which replaces its response from the Reply phase
(dotted filled arrow) in PBFT.

3 Client speculation for PBFT
In this section, we apply our general strategy for support-
ing client speculative execution in replicated services to
the Practical Byzantine Fault Tolerance (PBFT) protocol.
We call the new protocol we develop PBFT-CS (CS de-
notes the additional support for client speculation).

3.1 PBFT overview

PBFT is a Byzantine fault tolerant state machine repli-
cation protocol that uses a primary replica to assign
each client request a sequence number in the serial or-
der of operations. The replicas run a three-phase agree-
ment protocol to reach consensus on the ordering of each
operation, after which they can execute the operation
while ensuring consistent state at all non-faulty repli-
cas. Optionally, the primary can choose and attach non-
deterministic data to each request (for NFS, this contains
the current time of day).

PBFT requires 3f + 1 replicas to handle f concurrent
faulty replicas, which is the theoretical minimum [5].
The protocol guarantees liveness and correctness with
up to f failures, and runs a view change sub-protocol to
move the primary to another replica in the case of a bad
primary.

The communication pattern for PBFT is shown in Fig-
ure 1. The client normally receives a commit after five
one-way message delays, although this may be short-
ened to four delays by overlapping the commit and re-
ply phases using a tentative execution optimization [8].
To reduce the overhead of the agreement protocol, the
primary may collect a number of client requests into a
batch and run agreement once on the ordering of opera-
tions within this batch.

In our modified protocol, PBFT-CS, the primary re-
sponds immediately to client requests, as illustrated by
the dashed line in Figure 1.

3.2 PBFT-CS base protocol

In both PBFT and PBFT-CS, the client sends each re-
quest to all replicas, which buffer the request for execu-
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tion after agreement. Unlike the PBFT agreement proto-
col, the primary in PBFT-CS executes an operation im-
mediately upon receiving a request and sends the early
reply to the client as a speculative response. The primary
then forms a pre-prepare message for the next batch of
requests and continues execution of the agreement proto-
col. Other replicas are unmodified and reply to the client
request once the operation has committed.

Since the primary determines the serial ordering of all
requests, under normal circumstances the client will re-
ceive at least f committed responses from the replicas
matching the primary’s early response. This signifies that
the speculation was correct because the request commit-
ted with the same value as the speculative response. If
the client receives f + 1 matching responses that differ
from the primary’s response, the client rolls back the cur-
rent speculation and resumes execution with the consen-
sus response.

3.2.1 Predicated writes

A PBFT-CS client can issue subsequent requests imme-
diately after predicting a response to an earlier request,
rather than waiting for the earlier request to commit. To
enable this without requiring replicas themselves to spec-
ulate and potentially roll back, PBFT-CS ensures that a
request that modifies state does not commit if it depends
on the value of any incorrect speculative responses. To
meet this requirement, clients must track and propagate
the dependencies between requests.

For example, consider a client that reads a value stored
in a PBFT-CS database (op1), performs some computa-
tion on the data, then writes the result of the computa-
tion back to the database (op2). If the primary returns
an incorrect speculative result for op1, the value to be
written in op2 will also be incorrect. When op1 eventu-
ally commits with a different value, the client will fail its
speculation and resume operation with the correct value.
Although the client cannot undo the send of op2, depen-
dency tracking prevents op2 from writing its incorrect
value to the database.

Each PBFT-CS client maintains a log of the digests dT

of each speculative response issued at logical timestamp
T . When an operation commits, its corresponding digest
is removed from the tail of the log. If an operation aborts,
its digest is removed from the log, along with the digests
of any dependent operations.

Clients append any required dependencies to each
speculative request, of the form {c, �ti, di�, ...} for client
c and each digest di at timestamp ti.

Replicas also store a log of digests for each client with
the committed response for each operation. The replica
executes a speculative request only if all digests in the re-
quest’s dependency list match the entries in the replica’s
log. Otherwise, the replica executes a no-op in place of

the operation.
It is infeasible for replicas to maintain an unbounded

digest log for each client in a long-running system, so
PBFT-CS truncates these logs periodically. Replicas
must make a deterministic decision on when to truncate
their logs to ensure that non-faulty replicas either all ex-
ecute the operation or all abort it. This is achieved by
truncating the logs at fixed deterministic intervals.

If a client issues a request containing a dependency
that has since been discarded from the log, the repli-
cas abort the operation, replacing it with a no-op. The
client recognizes this scenario when receiving a consen-
sus response that contains a special retry result. It retries
execution once all its dependencies have committed. In
practice an operation will not abort due to missing de-
pendencies, provided that the log is sufficiently long to
record all operations issued in the time between a replica
executing an operation and a quorum of responses being
received by the client.

3.2.2 Read-only optimization

Many state machine replication protocols provide a read-
only optimization [1, 8, 11, 22] in which read requests
can be handled by each replica without being run through
the agreement protocol. This allows reads to complete in
a single communication round, and it reduces the load on
the primary.

In the standard optimization, a client issues optimized
read requests directly to each replica rather than to the
primary. Replicas execute and reply to these requests
without taking any steps towards agreement. A client
can continue after receiving 2f + 1 matching replies.
Because optimized reads are not serialized through the
agreement protocol, other clients can issue conflicting,
concurrent writes that prevent the client from receiving
enough matching replies. When this happens, the client
retransmits the request through the agreement protocol.
This optimization is beneficial to workloads that con-
tain a substantial percentage of read-only operations and
exhibit few conflicting, concurrent writes. Importantly,
when a backup replica is located nearer a client than the
primary, that replica’s reply will typically be received by
the client before the primary’s.

PBFT-CS cannot use this standard optimization with-
out modification. A problem arises when a client is-
sues a speculative request that depends on the predicted
response to an optimized read request. PBFT-CS re-
quires all non-faulty replicas to make a deterministic de-
cision when verifying the dependencies on an operation.
However, since optimized reads are not serialized by the
agreement protocol, one non-faulty replica may see a
conflicting write before responding to an optimized read,
while another non-faulty replica sees the write after re-
sponding to the read. These two non-faulty replicas will
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thus respond to the optimized read with different values,
and they will make different decisions when they verify
the dependencies on a later speculative request. A non-
faulty replica that sent a response that matches the first
speculative response received by the client will commit
the write operation, while other non-faulty replicas will
not. Hence, writes may not depend on uncommitted op-
timized reads. This is enforced at each replica by not
logging the response digest for such requests.

We address this problem by allowing a PBFT-CS
client to resubmit optimized read requests through the
full agreement protocol, forcing the replicas to agree on
a common response. When write conflicts are low, the re-
submitted read is likely to have the same reply as the ini-
tial optimized read, so a speculative prediction is likely
to still be correct. After performing this procedure, we
can send any dependent write requests, as they no longer
depend on an optimized request.

There are three issues that must be considered for a
read request to be submitted using this optimization.

• The request cannot read uncommitted state.

• The client should not follow a read with a write.

• The reply should not be completely predictable.
The first issue is required for consistency. A client

cannot optimize a read request for a piece of state before
all its write requests for that state are committed. Other-
wise, it risks reading stale data when a sufficient number
of backup replicas have not yet seen the client’s previous
writes. The data dependency tracking required to imple-
ment this policy is also used to propagate speculations, so
no extra information needs to be maintained. Reads that
do depend on uncommitted data may still be submitted
through the agreement protocol as with write requests.
Should a client desire a simpler policy for ensuring cor-
rectness, it can disable the read-only optimization while
it has any uncommitted writes.

Second, consider a client that reads a value, performs
a computation, and then writes back a new value. If the
read request is initially sent optimized, issuing the write
will force the read to be resubmitted. The “optimization”
results in additional work. Clients that anticipate follow-
ing a read by a write should decline to optimize the read.

Finally, if a client can predict the outcome of the re-
quest before receiving any replies (for instance, if it pre-
dicts that a locally-cached value has not become stale),
then it should submit the request through the normal
agreement protocol. Since the client does not need to
wait for any replies, it is not hurt by the extra latency of
waiting for agreement.

3.3 Handling failures

Speculation optimizes for reduced latency in the non-
failure case, but it is important to ensure that correct-
ness and liveness are maintained in the presence of faulty

replicas. Failed speculations also increase the latency
of a client’s request, forcing it to roll back after having
waited for the consensus response, and hurt throughput
by forcing outstanding requests to become no-ops. It is
important for our protocol to handle faults correctly in a
way that still tries to preserve performance.

A speculation will fail on a client when the first re-
ply it receives to a request does not match the consensus
response. There are three cases in which this might hap-
pen:

• The most common case occurs when a write issued
by another client conflicts with an optimized read.
In an extreme instance, one replica’s early reply
could contain the stale data while all other replicas
reply with current data.

• The second case occurs when there is a view
change. PBFT ensures that committed requests
will be ordered the same in the new view, but
the client is speculating on uncommitted requests
that the new replica could order differently. View
changes may be the result of a bad primary, or they
may be triggered by network conditions or proac-
tive recovery [9].

• The third case occurs when the primary is faulty,
and it either returns an incorrect speculative re-
sponse or serializes a request differently when run-
ning the agreement protocol. We next examine this
scenario further.

It is trivial for a client to detect a faulty primary: a
request’s early reply from the primary and the consensus
reply will be in the same view and not match. If signed
responses are used, the primary’s bad reply can be given
to other replicas as a proof of misbehavior. However, if
simple message authentication codes (MACs) are used,
the early reply cannot be used in this way since MACs
do not provide non-repudiation.

The simplest solution to handling faults with MACs is
for a client to stop speculating if the percentage of failed
speculations it observes surpasses a threshold. PBFT-
CS currently uses an arbitrary threshold of 1%. If a
client observes that the percentage of failed speculations
is greater than 1% over the past n early replies provided
by a replica, it simply ceases to speculate on subsequent
early replies from that replica. Although it will not spec-
ulate on subsequent replies, it can still track their accu-
racy and resume speculating on further replies if the per-
centage falls below a threshold. Our experimental results
verify that at this threshold, PBFT-CS is still effective at
reducing the average latency under light workloads.

3.4 Correctness

The speculative execution environment and PBFT proto-
col used in our system both have well-established cor-
rectness guarantees [7, 28]. We thus focus our attention
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on the modifications made to PBFT, to ensure that this
protocol remains correct.

Our modified version of PBFT differs from the origi-
nal in several key ways:

• A client may be sent a speculative response that
differs from the final consensus value.

• A client may submit an operation that depends on
a failed speculation.

• The primary may execute an operation before it
commits.

We evaluate each modification independently.

Incorrect speculation A bad primary may send an in-
correct speculative response to a client, in that it differs
on the value or ordering of the final consensus value. We
also consider in this class an honest primary that sends a
speculative response to a client but is unable to complete
agreement on this response due to a view change. In ei-
ther case, the client will only see the consensus response
once the operation has undergone agreement at a quorum
of replicas. If the speculative response was incorrect, it
is safe for the client to roll back the speculative execu-
tion and re-run using the consensus value, since PBFT
ensures that all non-faulty replicas will agree on the con-
sensus value.

Dependent operations A further complication arises
when the client has issued subsequent requests that de-
pend on the value of a speculative response. Here, the
speculation protocol on the client ensures that it rolls
back execution of any operations that have dependencies
on the failed speculation. We must ensure that all valid
replicas make an identical decision to abort each depen-
dent operation by replacing it with a no-op.

Replicas maintain a log of the digests for each com-
mitted operation and truncate this log at deterministic
intervals so that all non-faulty replicas have the same
log state when processing a given operation. Predicated
writes in PBFT-CS allow the client to express the specu-
lation dependencies to the replicas. A non-faulty replica
will not execute any operation that contains a depen-
dency that does not match the corresponding digest in
the log, or that does not have a matching log entry. Since
the predicated write contains the same information used
by the client when rolling back dependent operations, the
replicas are guaranteed to abort any operation aborted by
the client. If a client submits a dependency that has since
been truncated from the log, it will also be aborted.

The only scenario where replicas are unable to de-
terministically decide whether a speculative response
matches its agreed-upon value is when a speculative re-
sponse was produced using the read-only optimization.
Here, different replicas may have responded with differ-
ent values to the read request. We explicitly avoid this
case by making it an error to send a write request that de-

pends on the reply to an optimized read request; correct
clients will never issue such a request. Replicas do not
store the responses to optimized reads in their log and
hence always ignore any request sent by a faulty client
with a dependency on an optimized read.

Speculative execution In our modified protocol, the
primary executes client requests immediately upon their
receipt, before the request has undergone agreement. The
agreement protocol dictates that all non-faulty replicas
commit operations in the order proposed by the primary,
unless they execute a view change to elect a new pri-
mary. After a view change, the new primary may reorder
some uncommitted operations executed by the previous
primary, however, the PBFT view change protocol en-
sures that any committed operations persist into the new
view. It is safe for the old primary to restore its state to
the most recent committed operation since any incorrect
speculative response will be rolled back by clients where
necessary.

4 Discussion and future optimizations
In this section, we further explore the protocol design
space for the use of client speculation with PBFT. We
compare and contrast possible protocol alternatives with
the PBFT-CS protocol that we have implemented.

4.1 Alternative failure handling strategies

We considered two alternative strategies for dealing with
faulty primaries. First, we could allow clients to request
a view change without providing a proof of misbehav-
ior. This scheme would seem to significantly compro-
mise liveness in a system containing faulty clients since
they can force view changes at will. However, this is an
existing problem in BFT state machine replication in the
absence of signatures. A bad client in PBFT is always
able to force a view change by sending a request to the
primary with a bad authenticator that appears correct to
the primary or by sending different requests to different
replicas [7]. We could mitigate the damage a given bad
client can do by having replicas make a local decision to
ignore all requests from a client that ‘framed’ them. In
this way a bad client can not initiate a view change after
incriminating f primaries.

Alternatively, we could require signatures in commu-
nications between client and replicas. This is the most
straight-forward solution, but entails significant CPU
overhead. Compared to these two alternative designs,
we chose to have PBFT-CS revert to a non-speculative
protocol due to the simplicity of the design and higher
performance in the absence of a faulty primary.

4.2 Coarse-grained dependency tracking

PBFT-CS tracks and specifies the dependencies of a
speculative request at fine granularity. Thus, message
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size and state grow as the average number of dependen-
cies for a given operation increases. To keep message
size and state constant, we could use coarser-grained de-
pendencies.

We could track dependencies on a per-client basis by
ensuring that a replica executes a request from a client at
logical timestamp T only if all outstanding requests from
that client prior to time T have committed with the same
value the client predicted.

Instead of maintaining a list of dependencies, each
client would instead store a hash chained over all consen-
sus responses and subsequent speculative responses. The
client would append this hash to each operation in place
of the dependency list. The client would also keep an-
other hash chained only over consensus responses, which
it would use to restore its dependency state after rolling
back a failed speculation.

Each replica would maintain a hash chained over re-
sponses sent to the client and would execute an opera-
tion if the hash chain in the request matches its record of
responses. Otherwise, it would execute a no-op.

We chose not to use this optimization in PBFT-CS
since the use of chained hashes creates dependencies be-
tween all operations issued by a client even when no
causal dependencies exist. This increases the cost of a
failed speculation since the failure of one speculative re-
quest causes all subsequent in-progress speculative oper-
ations to abort. Coarse-grained dependency tracking also
limits the opportunities for running speculative read op-
erations while there are active speculative writes. Since
speculative read responses are not serialized with respect
to write operations, it is likely that the client will insert
the read response in the wrong point in the hash chain,
causing subsequent operations to abort.

4.3 Reads in the past

A read-only request need not circumvent the agree-
ment protocol completely, as described in section 3.2.2.
A client can instead take a hybrid approach for non-
modifying requests: it can submit the request for full
agreement and at the same time have the nearest replica
immediately execute the request.

If the primary happens to be the nearest to the client,
this is not a change from the normal protocol. When an-
other replica is closer, the client can get a lower-latency
first reply, plus having agreement eliminates the second
consideration for optimized reads (in Section 3.2.2), that
a client should not follow a read with a write.

However, this new optimization presents a problem
when there are concurrent writes by multiple clients. A
non-primary replica will execute an optimized request,
and a client will speculate on its reply, in a sequential or-
der that is likely different from the request’s actual order
in the agreement protocol. In essence, the read has been
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Figure 2: Speculative fault-tolerant NFS architecture

executed in the past, at a logical time when the replicas
have not yet processed all operations that are undergoing
agreement but when they still share a consistent state.

We could extend the PBFT-CS read-only optimization
to also allow reads in the past. Under a typical configu-
ration, there is only one round of agreement executing at
any one time, with incoming requests buffered at the pri-
mary to run in the next batch of agreement. If we were to
ensure that all buffered reads are reordered, when possi-
ble, to be serialized at the start of this next batch, it would
be highly likely that no write will come between a read
being received by a replica and the read being serialized
after agreement.

Note that the primary may assign any order to requests
within a batch as long as no operation is placed before
one on which it depends. Recall that a PBFT-CS client
will only optimize a read if the read has no outstanding
write dependencies. Hence, the primary is free to move
all speculative reads to the start of the batch. The primary
executes these requests on a snapshot of the state taken
before the batch began.

5 Implementation
We modified Castro and Liskov’s PBFT library, lib-
byz [8], to implement the PBFT-CS protocol described
in Section 3. We also modified BFS [8], a Byzantine-
fault-tolerant replicated file service based on NFSv2, to
support client speculation. The overall system can be
divided into three parts as shown in Figure 2: the NFS
client, a protocol relay, and the fault-tolerant service.

5.1 NFS client operation

Our client system uses the NFSv2 client module of
the Speculator kernel [28], which provides process-level
support for speculative execution. Speculator supports
fine-grained dependency tracking and checkpointing of
individual objects such as files and processes inside the
Linux kernel. Local file systems are speculation-aware
and can be accessed without triggering an output com-
mit. Speculator buffers external output to the termi-
nal, network, and other devices until the speculations on
which they depend commit. Speculator rolls back pro-
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cess and OS state to checkpoints and restarts execution if
a speculation fails.

To execute a remote NFS operation, Speculator first
attaches a list of the process’s dependencies to the mes-
sage, then sends it to a relay process on the same ma-
chine. The relay interprets this list and attaches the cor-
rect predicates when sending the PBFT-CS request.

The relay brokers communication between the client
and replicas. It appears to be a standard NFS server to
the client, so the client need not deal with the PBFT-CS
protocol. When the relay receives the first reply to a 1-
reply speculation, the reply is logged and passed to the
waiting NFS client. The NFS client recognizes specula-
tive data, creates a new speculation, and waits for a con-
firmation message from the relay. Once the consensus
reply is known, the relay sends either a commit mes-
sage or a rollback{reply} message containing the
correct response.

Our implementation speculates based on 0 replies for
GETATTR, SETATTR, WRITE, CREATE, and REMOVE calls.
It can speculate on 1 reply for GETATTR, LOOKUP, and
READ calls. This list includes the most common NFS
operations: we observed that at least 95% of all calls in
all our benchmarks were handled speculatively. Note that
we speculate on both 0 replies and 1 reply for GETATTR
calls. The kernel can speculate as soon as it has attributes
for a file. When the attributes are cached, 0 replies are
needed, otherwise, the kernel waits for 1 reply before
continuing.

5.2 PBFT-CS client operation

Speculation hides latency by allowing a single client to
pipeline many requests; however, our PBFT implemen-
tation only allows for each PBFT-CS client to have a sin-
gle outstanding request at any time. We work around
this limitation by grouping up to 100 logical clients into
a single client process.

NFS with 0-reply speculation requires its requests to
be executed in the order they were issued. A PBFT-CS
client process can tag each request with a sequence num-
ber so that the primary replica will only process requests
from that client process’s logical clients in the correct or-
der. Of course, two different clients’ requests can still be
interleaved in any order by the primary.

To support this additional concurrency, we designed
the client to use an event-driven API. User programs pass
requests to libbyz and later receive two callbacks: one
delivers the first reply and another delivers the consensus
reply. The user program is responsible for monitoring
libbyz’s communication channels and timers.

5.3 Server operation

On the replicas, libbyz implements an event-based server
that performs upcalls into the service when needed: to re-
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Overhead Source Slowdown
Early replies 8.2%

Larger request 4.1%
Complex client 2.8%

Predicate checking 1.8%

Table 1: Major sources of overhead affecting throughput
for PBFT-CS relative to PBFT.

quest non-deterministic data, to execute requests, and to
construct error replies. The library handles all commu-
nication and state management, including checkpointing
and recovery.

A shim layer is used to manage dependencies on repli-
cas. When writes need to be quashed due to failed specu-
lative dependencies, the shim layer issues a no-op to the
service instead. Thus, the underlying service is not ex-
posed to details of the PBFT-CS protocol.

The primary will batch together all requests it receives
while it is still agreeing on earlier requests. Batch-
ing is a general optimization that reduces the number
of protocol instances that must be run, decreasing the
number of communications and authentication opera-
tions [8, 22, 23, 37]. This implementation imposes a
maximum batch size of 64 requests, a limit our bench-
marks do run up against.

6 Evaluation
In this section, we quantify the performance of our
PBFT-CS implementation. We have implemented a sim-
ple shared counter micro-benchmark and several NFS
micro- and macro-benchmarks.

We compare PBFT-CS against two other Byzan-
tine fault-tolerant agreement protocols: PBFT [8] and
Zyzzyva [22]. PBFT is the base protocol we extend make
use of client speculation. Its overall structure is illus-
trated in Figure 1. We use the tentative reply optimiza-
tion, so each request must go through 4 communication
phases before the client acquires a reply that it can act on.
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Figure 4: Time taken to run 2000 updates using the
shared counter service. The primary-local topology (a)
shows a client located at the same site as the primary.
The uniform topology (b) shows a remote client equidis-
tant from all sites. 0 ms (LAN) times for both graphs are
(in bar order): 0.36 s, 0.27 s, 0.41 s, 0.54 s, and 0.16 s.

PBFT uses an adaptive batching protocol, allowing up to
64 requests to be handled in one agreement instance.

Zyzzyva is a recent agreement protocol that is heavily
optimized for failure-free operation. When all replicas
are non-faulty (as in our experiments), it takes only 3
phases for a client to possess a consensus reply. We run
Kotla et al.’s implementation of Zyzzva, which uses a
fixed batch size. We simulate an adaptive batching strat-
egy by manually tuning the batch size as needed for best
performance.

By comparison, a PBFT-CS client can continue exe-
cuting speculatively after only 2 communication phases.
We expect this to significantly reduce the effective la-
tency of our clients. Note that requests still require 4
phases to commit, but we can handle those requests con-
currently rather than sequentially. If we limit the number
of in-flight requests to some number n, we call the pro-
tocol “PBFT-CS (n).”

6.1 Experimental setup

Each replica machine uses a single Intel Xeon 2.8 GHz
processor with 512 MB RAM (sufficient for our appli-
cations). We always evaluate using four replicas without
failures (unless noted). In our NFS comparisons, we use
a single client that is identical in hardware to the replicas.
Our counter service runs on an additional five client ma-
chines using Intel Pentium 4s or Xeons with clock speeds
of 3.06–3.20 GHz and 1 GB RAM. All systems use a
generic Red Hat Linux 2.4.21 kernel.

Our machines use gigabit Ethernet to communicate di-
rectly with a single switch. Experiments using the shared
counter service were performed on a Cisco Catalyst 2970
gigabit switch; NFS used an Intel Express ES101TX

10/100 switch.
Our target usage scenario is a system that consists of

several sites joined by moderate latency connections (but
slower than LAN speeds). Each site has a high-speed
LAN hosting one replica and several clients, and clients
may also be located off-site from any replica. For com-
parison with other agreement protocols, we also consider
using PBFT-CS in a LAN setting where all replicas and
clients are on the same local segment.

Based on the above scenarios, we emulate a simpli-
fied test network using NISTNet [6] that inserts an equal
amount of one-way latency between each site. We let this
inserted delay be either 2.5 ms or 15 ms.

We also measure performance at clients located in dif-
ferent areas in our scenario. In the primary-local topol-
ogy, the client is at the same site as the current primary
replica. The primary-remote topology considers a client
at different site hosting a backup replica. A client not
present at any site is shown in the uniform topology, and
we let the client have the same one-way latency to all
replicas as between sites.

When comparing against a service with no replication
in a given topology, we always assume that a client at a
site can access its server using only the LAN. A client
not at a site is still subject to added delay.

6.2 Counter throughput

We first examine the throughput of PBFT-CS using the
counter service. Similar to Castro and Liskov’s standard
0/0 benchmark [8], the counter’s request and reply size
are minimal. This service exposes only one operation:
increment the counter and return its new value. Each
reply contains a token that the client must present on its
next request. This does add a small amount of processing
time to each request, but it ensures that client requests
must be submitted sequentially.

Our client is a simple loop that issues a fixed num-
ber of counter updates and records the total time spent.
No state is externalized by the client, so we allow the
client process to implement its own lightweight check-
point mechanism. Checkpoint operations take negligible
time, so our results focus on the characteristics of the
protocol itself rather than our checkpoint mechanism.

We measure throughput by increasing the number of
client processes per machine (up to 17 processes) until
the server appears saturated. Graphs show the mean of at
least 6 runs, and visible differences are statistically sig-
nificant.

Figure 3 shows the measured throughput in a LAN
configuration. We found that in this topology, a sin-
gle PBFT-CS client gains no benefit from having more
than 4 concurrent requests, and we enforce that limit
on all clients. When we have 12 or fewer concur-
rent clients, PBFT-CS has 1.19–1.49× higher through-
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Figure 5: Read-only NFS micro-benchmark performance across different network topologies. The last three data sets
use 0-reply speculation. At 0 ms, all three topologies are equivalent, so the same data is used for each graph. The no
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put than Zyzzyva and 1.79–2× higher throughput than
PBFT.

In lightly loaded systems, the servers are not being
fully utilized, and speculating clients can take advantage
of the spare resources to decrease their own effective la-
tency. As the server becomes more heavily loaded, those
resources are no long free to use. As a result, PBFT-CS
reaches its peak throughput before other protocols.

There is a trade-off of throughput for latency: PBFT-
CS shows a peak throughput that is 17.6% lower than
PBFT. We found four fundamental sources of overhead,
summarized in Table 1. First, the client implementa-
tion for PBFT-CS uses an event-driven system to han-
dle several logical clients, needed to support concurrent
requests. This design does lead to a slower client than
the one in PBFT, which can get by with a simpler block-
ing design. Second, we found that having the primary
send early replies increases its time spent blocking while
transmitting. Third, each predicate added to a request
makes the request packet larger, and fourth, those predi-
cates take additional work to verify on each replica.

6.3 Counter latency

We next examine how latency affects client performance
under a light workload when the client is located at dif-
ferent sites. Figure 4 shows the time taken for a single
counter client to issue 2000 requests in different topolo-
gies. In the LAN topology where no delay is added, a
PBFT-CS client is able to complete the benchmark in
33% less time than PBFT, reflecting average run times
of 357 ms and 538 ms respectively. When we increase
the latency between sites, run time becomes dominated
by number of communication phases. With a uniform
topology (Figure 4b), PBFT-CS takes 50% less time than

PBFT and 33% less time than Zyzzyva, and its runtime
is only 1% slower than the unreplicated service. This
matches our intuitive understanding of the protocol be-
havior described at the start of this section.

For PBFT-CS, the critical path is a round-trip commu-
nication with the primary replica. Moving to a primary-
remote topology (bringing one backup replica closer)
does not affect this critical path, and our measurements
show no significant difference between primary-remote
and uniform topologies.

Figure 4a presents results when using a primary-local
topology. As latency increases and backup replicas move
further from the client, performance does not degrade
significantly, since the latency to the primary is fixed.
At 15 ms latency, a client using PBFT takes 58× longer
than with PBFT-CS. The combination of client specu-
lation and a co-located primary achieves much of the
performance benefit of a closely located non-replicated
server, while providing all the guarantees of a geograph-
ically distributed replicated service that tolerates Byzan-
tine faults.

These significant gains are directly attributable to
the increased concurrency possible in the primary-local
topology. When we limit PBFT-CS to only 4 outstanding
requests, the client must then wait on requests to commit,
reintroducing a dependence on communication delay. In
topologies where the client does not have privileged ac-
cess to the primary, as in the uniform topology, limiting
concurrency has little effect.

6.4 NFS

We next examine PBFT-CS applied to an NFS server.
Considering that the NFSv2 protocol is not explicitly
designed for high-latency environments, we compare
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Figure 6: Write-only NFS micro-benchmark.
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Figure 7: Read/Write NFS micro-benchmark.

against the variation of NFS that uses 0-reply specula-
tion. All benchmarks begin with a freshly-mounted file
system and an empty cache.

Unlike the counter service, this application has over-
head associated with creating, committing, and rolling
back to a checkpoint. Processes may have computation
to perform between requests, and they may need to block
before an output commit.

For comparison with non-speculative systems, we
measure the performance of NFS under PBFT. Using
our speculative NFS protocol, we measure PBFT using
only 0-reply speculation (PBFT + 0-spec) and PBFT-CS.
The difference between these two measurements show
the benefit of 1-reply speculation. As a lower bound, we
also measure the performance of a non-replicated NFS
server that uses 0-reply speculation (No rep + 0-spec).

We use a vanilla kernel for evaluating non-speculative
PBFT with a slight modification that increases the num-
ber of concurrent RPC requests allowed. Other bench-
marks use the Speculator kernel.

In the no replication configuration, the NFS client uses
a thin UDP relay on the local machine that stands in for

the BFT relay.
Our modifications to the NFS client, the relay, and

the replicated service have introduced additional over-
head that is not present in the original PBFT. This inef-
ficiency is particularly apparent in our 0 ms topologies,
where PBFT-CS shows a 1.03–2.18× slowdown relative
to PBFT across all our benchmarks. However, in all
cases at higher latencies, client speculation results in a
clear improvement, and we primarily address these con-
figurations in the following sections.

At the time of publication, we had not yet ported our
NFS server to use the Zyzzyva protocol, so we regret-
fully are unable to provide a direct comparison for these
benchmarks.

All graphs show the mean of at least five measure-
ments. Error bars are shown when the 95% confidence
interval is above 1% of the mean value.

6.5 NFS: Read-only micro-benchmark

We first ran a read-only micro-benchmark that greps
for a common string within the Linux headers. The total
size of the searched files is about 9.1 MB. Most requests
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Figure 8: The Apache build NFS benchmark measures how long it takes to compile and link Apache 2.0.48.

in this benchmark are read-only and are optimized to cir-
cumvent agreement.

Figure 5 shows that PBFT takes 2.06× longer to com-
plete than PBFT-CS at 15 ms. 0-reply speculation lets the
client avoid blocking when revalidating a file after open-
ing it. With PBFT-CS, we can additionally read from
a file without delay: a nearby replica supplies all the
speculative data. Without a nearby replica (in uniform
topology), 1-reply speculation is not beneficial since op-
timized reads complete at about the same time the client
gets its first reply.

6.6 NFS: Write-only micro-benchmark

We next ran a write-only micro-benchmark that writes
3.9 MB into an NFS file (Figure 6). All writes are issued
asynchronously by the file system, and the client only
blocks when the file is closed. In this case, speculation is
not needed to increase the parallelism of the system.

There are a very small number of read requests in this
benchmark, issued when first opening a file, so there
is no practical opportunity to use 1-reply speculation.
Speculation at 2.5 ms reduces the benchmark run time
by only 6–7%. We found that within each latency (ir-
respective of topology), there is no statistical difference
between PBFT+0-spec and PBFT-CS.

6.7 NFS: Read/write micro-benchmark

We next ran a read/write micro-benchmark that creates
100 4 KB files in a directory. For each file, the client
creates and writes to a file; this includes read-only op-
erations to read the directory entries. PBFT-CS never
blocks on any of these operations.

In the primary-local topology, PBFT takes up to 19×
longer to complete than PBFT-CS (Figure 7). Further-
more, PBFT-CS shows a resilience to changes in latency
as it increases from 0-15 ms: PBFT-CS execution time
doubles while PBFT takes 59× longer. On the primary-
remote and uniform topologies, operations take longer to

complete, but client speculation still speeds up run time
by 6.03×.

6.8 NFS: Apache build macro-benchmark

Finally, we ran a benchmark that compiles and links
Apache 2.0.48. This emulates the standard Andrew-style
benchmark that has been widely used in the PBFT liter-
ature. This is intended to model a realistic and common
workload, where speculation allows significant compu-
tation to be overlapped with I/O.

Within the primary-local topology, PBFT takes up to
5.0× longer to complete than PBFT-CS (Figure 8). In
the uniform topology, PBFT takes up to 2.2× longer than
PBFT-CS. Since files are often reused many times during
the build process, there is less opportunity to benefit from
1-reply speculation. However, the relative difference in
performance degradation as latency increases is still sig-
nificant. With a co-located primary, PBFT-CS becomes
4.3× slower as delay increases to 15 ms, while PBFT
slows down by a factor of 25.

6.9 Cost of failure / faulty primary

To measure the cost of speculation failures, we mod-
ified our PBFT-CS relay to inject faulty digests into
early replies, simulating a primary that returns corrupted
replies at a rate of 1%. Any speculation based on a
corrupted reply will eventually be rolled back, and any
dependent requests will be turned into no-ops on good
replicas.

The results of this experiment are presented in Fig-
ure 9. We used the Apache build benchmark in the
primary-local topology. The injected faults were respon-
sible for slowdowns in PBFT-CS of 3%, 9%, and 29% at
0 ms, 2.5 ms, and 15 ms delay respectively.

These slowdowns are not identical because a client
may have a greater number of requests in the pipeline
for completion at a 15 ms delay than at a 0 ms delay.
When one request fails, nearly all outstanding requests
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Figure 9: For the Apache build benchmark in the
primary-local topology, PBFT-CS is at worst 29% slower
when 1% of its speculations fail.

also fail. We observed that 1% of our speculations failed
directly, and an additional 1%, 4%, and 5% of specula-
tions (at 0 ms, 2.5 ms, and 15 ms respectively) failed due
to their dependencies. These extra requests added unnec-
essary load to the replicas. By executing more requests in
advance, clients must roll back a larger amount of state.

As discussed in section 3.3, once a client detects that
1% of requests are failing, it can stop trusting the primary
to provide good first replies and disable its own specula-
tion. If replies are signed, each primary can cause only a
single failed speculation, and the resulting view change
will dominate recovery time. For reference, over 100
failed speculations in this benchmark result from a 1%
failure rate.

7 Related work
This paper contributes the first detailed design for apply-
ing client speculative execution to replicated state ma-
chine protocols. It also provides the first design and im-
plementation that uses client speculation to hide latency
in PBFT [8].

Speculator [28] was originally used to hide latency in
distributed file systems, and thus our work shares many
of Speculator’s original goals. Speculator’s distributed
file system application assumes the existence of a cen-
tral file server that always knows ground truth. No such
entity exists in a replicated state machine. For instance,
non-faulty replicas may disagree about the ordering of
read-only requests as discussed in Section 3.2.2. Prior to
this paper, Speculator was only used to speculate on zero
replies. The possibility of also speculating on a single
reply opens up several potential protocol optimizations
that we have explored, including the possibility of gen-
erating early replies and optimizing agreement protocols
for throughput.

Speculative execution is a general computer science

concept that has been successfully applied in hardware
architecture [15, 17, 35], distributed simulations [19],
file I/O [10, 16], configuration management [36], dead-
lock detection [26], parallelizing security checks [29],
transaction processing [20] and surviving software fail-
ures [12, 31]. This work contributes by applying specu-
lation to another domain, replicated state machines.

There has also been extensive prior work in the de-
velopment of replicated state machines, both in the fail-
stop [24, 30, 34] and Byzantine [1, 8, 11, 21, 22, 32, 37]
failure models. While Byzantine fault tolerance in par-
ticular has been an area of active research, it has seen
relatively limited deployment due to its perceived com-
plexity and performance limitations.

Our client-side speculation techniques apply equally
well to reducing latency in both fail-stop and Byzantine
fault tolerance protocols. However, they are particularly
useful for protocols that tolerate Byzantine faults due to
the higher latencies of such protocols.

PBFT [8] provides a canonical example of a Byzan-
tine fault-tolerant replicated state machine, using multi-
ple phases of replica-to-replica agreement to order each
operation. Several systems since PBFT have aimed to re-
duce the latency in ordering client operations, typically
by optimizing for the no-failure case [22] or for work-
loads with few concurrent writes [1, 11].

Byzantine quorum state machine replication protocols
such as Q/U [1] build upon earlier work in Byzantine
quorum agreement [3, 4, 13, 27], and provide lower la-
tency in the optimal case. Q/U is able to respond to write
requests in a single phase, provided that there are no
write operations by other clients that modify the service
state; inconsistent state caused by other clients requires a
costly repair protocol. HQ [11] aimed to reduce the cost
of repair, and reduces the number of replicas required in
a Byzantine Quorum system from 5f +1 to 3f +1, but it
introduces an additional phase to the optimized protocol.

Agreement protocols that use a primary replica are
able to batch multiple requests into a single agreement
operation, greatly reducing the overhead of the proto-
col and increasing throughput. While our protocol ap-
plies to both quorum and agreement protocols, the higher
throughput offered by batched agreement, along with re-
silience during concurrent write workloads, makes them
a better match for our techniques.

Our work on client speculation complements the
server-side use of speculation in Zyzzyva [22]. In
Zyzzyva, replicas execute operations speculatively based
on an ordering provided by the primary, while in our sys-
tem clients speculate based on an early response from the
primary (or on 0 replies), with replicas executing only
committed operations. These two approaches are com-
plementary. Client speculation allows a client to issue a
subsequent operation after only a single phase of com-
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munication with the primary, which is especially helpful
for geographically dispersed deployments where some
replicas are far from the client. Server speculation speeds
up how fast replicas can supply a consensus response
to the client, which would allow clients in our system
to commit speculations faster. While we have evalu-
ated client speculation on the PBFT protocol, it would
apply equally well to Zyzzyva, where the client can re-
ceive early speculative and consensus responses, in the
absence of failures.

8 Conclusions and future work
Replicated state machines are an important and widely-
studied methodology for tolerating a wide range of
faults. Unfortunately, while replicas should be dis-
tributed geographically for maximum fault tolerance,
current replicated state machine protocols tend to mag-
nify the effects of the long network latencies associated
with geographic distribution. In this paper, we have
shown how to use speculative execution at clients of a
replicated service to reduce the impact of network and
protocol latency. We outlined a general approach to us-
ing client speculation with replicated services, then im-
plemented a detailed case study that applies our approach
to a standard fault tolerant protocol (PBFT).

In the future, we hope to apply client speculation to
a wider range of protocols and services. For example,
adding client speculation to a protocol that uses server
speculation [22] should allow clients to commit specula-
tions faster. It may also be possible to apply client spec-
ulation to protocols that use more complex replication
schemes, such as erasure encoding [18], although clients
of such protocols may require more than one reply to
predict the final response with high probability.
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Abstract
Increasingly people manage and share information
across a wide variety of computing devices from cell
phones to Internet services. Selective replication of
content is essential because devices, especially portable
ones, have limited resources for storage and communica-
tion. Cimbiosys is a novel replication platform that per-
mits each device to define its own content-based filtering
criteria and to share updates directly with other devices.

In the face of fluid network connectivity, redefinable
content filters, and changing content, Cimbiosys ensures
two properties not achieved by previous systems. First,
every device eventually stores exactly those items whose
latest version matches its filter. Second, every device
represents its replication-specific metadata in a compact
form, with state proportional to the number of devices
rather than the number of items. Such compact repre-
sentation results in low data synchronization overhead,
which permits ad hoc replication between newly encoun-
tered devices and frequent replication between estab-
lished partners, even over low bandwidth wireless net-
works.

1 Introduction
Delivering information that is relevant to different
people—or is appropriate for different devices—requires
system support for a richer notion of data synchroniza-
tion, one that incorporates personalized content filtering.
In many social and work settings, where bandwidth, stor-
age, and human attention may be at a premium, filtering
enables information to spread according to interests and
requirements. Personal information needs do not always
adhere to the rigid organizational structures imposed by
data providers [3], but rather can often be characterized
by flexible query-like predicates over the contents of di-
verse data collections.

At the same time, timely and robust information shar-
ing cannot always rely on established Internet connectiv-
ity or depend on centrally managed storage. Communi-
cation between devices may be ad hoc, taking advantage
of the proximity of neighboring devices and the avail-
ability of particular content. For example, in the wake of
Hurricane Katrina, disaster workers needed to quickly set
up ad hoc networks in which communication and control
were distributed and egalitarian [5].

In this paper, we present Cimbiosys, a replicated stor-
age platform designed to support collaboration within
loosely-organized communities with applications such as
home media management and shared calendars and to fa-
cilitate the interplay between mobile devices and cloud-
based services. The main contribution of this work is
demonstrating how to permit content-based partial repli-
cation among peers while providing two important sys-
tem properties:

• Eventual filter consistency: Each device eventually
stores precisely those items that would be returned
by running its custom filter query against the full
data collection.

• Eventual knowledge singularity: The state that is
transmitted between devices in synchronization re-
quests and is used to identify unknown latest ver-
sions converges to a size that is proportional to the
number of replicas in the system rather than the
number of stored items.

Eventual consistency has long been demanded by ap-
plications and provided in replicated systems. Ensuring
eventual filter consistency in a system that permits peer-
to-peer synchronization between devices with individual,
content-based filters is more challenging. Not only may
a device’s interest in specific items fluctuate over time
as the items are updated, but a device may vary its fil-
tering criteria, causing items with stable contents to en-
ter and leave the device’s interest set. The next section
expands on the substantial challenges of content-based
partial replication.

Eventual knowledge singularity is a new property
we have defined to convey the importance of compact
synchronization-specific state in making economical use
of bandwidth and system resources. Essentially, even-
tual filter consistency is an important correctness prop-
erty while knowledge singularity is hidden from appli-
cations but provides performance and convergence ben-
efits. In particular, this property allows Cimbiosys to
use brief intervals of connectivity between peer devices
and permits more frequent exchanges between regular
synchronization partners, thereby reducing convergence
delays. By contrast, conventional synchronization tech-
niques that exchange per-item version vectors or rely on
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Figure 1: Photo sharing

operation logs make less effective use of relatively slow
or intermittent connections. In such systems, the data ex-
changed during synchronization is roughly proportional
to the collection size or dependent on the update rate; this
limitation becomes important as collection sizes grow
into the tens of thousands of items and items are updated
repeatedly.

2 Challenges
To further illustrate the needs of applications that manage
partially replicated data, consider the photo sharing sce-
nario depicted in Figure 1. Alice is traveling in Thailand,
photoblogging as she goes. Each night, the day’s photos
are copied from Alice’s camera to her laptop. When she
reaches a town with an Internet café, she uploads select
photos to her Flickr account. After Alice returns from her
trip, her photos are synchronized with the master collec-
tion on her PC. She spends several weeks working with
her new photos on the PC, rating them using one to five
stars, adding additional tags, and cropping or retouching
photos. Five-star photos are uploaded via a direct WiFi
connection to her living room’s photo frame. Photos that
Alice tags “public” are uploaded to a travel photoset on
Flickr and onto a photojournalism web site. A copy of all
of her family photos are retained on her laptop, so she’ll
have them with her when she travels again.

This scenario reveals an implicit set of requirements
for a modern storage platform:

• Updates may originate from multiple sites and pro-
duce new versions of items that must be selectively
disseminated to various devices.

• Interdevice communication may be ad hoc, taking
advantage of device proximity and the availability
of particular content.

• Not all devices (or even cloud-resident services)
store complete collections, and the items of inter-
est vary across devices according to their uses and
capabilities.

At first blush, adding content-based filtering to a repli-
cation protocol may seem straightforward. Start with any
protocol that fully replicates data and guarantees even-
tual consistency. Whenever a data item is about to be sent
via this protocol, check the contents of the item against
the destination device’s filter. If the item matches, and
hence is of interest to the destination, then continue to
send the item; if it does not match, then ignore the item.
Unfortunately, this simple scheme does not ensure even-
tual filter consistency.

Content-based filtering for devices with arbitrary com-
munication topologies introduces five key challenges:

• effective connectivity: ensuring, in the face of vary-
ing device-specific filters, that every item has a path
by which it can flow to all interested parties;

• partial synchronization: permitting incremental
synchronization between peers with overlapping
interests without wasting bandwidth on duplicate
items or excessive exchanges of metadata;

• item move-outs: informing devices of items they
store that no longer match their filters due to more
recent updates;

• out-of-filter updates: determining how to propagate
and when to safely discard updated items that do not
match the updating device’s own filter; and

• filter changes: allowing a device to modify its fil-
ter without completely discarding previously stored
items or failing to receive items that match its new
filter.

Unless these issues are explicitly addressed by the
replication protocol design, they can prevent eventual fil-
ter consistency. We now describe each of these problems
in more detail; solutions are presented in later sections.

A synchronization topology can be viewed as a graph
where devices (or services) are the nodes, and edges in-
dicate synchronization partnerships between pairs. Cus-
tom synchronization topologies that permit indirect com-
munication between devices are desirable; Alice’s photo
frame never directly synchronizes with her camera, for
instance. In a fully replicated system, eventual consis-
tency can be achieved as long as the topology graph is
connected and devices at least occasionally synchronize
with their neighbors. As long as these basic conditions
are met, topology-independent protocols accomodate ar-
bitrary communication patterns. In a system with par-
tially replicated collections, additional issues arise. For
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example, in the scenario in Figure 1, if Alice’s home
PC never directly synchronized with her laptop, then the
only path for routing new, tagged photos from Alice’s
laptop to her PC would be through services in the cloud,
such as Flickr. In this case, the PC would only receive
laptop-resident photos that are tagged as “public” and,
hence, have been uploaded to a photo-sharing service.
Section 7 discusses the topology constraints enforced by
Cimbiosys to ensure effective connectivity.

The problem of partial synchronization arises when a
device synchronizes from a partner that can only supply
some of the items that match the device’s filter. For ex-
ample, while Alice is traveling and uploading select pho-
tos to Flickr, her home PC may synchronize daily with
the service and obtain these new photos. When Alice re-
turns home and her laptop synchronizes directly with her
PC, the PC should not assume that it has already received
from Flickr any photos taken more than a day ago. In
general, a device may receive some items that match its
filter from one synchronization partner and other items
of interest from other partners. Section 4.2 introduces
the notion of item-set knowledge to deal with this issue.

An item is said to move out of a device’s interest set
when an update to the item causes it to no longer match
the device’s filter. For example, suppose that Alice de-
cides that one of her public photos is a bit too revealing,
and so she edits the photo on her PC to remove the “pub-
lic” tag. Using the simple replication approach outlined
earlier, this updated photo would not be sent to Flickr
when it next synchronizes with Alice’s PC. However, the
previous version of this photo, the one marked as pub-
lic, would remain indefinitely on Flickr’s web site, con-
trary to Alice’s intentions (and violating eventual filter
consistency). Replication protocols that support content-
based filtering not only must selectively propagate up-
dated items but also must inform devices of items that
should be discarded. Section 5.1 indicates the conditions
under which Cimbiosys delivers move-out notifications
during synchronization.

The fourth challenge is dealing with out-of-filter up-
dates. A device might update an item producing a ver-
sion that does not match the device’s own filter. For ex-
ample, suppose that Alice is working on her laptop and
edits one of her private photos to remove the “family”
tag (perhaps a photo of her sister’s ex-husband). In this
case, Alice’s laptop cannot discard the photo immedi-
ately, even though it does not match the laptop’s filter,
since doing so would prevent other devices from learning
of this edit; the photo can only be discarded by the laptop
after it synchronizes with the home PC and sends it the
new version. In some situations, none of a device’s reg-
ular synchronization partners may be interested in out-
of-filter updates that it makes. Section 5.2 addresses this
issue.

A final challenge arises from the need to support
changing filters. A person’s information needs may vary
over time, causing her to change some devices’ filters.
For example, Alice might decide one day that she wants
only 5-star photos uploaded to the photojournalism web
site rather than all of her public photos. One option is for
a device, upon a change to its filter, to discard all of its lo-
cally stored items, reset its synchronization state, and es-
sentially restart as a new replica. However, this approach
wastes critical resources, such as network bandwidth and
energy, and may disrupt the person’s work. Section 5.3
details our approach to filter changes.

3 Cimbiosys Platform
Cimbiosys is a platform developed to support a variety
of applications that manage data on mobile devices, per-
sonal computers, and cloud-based services. It was de-
veloped as part of a research project exploring issues in
community information management (CIM).

3.1 System model
In the Cimbiosys distributed architecture, each partici-
pating node, hereafter simply called a device, stores full
or partial copies of one or more data collections. A
collection, for instance, might be an individual’s digital
photo album, a family’s calendar, a shared video library,
or a company’s customer database. Each collection is
managed separately and consists of a set of items that are
not shared with other collections.

An item is an XML object plus an optional associ-
ated file. For example, a photo item stores its JPEG
data in a conventional file and the associated XML object
holds descriptive information, such as when the photo
was taken, its resolution, a quality rating, and human-
supplied keywords.

A replica contains copies of some or all of the items
in a given collection. A device can hold any number of
replicas of different collections. For simplicity, all of the
examples used in this paper involve a single collection
and a single replica per device.

Each device sharing a collection maintains its own
replica of the items of interest. The set of items included
in a device’s replica is specified by a filter, which is a se-
lection predicate over the items’ XML contents. For ex-
ample, a filter might select e-mail messages from a par-
ticular individual, files tagged with certain keywords, or
photos with a 5-star rating. The default “*” filter indi-
cates that the device is interested in all items, and hence
stores a full replica of the collection. Users can set dif-
ferent filters for each device and can change these filters
over time.

Each device is allowed to read its locally stored items
and update those items at any time, as long as such up-
dates are in accordance with the collection’s access con-
trol policy. Update operations are applied directly to
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items in the device’s local replica; such operations are
not logged or explicitly recorded. Updates produce new
versions of items that are later sent to other replicas via a
device-to-device synchronization protocol. Devices gen-
erally have regular synchronization partners but may also
synchronize with any replica that they encounter.

A device can join the system simply by creating a new
(empty) replica of some collection and then synchroniz-
ing with some existing replica(s). Collections and their
replicas can be discovered by a variety of means, includ-
ing social networking web sites, e-mail invitations, nam-
ing directories, and wireless discovery protocols.

A replica may remain disconnected from the rest of
the system for an arbitrary amount of time due to device
failures or lack of network connectivity. However, we
assume that each device eventually recovers with its per-
sistent storage intact, occasionally communicates with
other devices, and correctly executes the synchronization
protocol. A device can permanently retire and discard its
local replica but must first synchronize with some other
device to ensure that updates are not lost.

At any point in time, a replica may hold older versions
of items that have been updated elsewhere, and it may not
have learned yet of recently created or deleted items. The
Cimbiosys synchronization protocol guarantees eventual
filter consistency. That is, a replica eventually receives
all versions of items that match its filter and have not
been overwritten by later versions, and the replica even-
tually discards items that are updated in such a way that
their contents no longer match the replica’s filter.

Cimbiosys does not provide other guarantees such as
causal consistency or multi-item coherence. In particu-
lar, versions may be received by a device in a different
order than they were produced. Moreover, a set of ver-
sions for items that were updated atomically at one de-
vice may be partially received by another device whose
filter only matches a subset of the items.

Naturally, because Cimbiosys allows updates to be
made at any replica without locking, two (or more) de-
vices may perform concurrent updates to the same item.
Such updates result in conflicting versions that are prop-
agated throughout the system using the synchronization
protocol. Any device whose filter selects both conflicting
versions may detect the conflict and either resolve it auto-
matically or store both versions pending manual resolu-
tion. Resolving a conflict produces a new version of the
item that supersedes all known conflicting versions. Any
existing technique for detecting conflicts, such as per-
item versions vectors [16] or concise predecessor vec-
tors [12], could be adopted for use with content-based
partial replication. Thus, no further discussion of con-
flict management appears in this paper.

Figure 2: Cimbiosys software architecture

3.2 Software components
Each device in Cimbiosys runs the set of software mod-
ules depicted in Figure 2. The Item Store manages the
items for local replicas of one or more collections. The
file portion of each item is stored in a special directory in
the device’s local file system. XML objects are stored in
an SQL Server (Compact Edition) database where they
can be queried and updated transactionally.

The Communication module is responsible for trans-
mitting data to other devices using available networks,
such as the Ethernet, WiFi, cellular, or Bluetooth. It
also encapsulates the transport protocol used by the Sync
module. Devices are free to use a variety of transport
protocols, including SOAP-based RPC, HTTP, and Mi-
crosoft’s FeedSync, a set of simple extensions to RSS.
Of course, any two devices must agree on the network
and transport protocol that they use during synchroniza-
tion.

The Sync module implements the synchronization pro-
tocol described in Section 4. During synchronization, it
enumerates versions of items in the local Item Store that
are unknown to the remote sync partner and sends these
along with the appropriate metadata. The remote partner
then adds the received items to its Item Store, possibly re-
placing older versions of these items. We are considering
allowing devices to keep multiple versions if requested
by an application, but our current implementation retains
only the latest known version of each item.

Cimbiosys also includes a number of Utilities for
recording information about regular synchronization
partners, naming collections and devices, managing ac-
cess controls, and performing other configuration func-
tions.

Security considerations permeate the Cimbiosys de-
sign. For example, all versions of items are digitally
signed by the originating device, and collection-specific
policies dictate which devices are allowed to create, up-
date, and delete items in a collection. Versions produced
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by a device without write access to the collection (or to
the specific items) are rejected during synchronization. A
full discussion of the access control design can be found
in a companion paper [22]. Additionally, techniques
have been developed for recovering from corrupt ver-
sions that are introduced through malice or misuse [11].

Applications interact with the Cimbiosys platform us-
ing a specially developed application programming in-
terface (API). Through this API, an application can cre-
ate a new collection, create a local replica for an ex-
isting collection, add items to a collection, update and
delete items, run queries over items, initiate synchroniza-
tion between a local and a remote replica, establish regu-
lar synchronization partnerships, change access permis-
sions, and change a replica’s filter. Legacy applications
that read and write local files, and do not use the Cim-
biosys API, are supported by “watcher” processes that
monitor file system directories and import files into (or
delete items from) a local replica.

3.3 Implementation and validation

Cimbiosys has been implemented in two different en-
vironments. One implementation is in C# using Mi-
crosoft’s .NET Framework running on Windows. We
plan to port this code to Windows Mobile 6.0 so it can
run on handheld mobile devices. The other implementa-
tion is in Mace, a C++ language extension that supports
distributed systems development [8]. Both implementa-
tions are used in the evaluation presented in Section 8.

Additionally, the synchronization protocol has been
fully specified in TLA+ [10]. Extensive model check-
ing has been performed on both the TLA+ specification
and the Mace implementation to ensure that the protocol
meets the stated design goals, that is, achieves eventual
filter consistency and eventual knowledge singularity un-
der a variety of operating conditions.

Two applications have been designed and are intended
for deployment in our lab. Cimetric, implemented in C#,
is a collaborative authoring tool. It coordinates access
and updates to the complex, heterogeneous set of text,
graphics, and data files created and modified in the pro-
cess of writing a paper. Authors receive their own repli-
cas of the paper, perform local updates, and make those
updates visible to coauthors when they are ready to share
a new version. CimBib is designed as a bibliographic
database and personal digital library in which colleagues
can share references to local and remote copies of pub-
lished papers as well as personal annotations and recom-
mendations; this application is still in a user-centered de-
sign phase. The designs of both Cimetric and CimBib
were informed by a qualitative field study of scholarly
writing and reference use [13].




  

  
  
  
  
  






Figure 3: Sample metadata held on the photo frame

4 CIM Sync Basics
The next three sections focus on a key aspect of the Cim-
biosys platform, the synchronization protocol. The ba-
sic protocol is introduced in this section; Sections 5 and
6 address how the protocol meets the challenges of fil-
ter consistency (storing the items that currently match a
replica’s filter and no other items) and knowledge singu-
larity (operating efficiently by optimizing the metadata
that is exchanged during synchronization).

4.1 Metadata
The CIM Sync protocol relies on both per-item and per-
replica metadata. Each collection and each item in a col-
lection has a unique identifier, as does each replica of
a collection. Each version of an item also has a unique
identifier called its version-id. Whenever an item is cre-
ated, updated, or deleted, the replica on which this op-
eration is performed creates a new version-id for the
item consisting of the replica’s identifier coupled with
a counter of the number of update operations that have
been performed by that replica. Deleted items are simply
marked as deleted; such items are treated as out-of-filter
versions as discussed in Section 5.2 and are eventually
discarded by all replicas.

For each item in a replica, the Cimbiosys item
store maintains the item’s unique identifier, version-id,
XML+file contents, deleted bit, and additional informa-
tion used to detect whether different versions of the item
are in conflict (similar to the made-with knowledge used
in WinFS [15]). Only the latest known version of each
item is retained in the item store. Older versions are con-
sidered obsolete.

Figure 3 depicts the data and metadata maintained by
a sample replica in our photo sharing scenario. This
particular replica, the digital photo frame, is known as
replica B. Note that uppercase letters are used through-
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out this paper as unique replica identifiers while low-
ercase letters are used as unique item identifiers. This
replica has not performed any local updates, and hence
its updateCount is zero. Its filter indicates that it is in-
terested only in photos with a 5-star rating. The replica’s
item store is shown as a table at the bottom of the figure.
It stores four photos: items p, q, r, and k. Every item has
a unique version-id. Item p, for instance, has a version-
id of A:1, meaning that this version was produced by
replica A’s first update operation, and has a rating of 5
stars. Each item has additional data and metadata that is
not shown in the figure, such as the actual photo contents
and the deleted bit. Finally, this replica has knowledge
about the items that it stores as described next.

4.2 Item-set knowledge
Each replica maintains knowledge recording the set of
versions that are known to the replica. Conceptually,
a replica’s knowledge is simply a set of version-ids; it
contains identifiers for any versions that (a) match the
replica’s filter and are stored in its item store, (b) are
known to be obsolete, or (c) are known to not match
the replica’s filter. Including the third class of versions,
out-of-filter versions, and using a novel representation
called item-set knowledge distinguishes the knowledge
used in CIM Sync from that of other replication proto-
cols like Bayou [18] that do not support content-based
partial replication.

Knowledge is represented as one or more fragments
where each fragment is a version vector [16] and an as-
sociated explicit set of item ids. The version vector com-
ponent indicates, for each replica that has updated any
item in the collection, the latest known version-id gen-
erated by the replica. Semantically, if a replica holds a
knowledge fragment S:V then the replica knows all ver-
sions of items in the set S whose version-ids are included
in the version vector V . When a replica’s knowledge
contains multiple fragments, the replica’s overall knowl-
edge is the union of the version-ids from each fragment.
Note that, from its knowledge alone, a replica cannot de-
termine whether a known version is stored, obsolete, or
out-of-filter.

For example, replica B in Figure 3 has a single knowl-
edge fragment whose item-set is {k, p, q, r}, the ids of
the four items that are stored by this replica, and a ver-
sion vector of <A:4, C:1>. Replica B, the photo frame,
does not appear in the version vector since it never di-
rectly updates items and hence does not generate any
versions. Replica B’s knowledge indicates that the de-
vice is aware of any versions of items k, p, q, or r with
a version-id of A:1, A:2, A:3, A:4, or C:1. It does not
mean, however, that each of these version-ids is for a cur-
rent or obsolete version of one of these items. To permit
a compact knowledge representation, the version vector

may include version-ids for items that are not in the as-
sociated set; technically, those versions are not known to
the replica. For instance, version A:2 could be the latest
version of some item u that is not stored by replica B and
that may or may not match its filter.

A knowledge fragment may specify “*” as the item-
set, meaning that the set includes all items in the col-
lection. Such fragments are called star-knowledge. In a
system consisting entirely of full replicas, each replica’s
knowledge is always a single star-knowledge fragment.
Partial replicas introduce the need for item-set knowl-
edge in addition to star-knowledge. In a system with
a mix of full and partial replicas, any replica may have
both star-knowledge and any number of item-set knowl-
edge fragments, at least temporarily. For instance, after
synchronizing from a partial replica, a full replica may
end up with item-set knowledge reflecting the set of re-
ceived items.

4.3 Filtered synchronization
Cimbiosys uses a one-way, pull-style synchronization
protocol. A replica, called the target replica, initiates
synchronization with another replica, called the source
replica. Each device generally plays the role of the target
replica for some synchronization sessions and the source
replica for others. Two-way synchronization requires a
pair of devices to synchronize, switch roles, and then
synchronize again.

The target replica starts by sending a SyncRequest
message that includes the target’s knowledge and its fil-
ter. The target is not sent any versions that are already
included in its knowledge or that are not of interest. In
particular, the source replica checks its item store for
any items whose version-ids are not known to the target
replica and whose XML contents match the target’s filter.
The XML contents, file contents, and metadata for each
of these items are returned to the target. If possible, as
discussed in Section 5.1, the source replica also informs
the target replica of items that no longer match its filter.
Finally, the source replica responds with a SyncCom-
plete message including one or more knowledge frag-
ments that are added to the target’s knowledge. At the
very least, this learned knowledge includes knowledge
pertaining to items transmitted during this synchroniza-
tion session but may include additional version-ids as
discussed in Section 6.1.

The messages received by the target replica can be ap-
plied to its item store individually or as a single atomic
transaction. Updating items (and the replica’s knowl-
edge) as new versions are received allows progress to
be made even when a connection is interrupted before
the synchronization protocol completes. The knowledge-
driven nature of the protocol makes it resilient to device
crashes and lost messages.
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Figure 4: Example synchronization between a target replica, the photo frame, and a source replica, the laptop

Figure 4 illustrates a synchronization session from our
scenario in which the digital photo frame (replica B) re-
quests items from the laptop (replica C). The state shown
for each device is the metadata and item store before syn-
chronization. The arrows show the messages that are
sent during synchronization. Note that the photo frame’s
knowledge that is sent in the SyncRequest message spec-
ifies that it knows about four items, but has not seen any
updates from the laptop since version C:1. The laptop,
the source replica in this example, returns a more recent
version of item r that it produced and a new item s that
had been created at replica A. Item k had also been up-
dated on the laptop to reduce the photos rating; hence the
laptop notifies that photo frame that this item is no longer
of interest. The final message informs the photo frame of
the knowledge it learned from the laptop. This learned
knowledge consists of two knowledge fragments, sepa-
rated by a plus sign, which means that the photo frame
will end up with three knowledge fragments after pro-
cessing the SyncComplete message.

The following sections describe in more detail specific
protocol features devised to support the requirements of
partial replication.

5 Eventual Filter Consistency
Although the use of item-set knowledge in the CIM Sync
protocol guarantees that replicas eventually receive all
items of interest (assuming sufficient effective connectiv-
ity), it does not ensure eventual filter consistency. This
section presents additional techniques needed to deal
with move-outs, out-of-filter updates, and filter changes.

5.1 Move-out notifications
During synchronization, the target replica may receive
move-out notifications from the source replica when
items have later versions that no longer match its filter.

These cause the target to remove specified items from
its item store. There are two conditions under which the
source returns move-out notifications.

The simplest condition is when the source replica
stores an item whose version is not known to the target
replica and whose contents do not match the target’s fil-
ter. The source can send a move-out notification for any
such item. This is the condition illustrated in Figure 4
where the laptop sends a move-out notification for item
k, whose rating had been reduced.

A target replica may receive move-out notifications for
items that it does not store, such as items that are updated
and continue to not match the target’s filter, a potentially
common occurrence. For example, suppose that the lap-
top in Figure 4 updated item t producing version C:6 in
which the rating was unchanged but a new caption was
added to this photo. In this case, when the photo frame
next synchronizes from the laptop, it would be sent a
move-out notification for item t even though it does not
store this item and perhaps never did. Such spurious no-
tifications do not affect eventual filter consistency since
they will simply be ignored by the receiving replica, but
they do consume network and processing resources.

To avoid spurious move-out notifications, a SyncRe-
quest message may optionally include a set of identi-
fiers for items that are stored by the requesting replica.
The source replica only sends move-out notifications for
items that are in this set. Replicas cache this item set
for their regular synchronization partners, allowing these
partners to send deltas, that is, to send just the set of
newly acquired items.

Sending move-out notifications for items that are
stored at the source replica is insufficient. Consider the
case of a replicated customer relationship database in
which a server holds the complete database, Bob’s lap-
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top holds items for all California customers, and his cell
phone stores items for customers that live in Los An-
geles. Bob’s cell phone synchronizes periodically with
his laptop but never directly with the server database.
Suppose that a customer moves from Los Angeles to
Chicago. When Bob’s laptop synchronizes with the
server, it receives a move-out notification causing the
laptop to drop this customer from its local replica. But
then how does Bob’s cell phone learn that it also should
discard this item?

The second condition for sending a move-out notifi-
cation for an item is as follows: the target replica stores
the item, the source replica does not store the item, the
source replica’s filter is no more restrictive than the tar-
get’s filter, and the source’s knowledge for this item is
greater than the target’s knowledge. In other words, if
the source is interested in all items of interest to the target
and is more knowledgeable than the target, it can deduce
that any items it does not store should also be removed
from the target’s item store. This relies on the source
being informed of the set of items that are stored by the
target.

5.2 Out-of-filter updates
To preserve versions produced by out-of-filter updates,
the updated items are placed in a special portion of the
updating replica’s item store called the push-out store.
Items in the push-out store are not visible to applications,
but are treated like any other item during synchroniza-
tion. In particular, such items are sent to a synchroniza-
tion partner if they match its filter, and may be overwrit-
ten by items received from a sync partner, possibly caus-
ing the item to move back into the regular item store.

Unfortunately, a replica might not have any synchro-
nization partner whose filter matches the items in its
push-out store. Thus, when synchronizing with any
replica with an equal or less restrictive filter, a replica
sends all items in its push-out store, and then optionally
discards these items once it learns that they were success-
fully received by the target replica. This partner accepts
these items even if they don’t match its filter. Such items
may end up in the target replica’s push-out store, from
where they are passed to another replica. However, this
could lead to situations in which two replicas play “hot
potato” by passing back and forth an item that matches
neither of their filters. Section 7 discusses restrictions
that Cimbiosys places on the synchronization topology
to avoid the hot potato problem and guarantee that out-
of-filter updates eventually reach all interested replicas.

5.3 Changing filters
Cimbiosys permits arbitrary filter changes while allow-
ing replicas to retain as many items as possible. When a
replica changes its filter it may need to discard items or
knowledge or both depending on the nature of the filter

change. If the new filter is more restrictive than the pre-
vious filter, that is, if it matches fewer items, then items
that no longer match the filter are moved to the replica’s
push-out store. The replica cannot simply discard such
items since it may be the only replica that holds the latest
versions. As discussed above, items from the replica’s
push-out store will eventually be discarded after they are
passed to another replica (or it is determined that they
are already stored by another replica). Although some
in-filter versions may become out-of-filter versions, the
replica’s knowledge does not change.

If the new filter is less restrictive than the previous fil-
ter, then previously out-of-filter versions may now match
the new filter. Such versions need to be removed from
the replica’s knowledge so that the replica will receive
them during future synchronizations. Unfortunately, the
replica cannot determine which versions in its knowl-
edge are out-of-filter and which are obsolete. So, con-
servatively, its knowledge must be retracted to include
only versions of items that it already stores. The repre-
sentation of item-set knowledge makes retraction easy.
Knowledge fragments with explicit item-sets retain the
same version vector but with a possibly smaller set of
items; any star-knowledge fragments are converted to
item-set knowledge.

If the new filter is neither less restrictive nor more
restrictive than the previous filter, that is, if the old
and new filters are incomparable, then both cases apply.
The replica may need to move non-matching items to
its push-out store. The replica also needs to retract its
knowledge.

Since replicas are allowed to change their filters at any
time, a replica may receive out-of-date move-out notifi-
cations based on a previous filter. To guard against pro-
cessing out-of-date notifications, a replica increments a
counter whenever it updates its filter. Essentially, this
counter serves as a version identifier for the replica’s fil-
ter. The filter version number is included in each syn-
chronization request and is returned in each move-out
notification. Move-out notifications that include old fil-
ter version numbers are simply ignored by the receiving
replica.

6 Eventual Knowledge Singularity

In this section, we propose mechanisms by which repli-
cas acquire and compact their knowledge. Although
the number of fragments in a replica’s knowledge may
temporarily grow after synchronization, the knowledge
tends to converge towards a single star-knowledge frag-
ment represented as a single version vector. This section
shows how we achieve the desired state of knowledge
singularity for both full and partial replicas.
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6.1 Acquiring knowledge
As replicas receive items during synchronization, they
add the items’ version-ids to their knowledge, but re-
quire some other means of learning about obsolete and
out-of-filter versions. The SyncComplete message at the
end of the synchronization protocol conveys knowledge
that the target replica learned during this sync session.
The target replica adds this learned knowledge to its own
knowledge, generally as new knowledge fragments. This
knowledge can include any version-ids for items cur-
rently stored by the source replica as well as any ids for
versions that the source knows to be obsolete. It may
not, however, include versions that are out-of-filter at the
source replica but could match the target replica’s filter
as this would cause the target replica to fail to receive
such versions from other replicas.

The learned knowledge, therefore, depends on the re-
lationship between the filters of the synchronizing repli-
cas. If the source replica’s filter is no more restrictive
than the target’s filter, that is, if any item that matches
the target’s filter also matches the source’s filter, then
the source replica can send its complete knowledge in
the SyncComplete message; any out-of-filter versions in-
cluded in the source’s knowledge will also be out-of-
filter with respect to the target replica. In other cases
in which the target has a broader filter or a disjoint filter
compared to the source, the source replica must restrict
the conveyed learned knowledge to those items that it
actually stores. Figure 4 shows an example of disjoint
filters; the photo frame’s filter is based on the rating at-
tribute and the laptop’s filter is based on the value of the
photo’s keyword (in this case, ”family”).

6.2 Compacting knowledge
Whenever a replica synchronizes with another replica, it
receives new knowledge fragments. To reduce the num-
ber of fragments in its knowledge and the overall size, a
replica can compact its knowledge using a set of simple
rules. For example, suppose the replica’s knowledge in-
cludes two fragments, S1:V1 and S2:V2. If the set S1 is
a subset of set S2 and the version vector V2 dominates
V1 (i.e. any versions in V1 are also included in V2), then
the fragment S1:V1 is redundant and can be discarded.
If V1 and V2 are identical, then the sets S1 and S2 can
be combined into a single knowledge fragment. Table 1
enumerates compaction rules that can be applied to any
pair of knowledge fragments.

While these knowledge compaction rules are effective,
they don’t always lead to compact knowledge in practice.
Consider the case of Alice who edits photo r on her lap-
top (replica C) producing a new version with version-id
C:1, then edits this same photo again to produce a newer
version C:2. Alice also adds keywords to photos t, u, and
k, producing versions C:3, C:4, and C:5. Suppose that
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Table 1: Knowledge compaction rules

these items all match replica C’s filter and are never up-
dated by other replicas. The state of replica C on Alice’s
laptop is as shown in Figure 4. When Alice’s home PC
(replica A) synchronizes from her laptop, it will receive
these items and the associated learned knowledge. The
home PC’s knowledge would become something simi-
lar to ∗:<A:9> + {k, r, t, u}:<A:7, C:5>. Unfortunately,
this knowledge cannot be compacted. This problem is
addressed in the remainder of this section.

6.3 Authoritative versions

Key to reducing the number of fragments in a replica’s
knowledge is the notion of authority. A replica is author-
itative for a version of an item if it either stores the item
or knows the item to be obsolete. Recall from Section 6.1
that version-ids for any stored or obsolete versions can
be included in the learned knowledge acquired by a tar-
get replica at the completion of the synchronization pro-
cess. The source replica, therefore, can return a learned
knowledge fragment in which the item-set is “*” (i.e. all
items in the collection) and the associated version vector
includes identifiers for its authoritative versions. In other
words, during synchronization, the target replica learns
of any versions of any items for which the source replica
is authoritative. Moreover, when the target replica’s filter
is equal to or less restrictive than the source’s filter, the
target replica becomes an authority for all of the source
replica’s authoritative versions.

In our previous example, the laptop (replica C) is au-
thoritative for all of the versions that it produced, that
is, for versions C:1 through C:5. Thus, replica C sends
∗:<C:5> as learned knowledge when synchronizing to
any other replica. This knowledge fragment is merged
into the receiving replica’s star-knowledge, and hence
does not lead to an increase in the overall number of
knowledge fragments. A replica’s star-knowledge grows
so that it eventually dominates other knowledge frag-
ments, which can then be discarded using the compaction
rules in Table 1.
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6.4 Transferring authority
One practical issue remains, namely how to transfer au-
thority when an item is no longer of interest to the author-
itative replica, whether due to out-of-filter updates or to
filter changes. Such operations cause items to be placed
in a replica’s push-out store. The replica will cease to be
authoritative for its own versions that are pushed to an-
other replica and then discarded. Requiring a replica to
store indefinitely all of the items that it creates or updates
would be unreasonable. For instance, a digital camera
often offloads its photos to a laptop in order to free up
storage space for new photos. In practice, the system
simply needs to maintain the invariant that there exists
at least one replica that is authoritative for every version
ever generated.

In Cimbiosys, when a replica sends the items in its
push-out store to a replica with a less restrictive filter, the
receiving replica becomes authoritative for these items.
The sending replica can then discard such items without
violating the system-wide invariant. Each replica records
the version-id of the most recent version it has generated
for which it is no longer authoritative. The replica then
knows that it is authoritative for any versions it has pro-
duced with greater version-ids. The learned knowledge
sent by a replica is a star-knowledge fragment containing
the range of version-ids from the first version generated
after its last push-out to its most recently generated ver-
sion. A replica that has received multiple star-knowledge
fragments containing overlapping or contiguous version
ranges can combine these together into a single fragment.

For example, suppose Alice’s laptop (replica C)
changes its filter so that it no longer wants items with
ratings below three. Version C:5 of item k no longer
matches. After pushing this item to Alice’s home PC
(replica A), as well as sending the latest versions of all
other items, the home PC will have learned ∗:<C:5>. At
this point, the laptop discards item k and records C:5 as
its last unauthoritative version. Now, suppose that Al-
ice performs three more updates from her laptop produc-
ing versions with identifiers C:6, C:7, and C:8. Dur-
ing synchronization to another replica, say Alice’s photo
frame (replica B), the laptop will pass ∗:<C:6..C:8> as
learned knowledge. When the photo frame synchronizes
from the home PC, it will receive learned knowledge of
∗:<C:5> in addition to knowledge of other versions for
which Alice’s home PC is authoritative. The photo frame
then combines the knowledge received from the laptop
with that received from the home PC to get a knowledge
fragment of ∗:<C:8>, which in turn is merged with its
other star-knowledge.

As a replica synchronizes from other replicas, it ac-
quires star-knowledge fragments from each of these sync
partners. Such fragments are combined together into a
single star-knowledge fragment that is monotonically in-

creasing (provided the replica does not expand its filter).
As long as each replica regularly synchronizes with a set
of partners that collectively know about all versions in
the system, each replica will converge towards singu-
lar knowledge. Clearly, a device that synchronizes di-
rectly with every other device will receive a complete set
of star-knowledge. The following section describes how
Cimbiosys ensures that replicas are configured in a suit-
able topology without requiring full interconnectivity.

7 Filter-based Tree Topologies
The CIM Sync protocol can be used by any set of repli-
cas with arbitrary filters and arbitrary synchronization
patterns. When a replica synchronizes with any other
replica, it will receive all versions stored by its partner
that match its filter, and it will receive whatever move-
out notifications can be generated by the partner. More-
over, a replica never receives the same version from mul-
tiple synchronization partners (unless it engages in paral-
lel synchronizations or changes its filter). But additional
constraints must be placed on the synchronization topol-
ogy in order to achieve eventual filter consistency and
eventual knowledge singularity.

Cimbiosys forces replicas of a given collection to con-
figure themselves into a hierarchically filtered tree topol-
ogy. In particular, each replica has a single parent replica,
except for the replica at the root of the tree, and a
replica’s filter must be at least as restrictive as that of its
parent. In other words, a parent replica stores any items
that are stored by any of its children. The replica at the
root of the tree has a filter that matches all items; that is,
it stores a full copy of the collection. This root replica is
called the reference replica for the collection. Parent and
child replicas are required to perform synchronization in
both directions, at least occasionally, but may also syn-
chronize with other replicas.

Constructing the tree is easy. When a new replica is
created for a collection, it asks an existing replica to be its
parent. If the filter of the requested parent is too restric-
tive, then the new replica walks up the existing tree until
it finds a replica that can serve as its parent. At the very
least, the reference replica can always serve as a parent
for any replica with an arbitrary filter. If a replica wishes
to retire gracefully from a collection, then this replica
should notify its children so they can select a new parent.
The retiring replica’s parent, for instance, can serve as
the new parent for its children, or, in some cases, one of
the existing children can be promoted to be the parent of
its siblings. A replica can change its parent at any time
as long as it chooses a new parent with a suitable filter
and does not violate the tree structure. For instance, a
replica may be required to find a new parent when it ex-
pands its filter or its previous parent is unreachable for
an extended period of time.
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The tree synchronization topology provides four im-
portant benefits.

One, the synchronization topology ensures effective
connectivity. That is, groups of replicas for the same col-
lection cannot remain disconnected indefinitely, assum-
ing periodic synchronization between parents and chil-
dren. Moreover, each version of an item has a guaranteed
path by which it can travel from the originating replica
to any other replica whose filter matches the version.
Specifically, when a new version is created, it can flow
up the tree from child to parent replicas until it reaches
common ancestors, including the reference replica. Any
versions held by the reference replica can flow to any
other replica over a path of replicas with increasingly re-
strictive filters.

Two, move-out notifications can be delivered by a
parent to any of its children. Recall from Section 5
that move-out notifications can be sent when the source
replica has a filter than is no more restrictive than the tar-
get. This is exactly the case for replicas with a parent-
child relationship. Thus, the tree topology guarantees
that all replicas are able to receive appropriate move-out
notifications. Essentially, such notifications flow down
the tree.

Three, out-of-filter versions in a replica’s push-out
store flow up the tree until they reach replicas that are
interested in those items. During synchronization from a
child replica to its parent, the child sends all of the items
in its push-out store, regardless of whether they match
the parent’s filter. The tree topology prevents replicas
from playing “hot potato” with out-of-filter versions.

Four, the tree topology ensures eventual knowledge
singularity. As authoritative versions are passed up the
tree, a parent replica assumes authority for any versions
generated by any of its children or their descendants.
Eventually, all authoritative versions arrive at the ref-
erence replica, which produces a single star-knowledge
fragment containing all of these versions. This star-
knowledge fragment is then passed down the tree from
the reference replica to all other replicas during parent-
to-child synchronizations. In the absence of further up-
dates or filter changes, each replica’s knowledge will
eventually converge to that of the reference replica.

Although these benefits argue convincingly for hav-
ing a tree-structured synchronization topology, extended
synchronization patterns are not prevented. In Cim-
biosys, a replica can choose arbitrary synchronization
partners (in addition to its parent and children). The only
restriction is that the overall synchronization topology
must include an embedded tree with a reference replica.

All practical usage scenarios that we’ve envisioned
meet this condition. In the photo sharing scenario pre-
sented in Section 2, Alice’s home PC serves as the refer-
ence replica for her photo collection. Her laptop and dig-

ital photo frame synchronize directly with this PC, and
treat it as their parent, as do the cloud-based services that
contain selected photos. However, Alice’s laptop might
also sync with such services on occasion or sync directly
with friends’ laptops. Cloud-based services might repli-
cate data among themselves for geographic scaling, un-
beknownst to the reference replica. The digital camera,
which only synchronizes with the laptop, uses the lap-
top as its parent replica. The overlaid tree topology en-
sures that Alice’s new photos will eventually find their
way into her master photo collection as well as onto other
devices with selective filters.

8 Evaluation
In this section, we present an evaluation of Cimbiosys
based on our two implementations, one in C# for Win-
dows platforms and one in Mace for Linux platforms.
In particular, we answer the following questions with re-
spect to the goals of Cimbiosys:

• Does Cimbiosys achieve eventual filter consistency
in the presence of move-outs, out-of-filter updates,
and changing filters?

• How concise is the knowledge representation in
Cimbiosys as compared to protocols with per-item
knowledge, and does the reduction in knowledge
size lead to more efficient synchronizations?

• What are the benefits of leveraging filter re-
lationships between replicas, and how do non-
hierarchical synchronizations affect the perfor-
mance of Cimbiosys?

8.1 Experiments on the C# implementation
We performed experiments on the C# implementation by
running 10 replicas on the same computer. The replicas
formed a three-level hierarchy based on filter relation-
ships with one full replica at the top, three partial replicas
in the middle, and six more partial replicas at the bottom.
Each replica’s filter was less restrictive than the filters of
any replica at a lower level.

The experimental workload had five serial phases con-
sisting of different kinds of updates to the system. Each
update consisted of a randomly chosen replica modifying
the content of a randomly chosen item in its item store.
Throughout the experiment, replicas synchronized with
randomly chosen partners at regular intervals.

1. insert phase: Randomly chosen replicas inserted a
total of 1000 items into their respective item stores
at the start of the experiment. 600 synchronizations
followed the inserts.

2. update phase: 1000 updates were performed, none
of which triggered move-outs at any replicas. There
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Figure 5: Average inconsistent items per replica vs. time

were 600 synchronizations in this phase, and the up-
dates happened during the start of the phase at the
rate of 10 updates between each synchronization.

3. move-out phase: Replicas updated 100 items; the
updated content continued to match the updater’s
filter even though it might move out of other repli-
cas’ filters. 600 synchronizations followed.

4. push-out phase: Replicas performed a total of 50

out-of-filter updates. That is, the updated content
did not match the updating replica’s filter. Another
600 synchronizations followed.

5. filter-change phase: Three randomly chosen par-
tial replicas changed their filters to new non-
overlapping filters. A final 300 synchronizations
ended the experiment.

We evaluated two variants of the Cimbiosys system.
The first variant, called CIM-Basic, implemented all the
core mechanisms described in Section 5 for achieving
eventual filter consistency. The second variant, called
CIM-Singular, implemented the additional mechanisms
for the accumulation of authoritative knowledge in order
to achieve eventual knowledge singularity as presented
in Section 6.

Results
We first show the progress made by replicas in achieving
eventual filter consistency. Figure 5 plots the average
number of inconsistencies in a replica’s item store over
time. Here, an inconsistency at a replica R at a certain
time includes three cases: a) an item present in R’s store
is obsolete, b) the latest version of an item matches R’s
filter but no version of the item is present in R’s store,
and c) an item is present in R’s store but does not match
R’s filter. We counted these inconsistencies by tracking
the global state of the system.

Figure 5 confirms that both CIM-Basic and CIM-
Singular eventually achieve a state of zero inconsisten-
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Figure 7: Cumulative synchronization overhead incurred
vs. time

cies in the presence of partial synchronization, move-
outs, out-of-filter updates, and filter changes. They also
converge at the same rate (and the graphs are identical)
because they share the same core mechanisms to support
partial replication.

We next evaluate knowledge compaction in Cim-
biosys. Figure 6 shows the average size of the knowl-
edge of each replica over time. As expected, the size of
knowledge in CIM-Basic increases as updates are per-
formed and reaches a peak value dependent on the num-
ber of items stored in the replica and the number of up-
dates performed to each item. In CIM-Singular, however,
knowledge is fragmented in the initial stages but eventu-
ally converges to the size of a single version vector at
the end of each phase. In other words, CIM-Singular
achieves eventual knowledge singularity.

Figure 7 demonstrates the positive effect that knowl-
edge compaction has on synchronization overhead. It
shows the cumulative overhead incurred during synchro-
nizations in the insert and the update phases. The over-
head includes the cost of transmitting knowledge from
the target to the source in the initial SyncRequest mes-
sage and from the source to the target in the final Sync-
Complete message.
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Figure 8: Effect of leveraging filter relationships

Knowledge compaction provides a significant reduc-
tion in the sync overhead over a period of time as evi-
dent from the difference between CIM-Basic and CIM-
Singular in the figure. Low synchronization overhead
means that replicas can synchronize more often and
learn updates sooner with the same bandwidth budget.
It also enables effective synchronization for replicas on
bandwidth-constrained mobile devices.

8.2 Experiments on the Mace implementation
We evaluated the Mace implementation of Cimbiosys
using ModelNet [21] to simulate a variety of network
topologies on a cluster of machines.

For these experiments, we used a system of 10 repli-
cas, a binary-tree filter hierarchy, and a collection size of
10,000 items, which reflects the average size of a con-
sumer photo collection. Using ModelNet, we emulated a
clique of 10 routers, each connected to a single replica.
The link speed between all routers and replicas was set
to 100 Mbps. The trends in the experimental results were
similar with lower bandwidths.

Each experiment consisted of two phases. During
phase 1, replicas created items such that 10,000 total
items existed in the system at the conclusion of this
phase. During phase 2, synchronizations proceeded until
the knowledge at all replicas converged to a stable state.

Results
The general trends in the size of knowledge and the sync
overhead for the MACE experiments were similar to the
results of the C# experiments discussed earlier, and so
we do not present them here. Instead, we focus on evalu-
ating the impacts of filter relationships and synchroniza-
tion patterns.

We first discuss the effects of leveraging the hier-
archical filter relationships overlaid upon the network
topology. We performed experiments where each replica
chose a parent or a child as its synchronization partner
50% of the time and an arbitrary replica at other times.
In the first experiment, called hierarchy, replicas would
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Figure 9: Effects of out-of-hierarchy synchronization

synchronize as parents or children when their filters were
in the proper relation according to the filter hierarchy. In
the second experiment, called no hierarchy, every syn-
chronization was treated as if the filters were unrelated.

Figure 8 shows the benefits of leveraging parent-
child relationships between replicas. Replicas can ac-
cept knowledge from their parents and can then directly
merge this knowledge with their own, as they know after
synchronizing with a parent that all versions included in
the parent’s knowledge should be included in their own.
Similarly, replicas can become authoritative for versions
authored by their descendants, and this information can
flow up the hierarchy until it reaches a reference replica,
at which point it flows downward in a compact form.
Without a hierarchy, replicas can only claim authority
over versions they themselves store. We can still achieve
eventual knowledge singularity without a filter hierarchy
but it takes longer for replicas to reach that state.

Finally, we discuss how the choice of synchronization
partners (only parent or children versus arbitrary repli-
cas) affects the performance of Cimbiosys. Figure 9
compares an experiment in which replicas only synchro-
nized with their parents and children with an experiment
in which the replicas selected synchronization peers at
random. As the figure shows, restricting synchroniza-
tions to parents and children allows knowledge to con-
verge much more quickly. This is because knowledge
tends to flow within a hierarchy in a more compact form.
On the other hand, synchronizations with arbitrary peers
may allow quicker exchange of updated items between
replicas at the cost of increased fragmentation in knowl-
edge.

9 Related Work
The Cimbiosys design presented in this paper builds
upon previous work on content-based filtering and es-
pecially weak-consistency replication protocols. In this
section, we discuss related work with an eye toward how
the systems fall short of meeting the challenges intro-
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System
Selection
criteria Partial sync

Effective
connectivity Move-outs

Out-of-filter
updates Filter changes

Cimbiosys Content-based
filters

Item-set
knowledge

Filter-constrained
embedded tree

topology

Explicit move-out
notifications

Push-out store Knowledge
retraction and
push-out store

Ficus File IDs Metadata
exchange

Per-file ring
topology

Cannot occur Cannot occur Not addressed

PRACTI File IDs /
directories

Log exchange Policy Not addressed Not addressed Not addressed

EnsemBlue File IDs +
persistent queries

Client-server Client-server Not addressed Write back to
server

Not addressed

Perspective Views, i.e.
attribute-based

filters

Log or metadata
exchange

Not addressed Logged pre and
post versions

Retain until pulled
by device

Not addressed

Table 2: Key design decisions in Cimbiosys and related work.

duced by content-based replication with a peer-to-peer
synchronization model, particularly in an environment
characterized by changing content, user interests, and de-
vice connectivity.

The HomeViews system has the similiar goal of sup-
porting selective data sharing in a peer-to-peer system
model [6]. It allows users to export their data, includ-
ing digital photos and other files, as views defined by
content-based queries written in SQL. Although views
are essentially equivalent to filters in Cimbiosys, they are
defined by the data exporter rather than by the devices
that import the data. Moreover, data is not replicated
among devices but rather views are accessed remotely
and searched via distributed queries.

The filters supported in Cimbiosys also resemble those
of content-based publish/subscribe systems, though such
systems offer a completely different replication model [1,
4]. Subscribers in a pub/sub system advertise their fil-
ters to a collection of brokers, which build routing tables
used to route events from a publisher to the set of inter-
ested subscribers. Each event is independent and stored
temporarily in the brokers’ message queues. New sub-
scribers (or those with new filters) observe only future
events. In Cimbiosys, on the other hand, replicas even-
tually and persistently store all items that match their fil-
ters, can update items, and disseminate new and updated
items among themselves through direct communication.

Some systems support partial replication but with a
client-server model. Coda, for instance, allows clients
to cache some or all of the files residing on a server,
thereby supporting disconnected operation on mobile de-
vices [9]. A hoard profile, which could be considered a
type of filter, specifies the files of interest to each client,
though Coda clients may cache other files based on ac-
cess patterns. Clients reconcile their local changes di-
rectly with the server(s). BlueFS [14] provides a simi-
lar system model but emphasizes energy efficiency when
dealing with small, mobile devices. As opposed to Cim-
biosys, neither Coda nor BlueFS permits clients to share
updates directly with each other.

EnsemBlue [17] extends BlueFS by allowing discon-
nected clients to organize into a temporary ensemble
headed by a client acting in place of the server. No-
tably, EnsemBlue supports persistent queries that can be
used by clients, along with server-provided callbacks for
cache invalidation, to provide a form of content-based
replication. Select operations on files that match a per-
sistent query are logged by the server in a special file
that can be retrieved and read by clients. A client then
explicitly fetches new files that match its query and dis-
cards updated files that no longer match the query. Un-
like Cimbiosys, the burden is placed on servers to record
which files are cached where and on clients to fetch up-
dated files in order to determine whether the contents are
of interest.

Some topology-independent replication systems allow
arbitrary communication patterns but lack support for
content-based filters. Bayou, for instance, includes an
efficient log-based, peer-to-peer synchronization proto-
col but assumes that all replicas are interested in all
items [18]. WinFS, like Bayou, maintains a single ver-
sion vector per replica that is transmitted on every syn-
chronization, but uses state-exchange rather than log-
exchange [15]. WinFS supports replication of arbitrary
file folders but not per-replica filters. Cimbiosys ex-
tends the WinFS design to support content-based filter-
ing while ensuring eventual filter consistency; the even-
tual knowledge singularity property ensures that the per-
replica overhead converges to a single version vector as
in Bayou and WinFS.

A few other systems have combined topology inde-
pendence with some form of partial replication. One
early peer-to-peer replication system, Ficus [7], was ex-
tended to support selective replication [19]. Each replica
can store an arbitrary subset of a file system volume and
can alter the set of locally stored files at any time. Be-
cause the set of interesting files is explicitly specified by
file ids, and not based on file contents, several of the key
concerns with content-based filtering do not arise in Fi-
cus, including out-of-filter updates and move-outs. Syn-



USENIX Association	 NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation	 275

chronization is a heavy weight operation since a replica
must pull information about all of the files stored on a
remote replica in order to determine those that have been
updated or newly created. To reduce communication
costs and ensure effective connectivity, the sites replicat-
ing a given file are organized into a ring where synchro-
nizations occur between neighbors in the ring, essentially
renouncing topology-independence.

PRACTI is another replication system with topology-
independence and partial replication (and arbitrary con-
sistency) [2]. In PRACTI, each replica maintains a log
of invalidations for objects that have been updated. A
synchronization protocol similar to Bayou’s exchanges
log entries between pairs of replicas. Partial replica-
tion is achieved by allowing replicas to selectively fetch
invalidated objects. Imprecise invalidations that cover
a range of objects let partial replicas maintain smaller
logs. While PRACTI permits each replica to define its
own “interest set”, the current design equates interest sets
with file folders, and issues such as effective connectivity
are left as policy decisions. Adding practical support for
content-based filtering to PRACTI would require many
of the techniques developed in Cimbiosys.

More recently, the Perspective project at CMU has
been exploring a replication paradigm most closely re-
sembling that of Cimbiosys, but with a very different
system design [20]. Each device in Perspective defines
an attribute-based filter called a “view”. Only files in-
cluded in a device’s view are stored on the device. Un-
like Cimbiosys, each device is aware of all other devices
and their views; hence, Perspective is more suitable for a
small, fixed set of devices, such as those in a consumer’s
home media system. Upon updating a file, a device sends
a notification to all other available devices. Devices, in
turn, fetch the updated files on demand. A disconnected
device that misses update notifications is later brought
up-to-date by synchronizing directly with other devices.
A device can modify its view at any time, but it must
inform the other devices and behave as a new replica
during synchronization to obtain the files that match its
new view. Cimbiosys, by contrast, allows content-based
filters, bandwidth-efficient synchronization, incremental
filter changes, incomplete knowledge of other replicas,
and arbitrary synchronization partners.

Table 2 summarizes the key design decisions in previ-
ous partial replication systems as well as Cimbiosys. It
focuses on the steps taken by the designers of these sys-
tems to address the five key challenges of content-based
partial replication presented in Section 2.

10 Conclusion
Cimbiosys is a new storage platform that provides fil-
tered replication of content through peer-to-peer syn-
chronization. Its design was motivated by the needs of

loosely-organized communities and of individuals man-
aging multiple devices. Cimbiosys allows each device
to express its individual information needs as a content-
based filter, permits devices to enter or leave the system
without global coordination, accommodates dynamically
changing content and filters, efficiently propagates up-
dated items while avoiding duplicate delivery, exploits
opportunistic encounters between devices with overlap-
ping filters, and supports flexible synchronization topolo-
gies (within certain constraints).

Eventual filter consistency, whereby a device’s replica
converges towards a state containing exactly those items
that match its filter and nothing more, is achieved
through a combination of novel technologies and prag-
matic design decisions. Item-set knowledge, compactly
represented as one or more version vectors and associ-
ated items, records not only the versions that have been
received by a device but also obsolete versions and ver-
sions of items that no longer match its filter. Given a
device’s knowledge and filter, the synchronization pro-
tocol can readily determine exactly those versions of in-
terest, thus meeting the challenge of partial synchroniza-
tion. Under specific conditions, devices receive move-
out notifications during synchronization and can discard
out-of-filter versions without losing updates. When mod-
ifying its filter, a device can adjust its knowledge so that
its local item store is incrementally updated to match its
new filter.

Remarkably, knowledge converges towards a single
version vector for all devices, with full or partially repli-
cated contents. This eventual knowledge singularity
property is achieved by ensuring that at least one device
is authoritative for every version ever generated, trans-
mitting star-knowledge for authoritative versions during
synchronization, and compacting knowledge fragments.
Our experimental evaluation, which was based on imple-
mentations of our protocol, as well as model checking
performed on a formal specification, demonstrate that
eventual knowledge singularity is indeed realized if up-
dates cease for a sufficiently long period. In a system
with frequent updates and filter changes, devices may
never actually reach knowledge singularity, but the tech-
niques used to drive the system in that direction serve to
keep knowledge to a manageable size.

Using the CIM Sync protocol, eventual filter consis-
tency and knowledge singularity will be attained in sys-
tems where every device synchronizes occasionally with
every other device. However, requiring full inter-device
connectivity is unrealistic in many of the scenarios that
we wish to support. By enforcing a hierarchically filtered
tree topology, Cimbiosys maintains the desired proper-
ties while providing some degree of flexibility in estab-
lishing synchronization partnerships and still allowing ad
hoc communication between peers.
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Abstract

We propose the RPC chain, a simple but powerful com-
munication primitive that allows an application to reduce
the performance effects of wide-area links on enterprise
and data center applications that span multiple sites. This
primitive chains together multiple RPC invocations so
that the computation can flow from one server to the next
without involving the client every time. We demonstrate
that RPC chains can significantly reduce end-to-end la-
tency and network bandwidth in a storage application
and a web application.

1 Introduction

Distributed enterprise applications, such as web appli-
cations, are often built from more basic services, such
as storage services, database management systems, au-
thentication and configuration services, and services for
interfacing with external components (e.g., credit card
processing, banking, vendors, etc). As systems become
larger, more complex, and more ubiquitous, there is a
corresponding increase in the number, diversity, and geo-
graphical dispersion of the remote services that they use.
For instance, Hotmail and Live Messenger share an ad-
dress book service and an authentication service; there
are also services specialized for each application, say, for
email storage or virus scanning. These services are het-
erogeneous; they are often developed by different teams
and are geo-distributed, running in different parts of the
world.

Geo-distribution provides many benefits: high avail-
ability, disaster tolerance, locality, and ability to scale
beyond one data center or site. However, the thin and
slow links connecting different sites pose challenges, es-
pecially in an enterprise setting, where applications have
strict performance requirements. For instance, web ap-
plications should ideally respond within one second [13].

The most common primitives for inter-service com-
munication are remote procedure calls (RPC’s) or RPC-
like mechanisms. RPC’s can impose undesirable com-
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Figure 1: (Left) Standard RPCs. (Right) RPC chain.

munication patterns and overheads when a client needs
to make multiple calls to servers. This is because RPC’s
impose communication of the form A−B−A (A calls B
which returns to A) even though this pattern may not be
optimal. For example, in Figure 1 left, a client A in site 1
uses RPC’s to consecutively call servers B, C, and D in
site 2. Server B, in turn, calls servers E and F in site 3.
The use of RPC’s forces the execution to return to A and
B multiple times, causing 10 crossings of inter-site links

We propose a simple but more general communication
primitive called a Chain of Remote Procedure Calls, or
simply RPC chain, which allows a client to call multiple
servers in succession (A−B1−B2− · · ·−A), where the
request flows from server to server without involving the
client every time. The result is a much improved commu-
nication pattern, with fewer communication hops, lower
end-to-end latency, and often lower bandwidth consump-
tion. In Figure 1 right, we see how an RPC chain re-
duces the number of inter-site crossings to 4. The ex-
ample in this figure is representative of a web mail ap-
plication, where host A is a web server that retrieves a
message from an email server B, then retrieves an as-
sociated calendar entry from a calendar service C, and
finally retrieves relevant ads from an ad server D.

The key idea of RPC chains is to embed the chaining
logic as part of the RPC call. This logic can be a generic
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function, constrained by some simple isolation mecha-
nisms. RPC chains have three important features:

• (1) Server modularity. What made RPC’s so success-
ful is the clean decoupling of server code, which al-
lows servers to be developed independently of each
other and the client. RPC chains preserve this at-
tribute, even allowing existing legacy RPC’s to be part
of a chain through simple wrappers.

• (2) Chain composability. If a server in the chain itself
wishes to call another server, this nested call can be
simply added to the chain in flux. In Figure 1, when
client A starts the chain, it intends to call only servers
B, C, and D. But server B wants to call servers E
and F , and so it adds them to the chain.

• (3) Chain dynamicity. The services that a host calls
need not be defined a priori; they can vary dynami-
cally during execution. In the left figure, the fact that
client A calls servers C and D need not be known
before A calls server B; it can depend on the result
returned by B. For example, an error condition may
cause a chain to end immediately instead of continu-
ing on to the next server.

We demonstrate RPC chains through a storage and a
web application. For the storage application, we show
how a storage server can be enabled to use RPC chains,
and we give a simple use in which a client can copy data
between servers without having to handle the data itself.
This speeds up the copying and saves significant band-
width. For the web application, we implement a simple
web mail service that uses chains to reduce the overheads
of an ad server.

The paper is organized as follows. We explain the set-
ting for RPC chains in Section 2. Section 3 covers the
design of RPC chains and Section 4 covers applications.
We evaluate RPC chains in Section 5, and we explain
their limitations in Section 6. A discussion follows in
Section 7. We discuss related work in Section 8 and we
conclude the paper in Section 9.

2 Setting
We consider enterprise systems that span geographically-
diverse sites, where each site is a local area network.
Sites are connected to each other through thinner and
slower wide area links. Wide-area links can be made
faster by improving the underlying network, and lots of
progress has been made here, but this progress is hin-
dered by economic barriers (e.g., legacy infrastructure),
technological obstacles (e.g., switching speeds), and fun-
damental physical limitations (e.g., speed of light). Thus,
the large discrepancy between the performance of local
and wide-area links will continue.

Unlike the Internet as a whole, enterprise systems op-
erate in a trusted environment with a single adminis-

trative domain and experience little churn. These sys-
tems may contain a wide range of services, often de-
veloped by many different teams, including general ser-
vices for storage, database management, authentication,
and directories, as well as application-specific services,
such as email spam detection, address book manage-
ment, and advertising. These services are often accessed
using RPC’s, which we broadly define as a mechanism in
which a client sends a request to a server and the server
sends back a reply. This definition includes many types
of client-server interactions, such as the interactions in
CORBA, COM, REST, SOAP, etc.

In enterprise environments, application developers are
not malicious though some level of isolation is desirable
so that a problem in one application or service does not
affect others.

3 Design
We now explain the design of RPC chains, starting with
the basic mechanism for chaining RPC’s in Section 3.1.
The code that chains successive RPC’s is stored in a
repository, explained in Section 3.2. In Section 3.3, we
cover the state that is needed during the chain execution.
We then discuss composition of chains in Section 3.4,
legacy servers in Section 3.5, isolation in Section 3.6,
debugging in Section 3.7, exceptions in Section 3.8, fail-
ures in Section 3.9, and chain splitting in Section 3.10.

3.1 Main mechanism

Servers provide services in the form of service functions,
which is the general term we use for remote procedures,
remote methods, or any other processing units at servers.
An RPC chain calls a sequence of service functions, pos-
sibly at different servers. Service functions are connected
together via chaining functions, which specify the next
service function to execute in a chain (see Figure 2 top).
Chaining functions are provided by the client and exe-
cuted at the server. They can be arbitrary C# methods
with the restriction that they be stand-alone code, that
is, code which does not refer to non-local variables and
functions, so that they can be compiled by themselves.

We chose this general form of chaining for two rea-
sons. First, we want to allow the chain to unfold dynami-
cally, so that the choice of next hop depends on what hap-
pens earlier in the chain. For example, an error at a ser-
vice function could shorten a chain. Second, we wanted
to support server modularity, so that services and client
applications can be developed independently. Thus, a
server may not produce output that is immediately ready
for another server, in the way intended by the client’s
application. One may need to convert formats, reorder
parameters, combine them, or even combine the outputs
from several servers in the chain. For example, an NFS
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// service function
object sf(object parmlist)
// parmlist: parameter list

// chaining function
nexthop cf(object state, object result)
// state: from client or earlier parts of chain
// result: from last preceding service function
// returns next chain hop:
// (server, sf name, parmlist,
// cf name, state)

chain id start chain(machine t server,
string sf name, object parmlist,
string cf name, object state)

Figure 2: (Top) Signature of a service function (sf) and
chaining function (cf). (Bottom) Signature of function
that launches an RPC chain.
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Figure 3: Execution of an RPC chain (see explanatory
text in Section 3.1). RPCC stands for RPC chain.

server does not output data in the format expected by a
SQL server: one needs glue that will convert the output,
choose the tables, and add the appropriate SQL wrapper,
according to application needs. Chaining functions pro-
vide this glue. We initially considered a simpler alterna-
tive to chaining functions, in which a client just provides
a static list of servers to call, but this design does not ad-
dress the issues above. We also note that it is easy to
translate a static server list into the appropriate chaining
functions (one could even write a programmer tool that
automatically does that), so our design includes static
lists as a special case.

Figure 3 shows how an RPC chain executes. (1) A
client calls our RPCC (RPC chain) library, specifying a
server, a reference to a service function sf

1
at that server,

its parameters, and a chaining function cf
1
. (2) This in-

formation is then sent to the chosen server. (3) The server
executes service function sf

1
, which (4) returns a result.

(5) This result is passed to the chaining function cf
1
,

which then (6) returns the next server, service function,
and chaining function, and (7) the chain continues.

For example, suppose client A wants to call service
functions sf

B, sfC , sfD at servers B, C, and D, in this or-
der. To do so, the client specifies a reference to sf

B
and a

chaining function cf
1
. cf

1
causes a call to sfC at server C

with a chaining function cf
2
, which in turn causes a call

to sf
D at server D with a chaining function cf

3
, which

causes the final result to be returned to the client A.

3.2 Chaining function repository

Chaining functions are provided by clients but executed
at servers. To save bandwidth, in our implementation the
client does not send the actual code to the server. Rather,
the client uploads the code to a repository, and sends a
reference to the server; the server downloads the code
from the repository and caches it for subsequent use. The
repository stores chaining functions in source code for-
mat, and servers compile the code at runtime using the
reflection capabilities of .NET/C# (Java has similar ca-
pabilities).

We store source code because it introduces fewer de-
pendencies, is more robust (binary formats change more
frequently), and simplifies debugging. Because the cost
of runtime compilation can be significant (≈50 ms, see
Section 5.2.1), servers cache the compiled code, not the
source code, to avoid repeated compilations.

When the chaining function is very small, it could be
transmitted by the client with the RPC chain, so that the
server does not have to contact the repository. Our im-
plementation presently does not support this option.

3.3 Parameters and state

A chaining function is client logic that may depend on
run-time variables, tables, or other state from the client
or earlier parts of the chain. This state needs to be passed
along the chain, and ideally it should be small, otherwise
its transmission cost can outweigh the benefits of an RPC
chain (see Section 5.2.2). We represent the state as a set
of name-value pairs, which is passed as a parameter to
the chaining function (see Figure 2).

The output of each service function is also passed as
a parameter to the subsequent chaining function. For ex-
ample, in our storage copy application (Section 4.1), the
first service function reads a file, and the chaining func-
tion uses the result as input to the next service function,
which writes to a file on a different server. In our email
application, a service function reads an email message,
and the chaining function adds the message to the state of
the next chaining function, so that the message is passed
along the chain back to the chain originator (a mail web
server).

3.4 Nesting and composition

RPC chains can be nested: a service function in a chain
may itself start a sub-chain. For example, the main chain
could call a storage service, which then needs to call a
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Figure 4: Composition of nested chains. (Left) The main
chain 1 and a sub-chain 2. (Right) Result and manner of
composing chains. (I) B starts a sub-chain, causing the
RPCC library to push the B→C chaining function and
its state parameter into a stack. (II) Chaining function
at F returns an indication that the chain ended and the
result that B is supposed to produce. This causes the
RPCC library to pop from the stack, obtaining the B→C
chaining function and its state parameter. It then calls
this chaining function with the result and state. The chain
now continues at C.

replica. We implement nesting so that a nested chain can
be adjoined to an existing chain, as shown in Figure 4.
Note the difference between starting a chain going from
B to E, and moving to the next host in a chain going from
C to D: the former occurs when the service function at
B starts a new chain, while the latter occurs when the
chaining function at C calls the next node in the chain.
This distinction is important because the service function
at B represents a native procedure at the service, while a
chaining function at C represents logic coming from A.
At E, the chaining function that calls F represents logic
coming from B.

To compose a chain with its sub-chain, the chaining
function of the parent chain needs to be invoked when
a sub-chain ends (to continue the parent chain). Ac-
cordingly, when a host starts a sub-chain, the RPCC li-
brary saves the chaining function and its state param-
eter, and passes them along the sub-chain. The sub-
chain ends when its chaining function returns null in
nexthop.server, and a result in nexthop.state (this is
the result that the host originating the sub-chain must
produce for the parent chain). When that happens, the
RPCC library calls the saved chaining function with the
saved state and nexthop.state. Note that a chain and a
sub-chain need not be aware of each other for composi-
tion.

To allow multiple levels of nesting, we use a chain
stack that stores the saved chaining function and its state
for each level of composition. The stack is popped as
each sub-chain ends.

3.5 Handling legacy RPC services

RPC chains support legacy services that have standard
RPC interfaces. For that, we use a simple wrapper mod-
ule, installed at the legacy RPC server, which includes
the RPCC library and exposes the legacy remote proce-
dures as service functions.

Each service function passes requests and responses
to and from the corresponding legacy remote procedure.
Because the service function calls the legacy remote pro-
cedure locally through the RPC’s standard network inter-
face (e.g., TCP), the legacy server will see all requests as
coming from the local machine, and this can affect net-
work address-based server access control policies. (This
is not a problem if access control is based on internal
RPC authenticators, such as signatures or tokens, which
can be passed on by the wrapper.)

One solution is to re-implement the access con-
trol mechanism at the wrapper, but this is application-
specific. A better solution is for the wrapper to fake the
network address of its requests and capture the remote
procedure’s output before it is placed on the network.

3.6 Isolation

Chaining functions are pieces of client code running at
servers. Even though clients are trustworthy in the en-
vironment we consider, they are still prone to buffer
overruns, crashes, and other problems. Thus, chain-
ing functions are sandboxed to provide isolation, so that
client code cannot crash or otherwise adversely affect the
server on which it runs.

We need two types of isolation: (1) restricting access
to sensitive functions, such as file and network I/O and
privileged operating system calls, and (2) restricting ex-
cessive consumption of resources (CPU and memory).

We achieve (1) through direct support by .NET/C# of
access restrictions to file I/O, system and environment
variables, registry, clipboard, sockets, and other sensi-
tive functions (Java has similar capabilities). This is ac-
complished by placing descriptive annotations, called at-
tributes, in the source code of chaining functions when
they are compiled at run-time.

We achieve (2) by monitoring CPU and memory uti-
lization and checking that they are within preset val-
ues. The appropriate values are a matter of policy at
the server, but for the short-lived type of executions that
we target with RPC chains, chaining functions should
consume at most a few CPU seconds and hundreds of
megabytes of memory, even in the most extreme cases.

If a chaining function violates restrictions on access or
resource consumption, an RPC chain exception is thrown
according to the mechanism in Section 3.8.
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Another way to isolate chaining functions is to use a
chaining proxy (Section 7.3).

3.7 Debugging and profiling

A very useful debugging tool for traditional applications
is “printf”, which allows an application to display mes-
sages on the console. We provide an analogous facil-
ity for RPC chain applications: a virtual console, where
nodes in the chain can log debugging information. The
contents of the virtual console are sent with the chain,
and eventually reach the client, which can then dump the
contents to a real console or file. The virtual console can
also be used to gather profiling information for each step
in the chain and be aggregated at the client.

Even with “printf”, debugging RPC chains can be
hard, because it involves distributed execution over mul-
tiple machines. We can reduce this problem to the sim-
pler problem of debugging RPC-based code by running
RPC chains in a special interactive mode. The key obser-
vation is that chaining functions are portable code that
can be executed at any machine. In interactive mode,
chaining functions always execute at the client instead of
the servers. To accomplish this, after each service func-
tion returns, the RPCC library sends its result back to the
client, which then applies the chaining function to con-
tinue the chain from there. A chain executed in interac-
tive mode looks like a series of RPC calls. By running
the client in an interactive debugger, the developer can
control the execution of the chain and inspect the outputs
of service and chaining functions at each step.

3.8 Exceptions

An RPC chain may encounter exceptional conditions
while it is executing: (1) the next server in the chain
can be down, (2) the chaining function repository can be
down, or (3) the state passed to the chaining function can
be missing vital information due to a bug. All of these
will result in an exception, either at the RPCC library in
cases (1) and (2), or at a chaining function in case (3).
(Service functions do not throw exceptions; they simply
return an error to the caller.)

Who should handle such exceptions? One possibility
is to handle them locally, by having the client send ex-
ception handling code as part of the chain. Doing this re-
quires sending all the state that the handling code needs,
which complicates the application design. Instead, we
choose a less efficient but simpler alternative (since ex-
ceptions are the rare case). We simply propagate excep-
tions back to the client that started the chain. The client
receives the exception name, its parameters, and the path
of hosts that the chain has traversed thus far. (If the client
crashes, the exception becomes moot and is ignored.)

In the case of nested chains, the exception propagates
first to the host that started the current sub-chain. If that
host does not catch the exception, it continues propagat-
ing to the host that started the parent chain, until it gets
to the client. For example, in Figure 4 right, if E throws
an exception (say, because it could not contact F), the
exception goes to B, the node that created the sub-chain.
This is a natural choice because B understands the logic
of the sub-chain that it created, and so it may know how
to recover from the exception. If B does not catch the
exception, it is propagated to A.

3.9 Broken chains

The crash of a host while it executes an RPC chain results
in a broken chain. In this section, we describe the broken
chain detection and recovery mechanisms.

Detection. We detect a broken chain using a simple
end-to-end timeout mechanism at the client called chain
heartbeats: a chain periodically sends an alive message
to the client that created it, say every 3 seconds, and the
client uses a conservative timeout of 6 seconds. If there
are sub-chains, only the top-level creator gets the heart-
beats. Heartbeats carry a unique chain identifier, a pair
consisting of the client name and a timestamp, so that the
client knows to which chain it refers.

We achieve the periodic sending through a time-to-
heartbeat timer, which is sent with the chain, and it is
decremented by each node according to its processing
time, until it reaches 0, the time to send a heartbeat. Syn-
chronized clocks are not needed to decrement the timer;
we only need clocks that run at approximately the same
speed as real time. Since we do not know link delays,
we assume a conservative value of 200 ms and decre-
ment the time-to-heartbeat timer by this amount for ev-
ery network hop. This assumption may be violated when
if there is congestion and dropped packets, resulting in
a premature timeout (false positive). However, the im-
pact of false positives is small because of our recovery
mechanism, explained next.

Recovery. To recover from a broken chain, the client
simply retransmits the request. Like standard remote
procedures, we make chains idempotent by including
a chain-id with each chain, and briefly caching the re-
sults of service functions and chaining functions at each
server. If a server sees the same chain-id, it uses the
cached results for the service and chaining functions.
The chain can continue in this fashion up to the host
where the chain previously broke. At that host, if the
“next” host is still down, an exception is thrown. Alter-
natively, a fail-over mechanism that calls a backup server
can be implemented by using logical server names which
are mapped to a backup when the primary fails. This
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is similar to the mechanisms used to fail over standard
RPC’s.

Upon a second timeout, a client executes the RPC
chain in interactive mode (as in Section 3.7), to deter-
mine exactly at which node the chain stopped, and re-
turns an error to the application.

3.10 Splitting chains

For performance reasons, it may be desirable to split
a chain to allow parallel execution. The decision to
split a chain should be made with consideration of the
added complexity, as concurrent computations are al-
ways harder to understand, design, debug, and maintain
compared to sequential computations. Although our ap-
plications do not use splitting chains, we now explain
how such chains can be implemented.

Split. We modify chaining functions so that they can
return more than one nexthop parameter. The RPCC li-
brary calls each nexthop concurrently, resulting in the
several split-chains. Each chain has an id comprised of
the id of the parent plus a counter. For example, if there
is a 3-way split of chain 74, the split-chains will have
ids 74.1, 74.2, and 74.3. Each of these split chains can in
turn be split again, and result in split-chains with increas-
ingly long ids. For example, if split-chain 74.1 splits
into two, the resultant split-chains will have ids 74.1.1
and 74.1.2. We note for future reference that each split-
chain knows how many siblings it has (this information
is passed on to the split-chains when the chain splits).

Broken split chains. Recall that we use an end-to-
end mechanism to handle broken chains (Section 3.9) via
a chain heartbeat. When a chain splits, we also split the
heartbeats: each split-chain sends its own heartbeat (with
the split-chain id) and the client will be content only if it
periodically sees the heartbeat from all the split-chains.
The heartbeat messages indicate the number of sibling
split-chains, so that the client knows how many to expect.
If a split-chain is missing, the client starts the chain again
(even if other split-chains are still running, this does not
cause a problem because of idempotency).

Merge. To merge split-chains, a merge host collects
the results of each split-chain and invokes a merge func-
tion to continue the chain. The merge host and function
are chosen when the chain splits (they are returned by the
chaining function causing the split). The merge host can
be any host; a good choice is the next host in the chain.
The merge host awaits outcomes from all split-chains be-
fore calling the merge function, which takes the vector of
results and returns nexthop, specifying the next service
function and chaining function to call.

After split-chains complete (i.e., reach the merge
host), the parent chain will continue and resume its heart-
beats. However, split-chains do not necessarily complete

at the same time, so there may be a period from when the
first split-chain completes until the parent chain resumes.
During this period the merge host sends heartbeats on be-
half of the completed split-chains, so that the client does
not time out.

Crash garbage. When there are crashes in the sys-
tem, the merge host may end up with the outcome of
stale split-chains. This garbage can be discarded after
a timeout: as we mentioned, RPC chains are intended
for short-lived computations, so we propose a timeout of
a minute. Note that if a slow system causes a running
chain to be garbage collected, the client will recover af-
ter it times out.

4 Applications

To demonstrate RPC chains, we apply and evaluate them
in two important enterprise applications: a storage appli-
cation (Section 4.1) and a web application (Section 4.2).

4.1 Storage applications

Storage services generally provide two basic functions,
read and write, based on keys, file names, object id’s,
or other identifiers. While this generic interface is suit-
able for many applications, its low-level nature some-
times forces bad data access patterns on applications. For
instance, if a client wants to copy a large object from one
storage server to another, the client must read the object
from one server and write it to the other, causing all the
data to go through the client. If the client is separated
from the storage servers by a high latency or low band-
width connection, this copying could be very slow.

One solution is to modify the storage service on a case-
by-case basis for different operations and different set-
tings. For example, the Amazon S3 storage service re-
cently added a new copy operation to its interface [2],
so that an end user can efficiently copy her data be-
tween data centers in the US and Europe, without hav-
ing to transfer data through her machine. Although such
application-specific interfaces can be beneficial, they are
specific to particular operations and do not mitigate ad-
verse communication patterns in other settings.

RPC chains provide a more general solution: they not
only enable the direct copying of data from one server
to another (through a simple chain that reads and then
writes), but also enable broader uses. To demonstrate this
idea, we layered RPC chains over a legacy NFS v3 stor-
age server, as explained in Section 3.5. (We could have
used other types of storage, such as an object store.) We
then implemented a simple chain to copy data without
passing through the client.

We also show a more sophisticated application of
chains by implementing a primary-backup replication of
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Figure 5: (a) Copying data from storage server 1 to a replicated storage server 2 without RPC chains. The client reads
from storage 1 and writes to storage 2; when this happens, storage 2 writes to a backup server. (b) Using a chain to
copy data and a chain to replicate data (composition disabled). (c) Composing the chains. The chains are not aware of
each other but the RPCC library can combine them.

the storage server: when the primary receives a write re-
quest, it creates a chain to apply the request on a backup
server. Because replication is done through chains, it can
be composed with other chains. This is illustrated in Fig-
ure 5(b), which shows a setup with two storage servers,
the second of which is replicated, and a user who wants
to copy data from the first to the second server. Two
chains are created as a result of this request: a chain that
the client launches for copying, and another that the sec-
ond storage server launches for replication. The RPCC
library allows these two chains to be composed together,
as shown in Figure 5(c). We report on quantitative bene-
fits of our approach in Section 5.3.

4.2 Web mail application

Web applications are generally composed of multiple
tiers or services: there are front-end web servers, au-
thentication servers, application servers, and storage and
database servers. Some of these tiers, namely the web
servers and application servers, play the role of orches-
trating other tiers, and they tend to keep very little user
state of their own, other than soft session state. This is a
propitious setting for RPC chains, because performance
gains can be realized by optimizing the communication
patterns of the various services. We demonstrate this
point with a sample application.

We consider a typical web mail application. There
are web servers that handle HTTP requests, authenti-
cation servers and address-book servers that are shared
with other applications, email storage servers that store
the users’ mail, and ad servers that are responsible for
displaying relevant ads. These services can be located
in multiple data centers, for several reasons: (1) no sin-
gle data center can host them all; (2) a service may have
been developed in a particular location and so it is hosted
close by; (3) for performance reasons, it may be desir-
able for some services to be located close to their users
(e.g., users created in Asia may have their mailbox stored
in Asia), though this is not always achievable (e.g., an
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Figure 6: A simplified web mail server that uses RPC
chains. The solid line shows the login sequence followed
by retrieval of email and ads. The dashed line shows
how a system based on standard RPC’s would differ. The
chain is not used for the web client, since it is outside the
system. It is used in the communication between mail,
storage, and ad servers.

Asian user travels to the U.S. and his mailbox is still in
Asia); and (4) a service may need high availability or the
ability to withstand disasters.

We implemented a simple web mail service as shown
in Figure 6, to study the benefits of RPC chains in such
a setting. Our web mail system consists of a front-
end server that authenticates users by verifying their lo-
gins and passwords. Upon successful authentication, the
front-end server returns a cookie to the client along with
the name of an email server. The client then uses the
cookie to communicate with the email server to send and
receive email messages. Upon receiving a client request,
the email server first verifies the cookie, then calls the
back-end storage server to fetch the appropriate emails
for the user. Finally, the mail server sends the message
to an ad server so that relevant ads can be added to the
messages before they are returned to the client.

Note that the adding of ads to emails imposes a sig-
nificant overhead on performance. This is of particular
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concern because one of the primary performance goals
of a webmail service is to minimize the response time
observed by clients. In addition, emails and ads cannot
be fetched in parallel, since relevant ads cannot be se-
lected without knowing the contents of the emails. It is
also difficult to pre-compute the relevant ads because the
relevance of ads may change over time.

Using RPC chains, we can mitigate some of the ad-
related overheads. Even though we can only fetch ads
after fetching the emails, we can eliminate one latency
hop from the communication path of the web mail appli-
cation by creating a chain that causes emails to be sent
directly from the storage server to the ad server, without
having to go through to email server (as shown in step
7 of Figure 6). Once the ad server has appended the ap-
propriate ads to the emails, the emails can be sent to the
email server which then returns it to the client. In Sec-
tion 5.4, we evaluate the benefit of using RPC chains to
improve the communication pattern in this fashion.

5 Evaluation
We now evaluate RPC chains. We start with some mi-
crobenchmarks, in which we measure the overhead of
chaining functions and we compare RPC chains versus
standard RPC’s. We then evaluate the storage and web
applications to demonstrate the performance improve-
ments provided by RPC chains. The general question we
address is when are RPC chains advantageous and what
are the exact benefits.

5.1 Setup

In this section, we present the evaluation of our storage
and multi-tier web application. Our experimental setup
consists of ten machines in four geodistributed sites in
a corporate network that spans the globe. We had ma-
chines in 4 sites: (1) Mountain View, California, USA,
(2) Redmond, Washington, USA, (3) Cambridge, United
Kingdom, and (4) Beijing, China. The measured latency
and throughput of the links between these sites are shown
in Figure 7.

5.2 Microbenchmarks

5.2.1 Overhead of chaining functions

In our first experiment, we evaluate the overhead im-
posed by chaining functions (pieces of client code) at
servers. We considered chaining functions of three sizes,
621 bytes, 5 KB, and 50 KB, corresponding to small,
medium, and large functions.

We first measured the time it takes to compile a func-
tion at run-time. The results are shown in the first two
columns of Figure 8, averaged over 10 runs (± refers to

(a)

Redmond Beijing Cambridge
Mt.View 32 ms 180 ms 240 ms
Redmond 146 ms 210 ms
Beijing 354 ms

(b)

Redmond Beijing Cambridge
Mt. View 6.3 MB/s 2.1 MB/s 1.4 MB/s
Redmond 8.5 MB/s 8.6 MB/s
Beijing 2.4 MB/s

Figure 7: (a) Ping round-trip times and (b) bandwidth of
TCP connections between pair of sites.

Source size Compile time Compiled size
(KB) (ms) (KB)
0.6 45.7 ± 0.3 0.4
5 47.1 ± 0.4 4.6

50 76.0 ± 0.3 15.9

Figure 8: Overhead for compiling chaining functions and
storing compiled code.

standard error). We used a 3 Ghz Intel Core 2 Duo pro-
cessor running Windows Vista Enterprise SP1. The func-
tions were written in C# and compiled using Microsoft
Visual Studio 2008.

We also did a linear regression with a larger set of
points (17 sizes, with 10 runs each) and found that the
cost of compilation is 44.8 ms plus 1 ms for each 5000
bytes of source code. We see that there is a large initial
compilation cost of tens of milliseconds, which we do
not want to pay every time we call the server in a chain.

We measured the size of the compiled code, shown
in the third column of Figure 8. We see that it is very
small (we initially thought it would be large, but this is
not the case). This allows the server to cache even tens
of thousands of chaining functions in less than 50 MB,
which justifies our choice of doing so.

5.2.2 RPC chain versus standard RPC

In our next experiment, we compare the latency of an
RPC chain versus standard RPC. We used the smallest
non-trivial chain, which goes through two servers (A

client

server�2server�1

rp
c1

rpc2
RPC�Chain

Standard�RPC

Figure 9: Executions used in the experiment of Sec-
tion 5.2.2.



USENIX Association	 NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation	 285

chain that goes through only one server is the same as
an RPC), and compare it against a pair of consecutive
RPC’s going to the two servers, as shown in Figure 9. To
isolate concerns, the service executed at each server is a
no-op.

The figure makes it clear that the RPC chain incurs one
fewer hop than the pair of RPC calls. What is not shown
is that the RPC chain has potentially two overheads that
the pair of RPC calls do not: (1) even if the client needs
the response from server 1 but server 2 does not, the data
is still relayed through server 2, and (2) the client needs
to send state for the chaining function to execute at server
1. The first overhead can be avoided through a simple
extension to RPC chains to allow each server in the chain
to send some data to the client (Section 7.1).

We now consider the second overhead, and examine
the question of how much state the client can send while
still allowing the RPC chain to be faster than the pair
of RPC calls. We assume that the chaining function is
already cached at server 1, which is the common case for
frequent chains.

Back-of-the-envelope calculation. We start with a
simple calculation. Let S be the size of the state sent
by the client for the chaining function at server 1. Then,
in terms of total latency, the RPC chain saves one net-
work latency but incurs S/link bandwidth to send the
state. Thus, the RPC chain fares better as long as
link latency > S/link bandwidth, or

S < link latency × link bandwidth

For wide area links, the latency-bandwidth product
can easily be in the tens to hundreds of kilobytes or more.

Experiment. We executed the RPC chain and the pair
of RPC’s. The client was located in Redmond while the
servers were in Mountain View. (Because both servers
were in the same site, this setup favors the RPC chain by
an additional network latency; we later explain the case
when the servers are far apart.)

Figure 10 shows the client end-to-end latency as a
function of the state size (error bars show standard er-
ror). For the standard RPC execution, state size does not
affect total latency, since this state simply stays at the
client. The total latency was 75±1 ms. For the RPC
chain, the latency naturally increases with the state size.
The point at which both lines cross is at ≈150 KB. This
is a fair amount of state to send in many cases—definitely
much more than we needed in either of our applications.

If servers 1 and 2 were far apart, this would shift the
RPC chain line up by the corresponding extra latency.
For example, if the latency from server 1 to server 2 were
15 ms, the lines would cross at ≈100 KB (assuming the
distance from client to server 2 remains the same), which
is still a reasonable state size (and much more than we
needed in our applications).
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Figure 10: Execution time using an RPC chain versus
standard RPC to call 2 servers.

5.3 Storage application

We now evaluate the use of RPC chains for the storage
application described in Section 4.1.

5.3.1 Copy performance

In our experiments, we copy data from one storage server
to another using two utilities: one that uses RPC chains,
called Chain copy, and another that uses standard RPC’s,
called RPC copy. Both utilities use pipelining, so that
the client has multiple outstanding requests on either
server. We also tried using the operating-system pro-
vided “copy” program, but it performed much worse than
either Chain copy or RPC copy, because it it reads and
writes one chunk of data at a time (no pipelining).

In our first experiment, a single client copies a file of
variable size (25 KB, 100 KB, 250 KB, and 500 KB)
between two servers, and we measure the time it takes.
We vary the location of the client (Mt. View, Redmond,
Beijing) and fix the location of the servers in Mt. View.
In the setting where both the client and the servers were
in Mt. View, we placed them in two separate subnets,
where the ping latency between the two was 2 ms and
TCP bandwidth was 10 MB/s.

Figure 11 shows the results. Each bar represents the
median of 40 repetitions of the experiment. As we can
see, Chain copy provide considerable benefits in every
case, compared to RPC copy. The benefits are greater
for larger files and longer distances between client and
servers. In a local setting, the copying time is reduced
by up to factor of 2, while in the longest-distance setting
(Beijing-Mt. View), the reduction is up to a factor of 5.

Another benefit of using Chain copy (not shown) is a
reduction by a factor of two in (a) the aggregate network
bandwidth consumption, and (b) the client bandwidth
consumption. This reduction is important because links
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Figure 11: Comparison of RPC copy and Chain copy under various settings. (Left) Client and servers are in the same
site in Mt. View. (Center) Client is in Redmond and servers are in Mt. View. (Right) Client is in Beijing and servers
are in Mt. View.

Figure 12: Throughput-latency of RPC copy and Chain
copy. Latency is the time to copy a 128 KB file, and
throughput is the rate at which files are copied.

connecting data centers have limited bandwidth and/or
are priced based on the bandwidth used.

In our next experiment, we vary the number of clients
simultaneously copying files from one server to another,
and measure the resultant throughput and latency of the
system. This allows us to observe the behavior of the
system under varying load as well as measure the peak
throughput of the system. As before, the client machine
was located in Redmond and the servers were located in
Mt. View. We ran multiple client instances in parallel on
the client machine, each client copying 1000 files in suc-
cession, each file measuring 256 KB in size. We measure
the time that each client takes to complete copying 1000
files, and compute conservative throughput and latency
numbers based on the slowest client.

Figure 12 shows the results of the experiment. For
both RPC copy and Chain copy, the average latency de-
creases as the amount of workload placed on the sys-
tem increases. Initially, the increase in workload also
results in an increase in the aggregate throughput of the
system, but once the system becomes saturated, any in-

crease in workload only increases latency without any
gain in throughput. Our results show that RPC copy
is able to sustain a peak throughput of 4.5 MB/s. This
peak throughput occurs when the network link between
the client and the servers, which had a bandwidth of 6.3
MB/s, becomes saturated. Since Chain copy does not
require that the data blocks of the files being copied ac-
tually flow through the client, it was not subject to this
limitation and was thus able to achieve a higher peak
throughput of 10.4 MB/s. Rather than a network band-
width limitation, Chain copy’s throughput is limited by
the servers’ ability to keep up with requests.

5.3.2 Benefit of chain composition

In this experiment, we measure the benefit of compos-
ing RPC chains. We use two chains: one for copying
from one server to another (as above) and the other for
primary-backup replication of the second server (as in
Figure 5). We compare two systems that use RPC chains;
one system uses chain composition to combine the two
chains, while the other has composition disabled. In the
experiment, one client copies one file of variable size
from the non-replicated server to the replicated server.
The client is in Cambridge, the source server is in Mt.
View, the primary of the destination server is in Mt.
View, and the backup of the destination server is in Red-
mond.

Figure 13 shows the result. As we can see, composing
the chain reduces the duration of the copy by 12%-20%,
with larger files having a greater reduction. Without
composition, the destination server has to handle both re-
quests from the source server as well as the replies from
the backup server. Composition reduces the load on the
destination server by allowing the backup server to send
replies directly to the client. In addition, composition
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Figure 13: Benefit of chain composition.

Figure 14: RPC chain in web mail application.

eliminates the unnecessary messages from the backup
server to the destination server, reducing the amount of
bandwidth consumption. A combination of these factors
allow composition to improve the overall performance of
the system. As file size increases, the setup cost becomes
relatively small compared to the actual cost of executing
the chains. This makes the impact of the more efficient
chain that resulted from composition more apparent.

5.4 Web mail application

We now describe the evaluation of the web mail applica-
tion presented in Section 4.2. In our experimental setup,
we placed the client in Mountain View, the mail server
and the authentication server in Redmond, and all other
servers in Beijing. This setup emulates the case where
a user from Asia travels to the US and wants to access
web mail services that are hosted in Asia. Since the web
mail provider may have servers deployed worldwide, the
user can be directed to a mail server and an authentica-
tion server (Redmond) that is close to his current location
(Mountain View). However, user-specific data is stored
on servers close to the user’s normal location (Beijing),
so the mail server has to fetch data from those machines.

Specifically, after receiving a cookie from the client
and verifying the client’s identity, the mail server must
fetch the client’s email from the storage server followed
by appropriate ads from the ad server, both of which are
located in Beijing. A traditional system implemented us-

ing RPC’s would have the mail server contact the stor-
age server, fetch the user’s emails, then contact the ad
server to retrieve relevant ads. However, in our setting,
where the mail server is located close to the client but
far away from the storage server and ad server, travers-
ing the long links between Redmond and Beijing four
times would be less than ideal. As described in Sec-
tion 4.2, RPC chains allow us to eliminate unnecessary
network traversals. In this case, our RPC-chain-enabled
mail server sends emails directly from the storage server
to the ad server before returning the result to the mail
server, halving the number of long link traversals.

We measure the client perceived latency of opening an
inbox and retrieving one email: the client first contacts
the front end authentication server to authenticate her-
self, then she sends a read request to the mail server to
retrieve a single email. We measure the time it takes for
the client to receive the email, which is appended with
an ad whose size is small relative to the size of the email.
We vary the size of the email that is fetched, and for each
size, we repeated the experiment 20 times.

As shown in Figure 14, RPC chains consistently re-
duces the client perceived latency of the web mail appli-
cation. As the size of the email increases, the latency
improvement from using RPC changes also increases.
Overall, we found that the use of RPC chains reduced
the latency of the web mail application by 40% to 58%
when compared to standard RPC’s.

We note that the significant performance gains of us-
ing RPC chains comes at a very low cost of implementa-
tion. For the web mail application, the effort involved in
enabling RPC chains was mainly in terms of implement-
ing chaining functions which totaled a mere 48 lines of
C# code. In general, a simple way for existing applica-
tions to benefit from RPC chains is to identify the critical
causal path of RPC requests, and replace that path with
an RPC chain. The effort is that of writing a single RPC
chain; in the worst case, one can do it from scratch. The
harder problem is finding the critical causal path, which
has been an active area of research (e.g., [1]).

6 Limitations

We now describe some limitations of RPC chains.

Chaining state cannot always be sent. RPC chains
are not appropriate if the chaining state is large or if it
cannot be determined when the client starts the chain.
For example, suppose that (1) A calls B using an RPC,
(2) A gets a reply, and (3) depending on the state of a
sensor or some immediate measurement at A, A then
calls C or D. It is not possible to use an RPC chain
A→B→(C or D), because the choice of going to C ver-
sus D must be made at A where the sensor is.
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Programming with continuations. To use RPC
chains, developers need to make use of continuation-
style programming. This can be much harder than pro-
gramming using sequential code, because continuations
must explicitly keep track of all their state. Continuations
are notoriously hard to debug, because there is no simple
way to track the execution that led to a given state.

We note, however, that programming with continua-
tions is already tolerated in code that uses asynchronous
RPC’s and callbacks. Moreover, one could perhaps write
a tool that automatically produces continuations from se-
quential code, using techniques from the compiler litera-
ture (see, e.g., [3]).

Terminating chains. When an application terminates,
it is usually desirable to release its resources and halt all
its activities. However, if the application has outstanding
RPC chains, it is not easy to terminate them. This prob-
lem exists with traditional RPC’s as well (there is no easy
way to terminate a remote procedure), but it is worse with
RPC chains because the remote servers involved may not
be known.

RPC chains are designed for relatively short-lived ex-
ecutions, and for these uses, this problem is less of a con-
cern, because a chain soon terminates anyways. The only
exception is a buggy chain that runs forever. For such
chains, the RPCC library can impose a maximum chain
length, say 2000 hops, and throw an exception after that.

7 Extensions
We now discuss some extensions of RPC chains.

7.1 Intermediate chain results

If a client wants to receive some results from inter-
mediate servers of the chain, these results need to be
relayed through the chain. If the amount of data is
large, it can impose a significant overhead. We can ex-
tend RPC chains to address this issue, by allowing each
server in the chain to directly return some data to the
client. This data is application-specific and is returned
by the chaining function. Thus, we add a new field,
client-response, to the nexthop result of a chaining
function. The RPCC library sends client-response to
the client concurrently with continuing the chain.

What happens under chain composition? In this case,
the “client” that gets client-response is the server that
created the sub-chain. The name of these creators, at
each level of composed chain, are kept in the chain stack
(the chain stack is explained in Section 3.4).

7.2 Dealing with large chaining states

The chaining state is the state that the client sends along
the chain to execute the chaining functions. If this state

is large, this can incur a significant state overhead. Two
optimizations are possible to mitigate this cost.

Fall-back to standard RPC. As explained in Sec-
tion 3.7, we can execute a chain in interactive mode,
which causes the chain to go back to the client at ev-
ery step. This is effectively a fall-back to standard RPC,
causing all chaining functions to execute at the client,
which eliminates the overhead of sending the chaining
state, at the cost of extra network delays. We explored
this trade-off in Section 5.2.2. It is possible to have the
RPCC library gauge the size of the chaining state before
starting the chain, and if the state is larger than some
threshold, execute the chain in interactive mode. The
threshold can be chosen dynamically based on previous
executions of the same chain, in an adaptive manner. By
doing so, an RPC chain will always perform at least as
well as standard RPC’s, modulo the small computational
overhead of executing chaining functions and the time it
takes to adapt. However, in the applications we examined
in this paper, we did not need this technique because the
chaining state was always small.

Hiding latency. In our implementation, servers wait
to receive the chaining state before executing the next
service function in the chain. This waiting is not nec-
essary, because the service function depends only on its
parameters, not on the chaining state (the chaining state
is only needed for the chaining function, which executes
later). Therefore, a natural optimization is to start the ser-
vice function even as the chaining state is being received.
If the service function takes significant time to complete,
(e.g., it involves disk I/O or some lengthy computation),
this will mask part or all of the latency of transmitting
the chaining state.

7.3 Chaining proxy

As we said, chaining functions are portable code that do
not have to execute at the server. They can execute at a
designated chaining proxy machine, to avoid any over-
head at the server. Doing so incurs extra communication,
but if the chaining proxy is geographically close to the
server, this cost is small relative to that of a wide-area
hop. To choose the chaining proxy, we can use a simple
mapping from servers to nearby proxies configured by an
administrator.

8 Related work

RPC chains utilize two well-understood ideas in the con-
text of remote execution: function shipping, and contin-
uations.

Function shipping is the general technique of sending
computation to the data rather than bringing the data to
the computation. It is used in some systems where the
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cost of moving data is large compared to the cost of mov-
ing computation. For example, Diamond [10] is a stor-
age architecture in which applications download search-
let code to disk to perform efficient filtering of large data
sets locally, thereby improving efficiency. RPC chains
use function shipping to send chaining logic.

A continuation [17] refers to the shifting of program
control and transfer of current state from one part of a
program to another. Extending this to distributed contin-
uations is a natural step, allowing a continuation to shift
program control from one processor to another. Several
works in the parallel programming community give high-
level programming continuation constructs and specify
their behavior formally, e.g., [12, 11]. Distributed con-
tinuations were exploited to enhance the functionality of
web servers and overcome the stateless nature of HTTP
interaction. By comparison, the RPC chain is a generic
mechanism that is independent of the service provided
by servers. RPC chains support complex chaining struc-
tures, and can be used with a diverse set of servers.

The above mentioned ideas for code mobility, and oth-
ers, are leveraged in a variety of high-level program-
ming paradigms for distributed execution. Distributed
workflows, e.g., [5, 22], can use distributed continua-
tions to distribute a workflow description in a decen-
tralized fashion. MapReduce [6], and Dryad [23] are
programming models for data-parallel jobs, such as a
data mining calculations, which process large amounts of
data in batches. These systems target self-contained jobs
that execute for substantial periods, while RPC Chains
are intended for short-lived remote executions in an en-
vironment with many diverse services that are possi-
bly developed independently of their applications. Mo-
bile agents have been extensively studied in the litera-
ture and many systems have been built, including Tele-
script/Odyssey [19], Aglets [4], D’Agents [8], and others
(see e.g., [20, 9]). A mobile agent is a process that can
autonomously migrate itself from host to host as it ex-
ecutes; migration involves moving the process’s current
state to the new host and resuming execution. The mo-
tivation for mobile agents include (a) bringing processes
closer to the resources they need in a given stage of the
computation, and (b) allowing clients to disconnect from
the network while an agent executes on their behalf. An
RPC Chain can be considered as a mobile agent whose
purpose is to execute a series of RPC calls. However,
mobile agents are much more general and ambitious than
RPC Chains (which possibly contributed to their even-
tual demise): they have social abilities, being able to ad-
just their behavior according to the host in which they are
currently executing; they can learn about execution envi-
ronments never envisioned by their creators; and they can
persist if the clients that created them disappear. Much
of the literature regarding mobile agents is about security

(how agents can survive malicious hosts, and how hosts
can protect themselves against malicious agents) and lan-
guage support for code mobility (how to write programs
that can transparently move to other machines). For RPC
chains, security is a smaller concern in the trusted data
center and enterprise environments that we consider, and
we are not concerned about transparent mobility.

Some related work includes more targeted uses of mo-
bile code. Work on Active Networks introduced network
packets called capsules, which carry code that network
switches execute to route the packet (see [18] for a sur-
vey). This provides a general scheme for extending net-
work protocols beyond the existing deployed base, and
allows for more dynamic routing schemes. In contrast,
RPC chains are aimed at higher-level applications, and
their main purpose is to eliminate communication hops
when a client needs to call many services in succession.

Distributed Hash Tables (e.g., Chord [16], CAN [14],
Pastry [15], Tapestry [24]) have a lookup protocol, for
finding the host responsible for a given key. Such proto-
cols generally need to contact several hosts successively,
and this can be done in two ways. In an interactive
lookup protocol, the host that initiates the lookup opera-
tion issues RPC’s to each host in succession. A recursive
lookup protocol [7] works like a routing protocol: the
host that initiates the operation contacts the first host in
the sequence, which in turn contacts the next one, and so
forth; when a host finds the key, it contacts the request
initiator directly. This protocol is hard-coded into the
lookup operation, and it is executed by a set of servers
that implement this operation. In contrast, RPC chains
provide a generic chaining mechanism that is indepen-
dent of the operation (service function) executed.

Finally, SOAP [21] is a protocol that supports RPC’s
using XML over HTTP. It has the notion of intermedi-
aries that can process a SOAP message (RPC) before it
reaches the final recipient. However, there is no client
logic that routes and transform messages, and the notion
of a pre-specified distinguished final recipient is inher-
ent to SOAP. Typical uses for intermediary nodes include
blocking messages (firewall), buffering and batching of
messages, tracing, and encrypting/decrypting messages
as it passes through an untrusted domain.

9 Conclusion

We proposed the RPC chain, a simple but powerful
primitive that combines multiple RPC invocations into
a chain, in order to optimize the communication pattern
of applications that use many composite services, possi-
bly developed independently of each other. With RPC
chains, client can save network hops, resulting in con-
siderably smaller end-to-end latencies in a geodistributed
setting. Clients can also save bandwidth because they are
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not forced to receive data they do not need. We demon-
strated the use of RPC chains for a storage and a web
application, and we think RPC chains could have many
more applications beyond those.
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Abstract
In this paper we present Botlab, a platform that con-

tinually monitors and analyzes the behavior of spam-
oriented botnets. Botlab gathers multiple real-time
streams of information about botnets taken from distinct
perspectives. By combining and analyzing these streams,
Botlab can produce accurate, timely, and comprehensive
data about spam botnet behavior. Our prototype system
integrates information about spam arriving at the Univer-
sity of Washington, outgoing spam generated by captive
botnet nodes, and information gleaned from DNS about
URLs found within these spam messages.
We describe the design and implementation of Botlab,

including the challenges we had to overcome, such as
preventing captive nodes from causing harm or thwart-
ing virtual machine detection. Next, we present the re-
sults of a detailed measurement study of the behavior of
the most active spam botnets. We find that six botnets
are responsible for 79% of spam messages arriving at the
UW campus. Finally, we present defensive tools that take
advantage of the Botlab platform to improve spam filter-
ing and protect users from harmful web sites advertised
within botnet-generated spam.

1 Introduction
Spamming botnets are a blight on the Internet. By some
estimates, they transmit approximately 85% of the 100+
billion spam messages sent per day [14, 21]. Botnet-
generated spam is a nuisance to users, but worse, it can
cause significant harm when used to propagate phishing
campaigns that steal identities, or to distribute malware
to compromise more hosts.
These concerns have prompted academia and industry

to analyze spam and spamming botnets. Previous stud-
ies have examined spam received by sinkholes and pop-
ular web-based mail services to derive spam signatures,
determine properties of spam campaigns, and character-
ize scam hosting infrastructure [1, 39, 40]. This analysis
of “incoming” spam feeds provides valuable information
on aggregate botnet behavior, but it does not separate ac-
tivities of individual botnets or provide information on
the spammers’ latest techniques. Other efforts reverse
engineered and infiltrated individual spamming botnets,
including Storm [20] and Rustock [5]. However, these
techniques are specific to these botnets and their com-
munication methods, and their analysis only considers
characteristics of the “outgoing” spam these botnets gen-

erate. Passive honeynets [13, 27, 41] are becoming less
applicable to this problem over time, as botnets are in-
creasingly propagating via social engineering and web-
based drive-by download attacks that honeynets will not
observe. Overall, there is still opportunity to design de-
fensive tools to filter botnet spam, identify and block
botnet-hosted malicious sites, and pinpoint which hosts
are currently participating in a spamming botnet.
In this paper we turn the tables on spam botnets by us-

ing the vast quantities of spam that they generate to mon-
itor and analyze their behavior. To do this, we designed
and implemented Botlab, a continuously operating bot-
net monitoring platform that provides real-time informa-
tion regarding botnet activity. Botlab consumes a feed of
all incoming spam arriving at the University of Washing-
ton, allowing it to find fresh botnet binaries propagated
through spam links. It then executes multiple captive,
sandboxed nodes from various botnets, allowing it to ob-
serve the precise outgoing spam feeds from these nodes.
It scours the spam feeds for URLs, gathers information
on scams, and identifies exploit links. Finally, it corre-
lates the incoming and outgoing spam feeds to identify
the most active botnets and the set of compromised hosts
comprising each botnet.
A key insight behind Botlab is that the combination of

both incoming and outgoing spam sources is essential for
enabling a comprehensive, accurate, and timely analysis
of botnet behavior. Incoming spam bootstraps the pro-
cess of identifying spamming bots, outgoing spam en-
ables us to track the ebbs and flows of botnets’ ongoing
spam campaigns and establish the ground truth regard-
ing spam templates, and correlation of the two feeds can
classify incoming spam according to botnet that is sourc-
ing it, determine the number of hosts active within each
botnet, and identify many of these botnet-infected hosts.

1.1 Contributions
Our work offers four novel contributions. First, we tackle
many of the challenges involved in building a real-time
botnet monitoring platform, including identifying and
incorporating new bot variants, and preventing Botlab
hosts from being blacklisted by botnet operators.
Second, we have designed network sandboxing mech-

anisms that prevent captive bot nodes from causing harm,
while still enabling our research to be effective. As well,
we discuss the long-term tension between effectiveness
and safety in botnet research given botnets’ trends, and
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we present thought experiments that suggest that a de-
termined adversary could make it extremely difficult to
conduct future botnet research in a safe manner.
Third, we present interesting behavioral character-

istics of spamming botnets derived from our multi-
perspective analysis. For example, we show that just
a handful of botnets are responsible for most spam re-
ceived by UW, and attribute incoming spam to specific
botnets. As well, we show that the bots we analyze use
simple methods for locating their command and control
(C&C) servers; if these servers were efficiently located
and shut down, much of today’s spam flow would be dis-
rupted. As another example, in contrast to earlier find-
ings [40], we observe that some spam campaigns utilize
multiple botnets.
Fourth, we have implemented several prototype de-

fensive tools that take advantage of the real-time in-
formation provided by the Botlab platform. We have
constructed a Firefox plugin that protects users from
scam and phishing web sites propagated by spam bot-
nets. The plug-in blocked 40,270 malicious links em-
anating from one botnet monitored by Botlab; in con-
trast, two blacklist-based defenses failed to detect any of
these links. As well, we have designed and implemented
a Thunderbird plugin that filters botnet-generated spam.
For one user, the plugin reduced the amount of spam that
bypassed his SpamAssassin filters by 76%.
The rest of this paper is organized as follows. Sec-

tion 2 provides background material on the botnet threat.
Section 3 discusses the design and implementation of
Botlab. We evaluate Botlab in Section 4 and describe ap-
plications we have built using it in Section 5. We discuss
our thoughts on the long-term viability of safe botnet re-
search in Section 6. We present related work in Section 7
and conclude in Section 8.

2 Background on the Botnet Threat
A botnet is a large-scale, coordinated network of comput-
ers, each of which executes specific bot software. Botnet
operators recruit new nodes by commandeering victim
hosts and surreptitiously installing bot code onto them;
the resulting army of “zombie” computers is typically
controlled by one or more command-and-control (C&C)
servers. Botnet operators employ their botnets to send
spam, scan for new victims, steal confidential informa-
tion from users, perform DDoS attacks, host web servers
and phishing content, and propagate updates to the bot-
net software itself.
Botnets originated as simple extensions to existing In-

ternet Relay Chat (IRC) softbots. Efforts to combat bot-
nets have grown, but so has the demand for their services.
In response, botnets have become more sophisticated and
complex in how they recruit new victims and mask their
presence from detection systems:

Propagation: Malware authors are increasingly relying
on social engineering to find and compromise victims,
such as by spamming users with personal greeting card
ads or false upgrade notices that entice them to install
malware. As propagation techniques move up the proto-
col stacks, the weakest link in the botnet defense chain
becomes the human user. As well, systems such as pas-
sive honeynets become less effective at detecting new
botnet software, instead requiring active steps to gather
and classify potential malware.

Customized C&C protocols: While many of the older
botnet designs used IRC to communicate with C&C
servers, newer botnets use encrypted and customized
protocols for disseminating commands and directing
bots [7, 9, 33, 36]. For example, some botnets communi-
cate via HTTP requests and responses carrying encrypted
C&C data. Manual reverse-engineering of bot behavior
has thus become time-consuming if not impossible.

Rapid evolution: To evade detection from trackers
and anti-malware software, some newer botnets morph
rapidly. For instance, most malware binaries are often
packed using polymorphic packers that generate differ-
ent looking binaries even though the underlying code
base has not changed [29]. Also, botnet operators are
moving away from relying on a single web server to host
their scams, and instead are using fast flux DNS [12].
In this scheme, attackers rapidly rebind the server DNS
name to different botnet IP addresses, in order to defend
against IP blacklisting or manual server take-down. Fi-
nally, botnets also make updates to their C&C protocols,
by incorporating new forms of encryption and command
distribution.
Moving forward, analysis and defense systems must

contend with the increasing sophistication of botnets.
Monitoring systems must be pro-active in collecting and
executing botnet samples, as botnets and their behavior
change rapidly. As well, botnet analysis systems will in-
creasingly have to rely on external observations of botnet
behavior, rather than necessarily being able to crack and
reverse engineer botnet control traffic.

3 The Botlab Monitoring Platform
The Botlab platform produces fresh information about
spam-oriented botnets, including their current cam-
paigns, constituent bots, and C&C servers. Botlab par-
tially automates many aspects of botnet monitoring, re-
ducing but not eliminating the manual effort required of
a human operator to analyze new bot binaries and incor-
porate them into Botlab platform.
Botlab’s design was motivated by four requirements:

1. Attribution: Botlab must identify the spam botnets
that are responsible for campaigns and the hosts that
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Figure 1: Botlab Architecture. Botlab coordinates and monitors multiple source of data about spam botnets, including incoming
spam from the University of Washington, and outgoing spam generated by captive bot nodes.

belong to those botnets.

2. Adaptation: Botlab must track changes in the bot-
nets’ behavior over time.

3. Immediacy: Because the value of information about
botnet behavior degrades quickly, Botlab must pro-
duce information on-the-fly.

4. Safety: Botlab must not cause harm.

There is a key tension in our work between safety and
effectiveness, similar to tradeoff between safety and fi-
delity identified in the Potemkin honeyfarm [34]. In Sec-
tion 6, we discuss this tension in more detail and com-
ment on the long-term viability of safe botnet research.
Figure 1 shows the Botlab architecture. We now de-

scribe Botlab’s main components and techniques.

3.1 Incoming Spam
Botlab monitors a live feed of spam received by approx-
imately 200,000 University of Washington e-mail ad-
dresses. On average, UW receives 2.5 million e-mail
messages each day, over 90% of which is classified as
spam. We use this spam feed to collect new malware
binaries, described next, and within Botlab’s correlation
engine, described in Section 3.5.

3.2 Malware Collection
Running captive bot nodes requires up-to-date bot bi-
naries. Botlab obtains these in two ways. First, many
botnets spread by emailing malicious links to victims;

accordingly, Botlab crawls URLs found in its incom-
ing spam feed. We typically find approximately 100,000
unique URLs per day in our spam feed, 1% of which
point to malicious executables or drive-by downloads.
Second, Botlab periodically crawls binaries or URLs
contained in public malware repositories [3, 25] or col-
lected by the MWCollect Alliance honeypots [22].

Given these binaries, a human operator then uses Bot-
lab’s automated tools for malware analysis and finger-
printing to find bot binaries that actively send spam, as
discussed next in Section 3.3. Our experience to date
has yielded two interesting observations. First, though
the honeypots produced about 2,000 unique binaries over
a two month period, none of these binaries were spam-
ming bots. A significant fraction of the honeypot binaries
were traditional IRC-based bots, whereas the spamming
binaries we identified from other sources all used non-
IRC protocols. This suggests that spamming bots prop-
agate through social engineering techniques, rather than
the automated compromise of remote hosts.

Second, many of the malicious URLs seen in spam
point to legitimate web servers that have been hacked
to provide malware hosting. Since malicious pages are
typically not linked from the legitimate pages on these
web servers, an ordinary web crawl will not find them.
This undermines the effectiveness of identifying mali-
cious pages using exhaustive crawls, an hypothesis that
is supported by our measurements in Section 5.
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3.3 Identifying Spamming Bots
Botlab executes spamming bots within sandboxes to
monitor botnet behavior. However, we must first prune
the binaries obtained by Botlab to identify those that cor-
respond to spamming bots and to discard any duplicate
binaries already being monitored by Botlab.
Simple hashing is insufficient to find all duplicates,

as malware authors frequently repack binaries or release
slightly modified versions to circumvent signature-based
security tools. Relying on anti-virus software is also im-
practical, as these tools do not detect many new malware
variants.
To obtain a more reliable behavioral signature, Bot-

lab produces a network fingerprint for each binary it
considers. A network fingerprint captures informa-
tion about the network connections initiated by a bi-
nary. To obtain it, we execute each binary in a safe
sandbox and log all outbound network connection at-
tempts. A network fingerprint will then consist of
a set of flow records of the form <protocol, IP
address, DNS address, port>. Note that the
DNS address field might be blank if a bot communicates
with an IP directly, instead of doing a DNS lookup.
Once network activity is logged, we extract the flow

records. We execute each binary two times and take the
network fingerprint to be the set of flow records which
are common across both executions. This eliminates
any random connections which do not constitute stable
behavioral attributes. For example, some binaries har-
vest e-mail addresses and spam subjects by searching
google.com for random search terms, and following
links to the highest-ranked search results; repeated ex-
ecution identifies and discards these essentially random
connection attempts.
Given the network fingerprints N1 and N2, of two bi-

naries B1 and B2 respectively, we define the similarity
coefficient of the binaries, S(B1, B2), to be:

S(B1, B2) =
|N1 ∩ N2|
|N1 ∪ N2|

If the similarity coefficient of two binaries is sufficiently
high (we use 0.5 as the threshold), we consider the bina-
ries to be behavioral duplicates. As well, binaries which
attempt to send e-mail are classified as spamming bots.
We took a step to validate our duplicate elimination

procedure. Unfortunately, given a pair of arbitrary bi-
naries, determining that they are behavioral duplicates is
undecidable, so we must rely on an approximation. For
this, we used five commercial anti-virus tools and a set
of 500 malicious binaries which made network connec-
tions. All five anti-virus tools had signatures for only 192
of the 500 binaries, and we used only these 192 binaries
in our validation. We considered a pair of binaries to be

duplicates if their anti-virus tags matched in the majority
of five tools. Note that we do not expect the tags to be
identical across different anti-virus tools. Network fin-
gerprinting matched this tag-based classification 98% of
the time, giving us reasonable confidence in its ability
to detect duplicates. Also, we observed a false-positive
rate of 0.62%, where the anti-virus tags did not match,
but network fingerprinting labeled the files as duplicates.
Note again that anti-virus tools lack signatures for many
new binaries our crawler analyzes, making them unfit to
use as our main duplicate suppression method.

3.3.1 Safely generating fingerprints

The tension between safety and effectiveness is particu-
larly evident when constructing signatures of newly gath-
ered binaries. A safe approach would log emitted net-
work packets, but drop them instead of transmitting them
externally; unfortunately, this approach is ineffective,
since many binaries must first communicate with a C&C
server or successfully transmit probe email messages be-
fore fully activating. An effective approach would al-
low a binary unfettered access to the Internet; unfortu-
nately, this would be unsafe, as malicious binaries may
perform DoS attacks, probe or exploit remote vulnerabil-
ities, transmit spam, or relay botnet control traffic.
Botlab attempts to walk the tightrope between safety

and effectiveness. We provide a human operator with
tools that act as a safety net: traffic destined to privileged
ports, or ports associated with known vulnerabilities, is
automatically dropped, and limits are enforced on con-
nections rates, data transmission, and the total window of
time in which we allow a binary to execute. As well, Bot-
lab provides operators with the ability to redirect outgo-
ing SMTP traffic to spamhole, an emulated SMTP server
that traps messages while fooling the sender into believ-
ing the message was sent successfully.
We are confident that our research to date has been

safe. However, the transmission of any network traffic
poses some degree of risk of causing harm to the receiver,
particularly when the traffic originates from an untrusted
binary downloaded from the Internet. In Section 6, we
present our thoughts on the long-term viability of safely
conducting this research.

3.3.2 Experience classifying bots

We have found that certain bots detect when they are be-
ing run in a virtual machine and disable themselves. To
identify VMM detection, Botlab generates two network
fingerprints for each binary: we execute the binary in a
VMware virtual machine and also on a bare-metal ma-
chine containing a fresh Windows installation. By com-
paring the resulting two network fingerprints, we can in-
fer whether the binary is performing any VM detection.
Some of the spamming binaries we analyzed made ini-
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tial SMTP connections, but subsequently refused to send
spam. For example, one spam bot connected to spam-
hole, but never sent any spam messages after receiving
the initial greeting string from the SMTP server. We de-
duced that this bot was checking that the greeting string
included the domain name to which the bot was connect-
ing, and we modified spamhole to return appropriate do-
main names in the string.
We also observed that some spam bots perform more

sophisticated SMTP verification before they send spam.
For example, when the MegaD bot begins executing, it
transmits a test e-mail to a special MegaD mail server,
verifying each header it receives during the SMTP hand-
shake. MegaD’s mail server returns a message ID string
after sending the message, which the bot then sends to
its C&C server. The C&C server verifies that the mes-
sage with this ID was actually delivered to the MegaD
mail server before giving any further instructions to the
bot. Accordingly, to generate a signature for MegaD, and
later, to continuously execute a captured MegaD node,
the human operator had to indicate to Botlab to deflect
SMTP messages destined for MegaD’s mail server from
the spamhole to the live Internet.
Some bots do not send spam through SMTP, but in-

stead use HTTP-based web services. For example, a Ru-
stock variant rotates through valid hotmail.com ac-
counts to transmit spam. To safely intercept this spam,
we had to construct infrastructure that spoofs Hotmail’s
login and mail transmission process, including using fake
SSL certificates during login. Fortunately, this variant
does not check the SSL certificates for validity. How-
ever, if the variant evolves and validates the certificate,
we would not be able to safely analyze it.

3.4 Execution Engine
Botlab executes spamming bot binaries within its execu-
tion engine. The engine runs each bot within a VM or on
a dedicated bare-metal box, depending on whether the
bot binary performs VMM detection. In either case, Bot-
lab sandboxes network traffic to prevent harm to external
hosts. We re-use the network safeguards described in the
previous section in the execution engine sandbox: our
sandbox redirects outgoing e-mail to spamhole, permits
only traffic patterns previously identified as safe by a hu-
man operator to be transmitted to the Internet, and drops
all other packets. Traffic permitted on the Internet is also
subject to the same rate limiting policies we previously
described.
Though we have analyzed thousands of malware bi-

naries to date, only a surprisingly small fraction corre-
spond to unique spamming botnets. In fact, we have
so far found just seven spamming bots: Grum, Kraken,
MegaD, Pushdo, Rustock, Srizbi, and Storm. (Botnet
names are derived according to tags with which anti-

virus tools classify the corresponding binaries.) We be-
lieve these are the most prominent spam botnets existing
today, and our results suggest that they are responsible
for sending most of the world’s spam. Thus, it appears
the spam botnet landscape consists of just a handful of
key players.

3.4.1 Avoiding blacklisting

If the botnet owners learn about Botlab’s existence, they
might attempt to blacklist IP addresses belonging to the
University of Washington. The C&C servers would then
refuse connections to Botlab’s captive bots, rendering
Botlab ineffective. To prevent this, Botlab routes any bot
traffic permitted onto the Internet, including C&C traffic,
through the anonymizing Tor network [6]. Our malware
crawler is also routed through Tor. While Tor provides
a certain degree of anonymity, a long-term solution to
avoid blacklisting would be to install monitoring agents
at geographically diverse and secret locations, with the
hosting provided by organizations that desire to combat
the botnet threat.

Some bots track and report the percentage of e-mail
messages successfully sent and e-mail addresses for
which sending failed. These lists can be used by bot-
net owners to filter out invalid or outdated addresses. To
avoid detection, we had to ensure that our bots did not re-
port 100% delivery rates, as these are unlikely to happen
in the real world. Doing so was easy; our bots experience
many send errors because of failed DNS lookups for mail
servers. Thus, we simply rely on DNS to provide us with
a source of randomness in bot-reported statistics. Should
bot masters begin to perform a more complicated statis-
tics analysis, more controlled techniques for introducing
random failures in spamhole might become necessary.

3.4.2 Multiple C&C servers

Some botnets partition their bots across several C&C
servers. For example, in Srizbi, different C&C servers
are responsible for sending different classes of spam.
These spam classes differ in subject line, content, em-
bedded URLs, and even languages. If we were to run
only a single Srizbi bot binary, it would connect to one
C&C server, and therefore we would only have a partial
view of the overall botnet activity.

To rectify this, we take advantage of a C&C redun-
dancy mechanism built into many bots, including Srizbi:
if the primary C&C server goes down, an alternate C&C
server is selected either via hardcoded IP addresses or
programmatic DNS lookups. Botlab can thus block the
primary C&C server(s) and learn additional C&C ad-
dresses. Botlab can then run multiple instances of the
same bot, each routed to a different C&C server.
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3.5 Correlating incoming and outgoing
spam

Botlab’s correlation analyzer combines our different
sources of botnet information to provide a more complete
view into overall botnet activity. For example, armed
with a real-time outgoing spam feed, we can classify
spam received by our incoming spam feed according to
the botnet that is responsible for sending it. We will de-
scribe how we derived our classification algorithm and
evaluate its accuracy in Section 4.3.1.
For spam that cannot be attributed to a particular bot-

net using our correlation analysis, we use clustering anal-
ysis to identify sets of relays used in the same spam cam-
paign. In Section 4.2, we evaluate various ways in which
this clustering can be performed. If there is a significant
overlap between a campaign’s relay cluster and known
members of a particular botnet (where botnet member-
ship information is derived from the earlier correlation
analysis), then we can merge the two sets of relays to
derive a more complete view of botnet membership.

3.6 Summary
We have outlined an architecture for Botlab, a real-time
spam botnet monitoring system. Some elements of Bot-
lab have been proposed elsewhere; our principal contri-
bution is to assemble these ideas into an end-to-end sys-
tem that can safely identify malicious binaries, remove
duplicates, and execute them without being blacklisted.
By correlating the activity of captured bots with the ag-
gregate incoming spam feed, the system has the potential
to provide more comprehensive information on spam-
ming botnets and also enable effective defenses against
them. We discuss these issues in the remainder of the
paper.

4 Analysis
We now present an analysis of botnets that is enabled
by our monitoring infrastructure. First, we examine the
actions of the bots being run in Botlab, characterize
their behavior, and analyze the properties of the outgo-
ing spam feed they produce. Second, we analyze our
incoming spam feed to extract coarse-grained, aggregate
information regarding the perpetrators of malicious ac-
tivity. Finally, we present analysis that is made possi-
ble by studying both the outgoing and incoming spam
feeds. Our study reveals several interesting aspects of
spamming botnets.

4.1 The Spam Botnets
In our analysis, we focus on seven spam botnets: Grum,
Kraken, MegaD, Pushdo, Rustock, Srizbi, and Storm.
Although our malware crawler analyzed thousands of
potential executables, after network fingerprinting and
pruning described earlier, we found that only variants of

these seven bots actively send spam. Next, we summa-
rize various characteristics of these botnets and our ex-
perience running them.

4.1.1 Behavioral Characteristics

Table 1 summarizes various characteristics of our bot-
nets, which we have monitored during the past six
months. The second column depicts the number of days
on which we have observed a botnet actively sending
spam. We found that keeping all botnets active simul-
taneously is difficult. First, locating a working binary for
each botnet required vastly different amounts of time, de-
pending on the timings of botnet propagation campaigns.
For example, we have only recently discovered Grum, a
new spamming botnet which has only been active for 8
days, whereas Rustock has been running for more than
5 months. Second, many bots frequently go offline for
several days, as C&C servers are taken down by law en-
forcement, forcing the bot herders to re-establish new
C&C servers. Sometimes this breaks the bot binary,
causing a period of inactivity until a newer, working ver-
sion is found.
The amount of outgoing spam an individual bot can

generate is vastly different across botnets. MegaD and
Srizbi bots are the most egregious: they can send out
more than 1,500 messages per minute, using as many as
80 parallel connections at a time, and appear to be lim-
ited only by the client’s bandwidth. On the other hand,
Rustock and Storm are “polite” to the victim – they send
messages at a slow and constant rate and are unlikely to
saturate the victim’s network connection. Big variabil-
ity in send rates suggests these rates might be useful in
fingerprinting and distinguishing various botnets.
Bots use various methods to locate and communicate

with their C&C servers. We found that many botnets use
very simple schemes. Rustock, Srizbi, and Pushdo sim-
ply hardcode the C&C’s IP address in the bot binary, and
MegaD hardcodes a DNS name. Kraken uses a propri-
etary algorithm to generate a sequence of dynamic DNS
names, which it then attempts to resolve until it finds a
working name. An attacker registers the C&C server at
one of these names and can freely move the C&C to an-
other name in the event of a compromise. In all of these
cases, Botlab can efficiently pinpoint the IP addresses of
the active botnet C&C servers; if these servers could be
efficiently located and shut down, the amount of world-
wide spam generated would be substantially reduced.
Although recent analysis suggests that botnet control

is shifting to complicated decentralized protocols as ex-
emplified by Storm [20, 33], we found the majority of
our other spam bots use HTTP to communicate with their
C&C server. Using HTTP is simple but effective, since
bot traffic is difficult to filter from legitimate web traffic.
HTTP also yields a simple pull-based model for botnet
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Botnet # days active 
in trace 

total spam 
messages

spam send rate 
(messages/min) C&C protocol 

C&C servers 
contacted over 

lifetime
C&C discovery 

Grum 8 days 864,316 344 encrypted HTTP, port 80 1 static IP 
(206.51.231.192)

Kraken 25 days 5,046,803 331 encrypted HTTP, port 80 41 algorithmic DNS 
lookups

Pushdo 59 days 4,932,340 289 encrypted HTTP, port 80 96 set of static IPs 

Rustock 164 days 7,174,084 33 encrypted HTTP, port 80 1 static IP 
(208.72.169.54)

MegaD 113 days 198,799,848 1638 encrypted custom 
protocol, ports 80 and 443 21 static DNS name 

(majzufaiuq.info)

Srizbi 51 days 86,003,889 1848 unencrypted HTTP, 
 port 4099 20 set of static IPs 

Storm 50 days 961,086 20 compressed TCP  N/A p2p (Overnet) 

Table 1: The botnets monitored in Botlab. Table gives characteristics of representative bots participating in the seven botnets.
Some bots use all available bandwidth to send more than a thousand messages per minute, while others are rate-limited. Most
botnets use HTTP for C&C communication. Some do not ever change the C&C server address yet stay functional for a long time.

operators: a new bot makes an HTTP request for work
and receives an HTTP response that defines the next task.
Upon completing the task, the bot makes another request
to relay statistics, such as valid and invalid destination
addresses, to the bot master. All of our HTTP bots fol-
low this pattern, which is easier to use and appears just
as sustainable as a decentralized C&C protocol such as
Storm’s protocol.

We checked whether botnets frequently change their
C&C server to evade detection or reestablish a com-
promised server. The column “C&C servers contacted”
of Table 1 shows how many times a C&C server used
by a bot was changed. Surprisingly, many bots change
C&C servers very infrequently; for example, the various
copies of Rustock and Srizbi bots have used the same
C&C IP address for 164 and 51 days, respectively, and
experienced no downtime during these periods. Some
bots are distributed as a set of binaries, each with differ-
ent hardcoded C&C information. For example, we found
20 variants of Srizbi, each using one hardcoded C&C IP
address. The C&C changes are often confined to a par-
ticular subnet; the 10 most active /16 subnets contributed
103 (57%) of all C&C botnet servers we’ve seen. As
well, although none of the botnets shared a C&C server,
we found multiple overlaps in the corresponding subnets;
one subnet (208.72.*.*) provided C&C servers for Srizbi,
Rustock, Pushdo, and MegaD, suggesting infrastructural
ties across different botnets.

As it turns out, these botnets had many of their C&C
servers hosted by McColo, a US based hosting provider.
On November 11, McColo was taken offline by its ISPs,
and as a result, the amount of spam reaching the Univer-
sity of Washington dropped by almost 60%. As of Febru-
ary 2009, the amount of spam reaching us has steadily
increased to around 80% of the pre-shutdown levels as

some of the botnet operators have been able to redirect
their bots to new C&C servers, and in addition, new bot-
nets have sprung up to replace the old ones.

4.1.2 Outgoing Spam Feeds

The spam generated by our botnets is a rich source of in-
formation regarding their malicious activities. The con-
tent of the spam emails can be used to identify the scams
perpetrated by the botnets (as discussed in Section 4.3)
and help develop application-level defenses for end-hosts
(see Section 5). In this section, we analyze the character-
istics of the spam mailing lists, discuss the reach of var-
ious botnets, and examine whether spam subjects could
be used as fingerprints for the botnets.

Size of mailing lists: We first use the outgoing spam
feeds to estimate the size of the botnets’ recipient lists.
We assume the following model of botnet behavior:

• A bot periodically obtains a new chunk of recipients
from the master and sends spam to this recipient list.
Let c be the chunk size.

• On each such request, the chunk of recipients is se-
lected uniformly at random from the spam list.

• The chunk of recipients received by a bot is much
smaller than the spam list size N .

Assuming these are true, the probability of a particular
email address from the spamlist appearing in k chunks of
recipients obtained by a bot is 1 − (1 − c/N)k. As the
second term decays with k, the spam feed will expose the
entire recipient list in an asymptotic manner, and eventu-
ally most newly-picked addresses will be duplicates of
previous picks. Further, if we recorded the firstm recipi-
ent addresses from a spam trace, the expected number of
repetitions of these addresses within the next k chunks is
m[1 − (1 − c/N)k].
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We have observed that MegaD, Rustock, Kraken, and
Storm follow this model. We fit the rates at which they
see duplicates in their recipient lists into the model above
to obtain their approximate spam list sizes. We present
the size estimates at a confidence level of 95%. We esti-
mate MegaD’s spam list size to be 850 million addresses
(±0.2%), Rustock’s to be 1.2 billion (±3%), Kraken’s
to be 350 million (±0.3%), and Storm’s 110 million
(±6%).
Srizbi and Pushdo partition their spam lists in a way

that precludes the above analysis. We have not yet col-
lected enough data for Grum to reliably estimate its spam
list size – our bot has not sent enough emails to see du-
plicate recipient email addresses.

 MegaD Kraken Rustock 

Kraken 28% N/A 7% 
MegaD N/A 8% 9% 
Pushdo 0% 0% 0% 
Rustock 15% 6% N/A 
Srizbi 21% 10% 8% 
Storm 24% 11% 7% 

Table 2: Overlap between recipient spam lists. The table
shows the fraction of each botnet’s recipient list that is shared
with MegaD, Kraken, and Rustock’s recipient lists. For exam-
ple, Kraken shares 28% of its recipient list with MegaD.

Overlap in mailing lists: We also examined whether
botnets systematically share parts of their spam lists. To
do this, we have measured address overlap in outgoing
spam feeds collected thus far and combined it with mod-
eling similar to that in the previous section (more details
are available in [16]). We found that overlaps are sur-
prisingly small: the highest overlap is between Kraken
and MegaD, which share 28% of their mailing lists. It
appears different botnets cover different partitions of the
global email list. Thus, spammers can benefit from using
multiple botnets to get wider reach, a behavior that we in
fact observe and discuss in Section 4.3.

Spam subjects: Botnets carefully design and hand-tune
custom spam subjects to defeat spam filters and attract at-
tention. We have found that between any two spam bot-
nets, there is no overlap in subjects sent within a given
day, and an average overlap of 0.3% during the length
of our study. This suggests that subjects are useful for
classifying spam messages as being sent by a particular
botnet. To apply subject-based classification, we remove
any overlapping subjects, leaving, on average, 489 sub-
jects per botnet on a given day. As well, a small number
of subjects include usernames or random message IDs.
We remove these elements and replace them with reg-
exps using an algorithm similar to AutoRE [39]. We will
evaluate and validate this classification scheme using our

Figure 2: Number of distinct relay IPs and the /24s contain-
ing them.

Figure 3: Fraction of spam that is captured by using IP-
based blacklists. We find that using relays seen locally so far
works as well as a commercial blacklist, and can block almost
60% of the spam.

incoming spam in Section 4.3.1.

4.2 Analysis of Incoming Spam
We analyze 46 million spam messages obtained from a
50-day trace of spam from University of Washington and
use it to characterize the hosts sending the spam, the
scam campaigns propagated using spam, and the web
hosting infrastructure for the scams. To do this, each
spam message is analyzed to extract the set of relays
through which the purported sender forwarded the email,
the subject, the recipient address, other SMTP headers
present in the email, and the various URLs embedded
inside the spam body.
We found that on average, 89.2% of the incoming mail

at UW is classified as spam by UW’s filtering systems.
Around 0.5% of spam contain viruses as attachments.
Around 95% of the spam messages contain HTTP links,
and 1% contain links to executables.

4.2.1 Spam sources

Figure 2 plots the total number of distinct last-hop relays
seen in spam messages over time. We consider only the
IP of the last relay used before a message reaches UW’s
mail servers, as senders can spoof other relays. The num-
ber of distinct relay IPs increases steadily over time and
reaches 9.5 million after 7 weeks worth of spam mes-
sages. Two factors could be responsible for keeping this
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Figure 4: Number of messages sourced by distinct relay IPs,
over a single day and the entire trace.

growth linear. One is a constant balance between the in-
flux of newly-infected bots and the disappearance of dis-
infected hosts. Another is the use of dynamic IP (DHCP)
leases for end hosts, which causes the same physical ma-
chine to manifest itself under different IPs. To place a
lower bound on the number of distinct spam hosts given
the DHCP effect, Figure 2 also shows the number of dis-
tinct /24’s corresponding to spam relays, assuming that
the IPs assigned by DHCP to a particular host stay in the
/24 range.
The constantly changing list of IPs relaying spam

does suggest that simple IP-based blacklists, such as the
Spamhaus blacklist [31], will not be very effective at
identifying spam. To understand the extent to which
this churn impacts the effectiveness of IP-based black-
lists, we analyze four strategies for generating blacklists
and measure their ability to filter spam. First, we con-
sider a blacklist comprising of the IP addresses of the
relays which sent us spam a week ago. Next, we have a
blacklist that is made up of the IP addresses of the relays
which sent us spam the previous day. Third, we consider
a blacklist that contains the IP addresses of the relays
which sent us spam at any point in the past. Finally, we
look at a commonly used blacklist such as the Composite
Blocking List (CBL) [4]. Figure 3 shows the compari-
son. The first line shows how quickly the effectiveness
of a blacklist drops with time, with a week-old blacklist
blocking only 20% of the spam. Using the relay IPs from
the previous day blocks around 40% of the spam, and us-
ing the entire week’s relay IPs can decrease the volume
of spam by 50 − 60%. Finally, we see that a commer-
cial blacklist performs roughly as well as the local black-
list which uses a weeks’ worth of information. We view
these as preliminary results since a rigorous evaluation
of the effectiveness of blacklists is possible only if we
can also quantify the false positive rates. We defer such
analysis to future work.
We next analyze the distribution of the number of mes-

sages sent by each spam relay. Figure 4 graphs the num-
ber of messages each distinct relay has sent during our
trace. We also show the number of messages sent by
each relay on a particular day, where DHCP effects are

Figure 5: Number of distinct hostnames in URLs conveyed
by spam. Spammers constantly register new DNS names.

Figure 6: Clustering spam messages by the IP of URLs con-
tained within them. Links in 80% of spam point to only 15
distinct IP clusters.

less likely to be manifested. On any given day, only a
few tens of relays send more than 1,000 spam messages,
with the bulk of the spam conveyed by the long tail. In
fact, the relays that sent over 100 messages account for
only 10% of the spam, and the median number of spam
messages per relay is 6. One could classify the heavy
hitters as either well-known open mail relays or heav-
ily provisioned spam pumps operated by miscreants. We
conjecture that most of the long tail corresponds to com-
promised machines running various kinds of bots.

4.2.2 Spam campaigns and Web hosting

We next examine whether we can identify and charac-
terize individual spam campaigns based on our incoming
spam. Ideally, we would cluster messages based on sim-
ilar content; however, this is difficult as spammers use
sophisticated content obfuscation to evade spam detec-
tion. Fortunately, more than 95% of spam in our feed
contains links. We thus cluster spam based on the fol-
lowing attributes: 1) the domain names appearing in the
URLs found in spam, 2) the content of Web pages linked
to by the URLs, and 3) the resolved IP addresses of the
machines hosting this content. We find that the second
attribute is the most useful for characterizing campaigns.
Clustering with URL domain names revealed that for

any particular day, 10% of the observed domain names
account for 90% of the spam. By plotting the num-
ber of distinct domain names observed in our spam feed
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over time (shown in Figure 5), we found that the number
of distinct hostnames is large and increases steadily, as
spammers typically use newly-registered domains. (In
fact, on average, domain names appearing in our spam
are only two weeks old based on whois data.) Conse-
quently, domain-based clustering is too fine-grained to
reveal the true extent of botnet infections.
Our content clustering is performed by fetching the

Web page content of all links seen in our incoming spam.
We found that nearly 80% of spam pointed to just 11 dis-
tinct Web pages, and the content of these pages did not
change during our study. We conclude that while spam-
mers try to obfuscate the content of messages they send
out, the Web pages being advertised are static. Although
this clustering can identify distinct campaigns, it cannot
accurately attribute them to specific botnets. We revisit
this clustering method in Section 4.3.2, where we add
information about our botnets’ outgoing spam.
For IP-based clustering, we analyzed spam messages

collected during the last week of our trace. We ex-
tracted hostnames from all spam URLs and performed
DNS lookups on them. We then collected sets of re-
solved IPs from each lookup, merging any sets sharing
a common IP. Finally, we grouped spam messages based
on these IP clusters; Figure 6 shows the result. We found
that 80% of the spam corresponds to the top 15 IP clus-
ters (containing a total of 57 IPs). In some cases, the
same Web server varied content based on the domain
name that was used to access it. For example, a single
server in Korea hosted 20 different portals, with demul-
tiplexing performed using the domain name. We conjec-
ture that such Web hosting services are simultaneously
supporting a number of different spam campaigns. As a
consequence, web-server-based clustering is too coarse-
grained to disambiguate individual botnets.

4.3 Correlation Analyses
We now bring together two of our data sources, our out-
going and incoming spam feeds, and perform various
kinds of correlation analyses, including: 1) classifying
spam according to which botnet sourced it, 2) identify-
ing spam campaigns and analyzing botnet partitioning,
3) classifying and analyzing spam used for recruiting
new victims, and 4) estimating botnet sizes and produc-
ing botnet membership lists. Note that we exclude Grum
from these analyses, because we have not yet monitored
this recently discovered bot for a sufficiently long time.

4.3.1 Spam classification

To classify each spam message received by University
of Washington as coming from a particular botnet, we
use subject-based signatures we derived in Section 4.1.2.
Each signature is dynamic — it changes whenever bot-
nets change their outgoing spam. We have applied these

Figure 7: Average contributions of each botnet to incoming
spam received at University of Washington. 79% of spam
comes from six spam botnets, and 35% comes from just one
botnet, Srizbi.
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Figure 8: Breakdown of spam e-mails by botnet over time.
Most botnets contribute approximately the same fraction of
spam to our feed over our study period, with Srizbi, Rustock,
and MegaD being the top contributors. Kraken shows gaps in
activity on days 28-32 and 52. Day 1 corresponds to March 13,
2008.

signatures to a 50-day trace of incoming spam messages
received at University of Washington in March and April
2008. Figure 7 shows how much each botnet contributed
to UW spam on average, and Figure 8 shows how the
breakdown behaves over time. We find that on average,
our six botnets were responsible for 79% of UW’s in-
coming spam. This is a key observation: it appears that
for spam botnets, only a handful of major botnets pro-
duce most of today’s spam. In fact, 35% of all spam is
produced by just one botnet, Srizbi. This result might
seem to contradict the lower bound provided by Xie et
al. [39], who estimated that 16 − 18% of the spam in
their dataset came from botnets. However, their dataset
excludes spam sent from blacklisted IPs, and a large frac-
tion of botnet IPs are present in various blacklists (as
shown in Sections 4.2 and [28]).
We took a few steps to verify our correlation. First,

we devised an alternate classification based on certain
unique characteristics of the “Message ID” SMTP header
for Srizbi and MegaD bots, and verified that the classifi-
cation does not change using that scheme. Second, we
extracted last-hop relays from each classified message
and checked overlaps between sets of botnet relays. The
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Canadian Healthcare 0% 0% 0.01% 22% 3% 0% 
Canadian Pharmacy 16% 28% 10% 0% 9% 6% 
Diamond Watches 22% 0.1% 0% 0% 13% 0% 
Downloadable Software 0% 0% 25% 0% 0% 0% 
Freedom From Debt Forever! 19% 0% 0% 0% 0% 1% 
Golden Gate Casino 0% 32% 0% 0% 0% 0% 
KING REPLICA 0% 4% 3% 0% 15% 0% 
LNHSolutions 0% 6% 0% 0% 0% 0% 
MaxGain+ ... No.1 for PE 0% 0% 3% 78% 0% 0% 
Prestige Replicas 7% 0% 0.3% 0% 31% 0% 
VPXL - PE Made Easy 20% 8% 6% 0% 24% 55% 
Unavailable 3% 22% 38% 0% 0% 24% 
Other 13% 0.1% 15% 0% 5% 14% 

Table 3: Clustering incoming spam by the title of the web
page pointed to by spam URLs. The columns show how fre-
quently each botnet was sending each campaign on April 30,
2008. Many botnets carry out multiple campaigns simultane-
ously.

overlaps are small; it is never the case that many of the re-
lays belonging to botnet X are also in the set of relays for
botnet Y. The biggest overlap was 3.3% between Kraken
and MegaD, which we interpret as 3.3% of Kraken’s re-
lays also being infected with the MegaD bot.

4.3.2 Spam campaigns

To gain insight into kinds of information spammers dis-
seminate, we classified our incoming spam according to
spam campaigns. We differentiate each campaign by the
contents of the web pages pointed to by links in spam
messages. Using data from Section 4.3.1, we classify
our incoming spam according to botnets, and then break
down each botnet’s messages into campaign topics, de-
fined by titles of campaign web pages. Table 3 shows
these results for a single day of our trace. For exam-
ple, Rustock participated in two campaigns – 22% of its
messages advertised “Canadian Healthcare”, while 78%
advertised “MaxGain+”. We could not fetch some links
because of failed DNS resolution or inaccessible web
servers; we marked these as “Unavailable”. The table
only shows the most prevalent campaigns; a group of less
common campaigns is shown in row marked “Other”.
All of our botnets simultaneously participate in mul-

tiple campaigns. For example, Kraken and Pushdo par-
ticipate in at least 5 and 7, respectively. The percent-
ages give insight into how the botnet divides its bots
across various campaigns. For example, Kraken might
have four customers who each pay to use approximately
20% of the botnet to send spam for “Canadian Phar-
macy”, “Diamond Watches”, “Freedom from Debt”, and
“VPXL”. Multiple botnets often simultaneously partic-
ipate in a single campaign, contrary to an assumption
made by prior research [40]. For example, “Canadian

Kraken MegaD Pushdo Rustock Srizbi Storm

Kraken N/A 32% 16% 10% 13% 28%

MegaD 32% N/A 20% 8% 21% 40%

Pushdo 16% 20% N/A 3% 14% 19%

Rustock 10% 8% 3% N/A 7% 6%

Srizbi 13% 21% 14% 7% N/A 15%

Storm 28% 40% 19% 6% 15% N/A

Table 4: Overlap in hosting infrastructure of the web pages
pointed to by spam URLs. The table shows what fraction of
spam sent by different botnets on April 30, 2008 contain URLs
pointing to the same webservers.

Figure 9: Propagation campaigns. The graph shows the num-
ber of e-mails with links that infected victims with either Srizbi,
Storm, or Pushdo.

Pharmacy” is distributed by Kraken, MegaD, Pushdo,
Srizbi, and Storm. This suggests the most prominent
spammers utilize the services of multiple botnets.

Botnets use different methods to assign their bots to
campaigns. For example, Botlab monitors 20 variants
of Srizbi, each using a distinct C&C server. Each C&C
server manages a set of campaigns, but these sets often
differ across C&C servers. For example, bots using C&C
server X and Y might send out “Canadian Pharmacy”
(with messages in different languages), whereas server Z
divides bots across “Prestige Replicas” and “Diamond
Watches”. Thus, Srizbi bots are partitioned statically
across 20 C&C servers, and then dynamically within
each server. In contrast, all of our variants of Rustock
contact the same C&C server, which dynamically sched-
ules bots to cover each Rustock campaign with a certain
fraction of the botnet’s overall processing power, behav-
ing much like a lottery scheduler [35].

In Section 4.2.2, we saw that most of the Web servers
support multiple spam campaigns. Now, we examine
whether the Web hosting is tied to particular botnets, i.e.,
whether all the spam campaigns hosted on a server are
sent by the same botnet. In Table 4, we see that this is
not the case – every pair of botnets shares some hosting
infrastructure. This suggests that scam hosting is more
of a 3rd party service that is used by multiple (potentially
competing) botnets.
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Botnet Kraken MegaD Pushdo Rustock Srizbi Storm 
# unique 

relays seen 20,275 57,402 27,266 83,836 119,604 7,814 

Table 5: The number of unique relays belonging to each bot-
net. These numbers provide a lower bound on the size of each
botnet, as seen on September 3, 2008. More accurate estimates
are possible by accounting for relays not seen in our spam feed.

4.3.3 Recruiting campaigns

Using our correlation tools, we were able to identify in-
coming spam messages containing links to executables
infecting victims with the Storm, Pushdo, or Srizbi bot.
Figure 9 shows this activity over our incoming spam
trace. The peaks represent campaigns launched by bot-
nets to recruit new victims. We have observed two such
campaigns for Storm – one for March 13-16 and another
centered on April 1, corresponding to Storm launching
an April Fool’s day campaign, which received wide cov-
erage in the news [23]. Srizbi appears to have a steady
ongoing recruiting campaign, with peaks around April
15-20, 2008. Pushdo infects its victims in bursts, with
a new set of recruiting messages being sent out once a
week.
We expected the spikes to translate to an increase in

number of messages sent by either Srizbi, Storm, or
Pushdo, but surprisingly this was not the case, as seen
by matching Figures 9 and 8. This suggests that bot
operators do not assign all available bots to send spam
at maximum possible rates, but rather limit the overall
spam volume sent out by the whole botnet.

4.3.4 Botnet membership lists and sizes

A botnet’s power and prowess is frequently measured by
the botnet’s size, which we define as the number of ac-
tive hosts under the botnet’s control. A list of individual
nodes comprising a botnet is also useful for notifying and
disinfecting the victims. We next show how Botlab can
be used to obtain information on both botnet size and
membership.
As before, we classify our incoming spam into sourc-

ing botnets and extract the last-hop relays from all suc-
cessfully classified messages. After removing dupli-
cates, these relay lists identify hosts belonging to each
botnet. Table 5 shows the number of unique, classified
relays for a particular day of our trace. Since botnet
membership is highly dynamic, we perform our calcu-
lations for a single day, where churn can be assumed to
be negligible. As well, we assume DHCP does not affect
the set of unique relays on a timescale of just a single
day. These numbers of relays for each botnet are effec-
tively the lower bound on the botnet sizes. The actual
botnet sizes are higher, since there are relays that did not
send spam to University of Washington, and thus were

not seen in our trace. We next estimate the percentage of
total relays that we do see, and use it to better estimate
botnet sizes.

Let us assume again that a bot sends spam to email ad-
dresses chosen at random. Further, let p be the probabil-
ity with which a spam message with a randomly chosen
email address is received by our spam monitoring sys-
tem at University of Washington. If n is the number of
messages that a bot sends out per day, then the probabil-
ity that at least one of the messages generated by the bot
is received by our spam monitors is [1 − (1 − p)n]. For
large values of n, such as when n ∼ 1/p, the probability
of seeing one of the bot’s messages can be expressed as
[1 − e−np].

We derive p using the number of spam messages re-
ceived by our spam monitor and an estimate of the global
number of spam messages. With our current setup,
the former is approximately 2.4 million daily messages,
while various sources estimate the latter at 100-120 bil-
lion messages (we use 110 billion) [14, 21, 32]. This
gives p = 2400000/110 billion = 2.2 · 10−5.

For the next step, we will describe the logic using one
of the botnets, Rustock, and later generalize to other bot-
nets. From Section 4.1, we know that Rustock sends
spam messages at a constant rate of 47.5K messages per
day and that this rate is independent of the access link ca-
pacity of the host. Note that Rustock’s sending rate trans-
lates to a modest rate of 1 spammessage per two seconds,
or about 0.35 KB/s given that the average Rustock mes-
sage size is 700 bytes – a rate that can be supported by
almost all end-hosts [15]. The probability that we see the
IP of a Rustock spamming bot node in our spam moni-
tors on a given day is [1− e−47500·2.2·10−5

] = 0.65. This
implies that the 83,836 Rustock IPs we saw on Septem-
ber 3rd represent about 65% of all Rustock’s relays; thus,
the total number of active Rustock bots on that day was
about 83, 836/0.65 = 128, 978. Similarly, we estimate
the active botnet size of Storm to be 16,750. We would
like to point that these estimates conservatively assume
a bot stays active 24 hours per day. Because some bots
are powered off during the night, these botnet sizes are
likely to be higher.

These estimates rely on the fact that both Rustock and
Storm send messages at a slow, constant rate that is un-
likely to saturate most clients’ bandwidth. Our other bots
send spam at higher rates, with the bot adapting to the
host’s available bandwidth. Although this makes it more
likely that a spamming relay is detected in our incoming
spam, it is also more difficult to estimate the number of
messages a given bot sends. In future work, we plan to
study the rate adaptation behavior of these bots and com-
bine it with known bandwidth profiles [15]. Meanwhile,
Table 5 gives conservative size estimates.
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5 Applications enabled by Botlab

Botlab provides various kinds of real-time botnet infor-
mation, which can be used by end hosts wishing for pro-
tection against botnets, or by ISPs and activists for law
enforcement. Next, we discuss applications enabled by
our monitoring infrastructure.

5.1 Safer web browsing

Spam botnets propagate many harmful links, such as
links to phishing sites or to web pages installing mal-
ware. For example, on September 24, 2008, we observed
the Srizbi botnet distribute 40,270 distinct links to pages
exploiting Flash to install the Srizbi bot. Although the
current spam filtering tools are expected to filter out spam
messages containing these links, we found that this is
often not the case. For example, we have forwarded a
representative sample of each of Srizbi’s outgoing spam
campaigns to a newly-created Gmail account controlled
by us, where we have used Gmail’s default spam filter-
ing rules, and found that 79% of spam was not filtered
out. Worse, Gmail filters are not “improving” quickly
enough, as forwarding the same e-mails two days later
resulted in only a 5% improvement in detection. Users
are thus exposed to many messages containing danger-
ous links and social engineering traps enticing users to
click on them.

Botlab can protect users from such attacks using its
real-time database of malicious links seen in outgoing,
botnet-generated spam. For example, we have developed
a Firefox extension, which checks the links a user visits
against this database before navigating to them. In this
way, the extension easily prevented users from browsing
to any of the malicious links Srizbi sent on September
24.

Some existing defenses use blacklisting to prevent
browsers from following malicious links. We have
checked two such blacklists, the Google Safe Browser
API and the Malware Domain List, six days after the
links were sent out, and found that none of the 40,270
links appeared on either list. These lists suffer from the
same problem: they are reactive, as they rely on crawl-
ing and user reports to find malicious links after they are
disseminated. These methods fail to quickly and exhaus-
tively find “zero-day” botnet links, which point to mal-
ware hosted on recently compromised web servers, as
well as malware hosted on individual bots via fast-flux
DNS and a continuous flow of freshly-registered domain
names. In contrast, Botlab can keep up with spam bot-
nets because it uses real-time blacklists, which are up-
dated with links at the instant they are disseminated by
botnets.

5.2 Spam Filtering
Spam continuously pollutes email inboxes of many mil-
lions of Internet users. Most email users use spam fil-
tering software such as SpamAssassin [30], which uses
heuristics-based filters to determine whether a given
message is spam. The filters usually have a threshold
that a user varies to catch most spam while minimizing
the number of false positives — legitimate email mes-
sages misclassified as spam. Often, this still leaves some
spam sneaking through.
Botlab’s real-time information can be used to build

better spam filters. Specifically, using Botlab, we can
determine whether a message is spam by checking it
against the outgoing spam feeds for the botnets we mon-
itor. This is a powerful mechanism: we simply rely on
botnets themselves to tell us which messages are spam.
We implemented this idea in an extension for the

Thunderbird email client. The extension checks mes-
sages arriving to the user’s inbox against Botlab’s live
feeds using a simple, proof-of-concept correlation algo-
rithm: an incoming message comes from a botnet if 1)
there is an exact match on the set of URLs contained
in the message body, or 2) if the message headers are
in a format specific to that used by a particular botnet.
For example, all of Srizbi’s messages follow the same
unique message ID and date format, distinct from all
other legitimate and spam email. Although the second
check is prone to future circumvention, this algorithm
gives us an opportunity to pre-evaluate the potential of
this technique. Recent work has proposed more robust
algorithms, such as automatic regular-expression gener-
ation for spammed URLs in AutoRE [39], and we envi-
sion adopting these algorithms to use Botlab data to filter
spam more effectively in real-time settings.
Although we have not yet thoroughly evaluated our ex-

tension, we performed a short experiment to estimate its
effectiveness. One author used the extension for a week,
and found that it reduced the amount of spam bypassing
his departmental SpamAssassin filters by 156 messages,
or 76%, while having a 0% false positive rate. Thus, we
believe that Botlab can indeed significantly improve to-
day’s spam filtering tools.

5.3 Availability of Botlab Data
To make Botlab’s data publicly available, we have set up
a web page, http://botlab.cs.washington.edu/,
which publishes data and statistics we obtained from
Botlab. The information we provide currently includes
activity reports for each spam botnet we monitor, ongo-
ing scams, and a database of rogue links disseminated in
spam. We also publish lists of current C&C addresses
and members of individual botnets. We hope this infor-
mation will further aid security researchers and activists
in the continuing fight against the botnet threat.
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6 Safety
We have implemented safeguards to ensure that Botlab
never harms remote hosts, networks, or users. In this
section, we discuss the impact of these safeguards on the
effectiveness of Botlab, and our concerns over the long-
term viability of safely conducting bot research.

6.1 Impact on effectiveness
Initially, we hoped to construct a fully automatic plat-
form that required no manual analysis on the part of an
operator to find and analyze new botnet binaries. We
quickly concluded this would be infeasible to do safely,
as human judgment and analysis is needed to deter-
mine whether previously uncharacterized traffic is safe
to transmit.
Even with a human in the loop, safety concerns caused

us to make choices that limit the effectiveness of our re-
search. Our network sandbox mechanisms likely pre-
vented some binaries from successfully communicating
with C&C servers and activating, causing us to fail to
recognize some binaries as spambots, and therefore to
underestimate the diversity and extent of spamming bot-
nets. Similarly, it is possible that some of our captive
bot nodes periodically perform an end-to-end check of e-
mail reachability, and that our spamhole blocking mech-
anism causes these nodes to disable themselves or behave
differently than they would in the wild.

6.2 The long-term viability of safe botnet
research

The only provably safe way for Botlab to execute un-
trusted code is to block all network traffic, but this would
render Botlab ineffective. To date, our safeguards have
let us analyze bot binaries while being confident that
we have not caused harm. However, botnet trends and
thought experiments have diminished our confidence that
we can continue to conduct our research safely.
Botnets are trending towards the use of proprietary

encrypted protocols to defeat analysis, polymorphism
to evade detection, and automatically upgrading to new
variants to incorporate new mechanisms. It is hard to un-
derstand the impact of allowing an encrypted packet to be
transmitted, or to ensure that traffic patterns that were be-
nign do not become harmful after a binary evolves. Ac-
cordingly, the risk of letting any network traffic out of a
captured bot node seems to be growing.
Simple thought experiments show that it is possible for

an adversary to construct a bot binary for which there is
no safe and effective Botlab sandboxing policy. As an
extreme example, consider a hypothetical botnet whose
C&C protocol consists of different attack packets. If a
message is sent to an existing member of the botnet, the
message will be intercepted and interpreted by the bot.
However, if a message is sent to a non-botnet host, the

message could exploit a vulnerability on that host. If
such a protocol were adopted, Botlab could not trans-
mit any messages safely, since Botlab would not know
whether a destination IP address is an existing bot node.
Other adversarial strategies are possible, such as embed-
ding a time bomb within a bot node, or causing a bot
node to send benign traffic that, when aggregated across
thousands of nodes, results in a DDoS attack. Moreover,
even transmitting a “benign” C&C message could cause
other, non-Botlab bot nodes to transmit harmful traffic.
Given these concerns, we have disabled the crawling

and network fingerprinting aspects of Botlab, and there-
fore are no longer analyzing or incorporating new bina-
ries. As well, the only network traffic we are letting out
of our existing botnet binaries are packets destined for
the current, single C&C server IP address associated with
each binary. Since Storm communicates with many peers
over random ports, we have stopped analyzing Storm.
Furthermore, once the C&C servers for the other botnets
move, we will no longer allow outgoing network packets
from their bot binaries. Consequently, the Botlab web
site will no longer be updated with bots that we have to
disable. It will, however, still provide access to all the
data we have collected so far.
Our future research must therefore focus on deriving

analysis techniques that do not require bot nodes to inter-
act with Internet hosts, and determining if it is possible
to construct additional safeguards that will sufficiently
increase our confidence in the safety of transmitting spe-
cific packets. Unfortunately, our instinct is that a moti-
vated adversary can make it impossible to conduct effec-
tive botnet research in a safe manner.

7 Related Work
Most related work can be classified into four categories:
malware collection, malware analysis, botnet tracking
systems, and spam measurement studies. We now
discuss how our work relates to representative efforts in
each of these categories.

Malware collection: Honeypots (such as Honeynet [13]
and Potemkin [34]) have been a rich source of new
malware samples. However, we found them less relevant
for our work, as they failed to find any spam bots. The
likely cause is that spam botnets have shifted to social-
engineering-based propagation, relying less on service
exploits and self-propagating worms. Other projects,
such as HoneyMonkey [38], have used automated web
crawling to discover and analyze malware; automated
web patrol is now part of Google’s infrastructure [24].
However, our results show that Google’s database did
not contain many malicious links seen in our outgoing
spam feed, indicating that a blind crawl will not find
malware from spam-distributed links.
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Malware analysis: Botlab does not perform any
static analyses of malware binaries. Instead, it generates
network fingerprints by executing the binaries and
observing network accesses. [2] and [37] perform
similar dynamic analysis of binaries by executing them
in virtual environments and tracking changes in the
system, such as the creation of files, processes, registry
entries, etc. [2] uses this information to group malware
into broad categories, and [37] generates a detailed
report of the malware’s actions. Since these techniques
require running the binary in an instrumented setting
(such as a debugger), they would not be able to analyze
malware which performs VMM or debugger detection.
More similar to our approach is [27], which generates
network fingerprints and uses them to detect IRC bots.

Botnet tracking: Closely related to our work is
the use of virtualized execution environments to track
IRC botnets [27, 41]. By executing a large number
of IRC bot samples, these efforts first identify the
IRC servers and then infiltrate the corresponding IRC
channels to snoop on the botnets. In our experience,
botnets move away from plaintext IRC protocols to
encrypted HTTP-based or p2p protocols, requiring more
elaborate mechanisms as well as human involvement
for a successful infiltration – a point of view that is
increasingly voiced in the research community [18].For
example, Ramachandran et al. [28] infiltrated the
Bobax botnet by hijacking the authoritative DNS for the
domain running the C&C server for the botnet. They
were then able to obtain packet traces from the bots
which attempted to connect to their C&C server. More
recently, Kanich et al. [17] infiltrated the command and
control infrastructure of the Storm botnet, and modified
the spam being sent in order to measure the conversion
rates.

Less related to our work is the research on developing
generic tools that can be deployed at the network layer to
automatically detect the presence of bots [19]. Rishi [8]
is a tool that detects the use of IRC commands and un-
common server ports in order to identify compromised
hosts. BotSniffer [11] and BotHunter [10] are other
network-based anomaly detection tools that work by
simply sniffing on the network. Our work provides a
different perspective on bot detection: a single large
institution, such as University of Washington, can detect
most of the spamming bots operating at a given point in
time by simply examining its incoming spam feed and
correlating it with the outgoing spam of known bots.

Spam measurement studies: Recently, a number
of studies have examined incoming spam feeds to
understand botnet behavior and the scam hosting in-

frastructure [1, 40, 39]. In [26], the authors use a novel
approach to collecting spam – by advertising open mail
forwarding relays, and then collecting the spam that is
sent through them. Botlab differs from these efforts in
its use of both incoming and outgoing spam feeds. In
addition to enabling application-level defenses that are
proactive as opposed to reactive, our approach yields
a more comprehensive view of spamming botnets that
contradicts some assumptions and observations from
prior work. For instance, a recent study [40] analyzes
about 5 million messages and proposes novel clustering
techniques to identify spam messages sent by the same
botnet, but this is done under the assumption that
each spam campaign is sourced by a single botnet; we
observe the contrary to be true. Also, analysis of only
the incoming spam feed might result in too fine-grained
a view (at the level of short-term spam campaigns as
in [39]) and cannot track the longitudinal behavior of
botnets. Our work enables such analysis due to its
use of live bots, and in that respect, we share some
commonality with the recent study of live Storm bots
and their spamming behavior [20].

8 Conclusion
In this work, we have described Botlab, a real-time bot-
net monitoring system. Botlab’s key aspect is a multi-
perspective design that combines a feed of incoming
spam from the University of Washington with a feed of
outgoing spam collected by running live bot binaries. By
correlating these feeds, Botlab can perform a more com-
prehensive, accurate, and timely analysis of spam bot-
nets.
We have used Botlab to discover and analyze today’s

most prominent spam botnets. We found that just six
botnets are responsible for 79% of our university’s spam.
While domain names associated with the scams change
frequently, the locations of C&C servers, web hosts, and
even the content of web pages pointed to by scams re-
main static for long periods of time. A spam botnet typ-
ically engages in multiple spam campaigns simultane-
ously, and the same campaign is often purveyed by mul-
tiple botnets. We have also prototyped tools that use Bot-
lab’s real-time information to enable safer browsing and
better spam filtering. Overall, we feel Botlab advances
our understanding of botnets and enables promising re-
search in anti-botnet defenses.
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Abstract

A large fraction of email spam, distributed denial-of-
service (DDoS) attacks, and click-fraud on web adver-
tisements are caused by traffic sent from compromised
machines that form botnets. This paper posits that by
identifying human-generated traffic as such, one can ser-
vice it with improved reliability or higher priority, miti-
gating the effects of botnet attacks.

The key challenge is to identify human-generated traf-
fic in the absence of strong unique identities. We develop
NAB (“Not-A-Bot”), a system to approximately identify
and certify human-generated activity. NAB uses a small
trusted software component called an attester, which runs
on the client machine with an untrusted OS and applica-
tions. The attester tags each request with an attestation
if the request is made within a small amount of time of
legitimate keyboard or mouse activity. The remote entity
serving the request sends the request and attestation to a
verifier, which checks the attestation and implements an
application-specific policy for attested requests.

Our implementation of the attester is within the Xen
hypervisor. By analyzing traces of keyboard and mouse
activity from 328 users at Intel, together with adversar-
ial traces of spam, DDoS, and click-fraud activity, we
estimate that NAB reduces the amount of spam that cur-
rently passes through a tuned spam filter by more than
92%, while not flagging any legitimate email as spam.
NAB delivers similar benefits to legitimate requests un-
der DDoS and click-fraud attacks.

1 Introduction

Botnets comprising compromised machines are
the major originators of email spam, distributed
denial-of-service (DDoS) attacks, and click-fraud on
advertisement-based web sites today. By one measure,
the current top six botnets alone are responsible for more
than 85% of all spam mail [23], amounting to more than
120 billion messages per day that infest more than 95%
of all inboxes [14, 24]. Botnet-generated DDoS attacks
account for about five percent of all web traffic [9],
occurring at a rate of more than 4000 distinct attacks
per week on average [17]. A problem of a more recent
vintage, click-fraud, is a growing threat to companies

that draw revenue from web ad placements [26]; bots are
said to generate 14–20% of all ad clicks today [8].

As a result, if it were possible to tag email or web
requests as “human-generated,” and therefore not “bot-
generated,” the problems of spam, DDoS, and click-fraud
could be significantly mitigated. This observation is not
new, but there is currently no good way to obtain such
tags automatically without explicit human input. As ex-
plained in §4, requiring human input (say in the form
of answering CAPTCHAs [30]) is either untenable (per-
suading users to answer a CAPTCHA before clicking on
a web ad or link is unlikely to work well), or ineffective
(e.g., because today the task of solving CAPTCHAs can
be delegated to other machines and humans, and not in-
extricably linked to the request it is intended to validate).

The problem with obtaining this evidence automati-
cally is that the client machine may have been compro-
mised, so one cannot readily trust any information pro-
vided by software running on the compromised machine.
To solve this problem, we observe that almost all com-
modity PCs hitting the market today are equipped with a
Trusted Platform Module (TPM) [28]. We use this facil-
ity to build a trusted path between physical input devices
(the keyboard and mouse, extensible in the future to de-
vices like the microphone) and a human activity attester,
which is a small piece of trusted software that runs iso-
lated from the (untrusted) operating system.

The key challenge for the attester is to certify human-
generated traffic without relying on strong unique iden-
tities. This paper describes NAB, a system that imple-
ments a general-purpose human activity attester (§4), and
then shows how to use this attester for email to control
spam, and for web requests to mitigate DDoS attacks
and click fraud. Attestations are signed statements by
the trusted attester, and are attached to application re-
quests such as emails. Attestations are verified by a veri-
fier module running at the server of an entity interested in
knowing whether the incoming request traffic was sent as
a result of human activity. If the attestation is valid (i.e.,
it is not forged or used before), that server can take suit-
able application-specific action—improving the “spam
score” for an attested email message, increasing the pri-
ority of an attested web request, etc. NAB requires minor
modifications to client and server applications to use at-
testations, and no application protocols such as SMTP or
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HTTP need be modified.
NAB’s philosophy is to do no harm to users who do

not deploy NAB, while benefiting users who do. For ex-
ample, email senders who use the attester decrease the
likelihood that their emails are flagged as spam (that is,
decrease the false positives of spam detectors), and email
receivers that use the verifier see reduced spam in their
inboxes. These improvements are preserved even under
adversarial workloads. Further, since NAB does not use
identity-based blacklisting or filtering, legitimate email
from an infected machine can still be delivered with valid
attestations.

The NAB approach can run on any platform that pro-
vides for the attested execution of trusted code, either
directly or via a secure booting mechanism such as those
supported by Intel’s TXT and AMD’s Pacifica architec-
tures. We have constructed our prototype attester as host
kernel model running under a trusted hypervisor. Other
implementations, such as building the attester within the
trusted hardware, or running it in software without virtu-
alization (e.g., via Flicker [16]) are also possible.

Our prototype extends the Xen hypervisor [3], thus
isolating itself from malicious code running within un-
trusted guest operating systems in a virtual machine. We
stripped the host kernel and Xen Virtual Machine Mon-
itor (VMM) down to fewer than 30,000 source lines, in-
cluding the necessary device drivers, and built the attester
as a 500-line kernel module. This code, together with
the TPM and input devices forms the trusted computing
base (TCB). Generating an attestation on a standard PC
takes fewer than 107 CPU cycles, or less than 10 ms on
a 2 GHz processor, making NAB practical for handling
fine-grained attestation requests, such as individual web
clicks or email messages.

We evaluate whether NAB can be applied to spam con-
trol, DDoS defense, and click-fraud detection, using a
combination of datasets containing normal user activity
and malicious bot activity. We used traces of keyboard
and mouse activity from 328 PCs of volunteering users
at Intel gathered over a one-month period in 2007 [11],
packet-level traces of bot activity that we gathered from a
small number of “honeypot” computers infected by mal-
ware at the same site, as well as publicly available traces
of email spam and DDoS activity. On top of those traces,
we constructed an adversarial workload that maximizes
the attacker’s benefit obtained under the constraints im-
posed by NAB. Our experimental study shows that:

1. With regards to spam mitigation, we reduced the vol-
ume of spam messages that evaded a traditional spam
filter (what are called false negatives for the spam
filter) by 92%. We reduced the volume of legiti-
mate, non-spam messages that were misclassified by
the spam filter (false positives) to 0.

2. With regards to web DDoS mitigation, we depriori-

tized 89% of bot-originated web activity without im-
pacting human-generated web requests.

3. With regards to click-fraud mitigation, we detected
bot-originating click-fraud activity with higher than
87% accuracy, without losing any human-generated
web clicks.

Although our specific results correspond only to our par-
ticular traces, choice of applications, and threat model
(e.g., NAB does nothing to mitigate the volume of evil
traffic created manually by an evil human), we argue that
they apply to a large class of on-line applications affected
by bot traffic today. Those include games, brokerage, and
single sign-on services. This suggests that a human ac-
tivity attestation module might be a worthwhile addition
to the TCB of commodity systems for the long term.

2 Threat Model and Goal

Threat model and assumptions. We assume that the OS
and applications of a host cannot be trusted, and are sus-
ceptible to compromise. A host is equipped with a TPM,
which boots the attester stack—this includes all software
on which the attester implementation depends, such as
the host kernel and VMM in our implementation (§4.4).
This trust in the correct boot-up of the attester can be re-
motely verified, which is the standard practice for TPM-
assisted secure booting today. We assume that the users
of subverted hosts may be lax, but not malicious enough
to mount hardware attacks against their own machine’s
hardware (such as shaving the protective coating off their
TPM chip or building custom input hardware). We as-
sume correct hardware, including the correct operation
and protection of the TPM chip from software attacks, as
per its specification [28]. We make no assumptions about
what spammers do with their own hardware. Finally, we
assume that the cryptographic primitives we use are se-
cure, and that their implementations are correct.
Goal. NAB consists of an attester and a verifier. Our
primary goal is to distinguish between bot and human-
generated traffic at the verifier, so that the verifier can
implement application-specific remedies, such as prior-
itizing or improving the delivery of human traffic over
botnet traffic. We would like to do so without requiring
any user input or imposing any cognitive burden on the
user.

We aim to bound the final botnet traffic that man-
ages to bypass any measures put up against it (spam
and DDoS filters, click fraud detectors, etc.). We will
consider our approach successful if we can reduce this
botnet traffic that evades our best approaches today to a
small fraction of its current levels (≈ 10%), even in the
worst case for NAB (i.e., with adaptive bots that modu-
late their behavior to gain the maximum benefit allow-
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able by our mechanism), while still identifying all valid
human-generated traffic correctly. We set this goal be-
cause we do not believe that purely technical approaches
such as NAB will completely suppress attack traffic such
as spam, since spam also relies on social engineering.
We demonstrate that NAB achieves this goal with our re-
alistic workloads and adaptive bots (§6).

3 NAB Architecture

We now present the requirements and constraints that
drive the NAB architecture.

3.1 Requirements and Constraints

Requirements. There are four main requirements. First,
attestations must be generated in response to human re-
quests automatically. Second, such attestations must not
be transferable from the client on which they are gen-
erated to attest traffic originating from another client.
Third, NAB must benefit users that deploy it without
hurting those that do not. Fourth, NAB must preserve
the existing privacy and anonymity semantics of applica-
tions while delivering these benefits.
Constraints. NAB has two main constraints. First, the
host’s OS or applications cannot be trusted. In particu-
lar, a compromised machine can actively try to subvert
the attester functionality. Second, the size of the attester
TCB should be small, because it is a trusted component;
the smaller a component is, the easier it is to validate it
operates correctly, which makes it easier to trust.
Challenge. The key challenge is to meet these require-
ments without assuming the existence of globally unique
identities. Even assuming a public-key infrastructure
(PKI), deploying and managing large-scale identity sys-
tems that map certificates to users is a daunting prob-
lem [4].

Without such identities, the requirements are hard to
meet, and, in some cases, even seemingly in conflict
with each other. For example, generating attestations
automatically without trusting the OS and applications
is challenging. Further, there is tension between the re-
quirement that NAB should benefit its users without hurt-
ing other users, and the requirement that NAB should
preserve the existing anonymity and privacy semantics.
NAB’s attestations are anonymously signed certificates
of requests, and the membership size of the signing keys
is several million. We describe how NAB uses such attes-
tations to overcome the absence of globally unique iden-
tities in §4.4.
TPM background. The TPM is a small chip specified
by the Trusted Computing Group to strengthen the secu-
rity of computer systems in general. A TPM provides

Attester
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App1 App2

Network

Verifier1

App1 Server

Verifier2
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Figure 1: NAB architecture. The thick black line en-
closes the TCB.

many security services, among which the ability to mea-
sure and attest to the integrity of trusted software run-
ning on the computer at boot time. Since a TPM is too
slow to be used routinely for cryptographic operations
such as signing human activity, we use the TPM only for
its secure bootstrap facilities, to load an attester, a small
trusted software module that runs on the host processor
and generates attestations (i.e., messages asserting hu-
man activity).

The attester relies on two key primitives provided by
TPMs. The first is called direct anonymous attesta-
tion (DAA), which allows the attester to sign messages
anonymously. Each TPM has an attestation identity key
(AIK), which is an anonymous key used to derive the at-
tester’s signing key. The second primitive is called sealed
storage, which provides a secure location to store the
attester’s signing key until the attester is measured and
launched correctly.

3.2 Architecture

NAB consists of an attester that runs locally at a host
and generates attestations, as well as an external verifier
that validates these attestations (running at a server ex-
pected to handle spam and DDoS requests, or checking
for click fraud). The attester code hashes to a well-known
SHA-1 value, which the TPM measures at launch. The
attester then listens on the keyboard and mouse ports for
human activity clicks, and decides whether an attestation
should be granted to an application when the application
requests one. If the attester decides to grant an attes-
tation, the application can submit the attestation along
with the application request to the verifier for human ac-
tivity validation. The verifier can confirm human activity
as long as it trusts the attestation TCB, which consists
of the attester, the TPM, and input device hardware and
drivers. This architecture is shown in Figure 1.

Attestations are signed messages with two key proper-
ties that enable the verifier to validate them correctly:

1. Non-transferability. An attestation generated on a
machine is authenticated by a chain of signing keys
that pass through that machine’s TPM. Hence, a valid
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attestation cannot be forged to appear as if it were is-
sued by an attester other than its creator, and no valid
attestation can be generated without the involvement
of a valid attester and TPM chip.

2. Binding to the content of a request. An attestation
contains the hash digest of the content of the request
it is attesting to. Since an attester generates an attes-
tation only in response to human activity, this binding
ensures that the attestation corresponds to the content
used to generate it. Binding thus allows a request to be
tied as closely as practical to the user’s intent to gen-
erate that request, greatly reducing opportunities for
using human activity to justify unrelated requests.

4 Attester Design and Implementation

Our attester design assumes no special hardware support
other than the availability of a TPM device. However, it
is flexible enough to exploit the recent processor exten-
sions for trusted computing such as AMD’s Secure Vir-
tual Machine (SVM) or Intel’s Trusted Execution Tech-
nology (TXT) to provide additional features such as late
launch (i.e., non boot-time launch), integration into the
TCB of an OS, etc., in the future.

The attester’s sole function is to generate an attestation
when an application requests one. An attestation request
contains only the application-specific content to attest to
(e.g., the email message to send out). The attester may
provide the attestation or refuse to provide an attestation
at all. We discuss two important decisions: when to grant
an attestation and what to attest.

4.1 When To Grant An Attestation

The key question in designing the attester is deciding un-
der what conditions a valid attestation must be granted.
The goal is to simultaneously ensure that human-
generated traffic is attested, while all bot-generated traf-
fic is denied attestation.

The attester’s decision is one of guessing the human’s
presence and intent: was there a human operating the
computer, and did she really intend to send the particular
email for which the application is requesting an attesta-
tion? Since the attester lacks a direct link to the human’s
intentions, it must guess based on the trusted inputs avail-
able: the keyboard and mouse. We considered three key
design points for such a guessing module.

The best-quality guess is not a guess at all: the attester
could momentarily take over the keyboard, mouse, and
display device, and prompt the user with a specific ques-
tion to attest or not attest to a particular email. Since the
OS and other applications are displaced in the process,
only the human user can answer the question. From the
interaction point of view, this approach is similar to the

User Account Control (UAC) tool in Microsoft Windows
Vista, in which the OS prompts the user for explicit ap-
proval before performing certain operations, although in
our context it would be the much smaller and simpler
attester that performs that function. While technically
feasible to implement, users have traditionally found ex-
plicit prompts annoying in practice, as revealed by the
negative feedback on UAC [29]. What is worse, user
fatigue inevitably leads to an always-click-OK user be-
havior [32], which defeats the purpose of attestation.

So, we only consider guesses made automatically. In
particular, we use implicit guessing of human intent, us-
ing timing as a good heuristic: how recently before a
particular attestation request was the last keyboard or
mouse activity observed? We call this a “t − δ” at-
tester, if δm denotes the time since the last mouse activity
and δk denotes the time since the last keyboard activity.
For example, the email application requests an attesta-
tion specifying that a keyboard or mouse click should
have occurred within the last ∆k or ∆m milliseconds re-
spectively, where the ∆{k,m} represents the application-
specified upper-bound. The attester generates attesta-
tions that indicate this time lag, or refuses if that lag is
longer than ∆{k,m} milliseconds.

This method is simpler and cheaper in terms of re-
quired resources than an alternative we carefully consid-
ered and eventually discarded. Using keyboard activity
traces, we found that good-quality guesses can be ex-
tracted by trying to support the content of an attestation
request using specific recent keyboard and mouse activ-
ity. For example, the attester can observe and remember
a short sequential history of keystrokes and mouse clicks
in order of observation. When a particular attestation re-
quest comes in, the attester searches for the longest sub-
sequence of keyclicks that matches the content to attest.
An attestation could be issued containing the quality of
match (e.g., a percentage of content matched), only rais-
ing an explicit alarm and potential user prompting if that
match is lower than a configurable threshold (say 60%).
This design point would not attest to bot requests un-
less they contained significant content overlap with legit-
imate user traffic. Nevertheless this method raised great
implementation complexity, given the typical multitask-
ing behavior of modern users (switching between win-
dows, interleaving keyboard and mouse activity, insert-
ing, deleting, selecting and overwriting text, etc.). So,
we ultimately discarded it in favor of the simpler t − δ
attester, which allowed a simple implementation with a
small TCB size.

One drawback of the t−δ attester is that it allows a bot
to generate attestations for its own traffic by “harvesting”
existing user activity. So, NAB could allow illegitimate
traffic to receive attestations, though only at the rate of
human activity.
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NAB mitigates this situation in two ways. First, NAB
ensures that two attestations are separated by at least the
application-specific ∆ milliseconds. For email, we find
from the traces (§6) that ∆ = 1 second works well. Since
key clicks cannot be captured or stored, we throttle a bot
significantly in practice. Today’s bots send several tens
of thousands of spam within a few hours [14], so even an
adaptive bot is constrained by this rate limit.

Second, if legitimate traffic fails to receive an attesta-
tion (e.g., because bot code attestation requests absorbed
all recent user activity before the user’s application had
a chance to do so), a NAB-aware application alerts the
user that it has not been able to acquire an attestation,
possibly alerting the user that unwholesomeness is afoot
at her computer. We note that this technique is not per-
fect, because a bot can hijack such prompts. In practice,
we found that such feedback is useful, although we eval-
uate NAB assuming adversarial bots.

4.2 What To Attest

The second attester design decision is what to attest, i.e.,
how much to link a particular attestation to the issuer, the
verifier, and the content.

Traditional human activity solutions such as
CAPTCHAs [30] do not link to the actual request
being satisfied. A CAPTCHA is a challenge that only a
human is supposed to be able to respond to. A correct
response to a CAPTCHA attests to the fact that a human
was likely involved in answering the question, but it
does not say where the human was or whether the
answer came from the user of the service making the
request. The problem is that human activity can be
trafficked, as evidenced by spammers who route human
activity challenges meant for account creation to sketchy
web sites to have them solved by those sites’ visitors
in exchange for free content [25], or to sweatshops
with dedicated CAPTCHA solvers. Thus, a human was
involved in providing the activity, but not necessarily the
human intended by the issuer of the challenge.

In contrast, NAB generates responder-specific,
content-specific, and, where appropriate, challenger-
specific attestations. Attestations are certificates of
human activity that contain a signature over the entire
request content. For example, an email attestation
contains the signature over the entire email, including
the “From:” address (i.e., the responder), the email
body (i.e., the content), and the “To:” address (i.e., the
challenger). Similarly, a web request attestation contains
the URL, which provides both responder-specific and
content-specific attestations.

Content-specific attestation is more subtle. Whereas
CAPTCHAs are used today for coarse-grained actions
such as email account creation, they are considered too
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Figure 2: Attester interfaces.

intrusive to be used for finer granularity requests such as
sending email or retrieving web URLs. So, in practice,
the challenge response is “amortized” over multiple re-
quests (i.e., all email sent from the CAPTCHA-created
mail account). Even if an actual human created the ac-
count, nothing prevents the bots in that human’s desktop
from sending email indiscriminately using that account.

Finally, challenger-specific attestation helps in ensur-
ing that unwitting, honest humans do not furnish attes-
tations for bad purposes. A verifier expecting an attes-
tation from human A’s attester will reject an attestation
from human B that might be provided instead. In the
spam example, this is tantamount to explicit sender au-
thentication.

Attestations with these three properties, together with
application-specific verifier policies described in §5.2,
meet our second and third requirements (§3.1).

4.3 Attester API

Figure 2 shows the relationship between the attester and
other entities. The API is simple: there is only a sin-
gle request/reply pair of calls between the OS and the
attester. An application’s attestation request contains the
hash of the message to be attested (i.e., the contents of an
email message or the URL of a browser click), the type
of attestation requested, and the process id (PID) of the
requesting process.

If the attester verifies that the type of attestation be-
ing requested is consistent with user activity seen on the
keyboard/mouse channels, it signs the attestation and,
depending on the attestation type, includes δm and δk,
which indicate how long ago a mouse click and a key-
board click respectively were last seen. The attestation
is an offline computation , and is thus an instance of a
non-interactive proof of human activity.

The same API is used for all applications. The only
customization allowed is whether to include the values
of the δm or δk, depending on the attestation type. The
attester uses a group signature scheme for anonymous at-
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testations, extending the Direct Anonymous Attestation
(DAA) service [7] provided by recent TPMs. Anony-
mous attestations preserve the current privacy semantics
of web and email, thereby meeting our fourth and final
requirement (§3.1).

We have currently defined and implemented two attes-
tation types. Type 0 is for interactive applications such
as all types of web requests. Type 1 is for delay-tolerant
applications such as email. Type 0 attestations are gener-
ated only when there is either a mouse or keyboard click
in the last one second, and do not include the δm or δk

values. Type 0 attestations are offered as a privacy en-
hancement, to prevent verifiers from tracking at a fine
temporal granularity a human user’s activity or a partic-
ular request’s specific source machine. We chose one
second as the lag for Type 0 attestations since it is suffi-
cient for local interactive applications; for example, this
is ample time between a key or mouse click and a local
action such as generating email or transmitting an HTTP
GET request. Type 1 attestations can be used with all
applications we have examined, when this finer privacy
concern is unwarranted. To put the two types in perspec-
tive, a Type 0 attestation is roughly equivalent to a Type
1 attestation requested with ∆m = ∆k = 1sec and in
which the attested δm/δk values have been hidden.
Attestation structure. An attestation has the form
�d, n, δm, δk, σ, C�. It contains a cryptographic con-
tent digest d (e.g., a SHA-1 hash) of the application-
specific payload being attested to; a nonce n used to
maintain the freshness of the attestations and to dis-
allow improper attestation reuse; the δ{k,m} values
(for type 1 attestations); the attestation signature σ =
sign(Kpriv , �d, n, δm, δk�); and a certificate C from the
TPM guaranteeing the attester’s integrity, the version of
the attester being used, the attestation identity key of the
TPM that measured the attester integrity, and the signed
attester’s public key Kpub (Figure 2). The certificate C
is generated during booting of the attester and is stored
and reused until reboot.

The mechanism for attesting to web requests is simple:
when a user clicks on a URL that is either a normal link
or an ad, the browser requests an attestation on the entire
page URL. After the browser fetches the page content, it
uses the same attestation to retrieve any included objects
within the page. As explained in §5.2, the verifier accepts
the attestation for all included objects.

The mechanism for sending email in the common case
is also straightforward: the entire email message, includ-
ing headers and attachments, constitutes the request. In-
terestingly, the same basic mechanism is extensible to
other email usage scenarios, such as text or web-based
email, email-over-ssh, batched and offline email, and
script-generated email.
Email usage scenarios (mailing lists; remote, batched,

offline, scripted or web mail). To send email to mail-
ing lists, the attester attests to the email normally, except
that the email destination address is the name of the tar-
get mailing list. Every recipient’s verifier then checks
that the recipient is subscribed to the mailing list, as de-
scribed in §5.2. Also, a text-based email application run-
ning remotely over ssh can obtain attestations from the
local machine with the help of the ssh client program
executing locally. This procedure is similar to authenti-
cation credential forwarding implemented in ssh. Simi-
larly, a graphical email client can obtain and store an at-
testation as soon as the “send” button is clicked, regard-
less of whether it has a working network connection, or
if the email client is in an offline mode, or if the client
uses an outbox to batch email instead of sending it im-
mediately. In case of web mail, a browser can obtain an
attestation on behalf of the web application.

Script-generated email is more complex. The PID
argument in the attestation request (Figure 2) is used
for deferred attestations, which are attestations approved
ahead of time by the user. Such forms of attestation
are not required normally, and are useful primarily for
applications such as email-generating scripts, cron-jobs,
etc. When an application requests a deferred attestation,
the user approves the attestation explicitly through a re-
served click sequence (currently “Ctl-Alt-F4”, followed
by number of deferred attestations). These attestations
are stored in a simple PID-table in the attester, and re-
leased to the application in the future. Since the content
of a deferred attestation is not typically known until later
(such as when the body of an email is dynamically gen-
erated), it is dangerous to release an unbound attestation
to the untrusted OS. Instead, the attester stores the de-
ferred attestations in its own memory, and releases only
bound attestations. Although the attester ensures that un-
bound attestations are not released to the untrusted OS,
thereby limiting damage, there is no way to ensure that
these attestations are not stolen by a bot faking the legit-
imate script’s PID. However, the user is able to reliably
learn about the missing attestations after this occurrence,
which is helpful during troubleshooting.

4.4 Attester Implementation

The attester is a small module, currently at fewer than
500 source code lines. It requires a TPM chip conform-
ing to any revision of the TPM v1.2 specification [28].
Attester installation. The attester is installed by bind-
ing its hash value to an internal TPM register called a
Platform Configuration Register (PCR). We use PCR18.
Initially, the register value is -1. We extend it1 with the
attester through the TPM operation:

PCRExtend(18,H(ATT ))
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where H(ATT ) is the attester’s hash. If the attester
needs to be updated for some reason (which should be
a rare event), PCR18 is reinitialized and extended with
the new code value.
Key generation. At install time, the attester generates
an anonymous signing key pair: {Kpub ,Kpriv}. This
key pair is derived from the attestation identity key AIK
of the TPM, and is an offline operation. Kpriv allows the
attester to sign requests anonymously. The attester then
seals the private key Kpriv to the TPM using the TPM’s
private storage root key Kroot.

Assume that the system BIOS, which boots before the
attester, extends PCR17. Thus, the sealing operation
renders Kpriv inaccessible to everyone but the attester
by executing the TPM call:

Seal((17, 18),Kpriv )

which returns the encrypted value C of Kpriv . The TPM
unseals and releases the key only to the attester, after the
attester is booted correctly.

Until the TPM releases Kpriv and the accompanying
certificate to the attester, there is thus no way for the host
to prove to an external verifier that a request is accompa-
nied by human activity. Conversely, if the attester has a
valid private key, the external verifier is assured that the
attester is not tampered with.
Attester booting. The attester uses a static chain of trust
rooted at the TPM and established at boot-time. It is
booted as part of the secure boot loading operation be-
fore the untrusted OS itself is booted. After the BIOS
is booted, it measures and launches the attester. After
the attester is launched, it unseals the previously sealed
Kpriv by executing:

Unseal(C,MACKroot
((17, PCR17), (18, PCR18)))

The Unseal operation releases Kpriv only if the PCR
registers 17 and 18 after reboot contain the same hash
values as the registers at the time of sealing Kpriv . If
the PCR values match, the TPM decrypts C and returns
Kpriv to the attester.

Thus, by sealing the anonymous signing key Kpriv to
the TPM and using secure boot loading to release the key
to the attester, NAB meets the challenge of generating
attestations without globally unique identities.
Attester execution. The attester waits passively for at-
testation requests from an application routed through the
untrusted OS. A small untrusted stub is loaded into the
OS in order to interact with the attester on behalf of the
application.

With our current attester design and implementation,
applications need to be modified in order to obtain attes-
tations. We find the modifications to be fairly small and

localized (§6). The only change as far as applications
are concerned is to first obtain appropriate attestations
and then include them as part of the requests they submit
today. Protocols such as SMTP (mail) or HTTP (web)
need not be modified in order to include this function-
ality. SMTP allows extensible message headers, while
HTTP can include the attestation as part of the “user
agent” browser string or as an extended header.

5 Verifier Design and Implementation

We now describe how verifiers use attestations to imple-
ment attack-specific countermeasures for spam, DDoS
and click-fraud.

5.1 Verifier Design

The verifier is co-located with the server processing re-
quests. We describe how the server invokes the verifier
for each application in §5.2. When invoked, the verifier
is passed both the attestation and the request. The attes-
tation and request contain all the necessary information
to validate the request.

The verifier first checks the validity of the attester pub-
lic key used for signing the request, by traversing the
public-key chain in the certificate C (Figure 2). If valid,
it then recomputes the hash of the request’s content and
verifies whether the signed hash value in the attestation
matches the request’s contents. Further, for attestations
that include the δ{k,m} values, the verifier also checks
whether δ{k,m} are less than the application-specified
∆{k,m}. The verifier then checks to ensure that the at-
testation is not being double-spent, as described in § 5.3.

A bot running in an untrusted domain cannot masquer-
ade as a trusted attester to the verifier because a TPM
will not release the signed Kpub (Figure 2) to the bot
without the correct code hash. Further, it derives no ben-
efit from tampering with the δ values it specifies in its
requests, because the verifier enforces the application-
specified upper-limit on δ{k,m}.

The verifier then implements an application-specific
policy as described next.

5.2 Application-specific Policies

Verifiers implement application-specific policies to deal
with bot traffic. Spam can be more aggressively filtered
using information in the attestations, legitimate email
with attestations can be correctly classified, DDoS can
be handled more effectively by prioritizing requests with
attestations over traffic without attestations, and click-
fraud can be reduced by only serving requests with valid
attestations and ignoring other requests.
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Figure 3: Sender ISP’s verifier algorithm.

We now describe how the verifier implements such
application-specific policies. Note that these are only
example policies that we constructed for our three case
studies, and many others are possible.

5.2.1 Spam policy

The biggest problem with Bayesian spam filters such as
spamassassin today is that they either flag too much le-
gitimate email as spam, or flag too little spam as such.

When all legitimate requests are expected to carry at-
testations, the verifier can set spam filters aggressively to
flag questionable unattested messages as spam, but use
positive evidence of human activity to “whitelist” ques-
tionable attested messages.
Sender ISP’s email server. The verifier sits on the
sender ISP’s server alongside a Bayesian spam filter like
spamassassin. The filter is configured at an aggressive,
low threshold (e.g., -2 instead of the default 5 for spa-
massassin), because the ISP can force its users to send
email with attestations, in exchange for relaying email
through its own servers.

This low spamassassin “required score” threshold (or
sa fltr thr in Figure 3) tags most unattested spam
as unwanted. However, in the process, it might also tag
some valid email as spam. In order to correct this mis-
take, the verifier “salvages” messages with a high spam
filter score that carry a valid attestation, and relays them;
high-score, unattested email is discarded as spam. This
step ensures that legitimate human-generated email is
forwarded unconditionally, even if the sender’s machine
is compromised. Thus, NAB guarantees that human-
generated email from even a compromised machine is
forwarded correctly (for example, in our trace study in
§6, we did not find a single legitimate email that was ul-
timately rejected). Finally, while spam that steals attes-
tations will also be forwarded, in our trace-based study
this spam volume is 92% less than the spam forwarded
today (§6). This reduction is because the attester limits
the bot to acquiring attestations only when there is hu-
man activity, and even then at a rate limit of at most one
attestation per ∆ (one second for type 0 attestations).
Recipient’s inbox. A second form of deploying the

verifier is at the email recipient. This form can coexist
with the verifier on the sender’s side.

We observe that any email server classifying email as
spam or not can ensure that a legitimate email is not mis-
classified by improving the spam score for email mes-
sages with attestations by a small number (=3, §6). This
number should be high enough that all legitimate email
is classified correctly, while spam with or without attes-
tations is still caught.

The verifier improves the score for all attested emails
by 3, thereby vastly improving the delivery of legitimate
email. Additionally, in this deployment, the verifier also
checks that the ‘To:” or “Cc:” headers contain the recipi-
ent’s email address or the address of a subscribed mailing
list. If not (for example, in the case of “Bcc:”), it does
not improve the spam score by 3 points.
Incentives. Email senders have an incentive to deploy
NAB because it prevents their email from being misclas-
sified as spam. Verifiers can be deployed either for reduc-
ing spam forwarded through mail relays or for ensuring
that all legitimate email is classified and delivered cor-
rectly. Home ISPs, which see significant amount of com-
promised hosts on their networks, can benefit from the
first deployment scenario, because, unlike other meth-
ods of content or IP-based filtering, attestations still al-
low all legitimate email from compromised hosts, while
reducing spam significantly (§6). Also, web-based mail
servers such as gmail have an incentive to deploy NAB so
that they can avoid being blacklisted by other email re-
lays by reducing the spam they forward today. Finally,
email recipients have an incentive to deploy NAB be-
cause they will receive all legitimate email correctly, un-
like today (§6).

5.2.2 DDoS policy

We consider scenarios where DDoS is effected by over-
loading servers, and not by flooding networks. The ver-
ifier resides in a firewall or load balancer, and observes
the response time of the web server to determine whether
the server is overloaded [31]. Here, unlike in spam, the
verifier does not drop requests with invalid or missing
attestations. Instead, it prioritizes requests with valid at-
testations over those that lack them. Prioritizing, rather
than dropping, makes sense because some valid requests
may actually be generated automatically by machines
(for example, automatic page refreshes on news sites like
cnn.com).

The verifier processes the web request in the following
application-specific manner. If the request is for a page
URL, the verifier treats it as a fresh request. It keeps a set
of all valid attestations it has seen in the past 10 minutes,
and adds the attestation and the requested page URL to
the list. If the request is for an embedded object within a
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page URL, the verifier searches the attestation list to see
if the attestation is present in the list. If the attestation
is present in the list, and if the requested object belongs
to the page URL recorded in the list for the attestation,
the verifier treats the attestation as valid. Otherwise, it
lowers the priority of the request. The verifier ages the
stored attestation list every minute.

The priority policy serves all outstanding attested re-
quests first, and uses any remaining capacity to serve all
unattested requests in order.

Incentives. Overloaded web sites have a natural incen-
tive to deploy verifiers. While users have an incentive to
deploy attesters to receive priority treatment, the attester
deployment barrier can be still high. However, since our
attester is not application-specific, it is possible for the
web browser to leverage the attester deployed for email
or click-fraud.

5.2.3 Click-fraud Policy

Click-fraud occurs whenever an automated request is
generated for a click, without any interest in the click
target. For example, a botmaster puts up a web site to
show ads from companies such as Google, and causes
his bots to fetch ads served by Google through his web
site. This action causes Google to pay money to the bot-
master. Similarly, an ad target’s competitor might gener-
ate invalid clicks in order to run up ad costs and bankrupt
the ad purchaser. Further, the competitor might be able to
purchase ad words for a smaller price, because the victim
might no longer bid for the same ad word. Finally, com-
panies like Google have a natural incentive to prove to
their advertisers that ads displayed together with search
results are clicked not by bots but by humans.

With NAB, a verifier such as Google can implement
the verifier within its web servers, configured as a sim-
ple policy of not serving unattested requests. Also, it can
log all attested requests to prove to the advertiser that
the clicks Google is charging for are, in fact, human-
generated.

Incentives. Companies like Google, Yahoo and Mi-
crosoft that profit from ad revenue have a good incentive
to deploy verifiers internally. They also have an incen-
tive to distribute the attester as part of browser toolbars.
Such toolbars are either factory installed with new PCs,
or the user can explicitly grant permission to install the
attester. While the user may not benefit directly in this
case, she benefits from spam and DDoS reduction, and
from being made aware of potential problems when a bot
steals key clicks.

5.3 Security guarantees

NAB provides two important security guarantees. First,
it ensures that attestations cannot be double-spent. Sec-
ond, it ensures that a bot cannot steal key clicks and ac-
cumulate attestations beyond a fixed time window, which
reduces the aggregate volume and burstiness of bot traf-
fic.

The verifier uses the nonce in the attestation (Figure 2)
for these two guarantees. The verifier stores the nonces
for a short period (10 minutes for web requests, one
month for email). We find this nonce overhead to be
small in practice (§6.3). If a bot recycles an attestation
after one month, and the spam filter at the verifier flags
the email as spam based on content analysis, the veri-
fier uses the “Date:” field in the attested email to safely
discard the request because the message is old.

The combination of application-specific verifier pol-
icy and content-bound attestations can also be used to
mitigate bursty attacks. For example, a web URL can in-
clude an identifier that encodes the link freshness. Since
attestations include the identifier, the verifier can discard
out-of-date requests, even if they have valid signatures.

6 Evaluation

In this section, we evaluate NAB’s two main compo-
nents: a) our current attester prototype with respect to
metrics such as TCB size, CPU requirements, and appli-
cation changes; and b) our verifier prototype with respect
to metrics such as the extent to which it mitigates attack-
specific traffic such as spam, DDoS and click-fraud, and
the rate at which it can verify attestations.

Our main experiments and their conclusions are shown
in Table 1. We elaborate on each of them in turn.

6.1 Attester Evaluation

TCB size. We implemented the attester as a kernel mod-
ule within Xen. Xen is well-suited because it provides a
virtual machine environment with sufficient isolation be-
tween the attester and the untrusted OS. However, the
chief difficulty was keeping the total TCB size small.
Striving for a small TCB allows the attester to handle
untrusted OSes with a higher assurance. While the Xen
VM itself is small (about 30 times smaller than the Linux
kernel), we have to factor the size of a privileged do-
main such as Domain-0 into the TCB code base. Unfor-
tunately, this increases the size of the TCB to more than
5 million source lines of code (SLOC), the majority of
which is device driver code.

Instead, we started with a minimal kernel that only
includes the necessary drivers for our platform. We in-
cluded the Xen VMM and built untrusted guest OSes us-
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Experiment Conclusion
TCB size 500 source lines of code (SLOC) for attester, 30K SLOC total
Attester CPU cost < 107 instructions/attestation
Application changes <250 SLOC for simple applications
Worst-case spam mitigation > 92% spam suppressed; no human-sent email missed
Worst-case DDoS mitigation > 89% non-human requests identified; no human requests demoted
Worst-case click-fraud mitigation > 87% automated clicks denied; no human request denied
Verifier throughput > 1, 000 req/s. Scalable to withstand 100,000-bot DDoS

Table 1: Summary of key experiments and their results.

ing the mini-OS [19] domain building facility included
in the Xen distribution. Mini-OS allows the user-space
applications and libraries of the host VM to be untrusted,
leaving us with a total codebase of around 30,000 source
lines of code (SLOC) for the trusted kernel, VMM and
attester. Our attester was less than 500 SLOC. While this
approach produced a TCB that can be considered rea-
sonably small, especially compared to the status quo, we
are examining alternatives such as using Xen’s driver do-
main facility that allows device drivers to run in unprivi-
leged domains. We are also working on using the IOM-
MUs found on the newer Intel platforms, which enable
drivers for devices other than keyboard and mouse to run
in the untrusted OS, while ensuring that the attester can-
not be corrupted due to malicious DMA requests. Such
an approach makes the attester portable to any x86 plat-
form.
Attester CPU cost. The attester uses RSA signatures
with a 1024-bit modulus, enabling it to generate and re-
turn an attestation to the application with a worst-case
latency of 10 ms on a 2 GHz Core 2 processor. This
latency is usually negligible for email, ad click, or fetch-
ing web pages from a server under DDoS. Establishing
an outgoing TCP connection to a remote server usually
takes more than this time, and attestation generation is
interleaved with connection establishment.
Application changes. We modified two command-line
email and web programs to request and submit attes-
tations: NET::SMTP, a Perl-based SMTP client, and
cURL, an HTTP client written in C. Both modifications
required changes or additions of less than 250 SLOC.

6.2 Verifier Evaluation

We used a trace study of detailed keyboard and mouse
activity of 328 volunteering users at Intel to confirm
the mitigation efficacy of our application-specific veri-
fier policies. We find the following four main benefits
with our approach:

1. If the sender’s mail relay or the receiver’s inbox uses
NAB and checks for attestations, the amount of spam
that passes through tuned spam filters (i.e., false neg-

atives) reduces by more than 92%, while not flagging
any legitimate email as spam (i.e., no false positives).
The spam reduction occurs by setting the “scoring
thresholds” aggressively; the presence of concomitant
human activity greatly reduces the number of legiti-
mate emails flagged as spam.

2. In addition to reduced spam users see in their inboxes,
NAB also reduces the peak processing load seen at
mail servers, because the amount of attested spam that
can be sent even by an adaptive botnet is bounded by
the number of human clicks that generate attestations.
Hence, mail servers can prioritize attested requests po-
tentially dropping low-priority ones, which improves
the fraction of human-generated email processed dur-
ing high-load periods.

3. NAB can filter out more than 89% of bot-mounted
DDoS activity without misclassifying human-
generated requests.

4. NAB can identify click-fraud activity generated by ad-
ware with more than 87% accuracy, without losing any
human-generated web clicks.

Methodology. We use the keyboard and mouse click
traces collected by Giroire et al. [11]; activity was
recorded on participants’ laptops at one-second granu-
larity at all times, both at work and at home. Each user’s
trace is a sequence of records with the following rele-
vant information: timestamp; number of keyboard clicks
within the last second; number of mouse clicks within the
last second; the foreground application that is receiving
these clicks (such as “Firefox”, “Outlook”, etc.); and the
user’s network activity (i.e., the TCP flow records that
were initiated in the last one second). Nearly 400 users
participated in the trace study, but we use data from 328
users because some users left the study early. These 328
users provide traces continuously over a one-month pe-
riod between Jan–Feb 2007, as long as their machines
were powered on. While the user population size is mod-
erate, the users and the workloads were diverse. For ex-
ample, there were instances of significant input device
activity corresponding to gaming activity outside regular
work. So, we believe the traces are sufficiently represen-
tative of real-world activity.
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Separately, we also collected malware traces from a
honeypot. The malware whose traces we gathered in-
cluded: a) the Storm Worm [13], which was until re-
cently the largest botnet, generating several tens of bil-
lions of spam messages per day; and b) three adware
bots called 180solutions, Nbcsearch and eXactSearch,
which are known to perpetrate click-fraud against Ya-
hoo/Overture. For spam, we also used a large spam cor-
pus containing more than 100,000 spam messages and
50,000 valid messages [1]. Each message in the corpus is
hand-classified as spam or non-spam, providing us with
ground-truth. For DDoS, we use traffic traces from the
Internet Traffic Archive [27], which contain flash-crowd
scenarios. We assume that these flash crowds represent
DDoS requests, because, as far as an overloaded server
is concerned, the two scenarios are indistinguishable.

We overlay the user activity traces with the malware
and DDoS traces for each user, and compare the results
experienced by the user at the output of the verifier with
and without attestations. We consider two strategies for
overlaying requests: a normal bot and an adaptive bot.
The adaptive bot represents the worst-case scenario for
the verifier, because it monitors human activity and mod-
ulates its transmissions to collect attestations and mas-
querade as a user at the verifier.

We consider an adaptive adversary that buffers its re-
quests until it sees valid human activity, and simulate the
amount of benefit NAB can provide under such adversar-
ial workloads.
Spam mitigation. The verifier can be used in two ways
(§5.2). First, mail relays such as gmail or the SMTP
server at the user’s ISP can require attestations for outgo-
ing email. In this case, the main benefit comes from fil-
tering out all unattested spam and catching most attested
spam, while allowing all legitimate email. So, the main
metric here is how much attested spam is suppressed.
Second, the inbox at the receiver can boost the “spam
score” for all attested email, thereby improving the prob-
ability that a legitimate email is not misclassified. So, the
main metric here is how much attested human-generated
email is misclassified as spam.

Figure 4 shows the amount of spam, attested or not,
that managed to sneak through spamassassin’s Bayesian
filter for a given spam threshold setting. By setting a
spam threshold of -2 for an incoming message , and ad-
mitting messages that still cleared this threshold and car-
ried valid attestations, we cut down the amount of spam
forwarded by mail relays by more than 92% compared to
the amount of spam forwarded currently.

From our traces, we also found that no attested human-
generated email is misclassified as spam for a spam
threshold setting of 5, as long as the spam score of at-
tested messages is boosted by 3 points. On the other
hand, spamassassin uses a threshold of 5 by default be-
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Figure 4: Missed spam percentage vs. spam threshold
with attestations. By setting spam threshold to -2, spam
cleared by spamassassin and received in inboxes today is
reduced more than 92% even in worst case (ı.e., adaptive
bots), without missing any legitimate email.

cause, without attestations, a lot of valid email would be
missed if it were to use a spam score of -2. Even so, about
0.08% of human-generated email is still misclassified as
spam, which is a significant improvement of legitimate
email reception.

There is another benefit that the verifier can derive by
using attestations. It comes in the form of reduced peak
load observed while processing spam. Today’s email
servers are taxed by ever-increasing spam requests [23].
At peak times, the mail server can prioritize messages
carrying attestations over those that do not, and process
the lower-priority messages later.

Figure 5 shows the CDF of the percentage of spam re-
quests that the verifier must still service at a high priority
because of stolen attestations. NAB demotes spam traffic
without attestations by more than 91% in the worst case
(equivalently, less than 7.5% of spam traffic is served at
the high priority). At the same time, no human-generated
requests are demoted. The mean of the admitted spam
traffic is 2.7%, and the standard deviation is 1.3%. Thus,
NAB reduces peak server load by more than 10×.
DDoS mitigation. The verifier uses the DDoS policy
described in §5.2, by giving lower priority to requests
without attestations. Figure 6 shows the CDF of the per-
centage of DDoS requests that the verifier still serves at
a high priority because of stolen attestations. NAB de-
motes DDoS traffic by more than 89% in the worst case
(equivalently, only 11% of DDoS traffic is served at the
high priority). At the same time, no human-generated
requests are demoted. The mean of the admitted DDoS
traffic is 5.8%, and the standard deviation is 2.2%.
Click-fraud mitigation The verifier uses the Click-fraud
policy described in §5.2. Figure 7 shows the amount
of click-fraud requests that the verifier satisfies due to



318	 NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation	 USENIX Association























        







Figure 5: CDF of percentage of bots’ spam requests ser-
viced by an email server in the worst case. The mail
server’s peak spam processing load is reduced to less
than 7.5% of its current levels.
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Figure 6: CDF of percentage of bots’ DDoS requests
serviced in the worst case. Allowed DDoS traffic is re-
stricted to less than 11% of original levels.

valid attestations. NAB denies more than 87% of all
in the worst case (equivalently, only 13% of all click-
fraud requests is serviced). At the same time, no human-
generated requests are denied service. The mean of the
serviced click-fraud traffic is 7.1%, and the standard de-
viation is 3.1%.

6.3 Verifier Throughput

The verifier processes attestations, which are signed RSA
messages, at a rate of more than 10,000 attestations per
second on a 2 GHz Core 2 processor. It benefits from
the fact that RSA verification is several times faster than
signing. The verifier processes an attestation by consult-
ing the data base of previously seen nonces within an
application-specific period. The longest is email, with
a duration of one month, while nonces of web requests
are stored for 10 minutes, and fit in main memory. Even
in the worst-case scenario of a verifier at an ISP’s busy
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Figure 7: CDF of percentage of bots’ click-fraud re-
quests serviced in the worst case. Serviced click-fraud
requests are restricted to less than 13% of original levels.

SMTP relay, the storage and lookup costs for the nonces
are modest—for a server serving a million clients, each
of which sends a thousand emails per day, the nonce stor-
age overhead is around 600 GB, which can fit on a single
disk and incur one lookup overhead. This overhead is
modest compared to the processing and storage costs in-
curred for reliable email delivery.

Another concern is that the verifier is itself susceptible
to a DDoS attack. To understand how well our verifier
can withstand DDoS attacks, we ran experiments on a
cluster of 10 Emulab machines configured as distributed
email verifiers. We launched a DDoS from bots with
fake attestations. Each DDoS bot sent 1 req/s to one of
the ten verifiers at random, in order to mimic the behav-
ior of distributed low-rate bots forming a DDoS botnet.
Our goal was to determine whether a botnet of 100,000
nodes (which is comparable to the median botnet size)
can overwhelm this verifier infrastructure or not. Our
bot implementation used 100 clients to simulate 1000
bots each, and attack the ten verifier machines. We as-
sume network bandwidth is not a bottleneck, and that the
bots are targeting the potential verification overhead bot-
tleneck. A verifier queues incoming requests until it can
attend to it, and has sufficient request buffers.

Figure 8 shows the latency increase (in ms) experi-
enced by a normal client request. Normally, a user takes
about 1 ms to get her attestation verified. With DDoS, we
find that even a 100,000-node botnet degrades the perfor-
mance of a normal request only by an additional 1.2 ms
at most. Hence, normal request processing is not affected
significantly. Thus, a cluster of 10 verifiers can withstand
a 100,000-node botnet using fake attestations.

7 Related Work

We classify prior work into three main categories.
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Figure 8: Request processing latency at the verifier.

Human activity detection. CAPTCHAs [30? ] are
the currently popular mechanism for proving human
presence to remote verifiers. However, as described
in §4, they suffer from four major drawbacks that ren-
der them less attractive for mitigating botnet attacks.
First, CAPTCHAs as they are used today are transfer-
able and not bound to the content they attest, and are
hence vulnerable to man-in-the-middle attacks, although
one could imagine designs to improve this shortcom-
ing; second, they are semantically independent of the ap-
plication (i.e., unbound to the user’s intent), are hence
exposed to human solver attacks; third, they are ob-
trusive, which restricts their use for fine-grained attes-
tations (by definition, CAPTCHAs require manual hu-
man input), and hence cannot be automated, unlike NAB.
Also, we are witnessing continued successes in breaking
the CAPTCHA implementations of several sites such as
Google, Yahoo, and MSN [12], leading some to question
even their long-term viability [34], at least in their cur-
rent form. By contrast, NAB’s security relies on cryp-
tographic protocols such as RSA that have been studied
and used longer.

The recent work on the Nexus operating system [33]
has developed support for application properties to be se-
curely expressed using a trusted reference monitor mech-
anism. The Nexus reference monitor is more expressive
than a TPM implementing a hash-based trusted boot. So,
it allows policies restricting outgoing email only from
registered email applications. In contrast, we assume
commodity untrusted OS and applications.

The approach of using hardware to enable human ac-
tivity detection has been described before in the context
of on-line games, using untrusted hardware manageabil-
ity engines (such as Intel’s AMT features) [21].

Mitigating spam, DDoS and click-fraud. There is
extensive literature related to mitigation techniques for
Spam [2], DDoS [20, 35] and click-fraud [26]. There
are still no satisfactory solutions, so application-specific

defenses are continuously proposed. For example, Oc-
cam [10], SPF (Sender Policy Framework), DKIM (Do-
mainKeys Identified Mail) and “bonded sender” [6]
have been put forth recently as enhancements. Simi-
larly, DDoS and click-fraud mitigation have each seen
several radically different attack-specific proposals re-
cently. These proposals include using bandwidth-as-
payment [31], path validation [35], and computational
proofs of work [20] for DDoS; and using syndicators,
premium clicks, and clickable CAPTCHAs for click-
fraud [26].

While all these proposals certainly have several mer-
its, we propose that it is possible to mitigate a vari-
ety of botnet attacks using a uniform mechanism such
as NAB’s attestation-based human activity verification.
Such a uniform attack mitigation mechanism amortizes
its cost of deployment. Moreover, unlike some propos-
als, NAB does not rely on IP-address blacklisting, which
is unlikely to work well because even legitimate requests
from a blacklisted host are denied. Also, NAB can be im-
plemented purely at the end hosts, and does not require
Internet infrastructure modification.
Secure execution environments. The TPM specifica-
tions [28] defined by the Trusted Computing Group are
aimed at providing primitives that can be used to pro-
vide security guarantees to commodity OSes. TPM-like
services have been extended to OSes that cannot have
exclusive access to a physical TPM device of their own,
as with legacy and virtual machines. For example, Pio-
neer [22] provides an externally verifiable code execution
environment for legacy devices similar to that provided
by a hardware TPM, and vTPM [5] provides full TPM
services to multiple virtualized OSes. NAB assumes a
single OS and a hardware TPM, but can leverage this re-
search in future.

XOM [15] and Flicker [16] provide trusted execu-
tion support even when physical devices such as DMA
or, with XOM, even main memory are corrupted, while
SpyProxy [18] blocks suspicious web content by exe-
cuting the content in a virtual machine first. In con-
trast, NAB assumes compromised machines’ hardware
is functioning correctly, that the bot may generate di-
verse traffic such as spam and DDoS, and that owners do
not mount hardware attacks against their own machines,
which is realistic for botted machines.

8 Conclusions

This paper presented NAB, a system for mitigating net-
work attacks by using automatically obtained evidence of
human activity. NAB uses a simple mechanism centered
around TPM-backed attestations of keyboard and mouse
clicks. Such attestations are responder- and content-
specific, and certify human activity even in the absence



320	 NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation	 USENIX Association

of globally unique identities. Application-specific ver-
ifiers use these attestations to implement various poli-
cies. Our implementation shows that it is feasible to pro-
vide such attestations at low TCB size and runtime cost.
By evaluating NAB using trace analysis, we estimate
that NAB can reduce the amount of spam evading tuned
spam filters by more than 92% even with worst-case ad-
versarial bots, while ensuring that no legitimate email
is misclassified as spam. We realize similar benefits
for DDoS and click-fraud. Our results suggest that the
application-independent abstraction provided by NAB
enables a range of verifier policies for applications that
would like to separate human-generated requests from
bot traffic.
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Abstract

Network security applications often require analyzing
huge volumes of data to identify abnormal patterns or
activities. The emergence of cloud-computing models
opens up new opportunities to address this challenge by
leveraging the power of parallel computing.

In this paper, we design and implement a novel sys-
tem called BotGraph to detect a new type of botnet spam-
ming attacks targeting major Web email providers. Bot-
Graph uncovers the correlations among botnet activities
by constructing large user-user graphs and looking for
tightly connected subgraph components. This enables us
to identify stealthy botnet users that are hard to detect
when viewed in isolation. To deal with the huge data
volume, we implement BotGraph as a distributed appli-
cation on a computer cluster, and explore a number of
performance optimization techniques. Applying it to two
months of Hotmail log containing over 500 million users,
BotGraph successfully identified over 26 million botnet-
created user accounts with a low false positive rate. The
running time of constructing and analyzing a 220GB Hot-
mail log is around 1.5 hours with 240 machines. We be-
lieve both our graph-based approach and our implemen-
tations are generally applicable to a wide class of security
applications for analyzing large datasets.

1 Introduction
Despite a significant breadth of research into botnet de-
tection and defense (e.g., [8, 9]), botnet attacks remain
a serious problem in the Internet today and the phenom-
enon is evolving rapidly ( [4, 5, 9, 20]): attackers con-
stantly craft new types of attacks with an increased level
of sophistication to hide each individual bot identities.

One recent such attack is the Web-account abuse at-
tack [25]. Its large scale and severe impact have re-
peatedly caught public media’s attention. In this attack,
spammers use botnet hosts to sign up millions of user ac-
counts (denoted as bot-users or bot-accounts) from major
free Web email service providers such as AOL, Gmail,
Hotmail, and Yahoo!Email. The numerous abused bot-
accounts were used to send out billions of spam emails
across the world.

Existing detection and defense mechanisms are inef-
fective against this new attack: The widely used mail
server reputation-based approach is not applicable be-
cause bot-users send spam emails through only legitimate

∗The work was done while Yao was an intern at Microsoft Research
Silicon Valley.

Web email providers. Furthermore, it is difficult to differ-
entiate a bot-user from a legitimate user individually, as
both users may share a common computer and that each
bot-user sends only a few spam emails 1.

While detecting bot-users individually is difficult, de-
tecting them as an aggregate holds the promise. The ratio-
nal is that since bot-users are often configured similarly
and controlled by a small number of botnet commanders,
they tend to share common features and correlate each
other in their behavior such as active time, spam con-
tents, or email sending strategies [24, 27]. Although this
approach is appealing, realizing it to enable detection at
a large scale has two key challenges:

• The first is the algorithmic challenge in finding sub-
tle correlations among bot-user activities and distin-
guishing them from normal user behavior.

• The second challenge is how to efficiently analyze
a large volume of data to unveil the correlations
among hundreds of millions of users. This requires
processing hundreds of gigabytes or terabytes of
user activity logs.

Recent advancement in distributed programming
models, such as MapReduce [6], Hadoop [2], and
Dryad/DryadLINQ [10, 29], has made programming and
computation on a large distributed cluster much easier.
This provides us with opportunities to leverage the paral-
lel computing power to process data in a scalable fashion.
However, there still exist many system design and imple-
mentation choices.

In this paper, we design and implement a system called
BotGraph to detect the Web-account abuse attack at a
large scale. We make two important contributions.

Our first contribution is to propose a novel graph-
based approach to detect the new Web-account abuse at-
tack. This approach exposes the underlying correlations
among user-login activities by constructing a large user-
user graph. Our approach is based on the observation that
bot-users share IP addresses when they log in and send
emails. BotGraph detects the abnormal sharing of IP ad-
dresses among bot-users by leveraging the random graph
theory. Applying BotGraph to two months of Hotmail
log of total 450GB data, BotGraph successfully identified
over 26 million bot-accounts with a low false positive rate
of 0.44%. To our knowledge, we are the first to provide a

1Recent anecdotal evidence suggests that bot-users have also been
programmed to receive emails and read them to make them look more
legitimate.
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systematic solution that can successfully detect this new
large-scale attack.

Our second contribution is an efficient implementa-
tion using the new distributed programming models for
constructing and analyzing large graphs. In our applica-
tion, the graph to construct involves tens of millions of
nodes and hundreds of billions of edges. It is challeng-
ing to efficiently construct such large graphs on a com-
puter cluster as the task requires computing pair-wise cor-
relations between any two users. We present two graph
construction methods using different execution plans: the
simpler one is based on the MapReduce model [6], and
the other performs selective filtering that requires the
Join operation provided by Map-Reduce-Merge [28] or
DryadLINQ [29]. By further exploring several perfor-
mance optimization strategies, our implementation can
process a one-month dataset (220GB-240GB) to con-
struct a large graph with tens of millions of nodes in 1.5
hours using a 240-machine cluster. The ability to effi-
ciently compute large graphs is critical to perform con-
stant monitoring of user-user graphs for detecting attacks
at their earliest stage.

Our ultimate goal, however, is not to just tackle this
specific new form of attacks, but also to provide a general
framework that can be adapted to other attack scenarios.
To this end, the adoption of a graph representation can
potentially enable us to model the correlations of a wide
class of botnet attacks using various features. Further-
more, since graphs are powerful representations in many
tasks such as social network analysis and Web graph min-
ing, we hope our large-scale implementations can serve
as an example to benefit a wide class of applications for
efficiently constructing and analyzing large graphs.

The rest of the paper is organized as follows. We dis-
cuss related work in Section 2, and overview the Bot-
Graph system in Section 3. We then describe in Sec-
tion 4 the detail algorithms to construct and analyze a
large user-user graph for attack detection. We present
the system implementation and performance evaluation
in Section 5, followed by attack detection results in Sec-
tion 6. Finally, we discuss attacker countermeasures and
system generalizations in Section 7.

2 Background and Related Work
In this section, we first describe the new attack we focus
on in our study, and review related work in botnet detec-
tion and defense. As we use Dryad/DryadLINQ as our
programming model for analyzing large datasets, we also
discuss existing approaches for parallel computation on
computer clusters, particularly those relate to the recent
cloud computing systems.

2.1 Spamming Botnets and Their Detection

The recent Web-account abuse attack was first reported
in summer 2007 [25], in which millions of botnet email
accounts were created from major Web email service
providers in a short duration for sending spam emails.

While each user is required to solve a CAPTCHA test
to create an account, attackers have found ways to by-
pass CAPTCHAs, for example, redirecting them to ei-
ther spammer-controlled Web sites or dedicated cheap
labor 2. The solutions are sent back to the bot hosts
for completing the automated account creation. Tro-
jan.Spammer.HotLan is a typical worm for such auto-
mated account signup [25]. Today, this attack is one of
the major types of large-scale botnet attacks, and many
large Web email service providers, such as Hotmail, Ya-
hoo!Mail, and Gmail, are the popular attack targets. To
our best knowledge, BotGraph is one of the first solutions
to combat this new attack.

The Web-account abuse attack is certainly not the first
type of botnet spamming attacks. Botnet has been fre-
quently used as a media for setting up spam email servers.
For example, a backdoor rootkit Spam-Mailbot.c can
be used to control the compromised bots to send spam
emails. Storm botnet, one of the most widespread P2P
botnets with millions of hosts, at its peak, was deemed re-
sponsible for generating 99% of all spam messages seen
by a large service provider [9, 19].

Although our work primarily focuses on detecting the
Web-account abuse attack, it can potentially be general-
ized to detect other botnet spamming attacks. In this gen-
eral problem space, a number of previous studies have
all provided us with insights and valuable understanding
towards the different characteristics of botnet spamming
activities [1, 11, 23, 26]. Among recent work on detecting
botnet membership [20, 22, 24, 27], SpamTracker [24]
and AutoRE [27] also aim at identifying correlated spam-
ming activities and are more closely related with our
work. In addition to exploiting common features of bot-
net attacks as SpamTracker and AutoRE do, BotGraph
also leverages the connectivity structures of the user-user
relationship graph and explores these structures for bot-
net account detection.

2.2 Distributed and Parallel Computing

There has been decades of research on distributed and
parallel computing. Massive parallel processing (MPP)
develops special computer systems for parallel comput-
ing [15]. Projects such as MPI (Message Passing Inter-
face) [14] and PVM(Parallel Virtual Machine) [21] de-
velop software libraries to support parallel computing.
Distributed database is another large category of parallel
data processing applications [17].

The emergence of cloud computing models, such as
MapReduce [6], Hadoop [2], Dryad/DryadLINQ [10,
29], has enabled us to write simple programs for effi-
ciently analyzing a vast amount of data on a computer
cluster. All of them adopt the notion of staged computa-
tion, which makes scheduling, load balancing, and failure
recovery automatic. This opens up a plethora of oppor-
tunities for re-thinking network security—an application

2Interestingly, solving CAPTCHAs has ended up being a low-wage
industry [3].
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that often requires processing huge volumes of logs or
trace data. Our work is one of the early attempts in this
direction.

While all of these recent parallel computing models of-
fer scalability to distributed applications, they differ in
programming interfaces and the built-in operation prim-
itives. In particular, MapReduce and Hadoop provide
two simple functions, Map and Reduce, to facilitate data
partitioning and aggregation. This abstraction enables
applications to run computation on multiple data parti-
tions in parallel, but is difficult to support other com-
mon data operations such as database Join. To overcome
this shortcoming, Map-Reduce-Merge [28] introduces a
Merge phase to facilitate the joining of multiple hetero-
geneous datasets. More recent scripting languages, such
as Pig Latin [16] and Sawzall [18], wrap the low level
MapReduce procedures and provide high-level SQL-like
query interfaces. Microsoft Dryad/DryadLINQ [10, 29]
offers further flexibility. It allows a programmer to write
a simple C# and LINQ program to realize a large class of
computation that can be represented as a DAG.

Among these choices, we implemented BotGraph us-
ing Dryad/DryadLINQ, but we also consider our process-
ing flow design using the more widely used MapReduce
model and compare the pros and cons. In contrast to
many other data-centric applications such as sorting and
histogram computation, it is much more challenging to
decompose graph construction for parallel computation
in an efficient manner. In this space, BotGraph serves
as an example system to achieve this goal using the new
distributed computing paradigm.

3 BotGraph System Overview
Our goal is to capture spamming email accounts used by
botnets. As shown in Figure 1, BotGraph has two com-
ponents: aggressive sign-up detection and stealthy bot-
user detection. Since service providers such as Hotmail
limit the number of emails an account can send in one
day, a spammer would try to sign up as many accounts
as possible. So the first step of BotGraph is to detect ag-
gressive signups. The purpose is to limit the total number
of accounts owned by a spammer. As a second step, Bot-
Graph detects the remaining stealthy bot-users based on
their login activities. With the total number of accounts
limited by the first step, spammers have to reuse their ac-
counts, resulting in correlations among account logins.
Therefore BotGraph utilizes a graph based approach to
identify such correlations. Next, we discuss each compo-
nent in detail.

3.1 Detection of Aggressive Signups

Our aggressive signup detection is based on the premise
that signup events happen infrequently at a single IP ad-
dress. Even for a proxy, the number of users signed up
from it should be roughly consistent over time. A sud-
den increase of signup activities is suspicious, indicating
that the IP address may be associated with a bot. We use
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Figure 1: The Architecture of BotGraph.

a simple EWMA (Exponentially Weighted Moving Av-
erage) [13] algorithm to detect sudden changes in signup
activities. This method can effectively detect over 20 mil-
lion bot-users in 2 months (see Appendix A for more de-
tails on EWMA). We can then apply adaptive throttling to
rate limit account-signup activities from the correspond-
ing suspicious IP addresses.

One might think that spammers can gradually build up
an aggressive signup history for an IP address to evade
EWMA-based detection. In practice, building such a his-
tory requires a spammer to have full control of the IP
address for a long duration, which is usually infeasible
as end-users control the online/offline switch patterns of
their (compromised) computers. The other way to evade
EWMA-based detection is to be stealthy. In the next sec-
tion we will introduce a graph based approach to detect
stealthy bot-users.

3.2 Detection of Stealthy Bot-accounts

Our second component detects the remaining stealthy
bot-accounts. As a spammer usually controls a set of bot-
users, defined as a a bot-user group, these bot-users work
in a collaborative way. They may share similar login or
email sending patterns because bot-masters often manage
all their bot-users using unified toolkits. We leverage the
similarity of bot-user behavior to build a user-user graph.
In this graph, each vertex is a user. The weight for an
edge between two vertices is determined by the features
we use to measure the similarity between the two vertices
(users). By selecting the appropriate features for similar-
ity measurement, a bot-user group will reveal itself as a
connected component in the graph.

In BotGraph, we use the number of common IP ad-
dresses logged in by two users as our similarity fea-
ture (i.e., edge weight). This is because the aggres-
sive account-signup detection limits the number of bot-
accounts a spammer may obtain. In order to achieve a
large spam-email throughout, each bot-account will log
in and send emails multiple times at different locations,
resulting in the sharing of IP addresses as explained be-
low:

• The sharing of one IP address: For each spammer,
the number of bot-users is typically much larger than
the number of bots. Our data analysis shows that on
each day, the average number of bot-users is about
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50 times more than the number of bots. So multiple
bot-users must log in from a common bot, resulting
in the sharing of a common IP address.

• The sharing of multiple IP addresses: We found
that botnets may have a high churn rate. A bot
may be quarantined and leave the botnet, and new
bots may be added. An active bot may go offline
and it is hard to predict when it will come back on-
line. To maximize the bot-account utilization, each
account needs to be assigned to different bots over
time. Thus a group of bot-accounts will also share
multiple IP addresses with a high probability.

Our BotGraph system leverages the two aforemen-
tioned IP sharing patterns to detect bot-user activities.

Note that with dynamic IP addresses and proxies, nor-
mal users may share IP addresses too. To exclude such
cases, multiple shared IP addresses in the same Au-
tonomous System (AS) are only counted as one shared
IP address. In the rest of this paper, we use the number of
“shared IP addresses” to denote the the number of ASes
of the shared IP addresses. It is very rare to have a group
of normal users that always coincidentally use the same
set of IP addresses across different domains. Using the
AS-number metric, a legitimate user on a compromised
bot will not be mistakenly classified as a bot-user because
their number of “shared IPs” will be only one 3.

4 Graph-Based Bot-User Detection
In this section we introduce random graph models to
analyze the user-user graph. We show that bot-user
groups differentiate themselves from normal user groups
by forming giant components in the graph. Based on the
model, we design a hierarchical algorithm to extract such
components formed by bot-users. Our overall algorithm
consists of two stages: 1) constructing a large user-user
graph, 2) analyzing the constructed graph to identify bot-
user groups. Note one philosophy we use is to analyze
group properties instead of single account properties. For
example, it may be difficult to use email-sending statistics
for individual bot-account detection (each bot account
may send a few emails only), but it is very effective to
use the group statistics to estimate how likely a group
of accounts are bot-accounts (e.g., they all sent a similar
number of emails).

4.1 Modeling the User-User Graph

The user-user graph formed by bot-users is drastically
different from the graph formed by normal users: bot-
users have a higher chance of sharing IP addresses and
thus more tightly connected in the graph. Specifically,
we observed the bot-user subgraph contains a giant con-
nected component—a group of connected vertices that
occupies a significant portion of the subgraph, while

3We assume majority of hosts are physically located in only one AS.
We discuss how to prune legitimate mobile users in Section 4.2.2.

the normal-user subgraph contains only isolated vertices
and/or very small connected components. We introduce
the random graph theory to interpret this phenomenon
and to model the giant connected components formed by
bot-users. The theory also serves as a guideline for de-
signing our graph-based bot-user detection algorithm.

4.1.1 Giant Component in User-User Graph

Let us first consider the following three typical strategies
used by spammers for assigning bot-accounts to bots, and
examine the corresponding user-user graphs.

• Bot-user accounts are randomly assigned to bots. Ob-
viously, all the bot-user pairs have the same probability
p to be connected by an edge.

• The spammer keeps a queue of bot-users (i.e., the
spammer maintains all the bot-users in a predefined
order). The bots come online in a random order. Upon
request from a bot when it comes online, the spammer
assigns to the requesting bot the top k available (cur-
rently not used) bot-users in the queue. To be stealthy,
a bot makes only one request for k bot-users each day.

• The third case is similar to the second case, except that
there is no limit on the number of bot-users a bot can
request for one day and that k = 1. Specifically, a
bot requests one bot-account each time, and it asks for
another account after finishing sending enough spam
emails using the current account.

We simulate the above typical spamming strategies and
construct the corresponding user-user graph. In the simu-
lation, we have 10,000 spamming accounts (n = 10, 000)
and 500 bots in the botnet. We assume all the bots are ac-
tive for 10 days and the bots do not change IP addresses.
In model 2, we pick k = 20. In model 3, we assume the
bots go online with a Poisson arrival distribution and the
length of bot online time fits a exponential distribution.
We run each simulation setup 10 times and present the
average results.

Figure 2 shows the simulation results. We can see that
there is a sharp increase of the size of the largest con-
nected component as the threshold T decreases (i.e., the
probability of two vertices being connected increases). In
other words, there exists some transition point of T . If T
is above this transition point, the graph contains only iso-
lated vertices and/or small components. Once T crosses
the transition point, the giant component “suddenly” ap-
pears. Note that different spamming strategies may lead
to different transition values. Model 2 has a transition
value of T = 2, while Model 1 and 3 have the same tran-
sition value of T = 3.

Using email server logs and a set of known botnet ac-
counts provided by the Hotmail operational group, we
have confirmed that generally bot-users are above the
transition point of forming giant components, while nor-
mal users usually cannot form large components with
more than 100 nodes.
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Figure 2: The size of the largest connected component.

4.1.2 Random Graph Theory

The sudden appearance of a giant subgraph component
after a transition point can be interpreted by the theory of
random graphs.

Denote G(n, p) as the random graph model, which
generates a n-vertex graph by simply assigning an edge
to each pair of vertices with probability p ∈ (0, 1]. We
call the generated graph an instance of the model G(n, p).
The parameter p determines when a giant connected com-
ponent will appear in the graph generated by G(n, p).
The following property is derived from theorems in [7,
p.65∼67]:

Theorem 1 A graph generated by G(n, p) has average
degree d = n · p. If d < 1, then with high probabil-
ity the largest component in the graph has size less than
O(logn). If d > 1, with high probability the graph will
contain a giant component with size at the order of O(n).

For a group of bot-users that share a set of IPs, the av-
erage degree will be larger than one. According to the
above theorem, the giant component will appear with a
high probability. On the other hand, normal users rarely
share IPs, and the average degree will be far less than
one when the number of vertices is large. The resulted
graph of normal users will therefore contain isolated ver-
tices and/or small components, as we observe in our case.
In other words, the theorem interprets the appearance of
giant components we have observed in subsection 4.1.1.
Based on the theorem, the sizes of the components can
serve as guidelines for bot-user pruning and grouping
(discussed in subsection 4.2.2 and 4.2.3).

4.2 Bot-User Detection Algorithm

As we have shown in section 4.1, a bot-user group forms a
connected component in the user-user graph. Intuitively
one could identify bot-user groups by simply extracting
the connected components from the user-user graph gen-
erated with some predefined threshold T (the least num-
ber of shared IPs for two vertices to be connected by an
edge). In reality, however, we need to handle the follow-
ing issues:

• It is hard to choose a single fixed threshold of T . As we
can see from Figure 2, different spamming strategies
may lead to different transition points.

• Bot-users from different bot-user groups may be in the
same connected component. This happens due to: 1)
bot-users may be shared by different spammers, and 2)
a bot may be controlled by different spammers.

• There may exist connected components of normal
users. For example, mobile device users roaming
around different locations will be assigned IP ad-
dresses from different ASs, and therefore appeared as
a connected component.

To handle these problems, we propose a hierarchical
algorithm to extract connected components, followed by
a pruning and grouping procedure to remove false posi-
tives and to separate mixed bot-user groups.

4.2.1 Hierarchical Connected-Component
Extraction

Algorithm 1 describes a recursive function
Group Extracting that extracts a set of connected
components from a user-user graph in a hierarchical
way. Having such a recursive process avoids using a
fixed threshold T , and is potentially robust to different
spamming strategies.

Using the original user-user graph as input, Bot-
Graph begins with applying Group Extracting(G, T) to
the graph with T = 2. In other words, the algorithm first
identifies all the connected components with edge weight
w ≥ 2. It then recursively increases w to extract con-
nected subcomponents. This recursive process continues
until the number of nodes in the connected component
is smaller than a pre-set threshold M (M = 100 in our
experiments). The final output of the algorithm is a hier-
archical tree of the connected components with different
edge weights.

procedure Group Extracting(G, T )
1 Remove all the edges with weight w < T from G

and suppose we get G;
2 Find out all the connected subgraphs G1, G2, · · · ,
Gk in G;

3 for i = 1 : k do
4 Let |Gk| be the number of nodes in Gk;
5 if |Gk| > M then
6 Output Gk as a child node of G ;
7 Group Extracting(Gk, T + 1) ;

end
end

Algorithm 1: A Hierarchical algorithm for connected
component extraction from a user-user graph.

4.2.2 Bot-User Pruning

For each connected component output by Algorithm 1,
we want to compute the level of confidence that the set
of users in the component are indeed bot-users. In par-
ticular, we need to remove from the tree (output by Al-
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Figure 3: Histograms of (1) number of emails sent per day and
(2) email size. First row: aggressive bot-users; second row:
normal users.

gorithm 1) the connected components involving mostly
legitimate/normal users.

A major difference between normal users and bot-users
is the way they send emails. More specifically, normal
users usually send a small number of emails per day on
average, with different email sizes. On the other hand,
bot-users usually send many emails per day, with iden-
tical or similar email sizes, as they often use a common
template to generate spam emails. It may be difficult to
use such differences in email-sending statistics to classify
bot-accounts individually. But when a group of accounts
are viewed in aggregate, we can use these statistics to es-
timate how likely the entire group are bot-users. To do so,
for each component, BotGraph computes two histograms
from a 30-day email log:

• h1: the numbers of emails sent per day per user.
• h2: the sizes of emails.

Figure 3 shows two examples of the above two his-
tograms, one computed from a component consisting of
bot-users (the first row), the other from a component of
normal users (the second row). The distributions are
clearly different. Bot-users in a component sent out a
larger number of emails on average, with similar email
sizes (around 3K bytes) that are visualized as the peak in
the email-size histogram. Most normal users sent a small
number of emails per day on average, with email sizes
distributing more uniformly. BotGraph normalizes each
histogram such that its sum equals to one, and computes
two statistics, s1 and s2, from the normalized histograms
to quantify their differences:

• s1: the percentage of users who sent more than 3
emails per day;

• s2: the areas of peaks in the normalized email-size his-
togram, or the percentage of users who sent out emails
with a similar size.
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Figure 4: An example of extracting bot-user groups using the
random graph model.

Since the histograms are normalized, both s1 and s2
are in the range of [0, 1] and can be used as confidence
measures. A large confidence value means that the major-
ity of the users in the connected component are bot-users.
We use only s1 to choose the candidates of bot-user com-
ponents, because s1 represents a more robust feature. We
use s2 together with other features (e.g., account naming
patterns) for validation purpose only (see Section 6).

In the pruning process, BotGraph traverses the tree out-
put by Algorithm 1. For each node in the tree, it computes
s1, the confidence measure for this node to be a bot-user
component, and removes the node if s1 is smaller than a
threshold S. In total, fewer than 10% of Hotmail accounts
sent more than 3 emails per day, so intuitively, we can set
the threshold S = 0.1. In order to minimize the number
of false positive users, we conservatively set the threshold
S = 0.8, i.e., we only consider nodes where at least 80%
of users sent more than 3 emails per day as suspicious
bot-user groups (discussed further in Section 6.2).

4.2.3 Bot-User Grouping

After pruning, a candidate connected-component may
contain two or more bot-user groups. BotGraph proceeds
to decompose such components further into individual
bot-user groups. The correct grouping is important for
two reasons:

• We can extract validation features (e.g., s2 mentioned
above and patterns of account names) more accurately
from individual bot-user groups than from a mixture
of different bot-user groups.

• Administrators may want to investigate and take differ-
ent actions on different bot-user groups based on their
behavior.

We use the random graph model to guide the process of
selecting the correct bot-user groups. According to the
random graph model, the user-user subgraph of a bot-user
group should consist of a giant connected-component
plus very small components and/or isolated vertices. So
BotGraph traverses the tree again to select tree nodes that
are consistent with such random graph property. For each
node V being traversed, there are two cases:

• V ’s children contain one or more giant components
whose sizes are O(N), where N is the number of users
in node V ;
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• V ’s children contain only isolated vertices and/or
small components with size of O(log(N)).

For case 1, we recursively traverse each subtree rooted by
the giant components. For case 2, we stop traversing the
subtree rooted at the V . Figure 4 illustrates the process.
Here the root node R is decomposed into two giant com-
ponents A and B. B is further decomposed into another
two giant components D and E, while A is decomposed
into one giant component C. The giant component dis-
appears for any further decomposition, indicated by the
dash-lines. According to the theory, A, C, D, and E are
bot-user groups. If a node is chosen as a bot-user group,
the sub-tree rooted at the chosen node is considered be-
longing to the same bot-user group. That is, if we pick A,
we disregard its child C as it is a subcomponent of A.

5 Large-scale Parallel Graph Construction
The major challenge in applying BotGraph is the con-
struction of a large user-user graph from the Hotmail
login data – the first stage of our graph-based analysis
described in Section 3.2. Each record in the input log
data contains three fields: UserID, IPAddress, and Login-
Timestamp. The output of the graph construction is a list
of edges in the form of UserID1, UserID2, and Weight.
The number of users on the graph is over 500 million
based on a month-long login data (220 GB), and this
number is increasing as the Hotmail user population is
growing. The number of edges of the computed graph is
on the order of hundreds of billions. Constructing such
a large graph using a single computer is impractical. An
efficient, scalable solution is required so that we could
detect attacks as early as possible in order to take timely
reactive measures.

For data scalability, fault tolerance, and ease of pro-
gramming, we choose to implement BotGraph using
Dryad/DryadLINQ, a powerful programming environ-
ment for distributed data-parallel computing. How-
ever, constructing a large user-user graph using
Dryad/DryadLINQ is non-trivial. This is because the
resulting graph is extremely large, therefore a straight-
forward parallel implementation is inefficient in perfor-
mance. In this section, we discuss in detail our solu-
tions. We first present both a simple parallelism method
and a selective filtering method, and then describe sev-
eral optimization strategies and their performance im-
pacts. We also discuss several important issues arising
in the system implementation, such as data partitioning,
data processing flow, and communication methods. Us-
ing a one-month log as input, our current implementation
can construct a graph with tens of millions of nodes in 1.5
hours using a 240-machine cluster. During this process,
BotGraph filters out weight one edges, and the remaining
number of edges for the next-stage processing is around
8.6 billion.

We also implemented the second stage of finding con-
nected components using Dryad/DryadLINQ. This stage
can be solved using a divide and conquer algorithm. In
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to IP addresses

For any two users Ui and Uj sharing
the same IP, output an edge with
weight one (Ui , Uj  , 1)

Aggregate edge weights

Final graph results

Hash distribute edges according to Ui

Optional local aggregation step

1

2

3

4

5

Figure 5: Process flow of Method 1.

particular, one can divide the graph edges into multi-
ple partitions, identify the connected subgraph compo-
nents in each partition, and then merge the incomplete
subgraphs iteratively. To avoid overloading the merging
node, instead of sending all outputs to a single merging
node, each time we merge two results from two parti-
tions. This parallel algorithm is both efficient and scal-
able. Using the same 240-machine cluster in our experi-
ments, this parallel algorithm can analyze a graph with
8.6 billion edges in only 7 minutes — 34 times faster
than the 4 hour running time by a single computer. Given
our performance bottleneck is at the first stage of graph
construction instead of graph analysis, we do not further
elaborate this step.

5.1 Two Implementation Methods

The first step in data-parallel applications is to partition
data. Based on the ways we partition the input data,
we have different data processing flows in implementing
graph construction.

5.1.1 Method 1: Simple Data Parallelism

Our first approach is to partition data according to IP ad-
dress, and then to leverage the well known Map and Re-
duce operations to straightforwardly convert graph con-
struction into a data-parallel application.

As illustrated in Figure 5, the input dataset is parti-
tioned by the user-login IP address (Step 1). During the
Map phase (Step 2 and 3), for any two users Ui and Uj

sharing the same IP-day pair, where the IP address is
from Autonomous System ASk, we output an edge with
weight one e =(Ui, Uj , ASk). Only edges pertaining to
different ASes need to be returned (Step 3). To avoid out-
putting the same edge multiple times, we use a local hash
table to filter duplicate edges.

After the Map phase, all the generated edges (from all
partitions) will serve as inputs to the Reduce phase. In
particular, all edges will be hash partitioned to a set of
processing nodes for weight aggregation using (Ui, Uj)
tuples as hash keys (Step 4) . Obviously, for those user
pairs that only share one IP-day in the entire dataset, there
is only one edge between them. So no aggregation can
be performed for these weight one edges. We will show
later in Figure 7 that weight one edges are the dominate
source of graph edges. Since BotGraph focuses on only
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2. Compute local summary: list of IPs

1. Input: partitioned data by user IDs

3. Merge and distribute local summary

4.Selectively return login records

5. Hash distribute selected login records

7. Re-label partitioned input data

8. Local graph construction

9. Final graph results

6. Aggregate hashed distributed login records

Figure 6: Process flow of Method 2.

edges with weight two and above, the weight one edges
introduce unnecessary communication and computation
cost to the system. After aggregation, the outputs of the
Reduce phase are graph edges with aggregated weights.

5.1.2 Method 2: Selective Filtering

An alternative approach is to partition the inputs based on
user ID. In this way, for any two users that were located in
the same partition, we can directly compare their lists of
IP-day pairs to compute their edge weight. For two users
whose records locate at different partitions, we need to
ship one user’s records to another user’s partition before
computing their edge weight, resulting in huge commu-
nication costs.

We notice that for users who do not share any IP-day
keys, such communication costs can be avoided. That
is, we can reduce the communication overhead by se-
lectively filtering data and distributing only the related
records across partitions.

Figure 6 shows the processing flow of generating user-
user graph edges with such an optimization. For each
partition pi, the system computes a local summary si to
represent the union of all the IP-day keys involved in this
partition (Step 2). Each local summary si is then dis-
tributed across all nodes for selecting the relevant input
records (Step 3). At each partition pj(j = i), upon re-
ceiving si, pj will return all the login records of users
who shared the same IP-day keys in si. This step can be
further optimized based on the edge threshold w: if a user
in pj shares fewer than w IP-day keys with the summary
si, this user will not generate edges with weight at least
w. Thus only the login records of users who share at least
w IP-day keys with si should be selected and sent to par-
tition pi (Step 4)). To ensure the selected user records will
be shipped to the right original partition, we add an ad-
ditional label to each original record to denote their par-
tition ID (Step 7). Finally, after partition pi receives the
records from partition pj , it joins these remote records
with its local records to generate graph edges (Step 8 and
9).

Other than Map and Reduce, this method requires two
additional programming interface supports: the operation
to join two heterogeneous data streams and the operation
to broadcast a data stream.
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Figure 7: Edge weight distribution.

5.1.3 Comparison of the Two Methods

In general, Method 1 is simple and easy to implement,
but Method 2 is more optimized for our application. The
main difference between the two data processing flows is
that Method 1 generates edges of weight one and sends
them across the network in the Reduce phase, while
Method 2 directly computes edges with weight w or
more, with the overhead of building a local summary and
transferring the selected records across partitions. Fig-
ure 7 shows the distribution of edge weights using one-
month of user login records as input. Here, the number
of weight one edges is almost three orders of magnitude
more than the weight two edges. In our botnet detection,
we are interested in edges with a minimum weight two
because weight one edges do not show strong correlated
login activities between two users. Therefore the com-
putation and communication spent on generating weight
one edges are not necessary. Although in Method 1, Step
3 can perform local aggregation to reduce the number
of duplicated weight one edges, local aggregation does
not help much as the number of unique weight one edges
dominates in this case.

Given our implementation is based on the existing
distributed computing models such as MapReduce and
DryadLINQ, the amount of intermediate results impacts
the performance significantly because these program-
ming models all adopt disk read/write as cross-node com-
munication channels. Using disk access as communica-
tion is robust to failures and easy to restart jobs [6, 29].
However, when the communication cost is large such as
in our case, it becomes a major bottleneck of the over-
all system running time. To reduce this cost, we used a
few optimization strategies and will discuss them in the
next subsection. Completely re-designing or customizing
the underlying communication channels may improve the
performance in our application, but is beyond the scope
of this paper.

Note the amount of cross-node communication also
depends on the cluster size. Method 1 results in a constant
communication overhead, i.e., the whole edge set, regard-
less of the number of data partitions. But for Method
2, when the number of computers (hence the number of
data partitions) increases, both the aggregated local sum-
mary size and the number of user-records to be shipped
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(a) Serial merge (b) Parallel merge

Figure 8: (a) Default query execution plan (b) Optimized query
execution plan.

increase, resulting in a larger communication overhead.
In the next subsections, we present our implementations
and evaluate the two different methods using real-data ex-
periments.

5.2 Implementations and Optimizations

In our implementation, we have access to a 240-machine
cluster. Each machine is configured with an AMD Dual
Core 4.3G CPU and 16 GB memory. As a pre-processing
step, all the input login records were hash partitioned
evenly to the computer cluster using the DryadLINQ
built-in hash-partition function.

Given the Hotmail login data is on the order of hun-
dreds of Gigabytes, we spent a number of engineering
efforts to reduce the input data size and cross-node com-
munication costs. The first two data reduction strategies
can be applied to both methods. The last optimization is
customized for Method 2 only.

1. User pre-filtering: We pre-filter users by their lo-
gin AS numbers: if a user has logged in from IP addresses
across multiple ASes in a month, we regard this user as
a suspicious user candidate. By choosing only suspicious
users (using 2 ASes as the current threshold) and their
records as input, we can reduce the number of users to
consider from over 500 million (about 200-240GB) to
about 70 million (about 100GB). This step completes in
about 1-2 minutes.

2. Compression: Given the potential large communi-
cation costs, BotGraph adopts the DryadLINQ provided
compression option to reduce the intermediate result size.
The use of compression can reduce the amount of cross-
node communication by 2-2.5 times.

3. Parallel data merge: In Method 2, Step 3 merges
the local IP-day summaries generated from every node
and then broadcasts the aggregated summary to the entire
cluster. The old query plan generated by DryadLINQ is
shown in Figure 8 (a), where there exists a single node
that performs data aggregation and distribution. In our
experiments, this aggregating node becomes a big bot-
tleneck, especially for a large cluster. So we modified
DryadLINQ to generate a new query plan that supports
parallel data aggregation and distribution from every
processing node (Figure 8 (b)). We will show in Sec-
tion 5.3 that this optimization can reduce the broadcast
time by 4-5 times.

Communication data size Total running time
Method 1 12.0 TB > 6 hours
Method 2 1.7 TB 95 min

Table 1: Performance comparison of the two methods using the
2008-dataset.

Communication data size Total running time
Method 1 (no comp.) 2.71 TB 135 min
Method 1 (with comp.) 1.02 TB 116 min
Method 2 (no comp.) 460 GB 28 min
Method 2 (with comp.) 181 GB 21 min

Table 2: Performance comparison of the two methods using a
subset of the 2008-dataset.

5.3 Performance Evaluation

In this section, we evaluate the performance of our im-
plementations using a one-month Hotmail user-login log
collected in Jan 2008 (referred to as the 2008-dataset).
The raw input data size is 221.5 GB, and after pre-
filtering, the amount of input data is reduced to 102.9
GB. To use all the 240 machines in the cluster, we gen-
erated 960 partitions to serve as inputs to Method 1 (so
that the computation of each partition fits into memory),
and generated 240 partitions as inputs to Method 2. With
compression and parallel data merge both enabled, our
implementation of Method 2 finishes in about 1.5 hours
using all the 240 machines, while Method 1 cannot finish
within the maximum 6 hour quota allowed by the com-
puter cluster (Table 1). The majority of time in Method
1 is spent on the second Reduce step to aggregate a huge
volume of intermediate results. For Method 2, the local
summary selection step generated about 5.8 GB aggre-
gated IP-day pairs to broadcast across the cluster, result-
ing 1.35 TB out of the 1.7 TB total traffic.

In order to benchmark performance, we take a smaller
dataset (about 1/5 of the full 2008-dataset) that Method
1 can finish within 6 hours. Table 2 shows the commu-
nication costs and the total running time using the 240
machine cluster. While Method 1 potentially has a better
scalability than Method 2 as discussed in Section 5.1.3,
given our practical constraints on the cluster size, Method
2 generates a smaller amount of traffic and outperforms
Method 1 by about 5-6 times faster. The use of compres-
sion reduces the amount of traffic by about 2-3 times, and
the total running time is about 14-25% faster.

To evaluate the system scalability of Method 2, we
vary the number of data partitions to use different num-
ber of computers. Figure 9 shows how the communica-
tion overheads grow. With more partitions, the amount
of data generated from each processing node slightly de-
creases, but the aggregated local summary data size in-
creases (Figure 9 (a)). This is because popular IP-day
pairs may appear in multiple data partitions and hence
in the aggregated summary multiple times. Similarly,
the same user login records will also be shipped across
a larger number of nodes, increasing the communication
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Figure 9: Communication data size as we vary the number of
input data partitions (a) Local summary size in terms of the
number of IP-day keys. (b) Total number of selected user lo-
gin records to be sent across the network.

(a) (b)

Figure 10: Running time as we vary the number of input data
partitions for Method 2. (a) Total running time of all partitions.
(b) The running of each partition. The error bars show the max
and the min running time across all partitions.

costs as the system scales (Figure 9 (b)).
Even though the communication costs increase, the to-

tal running time is still reduced with a larger cluster size.
Figure 10 (a) shows the total running time and its break-
down across different steps. When the cluster size is
small (10 partitions), a dominant amount of time is spent
on computing the graph edges. As the system scales, this
portion of time decreases sharply. The other three steps
are I/O and network intensive. Their running time slightly
decreases as we increase the number of partitions, but the
savings get diminished due to the larger communication
costs. Figure 10 (b) shows the average running time spent
on processing each partition, and its variations are very
small.

We now examine the benefits of adopting parallel data
merge. The purpose of parallel data merge is to remove
the bottleneck node that performs data aggregation and
broadcasting. Since it is difficult to factor out the network
transfer time savings alone (network, disk I/O, and com-
putation are pipelined), we compare the time spent on the
user record selection step (Figure 11 (a)). This optimiza-
tion can reduce the processing latency significantly as the
cluster size increases (75% reduction in the 200 node sce-
nario). Without parallel data merge, the processing time
increases almost linearly, but with this optimization, the
amount of time remains roughly constant.

For Method 2, one reason for the large communica-
tion costs is that for botnet users, their graph component
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Figure 11: (a) The processing time of user-record selection with
and without parallel data merge. (b) Minimal and maximum
running time of partitions with and without strategic data parti-
tioning.

is both large and dense. Therefore, one potential opti-
mization technique is to strategically partition the login
records. Intuitively, we can reduce the communication
costs if we pre-group users so that users who are heav-
ily connected are placed in one partition, and users who
are placed in different partitions have very few edges be-
tween them. If so, Step 4 in Method 2 will return only
a small number of records to ship across different nodes.
Surprisingly, we found this strategy actually induced neg-
ative impact on the system performance.

Figure 11 (b) shows the graph construction time spent
at a processing node with and without strategic data par-
titioning. We chose the 240 input data partition scenario
and use the full dataset to illustrate the performance dif-
ference. In the first case, we evenly distributed login
records by hashing user IDs. In the second case, we
chose a large botnet user group with 3.6M users and put
all their login records evenly across 5 partitions, with the
remaining data evenly distributing across the remaining
partitions. This scenario assumes the best prior knowl-
edge of user connections. Although in both cases, the
total amount of input data in each partition is roughly uni-
form, we observe a big difference between the maximum
and minimum time in computing the edges across nodes.
Without strategic partitioning, the maximum and mini-
mum processing time is very close. In contrast, strategic
partitioning caused a huge degree of unbalance in work-
load, resulting in much longer total job running time.

6 Bot-user Detection and Validation
We use two month-long datasets as inputs to our system:
a 2007-dataset collected in Jun 2007, and a 2008-dataset
collected in Jan 2008. Each dataset includes two logs: a
Hotmail login log (format described in Section 5) and a
Hotmail signup log. Each record in the signup log con-
tains a user-ID, the remote IP address used for signup,
and the signup timestamp. For each dataset, we run our
EWMA-based anomaly detection on the signup log and
run our graph based detection on the login log. Using
both components, BotGraph detected tens of millions of
bot users and millions of botnet IPs. Table 3 summarizes
the results for both months. We present the detailed re-
sults and perform evaluations next.
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Month 06/2007 01/2008
# of bot-users 5.97M 20.58M
# of bot-IPs 2.71M 1.84M

Table 3: Total bot-users and bot IP
addresses detected using both history
based detection and user-user graph.

Month 06/2007 01/2008
# of bot IPs 82,026 240,784

# of bot-user accounts 4.83 M 16.41 M
Avg. anomaly window 1.45 day 1.01 day

Table 4: History based detection of bot IP
addresses and bot-user accounts.

Month 06/2007 01/2008
# of bot-groups 13 40

# of bot-accounts 2.66M 8.68M
# of unique IPs 2.69M 1.60M

Table 5: Bot IP addresses and bot-user ac-
counts detected by user-user graphs.
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Figure 12: (a) Cumulative distribution of anomaly window size
in terms of number of days. (b) Cumulative distribution of the
number of accounts signed up per suspicious IP.

6.1 Detection Using Signup History

Table 4 shows that the EWMA algorithm detected 21.2
million bot-user accounts when applied to the two Hot-
mail signup logs. Comparing Jan 2008 with Jun 2007,
both the number of bot IPs and the signed-up bot-users
increased significantly. In particular, the total number of
bot-accounts signed up in Jan 2008 is more than three
times the number in Jun 2007. Meanwhile, the anomaly
window is shortened from an average of 1.45 days to 1.01
days, suggesting each attack became shorter in Jan 2008.

Figure 12 (a) shows the cumulative distribution of the
anomaly window sizes associated with each bot IP ad-
dress. A majority (80% - 85%) of the detected IP ad-
dresses have small anomaly windows, ranging from a few
hours to one day, suggesting that many botnet signup at-
tacks happened in a burst.

Figure 12 (b) shows the cumulative distributions of the
number of accounts signed up per bot IP. As we can see,
the majority of bot IPs signed up a large number of ac-
counts, even though most of them have short anomaly
windows. Interestingly, the cumulative distributions de-
rived from Jun 2007 and Jan 2008 overlap well with each
other, although we observed a much larger number of
bot IPs and bot-users in Jan 2008. This indicates that
the overall bot-user signup activity patterns still remain
similar perhaps due to the reuse of bot-account signup
tools/software.

6.2 Detection by User-User Graph

We apply the graph-based bot-user detection algorithm
on the Hotmail login log to derive a tree of connected
components. Each connected component is a set of bot-
user candidates. We then use the procedures described in
Section 4.2.2 to prune the connected components of nor-
mal users. Recall that in the pruning process, we apply
a threshold on the confidence measure of each compo-
nent (computed from the “email-per-day” feature) to re-
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Figure 13: Bot-user group properties: (a) The the number of
users per group, (b) The peakness score of each group, reflect-
ing whether there exists a strong sharp peak for the email size
distribution.

move normal user components. In our experiments, the
confidence measures are well separated: most of the bot-
groups have confidence measures close to 1, and a few
groups are between 0.4 and 0.6. We observe a wide mar-
gin around confidence measure of 0.8, which we choose
as our threshold. As discussed in Section 4.2.2, this is
a conservative threshold and is in-sensitive to noises due
to the wide margin. For any group that has a confidence
measure below 0.8, we regard it as a normal user group
and prune it from our tree.

Table 5 shows the final detection results after pruning
and grouping. Both the number of bot-users and the num-
ber of bot IP addresses are on the order of millions — a
non-trivial fraction of all the users and IP addresses ob-
served by Hotmail. We find the two sets of bot-users
detected in two months hardly overlap. These accounts
were stealthy ones, each sending out only a few to tens
of spam emails during the entire month. Therefore, it is
difficult to capture them by looking for aggressive send-
ing patterns. Due to their large population, detecting and
sanitizing these users are important both to save Hotmail
resources and to reduce the amount of spam sent to the
Internet. Comparing Jan 2008 with Jun 2007, the number
of bot-users tripled, suggesting that using Web portals as
a spamming media has become more popular.

Now we study the properties of bot-users at a group
level. Figure 13 (a) shows that the number of users in
each group ranges from thousands to millions. Compar-
ing Jan 2008 with Jun 2007, although the largest bot-
user group remains similar in size, the number of groups
increased significantly. This confirms our previous ob-
servation that spammers are more frequently using Web
email accounts for spam email attacks.

We next investigate the email sending patterns of the
detected bot user groups. We are interested in whether
there exists a strong peak of email sizes. We use the peak-
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ness score metric s2 (defined in Section 4.2.2) to quantify
the degree of email size similarity for each group. Fig-
ure 13 (b) shows the distributions of s2 in sorted order.
A majority of groups have peakness scores higher than
0.6, meaning that over 60% of their emails have similar
sizes. For the remaining groups, we performed manual
investigation and found they have multiple peaks, result-
ing in lower scores. The similarity of their email sizes is
a strong evidence of correlated email sending activities.

In the next two sub-sections, we explore the quality of
the total captured 26 million bot-users. First, we examine
whether they are known bad and how many of them are
our new findings. Second, we estimate our detection false
positive rates.

6.3 Known Bot-users vs. New Findings

We evaluate our detected bot-users against a set of known
spammer users reported by other email servers in Jan
2008 4.

Denote H as the set of bot-users detected by signup
history using EWMA, Ks as the set of known spam-
mer accounts signed up in the month that we study, and
Ks ∩ H as the intersection between H and Ks. The ra-
tio of Ks∩H

H represents the percentage of captured bot-
users that are previously known bad. In other words,
1 − Ks∩H

H is our new findings. The ratio of Ks∩H
Ks

de-
notes the recall of our approach. Table 6 shows that, in
Jun 2007, 85.15% of the EWMA-detected bot-user de-
tected are already known bad, and the detected bot-user
covers a significant fraction of bad account, i.e., recall =
67.96%. Interestingly, Jan 2008 yields quite different
results. EWMA is still able to detect a large fraction of
known bad account. However, only 8.17% of detected
bad-users were reported to be bad. That means 91.83%
of the captured spamming accounts are our new findings.

We apply a similar study to the bot-users detected by
the user-user graph. Denote Kl as the set of known spam-
mers users that log in from at least 2 ASes, L as the set
of bot-users detected using our user-user graph based ap-
proach, and Kl ∩ L as the intersect between Kl and L.
Again we use the ratios of Kl∩L

L and Kl∩L
Kl

to evaluate
our result L, as shown in Table 7. Using our graph-
based approach, the recall is higher. In total, we were
able to detect 76.84% and 85.80% of known spammer
users in Jun 2007 and Jan 2008, respectively. Similar to
EWMA, the graph-based detection also identified a large
number (54.10%) of previously unknown bot-accounts in
Jan 2008. This might be because these accounts are new
ones and haven’t been used aggressively to send out a
massive amount of spam emails yet. So, they are not yet
reported by other mail servers as of Jan 2008. The ability
of detecting bot-accounts at an early stage is important to
to give us an upper hand in the anti-spam battle.

4These users were complained of having sent outbound spam
emails.

102 104 1060

0.2

0.4

0.6

0.8

1

Bot−user group size

N
am

in
g 

pa
tte

rn
 s

co
re

Figure 14: Validation of login-graph detected bot-users using
naming scores.

6.4 False Positive Analysis

In the previous subsection, we analyzed the overlap be-
tween our results and the set of known bad accounts. For
the remaining ones, validation is a challenging task with-
out the ground truth. We examine the following two ac-
count features to estimate the false positive rates: naming
patterns and signup dates.

6.4.1 Naming Patterns

For the identified groups, we found almost every group
follows a very clear user-name template, for example, a
fixed-length sequence of alphabets mixed with digits 5.
Examples of such names are ‘‘w9168d4dc8c5c25f9” and
‘‘x9550a21da4e456a2”.

To quantify the similarity of account names in a group,
we introduce a naming pattern score, which is defined as
the largest fraction of users that follow a single template.
Each template is a regular expression derived by a regular
expression generation tool [27]. Since many accounts de-
tected in Jun 2007 were known bad and hence cleaned by
the system already, we focus on bot-user groups detected
in Jan 2008.

Figure 14 shows the naming score distribution. A ma-
jority of the bot-user groups have close to 1 naming pat-
tern scores, indicating that they were signed up by spam-
mers using some fixed templates. There are only a few
bot-user groups with scores lower than 0.95. We manu-
ally looked at them and found that they are also bad users,
but the user names come from two naming templates.
It is possible that our graph-based approach mixed two
groups, or the spammers purchased two groups of bot-
users and used them together. Overall, we found in total
only 0.44% of the identified bot-users do not strictly fol-
low the naming templates of their corresponding groups.

6.4.2 Signup Dates

Our second false positive estimate is based on examin-
ing the signup dates of the detected bot-users. Since the
Web-account abuse attack is recent and started in sum-
mer 2007, we regard all the accounts signed up before
2007 as legitimate accounts. Only 0.08% of the identi-
fied bot-users were signed up before year 2007. To cal-

5Note it is hard to directly use the naming pattern itself to identify
spamming accounts due to the easy countermeasures.
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I = Ks ∩H 06/2007 01/2008
I/H 85.15% 8.17%
I/Ks 67.96% 52.41%

Table 6: Comparing bot-users detected by signup history us-
ing EWMA with known spammer user sets, using the ratios of
Ks∩H
H

and Ks∩H
Ks

. See text for the definition of H and Ks.

I = Kl ∩ L 06/2007 01/2008
I/L 90.95% 45.9%
I/Kl 76.84% 85.8%

Table 7: Comparing bot-users detected by user-user graph
with known spammer user sets, using the ratios of Kl∩L

L

and Kl∩L
Kl

. See text for the definition of Kl and L.

ibrate our results against the entire user population. We
look at the sign up dates of all users in the input dataset.
About 59.1% of the population were signed up before
2007. Assuming the normal user signup-date distribu-
tions are the same among the overall population and our
detected user set, we adjust the false positive rate to be
0.08%/59.1% = 0.13%

The above two estimations suggest that the false pos-
itive of BotGraph is low. We conservatively pick the
higher one 0.44% as our false positive rate estimate.

7 Discussion
In this paper, we demonstrated that BotGraph can detect
tens of millions of bot-users and millions of bots. With
this information, operators can take remedy actions and
mitigate the ongoing attacks. For bot-users, operators can
block their accounts to prevent them from further sending
spam, or apply more strict policies when they log in (e.g.,
request them to do additional CAPTCHA tests). For de-
tected bot IP addresses, one approach is to blacklist them
or rate limit their login activities, depending on whether
the corresponding IP address is a dynamically assigned
address or not. Effectively throttling botnet attacks in the
existence of dynamic IP addresses is ongoing work.

Attackers may wish to evade the BotGraph detection
by developing countermeasures. For example, they may
reduce the number of users signed up by each bot. They
may also mimic the normal user email-sending behav-
ior by reducing the number of emails sent per account
per day (e.g., fewer than 3). Although mimicking normal
user behavior may evade history-based change detection
or our current thresholds, these approaches also signifi-
cantly limit the attack scale by reducing the number of
bot-accounts they can obtain or the total number of spam
emails to send. Furthermore, BotGraph can still capture
the graph structures of bot-user groups from their login
activity to detect them.

A more sophisticated evasion approach may bind each
bot-user to only bots in one AS, so that our current im-
plementation would pre-filter them by the two AS thresh-
old. To mitigate this attack, BotGraph may revise the
edge weight definition to look at the number of IP pre-
fixes instead of the number of ASes. This potentially
pushes the attacker countermeasures to be more like a
fixed IP-account binding strategy. As discussed in Sec-
tion 3.2, binding each bot-user to a fixed bot is not de-
sirable to the spammers. Due to the high botnet churn
rate, it would result in a low bot-user utilization rate. It
also makes attack detection easier by having a fixed group
of aggressive accounts on the same IP addresses all the

time. If one of the bot-accounts is captured, the entire
group can be easily revealed. A more generalized solu-
tion is to broaden our edge weight definition by consider-
ing additional feature correlations. For example, we can
potentially use email sending patterns such as the desti-
nation domain [24], email size, or email content patterns
(e.g., URL signatures [27]). As ongoing work, we are
exploring a larger set of features for more robust attack
detection.

In addition to using graphs, we may also consider other
alternatives to capture the correlated user activity. For
example, we may cluster user accounts using their login
IP addresses as feature dimensions. Given the large data
volume, how to accurately and efficiently cluster user ac-
counts into individual bot-groups remains a challenging
research problem.

It is worth mentioning that the design and imple-
mentation of BotGraph can be applied in different ar-
eas for constructing and analyzing graphs. For ex-
ample, in social network studies, one may want to
group users based on their buddy relationship (e.g., from
MSN or Yahoo messengers) and identify community pat-
terns. Finally, although our current implementations are
Dryad/DryadLINQ specific, we believe the data process-
ing flows we propose can be potentially generalized to
other programming models.

8 Conclusion
We designed and implemented BotGraph for Web mail
service providers to defend against botnet launched Web-
account abuse attacks. BotGraph consists of two com-
ponents: a history-based change-detection component to
identify aggressive account signup activities and a graph-
based component to detect stealthy bot-user login activ-
ities. Using two-month Hotmail logs, BotGraph suc-
cessfully detected more than 26 million botnet accounts.
To process a large volume of Hotmail data, BotGraph is
implemented as a parallel Dryad/DryadLINQ application
running on a large-scale computer cluster. In this paper,
we described our implementations in detail and presented
performance optimization strategies. As general-purpose
distributed computing frameworks have become increas-
ingly popular for processing large datasets, we believe
our experience will be useful to a wide category of appli-
cations for constructing and analyzing large graphs.
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A EWMA based Aggressive Signup
Detection

Exponentially Weighted Moving Average (EWMA) is a
well known moving average based algorithm to detect
sudden changes. EWMA is both simple and effective,
and has been widely used for anomaly detection [12].

Given a time series data, let the observation value at
time t be Yt. Let St be the predicted value at time t and
α (0 ≤ α ≤ 1) be the weighting factor, EWMA predicts
St as

St = α× Yt−1 + (1− α)× St−1 (1)
We define the absolute prediction error Et and the rel-

ative prediction error Rt as:

Et = Yt − St, Rt = Yt/max(St, ) (2)

where  is introduced to avoid the divide-by-zero prob-
lem. A large prediction error Et or Rt indicates a sudden
change in the time series data and should raise an alarm.
When the number of new users signed up has dropped to
the number before the sudden change, the sudden change
ends. We define the time window between the start and
the end of a sudden change as the anomaly window. All
the accounts signed up during this anomaly window are
suspicious bot-users.

In our implementation, we consider the time unit of
a day, and hence Et is the predicted number of daily
signup accounts. For any IP address, if both Et > δE
and Rt > δR, we mark day t as the start of its anomaly
window. From a two-year Hotmail signup log, we derive
the 99%-tile of the daily number of account signups per
IP address. To be conservative, We set the threshold δE
to be twice this number to rule out non-proxy normal IPs.
For proxies, the relative prediction error is usually a bet-
ter metric to separate them from bots. It is very rare for a
proxy to increase its signup volume by 4 times overnight.
So we conservatively set δR to 4.
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Abstract

Operator interviews and anecdotal evidence suggest that
an operator’s ability to manage a network decreases as
the network becomes more complex. However, there is
currently no way to systematically quantify how com-
plex a network’s design is nor how complexity may im-
pact network management activities. In this paper, we
develop a suite of complexity models that describe the
routing design and configuration of a network in a suc-
cinct fashion, abstracting away details of the underlying
configuration languages. Our models, and the complex-
ity metrics arising from them, capture the difficulty of
configuring control and data plane behaviors on routers.
They also measure the inherent complexity of the reach-
ability constraints that a network implements via its rout-
ing design. Our models simplify network design and
management by facilitating comparison between alter-
native designs for a network. We tested our models
on seven networks, including four university networks
and three enterprise networks. We validated the results
through interviews with the operators of five of the net-
works, and we show that the metrics are predictive of the
issues operators face when reconfiguring their networks.

1 Introduction

Experience has shown that the high complexity underly-
ing the design and configuration of enterprise networks
generally leads to significant manual intervention when
managing networks. While hard data implicating com-
plexity in network outages is hard to come by, both anec-
dotal evidence and operator interviews suggest that more
complex networks are more prone to failures, and are dif-
ficult to upgrade and manage.

Today, there is no way to systematically quantify how
complex an enterprise configuration is, and to what ex-
tent complexity impacts key management tasks. Our
experiments show that simple measures of complexity,
such as the number of lines in the configuration files, are

not accurate and do not predict the number of steps man-
agement tasks require.

In this paper, we develop a family of complexity mod-
els and metrics that do describe the complexity of the de-
sign and configuration of an enterprise network in a suc-
cinct fashion, abstracting away all the details of the un-
derlying configuration language. We designed the mod-
els and metrics to have the following characteristics: (1)
They align with the complexity of the mental model
operators use when reasoning about their network—
networks with higher complexity scores are harder for
operators to manage, change or reason about correctly.
(2) They can be derived automatically from the config-
uration files that define a network’s design. This means
that automatic configuration tools can use the metrics to
choose between alternative designs when, as frequently
is the case, there are several ways of implementing any
given policy.

The models we present in this paper are targeted to-
ward the Layer-3 design and configuration of enterprise
networks. As past work has shown [19], enterprises em-
ploy diverse and intricate routing designs. Routing de-
sign is central both to enabling network-wide reacha-
bility and to limiting the extent of connectivity between
some parts of a network.

We focus on modeling three key aspects of routing de-
sign complexity: (1) the complexity behind configuring
network routers accurately, (2) the complexity arising
from identifying and defining distinct roles for routers
in implementing a network’s policy, and (3) the inherent
complexity of the policies themselves.

Referential Complexity. To model the complexity of
configuring routers correctly, we develop the referential
dependence graph. This models dependencies in the def-
initions of routing configuration components, some of
which may span multiple devices. We analyze the graph
to measure the average number of reference links per
router, as well as the number of atomic units of routing
policy in a network and the references needed to config-



336	 NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation	 USENIX Association

ure each unit. We argue that the number of steps opera-
tors take when modifying configuration increases mono-
tonically with these measures.

Router Roles. We identify the implicit roles played by
routers in implementing a network’s policies. We argue
that networks become more complex to manage, and up-
dating configurations becomes more challenging, as the
number of different roles increases or as routers simul-
taneously play multiple roles in the network. Our algo-
rithms automatically identify roles by finding routers that
share similar configurations.

Inherent Complexity. We quantify the impact of
the reachability and access control policies on the net-
work’s complexity. Networks that attempt to implement
sophisticated reachability policies, enabling access be-
tween some sets of hosts while denying it between oth-
ers, are more complex to engineer and manage than net-
works with more uniform reachability policies. How-
ever, a network’s policies cannot be directly read from
the network’s configuration and are rarely available in
any other machine-readable form. Our paper explains
how the complexity of the policies can be automatically
extracted by extending the concept of reachability sets
first introduced by Xie et al. [27]. Reachability sets iden-
tify the set of packets that a collection of network paths
will allow based on the packet filters, access control rules
and routing/forwarding configuration in routers on path.
We compute a measure of the inherent complexity of the
reachability policies by computing differences or vari-
ability between reachability sets along different paths in
the network. We develop algorithms based on firewall
rule-set optimization to compare reachability sets and to
efficiently perform set operations on them (such as inter-
section, union and cardinality).

We validated our metrics through interviews with the
operators and designers of six, four universities and two
commercial enterprises. The questionnaires used in these
interviews can be found online [4]. We also measured
one other network where we did not have access to oper-
ators. Through this empirical study of the complexity of
network designs we found we are able to categorize net-
works in terms of their complexity using the metrics that
we define. We also find that the metrics are predictive of
issues the operators face in running their networks. The
metrics gave us insights on the structure and function of
the networks that the operators corroborated. A surpris-
ing result of the study was uncovering the reasons why
operator chose the designs they did.

Given the frequency with which configuration errors
are responsible for major outages [22], we argue that
creating techniques to quantify systematically the com-
plexity of a network’s design is an important first step
to reducing that complexity. Developing such metrics is
difficult, as they must be automatically computable yet

still enable a direct comparison between networks that
may be very different in terms of their size and routing
design. In databases [14], software engineering [21], and
other fields, metrics and benchmarks have driven the di-
rection of the field by defining what is desirable and what
is to be avoided. In proposing these metrics, we hope to
start a similar conversation, and we have verified with
operators through both qualitative and quantitative mea-
sures that these metrics capture some of the trickiest parts
of network configuration.

2 Application to Network Management

Beyond aiding in an empirical understanding of network
complexity, we believe that our metrics can augment and
improve key management tasks. We illustrate a few ex-
amples that are motivated by our observations.

Understanding network structure: It is common for
external technical support staff to be brought in when
a network is experiencing problems or being upgraded.
These staff must first learn the structure and function of
the network before they can begin their work, a daunt-
ing task given the size of many networks and the lack
of accurate documentation. As we show in Section 7,
our techniques for measuring reachability have the side-
effect of identifying routers which play the same role in
a network’s design. This creates a summary of the net-
work, since understanding each role is sufficient to un-
derstand the purpose of all the similar routers.

Identify inconsistencies: Inconsistency in a network
generally indicates a bug. When most routers fit into a
small number of roles, but one router is different from
the others, it probably indicates a configuration or design
error (especially as routers are often deployed in pairs
for reasons of redundancy). As we show in Section 6.3,
when our inherent complexity metric found the reacha-
bility set to one router to be very different from the set to
other routers, it pointed out a routing design error.

What-if analysis: Since our metrics are computed
from configuration files, and not from a running network,
proposed changes to the configuration files can be an-
alyzed before deployment. Should any of the metrics
change substantially, it is an excellent indication that the
proposed changes might have unintended consequences
that should be examined before deployment.

Guiding and automating network design: Networks
are constantly evolving as they merge, split, or grow. To-
day, these changes must be designed by humans using
their best intuition and design taste. In future work, we
intend to examine how our complexity metrics can be
used to direct these design tasks towards simpler designs
that still meet the objectives of the designer.
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Type # rtrs # hosts Interviewed?
Univ-1 12 29,000 Y
Univ-2 19 9,000 N
Univ-3 24 8,000 Y
Univ-4 36 26,000 Y
Enet-1 8 6,000 Y
Enet-2 83 N/A N
Enet-3 19 5,000 Y

Table 1: Studied networks.

3 Methodology and Background

Our project began with a review of formal training ma-
terials for network engineers (e.g., [25, 24]) and inter-
views with the operators of several networks to under-
stand the tools and processes they use to manage their
networks. From these sources, we extracted the “best
common practices” used to manage the networks. On
the hypothesis that the use of these practices should be
discernible in the configuration files of networks that use
them, we developed models and techniques that tie these
practices to patterns that can be automatically detected
and measured in the configurations.

The remainder of this section describes the networks
we studied, the best common practices we extracted, and
a tutorial summary of network configuration in enterprise
networks. The next sections precisely define our metrics,
the means for computing them, and their validation.

3.1 Studied Networks

We studied a total of seven networks: four university net-
works and three enterprise networks, as these were the
networks for which we could obtain configuration files.
For four of the university networks and two enterprises,
we were also able to interview the operators of the net-
work to review some of the results of our analysis and
validate our techniques. Table 1 shows the key proper-
ties of the networks.

Figure 1(a) plots the distribution of configuration file
sizes for the networks. The networks cluster into three
groups: Univ-2 and the enterprises consist of relatively
small files, with 50% of their files being under 500 lines,
while 90% of the files in Univ-1 and Univ-3 are over
1,000 lines and Univ-4 has a mix of small and large files.
As we will see, configuration file size is not a good pre-
dictor of network complexity, as Univ-2 (small files) is
among the most complicated networks and Univ-3 (large
files) among the simplest.

Figure 1(b) breaks down the lines of configuration by
type. The networks differ significantly in the fraction
of their configurations devoted to Packet filters, widely
known as ACLs, and routing stanzas. Univ-1 and the
enterprises spend as many configuration lines on routing
stanzas as on ACLs, while Univ-2, -3 and -4 define pro-
portionately more ACLs than routing stanzas. Interface
definitions, routing stanzas, and ACL definitions (the key
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Figure 1: (a) Distribution of configuration file size across
networks. (b) Fraction of configuration dedicated to con-
figuring each aspect of router functionality.

building blocks for defining layer-3 reachability) account
for over 60% of the configuration in all networks.

All the networks used some form of tools to maintain
their configurations [16, 1]. Most tools are home-grown,
although some commercial products are in use. Most
had at least spreadsheets used to track inventory, such as
IP addresses, VLANs, and interfaces. Some used tem-
plate tools to generate portions of the configuration files
by instantiating templates using information from the in-
ventory database. In the sections that follow, we point
out where tools helped (and sometimes hurt) operators.

3.2 Network Design and Configuration

Based on our discussions with operators and training ma-
terials, we extract the best common practices that oper-
ators follow to make it easier to manage their networks.
Our complexity metrics quantify how well a network ad-
heres to these strategies, or equivalently, to what extent a
network deviates from them.

Uniformity. To the extent possible, operators attempt
to make their networks as homogeneous as possible. Spe-
cial cases not only require more thought and effort to
construct in the first place, but often require special han-
dling during all future network upgrades. To limit the
number of special cases operators must cope with, they
often define a number of archetypal configurations which
they then reuse any time that special case arises. We call
these archetypes roles.

Tiered Structure. Operators often organize their net-
work devices into tiers to control the complexity of their
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Figure 2: A sample configuration file.

design. For example, defining some routers to be border
routers that connect with other networks, some routers
to be core routers that are densely connected, and the re-
maining routers as edge routers that connect hosts.

Short Dependency Chains. Routers cannot be con-
figured in isolation, as frequently one part of the config-
uration will not behave correctly unless other parts of the
configuration, sometimes on other routers, are consistent
with it. We define this to be a dependency between those
configuration lines. Operators attempt to minimize the
number of dependencies in their networks. This is be-
cause making a change to one configuration file but not
updating all the other dependent configurations will in-
troduce a bug. Since the configurations do not explicitly
declare all their dependencies, operators’ best strategy is
to minimize the number of dependencies.

3.3 Overview of a Configuration File

All our complexity metrics are computed on the basis of
router configuration files. Before defining the metrics,
we describe the layout of the configuration file for a net-
work router and provide an overview of the mechanisms
(e.g., routing, ACLs and VLANs) used when designing
enterprise networks.

The configuration file for a Cisco device consists of
several types of stanzas (devices from other vendors have
similar stanza-oriented configurations). A stanza is de-
fined as the largest continguous block of commands that
encapsulate a piece of the router’s functionality.

In Figure 2, we show a simple configuration file con-
sisting of the three most relevant classes of stanzas: inter-
face in lines 1-3, routing protocol in lines 5-11, and ACL
in lines 13-15. The behavior exhibited by a router can be
explained by the interactions between various instances
of the identified stanzas.

Egress filtering, i.e., preventing local hosts from send-
ing traffic with IP addresses that does not belong to them,
has become a popular way to combat IP-address hijack-
ing. Networks implement egress filtering by defining a
packet filter for each interface and creating a reference to
the appropriate ACL from the interfaces. For example,
line 3 exemplifies the commands an operator would use

to setup the appropriate references.
The purpose of most layer-3 devices is to provide

network-wide reachability by leveraging layer-3 rout-
ing protocols. Network-wide reachability can be imple-
mented by adding a routing stanza and making references
between that stanza and the appropriate interfaces. Lines
5-11 declare a simple routing stanza with line 8 making
a reference between this routing protocol and the inter-
face defined earlier. Even in this simple case, the peer
routing protocol stanza on neighboring devices must be
configured consistent with this stanza before routes can
propagate between the devices and through the network.

More complex reachability constraints can be imposed
by controlling route distribution using ACLs. Line 15 is
a filter used to control the announcements received from
the peer routing process on neighboring routers.

VLANs are widely used to provide fine grain control
of connectivity, but they can complicate configuration by
providing an alternate means for packets to travel be-
tween hosts that is independent of the layer-3 configu-
ration. In a typical usage scenario, each port on a switch
is configured as layer-2 or layer-3. For each layer-3 port
there is an interface stanza describing its properties. Each
layer-2 port is associated with a VLAN V . The switches
use trunking and spanning tree protocols to ensure that
packets received on a layer-2 port belonging to VLAN
V can be received by every host connected to a port on
VLAN V on any switch.

Layer-2 VLANs interact with layer-3 mechanisms via
virtual layer-3 interfaces — an interface stanza not as-
sociated with any physical port but bound to a specific
VLAN (lines 1–3 in Figure 2). Packets “sent” out the
virtual interface are sent out the physical ports belonging
to the VLAN and packets received by the virtual inter-
face are handled using the layer-3 routing configuration.

4 Reference Chains

As the above description indicates, enabling the intended
level of reachability between different parts of a network
requires establishing reference links in the configuration
files of devices. Reference links can be of two types:
those between stanzas in a configuration file (intra-file
references) and those across stanzas in different config-
uration files (inter-file). Intra-file references are explic-
itly stated in the file, e.g. the links in line 8 (Figure 2)
from a routing stanza to an interface, and in line 10 from
a routing stanza to an ACL — these must be internally
consistent to ensure router-local policies (e.g. ingress fil-
ters and locally attached networks) are correctly imple-
mented. Inter-file references are created when multiple
routers refer to the same network object (e.g., a VLAN or
subnet); these are central to configuring many network-
wide functions, and crucially, routing and reachability.
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Unlike their intra-file counterparts, not all inter-file ref-
erences can be explicitly declared. For example, line 2
refers to a subnet which is an example of an entity that
cannot be explicitly declared.

As our interviews with operators indicate (§4.3), in
some networks the reference links must be manually es-
tablished. In other networks, some of the reference links
within a device are set using automated tools, but many
of the inter-file references such as trunking a VLAN on
multiple routers and setting routing protocol adjacencies
must be managed manually.

To quantify the complexity of reference links, we first
construct a referential dependency graph based on device
configuration files. We compute a set of first-order com-
plexity metrics which quantify the worst case complexity
of configuring reference links in the network. Because
reference links often play a role in implementing some
network-wide functionality, we also define second order
metrics that estimate the overall complexity of configur-
ing such functionality. We focus on routing in this dis-
cussion, as operators report it is a significant concern.

4.1 Referential Dependence Graph

We use a two-step approach to parse configuration files
and create a dependency graph.

1. Symbol Table Creation. Router vendor documenta-
tion typically lists the commands that can appear within
each configuration stanza and the syntax for the com-
mands. Based on this, we first create a grammar for con-
figuration lines in router configuration files. We build a
simple parser that, using the grammar, identifies “tokens”
in the configuration file. It records these tokens in a sym-
bol table along with the stanza in which they were found
and whether the stanza defined the token or referred to
it. For example, the access-list definitions in lines 13-
14 of Figure 2 define the token ACL 9 and line 3 adds a
reference to ACL 9.

2. Creating Links. In the linking stage, we create refer-
ence edges between stanzas within a single file or across
files based on the entries in the symbol table. We create
unidirectional links from the stanzas referencing the to-
kens to the stanza declaring the tokens. Because every
stanza mentioning a subnet or VLAN is both declaring
the existence of the subnet or VLAN and referencing the
subnet/VLAN, we create a separate node in the reference
graph to represent each subnet/VLAN and create bidirec-
tional links to it from stanzas that mention it.

We also derive maximal sub-graphs relating to
Layer-3 control plane functionality, called “routing in-
stances” [19]. A routing instance is the collection of
routing processes of the same type on different devices
in a network (e.g. OSPF processes) that are in the transi-
tive closure of the “adjacent-to” relationship. We derive

these adjacencies by tracing relationships between rout-
ing processes across subnets that are referenced in com-
mon by neighboring routers. Taken together, the routing
instances implement control plane functionality in a net-
work. In many cases, enterprise networks use multiple
routing instances to achieve better control over route dis-
tribution, and to achieve other administrative goals [19].
For example, some enterprises will place routes to dif-
ferent departments into different instances — allowing
designers to control reachability by controlling the in-
stances in which a router participates. Thus, it is impor-
tant to understand the complexity of configuring refer-
ence links that create routing instances.

4.2 Complexity Metrics

We start by capturing the baseline difficulty of creating
and tracking reference links in the entire network. The
first metric we propose is the average configuration com-
plexity, defined as the total number of reference links in
the dependency graph divided by the number of routers.
This provides a holistic view of the network.

We also develop three second-order metrics of the
complexity of configuring the Layer-3 control plane of
a network. First, we identify the number of interacting
routing policy units within the network that the operator
must track globally. To do this, we count the number of
distinct routing instances in the entire network. Second,
we capture the average difficulty of correctly setting each
routing instance by calculating the average number of
reference links per instance. Finally, we count the num-
ber of routing instances each router participates in. In
all three cases, it follows from the definition of the met-
rics that higher numbers imply greater complexity for a
network.

4.3 Insights From Operator Interviews

We derived referential complexity metrics for all seven
networks. Our observations are summarized in Table 2.
Interestingly, we note that the referential metrics are dif-
ferent across networks – e.g. very low in the cases of
Enet-1 and much higher for Univ-1. For five of the seven
networks, we discussed our findings regarding referential
dependencies with network operators.

We present the insights we derived focusing on 3 key
issues: (1) validation: are the referential dependencies
we inferred correct and relevant in practice (meaning that
these are links that must be created and maintained for
consistency and/or correctness)? (2) complexity: are our
complexity metrics indicative of the amount of difficulty
operators face in configuring their networks? (3) causes:
what caused the high referential complexity in the net-
works (where applicable)?
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Network Avg ref Layer-3 functionality Int?
complexity Num routing Complexity Instances
per router instances per instance per router

Univ-1 41.75 14 35.8 2.5 Y
Univ-2 8.3 3 58.3 1.1 N
Univ-3 4.1 1 99 1 Y
Univ-4 75 2 902 1 Y
Enet-1 1.6 1 16 0.7 Y
Enet-2 7.5 10 62 1.2 N
Enet-3 22 8 52 1.4 Y

Table 2: Complexity due to referential dependence. Net-
works where we validated results are marked with a “Y.”

Validation. We showed each network’s referential de-
pendence graph to the network operators, along with sub-
graphs corresponding to the routing protocol configura-
tion in their network. All operators confirmed that the
classes of links we derived (e.g. between stanzas of spe-
cific kinds, link within stanzas and across routers) were
relevant. We also gave operators tasks involving changes
to device configurations (specifically, add or remove a
specific subnet, apply a new filter to a collection of in-
terfaces). We verified that our reference links tracked the
action they took. These two tests, while largely subjec-
tive, validated our referential dependency derivation.

As an aside, the dependency graph seems to have sig-
nificant practical value: Univ-1 and Enet-1 operators felt
the graph was useful to visualize their networks’ struc-
ture and identify anomalous configurations.

Do the metrics reflect complexity? Our second goal
was to test if the metrics tracked the difficulty of main-
taining referential links in the network. To evaluate this,
we gave the operators a baseline task: add a new subnet
at a randomly chosen router. We measured the number of
steps required and the number of changes made to rout-
ing configuration. This is summarized below.

Network Num steps Num changes to routing
Univ-1 4-5 1-2
Univ-3 4 0
Enet-1 1 0

In networks where the metrics are high (Table 2), op-
erators needed more steps to set up reference links and to
modify more routing stanzas. Thus, the metrics appear to
capture the difficulty faced by operator in ensuring con-
sistent device-level and routing-level configuration. We
elaborate on these findings below.

In Univ-1, the operators used a home-grown auto-
mated tool that generates configuration templates for
adding a new subnet. Thus, although there are many ref-
erences to set, automation does help mitigate some as-
pects of this complexity.

Adding the subnet required Univ-1’s operator to mod-
ify routing instances in his network. Just as our second
order complexity metrics predicted, this took multiple
steps of manual effort. The operator’s automation tool
actually made it harder to maintain references needed

for Layer-3 protocols. Note from Table 2 that an aver-
age Univ-1 router has two routing instances present on
it. These are: a “global” OSPF instance present on all
core routers and a smaller per-router RIP instance. The
RIP instance runs between a router and switches directly
attached to the router, and is used to distribute subnets
attached to the switches into OSPF. On the other hand,
OSPF is used to enable global reachability between sub-
nets and redistribute subnets that are directly attached
to the router. When a new subnet is added to Univ-1,
the operator’s tool automatically generates a network
command and incorporates it directly into the OSPF in-
stance. When the subnet needs to be attached to a Layer-
2 switch, however, the network statement needs to be
incorporated into RIP (and not OSPF). Thus, the operator
must manually undo the change to OSPF and update the
RIP instance. Unlike the OSPF instance, the network
statements in RIP require parameters that are specialized
to a switch’s location in the network.

Univ-3 presents a contrast to Univ-1. The operator
in Univ-3 required 4 steps to add the subnet and this is
clearly shown by the first order complexity metric for
Univ-3. In contrast to Univ-1, however, almost all of
the steps were manual. In another stark difference from
Univ-1, the operator had no changes to make to the rout-
ing configuration. This is because the network used ex-
actly one routing instance that was setup to redistribute
the entire IP space. This simplicity is reflected in the very
low second order metrics for Univ-3.

The operator in Enet-1 had the simplest job overall. He
had to perform 1 simple step: create an interface stanza
(this was done manually). Again, the routing configura-
tion required little perturbation.

In general, we found that the metrics are not directly
proportional to the number of steps required to complete
a management task like adding a subnet, but the number
of steps required is monotonically increasing with refer-
ential complexity. For example, Univ-1 with a reference
metric of 41.75 required 4-5 steps to add a subnet. Univ-
2, with a metric of 4.1 needed 4 steps and Enet-1 with a
metric of 1.6 needed just one step.

Causes for high complexity. The most interesting
part of our interviews was understanding what caused
the high referential complexity in some networks. The
reasons varied across networks, but our study highlights
some of the key underlying factors.

The first cause we established was the impact of a net-
work’s evolution over time on complexity. In Univ-1, ap-
proximately 70% of reference links arose due to “no pas-
sive interface” statements that attempt to create routing
adjacencies between neighboring devices. Upon closer
inspection, we found that a large number of these links
were actually dangling references, with no correspond-
ing statement defined at the neighboring router; hence,
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they played no role in the network’s routing functionality.
When questioned, the operator stated that the commands
were used at one point in time. As the network evolved
and devices were moved, however, the commands be-
came irrelevant but were never cleaned up.

The high second order complexity in Univ-1 results
from an interesting cause - optimizing for monetary cost
rather than reducing complexity. Univ-1’s operator could
have used a much smaller number of routing instances
(e.g. a single network-wide OSPF) with lower referen-
tial counts to achieve the goal of spreading reachability
information throughout the network. However, accord-
ing to the operator, using OSPF on a small number of
routers, and RIP between switches and routers, was sig-
nificantly cheaper as OSPF-licensed switches cost more.
Hence this routing design was adopted although it was
more complex.

Sometimes, the policies being implemented may re-
quire high referential complexity. For instance, Univ-3
imposes global checks for address spoofing, and there-
fore applies egress filters on all network interfaces.
These ACLs accounted for approximately 90% of the
links in the dependency graph. Similarly, Univ-4 uses
ACLs extensively, resulting in high referential complex-
ity. Despite similar underlying cause, Univ-4 has a
higher complexity value than Univ-3 because it employs
significantly more interfaces and devices.

5 Router Roles

When creating a network, operators typically start by
defining a base set of behaviors that will be present
across all routers and interfaces in the network. They
then specialize the role of routers and interfaces as
needed to achieve the objectives for that part of the net-
work, for example, adding rate shaping to dorm subnets,
and additional filters to protect administrative subnets.

Designers often implement these roles using configu-
ration templates [6]. They create one template for each
role, and the template specifies the configuration lines
needed to make the router provide the desired role. Since
the configuration might need to be varied for each of the
routers, template systems typically allow the templates to
contain parameters and fill in the parameters with appro-
priate values each time the template is used. For exam-
ple, the template for an egress filter might be as shown in
Figure 3, where the ACL restricts packets sent by inter-
face III to those originating from the subnet configured
to the interface. The designer creates specific configu-
ration stanzas for a router by concatenating together the
lines output by the template generator for each behavior
the router is supposed to implement.

From a complexity stand-point, the more base behav-
iors defined within the network, the more work an oper-

Figure 3: Example of a configuration template.

ator will have to do to ensure that the behaviors are all
defined and configured correctly and consistently. Fur-
ther, the greater the degree of specialization required by
routers to implement a template role, the more complex
it becomes to configure the role.

We show how to work backwards from configurations
to retrieve the original base behaviors that created them.
By doing so, we can measure two key aspects of the dif-
ficulty of configuring roles on different routers in a net-
work: (1) how many distinct roles are defined in the net-
work? (2) How many routers implement each role?

5.1 Copy-Paste Detection

We identify roles that are “shared” by multiple routers
using a copy-paste detection technique. This technique
looks for similar stanzas on different routers.

We build the copy-paste detection technique using
CCFinder [17], a tool that has traditionally been used
to identify cheating among students by looking for text
or code that has been cut and paste between their as-
signments. We found that CCFinder by itself does not
identify templates of the sort used in router configuration
(e.g., Figure 3). To discover templates, we automatically
preprocess every file with generalization. Generaliza-
tion replaces the command arguments that may vary with
wild card entries – for example, IP addresses are replaced
by the string “IPADDRESS”. Our implementation uses
the grammar of the configuration language (Section 4) to
identify what parameters to replace.

5.2 Complexity Metrics

Our first metric is the number of base behaviors defined
within the network. We define a base behavior as a maxi-
mal collection of shared-template stanzas that appear to-
gether on a set of two or more routers. As the number of
base behaviors increases, the basic complexity of config-
uring multiple roles across network routers increases.

To compute the number of base behaviors, we first
identify the shared-template device set of each template
— this is the set of devices on which the configuration
template is present. Next, we coalesce identical sets. To
elaborate, we write the device set for a shared-template
stanza as STi = {Di

1, D
i
2, . . . , D

i
ki
} where the Di

j rep-
resents a router that contains a configuration stanza gen-
erated from shared template i. We scan the shared-
template device sets to identify identical sets: If two
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N/w # Rtrs Shared template behaviors Int?
# Device set size

Median Mean
Univ-1 12 7 2 4.43 Y
Univ-2 19 19 2 5.75 N
Univ-3 24 10 2 8.3 Y
Univ-4 24 28 3.5 4.3 Y
Enet-1 10 1 2 2 Y
Enet-2 83 5 3 34.2 N
Enet-3 19 6 7.5 8.8 Y

Table 3: Roles extracted from ACLs.

shared-template stanzas are present on the same set of
routers, then the stanzas can be considered to have arisen
from a single, larger template; the stanzas are merged and
one of the sets discarded. The final number of distinct
device sets that remain is the number of base behaviors.

As a second order metric, we quantify the uniformity
among devices in terms of the behaviors defined on them.
If all devices in the network exhibit the same set of be-
haviors (i.e., they all have the same shared-template),
then once an operator understands how one router be-
haves, it will be easier for him to understand how the
rest of the routers function. Also, updating the roles is
simple, as all routers will need the same update.

To measure uniformity, we compute the median and
mean numbers of devices in the device sets. We evalu-
ated other information-theoretic metrics such as entropy.
However, as our empirical study will show, these simple
metrics, together with the number of base behaviors, suf-
fice to characterize the behaviors defined in a network.

5.3 Insights from Operator Interviews

Like the referential metrics, we validated our role metrics
through interviews with five operators. For this discus-
sion, we focus on the use of ACLs, and Table 3 shows the
role metrics for each network. We also evaluated roles
across the entire configuration file, and the results are
consistent with those for ACLs.

Validation. When shown the shared templates ex-
tracted by our system, each of the operators immediately
recognized them as general roles used in their networks
and stated that no roles were missed by our technique.
For example, Univ-1 operators reported seven roles for
ACLs in their network: one role for a SNMP-related
ACL, one role for an ACL that limits redistribution of
routes between OSPF and RIP (these first two roles are
present on most routers) and five ACLs that filter any
bogus routes that might be advertised by departmental
networks connected to the university network, one for
each of the five departments (these are found only on the
routers where the relevant networks connect).

Enet-3 has separate templates for sub-networks that
permit multicast and those that do not, as well as tem-
plates encoding special restrictions applied to several
labs and project sub-networks. Enet-1, the network with

the fewest shared-templates, has a pair of core routers
that share the same set of ACLs. The remaining ACLs in
the network are specific to the special projects subnets
that are configured on other routers. Univ-4, the net-
work with the most shared-templates, has so many roles
as it uses multiple different types of egress filters, each of
which is applied to subset of the routers. There are also
several special case requests from various departments,
each represented as an ACL applied to 2-3 routers.

Do the metrics reflect complexity? The relationship
between number of roles and the complexity of the net-
work is indicated by type of tools and work process used
by the operators.

Operators of the network with the fewest roles, Enet-1,
modify all the ACLs in their network manually — they
are able to manage without tools due to the uniformity
of their network. Operators at Univ-1 have tools to gen-
erate ACLs, but not track relationships between ACLs,
so they push all ACLs to all routers (even those that do
not use the ACL) in an effort to reduce the complexity
of managing their network by increasing the consistency
across the configuration files (our shared template system
was programmed to ignore ACLs that are not used by the
router: this explains why the mean device set size is not
larger for Univ-1). The environment at Univ-3 is similar
to Univ-1, with roughly the same number of ACL roles
and similar tools that can create ACLs from templates,
but not track relationships between them. The Univ-3
operators took the opposite approach to Univ-1, pushing
each ACL only to the routers that use it, but using man-
ual process steps to enforce a discipline that each ACL
contain a comment line listing all the routers where an
instance of that ACL is found. Operators then rely on
this meta-data to help them find the other files that need
to be updated when the ACL is changed.

Causes for high complexity. In general, the number
of shared-templates we found in a network directly cor-
relates with the complexity of the policies the operators
are trying to realize. For example, for Univ-1’s goal of
filtering bogus route announcements from departmental
networks requires applying a control plane filter at each
peering point. Similarly, Univ-4 has policies defining
many different classes of subnets that can be attached to
the network, each one needing its own type of ACL (e.g.,
egress filtering with broadcast storm control and filtering
that permits DHCP). There is no way around this type of
complexity.

Interestingly, the number of roles found in a network
appears to be largely independent of the size of the net-
work. For example, Enet-2 and Enet-3 have the same
number of roles even though they differ greatly in size.
Rather, the number of roles seems to stem directly from
the choices the operators made in designing their net-
works, and how uniform they chose to make them.
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6 Inherent Complexity

A network’s configuration files can be viewed as the
“tools” used by network operators to realize a set of
network-wide reachability policies. These policies deter-
mine whether a network’s users can communicate with
different resources in the network (e.g other users or ser-
vices). The policies that apply to a user could depend on
the user’s “group,” her location, and other attributes.

The reachability policies fundamentally bound an op-
erator’s ability to employ simple configurations network-
wide. Consider a network with a “simple” reachability
policy, such as an all-open network that allows any pairs
of users to have unfettered communication, or at the op-
posite end of the spectrum, a network where all commu-
nication except those to a specific set of servers is shut
off. Such policies can be realized using fairly simple
network configurations. On the other hand, for networks
where the reachability policies are complex, i.e., where
subtle differences exist between the constraints that ap-
ply to different sets of users, implementing the policies
will require complex configuration.

We develop a framework for quantifying the complex-
ity of a network’s reachability policies. We refer to this
as the network’s inherent complexity. We use feedback
from operators to both validate our metrics and under-
stand the factors behind the inherent complexity (where
applicable). Ultimately, we wish to tie inherent complex-
ity back to the configuration complexity and examine the
relationship between the two. We discuss this in §6.3.

To derive inherent complexity, we first derive the static
reachability between network devices, which is the set of
packets that can be exchanged between the devices. We
also refer to this as the reachability set for the device pair.
Our inherent complexity metrics essentially quantify the
level of uniformity (or the lack of it) in the reachability
sets for various paths in a network.

6.1 Reachability Sets

For simplicity, we assume that network routers have IP
subnets attached to them, and that each IP address in
a subnet corresponds to a single host. The reachability
set for two routers A and C in a network, denoted by
R(A, C), is the set of all IP packets that can originate
from hosts attached to A (if any), traverse the A → C

path, and be delivered to hosts attached at C (if any).
The composition of the reachability sets reflects how

a network’s policy limits the hosts at a certain net-
work location from being reachable from hosts at an-
other network location. At Layer-3, these policies gen-
erally apply to 5 fields in the packet’s IP header – the
source/destination addresses, ports and protocol. When
first sent, the source and destination addresses on the

Figure 4: A toy network with 8 subnets and 5 routers.
The different constituent sets that play a role in the reach-
ability set for the A→C path are shown.

packets could take any of the possible 232 values (the
same with ports and the protocol field). Control and data
plane mechanisms on the path might then drop some of
the packets, either because a router on the path lacks a
forwarding entry to that destination or due to packet fil-
ters. R(A, C) identifies the packets that are eventually
delivered to hosts attached to C. Note that the maximum
size of R(A, C) is 232×|C|×216 ×216×28, where |C|
is the total number of hosts attached to C.

6.1.1 Reachability Set Computation

To compute the reachability sets for a network we con-
sider three separate yet interacting mechanisms: control-
plane mechanisms (i.e., routing protocols), data-plane
mechanisms (i.e. packet filters), and Layer-2 mecha-
nisms (such as VLANs).

We compute the reachability sets using the following
three steps: (1) we first compute valid forwarding paths
between network devices by simulating routing protocols
(In the interest of space, we omit the details of routing
simulation; the details are in [5]); (2) we calculate the
“per-interface” reachability set on each path – this is the
set of all packets that can enter or leave an interface based
both on forwarding entries as well as packet filters; and
(3) we compute reachability sets for end-to-end paths by
intersecting the reachability sets for interfaces along each
path. The last two steps are illustrated for a simple toy
network in Figure 4, and explained in detail below.

We note that our reachability calculation is similar to
Xie et al.’s approach for static reachability analysis of IP
networks [27]. However, our approach differs both in the
eventual goal and the greater flexibility it provides. Xie
et al. derive all possible forwarding states for a network
to study the impact of failures, rerouting, etc. on reacha-
bility. Because we are interested in examining the inher-
ent complexity of reachability policies, we focus on the
computationally simpler problem of computing a single
valid forwarding state for the network, assuming there
are no failures. Also, our approach takes into account the
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impact of VLANs on reachability within a network (as
described in [5]), which Xie et al. does not. The pres-
ence of VLANs means that routing is effectively a two
step process: first routing to the VLAN interface, and
then routing through the VLAN to the destination. Our
calculation tracks which routers trunk which VLANs to
enable this second step of the routing computation.

Single interface. The reachability set for interfaces
on a path is defined as the set of packets that can enter
or leave an on-path interface (see figure 4 for examples).
For interfaces that receive packets, this is composed just
of the set of packets allowed by inbound data plane fil-
ters. For interfaces which forward packets further along
a path, this is the union of packets which are permitted
by outbound filters and packets whose destination IPs are
reachable from the interface (this depends on the router’s
forwarding state).

Path. To compute R(A, C), we first compute the fol-
lowing supersets: (1) For A, we compute the Entry set
which is the union of the inbound interface sets for in-
terfaces on A — as mentioned above, each set is shaped
by the inbound filters on the corresponding interface. (2)
For C, we compute the Exit set which is union of the
outbound interface sets for interfaces on C. (3) For in-
termediate routers, we compute the intersection of the in-
bound interface set for the interface that receives packets
from A and the outbound interface set for the interface
that forwards to C. Then, R(A, C) is simply the inter-
section of Entry, Exit and the intermediate sets.

Some optimizations for efficiency. The above com-
putation requires us to perform set operations on the in-
terface and intermediate reachability sets (i.e. set unions
and intersections). These operations could be very time-
consuming (and potentially intractable) because we are
dealing with 5-dimensional reachability sets that could
have arbitrary overlap with each other.

To perform these operations efficiently, we convert
each set into a “normalized” form based on ACL opti-
mization. Specifically, we represent each reachability set
as a linear series of rules like those used to define an ACL
in a router’s configuration, i.e., a sequence of permit and
deny rules that specify attributes of a packet and whether
packets having those attributes should be allowed or for-
bidden, where the first matching rule determines the out-
come. Next, we optimize this ACL representation of the
sets using techniques that have traditionally been em-
ployed in firewall rule-set optimization [2, 11]. In the fi-
nal ACL representation of a reachability set, no two rules
that make up a set overlap with each other, and we are
guaranteed to be using the minimal number of such rules
possible to represent the set. Set operations are easy to
perform over the normalized ACL representations. For
instance, to compute the union of two reachability sets
we merge the rules in the corresponding optimized ACLs

Figure 5: Computing the first and second order metrics
for inherent complexity.

to create one ACL, and then we optimize the resulting
ACL. Intersection can be computed in a similar fashion.

6.2 Complexity Metrics

As stated before, our metrics for inherent complexity
quantify the similarity, or equivalently, the uniformity, in
the reachability sets for various end-to-end paths. If the
sets are uniformly restrictive (reflecting a “default deny”
network) or uniformly permissive (an all open network),
then we consider the network to be inherently simple.
We consider dissimilarities in the reachability sets to be
indicative of greater inherent complexity.

First order metric: variations in reachability. To
measure how uniform reachability is across a network,
we first compute the reachability set between all pairs of
routers. We then compute the entropy of the resulting
distribution of reachability sets and use this value, the
reachability entropy, as a measure of uniformity.

Figure 5 summarizes the computation of reachability
entropy. To compute the distribution of reachability sets
over which we will compute the entropy, we must count
how many pairs of routers have the same reachability.
Intuitively, if there are N routers this involves comparing
N2 reachability sets for equality. To simplify this task,
we compute the reachability set for a pair of routers, turn
it into optimized ACL form, and then compute a hash
of the text that represents the optimized set. Identical
reachability sets have identical hashes, so computing the
distribution is easy.

Using the standard information-theoretic definition of
entropy, the reachability entropy for a network with N

routers varies from log(N) in a very simple network
(where the reachability sets between all pairs of routers
are identical) and log(N2) in a network where the reach-
ability set between each pair of routers is different. We
interpret larger values of entropy as indicating the net-
work’s policies are inherently complex.

Second order metric: Extent of variations. The en-
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tropy simply tracks whether the reachability sets for net-
work paths differ, but it does not tell us the extent of the
differences. If the reachability sets had even minute dif-
ferences (not necessarily an indication of great complex-
ity), the entropy could be very high. Thus, entropy alone
may over-estimate the network’s inherent complexity.

To quantify more precisely the variability between the
reachability sets, we examine the similarity between sets
using the approach outlined in Figure 5. Unlike the en-
tropy calculation, where we examined the N2 reachabil-
ity sets between pairs of routers, we examine differences
from the view point of a single destination router (say C).
For each pair of source routers, say A and B, we compute
the similarity metric, Sim(C, A, B) = |R(A,C)∩R(B,C)|

|R(A,C)∪R(B,C)| .
We use the set union and intersection algorithms de-

scribed in Section 6.1.1 to compute the two terms in the
above fraction. To compute the sizes of the two sets,
we first optimize the corresponding ACLs. In an opti-
mized ACL the rules are non-overlapping, so the number
of packets permitted by an ACL is the sum of the number
of packets allowed by the ACL’s permit rules. Since each
rule defines a hypercube in packet space, the number of
packets permitted by a rule is found by multiplying out
the number of values the rule allows on each dimension
(e.g., address, port).

After computing the similarities in this manner, we
cluster source routers that have very similar reachabil-
ity sets (we use an inconsistency cutoff of 0.9) [20, p.
1-61]. Finally, we sum the number of clusters found
over all destination routers to compute the number of per-
destination clusters as our second order metric for inher-
ent complexity. Ideally, this should be N ; large values
indicate specialization and imply greater complexity.

6.3 Insights from Operator Interviews

Our study of the configuration complexity in Sections 4
and 5 showed that some of the networks we studied had
complex configurations. In this section, we examine
the inherent complexity of these networks. We validate
our observations using operator feedback. We also use
the feedback to understand what caused the complexity.
(Were the policies truly complex? Was there a bug?)

Our observations regarding the inherent complexity
for the networks we studied are shown in Table 4. In-
terestingly, we see that a majority of the networks ac-
tually had reasonably uniform reachability policies (i.e.
observed entropy ≈ ideal entropy of log(N)). In other
words, most networks seem to apply inherently simple
policies at Layer-3 and below.

To validate this observation, we verify with the op-
erators if the networks were special cases that our ap-
proach somehow missed. We discussed our observations
with the operators of 4 of the 7 networks. The opera-
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Figure 6: This figure shows the clusters of routers in
Univ-2 that have similar reachability to the given des-
tination router. The X axis is the source router ID. The Y
axis is distance between the centers of the clusters.

tor for Enet-1 essentially confirmed that the network did
not impose any constraints at Layer-3 or below and sim-
ply provided universal reachability. All constraints were
imposed by higher-layer mechanisms using middleboxes
such as firewalls.

We turn our attention next to the networks where the
reachability entropy was slightly higher than ideal (Univ-
1 and Univ-3). This could arise due to two reasons: either
the network’s policies make minor distinctions between
some groups of users creating a handful of special cases
(this would mean that the the policy is actually quite sim-
ple), or there is an anomaly that the operator has missed.

In the case of Univ-3, our interaction with the operator
pointed to the former reason. A single core router was the
cause of the deviation in the entropy values. During dis-
cussions with the operator, we found out that the router
was home to two unique subnets with restricted access.

Interestingly, in the case of Univ-1 the slight change
in entropy was introduced by a configuration bug. Upon
discussing with the operator, we found that one of the
routers was not redistributing one of its connected sub-
nets because a network statement was missing from
a routing stanza on the device. The bug has now been
fixed. This exercise shows how our first and second or-
der inherent complexity metrics can detect inconsisten-
cies between an operator’s intent and the implementation
within a network. In networks where the configuration
is complex – Univ-1 is an example with high referential
counts and many router roles – such inconsistencies are
very hard to detect. However, our complexity metrics
were able to unearth this subtle inconsistency. We finally
discuss networks where the entropy is much higher than
ideal. Of these networks, we were able to speak to the
operator of Univ-2, where both the first and the second
order metrics are very high. In such networks, one can
safely conclude that the policies themselves are complex.
Indeed, Figure 6 examines how similar or different is the
reachabilty from each of the routers in Univ-2 to three
key routers: CoreA (Figure 6(a)), CoreB (Figure 6(b)),
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Network Entropy (ideal) Num Clusters (Num routers) Int?
Univ-1 3.61(3.58) 12(12) Y
Univ-2 6.14(4.52) 36(19) Y
Univ-3 4.63(4.58) 26(24) Y
Univ-4 5.70(4.58) 85(24) N
Enet-1 2.8(2.8) 8(8) Y
Enet-2 6.69(6.47) 92(83) N
Enet-3 5.34(4.25) 40(19) N

Table 4: Inherent complexity measures.

Aggregation (Figure 6(c)). For each router C, the reach-
ability set from every other router to that router is com-
puted, and the distance between the reachability sets
from routers A and B is computed as 1−Sim(C, A, B).
A distance of 0 means the sets are identical, and a dis-
tance 1 means the sets do not overlap. The dendrogram
shows a horizontal line between clusters of routers at the
distance between the centroids of the clusters.

Interpreting Figure 6, there are 3-5 clusters of routers
that have essentially the same reachability to both coreA
and coreB (the only significant difference is that 4, 5, 10
have identical reachability to coreB, while 4 has slightly
different reachability to coreA than 5 and 10 do). The
presence of multiple clusters implies that traffic is be-
ing controlled by fine grain policies. That the clusters
of reachability to the Aggregation Router are so different
than those to the core implies that not only are policies
fine grain, they differ in different places in the network.
We argue this means the policies are inherently complex,
and that any network implementing them will have a de-
gree of unavoidable complexity. The operator for Univ-2
agreed with our conclusions.

Applying this analysis to all the networks we stud-
ied, Table 4 shows the number of per-destination clus-
ters, that is, the total number of clusters found summing
across all the routers in the network (second order met-
ric). This complexity metric confirms that Univ-1 and
Enet-1 have inherently simple reachability policies.

However, this metric’s value stems from the informa-
tion it provides about networks like Univ-2, -4 and Enet-
3. Enet-3 and Univ-4 both have an entropy value roughly
1.0 higher than ideal. However, Univ-4 has on aver-
age four different clusters of reachability for each router
(85/24), while Enet-3 has two clusters per router (40/19).
This indicates that Enet-3 has reachability sets that are
not identical, but are so similar to each other they clus-
ter together, while Univ-4 truly has wide disparity in the
reachability between routers. Similarly, Univ-2 has an
entropy metric 1.6 above ideal yet less than two different
clusters per router, indicating that even when reachability
sets are not identical, they are very similar.

Summary of our study. Through interviews with the
operators we have verified the correctness of our tech-
niques. We show that our metrics capture the difficulty
of adding new functionality such as interfaces, of updat-
ing existing functionality such as ACLs, and of achieving
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Figure 7: Sink profiles for Univs 1, 2. Network paths for
each device are grouped by the destination router.

high-level policies such as restricting user access. In ad-
dition to this, we find that other factors, largely ignored
by previous work (e.g. cost and design) play a larger role
in affecting a network’s complexity than expected.

7 An Application: Extracting Hierarchy

In addition to creating a framework for reasoning about
the complexity of different network designs, complex-
ity metrics have several practical uses including helping
operators visualize and understand networks. In this sec-
tion, we show how our models can discover a network’s
heirarchy, information that proves invaluable to operators
making changes to the network.

Many networks are organized into a hierarchy, with
tiers of routers leading from a core out towards the edges.
The ability to automatically detect this tiering and clas-
sify routers to it would be helpful to outside technical
experts that must quickly understand a network before
they can render assistance.

We found that computing the sink ratio for each router
rapidly identifies the tiering structure of a network. The
sink ratio is based on the reachability analysis done on
each path, and measures the fraction of packets that a
router sinks (delivers locally) versus the number it for-
wards on. Formally, the sink ratio for a path A → B is
|RSink(A,B)|

|R(A,B)| . If the ratio is 1, then B does not forward
traffic from A any further. If not, then B plays a role in
forwarding A’s packets to the rest of the network.

Figure 7 shows the sink ratio for each path in net-
works Univ-1 and Univ-2. Univ-2 contains roughly
4 classes of devices: the edge (Group 2), the
core (Group 1), intermediate-core (Group 4), and
intermediate-edge(Group 3). Univ-1 consists of a two-
layer architecture with three core routers and nine edge
routers, respectively labeled Group 1 and Group 2. Enet-
2 (not shown) has low forwarding ratios overall: the
maximum forwarding ratio itself is just 0.4 and the min-
imum is 0.15. Thus, we can deduce that all routers in
Enet-2 play roughly identical forwarding roles and there
is no distinction of core versus edge routers.
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8 Discussion

We now discuss procedural limitations in our approach to
quantifying complexity as well as some notions of com-
plexity that we are currently unable to capture.

Limitations and extensions. Our approach uses
the static configuration state of the network. Relying
on static configurations means that operators can use
our techniques to do “what-if analysis” of configuration
changes. The downside is that we ignore the effect of
dynamic events such as link/router failures and load bal-
ancing, the mechanisms in place to deal with these, and
the complexity arising from them. It is unclear if our
approach can be extended easily to account for these.

Our current work ignores the impact of packet trans-
formations due to NATs and other middleboxes on com-
plexity. Packet transformations could alter reachability
sets in interesting ways, and might not be easy to con-
figure. Fortunately, transformations were not employed
in any of the networks we studied. We do believe, how-
ever, it is possible to extend our techniques to account for
on-path changes to IP headers.

Of course, our approaches do not account for tech-
niques employed above Layer-3 or at very low levels. In
particular, we currently do not have an easy way to quan-
tify the complexity of mechanisms which use higher-
layer handles (e.g. usernames and services) or lower-
layer identifiers such as MAC addresses. One potential
approach could be to leverage dynamic mappings from
the high/low level identifiers to IP addresses (e.g. from
DNS bindings and ARP tables) and then apply the tech-
niques we used this in paper.

Absolute vs relative configuration complexity. We
note that our metrics for referential complexity and roles
capture complexity that is apparent from the current con-
figuration; hence they are absolute in nature. An increase
in these metrics indicates growing complexity of im-
plementation, meaning that configuration-related tasks
could be harder to conduct. However, the metrics them-
selves do not reflect how much of the existing configu-
ration is superfluous, or equivalently, what level of con-
figuration complexity is actually necessary. For this, we
would need a relative complexity metric that compares
the complexity of the existing configuration against the
simplest configuration necessary to implement the oper-
ators goals (including reachability, cost, and other con-
traints). However, determining the simplest configura-
tion that satisfies these requirements is a hard problem
and a subject for future research.

9 Related Work

The work most closely related to ours is [18], which cre-
ates a model of route redistribution between routing in-

stances and tries to quantify the complexity involved in
configuring the redistribution logic in a network. Glue
Logic and our complexity metrics are similar in that both
create abstract models of the configuration files and cal-
culate complexity based on that information. However,
while [18] limits itself to the configuration complexity of
route redistribution (the “glue logic”), we examine both
configuration and inherent complexity, and the relation-
ship between the two. Our approach also accounts for
complexity arising from the routing, VLANs and filter-
ing commands in a configuration file.

Our study is motivated by [19, 13], which studied op-
erational networks and observed that the configuration of
enterprise networks are quite intricate. In [19, 13], mod-
els were developed to capture the interaction between
routing stanzas in devices. However, to make inferences
about the complexity of the networks studied, the authors
had to manually inspect the models of each network. Our
work automates the process of quantifying complexity.

As mentioned in Section 4, we borrow from [19]
the idea of a routing instance and use it as a way to
group routing protocols. Also, our referential depen-
dence graph is similar to the abstractions used in [6, 9].
Unlike [6, 9] our abstraction spans beyond the bound-
aries of a single device, which allows us to define the
complexity of network-wide configuration.

Several past studies such as [12, 10, 28, 26, 27] have
considered how network objectives and operational pat-
terns can be mined from configuration files. Of these,
some studies [28, 26, 27] calculate the reachability sets
and argue for their usage in verifying policy compliance.
In contrast, the group of complexity metrics we provide
allow operators to not only verify policy compliance, but
they also quantify the impact of policy decisions on the
ability to achieve a simple network-wide configuration.
Complementary to [10], which proposes high-level con-
straints that if met ensure the correctness of routing, we
start with the assumption that the network is correct and
then derive its properties.

Contrary to the “bottom-up” approach we take, several
studies [8, 15, 3] have considered how to make network
management simpler by building inherent support for the
creation and management of network policies. We pre-
sume that our study of configuration and inherent com-
plexity can inform such ideas on clean slate alternatives.
Finally, our metrics could be easily integrated into exist-
ing configuration management tools such as AANTS [1]
and OpenView [16], and can aid operators in making in-
formed changes to their network configurations.

The notion of “complexity” has been explored in do-
mains such as System Operations [7]. In [7], complex-
ity is defined as the number of steps taken to perform
a task, similar to our metrics. Recently, Ratnasamy has
proposed that protocol complexity be used in addition
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to efficiency to compare network protocols [23]. Just as
Ratnasamy’s metrics help choose the right protocol, our
metrics help pick the right network design.

10 Conclusions

Configuration errors are responsible for a large fraction
of network outages, and we argue that as networks be-
come more complex the risk of configuration error in-
creases. This paper takes the first step towards quantify-
ing the types of complexity that lead operators to make
configuration mistakes. Creating such metrics is difficult
as they must abstract away all non-essential aspects of
network configuration to enable the meaningful compar-
ison of networks with very different sizes and designs.

In this paper, we define three metrics that measure the
complexity of a network by automatic analysis of its con-
figuration files. We validate the metrics’ accuracy and
utility through interviews with the network operators.
For example, we show networks with higher complex-
ity scores require more steps to carry out common man-
agement tasks and require more tools or more process
discipline to maintain. Our study also generated insights
on the causes of complexity in enterprise networks, such
as the impact of the cost of network devices on routing
design choices and the effect of defining multiple classes
of subnets and multiple device roles.

We believe our metrics are useful in their own right,
and we show how they can aid with finding configuration
errors and understanding a network’s design. However,
our hope is that these metrics start a larger discussion
on quantifying the factors that affect network complexity
and management errors. The definition of good metrics
can drive the field forward toward management systems
and routing designs that are less complex and less likely
to lead human operators into making errors.
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Abstract
Networks and networked applications depend on sev-

eral pieces of configuration information to operate cor-
rectly. Such information resides in routers, firewalls,
and end hosts, among other places. Incorrect informa-
tion, or misconfiguration, could interfere with the run-
ning of networked applications. This problem is particu-
larly acute in consumer settings such as home networks,
where there is a huge diversity of network elements and
applications coupled with the absence of network ad-
ministrators.

To address this problem, we present NetPrints, a sys-
tem that leverages shared knowledge in a population of
users to diagnose and resolve misconfigurations. Basi-
cally, if a user has a working network configuration for
an application or has determined how to rectify a prob-
lem, we would like this knowledge to be made available
automatically to another user who is experiencing the
same problem. NetPrints accomplishes this task by ap-
plying decision tree based learning on working and non-
working configuration snapshots and by using network
traffic based problem signatures to index into configura-
tion changes made by users to fix problems. We de-
scribe the design and implementation of NetPrints, and
demonstrate its effectiveness in diagnosing a variety of
home networking problems reported by users.

1 Introduction
A typical network comprises several components, in-
cluding routers, firewalls, NATs, DHCP, DNS, servers,
and clients. Configuration information residing in each
component controls its behaviour. For example, a fire-
wall’s configuration tells it which traffic to block and
which to let through. Correctness of the configuration
information is thus critical to the proper functioning of
the network and of networked applications. Misconfigu-
ration interferes with the running of these applications.

This problem is particularly acute in consumer set-
tings such as home networks given the huge diversity in

∗The author was an intern at Microsoft Research India during the
course of this work.

†The author was a visiting researcher at Microsoft Research India
during the course of this work.

network elements and applications which are deployed
without the benefit of vetting and standardization that
is typical of enterprises. An application running in the
home may experience a networking problem because of
a misconfiguration on the local host or the home router,
or even on the remote host/router that the application at-
tempts to communicate with. Worse still, the problem
could be caused by the interaction of various configura-
tion settings on these network components. Table 1 il-
lustrates this point by showing a set of typical problems
faced by home users. Owing to the myriad problems
that home users can face, they are often left helpless, not
knowing which, if any, of a large set of configuration
settings to manipulate.

Nevertheless, it is often the case that another user has
a working network configuration for the same applica-
tion or has found a fix for the same problem. Moti-
vated by this observation, we present NetPrints (short
for Network Problem Fingerprints), a system that helps
users diagnose network misconfigurations by leveraging
the knowledge accumulated by a population of users.
This approach is akin to how users today scour through
online discussion forums looking for a solution to their
problem. However, a key distinction is that the accu-
mulation, indexing, and retrieval of shared knowledge in
NetPrints happens automatically, with little human in-
volvement.

NetPrints comprises client and server components.
The client component, which runs on end hosts such as
home PCs, gathers configuration information pertaining
to the local host and network configuration, and possibly
also the remote host and network that the client applica-
tion is attempting to communicate with. In addition, it
captures a trace of the network traffic associated with an
application run and extracts a feature vector that charac-
terizes the corresponding network communication. The
client uploads this information to the NetPrints server
at various times, including when the user encounters a
problem and initiates diagnosis. We enlist the user’s help
in a minimally intrusive manner to have the uploaded
information labeled as “good” or “bad”, depending on
whether the corresponding application run was success-
ful or not.
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The NetPrints server performs decision tree based
learning on the labeled configuration information sub-
mitted by clients to construct a configuration tree, which
encodes its knowledge of the configuration settings that
work and ones that do not. Furthermore, it uses the la-
beled network feature vectors to learn a set of signatures
that help distinguish among different modes of failure of
an application. These signatures are used to index into a
set of change trees, which are constructed using config-
uration snapshots gathered before and after a configura-
tion change was made to fix a problem. At the time of
diagnosis, given the suspect configuration information
from the client, the NetPrints server uses a configuration
mutation algorithm to automatically suggest fixes back
to the user.

We have prototyped the NetPrints system on Win-
dows Vista and made a small-scale deployment on 4
broadband-connected PCs. We present a list of 21
configuration-related home networking problems and
their resolutions from online discussion boards, user sur-
veys, and our own experience. We believe that all of
these problems and others similar to them can be diag-
nosed and fixed by NetPrints. We were able to obtain the
necessary resources to reproduce 8 of these problems for
4 applications in our small deployment and also our lab-
oratory testbed. Since we do not have configuration data
or network traces from a large population of users, we
perform learning on real data gathered for the applica-
tions run in our testbed, where we artificially vary the
network configuration settings to mimic real-world di-
versity of configurations. Our evaluation demonstrates
the effectiveness and robustness of NetPrints even in the
face of mislabeled data.

Our focus in this paper is on the diagnostics aspects
of NetPrints. We are doing separate work on the pri-
vacy, data integrity, and incentives aspects as well but
do not discuss these here. Also, our focus here is on
network configuration problems that interfere with spe-
cific applications but do not result in full disconnection
and, in particular, do not prevent communication with
the NetPrints server. Indeed, these subtle problems tend
to be much more challenging to diagnose than basic con-
nectivity problems such as full disconnection. In future
work, we plan to investigate the use of out-of-band com-
munication (e.g., via a physical medium) to enable Net-
Prints diagnosis even with full disconnection.

2 Related Work
We discuss prior work on problem diagnosis in computer
systems and in networks, and how NetPrints relates to it.

2.1 Peer Comparison-based Diagnosis
There has been prior work on leveraging shared knowl-
edge across end hosts, which provides inspiration for a

similar approach in NetPrints. However, the prior work
differs from NetPrints in significant ways.

Strider [19] uses a state-based black-box approach for
diagnosing Windows registry problems by performing
temporal and spatial comparisons with respect to known
healthy states. It assumes the ability to explicitly trace
what configuration information is accessed by an appli-
cation run. Such state tracing would be difficult to do
with network configuration, which governs policy (e.g.,
port-based filtering) that implicitly impacts an applica-
tion’s network communication rather than being explic-
itly accessed by applications.

PeerPressure [18] extends Strider by eliminating the
need to identify a single healthy machine for compari-
son. Instead, it relies on registry settings from a large
population of machines, under the assumption that most
of these are correct. It then uses Bayesian estimation
to produce a rank-ordered list of the individual registry
key settings presumed to be the culprits. While this un-
supervised approach has the advantage of not requiring
the samples to be labeled, it also means that PeerPres-
sure will necessarily find a “culprit”, even when there
is none. This outcome might not be appropriate in a
networking setting, where a problem might be unrelated
to client configuration. Also, PeerPressure is unable to
identify combinations of configuration settings that are
problematic.

Finally, Autobash [15] helps diagnose and recover
from system configuration errors by recording the user
actions to fix a problem on one computer and then re-
playing and testing these on another computer that is ex-
periencing the same problem. Autobash assumes sup-
port for causality tracking between configuration set-
tings and the output, which is akin to state tracing in
Strider discussed above.

2.2 Problem Signature Construction
There has been work on developing compact signatures
for systems problems for use in indexing a database of
known problems and their solutions.

Yuan et al. [21] generate problem signatures by
recording system call traces, representing these as
n-grams, and then applying support vector machine
(SVM) based classification. Cohen et al. [8, 9] con-
sider the problem of automated performance diagnosis
in server systems. They use Tree-Augmented Bayesian
Networks (TANs) to identify combinations of low-level
system metrics (e.g., CPU usage) that correlate well with
high-level service metrics (e.g., average response time).

In contrast, NetPrints uses a set of network traf-
fic features, which we have picked based on our net-
working domain knowledge, to construct problem signa-
tures. Since these network traffic features tend to be OS-
independent, NetPrints would be in a position to share
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signatures across OSes. Furthermore, we use a decision
tree based classifier to learn the signatures.

2.3 Network Problem Diagnosis

Active probing is widely used for diagnosing network
problems. For example, Tulip [12] probes routers to
localize anomalies such as packet reordering and loss.
Such diagnosis relies on a model of how network ele-
ments such as routers operate. Likewise, several model-
or rule-based engines have been developed for diag-
nosing configuration-related and other faults in wireless
LANs. These include systems that rely on infrastructure-
based monitoring (e.g., DAIR [5], Jigsaw [7]) and those
that rely on cooperation among wireless clients (e.g.,
WiFiProfiler [6]).

Other diagnosis systems such as SCORE [11] and
Sherlock [4] have modeled, and in some cases automat-
ically discovered, dependencies between higher-layer,
observable network events and the underlying network
components. Formal methods have also been used to
check the correctness of network configurations. For ex-
ample, rcc [10] checks for a range of well-understood
BGP properties.

In the context of NetPrints, it may be possible to con-
struct such models for certain well-understood configu-
ration settings (e.g., port-based filters), thereby allowing
diagnosis based on active probing, rules, or formal meth-
ods. However, in general, configuration settings may
not be documented or well-understood, hence NetPrints’
black-box approach.

2.4 NetPrints Compared to Prior Work

We view NetPrints as being complementary to prior
work on network diagnosis in two ways. First, NetPrints
focuses on configuration problems that impact specific
applications rather than on broad problems that impact
the network infrastructure. Second, NetPrints uses a
blackbox approach appropriate for arbitrary and poorly
understood configuration information, avoiding the need
for the network behaviour or dependencies to be mod-
eled explicitly.

NetPrints draws inspiration from prior work on black-
box techniques to diagnose systems problems and index
them with signatures to enable recall. However, Net-
Prints’ goal of identifying how to mutate a broken con-
figuration to fix a problem leads us to use a different ap-
proach — decision tree based learning — compared to
prior work. This is primarily because of the interpretable
nature of a decision tree. Furthermore, NetPrints lever-
ages domain-specific knowledge to construct signatures
of networking problems. The diagnosis procedure in
NetPrints is both state-based and signature-based.
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Figure 1: NetPrints system design

3 Overview of NetPrints Design
We begin with an overview of NetPrints, before turning
to a more detailed discussion in the sections that follow.

Figure 1 depicts the client and server components
of NetPrints, and their interaction. NetPrints has two
modes of operation: “construction” and “diagnosis”.

In the construction mode, the NetPrints server gath-
ers configuration snapshots (Section 4) and network traf-
fic features from NetPrints clients. This information
is labeled as “good” or “bad” depending on whether
the application run was successful or not. The Net-
Prints server, using this information, constructs a con-
figuration tree (Section 5) that encodes its knowledge
of which configuration settings work. It constructs a
change tree (Section 7) based on the before and after
snapshots of configuration changes that fixed a problem.
Change trees are indexed by network traffic signatures
(Section 6) that characterize how an application run fails.
All these are constructed on a per-application basis.

When users experience a problem with an applica-
tion, they invoke the diagnosis procedure. The Net-
Prints client, which runs on the user’s machine, identi-
fies which application to diagnose, either automatically
(e.g., the application that last had focus) or with the help
of the user. The client then gathers and uploads local
configuration information and network traffic features,
both labeled as “bad”, to the NetPrints server (step 1 in
Figure 1).

The NetPrints server performs diagnosis in two
phases. In phase I, it uses the application-specific con-
figuration tree to determine whether the client’s configu-
ration is problematic and, if so, identifies remedial con-
figuration mutations, which it then conveys to the client
(step 2 in Figure 1).

While configuration tree based diagnosis would work
in many cases, it might fail, for instance, when there are
“hidden” configuration parameters that impact a subset
of the clients, so that the main configuration tree does
not find anything amiss with the configuration of such
clients (e.g., #4, #8, #10, and #12 in Table 1; see Sec-
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# App. Router Problem Cause Fix
1 VPN WGR614 VPN Client does not connect Stateful firewall was off Turn on the stateful firewall
2 VPN WRT54G VPN drops connection after 3

minutes
(n/a) Set MTU to 1350–1400,

uncheck “block anonymous
internet request”, “filter
multicast boxes” in router
configuration

3 VPN WRT54G No VPN connectivity No PPTP passthrough turn on PPTP passhthrough
4 VPN WRT54G No VPN connectivity double NAT, second NAT was

dropping PPTP packets
Switch from PPTP server to
SSTP server

5 File
Sharing

any Only unidirectional sharing End-host firewall is not prop-
erly configured

Allow file sharing through all
firewalls

6 File
Sharing

WGR614v5 No file sharing Client machine is on a do-
main, server machine is on
workgroup

Put both machines either on
the same domain or work-
group

7 FTP any Cannot connect to FTP server
from outside home network

Port forwarding incorrect Turn on port forwarding on
port 21

8 FTP WGR614 Cannot connect to FTP server
at home

Client firewall blocking traf-
fic, active FTP being used

Turn on firewall rule to allow
active FTP connections

9 VPN
server

WRT54G PPTP server behind NAT does
not work despite port forward-
ing and PPTP passthrough al-
lowed

IP of server is 192.168.1.109,
which is inside default DHCP
range of router; router’s port
forward to IPs inside default
range of router does not work

Use static IP outside DHCP
range for server

10 Outlook WRT54G Outlook does not connect via
VPN to office

Default IP range of router was
same as that of the remote
router

Change the IP range of home
router

11 Outlook WGR614 Router not able to email logs SMTP server not configured
properly

Setup SMTP server details in
the router configuration

12 Outlook Linksys Not able to send mail through
Linksys router; Belkin router
works fine

MTU value too high for re-
mote router, so remote router
discards packets

Reduce MTU to 1458 or 1365

13 SSH WGR614 SSH client times out after 10
minutes

NAT table entry times out Change router or increase
NAT table timeout

14 Office
Com-
muni-
cator

WRTP54G IM client does not connect to
office

DNS requests not resolved Turn off DNS proxy on router

15 STEAM
games

WGR614 Listing game servers causes
connection drops

Router misinterprets the sud-
den influx of data as an attack
and drops connection

Upgrade to latest firmware

16 Real-
Player

BEFW11s4 Streaming kills router Firmware upgrade caused
problems

Downgrade to previous
firmware

17 Xbox WRT54G Xbox does not connect and all
games do not run

Some ports are blocked and
NAT traversal is restricted

Set static IP address on Xbox
and configure it as DMZ, en-
able port forwarding on UDP
88,TCP 3074 and UDP 3074,
disable UPnP to open NAT

18 Xbox WRT54G Xbox works with wired net-
work but not with wireless

WPA2 security is not sup-
ported

Change wireless security fea-
ture from WPA2 to WPA per-
sonal security

19 Xbox WGR614 Not able to host Halo3 games NAT settings too strict Set Xbox as DMZ
20 IP

Camera
DG834GT Camera disconnects periodi-

cally at midnight, router needs
reboot

DHCP problem Configure static IP on the
camera

21 ROKU DIR-655 ROKU did not work with
mixed b, g and n wireless
modes

(n/a) Change to mixed b and g
mode

Table 1: Recent configuration-related problems in home networks.
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tion 7 for an elaboration of #8). So in phase II, the Net-
Prints server uses a signature of the application problem
to identify the appropriate change tree, which has been
constructed by focusing specifically on such problem-
atic cases. If the change tree is unable to diagnose the
problem either, NetPrints gives up; it is possible that the
problem is not configuration-related.

4 Configuration Scraper
The configuration scraper gathers configuration infor-
mation from the local Internet Gateway Device (IGD)
— which we loosely refer to as the local router — the
local client host, and possibly also from a remote host
and network.

4.1 Internet Gateway Configuration
The scraper gathers two categories of IGD information:
(i) IGD identification information: This information in-
cludes the make, model and firmware version of the de-
vice, which in most cases is a home router, although in
some cases it could be a DSL or cable modem. The
scraper obtains this information using the UPnP inter-
face which is supported and enabled by default on most
modern IGDs [16]. UPnP is a standard with which our
client can obtain basic information such as the URL
for the Web interface for the device, and the make and
model of the device. However, if the router has UPnP
turned off, we ask the user to manually input the IGD
identification information. Note that the user will need
to input this information only very rarely, i.e., when they
install a new router that has UPnP turned off.
(ii) Network-specific configuration information: The
IGD also includes configuration information such as
port forwarding and triggering tables, MTU value, VPN
pass-through parameters, DMZ settings, and wireless se-
curity settings. The scraper uses both the UPnP interface
and the Web interface that most routers and modems pro-
vide to glean such configuration information. On some
of the routers we tested, the port tables from the Web
page and the port tables from the UPnP interface were
not kept consistent with each other. Consequently, we
scrape and combine the tables via both interfaces. Some
router firmware versions also allow us to scrape the max-
imum NAT table size and the per-connection timeout for
each table entry. These fields can be particularly useful
in diagnosing problems such as #2 and #13 in Table 1.

While the UPnP interface gives us access to only
device-identifying parameters and the UPnP port for-
warding and port triggering tables, the Web interface is
richer but not standardized across routers.

In particular, there is no standardized way for
parsing the HTML to extract the (key,value) pairs
defining the configuration. To address this problem,
we make the observation that each configuration Web

page of the device is typically an HTML form that
includes a “submit” operation. We invoke this op-
eration programmatically on each configuration Web
page. Doing so causes the creation of an HTTP POST
request containing all of the (key,value) pairs in an
easy-to-parse form. For example, the body of the POST
request might contain: submit button=index&
dhcp start=100&dhcp num=50&dhcp lease=
1440. It is then straightforward to extract the various
DHCP-related configuration settings from this string.

While scraping Web forms, the NetPrints client asks
for the user name and password set on the router. The
user will need to input this information once, after which
a cookie within the NetPrints client will remember the
input to use every time it scrapes the Web interface of
the router. Note that no such information is needed for
the UPnP-based scraping.

4.2 Local Host Configuration
There is also much configuration information of rele-
vance to network operation on the local client host it-
self, such as whether the network connection is wired or
wireless, whether TCP window scaling is on or off, and
end-host firewall rules. We currently scrape all interface-
specific network parameters, TCP-specific parameters
and firewall rules from the end-host. Our implementa-
tion uses the netsh utility available on Windows oper-
ating systems to get this information.

4.3 Remote Configuration
In general, the configuration of the remote host and net-
work also impacts the health of network applications.
In some cases, the configuration information at the re-
mote end may be inaccessible to us (e.g., the remote
host might be a server in a different administrative do-
main). In other cases, however, the remote host might
be under the control of the same user as the local host.
One example is communication between a client and a
server on the same home network, say as part of a file or
printer sharing application. Another example is when a
user tries to access a service running in their home net-
work from an external location, such as a user in their
workplace accessing their home FTP server.

If the user installs the NetPrints client on the remote
host as well, then, using simple password-based authen-
tication, the local NetPrints client can obtain remote host
and network configuration information. For every ap-
plication, the NetPrints client keeps track of all remote
hosts that it accesses or tries to access and, if the re-
mote site runs NetPrints under the same administration
as the local NetPrints client, the local client collects re-
mote configuration information.

The impact of remote configuration on the health of
a networked application can vary. In some instances, a
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problem may arise because of misconfiguration at the re-
mote end. For example, if the remote network blocks ac-
cess to port 21, attempts to connect to an FTP server on
that network would fail. In other instances, the remote
configuration may not be problematic per se. Rather,
it is the mismatch between the local configuration and
the remote configuration that is problematic. For in-
stance, while some users might be able to access a file
server, others may not be able to because their creden-
tials are not included in the access control list (ACL) on
the server. In other words, there is a mismatch between
the local configuration (the local user’s credentials) and
the remote configuration (the ACL on the server).

Once the remote configuration information has been
obtained, it is incorporated into NetPrints’ diagnostics
procedure in the same manner as local configuration in-
formation. The one exception, which requires some ad-
ditional pre-processing, is incorporating the mismatch
between local and remote configurations, a problem we
turn to next.

4.4 Composing Configurations
Since it is the combination of local and remote config-
urations that matters in some cases, we introduce new,
composite configuration parameters that are derived by
combining local and remote configurations parameters.
Conceptually, a composite parameter, C, is a Boolean
derived by applying a comparison operator,

�
, to the

local parameter, L and a remote parameter, R. That is,
C = L

�
R.

The specific comparison operators we focus on are
equality “=” and set membership “∈”. For example, if
the local Windows workgroup L1 and the remote Win-
dows workgroup R1 are the same, then C1 = 1. Else,
C1 is set to 0. Another example is of checking whether
the local username L2 is part of the remote ACL R2 for
a file sharing application. If it is (i.e., L2 ∈ R2), the
corresponding composite parameter C2 is set to 1.

4.5 Reducing Composite Parameters
Blindly comparing all pairs of local and remote config-
uration parameters results in an explosion in the num-
ber of composite parameters, most of which would be
meaningless (e.g., a comparison of the local user name
with the DHCP setting on the remote router). To limit
the number of such composite parameters, without re-
quiring an understanding of the semantics of the param-
eters, Netprints (1) only uploads composites that explic-
itly match, and (2) excludes parameters that exclusively
have one value from the learning process.

In our experimental setup, the configuration scraper
captures roughly 500 configuration parameters from the
router and 2100 from the end-host, at each of the local
and remote ends. This yields an additional 1500 com-

posite parameters, after reduction is applied, and hence
a total of (2100+500)x2+1500=6700 parameters.

5 Configuration Trees
Based on the labeled configuration information ob-
tained from clients, we construct per-application deci-
sion trees, called configuration trees, which encode Net-
Prints’ learning of which parameter settings work and
which do not. We start with a brief introduction to de-
cision trees and then turn to how NetPrints constructs
configuration trees and uses these for diagnosis.

5.1 Decision Trees
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Figure 2: Configuration tree for the VPN client applica-
tion discussed in Section 9.2.

NetPrints uses decision trees as a basis for performing
configuration mutation. A decision tree (see Figure 2
for an example) is a predictive model that maps obser-
vations (e.g., a client’s network configuration) to their
target values or labels (e.g., “good” or “bad”). Each non-
leaf node in the decision tree corresponds to an attribute
of the observation, and the edges out of the node indi-
cate the values that this attribute can take. Thus, each
leaf node corresponds to an entire observation and car-
ries a label. Given a new observation, we start at the root
of the decision tree, walk down the tree, taking branches
corresponding to the individual attributes of the obser-
vation, until we reach a leaf node. The label on the leaf
node identifies configurations as “good” or “bad”.

There are several algorithms for decision tree learn-
ing. We chose a widely-used algorithm, C4.5 [14],
which builds trees using the concept of information gain.
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The C4.5 tool starts with the root, and at each level of
the tree chooses the attribute to split the data that re-
duces the entropy by the maximum amount. The result
is that the branch points (i.e., non-leaf nodes with multi-
ple children) at the higher levels of the tree correspond to
attributes with greater predictive power, i.e., those with
distinct values or ranges corresponding to distinct labels.

When the training data is noisy (e.g., it contains mis-
labeled samples) or there are too few samples, there is
the risk that the above algorithm will over-fit the train-
ing data. To address this concern, C4.5 also include a
pruning step, wherein some branches in the tree are dis-
carded so long as this does not result in a significant error
with respect to the training data (a process called gener-
alization). C4.5 uses a confidence threshold to determine
when to stop pruning. In our implementation, we use the
default threshold. A consequence of pruning is that, if
the number of samples is insufficient, these samples will
not be reflected in the decision tree.

A decision tree has two key properties. First, it en-
ables classification of observations that include both
quantitative and categorical attributes. For example, the
decision tree in Figure 7 includes quantitative attributes
such as the WAN MTU and categorical attributes such as
the security mode. Second, a decision tree is amenable
to easy interpretation. It not only enables classification
of observations, it also helps identify in what minimal
way an observation could be mutated so as to change its
label (e.g., from “bad” to “good”). We elaborate on this
property in Section 5.4. The interpretability of decision
trees, in particular, makes it an attractive alternative to
SVMs or Bayesian classification.

5.2 Labeling Configuration Information
As explained in Section 4, the NetPrints client extracts
configuration information from the local host and net-
work as well as from the remote end. Before this in-
formation can be fed to the NetPrints server, it has to be
labeled as either “good” or “bad”, depending on whether
the application in question was working or not. In gen-
eral, it is hard to determine automatically whether an
arbitrary application is working well. We sidestep this
difficulty by enlisting the help of the human user to la-
bel the application runs. If we assume that the majority
of users are honest, then most of the configuration in-
formation submitted to the NetPrints server will be la-
beled correctly. As we discuss in Section 9.6, decision
tree based learning employed by the server is robust to
mislabeling to a large extent. Also, in Section 10.1, we
discuss ways of reducing the burden of labeling on users.

5.3 Configuration Manager
The configuration manager at the NetPrints server
uses the labeled configuration information submitted by

clients to learn and construct per-application configu-
ration trees, using C4.5. The tree comprises decision
nodes, which are branch points, and leaf nodes, which
correspond to “good” or “bad” labels. A path from the
root to a “good” (“bad”) leaf node indicates the parame-
ter settings for a working (non-working) configuration.

Figure 2 shows an example of such a configura-
tion tree that we generated for the Microsoft Con-
nection Manager VPN application [13] using con-
figuration information from clients using several dif-
ferent router devices (see Table 5). We note that
the local.disable spi attribute (corresponding to
whether stateful packet inspection (SPI) is disabled) is
the clearest, even if not a perfect, indicator of whether a
configuration is good or bad. So it is at the root of the
configuration tree.

Note that a decision node in the configuration tree
may have a branch labeled NA (not applicable), in ad-
dition to branches corresponding to the various parame-
ter settings (e.g., 0 and 1 with local.disable spi).
The NA branch is needed since some parameters may be
absent in particular routers.

Currently, the decision tree algorithm we use does not
allow for incremental training of the trees, hence we use
a cache of configurations to perform the training at each
step. However, incremental update based algorithms ex-
ist [17] and we plan to evaluate these in future work.

5.4 Misconfiguration Diagnosis
When users experience application failure, they initiate
the diagnosis procedure on the NetPrints client. The
NetPrints client scrapes and submits its suspect configu-
ration information to the NetPrints server for diagnosis.
At the server end, the configuration manager starts at the
root and walks down the configuration tree correspond-
ing to the application that the user is complaining about.
If it ends at a “bad” node, it means that the client’s con-
figuration is known to be non-working. On the other
hand, if it ends at a “good” node, it means that the con-
figuration tree is unable to help with the diagnosis, a case
we consider in Section 7.

If the client’s configuration corresponds to a known
“bad” state, then the goal of diagnosis is to identify the
configuration mutations that would move the configura-
tion to a known “good” state. In general, there would
be multiple “good” leaf nodes, so which one should we
mutate towards?

Intuitively, we would like to pick the mutation path
that is easiest to traverse. The easiest path is not neces-
sarily the one with the fewest changes. The difficulty of
making the changes also matters. For example, chang-
ing the router hardware (say switching from a Linksys
router to a Netgear router) would likely be more dif-
ficult than modifying a software-settable parameter on
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Figure 3: Illustration of the costs of different configura-
tion mutations.

the router because of the costs involved. Even among
software-settable parameters, some changes might be
less desirable, and hence more difficult to make, than
others. For example, putting the client host on the DMZ,
and thereby exposing it to external traffic, would likely
be less desirable than say enabling port forwarding for a
specific port.

To determine the degree of difficulty automatically,
NetPrints records the frequency with which various con-
figuration parameters are modified across all clients. It
might find, for instance, that the disable spi param-
eter is modified 100 times as often as the device is.
We quantify the cost of a mutation as the reciprocal of
the change frequency, possibly scaled by a constant fac-
tor, of the corresponding configuration parameter. We
might record some spurious changes, say when a mo-
bile client moves from one network to another and mis-
takenly thinks that its router device and various con-
figuration settings have “changed”. However, we can
counter the effect of mobility by hard-coding the fact
that changing routers is a low-frequency, and therefore
high-cost, change. Thereafter, when a client is mobile
and associates with a new router, we infer that the corre-
sponding changes in configuration detected by NetPrints
are because the router changed, not because the user ex-
plicitly changed configurations. Hence we do not in-
crease the change frequency of the parameters.

Figure 3 illustrates how the configuration tree is an-
notated with costs. The cost of changing the router
device is 100 times greater than the cost of changing
the disable spi setting. Some mutations are impos-
sible to effect, so the corresponding cost is set to ∞.
For instance, it is not possible to set disable spi to
NA when the parameter does not exist on the router in
question. Also, note that the cost is incurred only when
a parameter is changed, hence the zero cost for merely
walking up the tree.

Given the mutation costs indicated above, we com-
pute the cost of moving from a “bad” leaf node to a
“good” leaf node as the sum of the costs of the muta-
tions on the path from the former to the latter. NetPrints
recommends the set of mutations corresponding to the
path with the lowest cost.

5.5 Going Beyond Configuration Trees
The per-application configuration trees help diagnose
misconfigurations based on configuration information
on which there is broad agreement across a large number
of participating NetPrints clients. Basically, the config-
uration manager learns about the goodness or otherwise
of various configuration settings based on static snap-
shots of labeled configuration information uploaded by
clients.

However, as noted in Section 3, diagnosis based on
the configuration tree would not work in the case of mis-
configurations that are exceptions to the norm. Such ex-
ceptions could arise, for instance, from hidden configu-
ration settings (as noted in Section 3) or from decision
tree pruning (as explained in Section 5.1). In such cases,
the configuration tree might suggest that the suspect con-
figuration is “good” and hence not be in a position to
suggest any mutations.

To address this issue, we introduce change trees,
which seek to learn based on dynamic information,
i.e., configuration changes. Furthermore, to reduce the
chances of exceptions being buried by the mass, we use
network traffic signatures to index the change trees.

Note, however, that multiple configuration errors
could yield the same network signature, so a network
signature is, in general, not as informative as the config-
uration information itself. Hence our approach is to use
the configuration tree as the option, with the change trees
indexed using network signatures as the fallback option.

We now discuss how NetPrints constructs network
traffic signatures, and then turn to change trees.

6 Network Traffic Signature
We use a network traffic signature to characterize appli-
cation runs. For instance, an application could fail be-
cause it is unable to establish a TCP connection (SYN
handshake failure) or because the TCP connection is re-
set prematurely. The network traffic signature is used
to distinguish between these failure modes. In essence,
the signature records the symptom of the failure, which
is used to index the change trees of the application, as
explained in Section 7.

The basic approach is for the NetPrints clients to ex-
tract a set of network traffic features from a packet trace
of the application run. The NetPrints server then applies
learning on these features to identify the important ones,
which are then included as part of the network traffic
signature for that application.

6.1 Network Traffic Feature Extractor
The network traffic feature extractor characterizes the
network usage of each application running on the client
machine. In our current implementation, it uses the Win-
pcap library and the IPHelper API on Windows to tie all
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# Feature Description Unit
1 TCP: Three SYN no response 5-tuple
2 TCP:RST after SYN, no data ex-

changed
5-tuple

3 TCP:RST after no activity for 2
mins

5-tuple

4 TCP:RST after some data ex-
changed

5-tuple

5 UDP: Data sent but not received 5-tuple
6 Other: Data sent but not received src-dst IP

addr pair
7 All: No data sent or received all traffic

Table 2: Network traffic features and the unit of commu-
nication over which the feature is extracted. Each feature
is maintained separately for inbound and outbound di-
rections, except for “All”, which is maintained for both
directions together.

observed network traffic to the individual processes, and
hence applications, running on the client machine. For
each running application, it extracts a set of features by
examining its network activity. These features form the
feature vector for the application.

Table 2 lists the set of features we extract in the form
of rules. Most of these features are maintained sepa-
rately for the inbound (I) and outbound (O) directions,
depending on whether the communication was initiated
by the remote host or by the local host. While many of
these features are extracted on a per-5-tuple basis (i.e.,
on per-connection basis for TCP), we combine the fea-
tures across all connections of an application to compute
the bits of the feature vector. Specifically, if at least one
connection of an application satisfies any of these rules,
the corresponding bit in the feature vector is set. Note
that it is possible for multiple bits in an application’s fea-
ture vector to be set. Also, while all of the features we
consider at present are binary, the feature set could be
expanded to include non-binary features.

We identified the set of features in Table 2 based
on empirical observations of the ways in which an ap-
plication’s network communication may typically fail.
The first four features in the table capture various kinds
of TCP-level issues that we commonly see in malfunc-
tioning applications. Several applications and services
such as multimedia streaming, DNS and VPN clients use
transport protocols other than TCP. For all of these, the
lack of connectivity in one direction often indicates a
networking problem. Consequently, we have included
features #5 and #6 to capture the behavior of such appli-
cations. For both features, we use a timeout of 2 min-
utes: if no data is received for a period of 2 minutes,
we interpret this as a possible problem and set the fea-
ture. Feature #7 characterizes a total loss of connectivity

for an application using any transport protocol; problem
#18 in Table 1, for instance, is a scenario in which our
system would use this feature.

Finally, we briefly discuss two issues pertaining to
the recording of network features for an application run.
First, since the instance of an application could run for
an extended period of time (e.g., a Web browser could
run for days or weeks), we only consider network traf-
fic features over a short window of time (typically a few
minutes long) extending into the recent past. Second,
extracting the network traffic feature for an application
run requires capturing its traffic. One possibility is to
run traffic capture continuously, which has the advantage
that a record of the traffic will be available even when an
application run failed.

To reduce the overhead of the NetPrints client with
such traffic continuous capture, we split the network
signature generator into two parts: a lightweight, con-
tinuously running component to capture selected packet
headers and connection-to-process bindings, and a rel-
atively more CPU-intensive component that creates the
feature vector from the trace only when needed. Mea-
surements of our implementation show that the over-
head is low (0.8% CPU load) on a 1.8 GHz laptop
PC running Windows Vista Enterprise, while streaming
video over the Internet and simultaneously synchroniz-
ing email folders with the server.

6.2 Network Signature Generator

The NetPrints client records and uploads the feature vec-
tor for an application run to the NetPrints server, either
when the user invokes NetPrints to complain about a
non-working application or when the user is prompted,
as explained in Section 5.2. In either case, the feature
vector is labeled as “good” or “bad”, just as the ac-
companying configuration information is. The NetPrints
server then applies learning on the mass of labeled fea-
ture vectors for an application to identify the most signif-
icant features, i.e., ones that correspond most strongly to
the fate of an application run. These significant features
define the network signature of the application.

The signature generator, again, uses the C4.5 algo-
rithm to learn the network signatures, which are repre-
sented as per-application signature trees. However, un-
like with learning applied to configuration information,
interpretability is not necessary for signature construc-
tion (since there are no mutations to perform), so we
could have also used a different learning algorithm such
as SVM. Figure 5 shows the signature tree generated for
an FTP application, where 2 features, out of the 13 in all,
are sufficient to capture the network problems seen.
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7 Change Trees
As noted in Section 5.5, change trees are used as the
fallback option when the configuration tree fails to diag-
nose a problem. To understand why configuration tree
based diagnosis might fail, consider problem #8 in Ta-
ble 1. The FTP server in question enables passive mode
by default, so that all connections are initiated at the
client end. However, in a small number of cases, the
server may disable passive mode, i.e., only the server
can initiate FTP data connections. The client will disal-
low these connections unless the client-side firewall has
been configured to let them in. Note that the application-
specific configuration parameter that captures the infor-
mation that the server has disabled passive FTP is “hid-
den” from NetPrints since, in general, NetPrints is not
in a position to scrape such parameters. Nevertheless,
there are non-hidden configuration parameters (the fire-
wall parameters on the client, in this instance) that could
be manipulated to fix the problem.

Since the discriminating parameter is hidden, it is hard
to tell apart the majority of clients that are configured for
passive mode from the minority that are configured for
active mode. So the majority prevails and the configura-
tion tree learns to ignore the firewall settings since these
are not of relevance for the majority of clients (i.e., FTP
works for such clients regardless of the firewall settings).
So when an active FTP connection to a client fails, the
configuration tree would not find anything amiss with
its configuration, i.e., it will find the configuration to be
“good” and leave no scope for remedial action.

Change trees try to address this problem by isolating
the cases where a traversal of the configuration tree ends
up in leaf nodes labeled as “good” and then applying
learning separately on these. For the purposes of this
learning, the suspect configurations (which the config-
uration tree thinks of as “good”) are labeled as “bad”.
Since we also need configurations labeled as “good” to
perform learning, the NetPrints client in such cases looks
for any out-of-band configuration changes that are made
and, when such a change is detected, it prompts the user
to determine whether the application problem has now
been resolved. If and when the user indicates that the
problem has been resolved, it uploads a “good” configu-
ration to the NetPrints server.

The NetPrints server uses the C4.5 algorithm to learn
a decision tree — the change tree — based on the
change information: the “before” configurations la-
beled as “bad” and the “after” configurations labeled as
“good”. To isolate the relevant cases and minimize the
mixing of unrelated problems, we use the network sig-
nature corresponding to application failure to index the
change trees. So, in effect, each “bad” leaf node in the
signature tree can point to a separate change tree.

Each change tree is also traversed the same way as

the main configuration tree. If a traversal of the relevant
change tree also ends in a leaf node labeled as “good”,
NetPrints gives up. It could be that NetPrints does not
have sufficient information to identify the misconfigura-
tion or that the problem is not configuration-related.

8 Summary of NetPrints Operation
In summary, NetPrints performs the following steps in
the construction and diagnosis phases.

Construction Steps:
1) The NetPrints clients upload labeled configuration

information and network feature vectors to the NetPrints
server, either when users invoke NetPrints for diagnosis
or are prompted by NetPrints (the latter happens for a
small fraction of application runs).

2) The NetPrints server feeds the labeled configura-
tion information into the C4.5 decision tree algorithm to
construct an application-specific configuration tree. It
feeds the labeled network feature vector to the same al-
gorithm to learn an application-specific signature tree.

3) During the diagnosis phase (see below), if the
traversal of the configuration tree with a suspect con-
figuration terminates in a “good” leaf node, then this
configuration, now labeled as “bad”, is fed into the
application-specific change tree construction procedure.

4) Furthermore, the NetPrints client prompts the user
to determine if future configuration changes, if any, help
restore the application to a working state. If so, the cor-
responding configuration, labeled as “good”, is fed into
change tree construction at the NetPrints server.

Diagnosis Steps:
1) When the user encounters a problem and invokes

diagnosis, the NetPrints client uploads configuration in-
formation, along with the network feature vector for the
affected application, to the NetPrints server.

2) The NetPrints server traverses the configuration
tree with the suspect configuration submitted by the
client. If this traversal ends in a “bad” leaf node, Net-
Prints identifies the set of configuration mutations, with
the lowest cost, that would help move the configuration
to a “good” state.

3) If the traversal of the configuration tree ends in a
“good” leaf node, the NetPrints server first computes the
signature of the failed application run based on the net-
work feature vector submitted by the NetPrints client.

4) The NetPrints server uses the signature to iden-
tify the relevant change tree and then traverses this tree
with the suspect configuration. If this traversal ends in a
“bad” leaf node, then the NetPrints server uses the same
procedure as indicated above to identify mutations.

5) However, if the traversal of the change tree ends in
a “good” leaf node, the NetPrints server gives up.
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Client Server
Config Feature Config Signature
scraper extractor manager generator
3159 701 1767 460

Table 3: Lines of code for NetPrints prototype.

9 Experimental Evaluation
Our experimental evaluation of NetPrints is based on the
prototype we have implemented on Windows Vista SP1,
using a combination C# and C++. Table 3 summarizes
some information on the implementation; for C4.5, we
used a standalone distribution [14].

We deployed the NetPrints client on 4 hosts behind
separate broadband connections. Given this small scale
of our current deployment, we used hosts on a separate
testbed to scale up the effective size of the deployment,
as we elaborate on below. The data gathered from the
testbed was used in the “construction” phase of Net-
Prints during which the NetPrints server, which ran on
a separate host, learnt the configuration, signature, and
change trees. The “diagnosis” phase was initiated from
one of the 4 broadband hosts and involved communica-
tion with the NetPrints server to perform diagnosis.

9.1 Setup and Methodology
We evaluated NetPrints with 4 applications: Microsoft’s
VPN client, a Perl-based FTP client, Windows Vista file
sharing, and Xbox Live. These applications were run
both on our testbed (construction phase) and a separate
set of broadband hosts (diagnosis phase). Our testbed in-
cluded a Windows Vista laptop (two in the case of the file
sharing application), each running the NetPrints client,
and also an Xbox 360 gaming console, all of which were
uplinked via a home router and a DSL broadband mo-
dem. We also had 4 other hosts, including 2 at peo-
ple’s homes, on separate broadband connections, each
running the NetPrints client from which diagnosis was
initiated. Finally, for the FTP application, we also had
an external machine running the client, not on a broad-
band network, that connected to one of the broadband
hosts via the Internet.

For diversity, we used 7 different routers from Net-
gear, Linksys, D-Link, and Belkin (Table 5), in turn, as
the home router in our testbed. To obtain greater di-
versity, as one might see with a large-scale deployment,
we varied the configuration settings on these routers, re-
running the applications each time. Note that although
we varied these configuration settings artificially, we ran
the applications and NetPrints just as they would be run
in the real world.

We identified 11 parameters (Table 4) and learnt vari-
ations in their settings based on a study of online discus-
sion forums. Even with this subset of parameters, many

Router parameters:
MTU {1100, 1200, 1300, 1400, 1500 bytes}: sup-
ported by all routers except Belkin F5D7230.
VPN-specific parameters {on, off}: the D-Link
router supports pass-through for IPSEC and PPTP,
while the Linksys routers support these and also L2TP
pass-through.
Stateful Packet Inspection (SPI) {on,off}: supported
by all routers except Linksys WRT54G and Belkin
F5D7230.
Wireless security parameters {none, WEP, WPA,
WPA2}: all modes supported by all routers, except
that the Netgear WGR614v5 does not support WPA2.
DMZ {on, off}: supported by all routers.
UPnP {on, off}: supported by all routers.
NAT type {symmetric, full cone, restricted cone}:
only supported by Netgear WGR614v7 and D-Link
DIR-635.
Port forwarding for FTP {on, off}: supported by all
routers but only used for our FTP experiment.
End-host parameters:
Domain or Workgroup joined
Current user {Administrator, Guest, Everyone,
other}
Windows Vista firewall rules {on, off}

Table 4: Parameters varied in our experiments

configurations are possible (e.g., 4800 with the D-Link
DIR-635 router). So for each application, we only ex-
perimented with a subset of these variations.

To automate the data collection process, we used Au-
toHotKey [1], a GUI scripting tool. To change con-
figuration settings on the router, we used customized
HTTP POST messages. To configure end-hosts, we
manually changed the relevant parameters. For every
configuration setting, we ran the applications and used
simple application-specific heuristics to automatically
determine whether the application worked (labeled as
“good”) or not (“bad”). These heuristics varied based on
the application. For example, when the VPN client suc-
cessfully connects, opening the VPN application’s win-
dow displays the status of the connection. If the VPN
connection was unsuccessful, then the same window
shows the user an option to re-initiate the connection.
Using AutoHotKey, we captured exactly which kind of
message followed our attempt to set up the VPN con-
nection, thereby determining if the application worked
or not.

We recreated all of the problems related to VPN
clients, file sharing, FTP, and the Xbox shown in Table 1,
except for #2 and #6. In addition, our testbed itself pre-
sented new problems.
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The diversity of configurations that we artificially in-
duce in our testbed facilitates the construction of the
application-specific configuration, signature, and change
trees. However, it is hard to know how much diversity
there would be in practice, in the absence of a large-scale
deployment. Nevertheless, in Section 9.6, we demon-
strate NetPrints’ robustness to noisy data.

Finally, there is no standardized nomenclature for
router configuration parameters. The parameter names
vary across routers even when the functionality involved
is the same. We avoid any manual steps to establish
correspondence across routers or segregate information
based on router model. If two router models happen to
use the same parameter name, NetPrints will recognize
and incorporate this in its learning process. Otherwise,
it will treat the parameters as separate and unrelated. As
standards such as HNAP [2] become prevalent, duplica-
tion would be reduced, resulting in more compact and
better interpretable configuration trees.

9.2 Microsoft Connection Manager
The Microsoft Connection Manager (CM) [13] is a
PPTP-based VPN client. For our evaluation, we used the
7 different routers in turn, varying the settings on each
and then using CM to try connecting to an external VPN
server. Table 5 shows the number of “good” and “bad”
cases recorded with each router through this process.

Figure 2 shows the configuration tree for CM gener-
ated by the NetPrints server. Of all the configuration
parameters, the algorithm picked disable spi,
pptp pass, filter, ethernet.speed,
ipsec pass and l2tp pass as the discerning
ones. The numbers at every leaf node are of the form
(x/y), where x is the total number of data points that the
path from root to that leaf captures, and y is the number
of misclassifications on that path.

We can explain the structure of the tree as fol-
lows. Only the Netgear routers support the specific
disable spi parameter. For these routers, CM
works if disable spi is not set and does not work
if disable spi is set, irrespective of the other pa-
rameter settings. On one of the runs involving the
Netgear WGR614v5 router, CM failed even though
disable spi was not set, explaining the one misclas-
sification on this path.

If disable spi is not applicable, as for the
Linksys, D-Link and Belkin routers, the next parame-
ter that the tree learns is pptp pass, which is available
only on the Linksys routers. When pptp pass=1, CM
works with all three Linksys routers. If pptp pass=0,
there are further conditions, depending on the specific
Linksys router. Finally, pptp pass=NA for the D-
Link and Belkin routers, through which CM works re-
gardless of the settings. The alg pptp parameter on

the D-Link DIR-635, which is supposed to control PPTP
pass-through, is apparently a no-op.

Next, the tree looks at filter, the stateful packet in-
spection parameter on the Linksys WRT310N and DD-
WRT routers. The WRT54G does not support this op-
tion, so all configurations with filter=NA, i.e., all
WRT54G configurations with pptp pass=0, are bad.

The next parameter in the tree, on the filter=off
branch, is ethernet.speed, an interface-specific pa-
rameter on the end-host. This is a little counter-intuitive
but explainable. The only gigabit ethernet router we
used was the WRT310N. Instead of using the model
name to distinguish between the WRT310N and the DD-
WRT routers, the C4.5 algorithm picked the ethernet
speeds instead, since this has the same discriminating
power as the model name in this case. This illustrates
that learning is data-driven rather than based on intu-
ition. If data were available from more routers support-
ing gigabit ethernet, we believe that C4.5 would have
fallen back to the model name to differentiate among the
various routers.

On the WRT310N (ethernet.speed=1Gbps),
if filter=off, CM works irrespective of
the other parameters. On the DD-WRT
(ethernet.speed=100Mbps), CM’s success
depends on whether the client is placed on the DMZ.
In particular, if the client is not on the DMZ, then CM
works only if ipsec pass=0 and l2tp pass=0.
We were unaware of this restriction until NetPrints
constructed its configuration tree.

Next, we deployed the NetPrints client on 4
broadband networks using misconfigured Linksys
WRT54G and DD-WRT, and Netgear WGR614v5 and
WGR614v7 routers. When CM was invoked but the
VPN connection failed, the user pressed the “diagnose”
button on the NetPrints client. The NetPrints server
then used its mutation algorithm to identify remedial
configuration changes, which were then conveyed to
the client. For the Netgear routers, the fix was to set
disable spi=0, whereas for the Linksys routers, it
was to set pptp pass=1. The NetPrints client auto-
matically applies these fixes to the router using an HTTP
POST to the corresponding Web form on the router.

This case study shows that NetPrints’ configuration
tree has automatically captured application behaviour
with a large number of configuration settings across 7
routers and the client host, using a small number of
branch points (only 7, in this case) in an intuitive rep-
resentation. The tree also flagged configuration-related
problems that we were unaware of previously.

9.3 Perl-based FTP Client
Users often set up FTP servers within their home net-
works so that they can have easy access to data on
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Netgear Netgear Linksys Linksys Linksys DLink Belkin
WGR614v5 WGR614v7 WRT54G DD-WRT WRT310N DIR-635 F5D7230

Application � × � × � × � × � × � × � ×

Conn. Manager 25 25 24 24 13 12 34 20 50 40 48 0 25 0
FTP Client – – 156 254 309 169 – – – – 67 89 46 26
Xbox 29 20 – – 33 108 – – – – – – – –

Table 5: A summary of the number of configuration settings we obtained from each router for VPN, FTP, and Xbox
experiments. A “�” lists the number of good configurations, and a “×” lists bad configurations. Cases where a
particular router was not used with an application are marked with “–”.
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Figure 4: NetPrints configuration tree for the FTP client.
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Figure 5: NetPrints change tree for the FTP client.

their home computers from remote locations. However,
the online discussions forums include several user com-
plaints about the FTP service not running as expected
when behind a NAT (e.g., #7 and #8 in Table 1).

To investigate #8, in particular, we evaluated Net-
Prints when a Perl-based FTP client running on a remote
machine tries to connect to an IIS FTP server [3] run-
ning on a home network behind a NAT. Besides varying
the router configuration settings, we also manually set
and reset an application-specific parameter on the FTP
client that determined whether the client used passive-
or active-mode FTP. This corresponds to the hidden con-
figuration example discussed in Section 7.

Figure 4 shows the NetPrints configuration tree, indi-
cating the various server-side router settings (depending
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Figure 6: NetPrints configuration tree for file sharing.

on the router model) needed for FTP to work. Since
variable names for the same functionality vary based
on the router, the tree has learnt three different variable
names to capture the state of the DMZ (dmz enable,
dmz enabled, and dmz enable 1).

Note, however, that the misclassification count for
most of the leaf nodes in the figure is significant. To
understand why, consider the network signature and
change trees shown in Figure 5. When the client uses
active FTP, all of the server’s connection attempts to
the client fail, unless a firewall rule on the client host is
enabled for allowing incoming TCP connections to the
FTP client (this rule is disabled by default). The network
signature for this problem has the “Inbound:Three SYN
no response” feature set, since the client’s firewall drops
incoming connection attempts from the FTP server. Fig-
ure 5 also shows the change tree corresponding to this
signature, which essentially says that the above firewall
rule should be enabled.

While we used a Perl-based FTP client in this exper-
iment for ease of automation, similar hidden configura-
tion parameters exist in other clients. For example, IE
7.0 has a parameter to “turn off passive FTP connec-
tions”, which, if set, would result in similar problems
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and call for similar fixes as those discussed above.

9.4 Windows File Sharing
Home users often use file sharing within the home net-
work. Online forums contain several complaints related
to file sharing in Windows Vista, often caused by end-
host configuration errors (e.g., #5 and #6 in Table 1).

To investigate these, we set up an experiment where
a client host in our home network testbed tried to ac-
cess a folder on a server host in the same home network.
On both the client and the server, we varied the firewall
settings, and the domain or workgroup that the machine
was joined to. On the server, we varied the access con-
trol list (ACL) of users allowed to access the folder, and
on the client, we varied the identity of the user who tried
to access the folder. In all, we gathered data for 313
different configurations.

Figure 6 shows the configuration tree generated by
NetPrints. In a nutshell, the configuration tree tells us
that file sharing works if (a) the server-side firewall al-
lows file sharing, and (b.1) either the special user “ev-
eryone” is a member of the folder’s ACL or the current
user on the client is a member of the folder’s ACL, or
(b.2) the special user “guest” is a member of the server’s
ACL list and the current user on the client is not a local
user on the server.

This last point, b.2, is interesting since it suggests that
the special user “guest” includes all users except the lo-
cal users on the host machine. This is counter-intuitive
since it means that guest users can, depending on the
policy, have greater access than local users. We con-
firmed with experts within Microsoft that this is indeed
expected behavior.

9.5 Xbox Live

Xbox Live [20] is a service that allows Xbox users to
play multi-player games, chat, and interact over the In-
ternet. One issue was that we could not run the NetPrints
client directly on the Xbox since the consumer Xboxes
are not user-programmable. For the sake of our exper-
iments, we emulated a NetPrints client on the Xbox by
instead running the client on a PC that is able to monitor
all of the Xbox’s network communication.

For this experiment, we gathered data for the Netgear
WGR614v5 and the Linksys WRT54G routers, as indi-
cated in Table 5.

Figure 7 shows the configuration tree generated by
NetPrints. NetPrints learned three configuration rules.
First, to make the NAT open, the router needs to enable
UPnP. Second, Xbox 360 requires the router MTU to be
greater than 1300 to enable connectivity to Xbox Live.
Third, the Xbox wireless adapter could not connect to a
wireless network if the security mode used was WPA2.
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Figure 7: NetPrints configuration tree for Xbox Live.
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Figure 8: Sensitivity to mislabeled configuration data.

NetPrints’ findings correspond to the suggested con-
figuration fixes for #18 and #19 in Table 1, except for
the MTU fix. We found out through support sites that
Xbox Live requires the MTU to be set to 1365 bytes or
larger. However, given that the data from our experi-
ments, which formed the basis for NetPrints’ learning,
only had the MTU set to one of five values, the best in-
ference we could make was that the MTU should be set
to larger than 1300 bytes.

9.6 Robustness Tests
While our experiments have used clean and diverse data,
in reality, configurations could be mislabeled and have
limited diversity. Hence, we perform experiments to
evaluate the robustness of the configuration trees to var-
ious conditions not found in our experimental data.

9.6.1 Mislabeled Configurations
In a deployed system, configurations uploaded to the
server will not always be labeled correctly. Mislabeled
configurations could potentially lead to troubleshooting
a problem incorrectly, such as identifying a bad config-
uration as a good one. To evaluate the sensitivity of our
configuration decision trees to mislabeling, we started
with a known, correct set of labeled configurations and
their associated decision trees. We then chose a ran-
dom percentage p of those configurations and mislabeled
them, flipping their labels from good to bad and vice
versa. From this set with mislabeled configurations, we
again generated decision trees and compared them with
the original trees generated using correct labels.

Figure 8 shows the results of this experiment on the
configurations for three applications: VPN (CM), File
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Sharing and Xbox. The x-axis shows the percentage
of mislabeling of configurations, and the y-axis shows
the percentage of configurations incorrectly labeled in
the decision tree based upon the mislabeled configura-
tions. Each point represents the average across 100 tri-
als. The VPN, File Sharing, and Xbox curves are sim-
ilar and therefore difficult to distinguish. The VPN(x4)
curve shows the effect of mislabeling for CM when the
tree learning used four times as much data as from our
testbed.

The results indicate that the applications are fairly re-
silient to mislabeling. While an insistence on no errors
(0%) can only tolerate 2–4% mislabeling, allowing a
1% error (i.e., returning an incorrect configuration fix
for up to 1 out of 100 diagnoses) allows tolerating 13–
17% mislabeling. When more than 20% of configura-
tions are mislabeled, though, the resulting decision trees
overfit substantially, resulting in a high error rate. We
also found that the effect of mislabeling diminishes sig-
nificantly with a larger number of data points. For the
VPN(x4) experiment, the tree tolerates 9% mislabeling
(0% error) and 26% mislabeling (1% error), making it
considerably more tolerant than the tree with the smaller
configuration set.

Note that our methodology is not performing cross-
validation on the data with training and testing sets. The
reason is that we are not using the decision trees as clas-
sifiers. In other words, NetPrints does not use decision
trees to classify or predict whether a configuration is
good or bad — all configurations from the client already
have labels (“good” or “bad”) associated with them. The
mislabeling experiment performs an extrinsic evaluation
of the problem in terms of the utility of identifying an
appropriate configuration mutation for a diagnosis in the
face of incorrect labels.

9.6.2 Reduced Diversity
The configurations from our testbed experiments are
roughly uniform in distribution in terms of the settings
of the various parameters. In practice, the distribution is
likely to be less diverse, with some settings much more
prevalent than others (e.g., SPI might be disabled in 90%
of configurations). In particular, the default configura-
tion for a device, with an incorrect setting for a parame-
ter, is likely to be prevalent, as is the resulting working
configuration after correction.

Does low diversity further change the sensitivity of
the decision trees to mislabeling? For each of the VPN,
File Sharing and Xbox applications, we chose two con-
figurations representing a default bad configuration and
a default good configuration. We then introduced dupli-
cates of those defaults to create low diversity. We varied
the percentage of identical configurations from 0–95%,
learnt the decision tree, and measured the extent of mis-

labeling similar to Section 9.6.1. For all of the applica-
tions, the effect of mislabeling was the same as with the
original distribution of configurations.

10 Discussion
We now discuss a few broad challenges for NetPrints.

10.1 Reducing the Burden of Labeling
As noted in Section 5.2, NetPrints enlists the help of
users to perform labeling of configurations (and also of
network traffic traces). NetPrints employs several sim-
ple ideas to gather rich and accurate labeled data while
minimizing the burden on users.

The labeling of “bad” configurations happens implic-
itly, as a by-product of a user invoking NetPrints for di-
agnosis when experiencing an application failure. Thus,
it is only for having the “good” configurations labeled
that the user’s help must be enlisted explicitly.

However, prompting the user to label each run of an
application as “good” or “bad” would likely be oner-
ous and perhaps also provoke deliberately dishonest be-
haviour from an irritated user. So, in NetPrints, we only
prompt each user for a small fraction of the application
runs invoked by that user, with the expectation that, with
a minimal burden placed on them, users would likely be
honest while labeling. Given the participation of a large
number of users, NetPrints is still able to accumulate a
large volume of labeled configuration information, even
while keeping the burden on any individual user low.

Furthermore, even the occassional prompting of a user
is modulated so as to yield useful data with high like-
lihood. First, since the effective application of learn-
ing would require a mix of both “good” and “bad” data,
users are prompted more frequently (with the hope of
obtaining more data points labeled as “good”) when the
system is accumulating more “bad” data points because
of users invoking NetPrints frequently to diagnose prob-
lems. Second, a user is more likely to be prompted when
there has been a recent local configuration change. This
policy increases the likelihood of novel information be-
ing fed into the learning process.

10.2 Preserving Privacy
Privacy is a key concern for NetPrints. Simply excluding
privacy-sensitive configuration parameters such as user-
names and passwords from the purview of NetPrints is
not sufficient. Even the ability to tie back to the origin
host (identified, say, by its IP address) configuration data
uploaded to the NetPrints server could be problematic.
For instance, knowledge of misconfigurations on a host
could leave it vulnerable to attacks.

In ongoing work, we are working on a distributed
aggregation system aimed at balancing two conflicting
goals: enabling nodes to contribute data anonymously
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while still enforcing tight bounds on the ability of ma-
licious nodes to pollute the aggregated data. Thus, if a
majority of nodes is honest, the aggregated data would
be mostly accurate. While the details of this aggrega-
tion system are out of the scope of the present paper, we
believe that NetPrints could directly use such a system.

10.3 Bootstrapping NetPrints
A participatory system such as NetPrints faces interest-
ing challenges in bootstrapping its deployment. There is
a chicken-and-egg problem in that users are unlikely to
participate unless the system is perceived as being valu-
able in terms of its ability to diagnose problems, which
in turn depends on the contribution of data by the partic-
ipating users’ machines. Even if this dilemma were re-
solved, there is still the challenge that users might resort
to greedy behaviour, installing and running NetPrints
only when they need to diagnose a problem and turn-
ing it off at other times, thereby starving the system of
the data it needs to perform diagnoses effectively.

One could devise incentive mechanisms to encourage
user participation. A complementary mechanism, which
we are pursuing, is to bootstrap NetPrints using infor-
mation learned via experiments in a laboratory testbed.
This is similar to the methodology used for the evalua-
tion presented in Section 9. While the richness of the
testbed data would have a direct bearing on NetPrints’
learning and hence its ability to diagnose problems, such
an approach could help bootstrap NetPrints to the point
where users perceive enough value to start participating.

11 Conclusion
We have described the design and implementation of
NetPrints, a system to automatically troubleshoot home
networking problems caused by misconfigurations. Net-
Prints uses decision tree-based learning on labeled con-
figuration information and traffic features from a popula-
tion of clients to build a shared repository of knowledge
on a per-application basis. We report experimental re-
sults for a few applications in a laboratory testbed and a
small-scale deployment. Our ongoing work focuses on
scaling up the deployment and addressing privacy issues.
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Abstract
Reducing the energy consumption of PCs is becoming in-

creasingly important with rising energy costs and environmen-
tal concerns. Sleep states such as S3 (suspend to RAM) save
energy, but are often not appropriate because ongoing network-
ing tasks, such as accepting remote desktop logins or perform-
ing background file transfers, must be supported. In this paper
we present Somniloquy, an architecture that augments network
interfaces to allow PCs in S3 to be responsive to network traf-
fic. We show that many applications, such as remote desktop
and VoIP, can be supported without application-specific code
in the augmented network interface by using application-level
wakeup triggers. A further class of applications, such as in-
stant messaging and peer-to-peer file sharing, can be supported
with modest processing and memory resources in the network
interface. Experiments using our prototype Somniloquy imple-
mentation, a USB-based network interface, demonstrates en-
ergy savings of 60% to 80% in most commonly occuring sce-
narios. This translates to significant cost savings for PC users.

1 Introduction

Many personal computers (PCs) remain switched on
for much or all of the time, even when a user is not
present [23], despite the existence of low power modes,
such as sleep or suspend-to-RAM (ACPI state S3) and
hibernate (ACPI state S4) [1]. The resulting electricity
usage wastes money and has a negative impact on the
environment.

PCs are left on for a variety of reasons (see Section 2),
including ensuring remote access to local files, main-
taining the reachability of users via incoming email, in-
stant messaging (IM) or voice-over-IP (VoIP) clients, file
sharing and content distribution, and so on. Unfortu-
nately, these are all incompatible with current power-
saving schemes such as S3 and S4, in which the PC does
not respond to remote network events. Existing solutions
for sleep-mode responsiveness such as Wake-On-LAN
(WoL) [18] have not proven successful “in the wild” for
a number of reasons, such as the need to modify applica-

tion servers or configure network hardware. A few initial
proposals suggest the use of network proxies [4, 7, 11]
to perform lightweight protocol functionality, such as re-
sponding to ARPs. However, such a system too requires
significant modifications to the network infrastructure,
and to the best of our knowledge such a prototype has
not been described in published form (see Section 6 for
a full discussion).

In this paper, we present a system, called Som-
niloquy1, that supports continuous operation of many
network-facing applications, even while a PC is asleep.
Somniloquy provides functionality that is not present in
existing wake-up systems. In particular, it allows a PC to
sleep while continuing to run some applications, such as
BitTorrent and large web downloads, in the background.
In existing systems, these applications would stop when
the PC sleeps.

Somniloquy achieves the above functionality by em-
bedding a low power secondary processor in the PC’s
network interface. This processor runs an embedded op-
erating system and impersonates the sleeping PC to other
hosts on the network. Many applications can be sup-
ported, either with or without application-specific code
“stubs” on the secondary processor. Applications sim-
ply requiring the PC to be woken up on an event can be
supported without stubs, while other applications require
stubs but in return support greater levels of functionality
during the sleep state.

We have prototyped Somniloquy using a USB-based
low power network interface. Our system works for
desktops and laptops, over wired and wireless networks,
and is incrementally deployable on systems with an
existing network interface. It does not require any
changes to the operating system, to network hardware
(e.g. routers), or to remote application servers. We have
implemented support for applications including remote
desktop access, SSH, telnet, VoIP, IM, web downloads

1somniloquy: the act or habit of talking in one’s sleep.
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and BitTorrent. Our system can also be extended to sup-
port other applications. We have evaluated Somniloquy
in various settings, and in our testbed (Section 5) a PC in
Somniloquy mode consumes 11x to 24x less power than
a PC in idle state. For commonly occurring scenarios this
translates to energy savings of 60% to 80%.

We make the following contributions in this paper:

• We present a new architecture to significantly re-
duce the energy consumption of a PC while main-
taining network presence. This is accomplished
without changes in the network infrastructure.

• We show that several applications — BitTorrent,
web downloads, IM, remote desktop, etc. — can
consume much less energy. This is achieved with-
out modifying the remote application servers.

• We present and empirically validate a model to pre-
dict the energy savings of Somniloquy for various
applications.

• We demonstrate the feasibility of Somniloquy via a
prototype using commodity hardware. This proto-
type is incrementally deployable, and saves signifi-
cant energy in a number of scenarios.

2 Motivation

Prior studies have shown that that users often leave
their computer powered on, even when they are largely
idle [4]. A study by Roberson et. al. [23] shows that in
offices, 67% of desktop PCs remain powered on outside
work hours, and only 4% use sleep mode. In home envi-
ronments, Roth et. al. [24] show that average residential
computer is on 34% of the time, but is not being actively
used for more than half the time.

To uncover the reasons why people do not use sleep
mode, we conducted an informal survey. We passed it
among our contacts who in turn circulated it further. We
had 107 respondents from various parts of the world, of
which 58 worked in the IT sector. 30% of the respon-
dents left at least one machine at home on all of the time,
and 75% of the respondents left at least one work ma-
chine on even when no one was using it.

Among the people who left their home machine pow-
ered on, 29% did so for remote access, 45% for quick
availability and 57% for applications running in the back-
ground, of which file sharing/downloading (40%) and
IM/e-mail (37%) were most popular. In the office envi-
ronment, 52% of respondents left their machines on for
remote access, and 35% did so to support applications
running in the background, of which e-mail and IM were
most popular (47%).

Although this survey should not be regarded as repre-
sentative of all users, and is not statistically significant, it
does highlight two important points. First, a number of

Somniloquy
daemon

Host processor,
RAM, peripherals, etc.

Operating system, including 
networking stack

Apps

Network interface hardware

Secondary processor
Embedded CPU, 

RAM, flash

Embedded OS, incl. 
networking stack

Port filters Appln
stubs

Host PC

Figure 1: Somniloquy augments the PC network inter-
face with a low power secondary processor that runs an
embedded OS and networking stack, network port filters
and lightweight versions of certain applications (stubs).
Shading indicates elements introduced by Somniloquy.

PCs don’t go to sleep even when they are unused. Sec-
ond, significant energy savings can be achieved if only a
few applications — remote reachability, file sharing, file
downloads, instant messaging, e-mail — can be handled
when the PC is asleep.

3 The Somniloquy Architecture

Our primary aims during the development of Somnilo-
quy were:

• to allow an unattended PC to be in low power
S3 state while still being available and active for
network-facing applications as if the PC were fully
on;

• to do so without changing the user experience of the
PC or requiring modification to the network infras-
tructure or remote application servers.

We accomplish these goals by augmenting the PC’s
network interface hardware with an always-on, low
power embedded CPU, as shown in Figure 1. This sec-
ondary processor has a relatively small amount of mem-
ory and flash storage 2 which consumes much less power
than if it were sharing the larger disk and memory of the
host processor. It runs an embedded operating system
with a full TCP/IP networking stack, such as embedded
Linux or Windows CE. The flash storage is used as a
temporary buffer to store data before the data is trans-
ferred in a larger chunk to the PC. A larger flash on the
secondary processor allows the PC to sleep longer (Sec-
tion 3.2. This architecture has a couple of useful prop-
erties. First, it does not require any changes to the host
operating system, and second, it can be incrementally de-
ployed on existing PCs using a peripheral network inter-
face (Section 4).

2Our prototype had 64 MB DRAM and 2 GB of flash.
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The software components of Somniloquy and their in-
teractions are illustrated in Figure 2. The high-level oper-
ation of Somniloquy is as follows: When the host PC is
powered on, the secondary processor does nothing; the
network stack on the host processor communicates di-
rectly with the network interface hardware. When the PC
initiates sleep, the Somniloquy daemon on the host pro-
cessor captures the sleep event, and transfers the network
state to the secondary processor. This state includes the
ARP table entries, IP address, DHCP lease details, and
associated SSID for wireless networks i.e. MAC- and IP-
layer information. It also includes details of what events
the host should be woken on, and application-specific de-
tails such as ongoing file downloads that should continue
during sleep. Following the transfer of this information
to the secondary processor, the host PC enters sleep.

Although the host processor is asleep, power to the
network interface and the secondary processor is main-
tained [1]. To maintain transparent reachability to the
host while it is asleep, the secondary processor imper-
sonates the host by using the same MAC and IP ad-
dresses, host name, DHCP details, and for wireless, the
same SSID. It also handles traffic at the link and network
layers, such as ARP requests and pings – thereby main-
taining basic presence on the network. New incoming
connection requests for the host processor are now re-
ceived and handled by the network stack running on the
secondary processor. In this way the PC’s transition into
sleep is transparent to remote hosts on the network.

To ensure that the host PC is reachable by various ap-
plications, a process on the secondary processor mon-
itors incoming packets. This process watches for pat-
terns, such as requests on specific port numbers, which
should trigger wake-up of the host processor. Although,
this simple architecture [4, 7, 11] supports several ap-
plications with minimal complexity, Somniloquy can get
much greater energy savings for some applications by
not waking up the host processor for simple tasks, for
example, to send instant messenger presence updates. To
perform these tasks on the secondary processor, we re-
quire the application writer to add a small amount of
application specific code (“stubs”) on the host and sec-
ondary processor. In the rest of this section we describe
in more detail how we handle various applications – with
and without application stubs.

3.1 Somniloquy without Application Stubs

The Somniloquy daemon on the host processor speci-
fies packet filters, i.e. patterns on incoming packets, on
which the secondary processor should wake up the host
processor from sleep state. The Somniloquy daemon cre-
ates filters at various layers of the network stack. At the
link layer and network layer, the secondary processor can

 
    





 

    




 












 




 







Figure 2: Somniloquy software components on the host
PC and the secondary processor, and their interactions.

be told to wake the computer when it detects a particular
packet, analogously to the magic packets used by Wake
on LAN, though not requiring the MAC address to be
known by the remote host (see further discussion in Sec-
tion 6). Trigger conditions at the transport layer may also
be specified, for example, wake on TCP port 23 for telnet
requests. Similarly, Somniloquy also supports wake-ups
on patterns in the application payload.

Although the host PC will wake up within a few sec-
onds, it will not receive the packet(s) that triggered the
wake-up. One way to solve this problem is to buffer the
packet on the secondary processor and replay it on the
network stack of the host processor once it has woken
up. However, since the time to wake up is just a few sec-
onds, most sources can be relied upon to retry the con-
nection request. For example, any protocol using TCP
as the transport layer will automatically retransmit the
initial SYN packet. Even UDP-based applications that
are designed for Internet use are designed to cope with
packet loss using automatic retransmissions.

This simple packet filter based approach to trigger-
ing wake-ups has the advantage that application-specific
code does not need to be executed on the secondary pro-
cessor. Nonetheless, it is sufficient to support many ap-
plications that get triggered on remote connection re-
quests, such as remote file access, remote desktop access,
telnet and ssh requests to name a few.

3.2 Application-specific Extensions

Several applications maintain active state on the PC even
when it is idle, and hence prevent a PC from going to
sleep. For example, a movie download client on a home
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PC (e.g. from Netflix) will require the host PC to be
awake for a few hours while downloading the movie. An
instant messenger (IM) client will require the PC to be
on in order for the user to stay “online” (reachable) to
their contacts.

Somniloquy provides a way for these applications
to consume significantly less power. By performing
lightweight operations on the secondary processor, it
can opportunistically put the host processor to sleep.
For example, the secondary processor can send and re-
ceive presence updates to/from the IM server while the
host processor is asleep. During a large download, the
secondary processor can download portions of the file,
putting the host processor to sleep in the meantime.

The key to supporting these applications is the use
of stubs that run on the host and the secondary proces-
sor. We have implemented stubs for three popular ap-
plications – IM (MSN, AOL, ICQ), BitTorrent, and web
download. Here, we will describe the general guidelines
for writing these stubs, and describe the specific imple-
mentations for the three applications in Section 4.

Writing application stubs: When designing an appli-
cation stub, the first step is to understand the subset of the
application’s functionality that needs to run when the PC
is asleep. This is implemented as a stub on the secondary
processor. For example, for an IM stub, the functionality
to send and receive presence updates is essential to main-
tain IM reachability. However, the stub need not include
any UI-related code – such as opening a chat window.

We note that it is not feasible for the stub to reuse the
entire original application code from the host PC. The
application code might depend on drivers (display, disk,
etc.) that are absent on the secondary processor. Further-
more, running the entire application might overload the
secondary processor. Therefore, only the essential com-
ponents of the application are implemented as part of the
application stub.

Another step in designing application stubs is to de-
cide when to wake up the host processor. Triggers can
be user-defined, for example waking up on an incoming
call from a specific IM contact. Triggers may also occur
when the secondary’s processor’s resources are insuffi-
cient, for example when the flash is full or more CPU re-
sources are needed. In all of these cases, the stub wakes
up the host processor.

To interface with the application on the host PC and
the Somniloquy daemon, the application stub needs to
have a component on the host processor. This compo-
nent registers two callback functions with the Somnilo-
quy daemon — one that is called just before the PC goes
to sleep and the other just after it has woken up. The
first function transfers the application state to the stub on
the secondary processor, and also sets the trigger condi-
tions on which to wake the host processor. These val-

ues depend on the application being handled by the stub.
The second callback function, which is called when the
host resumes from sleep, checks the event that caused
the wakeup — whether it was caused by a trigger con-
dition on the secondary processor or due to user activ-
ity. It handles these events differently. If the wakeup
was caused by user activity, the stub transfers state from
the secondary processor, and disables it. However, if the
wakeup was caused by a trigger condition on the sec-
ondary processor, the application stub handles it as de-
fined by the user. For example, for an incoming VoIP
call, the stub engages the incoming call functionality of
the VoIP application.

Having determined what functionality needs to be sup-
ported by the application stub and host-based callbacks,
and what state must pass between them, the final step is
to implement this. We have used two manual approaches
to doing this. For the download stub, we built all the
functionality ourselves based on detailed knowledge of
the application protocols, and for the BitTorrent and IM
stubs, we trimmed down existing application code to re-
duce memory and CPU footprint. An alternative could
be to automatically learn protocol behavior to build these
application stubs. However, we believe that this is an
extremely difficult problem. There are parts of the ap-
plication that are difficult to infer, and any inaccuracy in
the application stub will make it unusable. For exam-
ple, knowledge of how BitTorrent hashes the file blocks
is necessary for the stub to successfully share a file with
peers. We are unaware of any automatic tool that can
learn such application behavior. Therefore, we believe
that the best (although perhaps not the most elegant)
approach to building these stubs is to modify applica-
tion source code and remove functionality that is not re-
quired by the secondary processor. In the future, with
a greater incentive to save energy, we expect that appli-
cation developers will compete for energy consumption,
and hence provide stubs for their applications using the
guidelines described in this section.

We realize that partial application stubs might be cre-
ated using tools such as the Generic Application-Level
Protocol Analyzer [6] and Discoverer [8], which auto-
matically learn the behavior and message formats for a
range of protocols. As part of future work, we plan to
explore how the knowledge of the protocol can be aug-
mented with application-specific behavior to ease the de-
velopment of application stubs.

When to use application stubs? Not all applications
are conducive to low-power operation via application
stubs. A CPU intensive application, such as a compi-
lation job, will be very slow on the secondary processor
since it has a less powerful CPU and low memory. Simi-
larly, an I/O intensive application, such as a disk indexer,
will need to read the disk very often and will therefore
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need the PC to be awake. Download and file sharing ap-
plications are an interesting exception, because portions
of a file can be transferred by the secondary processor
whilst the host sleeps. We will discuss this approach in
more detail in Section 4.4.

Even for an application stub that saves energy for a
given application, it is not always useful to offload the ap-
plication to the secondary processor when the host PC is
going to sleep. Several other applications may also want
to run their application stubs on the secondary processor.
This might overload the CPU of the (weaker, low power)
secondary processor. In this case, it might be beneficial
to keep the host PC awake.

One way to solve this problem is to modify the Som-
niloquy daemon to predict the CPU utilization of the
stubs for all applications that are willing to be offloaded
to the secondary processor. However, making this pre-
diction is extremely difficult. There might be little cor-
relation between the CPU utilization of the application
on the host PC, and the stub on the secondary proces-
sor, because of different processor architectures, and
varying application demands. Instead, we take a sys-
tems approach. We monitor the CPU utilization of the
secondary processor; if it remains at more than 90%
continuously(>30 seconds), we wake up the PC, and re-
sume all applications on the host processor. If the CPU
utilization of these applications decreases by more than
10% on the host processor, we repeat the same procedure
— offload to the secondary processor and stay there if
CPU utilization is less than 90%. In our Somniloquy de-
ployment the need to move applications arose when run-
ning multiple application stubs on the secondary proces-
sor, such as two concurrent 8 Mbps web downloads and
two concurrent BitTorrent downloads of Section 5.3.2.

Incremental Deployment: We realize that Somnil-
oquy may never be universally deployed, and that get-
ting software vendors to try for incremental deployment
requires a low-effort mechanism to ensure that their
Somniloquy-enhanced software is compatible with ma-
chines and platforms that do not have Somniloquy sup-
port. The Somniloquy daemon queries the OS to de-
termine the presence of a secondary processor, and the
supported application stubs. Applications then need to
query the Somniloquy daemon, and invoke the applica-
tion stubs only if the OS supports Somniloquy, and the
corresponding stubs are implemented on the secondary
processor.

3.3 Quantifying Energy Savings

The amount of energy saved through adoption of Som-
niloquy is quite easy to predict; it depends on the relative
power consumption of the awake and sleep states, and
the proportion of time that a machine can be kept asleep

when it would previously have been awake. For applica-
tions without stubs, this proportion is largely dependent
on the actions of a remote user - how frequently a re-
mote ssh session is initiated for example, and for how
long. On the other hand, for applications with stubs the
secondary processor may regularly wake up the host to
perform some task or other. We quantify the energy sav-
ings for an application with different wake-up intervals
in Section 5.4.4.

More formally, suppose the host is woken up once ev-
ery Tsleep seconds, whereupon it stays awake for Tawake

seconds. Tawake includes the time it takes to transfer
data between the PC and the secondary processor. Also
assume that d is sum of the time to wake up the host plus
the time to transition to sleep. Suppose:

• Pa is the power consumption of the PC when it is
awake (in W)

• Ps is power consumed in sleep mode (in W), and

• Pe is power consumed by the secondary (embed-
ded) processor (in W)

The energy (E) consumed during Somniloquy operation
is given by:

Esomniloquy = EPCinSleepMode + EPCinAwakeMode

+ESecondaryProcessor

= Tsleep ∗ Ps + (Tawake + d) ∗ Pa

+(Tawake + d + Tsleep) ∗ Pe Joules

In the absence of Somniloquy, the amount of energy
consumed by the host PC in the same time is Ehost =
Pa ∗ (Tawake + Tsleep) Joules. Therefore, the ratio of
energy consumed by Somniloquy compared to the host
PC being always on is given by:

Esomniloquy

Ehost
=

Tsleep∗(Pe+Ps)+Tawake∗(Pa+Pe)+d∗(Pa+Ps)
Pa∗(Tawake+Tsleep)

Typically, as we show in Section 5, Pe and Ps are two
orders of magnitude less than Pa for a desktop computer,
and d is around 10 seconds (to wake up the host, and put
it back to sleep). Therefore, for most energy savings,
we would want Tawake to be much less than Tsleep, i.e.
if Tawake � Tsleep, then the ratio Esomniloquy/Ehost

is approximately (Pe + Ps)/Pa. We will present the
approximate energy savings for different applications in
Section 4.

Of course, Somniloquy could save more energy by dis-
abling the secondary processor when the PC is awake.
This would require the PC to enable the secondary pro-
cessor before going to sleep, and disable it when the PC
has woken up. We were unable to fully implement this
functionality in our prototype, but we expect this to be a
minor fix in a production system.
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3.4 Discussion

Security: A common requirement of corporate IT de-
partments is that all PCs should be up to date with the
latest OS and application patches. Somniloquy can en-
sure that this constraint is met even when PCs are asleep.
This is achieved using a port-based trigger to wake up the
host PC when the SMS (Systems Management Server)
contacts the host PC to install updates.

Somniloquy ensures that the secondary processor is
secure by patching its OS whenever security updates
become available. Also, it prevents attackers from re-
placing the secondary processor by requiring that it be
a physically part of the PC (as part of the network in-
terface). In some cases however, the functionality that
Somniloquy provides could be misused to conduct at-
tacks that spuriously wake up the PC and waste energy.
This kind of denial-of-service attack would be particu-
larly effective for mobile devices where a drained bat-
tery might result. One way to address this issue is to
disable port triggers, and instead exclusively use appli-
cation stubs which ensure that only authenticated remote
hosts are allowed to trigger wakeup.

Another concern is that application stubs, and hence
the use of extra code, increases the PC’s attack surface.
To mitigate the impact of this vulnerability we use a few
techniques. First, the secondary processor only listens
on ports that have been opened by applications on the
host PC. Second, we require the PC and the secondary
processor to be on the same administrative domain.

We also note that modern processors have additional
security features built in, for example an execute-disable
bit, used by some applications to prevent executing ar-
bitrary code and preventing buffer overflows. We realize
that a low power processor may not currently support this
advanced functionality, although we expect that in the
future low-power chips will also be available with these
features.

Alternative Design: With the increasing prevalence
of multi-core PCs, one idea to alleviate the need for the
additional secondary processor introduced by Somnilo-
quy would be to use one of the cores of the host CPU in-
stead. Running just one core at the lowest possible clock
frequency would minimize energy consumption and ob-
viate the need for a separate low power processor in the
NIC.

However, it turns out that such an approach is not use-
ful without significant modification to today’s PC archi-
tecture. Our measurements (see Section 5.1) show that
the power consumption of a multi-core PC with only one
core active, running at the lowest permissible clock speed
is still approximately 50 times that of our low power sec-
ondary processor, even with all other peripherals in their
lowest power modes – e.g. disk spun down. This is be-

cause of the lack of truly fine-grained power control of
PC components such as the Northbridge, Southbridge,
memory buses, parts of the storage hierarchy and various
peripherals. Even if fine-grained control were available,
the base power consumption of individual components
(NIC, hard drive) is significant (see Table 2). One way
to reduce this base power draw would be to have a sep-
arate and relatively simple core with a small amount of
associated memory running from a separate power do-
main so that it can function without powering on other
components. Such an architecture is very similar to Som-
niloquy, and most of our design principles can easily be
adopted.

4 Prototype Implementation

We have prototyped Somniloquy using gumstix, a low
power modular embedded processor platform manufac-
tured by Gumstix Inc that support a wide variety of pe-
ripherals.

4.1 Hardware and Software Overview

An important goal when prototyping Somniloquy was to
have it work with existing unmodified desktops and lap-
tops, and for both wired and wireless networks. Further-
more, we required the platform to be low power, have
a small form factor, and be well supported for develop-
ment. The gumstix platform served all these design re-
quirements well. The specific components we use for
Somniloquy include a connex-200xm processor board,
an etherstix network interface card (NIC) (for wired Eth-
ernet), a wifistix NIC (for Wi-Fi), and a thumbstix com-
bined USB interface/breakout board. The connex-200xm
employs a low power 200 MHz PXA255 XScale pro-
cessor, with 16 MB of non-volatile flash and 64 MB of
RAM. The etherstix provides a 10/100BaseT wired Eth-
ernet interface plus an SD memory slot to which we have
attached a 2GB SD card. The thumbstix provides a USB
connector, serial connections and general purpose input
and output (GPIO) connections from the XScale.

To enable Somniloquy we needed mechanisms to
wake-up the host PC, and also to detect its state (awake
or in S3). To achieve this we added a custom de-
signed circuit board that incorporates a single chip — the
FT232RL from FTDI. The FT232RL is a USB-to-Serial
converter chip supporting functionality such as sending
a resume signal to the host and detecting the state of the
host, both over the USB bus. This board is attached to
the computer via a second USB port and to the thumb-
stix module (and thence to the XScale processor) via a
two-wire serial (RS232) interface plus two GPIO lines.
One GPIO line is connected to the FT232RL’s ‘ring indi-
cator’ input to wake up the computer. The second GPIO



USENIX Association	 NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation	 371

Desktop/Laptop

Somniloquy 
Daemon

connex-200xm

Embedded 
Linux

Somniloquy 
device 

software

etherstix

Windows 
Vista

Custom PCB

XScale 
processor

Power
TCP/IP link

Sleep detection
Wake-up signal

Ethernet NIC 
(SMC91x)

FTDI USB
to serial 

converter
USB 

Interfaces

thumbstix
(USB and breakout board) 

Figure 3: Block diagram of the Somniloquy prototype
system - Wired-1NIC version. The figure shows various
components of the gumstix and the USB interfaces to the
host laptop.

line is connected to the FT232RL’s ‘sleep’ output which
can be polled by the gumstix to detect whether the host
PC is active or in S3.

As mentioned above (and shown in Figure 3), the com-
puter is connected to the secondary processor via two
USB connections. One of these provides power and two-
way communications between the two processors. It is
configured to appear as a point-to-point network inter-
face (“USBNet”), over which the gumstix and the host
computer communicate using TCP/IP. The second USB
interface provides sleep and wake-up signaling, and a se-
rial port for debugging purposes. The use of two USB
interfaces is not a fundamental requirement, it is simply
for ease of prototyping.

Since we use standard USB ports for interfacing with
the host and for sleep signaling, our prototype works on
any recent desktop or laptop that supports USB. We run
an embedded distribution of Linux on the gumstix that
supports a full TCP/IP stack, DHCP, configurable routing
tables, a configurable firewall, SSH and serial port com-
munication. This provides a flexible prototyping plat-
form for Somniloquy with very low power operation.

We have implemented the Somniloquy host software
on Windows Vista. The Somniloquy daemon detects
transition to S3 sleep state, and before this is allowed
to occur we transfer the network state (MAC address, IP
address, and in the case of the wireless prototype, the
SSID of the AP) and other information about the wakeup
triggers as discussed in Section 3.
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Figure 4: Photograph of the gumstix-based Somniloquy
prototype - Wired-1NIC version.

4.2 Three different prototypes

We have prototyped three different Somniloquy designs
to explore different aspects of operation. The first uses
the gumstix as an augmented Ethernet interface, as de-
scribed in Section 3. However, in our prototype this has
some performance limitations so we have also imple-
mented a second design which uses the gumstix in co-
operation with an existing high-speed Ethernet interface.
Finally, we have a Wi-Fi version. All three prototypes
are described in further detail below:

Augmented Network Interface: We call this imple-
mentation the Wired-1NIC version. The architecture is
shown in Figure 3, with a photograph of the prototype
shown in Figure 4. In this prototype, we disable the NIC
of the host, and configure the PC to use the USBNet in-
terface (USB connection between the gumstix and the
host) as its only NIC. The gumstix is connected to the
network using its Ethernet connection. To enable the host
PC to be on the network, we set up a transparent layer-2
software bridge between the USBnet interface to the host
and the Ethernet interface of the gumstix. This bridge is
active when the host is awake. When the host transitions
to sleep, the gumstix disables the bridge, and resets the
MAC address of its Ethernet interface to that of the US-
BNet interface of the host. The gumstix thus appears to
the rest of the network as the host itself, since it has the
same network parameters (IP, MAC address). When the
host wakes up, the gumstix resets its MAC address to its
original value and starts bridging traffic to the host again.

Although our Wired-1NIC prototype hardware sup-
ports a 100 Mbps Ethernet interface, we are limited to a
throughput of 5 Mbps due to the bandwidth supported by
the USBNet interface driver. There is also a slight over-
head of bridging traffic on the gumstix. Although this
limits bandwidth to the host significantly in our proto-
type, we note that in a final integrated version, this over-
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head of bridging can be avoided by allowing both the
host and the low power secondary processor to access
the NIC directly.

Using Existing Network Interface: Somniloquy can
coexist with an existing NIC. On such systems, the over-
head of bridging is avoided by using the existing Ether-
net interface on the host PC for data transfer when it is
awake, with the gumstix using its own Ethernet interface
(while still impersonating the host PC) when the host is
asleep. We have built this version where the gumstix
does not perform Layer-2 bridging, and call it the Wired-
2NIC prototype.

Using Wi-Fi: We have also implemented a wireless
version of Somniloquy. We were unable to implement a
one-NIC version since the Marvell 88W8385 802.11 b/g
chipset present on the wifistix does not currently sup-
port layer 2 bridging. We have however implemented a
Wireless-2NIC version.

4.3 Applications Without Stubs

We have implemented a flexible packet filter on the gum-
stix using the BSD raw socket interface to support appli-
cations that do not require stubs, e.g. RDP, SSH, telnet
and SMB connections. Every application in this class
provides a regular expression matched against incoming
packets to decide whether to trigger host wakeup. For
example, handling incoming remote desktop requests re-
quires the host to be woken up when the gumstix receives
a TCP packet with destination port 3389.

We note that waking up the host computer is not
enough; the incoming connection request must somehow
be conveyed to the host. We accomplish this by using
the iptables firewall on the gumstix to filter any re-
sponse to TCP or UDP packets that the gumstix does not
handle itself. Thus trigger packets are not acknowledged
by the gumstix and the remote client sends retries. Af-
ter the host has resumed, one of the retries will reach it
(since it is still using the same IP and MAC addresses)
and it will respond directly. Using port-based filtering,
we have implemented wake-up triggers for four appli-
cations: remote desktop requests (RDP), remote secure
shell (SSH), file access requests (SMB), and Voice over
IP calls (SIP/VoIP).

4.4 Applications Using Stubs

To demonstrate how modest application stubs can enable
significant sleep-mode operation in Somniloquy, we have
also implemented application stubs for three applications
that were popular in our informal survey: background
web download, peer to peer content distribution using
BitTorrent, and instant messaging. For all these appli-
cations, we did not have to modify the operating system

or the existing applications on the PC, which were only
available to us in binaries. To capture the state of the
application for the respective stub, we wrote wrappers
around the binaries.

Background Web Downloads: We developed the
web download stub for wget which works as follows:
When the host PC transitions to sleep, the status of ac-
tive downloads is sent to the stub running on the gum-
stix. The status includes the download URL, the offset
of how much download has taken place, the buffer space
available, and the credentials (if required for the down-
load). Most popular web servers (e.g. IIS and Apache)
allow these byte ranges to be specified using the HTTP
‘Accept-Ranges’ primitives [22]. The web download
stub then resumes the downloads from the respective off-
sets of the files, and stores the data on the flash storage
of the gumstix. If the flash memory fills up before the
downloads complete, the stub wakes up the host PC and
transfers the downloaded files from flash storage to the
host PC, thereby freeing up space. The host PC then goes
back to sleep while the stub continues the downloads. At
the end of a download, the gumstix wakes up the host
PC, and transfers the remaining part of the file.

The download stub consumes significantly less energy
to download a file than keeping the PC awake to down-
load it. The overhead is a slight increase in latency. We
can quantify the savings and overhead using the model
described in Section 3.3. If flash storage is F MB and
the download bandwidth is B MBps, then the host PC is
woken up every F/B seconds, and it is awake for F/T
seconds, where T is the transfer rate between the host
and the gumstix. Therefore, using the formula in Sec-
tion 3.3, Somniloquy gives most energy savings at low
B and high T . We empirically validate this observation
in Section 5.4.4. When T is of the same order as B,
Somniloquy might not save much energy. This can hap-
pen if the NIC supports very high rates (e.g. 1 Gbps),
while the secondary processor can only support lower
data rates (up to 100 Mbps) or if the transfer rate T is
limited. However, we anticipate the download stub to be
primarily used in scenarios where the download speeds
are limited by the last mile connection of at most a few
tens of Mbps – here, this stub is nearly always beneficial.

BitTorrent: For the BitTorrent stub we customized
a console-based client, ctorrent, to run on the gumstix
with a low CPU utilization and memory footprint. Prior
to suspending to S3, the host computer transfers the ‘.tor-
rent’ file and the portion of the file that has already been
downloaded to the gumstix. The BitTorrent stub on the
gumstix then resumes download of the torrent file and
stores it temporarily on the SD flash memory of the gum-
stix. When the download completes, the stub wakes up
the host and transfers the file.

When only downloading content, the energy saved by
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using this stub is similar to that of the web download
stub, i.e., frequency of waking up the PC and the duration
for which it is woken up depends on the download band-
width B, the transfer speed T and the flash size F . How-
ever, when uploading/sharing (which is key to altruis-
tic P2P applications), the energy savings are much more.
The same file chunk can be uploaded to many peers, and
hence the PC can sleep for much longer – implying more
energy savings using the formula in Section 3.3.

Instant Messaging: For the IM stub, we used a
console-only IM client called finch that supports many
IM protocols such as MSN, AOL, ICQ, etc. On the PC,
we used the corresponding GUI version of the IM client.
To ensure our goal of a low memory and CPU footprint
we customized finch to include only the features salient
to our aim of waking up the host processor when an in-
coming chat message arrives. This only requires authen-
tication, presence updates and notifications; we disabled
other functionality. The host processor transfers over the
authentication credentials for relevant IM accounts be-
fore going to S3. The gumstix then logs into the rele-
vant IM servers, and when an incoming message arrives
it triggers wakeup. The energy saved by the IM stub is
thus similar to applications that are handled using packet
filters (e.g. SSH/RDP), where the duration for which a
host can sleep depends on the frequency of occurrence
of wake-up triggers.

5 System Evaluation

We present the benefits of Somniloquy in four steps.
First, we show that gumstix consumes much less power
than a PC by profiling standalone desktops, laptops and
the gumstix in different power states. Second, we mea-
sure the energy saved (and latency introduced) by Som-
niloquy when used on an “idle” host processor. Third, we
show how Somniloquy affects the performance of vari-
ous applications, with and without application stubs. Fi-
nally, we quantify Somniloquy’s energy savings — mon-
etary and environmental cost for an enterprise and bat-
tery lifetime increase for laptops.

Methodology: To measure the power consumption of
laptops and desktop PCs, we used a commercially avail-
able mains power meter, Watts-Up 3. To measure the
power consumption of the standalone gumstix, we built
a USB extension cable with a 100 mΩ 0.1% sense resis-
tor, which was inserted in series with the +5 V supply
line, and we used this cable to connect the gumstix to the
computer. We calculated the power draw of the gumstix
by measuring the voltage drop across the sense resistor.
All power numbers presented in this section are averaged
across at least five runs.

3http://www.wattsupmeters.com/

Condition Optiplex Dimension
745 4600

Normal idle state 102.1 W 72.7 W
Lowest CPU frequency 97.4 W N/A
Disable multiple cores 93.1 W N/A

‘Base power’ 93.1 W 72.7 W
Suspend state (S3) 1.2 W 3.6 W

Time to enter S3 9.4 s 5.8 s
Time to resume from S3 4.4 s 6.2 s

Table 1: Power consumption and S3 suspend/resume
time for two desktops under various operating condi-
tions. In all cases the processor is idle and the hard disk
is spun down. The power consumed by other peripherals
such as displays is not included.

Condition Lenovo Toshiba Lenovo
X60 M400 T60

Normal idle state 16.0 W 27.4 W 29.7 W
Backlight minimum 13.8 W 22.4 W 24.7 W

Screen turned off 11 W 18.3 W 21.3 W
‘Base power’ 11 W 18.3 W 21.3 W

Suspend state (S3) 0.74 W 1.15 W 0.55 W

Battery capacity 65 Wh 50 Wh 85 Wh
Base lifetime 5.9 h 2.7 h 4.0 h

Suspend lifetime 88 h 43 h 155 h

Time to enter S3 8.7 s 5.5 s 4.9 s
Time to resume from S3 3.0 s 3.6 s 4.8 s

Table 2: Power consumption and battery lifetime of three
laptops under various operating conditions, and the time
to change power states.

5.1 Microbenchmarks – Power, Latency

Desktops: Table 1 presents the average power consump-
tion for two Dell desktop machines: an Intel dual core
(2.4 GHz Core2Duo) OptiPlex 745 with 2 GB RAM run-
ning Windows Vista, and a 2.4 GHz Pentium 4 Dimen-
sion 4600 with 512 MB RAM running Windows XP. The
display is turned off in these experiments, and only the
essential system processes are left running. The power
consumption of the desktop in S3 is two orders of mag-
nitude less than when it is awake. This is consistent with
prior published data on the power consumption of mod-
ern PCs [7]. We use the term ‘base power’ to indicate the
lowest power mode that a PC can be in and still be re-
sponsive to network traffic (without using Somniloquy).
To get this number, we further scaled down the CPU to
the lowest permissible frequency on these desktops. Fur-
thermore, we disabled the multi-core functionality using
the system BIOS to effectively use only one core and
verified that the system was actually doing so by using
a processor ID utility supplied by Intel. The time taken
for the desktops to resume from S3 and reconnect to the
network is of the order of a few seconds (Table 1).
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Gumstix state Power
Wired version

1 gumstix only - no Ethernet 210 mW
2 gumstix + Ethernet idle 1073 mW
3 gumstix + Ethernet bridging 1131 mW
4 gumstix + Ethernet + write to flash 1675 mW
5 gumstix + Ethernet broadcast storm 1695 mW
6 gumstix + Ethernet unicast storm 1162 mW

Wireless version
7 gumstix only – no Wi-Fi 210 mW
8 gumstix + Wi-Fi associated (PSM) 290 mW
9 gumstix + Wi-Fi associated (CAM) 1300 mW
10 gumstix + Wi-Fi broadcast storm 1350 mW
11 gumstix + Wi-Fi unicast storm 1600 mW

Table 3: Power consumption for the gumstix platform in
various states of operation.

Laptops: Table 2 presents the average power con-
sumption of three popular laptops: a Lenovo X60 tablet
PC with 2 GB RAM running Windows Vista, a Toshiba
laptop with 1 GB RAM running Windows XP, and a
Lenovo T60 laptop with 1 GB RAM running Windows
Vista. For all power measurements, the processor is set
to the lowest speed and is idle, the hard disk is spun down
and the wireless network interface is powered on. The
base power is between 11 W and 22 W, resulting in a bat-
tery lifetime of around 4 to 5 hours with the batteries that
are present on these laptops. Using the sleep/S3 state
can dramatically extend the battery lifetime, to between
40 and 150 hours for the laptops we tested, although the
laptop is unreachable in this state.

Gumstix: Table 3 shows the average power con-
sumed by the gumstix (with both etherstix and wifistix)
in various states of operation. The gumstix has a base
power of approximately 210 mW when no network in-
terface is present (row 1). A gumstix with an active net-
work interface typically consumes approximately 1070-
1300 mW (rows 2 and 9), however with an associated
Wi-Fi interface in power save mode it consumes only
290 mW (row 8). The power consumption of the gumstix
when its network interface is active and the downloaded
data is being written to flash is around 1675 mW (row
4). Broadcast and unicast ‘storms’ (continuous traffic)
increase the power consumption by a few hundred milli-
watts4. Importantly, the power consumption of the gum-
stix is approximately one tenth that of an awake laptop in
the lowest power state, and approximately 50 times less
than an idle desktop.

4Wi-Fi broadcasts are sent at 6 Mbps while unicasts are sent at
54 Mbps in our setup. Consequently a unicast storm consumes more
power than a broadcast storm.
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Figure 5: Power consumption and state transitions for
our desktop testbed.

5.2 Somniloquy in Operation

We now report the power consumption of Somniloquy in
operation. For these measurements we use two testbed
systems: a desktop (Dell OptiPlex 745 with 2 GB RAM
running Windows Vista) with the Wired-1NIC prototype
of Somniloquy, and a laptop (Lenovo X60 tablet PC run-
ning Windows Vista) with the Wireless-2NIC version of
Somniloquy. Thus, our tests span both Ethernet and Wi-
Fi networks, and both the integrated single network in-
terface, and the higher performance versions which uses
the existing internal network interface. The test traffic is
generated using a standard desktop machine running on
the same (wireless or wired) LAN subnet as the testbed
machine.

Figure 5 shows the power consumption of our desktop
testbed. Initially the desktop’s host processor is awake
and uses the gumstix for bridging, and the whole sys-
tem draws 104 W of power. At time ‘A’ a state change
to S3 is initiated by the user. This request completes at
time ‘B’ after which the power draw of the system is
approximately 4.4 W, i.e. 24x less. This power is split
between the gumstix, the DRAM of the PC, and other
power chain elements in the PC. Subsequently at time
‘C’ the gumstix, which has been actively monitoring the
network interface, wakes up the host in response to a net-
work event. This request completes at time ‘D’ when the
host system has fully resumed. As the figures illustrate
this resume event takes about 4 seconds. We do not show
the laptop figure for space reasons; the trace looks very
similar with a starting power of 16 W with the screen on
(which drops to 11 W if the screen is turned off), a power
draw of 1 W when using Somniloquy (11x less than the
screen-off case) and a resume time of 3 seconds.

5.3 Application Performance

As described earlier there are two classes of applications
that are supported by Somniloquy: first, a large class of
applications that do not require application stubs, and
second a smaller class of applications that can be sup-
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Figure 6: Application-layer latency for three Somniloquy
testbeds and four application types.

ported using application stubs running on the gumstix.
We performed a number of experiments to evaluate the
performance of both these classes of applications.

5.3.1 Applications without stubs

We now quantify the end-to-end latency (as perceived by
users) incurred by the applications that are handled by
Somniloquy without using application stubs. For these
experiments, we use the same two testbeds as above, with
the addition of a third testbed based on the Wired-2NIC
prototype (using same desktop machine as the Wired-
1NIC case), providing a direct comparison between the
1NIC and 2NIC cases. In each case the latency reported
is the mean over five test runs.

Figure 6 reports the time taken to satisfy an incoming
application-layer request for four sample applications.
For each application, we show the latency for “awake”
operation (i.e. when the host is on and directly responds
to the request) and when the host is in S3 and Somnilo-
quy prototype receives the incoming packet and triggers
wake-up of the host.

The four applications we tested were:
Remote desktop access (RDP): Here we used a stop-

watch to measure the latency between initiating a remote
desktop session to the host and the remote desktop be-
ing displayed. A stopwatch was used to ensure that true
user-perceived latency was measured. The gumstix was
configured to wakeup the main processor on detecting
TCP traffic on port 3389 (the RDP port).

Remote directory listing (SMB): A directory listing
from the Somniloquy testbed was requested by the tester
machine (via Windows file sharing, which is based on the
SMB protocol). The time between the request being ini-
tiated and the listing being returned was measured using
a simple script. The secondary processor was configured
to initiate wake-up on detection of traffic on either of the

TCP ports used by SMB,i.e. ports 137 and 445.
Remote file copy (SMB): The SMB protocol was

used again, but this time to transfer a 17 MB file from
the Somniloquy testbed to the tester machine.

VoIP call (SIP): A Voice-over-IP call was placed to
a user who had been running a SIP client on the Som-
niloquy laptop before it had entered S3. On receipt of
the incoming call the SIP server responded with a TCP
connection to the testbed, causing the gumstix to trig-
ger wakeup. A similar procedure was used in [2]. Once
again, the latencies were measured using a stopwatch to
measure true user-perceived delay.

As Figure 6 shows, Somniloquy adds between 4-10 s
latency in all cases. As described in Section 5.2 earlier,
part of this latency is attributed to resuming from S3, i.e.
4-5 s for the desktop and 2-3 s for the laptop, and is in-
dependent of Somniloquy. Further latency is due to the
delay for TCP to retransmit the request, and for the host
to respond to the request (which may take longer since
it has just resumed). Note that the Wired-1NIC proto-
type shows higher latency than the Wired-2NIC proto-
type. This is purely an artifact of our prototype caused
by the overhead of MAC bridging and largely the slower
speed of the USBNet IP link between the gumstix and
the host. The latter is particularly obvious in the file copy
test, where the file copy time with the Wired-2NIC case
is much faster than for Wired-1NIC (although the Wired-
1NIC speed is still faster than Wireless-2NIC). While
Somniloquy does result in 4-10 s additional application-
layer latency, these delays are acceptable for real usage
(including VoIP [2]) in exchange for the substantial ben-
efit of 20x-50x power savings.

5.3.2 Applications Requiring Stubs

In this section we present evaluations for applications
that require stub support on the gumstix, primarily look-
ing at the overhead in terms of memory consumption
and processing capabilities that they impose on the gum-
stix. We have implemented application stubs for three
common applications — background downloads using
the http protocol, P2P file sharing using BitTorrent, and
maintaining presence on IM networks — as described in
Section 4.

To study the overhead of IM clients, we run the cor-
responding application stub using up to three different
IM protocols simultaneously — MSN Messenger, AOL
Messenger and ICQ Chat. Table 4 shows the processor
utilization and memory footprint of the Wired-1NIC pro-
totype when running these IM clients. Since the behav-
ior of the IM stub is such that it maintains presence of
the user on various networks and on receipt of an appro-
priate trigger (IM from someone) wakes up the host, the
latency values are similar to those of the VoIP application
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Accounts Processor Memory
95th percentile 95th percentile

None 0.0% 5.9 MB
MSN only 10.0% 6.5 MB

MSN+AOL 21.6% 6.7 MB
MSN+AOL+ICQ 26.0% 6.9 MB

Table 4: Processor and memory utilization for the IM
stub for various configurations. Total memory for the
gumstix is 64 MB.

Configuration Processor Memory
95th percentile 95th percentile

Single download
4MB cache 16.0% 6.5 MB
8MB cache 16.0% 10.6 MB

16MB cache 16.1% 18.9 MB

Two simultaneous downloads (4 MB cache)
1st download 16% 6.5 MB
2nd download 24% 7.0 MB

Table 5: Processor and memory utilization for the Bit-
Torent stub for various configurations. Total memory for
the gumstix is 64 MB.

as reported in Figure 6. For our Wired-1NIC prototype
the additional latency for the IM stub when using Som-
niloquy is around seven seconds.

To evaluate the overhead of P2P file sharing using the
BitTorrent stub on the gumstix, we initiated downloads
using a torrent from a remote website5 into the 2 GB SD
card of the Wired-1NIC gumstix. We varied the mem-
ory cache available to the stub while conducting a single
download, and then tested two simultaneous downloads.
The results in Table 5 show that the memory footprint of
the stub increases proportionally to the cache size as ex-
pected, while the processor utilization remains constant.
When there are two simultaneous downloads, each in-
stance of the stub uses memory proportional to its speci-
fied 4 MB cache.

Finally, to evaluate the web-download stub on the
gumstix we initiate download of a large (300 MB) file
from a local web server. We varied the throughput of
the downloads and measured the processor utilization
and the memory consumption of the gumstix, and exper-
imented with two simultaneous downloads. As shown in
Table 6, the processor utilization increases as the down-
load rate increases although the memory footprint for
each download remains constant.

The above results show that using application stubs,
we can support fairly complex tasks and applications, in-
cluding background web downloads and P2P file shar-

5http://www.legaltorrents.com/

Configuration Processor Memory
95th percentile 95th percentile

Single download
2Mbps 9.2% 1.8 MB
4Mbps 21% 1.8 MB
8Mbps 50% 1.8 MB

Two simultaneous downloads (4 Mbps each)
1st download 31% 1.8 MB
2nd download 26.3% 1.8 MB

Table 6: Processor and memory utilization for the web
download stub for various configurations. Total memory
for the gumstix is 64 MB.

ing using relatively modest resources on the gumstix. It
is important to note that the power consumption of the
gumstix did not exceed 2 W in all of these experiments.

5.4 Energy Savings using Somniloquy

In addition to evaluating the operating performance of
our Somniloquy prototypes, it’s also important to assess
the higher level goal of this work, namely the impact on
PC energy consumption. In this section we present some
data which demonstrates the potential of Somniloquy to
reduce both desktop and laptop energy usage in general
terms. We also verify the energy saving model presented
in Section 3.3, which allows the specific savings in a
given application scenario to be calculated. Unless other-
wise noted, we are using the Wired-1NIC version of our
prototype for the desktop energy measurements and the
Wireless-2NIC version for the laptop energy measure-
ments.

5.4.1 Reducing Desktop Energy Consumption

Our testbed desktop PC consumes 102 W in normal op-
eration and <5 W in S3 with Somniloquy. Somniloquy
therefore saves around 97 W. On this basis, if Somnilo-
quy were to be deployed in an environment where a PC
is actively used for an average of 45 hours each week
(i.e. 27% of the time), this would result in 620 kWh
of savings per computer in a year. Assuming 0.61 kg
CO2/kWH6 and US$ 0.09/kWH7, this means an annual
saving of 378 kg of CO2 (to put it in perspective, the av-
erage US residents annual CO2 emissions are 20 metric
tonnes as compared to a worldwide average of 4 met-
ric tonnes per person8) and US$ 56 per computer. We

6http://www.eia.doe.gov/cneaf/electricity/
page/co2_report/co2report.html

7http://www.eia.doe.gov/cneaf/electricity/
epa/epa_sum.html

8http://www.sciencedaily.com/releases/2008/
04/080428120658.htm
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Figure 7: Power consumption and the resulting estimated
battery lifetime of a Lenovo X60 using Somniloquy. The
lifetime is calculated using the standard 65 Watt hour
battery of the laptop.

believe this is significantly higher than the bill of ma-
terials cost of the components required to implement
a commoditized Somniloquy-enabled network card. In
this case, deployments of Somniloquy-enabled devices
would pay for themselves within a year.

5.4.2 Desktop Energy Savings for Real Workloads

We now estimate the energy savings enabled by Somnil-
oquy under realistic workloads. We use the data provided
by [20], relating to the use patterns of twenty two distinct
desktop PCs; each of which is classified as being either
idle, active, sleep or turned off. We then compute the
energy consumed by each of the PCs with and without
Somniloquy using the formula of Section 3.3. For ease of
exposition, we bin the data into three different categories:
PCs that are idle for <25% of the time (7 machines), idle
for 25%-75% of the time (6 machines) and finally those
that are idle for >75% of the time (9 machines). The
average energy savings for these twenty two PCs when
using Somniloquy is 65%, as compared to normal oper-
ation without Somniloquy. The average energy savings
for the PCs in the individual categories are 38%, 68%
and 85% respectively. As expected, the most energy sav-
ings are for the PCs with larger idle times since they have
more opportunity to use Somniloquy.

5.4.3 Increasing Laptop Battery Lifetime

Figure 7 shows the average power consumption of the
laptop testbed when operating normally (i.e. no power
saving mechanisms), with standard power saving mech-
anisms in place (the baseline power), when Somniloquy
(Wireless-2NIC) is operational, and in the standard S3
mode (without the gumstix attached). Somniloquy adds
a relatively low overhead of 300 mW to S3 mode, result-
ing in a total power consumption which is close to just
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Figure 8: Comparing the analytical results with the mea-
sured values for the web-download stub. The flash stor-
age available on the gumstix is set to 100 MB, unless
stated otherwise.

1 W, as compared to the 11 W of the idle laptop. This
means that when the laptop needs to be attached to the
network and available for remote applications but is oth-
erwise idle, it can be put into Somniloquy mode to enable
an order of magnitude decrease in power consumption
and a resulting increase in battery lifetime from 5.9 hours
to 63 hours (using the standard 65 Watt-Hour battery).

5.4.4 Energy Savings for Specific Applications

The basic analysis of energy consumption and battery
lifetime presented above is very generic; for a given us-
age scenario it should be possible to use the energy sav-
ing model presented in Section 3.3 to predict savings
much more accurately. In order to validate this model
we ran experiments downloading content from a remote
web server, and measured both energy consumption and
latency so as to compare them with their corresponding
analytical values. Note that we only measure the energy
consumption for the duration of the application.

The web download stub was chosen since it was rela-
tively easy to change the duty-cycle of the host, i.e. the
duration for which the host can sleep (Tsleep) after which
it needs to be woken up to transfer data from the gumstix
(Tawake). As discussed in Section 3.3, Tsleep depends on
the download bandwidth and the amount of flash storage
on the gumstix, while Tawake depends on the amount of
flash storage on the gumstix and the transfer rate between
the gumstix and the host. We downloaded a 300 MB
file at various link bandwidths ranging from 512 Kbps
to 2 Mbps, and used two different flash storage sizes at
the gumstix - 100 MB and 200 MB, effectively varying
Tsleep from approximately 1600 seconds down to 400
seconds. We measured the power consumed during the
download using the methodology described in the begin-
ning of this section. In Figure 8, we present the measured
energy savings and the corresponding predicted values
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using our model for four different data points. As we
can see from the figure, the predicted energy savings and
the increased latency closely match the measured values
(within 1.5%). The values do not exactly match since
the actual measured power values vary over time, and
the time taken to suspend and resume also varies across
runs. We used a fixed value for these in the formula.

Figure 8 also illustrates that increasing the bandwidth
from 512 Kbps to 2 Mbps reduces the energy savings
from 85% to 50%, and increases the latency from 11% to
43%, although a larger amount of flash storage improves
the energy saving and latency. As explained earlier this
is due to the limited transfer speed of the USBnet inter-
face in our prototype (<5 Mbps), because of which the
PC is awake for longer periods of time while transfer-
ring the data from the gumstix (Tawake= 181 seconds to
transfer 100 MB of data). In Figure 8 we have also plot-
ted an ideal case (1 Mbps-ideal) where the host can read
the flash storage of the gumstix directly. For the ideal
case the duration for which the host needs to stay awake
to transfer data from the gumstix reduces considerably
(Tawake= 23 seconds). This improves energy savings to
91% and limits the increase in latency when using Som-
niloquy to less than 5%.

6 Related Work

There have been several proposals to reduce the en-
ergy consumption of desktop PCs and laptops. Prior
work can largely be grouped in three categories: re-
ducing the active power consumption of devices (when
awake) [3, 5, 9, 10, 16, 17], reducing the power con-
sumption of the network infrastructure (e.g. routers and
switches) [11, 12, 21], and opportunistically putting the
devices to sleep. Somniloquy falls in the third category.
Since a machine in sleep state consumes significantly
less power than in lowest power active state [11, 27] (ver-
ified by us in Section 5), significant energy savings are
possible by putting the machine to sleep whenever pos-
sible.

For opportunistic-sleep systems, the biggest challenge
is to ensure connectivity when the host is asleep. Prior
techniques to solve this problem either use advanced
functionality in the NIC [18] or use extra network in-
terfaces [26, 27]. We now compare and contrast Somnil-
oquy to both these classes of work.

Among schemes that do not use an extra net-
work interface, the most well-known are Wake-on-LAN
(WoL) [18] and its wireless equivalent, Wake-on-WLAN
(WoWLAN). In both these schemes, the NIC parses in-
coming packets when the host is asleep. It wakes up
the host PC whenever an incoming “magic” packet is re-
ceived. According to the specification [18], the magic
packet payload must include 6 characters of a wakeup

pattern that is set by the host PC, followed by 8 copies
of the NIC’s MAC address. In WoWLAN, the only dif-
ference is that this packet is sent over the Wireless LAN.
Although most modern NICs implement WoL function-
ality, few deployed systems actually use this function-
ality, due to four main reasons. First, the remote host
must know that the PC is asleep and that it must wake
it up before pursuing application functionality. Second,
the remote host must have a way of sending a packet to
the sleeping PC through any firewalls/NAT boxes, which
typically do not allow incoming connections without spe-
cial configuration. Third, the remote host must know
the MAC address of the sleeping PC. Fourth, WoWLAN
does not work when laptops change their subnet because
of mobility. In contrast, Somniloquy does not require the
extra configuration of firewalls/NAT boxes, and is trans-
parent to remote application servers. It can handle mo-
bility across subnets since the secondary processor can
re-associate with services such as Dynamic DNS (to redi-
rect a permanent host name to the PC’s new IP address),
and re-log-in to servers such as IM servers. In addition
to these differences, Somniloquy also allows applications
to be offloaded to the low power processor. There is no
such concept in WoL, which instead wakes up the host
when any pattern is matched.

Intel recently announced its Remote-Wake’ [14]
chipset technology (RWT) that claims to extend WoL on
new motherboards by allowing VoIP calls to wake up a
system, although its general applicability to other appli-
cations is not known. The details of this technology are
not published. In contrast, Somniloquy goes beyond just
WoL or RWT. It allows low power operation for various
applications other than VoIP. Furthermore, Somniloquy
does not require modifications to application end points
or servers. RWT requires applications to first contact a
server, which then sends a special packet to the PC to
signal a wake up.

Another approach is to use additional “low-power”
network interfaces to maintain connectivity to the PC that
is asleep. This approach has been proposed for use with
mobile devices. For example, Wake-on-Wireless [26]
wakes up the host PC on receiving a special packet on
the low power network interface. Turducken [27] uses
several tiers of network interfaces and processors with
different power characteristics, and wakes up the upper
tier when the lower tier cannot handle a task. In con-
trast to these schemes, Somniloquy requires only a single
network interface, and presents the paradigm of a single
PC to users rather than a multi-tiered system, preserv-
ing the current user experience and therefore requiring
less training to use. Somniloquy also gives the impres-
sion to remote application servers that a device remains
awake all the time even though it is actually asleep, since
the same MAC and IP addresses are used. This level of
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transparency is not provided either by Wake-on-Wireless
or Turducken. Finally, we have gone into more detail
than previous work on ways of supporting applications
that require interactions among the secondary and the
host processor to perform offload – such as IM, BitTor-
rent and web downloads.

To reduce the power consumed by desktop PCs, some
early proposals have suggested the use of proxies on the
subnet that function on behalf of the desktop PC when it
is asleep [4, 7, 11]. The proxy monitors incoming pack-
ets for the PC, and wakes it up using WoL when the PC
needs to handle the packet. We are not aware of any pub-
lished prototype implementations of such systems. Re-
cently, Sabhanatarajan et. al. [25] propose a smart NIC
that can act as proxy for a host to save power. How-
ever, the authors focus primarily on the design of a high
speed packet classifier for such an interface. In compar-
ison, Somniloquy has much wider applicability than the
above schemes. It can be used in homes and small offices
where it might be infeasible to deploy a dedicated server
to handle processing for another PC.

A contemporaneous effort to Somniloquy is the idea
of a Network Connection Proxy (NCP) [15, 20], which
is a network entity that maintains the presence of a sleep-
ing PC. In [15], the authors define the requirements of
an NCP and propose modifications to the socket layer
(similar to Split TCP) for keeping TCP connections alive
through a PC’s sleep transitions. In [20], the authors ex-
tend these APIs to support other protocols as well. Som-
niloquy is similar in spirit to NCP, and NCP’s socket
APIs can reduce Somniloquy’s overhead when waking
up from sleep (Section 3.1). Furthermore, to the best of
our knowledge, Somniloquy is the first published proto-
type of any proxying system.

We note that the concept of adding more process-
ing to the network interface is not new. Existing prod-
ucts offload processing to the NIC to improve perfor-
mance (TCP offload [19]) and remote manageability (In-
tel AMT [13]). Somniloquy uses a similar offloading
paradigm, but to conserve energy instead of improving
performance or manageability.

7 Conclusions

We have presented Somniloquy, a system that augments
network interfaces to allow PCs to be put into low-power
sleep states opportunistically, without sacrificing func-
tionality. Somniloquy enables several new energy sav-
ing opportunities. First, PCs can be put to sleep while
maintaining network reachability, without special net-
work infrastructure as needed by previous solutions (e.g.
WoL). Second, some applications can be run in sleep
mode thereby requiring much less power. In this paper,
we have shown the feasibility for three such applications

to be run in sleep mode: BitTorrent, instant messaging,
and web downloads.

Somniloquy achieves these energy savings without re-
quiring any modifications to network, to remote appli-
cation servers, or to the user experience of the PC. Fur-
thermore, Somniloquy can be incrementally deployed on
legacy network interfaces, and does not rely on changes
to the CPU scheduler or the memory manager to imple-
ment this functionality, thus it is compatible with a wide
class of machines and operating systems.

Our prototype implementation, based on a USB pe-
ripheral, includes support for waking up the PC on net-
work events such as incoming file copy requests, VoIP
calls, instant messages and remote desktop connections,
and we have also demonstrated that file sharing/content
distribution systems (e.g. BitTorrent, web downloads)
can run in the augmented network interface, allowing for
file downloads to progress without the PC being awake.
Our tests show power savings of 24x are possible for
desktop PCs left on when idle, or 11x for laptops. For
PCs that are left idle most of the time, this translates to
energy savings of 60% to 80%. The electricity savings
made are such that deploying a productized version of
Somniloquy could pay for itself within a year.
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Abstract

Networked end-systems such as desktops and set-top
boxes are often left powered-on, but idle, leading to
wasted energy consumption. An alternative would be for
these idle systems to enter low-power sleep modes. Un-
fortunately, today, a sleeping system sees degraded func-
tionality: first, a sleeping device loses its network “pres-
ence” which is problematic to users and applications that
expect to maintain access to a remote machine and, sec-
ond, sleeping can prevent running tasks scheduled dur-
ing times of low utilization (e.g., network backups). Var-
ious solutions to these problems have been proposed over
the years including wake-on-lan (WoL) mechanisms that
wake hosts when specific packets arrive, and the use of a
proxy that handles idle-time traffic on behalf of a sleep-
ing host. As of yet, however, an in-depth evaluation of
the potential for energy savings, and the effectiveness of
proposed solutions has not been carried out. To remedy
this, in this paper, we collect data directly from 250 en-
terprise users on their end-host machines capturing net-
work traffic patterns and user presence indicators. With
this data, we answer several questions: what is the po-
tential value of proxying or using magic packets? which
protocols and applications require proxying? how com-
prehensive does proxying need to be for energy benefits
to be compelling? and so on.

We find that, although there is indeed much potential
for energy savings, trivial approaches are not effective.
We also find that achieving substantial savings requires a
careful consideration of the tradeoffs between the proxy
complexity and the idle-time functionality available to
users, and that these tradeoffs vary with user environ-
ment. Based on our findings, we propose and evaluate
a proxy architecture that exposes a minimal set of APIs
to support different forms of idle-time behavior.

∗International Computer Science Institute
†Intel Research
‡University of California, Berkeley
§Lawrence Berkeley National Laboratories

1 Introduction
Recent years have seen rising concern over the energy
consumption of our computing infrastructure. A recent
study [19] estimates that, in the U.S. alone, energy con-
sumption for networked systems approaches 150 TWh,
with an associated cost of around 15 billion dollars.
About 75% of this consumption can be attributed to
homes and enterprises, and the remaining 25% to net-
works and data centers. Our focus in this paper is on re-
ducing the 75% consumed in homes and enterprises. To
put this in perspective, this energy (112 TWh) is roughly
equivalent to the yearly output of 6 nuclear plants [14].
Of equal concern is that this consumption has grown –
and continues to grow – at a rapid pace.

In response to these energy concerns, computer ven-
dors have developed sophisticated power management
techniques that offer various options by which to reduce
computer power consumption. Broadly, these techniques
all build on hardware support for sleep (S-states), and
frequency/voltage scaling [21] (processor P-states [4]).
The former is intended to reduce power consumption
during idle times, by powering down sub-components
to different extents, while the latter reduces power con-
sumption while active, by lowering processor operating
frequency and voltage during active periods of low sys-
tem utilization.

Of these, sleep modes offer the greatest reduction in
the power draw of machines that are idle. For example, a
typical sleeping desktop draws no more than 5W [2], as
compared to at least 50W [2] when on, but idle – an order
of magnitude reduction. It is thus unfortunate that sleep
modes are not taken advantage of to anywhere close to
their fullest potential. Surveys of office buildings have
shown that about two thirds of desktops are fully on at
night [20], with only 4% asleep. Our own measurements
(Section 3) reveal that enterprise desktops remain idle for
an average of 12 hours/day – time that could, in theory,
be spent mostly sleeping.

Relative to an idle machine, the only loss of functional-
ity to a sleeping machine is twofold. First, since a sleep-
ing computer cannot receive or transmit network mes-
sages, it effectively loses its “presence” on the network.



382	 NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation	 USENIX Association

This can lead to broken connections and sessions when
the machine resumes (e.g., a sleeping machine does not
renew its DHCP lease and hence loses its IP address)
and also prevents remote access to a sleeping computer.
This loss of functionality is problematic in an increas-
ingly networked world. For example, a user at home
might want to access files on his desktop at work, an
on-the-road user might want to download files from his
home machine to his handheld, system administrators
might desire access to enterprise machines for software
updates, security checks and so forth. In fact, some en-
terprises, require that users not power off their desk-
tops to ensure administrators can access machines at all
times [6]. The second problematic scenario is when users
or administrators deliberately want to schedule tasks to
run during idle times – e.g., network backups that run
at night, critical software updates, and so on. Unfortu-
nately, these drawbacks cause users to forego the use of
sleep modes leading to wasteful energy consumption.

The above observations are not new, having been re-
peatedly articulated (also by some of the authors) in both
the technical literature and popular press [13, 16, 19, 10,
7, 15]. Likewise, there have been two long-standing pro-
posals on how to tackle the problem. The first is to gen-
eralize the old technology of Wake-on-LAN (WoL), an
Ethernet computer networking standard that allows a ma-
chine to be turned on or woken up remotely by a special
“magic packet”. A second, more heavyweight, proposal
has been to use a proxy that handles idle-time traffic on
behalf of a sleeping host(s), waking the sleeping host
when appropriate. Thus both problem (wasted energy
consumption by idle computers) and proposed solutions
(wake-up packets and/or proxies for sleeping machines)
have existed for a while now. In fact, the technology for
WoL has been implemented and deployed although not
widely used (we explore possible causes for this later
in the paper). However the recent focus on energy con-
sumption has led to renewed interest in the topic with
calls for research [7, 13], calls for standardization [12],
and even some commercial prototypes [15]. As yet how-
ever, there has been little systematic and in-depth evalua-
tion of the problem or its solutions – what savings might
such solutions enable? what is the broader design space
for solutions? what, if any, might be the role of standard-
ization? are these the right long-term solutions? etc.

In this paper, we explore these questions by studying
user behavior and network traffic in an enterprise envi-
ronment. Specifically, we focus on answering the follow-
ing questions:

Q1: Is the problem worth solving? Just how much
energy is squandered due to poor computer sleeping
habits? This will tell us the potential energy savings these
solutions stand to enable and hence the complexity they
warrant. Also, is proxying really needed to realize these

potential savings or can we hope that WoL suffices to
maintain network presence while still sleeping usefully?

Q2: What network traffic do idle machines see? Un-
derstanding this will shed light on how this idle-time traf-
fic might be dealt with and, consequently, what protocols
and applications might trigger wake-up packets and/or
require proxying. On the face of it, it would seem like
an idle machine ought not to be engaged in much useful
activity and hence, ideally, one might hope that a small
number of wake-up events are required and/or that a rel-
atively small set of protocols must be proxied to realize
useful savings.

Q3: What is the design space for a proxy? In general,
the space appears large. Different proxy implementations
might vary in the complexity they undertake in terms of
what work is handled by the proxy vs. waking the ma-
chine to do so. In some cases, one might opt for a rela-
tively simple proxy that (for example) only responds to
certain protocols such as ARP (specified by the DMTF
ASF2.0 standard[1]) and NetBios. But more complex
proxies are also conceivable. For example, a proxy might
take on application-specific processing such as initiat-
ing/completing BitTorrent downloads during idle times
and so forth. Likewise, there are many conceivable de-
ployment options – a proxy might run at a network mid-
dlebox (e.g., firewall, NAT, etc.), at a separate machine
on each subnet, or even at individual machines (e.g., on
its NIC, on a motherboard controller, or on a USB-
attached lightweight microengine). Given this breadth
of options, we are interested in whether one can iden-
tify a minimal proxy architecture that exposes a set of
open APIs that would accommodate a spectrum of design
choices and deployment models. Doing so appears im-
portant because a proxy potentially interacts with a diver-
sity of system components and even vendors (hardware
power management, operating systems, higher-layer ap-
plications, network switches, NICs, etc.) and hence iden-
tifying a core set of open APIs would allow different ven-
dors to co-exist and yet innovate independently. For ex-
ample, an application developer should be able to define
the manner in which his application interacts with the
proxy with no concern for whether the proxy is deployed
at a firewall, a separate machine or a NIC.

Q4: What implications does proxying have for future
protocol and system design? The need for a proxy
arises largely because network protocols and applica-
tions were never designed with energy efficiency in mind
nor to usefully exploit, or even co-exist with, power man-
agement in modern PCs and operating systems. While
proxies offer a pragmatic approach to dealing with this
mismatch for currently deployed protocols and software,
one might also take a longer-term view of the problem
and ask how we might redesign protocols, applications
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or even hardware power management to eventually obvi-
ate the need for such proxying altogether.

In this paper, we study the network-related behavior of
250 users and machines in enterprise and home environ-
ments, and evaluate each of the above questions in Sec-
tions 3 to 6 respectively.

2 Measurement data and methodology
We collected network and user-level activity traces from
approximately 250 client machines belonging to Intel
corporation employees, for a period of approximately
5 weeks. The machines, running Windows XP, include
both desktops and notebooks—approximately 10% are
desktops and the rest, notebooks.

Our trace collection software was run at the individ-
ual end-hosts themselves and hence, in the case of note-
books, trace collection continued uninterrupted as the
user moved between enterprise and home, enabling us
to analyze traffic from both of these environments.

Our packet traces were collected using Windump. To
capture user activity, we developed an application that
sampled a number of user activity indicators at one sec-
ond intervals. The user activity indicators we collected
included keyboard activity and mouse movements and
clicks. Noticeable gaps in the traces occur when the host
was turned off, put to sleep, or in hibernation. Thus each
end-host is associated with a trace of its network and user
activity. We then used BRO [9] to reassemble connection-
level information from each packet-level trace.

Thus, for the 5 week duration of our measurement
study, we have the following information for each end-
host:
• a packet-level (pcap) trace capturing packet headers
for the entire duration
• per-second indicators of user presence at the machine
• the set of all connections—incoming and outgoing—
as reconstructed by BRO from the packet traces

The result is a 500GB repository of trace data. To pro-
cess this, we developed a custom tool that extends the
publicly available WIRESHARK [3] network protocol an-
alyzer with different function callbacks implementing
the additional processing required for our study.

3 Low Power Proxying: Potential and Need
In this section, we estimate the energy wasted by home
and office computers that remain powered on even when
idle, i.e., even when there is no human interacting with
the computer. Subsequently, we investigate whether very
simple approaches — e.g., the computer is woken up to
process every network packet and then returns to sleep
immediately after—would suffice in allowing hosts to
sleep more while preserving their network “presence”.

How much energy is squandered by not sleeping?
Virtually all modern computers support advanced sleep

states, S1 - S4 as defined in the ACPI specification [5].

Figure 1: Distribution of the split among off, idle and
active periods across users.

These states vary in their characteristics—whether the
CPU is powered off, how much memory state is lost,
which buses are clocked and so on. However, common
to all states, is that the CPU stops executing instructions
and hence the computer appears to be powered down.
Thus although these sleep states conserve energy, the un-
desirable side-effect is that a sleeping computer effec-
tively “falls off” the network—making it unavailable for
remote access and unable to perform routine tasks that
may have been scheduled at particular times. This leads
many users to disable power management altogether and
instead leave machines running 24/7. For example, stud-
ies have shown that approximately 60% of the PCs in of-
fice buildings remain powered on overnight and almost
all of these have power management disabled [20].

To more carefully quantify the amount of wasted en-
ergy (and hence potential savings), we analyzed the trace
data collected at our enterprise machines. To determine
whether a machine has a locally present and active user,
we examine the recorded mouse and keyboard activity
for the machine: if no such activity is recorded for 15
minutes, we say that the machine is idle. We use 15 min-
utes because it is the default timeout recommended by
EnergyStar for putting machines to sleep, and because it
represents a simple (and fairly liberal) approximation for
the notion of idle-ness, for which a standard definition
does not exist. We maintain this definition of idle-ness
for the remainder of the paper.

At any point in time, we classify a machine as being in
one of four possible states: (a) on, and actively used, we
call this active; (b) on, but not used, idle; (c) in a sleep
state such as S3 or S4, and (d) powered down, off. Note
that this notion of “idle” refers here to the user, and not
the machine, being inactive.

In Figure 1 we present this data for our enterprise desk-
tops. We focus here on the desktops since this represents
the potential energy savings an enterprise could garner.
Because the bulk of our traces come from mobile users,
we have a limited number of desktops. We see that the
fraction of time when these machines are active is quite
low, falling below 10% on average. Moreover, the aver-
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Figure 2: Average number of directed and broad-
cast/multicast packets received on average by a network
host at home and in the office.

age fraction of time when machines are idle is high –
about 50%. Similar to other studies, we note that a small
fraction of our desktops (only 5 out 24) use sleep mode
at all. Overall, this indicates that there is a tremendous
opportunity for energy savings on enterprise desktops.
The opportunity on our corporate laptops exists too, but
is moderate because we found that our laptop users were
more likely to employ aggressive sleeping configurations
that come pre-configured on laptops.

While the sample of the desktop machines in our exper-
iments is small, the results are consistent with existing
studies [20]. We therefore use these measured idle times
to extrapolate the energy that could be saved by sleeping
instead of remaining idle. There are estimated to be about
170 million desktop PCs in the US (data summarized in
[23]). Assuming an 80W power consumption of an idle
PC, and assuming these machines are idle for 50% of the
time, this amounts to roughly 60 TWh/year of wasted
electricity (or 6 billion dollars, at US$0.10 per kWh).

Is low-power proxying needed? Before developing
new solutions to reducing host idle times, we investigate
whether very simple approaches like waking up for ev-
ery packet can deliver these savings while maintaining
full network presence. In this approach, which we denote
(WoP – wake on packet), the machine is woken up for
every packet it needs to receive (directed or broadcast),
and put back to sleep after the packet is served. The per-
formance of such an approach depends on whether the
inter-packet gap (IPG) is smaller or comparable to the
time it takes to transition in and out of sleep. If it isn’t
then there is no gain over simply leaving the machine in
an idle state.

To examine the traffic during idle times, we used both
our desktop and laptop machines. We consider both types
(even though we’re primarily interested in desktops) be-
cause this gives us a significantly larger set of samples.
We separate the idle time traffic into two categories, of-
fice and home. In Figure 2 we plot the average number of
packets/sec for idle traffic both in the office and at home.
In the office environment, the average number of packets
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Figure 3: Histogram of the fraction of the idle time made
up of inter-packet gaps of different size.

per second is roughly 3, while at home it is roughly 1.
This indicates a fairly constant level of background chat-
ter on the network, independent of the user’s activity. Be-
cause this number is an average, we need to understand
if these packets occur in bursts or not. If the packets are
bursty most of the time, then there may still be opportu-
nities to sleep as the host can be woken up to service a
burst of packets and then be put to sleep for some reason-
able period of time (certainly more than a few seconds).
If these packets occur fairly evenly spaced, then it is not
worth going to sleep unless the time to transition in and
out of sleep is very small (on the order of 1 to 3 seconds).

To quantify the burstiness level of our traffic, we group
inter-packet gaps into second-long bins (i.e., 0-1s, 1-2s,
etc.). We then compute the sum of the inter-packet gaps
in each of these bins, and finally compute the fraction
of total idle time represented by each bin. We present
these results in Figure 3, for both home and office envi-
ronments. In the office, over 90% of the time, the IPG
is less than 2 seconds. Although the distribution is more
uniformly spread for the home environment, we still see
that roughly 70% of the time, the IPG is less than 20
seconds. Overall we observe that: (a) neither of the en-
vironments enjoys many long periods of quiet time; (b)
we find this distribution to be very different for the two
environments. In home networks the distribution has a
much heavier tail, the traffic is burstier, and we do see
longer periods of quiet time.

We now translate these observations into actual sleep
time. In order to perform this computation, we must con-
sider a representative value for the time interval it takes
the host to wake up, process the packet and then go to
sleep again—we call this the transition time, denoted t

s.
Today, typical machines take 3 – 8 seconds to enter S3
sleep, and 3 – 5 seconds to fully resume from S3, as mea-
sured in a recent study [6]. Therefore, it is reasonable to
assume an average transition time ts of 10s.

When a packet arrives, the machine is woken up to
serve the packet. After processing a packet, the machine
only goes to sleep again if it knows the next packet will
not arrive before it transitions to sleep. This idealized test
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Figure 4: The fraction of idle time users can sleep if they
wake up for every packet, across different environments
for a transition time ts = 10seconds.

thus assumes that the host knows the future incoming
packet stream and captures the best the machine could
do in terms of energy savings.

Figure 4 presents the fraction of idle time for which
users can sleep, assuming the policy described above.
The results are rather dramatically different for across
environments. In the office, there is almost no oppor-
tunity to sleep for the majority of the users. This indi-
cates that the magic packet-like approach will not suc-
ceed in saving any energy for machines in a typical cor-
porate office environment. For the home environment,
we see that roughly half the users can sleep for over
50% of their idle times. Thus in these environments, a
10s transition time coupled with a WoP type policy can
be somewhat effective. However, these estimates assume
perfect knowledge of future traffic arrivals and also fre-
quent transitions in and out of sleep—in practice, we ex-
pect the achievable savings would be somewhat lower.
Nonetheless, this does suggest that efforts to reduce sys-
tem transition times in future hardware could obviate the
need for more complex power-saving strategies in certain
environments.

We conclude that while significant opportunity for
sleep exists, capitalizing on this opportunity requires so-
lutions that go beyond merely waking the host to han-
dle network traffic; we thus consider solutions based on
proxying idle-time traffic in the following sections.

4 Deconstructing traffic
In the previous section we saw that, by just waking up
to handle all packets, our ability to increase a machine’s
sleep time is limited. In particular, we see virtually no
energy savings in the dominant office environments. This
suggests that we need an approach that is more discrim-
inating in choosing when to wake hosts. This leads us to
an alternate solution to the WoL which is to employ a
network proxy whose job is to handle idle-time traffic on
behalf of one or more sleeping hosts. Packets destined
for a sleeping host are intercepted by (or routed to, de-
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Figure 5: Composition of incoming and outgoing traf-
fic during idle times, for home and office environments,
based on communication paradigms

pending on the proxy deployment model) its proxy. At
this point, the proxy must know what to do with this in-
tercepted traffic; broadly, the proxy must choose between
three reactions: a) ignore/drop the packet; b) respond to
the packet on behalf of the machine; or c) wake up the
machine to service it. To make a judicious choice, the
proxy must have some knowledge of network traffic—
what traffic is safely ignorable, what applications do
packets belong to, which applications are essential, and
so forth. In this section, we do a top-down deconstruc-
tion of the idle-time traffic traces aimed at learning the
answers to these questions.

4.1 Traffic Classes by Communication Paradigm

To begin, we look at all packets exchanged during idle
periods, and classify each packet as either being a broad-
cast, multicast or unicast packet. Within these broad traf-
fic classes, we further partition the traffic by whether the
packets are incoming or outgoing, for both the home and
office environments. We separate incoming and outgoing
traffic because we expect them to look different in terms
of the proportion of each class in different directions
(e.g., most end-hosts ought to send little broadcast traf-
fic). Similarly, we look at different usage environments
because it is intuitive that the dominant protocols and ap-
plications used in each environment may differ. Since we
expect these differences, we treat them as such to avoid
mischaracterizations. The breakdown of our traffic ac-
cording to all these partitions in depicted in Fig. 5.

We note that outgoing traffic is dominated by unicast
traffic since, as expected, each host generates little broad-
cast or multicast traffic. We also find that incoming traffic
at a host sees significant proportions of all three classes
of traffic, and this is true in both enterprise and home
environments. This suggests that a power-saving proxy
might have to tackle all three traffic classes to see signif-
icant savings.

So far, we looked at traffic volumes as indicative of the
need to proxy the corresponding traffic type. We now di-
rectly evaluate the opportunity for sleep represented by
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each traffic type. To understand the maximum sleeping
opportunities, we consider for a moment an idealized
scenario in which we use our proxy to ignore all incom-
ing packets from either or both of the broadcast and mul-
ticast traffic classes. A machine always wakes up for uni-
cast packets. Fig. 6 shows the sleep potential in four sce-
narios: a) ignore only broadcast and wake for the rest;
c) ignore only multicast and wake for the rest; c) ignore
both broadcast and multicast. For comparison purposes
we also include the results for a scenario d) in which
we wake up for all packets. This comparison allows us
to compare the benefits derived from these four different
proxy policies. For each user, we computed the fraction
of its idle time that could have been spent sleeping un-
der the scenario in question. We use a transition time of
ts = 10s and the results are averaged over 250 users for
both home and office environments.
We make the following observations:
(i) Broadcast and multicast are largely responsible for
poor sleep. If we can proxy these, then we can recuper-
ate over 80% of the idle time in home environments. And
in the office, where previously sleep was barely possible,
we can now sleep for over 50% of the idle time.
(ii) Doing away with only one of either broadcast or
multicast is not very effective (we suspect this is due to
the periodicity of multicast and broadcast protocols, and
evaluate this in later sections).

More generally, the graph clearly indicates a valuable
conclusion—if we’re looking to narrow the set of traf-
fic classes to proxy, then multicast and broadcast traf-
fic appear to be clear low-hanging fruit and should be
our primary candidates for proxying. That said, proxying
unicast traffic appears key to achieving higher savings
(beyond 50%) in the enterprise and hence should not be
dismissed either. We thus continue, for now, to study all
three traffic types.

Of course, whether these potential savings can actually
be realized depends on whether a particular traffic type
can indeed be handled by a proxy without waking the
host. This depends on the specific protocols and applica-
tions within that class and hence, in the remainder of this
section, we proceed in turn to deconstruct each of broad-
cast (§4.2), multicast (§4.3) and unicast (§4.4) traffic.

4.2 Deconstructing Broadcast

Our goal in this section is to evaluate individual broad-
cast protocols, looking for: (1) which of these protocols
are the main offenders in terms of preventing hosts from
sleeping and, (2) what purpose do these protocols serve
and how might a proxy handle them. Answering the first
question requires a measure of protocol “badness” with
respect to preventing hosts from sleeping. We use two
metrics for our evaluation. The first is simply the total
volume of traffic due to the protocol in question. While
high-volume traffic often makes sleep harder, this is an
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Figure 6: Average sleep opportunity when ignoring mul-
ticast and/or broadcast traffic, for different environments

imperfect metric since the (in)ability to sleep depends as
much on the precise temporal packet arrival pattern due
to the protocol as on packet volumes. Nonetheless, we re-
tain traffic-volume as an intuitive, although indirect mea-
sure of protocol badness. Our second metric—which we
term the half-sleep time, denoted ts 50 – more directly
measures a protocol’s role in preventing sleep.

We define the half-sleep time for a protocol (or traffic
type) P as the largest host transition time that would be
required to allow the host to sleep for at least 50% of its
idle time, under the scenario where the machine wakes
up for all packets of type P and ignores all other traffic.
In effect, ts 50 quantifies the intuition that, if we ignore
all traffic other than that due to the protocol of interest,
then a protocol whose packets arrive spaced far enough
apart in time is more conducive to sleep since the host
has sufficient time to transition in and out of sleep.

In more detail, ts 50 is computed from our traces as
follows. We measure the total time a given host can sleep
assuming it wakes up for all the packets of the protocol
under consideration and ignores all others. We compute
this number for all hosts and take the average. This gives
us an upper bound on achievable sleep if the protocol
is handled by waking the host. We estimate this sleep
duration for different values of the host transition time ts

ranging from 0 seconds (ideal) to 15 minutes. The largest
of these transition times ts that allows the host to sleep
for over 50% of its idle time is the protocol’s ts 50 .

Intuitively, ts 50 indicates the extent to which a pro-
tocol is “sleep friendly” since protocols with large val-
ues of ts 50 could simply be handled by allowing the
machine to wake up; whereas those with low values of
ts 50 imply that (to achieve useful sleep) the proxy
must handle such traffic without waking the host.

For our evaluation, we classify each packet by protocol
and rank them by both metrics: traffic volume and the
half-sleep time. We begin by measuring traffic volume,
we then establish the top ranking protocols by volume,
and use these as candidates for our second metric, the
half-sleep time. When presenting the top ranking proto-
cols by each of the metrics, we consider : (1) the proto-
cols whose traffic volumes represents more than 1% of
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Protocol % of traffic Protocol % of traffic
ARP 46.13 ARP 42.56
NBNS 22.89 SSDP 19.63
IPX 10.12 NBNS 9.48
NBDGM 5.91 CUPS 5.6
LLC 3.28 LLC 4.4
ANS 2.85 UNISTIM 4.07
RPC 2.46 IPX 3.8
BOOTP 2.01 NBDGM 2.3
NTP 1.13 BOOTP 1.02
Other 3.22 Other 7.14
Total 100 Total 100

Office Home

Figure 7: Protocol composition of incoming broadcast
traffic, in both office and home environments, ranked by
per-protocol traffic volumes.

All Bcast 1-2s All Bcast 10-20s
ARP 2-3s ARP 1-2min
NBDGM 10-20s NBDGM 2-4min
NBNS 2-4min NBNS 4-8min
IPX 4-8min

Office Home

Figure 8: Protocol composition for broadcast protocols
ranked by ts 50 .

the total traffic at the host and (2) the protocols with a
half-sleep time of less than 15 minutes. Table 7 and 8
present our results for broadcast traffic. For complete-
ness, we also present the value of ts 50 when consider-
ing all broadcast traffic together.

In terms of traffic volumes, we see that the bulk of
broadcast traffic is in the cause of address resolution and
various service discovery protocols (e.g., ARP, Netbios
Name Service – NBNS, the Simple Service Discovery
Protocol used by UPnP devices – SSDP ). These proto-
cols are well represented in both home and office LANs.
A second well-represented category of traffic is from
router-specific protocols (e.g., routing protocols imple-
mented on top of the IPX).

In terms of the half-sleep time, we see that broadcast
as a whole allows very little sleep in the office: achiev-
ing 50% sleep would require very fast transitions (be-
tween 1 and 2 seconds), not feasible with today’s hard-
ware support. The situation in home LANs is signifi-
cantly better (ts 50 = 10s). In terms of protocols, we
see that the greatest offenders are similar to those from
our traffic-volume analysis, namely: ARP, Netbios Data-
grams (NBDGM) and Name Queries (NBNS), and IPX.

On closer examination, we find that most of these of-
fending protocols could be easily handled by a proxy:
for example, IPX is safely ignorable, ARP traffic that is
not destined to the machine in question is likewise safely
ignorable; for ARP queries destined to the machine, it
would be fairly straightforward for a proxy to automati-
cally construct and generate the requisite response with-
out having to wake the host.

Protocol % of traffic Protocol % of traffic
HSRP 59.58 SSDP 94.4
SSDP 24.91 HSRP 2.31
PIM 6.04 IGMP 1.84
IGMP 5.05
EIGRP 1.88
Other 2.54 Other 1.45
Total 100 Total 100

Office Home

Figure 9: Protocol composition for incoming multicast
traffic, in both office and home enviroments, ranked by
per-protocol traffic volumes.

All Mcast 0-1s All Mcast 1-2min
HSRP 0-1s SSDP 4-8min
PIM 8-9s HSRP >15min
IGMP 20-30s IGMP >15min
SSDP 20-30s

Office Home

Figure 10: Protocol composition for incoming multicast
traffic, in both office and home environments, ranked by
ts 50 .

4.3 Deconstructing Multicast

Table 9 and 10 present our protocol rankings for
multicast traffic. Again, we also present the value of
ts 50 when considering all multicast traffic taken to-
gether. We see that, multicast traffic (as a whole) can
be a bad offender in enterprise environments with an
ts 50= 0−1s. It turns out that this is largely caused by
router traffic—the Hot Standby Router Protocol (HSRP),
Protocol Independent Multicast (PIM), EIGRP, etc.

This traffic is either absent (e.g., PIM) or greatly re-
duced (e.g., HSRP) in home environments which ex-
plains why multicast is much less problematic in homes,
with an ts 50 = 1 − 2 minutes (compared to 10 − 20s

for broadcast).
The good news is that all router traffic (HSRP, PIM,

IGRP) is safely ignorable. In fact, many modern Ether-
net cards already include a hardware multicast filter that
discards most unwanted multicast traffic.

As with broadcast traffic, we also see significant traffic
contributed by service discovery protocols: in this case
SSDP, the Simple Service Discovery Protocol used by
UPnP devices. Once again, for protocols such as SSDP
and IGMP, it is fairly straightforward for a proxy to auto-
matically respond to incoming traffic without waking the
host; doing so would require some amount of state at the
proxy such as the list of multicast groups the interface
belongs to and the services running on the machine.

4.4 Deconstructing Unicast

Finally, we present our protocol ranking for unicast traf-
fic in Tables 11 and 12. Because much of unicast traf-
fic is either TCP or UDP, and this level of classifica-
tion is unlikely to be informative, we further break each
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Transport
Protocol

Session
Protocol

TCP 94.73
DCE/RPC 24.91
NBSS 14.85
HTTP 12.31
TPKT 3.82
SSL 2.68
VNC 2.45
Other 33.71

UDP 3.75
DNS 1
Other 2.75

ICMP 1.29 1.29
Other 0.23 0.23
Total 100 100

% of traffic

Figure 11: Protocol composition of incoming unicast
traffic in office enviroments, ranked by per-protocol traf-
fic volumes.

All Ucast 10-20s All Ucast 50-60s
TCP 10-20s UDP 1-2min
UDP 1-2min DNS 1-2min
DCE/RPC 1-2min TCP 8-15min
DNS 2-4min
SMB 4-8min
NBNS 4-8min
HTTP 8-15min

Office Home

Figure 12: Protocol composition of incoming unicast
traffic in office environments, ranked by ts 50 .

Port App ts_50
TCP keep
alives

many 1-2min

UDP 53 DNS 2-4min
TCP 1025 DCE/RPC 2-4min
TCP 445 SMB/CIFS 4-8min
TCP 63422 Bigfix 4-8min
TCP 53 DNS 4-8min
TCP 80 HTTP 8-15min
UDP 63422 Bigfix 8-15min
TCP SYNs many > 15min

Figure 13: Protocol composition for unicast traffic based
on TCP and UDP ports, ranked by ts 50.

down by session-layer protocol with an additional map-
ping from ports in Table 13. Unfortunately, unlike the
case of broadcast and multicast, with unicast, it is harder
to deduce the ultimate purpose for much of this traffic
since even the session or application-level protocol iden-
tifiers are fairly generic. (One exception is the “BigFix”
application listed in Fig. 13. BigFix is an enterprise soft-
ware patching service that checks security compliance of
enterprise machines; based on the frequency and volume
of BigFix traffic we see, it appears to have been config-
ured by an over-zealous system administrator.)

Stymied in our attempts to deconstruct unicast traffic
based on whether and how it might be proxied, we try

0%

25%

50%

75%

100%

IN OUT IN OUT

   Home   Office

Unknown

Ougoing
connections
Incoming
connections

Figure 14: Fraction of packets generated by incoming vs.
outgoing connections. For home and office, both received
and transmitted packets.

an alternate strategy. We classify TCP and UDP pack-
ets based on the connections they belong to and catego-
rize connections as incoming vs. outgoing. Our interest
in this classification is because we suspect that a large
portion of packets are likely to belong to outgoing con-
nections. And while a host might wake for incoming con-
nections, waking for outgoing connections might well be
avoidable (for reasons discussed below). From the results
in Fig. 14, we see that outgoing connections do indeed
dominate. Now for a sleeping machine, there are three
possibilities for these outgoing connections: (1) the con-
nection was initiated by the host before the idle period—
in this case, such traffic might not be ignorable if the
host/proxy wants to maintain this connection, hence we
hope this percentage of traffic is small, (2) the connec-
tion was initiated but failed (3) the connection was ini-
tiated by the host after the start of the idle period; for
a sleeping host, these connections would either simply
never have been initiated (if the connection were deemed
unncessary) or, the host would be deliberately woken to
initiate these connections (if the connection were deemed
necessary, as for services scheduled to run during idle
times). For the former, the traffic can simply be ignored
from our accounting and, in the latter case, such sched-
uled processing is easily batched and hence needn’t dis-
rupt sleep. Hence for all but the first case, waking the
machine might be avoidable. We plot this breakdown of
outgoing connections in Figure 15. We see that only a
relatively small percentage of outgoing connections – al-
ways less than 25% – belong to the first category which
might require waking the host. Based on this, we specu-
late that, it might be possible to eliminate or ignore much
of even unicast traffic.

Early in this section, we asked whether one might iden-
tify a small set of of protocols or proxy behaviors that
could yield significant savings. We find that, the answer
is positive in the case of multicast and broadcast but less
clear for unicast traffic. In the next section we consider
the implications of our traffic analysis for proxy design.
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Figure 15: For outgoing connections: the fraction of
incoming packets that belong to new connections and
failed connection attempts.

5 A Measurement-driven Approach to
Proxy Design

Having studied the nature of idle-time traffic, we now ap-
ply our findings to the design of a practical power-saving
proxy. We start in Section 5.1 by extracting the high-level
design implications of our traffic analysis from the previ-
ous section. Building on this, in Section 5.2, we illustrate
the space of design tradeoffs by considering four specific
examples of proxies. In Section 5.3, we distill our find-
ings into a proposal for a core proxy architecture that of-
fers a single framework capable of supporting the broad
design space we identify.

5.1 Design Implications

At minimum, a power-saving proxy should: (a) allow the
host to sleep for a significant fraction of the time, and
(b) maintain the basic network presence of the host by
ensuring remote entities can still address and reach the
machine and the services it supports. Beyond this, we
have a significant margin of freedom in choosing how a
proxy might handle the remaining idle-time traffic and
applications. Viewed through this lens, our results from
Section 4 lead us to differentiate idle-time traffic along
two different dimensions. The first classifies traffic based
on the need to proxy the traffic in question:
(1) don’t-wake protocols: these are protocols that gen-
erate sustained and periodic traffic and hence, ideally,
would be dealt with (by a proxy) without waking the host
since otherwise the host would enjoy little sleep. Exam-
ples of such protocols identified in the previous section
include IGMP, PIM, ARP. Table 1 lists a set of protocols
we classify as don’t-wake.
(2) don’t-ignore protocols: these are protocols that re-
quire attention to ensure the correct operation of higher-
layer protocols and applications. For example, we must
ensure the DHCP lease on an IP address must be main-
tained and that a machine must respond to NetBIOS
name queries to ensure the services it runs over NetBIOS
remain addressable. The protocols we identified as don’t-
ignore are listed in Table 1. Note that the list of don’t-
wake and don’t-ignore protocols need not be mutually

Don’t
wake

HSRP, ARP, PIM, NBDGM, ICMP, IGMP,
SSDP

Don’t
ignore

ARP (for me), NBNS, DHCP (for me)

Table 1: Protocols that shouldn’t cause a wake up (too expen-
sive in terms of sleep), and protocols that should not be ignored
(for correctness).

Ignorable HSRP, PIM, ARP (for others), IPX, LLC,
EIGRP, DHCP

Mechanical
Response

Protocol State
ARP IP address
NBNS NB names of machine and

local services
SSDP Names of local plug-n-play

services
IGMP Multicast groups the inter-

face belongs to
ICMP IP address
NBDGM NB names of machine and

local services. Ignores pkts.
not destined to host, wakes
host for rest

Table 2: Protocols that can be handled by ignoring or by me-
chanical response. We classify DHCP as ignorable because we
choose to schedule the machine to wake up and issue DHCP
requests to renew the IP lease – an infrequent event.

exclusive; for example, ARP traffic is both frequent and
critical and hence falls under both categories.
(3) policy-dependent traffic: for the remainder of traf-
fic, the choice of whether and how a proxy should handle
the traffic is a matter of the tradeoff the user (or soft-
ware designer) is seeking to achieve between the sophis-
tication of idle-time functionality, the complexity of the
proxy implementation and energy savings. We shall ex-
plore these tradeoffs in the context of concrete proxy im-
plementations in Section 5.2.

A complementary dimension along which we can clas-
sify traffic is based on the complexity required to proxy
the traffic in question:
(A) ignorable (drop): this is traffic that can safely be
ignored. Section 4 identified several such protocols and
the top ranked. of these are listed in Table 2. Comparing
Tables 1 and 2, we see that (fortunately) there is a sig-
nificant overlap between don’t-wake and ignorable
protocols. Policy-dependent traffic/applications that are
deemed unimportant to maintain during idle times could
likewise be ignored while don’t-ignore protocols
obviously cannot be.
(B) handled via mechanical responses: this includes in-
coming (outgoing) protocol traffic for which it is easy to
construct the required response (request) using little-to-
no state transferred from the sleeping ho.nction is some-
what subjective, based For example, a proxy can easily
respond to NetBIOS Name Queries asking about local
NetBIOS services, once these services are known by the
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proxy. Table 2 lists key protocols that can be dealt with
through mechanical responses.
(C) require specialized processing: this covers proto-

col traffic that, if proxied, would require more complex
state maintenance (transfer, creation, processing and up-
date) between the proxy and host. For example, consider
a proxy that takes on the role of completing ongoing p2p
downloads on behalf of a sleeping host – this requires
that the proxy learn the status of ongoing and sched-
uled downloads, the addresses of peers, etc. and more-
over that the proxy appropriately update/transfer state at
the host once it resumes. In theory, specialized process-
ing would be attractive for policy-dependent traf-
fic that is both important and frequently-occurring (since
otherwise we could simply drop unimportant traffic and
wake the host to process infrequent traffic).

Of course, in addition to the the above (classes A-
C), for traffic that a proxy doesn’t ignore but doesn’t
want/know to handle a proxy always has the option of
waking the host. Essentially the decision of whether to
handle desired traffic in the proxy versus waking the host
represents a tradeoff between the complexity of a proxy
implementation and the sleep time of hosts.

5.2 Example Proxies

We now present four concrete proxy designs derived
from the distinctions drawn above. We select these prox-
ies to be illustrative of the design tradeoffs possible but
also representative of practical and useful proxy designs.

proxy 1 We start with a very simple proxy that: (1)
ignores all traffic listed as ignorable in Table 2 and (2)
wakes the machine to handle all other incoming traffic.
Besides clearly ignorable protocols, we choose to also
ignore traffic generated by the Bigfix application (TCP
port 63422) , which we previously identified (Section 4)
to be one of the big offenders. We do so because this traf-
fic is a) not representative for non-Intel machines, and b)
the application is very badly configured – sending very
large amounts of traffic for little offered functionality –
making sleep almost impossible.

This proxy is simple – it requires no mechanical or spe-
cialized processing. At the same time, because it makes
the conservative choice of waking the host for all traf-
fic not known to be safely ignorable, this proxy is fully
transparent to users and applications, in the sense that
the effective behavior of the sleeping machine is never
different from had it been idle (except for the perfor-
mance penalties due to the additional wake-up time).

proxy 2 Our second proxy is also fully transparent, but
takes on greater complexity in order to reduce the fre-
quency with which the machine must be woken. This
proxy: (1) ignores all traffic listed as ignorable in Table 2,
and (2) issues responses for protocol traffic listed in the
same table as to be handled with mechanical responses

and (3) wakes the machine for all other incoming traffic.
Since this proxy needs more state to generate mechani-
cal responses (e.g., the NetBIOS Names of local services,
needed to answer NBNS queries), it can also use this ex-
tra information to selectively ignore more packets than
proxy 2 (e.g., ignore all NetBIOS datagrams not des-
tined for local services).

proxy 3 Our third proxy generates even deeper savings
by only maintaining a small set of applications, (chosen
by the user) operable during idle times, while ignoring all
other traffic. We use telnet, ssh, VNC, SMB file-sharing
and NetBIOS as our applications of interest. This proxy
performs the same actions (1) and (2) as implemented by
proxy 2 (ignore and responds to the same set of proto-
cols), but it (3) wakes up for all traffic belonging to any
of telnet, ssh, VNC, SMB file-sharing and NetBIOS and
(4) drops any other incoming traffic. Relative to our pre-
vious example, proxy 2 is less transparent in that the
machine appears not to be sleeping for some select re-
mote applications, but is inaccessible to all others.

proxy 4 All the above proxies implement functionality
related to handling incoming packets. In our final proxy,
we also consider waking up for scheduled tasks initiated
locally. This proxy behaves identically to proxy 3 with
respect to incoming packet, but supports an additional
action: (5) wake up for the following tasks (for which
we assume that the system is configured to wake up in
order to perform them): regular network backups, anti-
virus (McAfee) software updates, FTP traffic for auto-
matic software updates, and Intel specific updates.

Evaluating tradeoffs In the following we compare the
sleep achievable by our 4 proposed proxies, and com-
pare it with the baseline WoP case. We perform this eval-
uation for both office and home environments, and in
each case we evaluate 3 possible values for transition
times ts: 5, 10, and 60 seconds. The first of these (5s)
is a very optimistic transition time, not achievable today
using S3 sleep states, but foreseeable in the near future
(today, Microsoft Vista specifications require computers
to resume from S3 sleep in under 2s [18]). The second
(10s) is representative of the shortest transitions achiev-
able today [6], and the last (1min) is representative of a
setting that allows almost a minute for processing sub-
sequent relevant network packets before going to sleep
again. The advantage of using a very short timer before
going to sleep is the increased achievable sleep. The dis-
advantage is that the delay penalty for waking the host
will be incurred at more packets. In the extreme case of
very short sleep timers, this could make remote appli-
cations sluggish and un-responsive. For the wake events
generated by scheduled tasks, we use a longer transition
time (and thus a longer sleep timer value) of 1min, since
such tasks usually take longer time to complete.
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Figure 16: Savings achieved by different proxies in home
and office environments.

Examining the performance of our proxies, we make
the following high-level observations: a) At one end of
the spectrum, proxy 1(the simplest) is inadequate in
office environments, and borderline adequate in home
environments. b) At the other end of the spectrum we
have proxy 3, which only handles a select number of
applications, but in return achieves good sleep in all sce-
narios – more than 70% of idle time even in the office
and with a transition time of 1minute. c) The efficiency
of proxy 2 depends heavily on environment. While the
additional complexity (compared to proxy 1) makes it
a good fit in home environments (sleeping close to 60%
even for ts = 1min), having to handle all traffic makes
it a worse fit for the office (sleeping ≈ 12% for the same
transition time). This shows that, unless they support a
large number of rules, transparent proxies are a better fit
for home, but not the office. d) The best tradeoff between
functionality and savings, and therefore the appropriate
proxy configuration, depends on the operating environ-
ment. e) Since scheduled wake-ups are typically infre-
quent, the impact they have on sleep is minimal – in our
case, proxy 4 sleeps almost as much as proxy 3 in all
considered scenarios.

5.3 A strawman proxy architecture

Our study leads us to propose a simple proxy architecture
that offers a unified framework within which we can ac-
commodate the multiplicity of design options identified
above. The proposal we present is a high-level one since
our intent here is merely to provide an initial sketch of
an architecture that could serve as the starting point for
future discussion on standardization efforts.

The core of our proposal is a table—the power-proxy
table (PPT)—that stores a list of rules. Each rule de-
scribes the manner in which a specified traffic type
should be handled by the proxy when idle. A rule con-

sists of a trigger, an action and a timeout.
Triggers are either timer events or regular expressions

describing some network traffic of interest. When a trig-
ger’s timer event fires or if an incoming packet matches a
trigger’s regular expression, the proxy executes the cor-
responding action. If the action involves waking the host,
the timeout value specifies the minimum period of time
for which the host must stay awake before contemplating
sleep again. To resolve multiple matching rules, standard
techniques such as ordering the rules by specificity, pol-
icy, etc. can be used. The proxy table must also include a
default rule that determines the treatment of packets that
do not match on any of the explicitly enumerated rules.
We propose the following actions:
• drop: the incoming packet is dropped.
• wake: the proxy wakes the host and forwards the pack-
ets to it. Other packets buffered while waiting for the
wake will be forwarded as well.
• respond(template, state): the proxy uses the
specified template to craft a response based on the in-
coming packet and some state stored by the proxy. This
action is used to generate mechanical responses as de-
scribed below.
• redirect(handle): the proxy forwards the packet to
a destination specified by the handle parameter. This
is used to accommodate specialized processing as de-
scribed below.

A response template is a function that computes the
mechanical response based on the incoming packet and
one or more immutable pieces of state. This means that
our function does not maintain or change any state. There
is no state carried over between successive incoming
packets (such as sequence numbers), and no state trans-
fer between the proxy and the host upon wake-up. We
choose to support this functionality because a) it is rel-
atively simple to implement in practice and b) it covers
most of the non-application specific traffic, as shown in
Section 4, and illustrated in our proxy examples.

To accommodate more specialized processing, we as-
sume developers will write application-specific stubs and
then enter a redirect rule into the proxy’s PPT, where
the handle specifies the location to which the proxy
should send the packet. Such stubs can run on machine
accessible over the network (e.g., a server dedicated to
proxying for many sleeping machines in a corporate
LAN), or on a low-power micro-engine supported on
the local host (e.g., a controller on the motherboard, or
a USB-connected gumstick). In all these cases, the han-
dle would be specified by its address, for example a (IP
address, port) combination. The redirect abstraction thus
allows us to accommodate specialized processing with-
out embedding application-specific knowledge into the
core proxy architecture.

The external API to this proxy is twofold: (1) APIs to
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Figure 17: Example Click implementation.

activate/deactivate the proxy as the host enters/exits sleep
and (2) APIs to insert and delete rules. The process by
which to install and execute stubs is outside of the core
proxy specification which only provides the mechanism
to register and invoke such stubs. The architecture is ag-
nostic to where the proxy runs allowing implementations
in hardware (e.g., at host NICs), in PC software (e.g., a
proxy server running on the same LAN) or in network
equipment (e.g., a firewall, NAT box).

Finally, the use of timer events to wake a host already
exists today. Our contribution here is merely to integrate
the mechanism into a unified proxy architecture.

5.4 Proxy Prototype Implementation

To illustrate the feasibility of our architecture, we build
a simple proxy prototype using the Click modular
router [17]. We choose to deploy the proxying function-
ality in a standalone machine responsible for maintaining
the network presence of several hosts on the same LAN.
To allow our proxy (let us call it P ) to sniff the traffic for
each host, we ensure that P shares the same broadcast
domain with these hosts. This can be achieved either by
connecting the proxy and the machines to a common net-
work HUB, or by configuring the LAN switch to forward
all traffic to the port that serves P .

In our initial design, we don’t implement proxies that
involve transferring state between the host and the proxy.
Instead, P learns the pieces of state required (e.g. the IP
address and the Netbios name for each host) by sniff-
ing host traffic and extracting the state exchanged (e.g.
ARP and NBNS exchanges). This design circumvent the
need for any end-host modifications, and support proxy-

ing for machines with different hardware platforms (new
and old) and operating systems. The proxy requires min-
imal configuration (a list of the MAC addresses of the
hosts that need to be proxied), and can be incremen-
tally deployed as a low-power stand-alone network box.
Once low-power proxying standards are developed [12],
the design can be extended to support state transfer, and
achieve even deeper energy savings.

Our prototype implements very basic proxying func-
tionality, but the software architecture (presented in Fig-
ure 17) can be easily extended to more protocols and
use cases. Currently, we support three types of actions:
wake, respond and drop. The proxy awakes its hosts for
TCP connection requests (incoming TCP SYN packets)
and incoming Netbios Name Queries for the host’s NB
name. If such a “wake packet” for a sleeping host arrives,
P buffers the request, sends a magic packet to wake the
host, and relays the buffered packet once the host be-
comes available. The proxy responds automatically to
incoming ARP requests, and drops all other incoming
packets. In relation to the examples discussed in Sec-
tion 5.2, this prototype has a simple and non-transparent
design. To determine whether a host is awake, the proxy
sends periodic ARP queries to each host; if these queries
receive no response, the host is assumed to be asleep.
When the proxy attempts to wake a host and fails repeat-
edly, the host is assumed to be off, rather than just asleep,
and the proxy ceases to maintain its network presence.

Figure 17 presents the software architecture of our
Click proxy, and highlights the mapping between Click
modules and the generic categories of triggers, actions
and state, discussed in the strawman proxy architecture.

We test our Click-based proxy implementation by in-
stalling it on one of our enterprise desktops, and con-
figuring the proxy to maintain the network presence of
several IBM ThinkPad laptops. We use this deployment
to measure the delays experienced by applications wak-
ing a sleeping host, and find these to be surprisingly low:
2.4s on average, and 4s at maximum – much lower than
the 30s TCP SYN timeout. These delays includes the
host wake-up delay (≈ 1.4s), and the additional time re-
quired for the proxy to detect the state change and relay
the buffered packet causing the wake (≈ 1s). We defer
a comprehensive deployment-based evaluation to future
work.

6 Power-Aware System Redesign
In this section we consider approaches that might assist
in reducing idle-time energy consumption by either sim-
plifying the implementation of proxies or altogether ob-
viating the need for proxying.

6.1 Software Redesign

Our idle traffic analysis shows that solutions relying
on Wake-on-LAN functionality face the following chal-
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lenges: (i) It is difficult to decide if various packets and
protocols warrant a machine wake-up.(ii) Hosts receive
many packets even when idle (3 per second on average).
(iii) Many protocols exchange packets periodically, pre-
venting long quiet periods when hosts could sleep. These
challenges could be dealt with at both application and
protocol level:

Power-aware application configuration Today, appli-
cations and services are typically designed or configured
without taking into account their potential impact on the
power management at end-systems. For example, in Sec-
tion 4.4 we discussed a tool called Bigfix, that checks if
network hosts conform to Intel’s corporate security spec-
ifications. This application was configured to perform
these checks very aggressively, continuously generating
large amounts of traffic. Under a WoL approach, this ap-
plication alone would have made prolonged sleep virtu-
ally impossible.

This is a perfect example of the behaviour that could be
avoided by configuring applications to be more power-
aware, and perform periodic tasks less frequently, reduc-
ing the volume of network traffic seen by hosts.

Protocol Specification The decision to ignore or wake
on a packet can be difficult, and involves protocol pars-
ing, maintaiing a long set of filters and rules, and for
some protocols host or application-specific state.

To eliminate the complexity of this decision, and al-
low hosts to sleep longer even when using very simple
rules for waking, protocols could be augmented to carry
explicit power-related information in their packets. An
example of such information would be a simple bit indi-
cating whether a packet can be ignored.

Protocol Redesign We believe these principles should
be followed when designing power-aware protocols.

Consideration when using broadcast and multicast: We
saw earlier that broadcast and multicast are mainly re-
sponsible for keeping hosts awake. This type of traffic
could be substantially reduced by redesigning protocols
to use broadcasts sparingly. Some protocols are partic-
ularly inefficient in this respect. For example, all Net-
BIOS datagrams are always sent over Ethernet broadcast
frames. These frames are received by all hosts on the
LAN, and then discarded by most of them. This ranks
NBDGM as one of the top “offenders”, yet this could be
easily avoided by using unicast transmissions when pos-
sible. Another approach is based on the observation that
many service discovery protocols have redundant func-
tionality. This redundant functionality could conceivable
be replaced by a single service that can be shared by a
multiplicity of applications.

Synchronization of periodic traffic: One way to in-
crease the number of long periods of network quies-
cence would be to identify protocols that use periodic

updates/message exchanges, and try to synchronize, or
bulk these exchanges together. This would allow ma-
chines to periodically wake up, process all notifications
and request, and resume sleep.

Complementing soft state: Many protocols (e.g., SSDP,
NetBIOS, etc.) maintain and update state using peri-
odic broadcast notifications/ For such protocols (and
for similar applicatios), it would be essential to make
them disconnection-tolerant, by providing complemen-
tary state query mechanisms that could be used quickly
build up-to-date copies of the soft state upon waking.
This would enable ignoring any soft state notifications.
Today, such query mechanisms exist only for some of
these protocols, and they are often inefficient.

6.2 Hardware Redesign

A general goal of energy saving mechanisms, especially
hardware designs, is to lead the industry towards energy
proportional computing [8]. If energy consumption of a
machine would accurately reflect its level of utilization,
the energy would be zero when idle. Sleep states are a
step in this direction, P-states (low power active opera-
tion) are another. Related to this, it would be very desir-
able to expose power saving states (S states) that feature
better transition times, even if they offer smaller savings.
Given the small inter-packet gaps, these states will come
in handier than the deep-sleep ones.

7 Related Work
The notion that internetworked systems waste energy
due to idle periods has been frequently reiterated[14,
13, 16, 19, 10, 7, 15]. Network presence proxying for
the purpose of saving energy in end devices was first
proposed over ten years ago by Christensen et al.; in
follow-up work [11] the authors quantify the potential
savings using traffic traces from a single dormitory ac-
cess point and in [13] examine the traffic received at a
single idle machine to identify dominant protocols and
discuss whether these can be safely ignored. Our work
draws inspiration from this early work extending it with
a large-scale and more in-depth evaluation of idle-time
traffic in enterprise and home environments. A more re-
cent proposal [7]. postulates the notion of “selective con-
nectivity”, whereby a host can dictate or manage its net-
work connectivity, going to sleep when it does not want
to respond to traffic.

There is an extensive literature on energy saving tech-
niques for individual PC platforms. Broadly, these aim
for reduced power draws at the hardware level and faster
transition times at the system level. These offer a com-
plementary approach to reducing the power draw of
idle machines; if and when these techniques lead us to
perfectly “energy-proportional” computers, the idle-time
consumption will be less problematic and proxying will
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fade in importance. So far however, achieving such en-
ergy proportionality has proved challenging.

In parallel work [6], the authors build a prototype proxy
supporting BIT-TORRENT and IM as example applica-
tions. Our work considers a broader proxy design space,
evaluating the tradeoffs between design options and the
resultant energy savings informed by detailed analysis
of network traffic. In relation to our design space, their
proxy supports BT and IM using application stubs.

8 Conclusions
In general, the question of how a proxy should handle
the user-idle time traffic presents a complex tradeoff be-
tween balancing the complexity of the proxy, the amount
of energy saved, and the sophistication of idle-time func-
tionality. Through the use of an unusual dataset, collected
directly on endhosts, we explored the potential savings,
requirements and effectiveness of technologies that aim
to put endhost machines to sleep when users are idle.
For the first time here, we dissect the different categories
of traffic that are present during idle times, and quan-
tify which of them have traffic arrival patterns that pre-
vent periods of deep sleep. We see that broadcast and
multicast traffic constitute a substantial amount of the
background chatter due to service discovery and routing
protocols. Our data also revealed a significant amount of
outgoing connections, generated in part by enterprise ap-
plications. We tried to identify which traffic can be ig-
nored and found that most of the broadcast and multicast
traffic, as well as roughly 75% of outgoing connections,
appears safely ignorable. Handling unicast traffic is more
involved because it harder to infer the intent of such traf-
fic, and often needs some state information to be main-
tained on the proxy.

After having studied our traffic and the sleep poten-
tial those patterns contain, we discuss the design space
for proxies, and evaluate the savings offered by 4 sam-
ple proxy designs. These cases reveal the tradeoffs be-
tween design complexity, available functionality and en-
ergy savings, and discuss the appropriateness of vari-
ous design points in different use environments, such as
home and office.

Finally, we present a general and flexible strawman
proxy architecture, and we build an extensible Click-
based proxy that exemplifies one way in which this ar-
chitecture can be implemented.
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Abstract
The ability to partition sensor network application code across
sensor nodes and backend servers is important for running com-
plex, data-intensive applications on sensor platforms that have
CPU, energy, and bandwidth limitations. This paper presents
Wishbone, a system that takes a dataflow graph of operators
and produces an optimal partitioning. With Wishbone, users
can run the same program on a range of sensor platforms, in-
cluding TinyOS motes, smartphones running JavaME, and the
iPhone. The resulting program partitioning will in general be
different in each case, reflecting the different node capabili-
ties. Wishbone uses profiling to determine how each opera-
tor in the dataflow graph will actually perform on sample data,
without requiring cumbersome user annotations. Its partition-
ing algorithm models the problem as an integer linear program
that minimizes a linear combination of network bandwidth and
CPU load and uses program structure to solve the problem ef-
ficiently in practice. Our results on a speech detection applica-
tion show that the system can quickly identify good trade-offs
given limitations in CPU and network capacity.

1 Introduction
An important class of sensor computing applications
are data-intensive, involving multiple embedded sensors
each sampling data at tens or hundreds of kilohertz and
generating many megabytes per second in aggregate. Ex-
amples include acoustic localization of animals, gun-
shots, or speakers; structural monitoring and vibration
analysis of bridges, buildings, and pipes; object tracking
in video streams, etc. Over the past few years, impres-
sive advances in sensor networking hardware and soft-
ware have made it possible to prototype these applica-
tions. However, two challenges confront the developer
who wants to deploy and sustain these applications:

• Heterogeneity: Thanks to hardware advances, one
can run these applications on a variety of embed-
ded devices, including “motes”, smartphones (which
themselves are varied), embedded Linux devices
(e.g., Gumstix, WiFi access points), etc. This rich-
ness of hardware and software is good because it al-
lows the developer to pick the right platforms for a
task and evolve the infrastructure with time. On the
other hand, it poses a software nightmare because
it requires code to be developed multiple times, or
ported to different platforms.

• Decomposition: A simple way of designing such
systems would deliver all the gathered data to a cen-
tral server, with all the computation running there.

This approach may consume an excessive amount of
bandwidth and energy. A different approach is to
run all of the computation “in the sensor network”,
but often the computational capabilities of the sen-
sor nodes are insufficient. The question is: how best
to partition an application between the server(s) and
the embedded nodes? Improper partitioning can lose
important data, waste energy, and may cause appli-
cations to simply not work as desired.

No current solution addresses both of these challenges.
To support heterogeneity, one might be able to write pro-
grams in a language like Java. Unfortunately, some plat-
forms do not support Java, or may not support it in its full
generality; in addition, Java virtual machines for embed-
ded devices are of uneven quality. More importantly, it
is difficult to partition such a program in a way that will
perform well on any given platform without a significant
amount of tuning and manual optimization. That, in turn,
limits the ability to swap out the underlying hardware
platform, or even to move computation between the em-
bedded nodes and servers.

We have developed Wishbone, a system that allows
developers to achieve both goals for applications that sat-
isfy two conditions:

• Streaming dataflow model: The application should
be written as a stream-oriented collection of opera-
tors configured as a dataflow graph.

• Predictable input rates and patterns: The input data
rates at the sensors gathering data don’t change in
unpredictable ways.

To use Wishbone, the developer writes a program in a
high-level stream-processing language, WaveScript [16],
which has a common runtime for both embedded nodes
and servers. We have extended our open-source Wave-
Script compiler to produce efficient code for several em-
bedded platforms: TinyOS 2.0, smartphones running
Java J2ME, the iPhone, Nokia tablets, various WiFi ac-
cess points, and any POSIX compliant platform support-
ing GCC. These platforms are sufficiently diverse that
generating high-performance native code from a shared
high-level language is itself a challenge. Fortunately, we
have an advantage in WaveScript’s domain-specificity:
the compiler has additional information that it can use to
optimize programs for specific streaming workloads.

We have used WaveScript in several applications, in-
cluding: locating wild animals with microphone arrays,
locating leaks in water pipelines, and detecting potholes
in sensor-equipped taxis. For the purposes of this paper,
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we chose to focus on two applications that highlight the
program partitioning features of Wishbone: a speech de-
tector that identifies when a person is speaking in a room
and a 22-channel EEG application. Each is based on an
application currently in use by our group (EEG) or by
other groups (speaker detection). Both were ported1 to
WaveScript for the evaluation in this paper.

The key function of Wishbone is, given a WaveScript-
produced dataflow graph of stream operators, to parti-
tion it into in-network and server-side components. It
uses a profile-driven approach, where the compiler exe-
cutes each operator against programmer-supplied sample
data, using real embedded hardware or a cycle-accurate
simulation. After profiling, we are able to estimate the
CPU and communication requirements of every opera-
tor on every platform. Wishbone depends on this sample
data being representative of the actual input the sensor
will see during deployment; we believe this is a valid as-
sumption and justify it in our experiments.

Determining a good partitioning is difficult even af-
ter one uses a profiler to determine the computational
and network load imposed by each operator. Wishbone
models the partitioning problem as an integer linear pro-
gram (ILP), seeking to minimize a combination of net-
work bandwidth and CPU consumption subject to hard
upper bounds on those resources. With these criteria,
our ILP formulation will find optimal solutions—and al-
though ILP is an NP-hard problem, in practice our imple-
mentation can partition dataflow graphs containing over
a thousand operators in a few seconds.

Our results show that the system can quickly identify
the optimal partition given constraints on CPU and net-
work capacity. And picking the right partition matters. In
our evaluation, our weakest platform got 0% of speaker
detection results through the network successfully when
doing all work on the server, and 0.5% when doing all
work at the node. We can do 20× better by picking the
right intermediate partition. Because the optimal parti-
tioning changes depending on the hardware platform and
the number of nodes in the network, manual partitioning
is likely to be tedious at best. For larger graphs (such
as our 1412 node electroencephalography (EEG) appli-
cation), doing the partitioning by hand with any degree
of confidence becomes extremely difficult.

Finally, we note that we do not intend that Wishbone
be used only as a completely automated partitioning tool,
but also as a part of an interactive design process with the
programmer in the loop. In addition to recommending
partitions, Wishbone can find situations in which there
is no feasible partitioning of a program; e.g., because

1WaveScript is an imperative language with a C-like syntax. An
initial port of an application from C/C++ is very quick: cut, paste, and
clean it up. Refactoring to expose the parallel/streaming structure of
the application may be more involved.

fun F I R F i l t e r ( c o e f f s , s t rm ) {
N = Array : l e n g t h ( c o e f f s ) ;
f i f o = FIFO : make (N ) ;
f o r i = 1 to N−1 { FIFO : enqueue ( f i f o , 0 ) } ;
i t e r a t e x in s t rm {

FIFO : enqueue ( f i f o , x ) ;
sum = 0 ;
f o r i = 0 to N−1 {

sum += c o e f f s [ i ] ∗ FIFO : peek ( f i f o , i ) ;
} ;
FIFO : dequeue ( f i f o ) ;
emit sum ;

}
}

fun L o w F r e q F i l t e r ( s t rm ) {
e v e n S i g n a l = GetEven ( s t rm ) ;
o d d S i g n a l = GetOdd ( s t rm ) ;
/ / even samples go t o one f i l t e r , odds t h e o t h e r :
lowFreqEven = F I R F i l t e r ( hLow Even , e v e n S i g n a l ) ;
lowFreqOdd = F I R F i l t e r ( hLow Odd , o d d S i g n a l ) ;
/ / now recombine them
AddOddAndEven ( lowFreqEven , lowFreqOdd )
}

fun G e t C h a n n e l F e a t u r e s ( s t rm ) {
low1 = L o w F r e q F i l t e r ( s t rm ) ;
low2 = L o w F r e q F i l t e r ( low1 ) ;
low3 = L o w F r e q F i l t e r ( low2 ) ;

h igh4 = H i g h F r e q F i l t e r ( low3 ) ; / / we need t h i s
low4 = L o w F r e q F i l t e r ( low3 ) ;
l e v e l 4 = MagWithScale ( f i l t e r G a i n s [ 3 ] , h igh4 ) ;

h igh5 = H i g h F r e q F i l t e r ( low4 ) ; / / and t h i s one
low5 = L o w F r e q F i l t e r ( low4 ) ;
l e v e l 5 = MagWithScale ( f i l t e r G a i n s [ 4 ] , h igh5 ) ;

h igh6 = H i g h F r e q F i l t e r ( low5 ) ; / / and t h i s one
l e v e l 6 = MagWithScale ( f i l t e r G a i n s [ 5 ] , h igh6 ) ;
zipN ( [ l e v e l 4 , l e v e l 5 , l e v e l 6 ] ) ;
}

Figure 1: Excerpts from running code in EEG-application. The
“low level” FIRFilter function constructs new dataflow opera-
tors using iterate. FIRFilter is stateful because it maintains
and modifies fifo. Higher level functions such as LowFreq-
Filter and GetChannelFeatures wire together a larger graph.

the bandwidth requirements will always exceed avail-
able network bandwidth, or because there are insufficient
CPU resources to place bandwidth-reducing portions of
the program inside the sensor network. In these cases,
the programmer will have to either switch to a more pow-
erful node platform, reduce the sampling rates or the
number of sensors, or be willing to run the network in
an overload situation where some samples are lost. In
the overload case, Wishbone can compute how much the
data rates need to be reduced to achieve a viable partition.

2 Language and front-end compiler
The developer writes a program in WaveScript that con-
structs a dataflow graph of stream operators. Each op-
erator consists of a work function and optional private
state. The job of the WaveScript front-end compiler is
to partially evaluate the program to create the dataflow
graph, whereas the WaveScript backend performs graph
optimizations and reduces work functions to an interme-
diate language that can be fed to a number of backend
code generators. Each work function contains an im-
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perative routine that processes a single stream element,
updates the private state for that dataflow operator, and
produces elements on output streams. (Later, we will
single out stateless operators that maintain no mutable
state between invocations.)

A WaveScript source program can manipulate streams
as values and thereby wire together operator graphs, as
seen in Figure 1. The example in Figure 1 contains psue-
docode that wires together the cascading filters found in
one of the 22-channels of our EEG application. The eval-
uation of the iterate form creates a new dataflow opera-
tor and provides its work function. The return value of an
iterate is its output stream. For example, the function
FIRFilter in Figure 1 takes a stream as one of its inputs
and returns a stream. Within the body of the iterate the
emit keyword produces elements on the output stream.
The equal (=) operator introduces new variables and the
last expression in a {...} block is its return value. Type
annotations are unnecessary.

2.1 Program Distribution

Thus far, our description applies to WaveScript programs
that run on a single node. To support distributed execu-
tion, we extended the language to allow developers to
specify which part of the dataflow graph should be repli-
cated on all embedded nodes. This specification is log-
ical rather than physical; the physical locations of oper-
ators are computed by Wishbone’s partitioner using the
programmer’s annotations and profiler data.

To create the logical specification in Wishbone, the
user places a subset of the program’s top-level stream
bindings in a Node{} namespace. All operators in the
Node{} namespace are replicated once per embedded
node. This separation is particularly important for state-
ful operators, because stateful operators in the Node par-
tition have an instance of their state for every node in the
network. Stateful operators on the server side are instan-
tiated only once.

As an example, consider the code snippet in Fig-
ure 2, which shows a node/server program that samples
data from the microphone and filters it. The operator
readMic, producing the stream s1, must reside on each
node, as it samples data from hardware only available on
the embedded node. Because the filtAudio call produc-
ing s2 is in the Node partition, its operators will be repli-
cated once per node, but can be physically placed either
on the embedded node or the server, depending on what
the partitioner determines would be best. If filtAudio

creates stateful operators, their state will need to repli-
cated once per node, regardless of where they are placed.
This example illustrates the basic repartitioning model,
and shows that, while the system is free to move some
operators, there are certain relocation constraints the par-
titioner must respect, discussed in the next section.

s2s2 s2

f

s3

main

implicit merge 
point

embedded node partition

server partition

radio msgs

s1s1 s1

Unpinned nodes
Moveable by partitioner

namespace Node {
s1 = readMic(...)
s2 = filtAudio(s1)

}
s3 = f(s2)
main = s3

Figure 2: A program skeleton specifying a replicated stream
computation across all embedded nodes.

2.1.1 Relocation Constraints

Operators are classified as movable or pinned as fol-
lows. First, operators with side-effects—for example,
OS-specific foreign calls to sample sensors and blink
LEDs—are pinned to their partition. Likewise, operators
on the server that print output to the user or to a file are
pinned. Stateless operators without side-effects are not
pinned and are always moveable, allowing them to be
moved into the other partition if the system determines
that to be advantageous. Finally, stateful operators are
treated differently for the node and server partitions. It is
not generally possible to move stateful server operators
into the network—they have a serial execution seman-
tics and a single state instance. However, it is possible
to move stateful operators from the node partition to the
server. The state of the operator is duplicated in a table
indexed by node ID. Thus, a single server operator can
emulate many instances running within the network.

Relocating stateful operators in this way raises a dif-
ferent issue—message loss on wireless links. Operators
in the node partition may safely assume that all edges be-
tween the raw sensors and themselves are lossless. Re-
locating an operator to the server means putting poten-
tial data loss upstream of it that was not there previously.
Stateless operators are insensitive to this kind of loss be-
cause they process each element without any memory of
preceding elements, but stateful operators may perform
erratically in the face of unexpected missing data, unless
they have been intentionally engineered to tolerate it.

Because tolerance to data loss in stateful operators is
an application-specific issue, Wishbone supports two op-
erational modes that can be specified by the programmer
at compile time. In conservative mode it will not relocate
stateful operators onto the server, refusing to add lossi-
ness to a previously lossless edge. In permissive mode,
the system will automatically perform these relocations.
In the future, it would be possible to extend the system to
make many finer distinctions, such as labeling individual
edges as loss-tolerant, or grouping operators together in
blocks that cannot be divided by a lossy edge.
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2.1.2 Restrictions

The system we present in this paper targets a restricted
domain: first, because we focus on a specific dataflow
model and, second, because of limitations of our current
implementation. (Section 9 will discuss generalizing and
extending the model.) Presently, our implementation re-
quires that any path through the operator graph connect-
ing a data source on the node to a data sink on the server
may only cross the network once. The graph partitioning
algorithm in Section 4 does, however, support back-and-
forth communication. The reason for the restriction is
that we haven’t yet implemented arbitrary communica-
tion for all of our platforms. Note that this does not rule
out all communication from the server to the nodes, it is
still possible, for example, to have configuration param-
eters sent from a server to in-network operators.

We make the best of this restriction by leveraging it
in a number of ways. As we will see, it enables a sim-
plified version of the partitioning algorithm. It can also
further filter the set of moveable operators as described
in Section 2.1.1, because pinning an operator pins all up-
or down-stream operators (can’t cross back).

3 Profile & Partition
The WaveScript compiler, implemented in the Scheme
language, can profile stream graphs by executing them
directly within Scheme during compilation (using sam-
ple input traces). This produces platform-independent
data rates, but cannot determine execution time on em-
bedded platforms. For this purpose, we employ a sep-
arate profiling phase on the device itself, or on a cycle-
accurate simulator for its microprocessor.

First, the partitioner determines what operators might
possibly run on the embedded platform, discounting
those that are pinned to the server, but including movable
operators together with those that are pinned to the node.
The code generator emits code for this partition, insert-
ing timing statements at the beginning and end of each
operator’s work function, and at emit statements, which
represent yield points or control transfers downstream.

The partition is then executed on simulated or real
hardware. The inserted timing statements print output to
a debug channel read by the compiler. For example, we
execute instrumented TinyOS programs either on TMote
Sky motes or by using the MSPsim simulator2. In either
case, timestamps are sent through a real or virtual USB
serial port, where they are collected by the compiler.

For most platforms, the above timestamping method is
sufficient. That is, the only relevant information for parti-
tioning is how long each operator takes to execute on that

2We also tried Simics and msp430-gdb for simulation, but MSP-
sim was the easiest to use. Note that TOSSIM is not appropriate for
performance modeling.

platform (and therefore, given an input data rate, the per-
cent CPU consumed by the operator). For TinyOS, some
additional profiling is necessary. To support subdividing
tasks into smaller pieces, we must be able to perform a
reverse mapping between points in time (during an oper-
ator’s execution) and points in the operator’s code. Ide-
ally, for operator splitting purposes, we would recover a
full execution trace, annotating each atomic instruction
with a clock cycle. Such information, however, would
be prohibitively expensive to collect. We have found it is
sufficient to instead simply time stamp the beginning and
end of each for or while loop, and count loop iterations.
As most time is spent within loops, and loops generally
perform identical computations repeatedly, this enables
us to roughly subdivide execution of an operator into a
specified number of slices.

After profiling, control transfers to the partitioner. The
movable subgraph of operators has already been deter-
mined. Next, the partitioner formulates the partitioning
problem in terms of this subgraph, and invokes an exter-
nal solver (described in Section 4) to identify the optimal
partition. The program graph is repartitioned along the
new boundary, and code generation proceeds, including
generating communication code for cut edges (e.g., code
to marshal and unmarshal data structures). Also, after
profiling and partitioning, the compiler generates a visu-
alization summarizing the results for the user. The visu-
alization, produced using the well-known GraphViz tool
from AT&T Research, uses colorization to represent pro-
filing results (cool to hot) and shapes to indicate which
operators were assigned to the node partition.

4 Partitioning Algorithms
In this section, we describe Wishbone’s algorithms to
partition the dataflow graph. We consider a directed
acyclic graph (DAG) whose vertices are stream operators
and whose edges are streams, with edge weights repre-
senting bandwidth and vertex weights representing CPU
utilization or memory footprint. We only include vertices
that can move across the node-server partition; i.e., the
movable subset. The server is assumed to have infinite
computational power compared to the embedded nodes,
which is a close approximation of reality.

The partitioning problem is to find a cut of the graph
such that vertices on one side of the cut reside on the
nodes and vertices on the other side reside on the server.
The bandwidth of a given cut is measured as the sum
of the bandwidths of the edges in the cut. An example
problem is shown in Figure 3.

Unfortunately, existing tools for graph partitioning are
not a good fit for this problem. Tools like METIS [12]
or Zoltan [7] are designed for partitioning large scien-
tific codes for parallel simulation. These are heuristic
solutions that generally seek to create a fixed number of
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Figure 3: Simple motivating example. Vertices are labeled with
CPU consumed, edges with bandwidth. The optimal mote par-
tition is selected in red. This partitioning can change unpre-
dictably, for example between a horizontal and vertical parti-
tioning, with only a small change in the CPU budget.

balanced graph partitions while minimizing cut edges.
Newer tools like Zoltan support unbalanced partitions,
but with a specified ratios, not allowing unlimited and
unspecified capacity to the server partition. Further, they
expect a single weight on each edge and each vertex.
They cannot support a situation where the cost of a ver-
tex changes depending on the partition is it placed in.
This is the situation we’re faced with: diverse hardware
platforms that not only have varying capacities, but for
which the relative cost of operators varies (for example,
due to a missing floating point unit).

We may also consider traditional task scheduling algo-
rithms as a candidate solution to our partitioning prob-
lem. These algorithms assign a directed graph of tasks
to processors, attempting to minimize the total execution
time. The most popular heuristics for this class of prob-
lem are variants of list scheduling, where tasks are prior-
itized according to some metric and then added one at a
time to the working schedule. But there are three major
differences between this classic problem and our own.
First, task-scheduling does not directly fit the nondeter-
ministic dataflow model, as no conditional control flow is
allowed at the task level—all tasks execute exactly once.
Second, task-scheduling is not designed for vastly un-
equal node capabilities. Finally, schedule length is not
the appropriate metric for streaming systems. Schedule
length would optimize for latency: how fast can the sys-
tem process one data element. Rather, we wish to op-
timize for throughput, which is akin to scheduling for a
task-graph repeated ad infinitum.

Thus we have developed a different approach. Our
technique first preprocesses the graph to reduce the parti-
tion search space. Then it constructs a problem formula-
tion based on the desired objective function and calls an
external ILP solver. By default, Wishbone currently uses
the minimum-cost cut subject to not exceeding the CPU
resources of the embedded node or the network capacity

of the channel. Cost here is defined as a linear combina-
tion of CPU and network usage, α·CPU+β·Net (which
can be a proxy for energy usage). Therefore we set four
numbers for each platform: the CPU/Network resource
limits, and coefficients α, β. The user may override these
quantities to direct the optimization process.

4.1 Preprocessing

The graph preprocessing step precedes the actual parti-
tioning step. The goal of the preprocessing step is to
eliminate edges that could never be viable cut-points.
Consider an operator u that feeds another operator v such
that the bandwidth from v is the same or higher than the
bandwidth on the output stream from u. A partition with
a cut-point on the v’s output stream can always be im-
proved by moving the cut-point to the stream u→ v; the
bandwidth does not increase, but the load on the embed-
ded node decreases (v moves to the server). Thus, any
operator that is data-expanding or data-neutral may be
merged with its downstream operator(s) for the purposes
of the partitioning algorithm, reducing the search space
without eliminating optimal solutions.

4.2 Optimal Partitionings

It is well-known that optimal graph partitioning is NP-
complete [8]. Despite the intrinsic difficulty of the prob-
lem, the problem proves tractable for the graphs seen in
realistic applications. Our pre-processing heuristic re-
duces the problem size enough to allow an ILP solver to
solve it exactly within a few seconds to minutes.

4.2.1 Integer Linear Programming (ILP)

Let G = (V,E) be the directed acyclic graph (DAG) of
stream operators. For all v ∈ V , the compute cost on the
node is given by cv > 0 and the communication (radio)
cost is given by ruv for all edges (u, v) ∈ E. One might
think of the compute cost in units of MHz (megahertz
of CPU required to process a sample and keep up with
the sampling rate), and the bandwidth cost in kilobits/s
consumed by the data going over the radio. Adding ad-
ditional constraints for RAM usage (assuming static allo-
cation) or code storage is straightforward in this formu-
lation, but we do not do it here. For each of these costs
we can use either mean or peak load (profiling computes
both). Because our applications have predictable rates,
we use mean load here. Peak loads might be more appro-
priate in applications characterized by “bursty” rates.

The DAG G contains a set of terminal source ver-
tices S, and sink vertices T , that have no inward and
outward edges, respectively, and where S, T ⊂ V . As
noted above, we construct G from the original operator
graph such that these boundary vertices are pinned—all
the sources must remain on the embedded node; all sinks
on the server. Recall that the partitioning problem is to
find a single cut of G that assigns vertices to the nodes
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and server. We can think of the graphG as corresponding
to the server and a single node, but vertices assigned to
the node partition are instantiated on all physical nodes
in the system.

We encode a partitioning using a set of indicator vari-
ables fv ∈ {0, 1} for all v in V . If fv = 1, then operator
v resides on the node; otherwise, it resides on the server.
The pinning constraints are:

(∀u ∈ S) fu = 1
(∀v ∈ T ) fv = 0
(∀v) fv ∈ {0, 1} .

(1)

Next, we constrain the sum of node CPU costs to be
less than some total budget C.

cpu ≤ C where cpu =

v∈V

fvcv (2)

A simple expression for the total cut bandwidth is
(u,v)∈E(fu − fv)2ruv . (Because fv ∈ {0, 1}, the

square evaluates to 1 when the edge (u, v) is cut and to 0
if it is not; |fu−fv| gives the same values.) However, we
prefer to formulate the integer programming problem as
one with a linear rather than quadratic objective function,
so that standard ILP techniques can be used.

We can convert the quadratic objective function to a
linear one by introducing two variables per edge, euv and
euv , which are subject to the following constraints:

(∀(u, v) ∈ E) euv ≥ 0
(∀(u, v) ∈ E) euv ≥ 0
(∀(u, v) ∈ E) fu − fv + euv ≥ 0
(∀(u, v) ∈ E) fv − fu + euv ≥ 0 .

(3)

The intuition here is that when the edge (u, v) is not
cut (i.e., u and v are in the same partition), we would
like euv and euv to both be zero. When u and v are in
different partitions, we would like a non-zero cost to be
associated with that edge; the constraints above ensure
that the cost is at least 1 unit, because fu− fv is -1 when
u is on the server and v on the embedded node. These
observations allow us to formulate the bandwidth of the
cut, cap that bandwidth, and define the objective function
in terms of both CPU and network load.

net < N where net =


 

(u,v)∈E

(euv + euv)ruv




(4)
objective : min (α cpu+ β net) (5)

Any optimal solution of (5) subject to (1), (2), (3), and
(4) will have euv +euv equal to 1 if the edge is cut and to
0 otherwise. Thus, we have shown how to express our
partitioning problem as an integer programming prob-
lem with a linear objective function, 2|E|+ |V | variables

(only |V | of which are explicitly constrained to be inte-
gers), and at most 4|E| + |V | + 1 equality or inequality
constraints.

We could use a standard ILP solver on the formulation
described above, but a further improvement is possible
if we restrict the data flow to not cross back and forth
between node and server, as described in Section 2.1.2.
On the positive side, the restriction reduces the size of
the partitioning problem, which speeds up its solution.

With the above restriction, we can then flip all edges
going from server to node for the purpose of partitioning
(the communication cost would be the same under our
model). With all edges pointed towards the server, and
only one crossing of the network allowed, another set of
constraints now apply:

(∀(u, v) ∈ E) fu − fv ≥ 0 (6)

With (6) the network load quantity simplifies:

net =


 

(u,v)∈E

(fu − fv)ruv


 . (7)

This formulation eliminates the euv and euv variables,
simplifying the optimization problem. We now have
only |V | variables and at most |E| + |V | + 1 con-
straints. We have chosen this restricted formulation
for our current, prototype implementation, primarily be-
cause the per-platform code generators don’t yet support
arbitrary back-and-forth communication between node
and server. We use an off-the-shelf integer programming
solver, lp solve3, to minimize (7) subject to (1) and (2).

We note that the restriction of unidirectional data flow
does preclude cases when sinks are pinned to embed-
ded nodes (e.g., actuators or feedback in the signal pro-
cessing). It also prevents a good partition when a high-
bandwidth stream is merged with a heavily-processed
stream. In the latter case, the merging must be done
on the node due to the high-bandwidth stream, but the
expensive processing of the other stream should be per-
formed on the server. In our applications so far, we have
found our restriction to be a good compromise between
provable optimality and speed of finding a partition.

4.3 Data Rate as a Free Variable

It is possible that the partitioning algorithm will not be
able to find a cut that satisfies all of the constraints (i.e.,
there may be no way to “fit” the program on the embed-
ded nodes.) In this situation we wish to find the maxi-
mum data rates for input sources that will support a vi-
able partitioning. The algorithm given above cannot di-
rectly treat data rate as a free variable. Even if CPU and

3lp solve was developed by Michel Berkelaar, Kjell Eikland,
and Peter Notebaert. It uses branch-and-bound to solve integer-
constrained problems, like ours, and the Simplex algorithm to solve
linear programming problems.
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network load varied linearly with data rate, the resulting
optimization problem would be non-linear. However, it
turns out to be inexpensive to perform the search over
data-rates as an outer loop that on each iteration calls the
partitioning algorithm.

This is because in most applications, CPU and net-
work load increase monotonically with input data rate. If
there is a viable partition when scaling input data rates by
a factor X , then any factor Y < X will also have a viable
partitioning. Thus Wishbone simply does a binary search
over data rates to find the maximum rate at which the par-
titioning algorithm returns a valid partition. As long as
we are not over-saturating the network such that sending
fewer packets actually result in more data being success-
fully received, this maximum sustainable rate will be the
best rate to pick to maximize outputs (throughput) of the
data flow graph. We will re-examine this assumption in
Section 7.

5 Wishbone Platform Backends
In this section, we describe three new WaveScript
code generators we built for Wishbone, which are de-
scribed here for the first time. These support ANSI C,
NesC/TinyOS and JavaME.

5.1 Code Generation: ANSI C and JavaME

In contrast with the original WaveScript C++ back-
end (and XStream runtime engine), our current C
code-generator produces simple, single threaded code
in which each operator becomes a function definition.
Passing data via emit becomes a function call, and the
system does a depth-first traversal of the stream graph.
The generated code requires virtually no runtime and is
easily portable. This C backend is used to execute the
server-side portion of a partitioned program, as well as
the node-side portion on Unix-like embedded platforms
that run C, such as the iPhone (jailbroken), Gumstix, or
Meraki.

Generating code for JavaME also straightforward, as
Java provides a high level programming environment that
abstracts hardware management. The basic mapping be-
tween the languages is the same as in the C backend. Op-
erators become functions, and an entire graph traversal is
a chain of function calls. Some minor problems arise due
to Java’s limited set of numeric types.

5.2 Code Generation: TinyOS 2.0

Supporting TinyOS 2.0 is much more challenging. The
difficulties are both due to the extreme resource con-
straints of TinyOS motes (typically less than 10 KB of
RAM and 100 KB of ROM), and to the restricted con-
currency model of TinyOS (tasks must be be relatively
short-lived and non blocking; all IO must be performed
with split-phase asynchronous calls). Also, program ob-
jects be serialized and split into small network packets.

Wishbone’s support for TinyOS demonstrates its ability
to use platforms with severe resource restrictions and un-
usual concurrency models.

Our prototype does not currently support WaveScript’s
dynamic memory management in code running on
motes. We may support it in the future, but it remains to
be seen whether this style of programming can be made
effective for extremely resource constrained devices. In-
stead, we enforce that all operators assigned to motes use
only statically allocated storage in our applications.

The most difficult issue in mapping a high-level lan-
guage onto TinyOS is handling the TinyOS concurrency
model. All code executes in either task or interrupt con-
text, with only a single, non-preemptive task running at a
time. Wishbone simply maps each operator onto a task.
Each data element that arrives on a source operator, for
example a sensor sample or an array of samples, will re-
sult in a depth-first traversal of the operator graph (exe-
cuted as a series of posted tasks). This graph traversal
is not re-entrant. Instead, the runtime buffers data at the
source operators until the current graph traversal finishes.

This simple design raises several issues. First, gen-
erated TinyOS tasks must be neither too short nor too
long. Tasks with very short durations incur unneces-
sary overhead, and tasks that run too long degrade sys-
tem performance by starving important system tasks (for
example, sending network messages). Second, the best
method for transferring data items between operators is
no longer obvious. In the basic C backend, we simply
issue a function call to the downstream operator, wait for
it to complete, and then continue computation. We can-
not use this method under TinyOS, where it would force
us to perform an entire traversal of the graph in a single
very long task execution. But the obvious alternative also
presents problems: executing an operator in its entirety
before any downstream operators would require a queue
to buffer all output elements of the current operator.

The full details of TinyOS code generation are beyond
the scope of this paper. In short, the WaveScript com-
piler can convert programs programs into a cooperative
multi-tasking form (via a CPS conversion). This serves
two purposes: every call to emit can serve as a yield
point, causing the task to yield to its downstream oper-
ator in a depth-first fashion (with no queues), which in
turn will re-post the upstream operator upon completing
the traversal. Second, based on profiling data, additional
yield points can be inserted to “split” tasks to adjust gran-
ularity for system health.

6 Applications
We evaluate Wishbone in terms of two experimental ap-
plications: acoustic speech detection and EEG-based
seizure onset detection. Both of these applications ex-
ercise Wishbone’s capability to automatically partition a
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Figure 4: Custom audio board attached to a TMote Sky.

single high-level program into components that run over
a network containing sensor nodes and a server or “base
station”. Neither of these applications is in itself novel.
In both cases we ported existing implementations from
Matlab and C to Wishbone and verified that the results
matched the original implementations.

6.1 Application: Seizure Onset Detection

We used Wishbone to implement a patient-specific
seizure onset detection algorithm [20]. The application
was previously implemented in C++, but by porting it
to Wishbone/WaveScript we enabled its embedded/dis-
tributed operation, while reducing the amount of code by
a factor of four without loss of performance.

The algorithm is designed to be used in a system for
detecting seizures outside a clinical environment. In this
application, a user would wear a monitoring cap that typ-
ically consists of 16 to 22 channels. Data from the cap is
processed by a low-power portable device.

The algorithm we employ [21] samples data from 22
channels at 256 samples per second. Each sample is 16-
bits wide. For each channel, we divide the stream into
2 second windows. When a seizure occurs, oscillatory
waves below 20 Hz appear in the EEG signal. To extract
these patterns, the algorithm looks for energy in certain
frequency bands.

To extract the energy information, we first filter each
channel by using a polyphase wavelet decomposition.
We use a repeated filtering structure to perform the de-
composition. The filtering structure first extracts the
odd and even portions of the signal, passes each signal
through a 4-tap FIR filter, then adds the two signals to-
gether. Depending on the values of the coefficients in the
filter, we either perform a low-pass or high-pass filtering
operation. This structure is cascaded through 7-levels,
with the high frequency signals from the last three levels
used to compute the energy in those signals. Note that at
each level, the amount of data is halved.

As a final step, all features from all channels, 66 in
total, are combined into a single vector which is input
into a patient-specific support vector machine (SVM).
The SVM detects whether or not each window contains
epileptiform activity. After three consecutive positive
windows have been detected, a seizure is declared.

There are multiple places where Wishbone can par-
tition this algorithm. If the entire application fits on the
embedded node, then the data stream is reduced to only a
feature vector—an enormous data reduction. But data is
also reduced by each stage of processing on each chan-
nel, offering many intermediate points which are prof-
itable to consider.

6.2 Acoustic Speech Detection

We used Wishbone to build a speech detection applica-
tion that uses sampled audio to detect the presence of a
person who is speaking near a sensor. The ultimate goal
of such an application would be to perform speaker iden-
tification using a distributed network of microphones.
For example, such a system could potentially be used to
locate missing children in a museum by their voice, or to
implement various security applications.

However, in our current work we are only concerned
with speech detection, a precursor to the problem of
speaker identification. In particular, our goal is to reduce
the volume of data required to achieve speaker identifi-
cation, by eliminating segments of data that probably do
not contain speech and by summarizing the speech data
through feature extraction.

Our implementation of speech detection and data re-
duction is based on Mel Frequency Cepstral Coefficients
(MFCC), following the approach of prior work in the
area. Recent work by Martin, et al. has shown that clus-
tering analysis of MFCCs can be used to implement ro-
bust speech detection [14]. Another article by Saasta-
moinen, et al. describes an implementation of speaker
identification on smartphones, based on applying learn-
ing algorithms to MFCC feature sets [19]. Based on this
prior work, we chose to exercise our system using an im-
plementation of MFCC feature extraction.

6.2.1 Mel Frequency Cepstral Coefficients

Mel Frequency Cepstral Coefficients (MFCC) are the
most commonly used features in speech recognition al-
gorithms. The MFCC feature stream represents a signif-
icant data reduction relative to the raw data stream.

To compute MFCCs, we first compute the spectrum of
the signal, and then summarize it using a bank of over-
lapping filters that approximates the resolution of hu-
man aural perception. By discarding some of the data
that is less relevant to human perception, the output of
the filter bank represents a 4X data reduction relative
to the original raw data. We then convert this reduced-
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resolution spectrum from a linear to a log spectrum. Us-
ing a log spectrum makes it easier to separate convolu-
tional components such as the excitation applied to the
vocal tract and the impulse response of a reverberant en-
vironment, because transforms that are multiplicative in
a linear spectrum are additive in a log spectrum.

Finally, we compute the MFCCs as the first 13 coef-
ficients of the Discrete Cosine Transform (DCT) of this
reduced log-spectrum. By analyzing the spectrum of a
spectrum, the distribution of frequencies can be charac-
terized at a variety of scales [6, 5].

6.2.2 Trade-offs in MFCC Extraction

The high level goal of Wishbone is to explore how a
complex application written in a single high level lan-
guage can be efficiently and easily distributed across
a network of devices and support many different plat-
forms. As such, the MFCC application presents an in-
teresting challenge because for sensors with very limited
resources there appears to be no perfect solution; rather,
using Wishbone the application designer can explore dif-
ferent trade-offs in application performance.

These trade-offs arise because this algorithm squeezes
a resource-limited device between two insoluble prob-
lems: not only is the network capacity insufficient to for-
ward all the raw data back to a central point, but the CPU
resources are also insufficient to extract the MFCCs in
real time. If the application has any partitioning that
fits the resource constraints, then the goal of Wishbone
is to select the best partition, for example, lowest cost in
terms of energy. If the application does not fit at its ideal
data rate, ultimately, some data will be dropped on some
target platforms. The objective in this case is to find a
partitioning that minimizes this loss and therefore maxi-
mizes the throughput: the amount of input data success-
fully processed rather than dropped at the input sources
or in the network.

6.2.3 Implementing Audio Capture

Some platforms, such as the iPhone and embedded-
Linux platforms (such as the Gumstix), provide a com-
plete and reliable hardware and software audio capture
mechanism. On other platforms, including both TMotes
and J2ME phones, capturing audio is more challenging.

On TMotes, we used a custom-built audio board to
acquire audio. The board uses an electret microphone,
four opamp stages, a programmable-gain amplifier , and
a 2.5 V voltage reference. We have found that when
the microphone was powered directly by the analog sup-
ply of the TMote, the audio board performed well when
the mote was only acquiring audio, but was very noisy
when the mote was communicating. The communi-
cation causes a slight modulation of the supply volt-
age, which gets amplified into significant noise. Us-

ing a separately regulated supply for the microphone re-
moved this noise. The anti-aliasing filter is a simple
RC filter; to better reject aliasing, the TMote samples
at a high rate and applies a digital low-pass filter (fil-
tering and decimating a 32 Ks/s stream down to 8 Ks/s
works well). The amplified and filtered audio signal
is presented to an ADC pin of the TMote’s microcon-
troller, which has 12 bits of resolution. We use TinyOS
2.0 ReadStream<uint16 t> interface to the ADC,
which uses double buffering to deliver arrays of samples
to the application.

Phones naturally have built-in microphones and mi-
crophone amplifiers, but we have nonetheless encoun-
tered a number of problems using them as audio sen-
sors. Many J2ME phones support the Mobile Media
API (JSR-135), which may allow a program to record
audio, video, and take photographs. Support for JSR-
135 does not automatically imply support for audio or
video recording or for taking snapshots. Even when au-
dio recording is supported, the API permits only batch
recording to an array or file (rather than a continuous
stream) resulting in gaps.

We ran into a bug on the Nokia N80: after recording
audio segments for about 20 minutes, the JVM would
crash. Other Nokia phones with the same operating sys-
tem (Symbian S60 3rd Edition) exhibited the same bug.
We worked around this bug using a simple Python script
that runs on the phone and accepts requests to record au-
dio or take a photograph through a TCP connection, re-
turning the captured data also via TCP. The J2ME pro-
gram acquires audio by sending a request to this Python
script, which can record indefinitely without crashing.

The J2ME partition of the Wishbone program uses
TCP to stream partially processed results to the server.
When the J2ME connects, the phone asks the user to
choose an IP access point; we normally use a WiFi con-
nection, but the user can also choose a cellular IP con-
nection. With any of these communication methods, de-
pendence on user interaction presents a practical barrier
to using phones in an autonomous sensor network. Yet
these software limitations are incidental rather than fun-
damental, and should not pose a long-term problem.

7 Evaluation
In this section we evaluate the Wishbone system on the
EEG and speech detection applications we discussed in
Section 6. We focus on two key questions:

1. Can Wishbone efficiently select the best partitioning
for a real application, across a range of hardware
devices and data rates?

2. In an overload situation, can Wishbone effectively
predict the effects of load-shedding and recommend
a “good” partitioning?
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Figure 5: Relationship between partitioning and compute-bound sustainable data rates. On the left (a), a subset of the EEG
application (one channel). The X axis shows a required data rate, the Y axis the number of operators in computed optimal node
partition. On the right (b), the speaker detection application; we flip the axes due to the small number of viable cut-points. For each
viable cut-point, we show the maximum data-rate supported on each hardware platform.

7.1 EEG Application

Our EEG application provides an opportunity to explore
the scaling capability of our partitioning method. In par-
ticular, we look at our worst case scenario—partitioning
all 22-channels (1412 operators). As the CPU budget in-
creases, the optimal strategy for bandwidth reduction is
to move more channels to the nodes. On our lower-
power platforms, not all the channels can be processed
on one node. The graph in Figure 5(a) shows partition-
ing results only for the first of 22 channels, where we
vary the input data rate on the X axis and measure the
number of operators that “fit” on different platforms. We
ran lp solve to derive a partitioning 2100 times, linearly
varying the data rate to cover everything from “every-
thing fits easily” to “nothing fits”. To remove confound-
ing factors, the objective function was configured to min-
imize network bandwidth subject to not exceeding CPU
capacity (α = 0, β = 1): that is, allow the CPU to be
fully utilized (but not over-utilized). As we increased the
data rate (moving right), fewer operators can fit within
the CPU bounds on the node (moving down). The slop-
ing lines show that every stage of processing yields data
reductions.

The distribution of resulting execution times are de-
picted as two CDFs in Figure 6, where the x axis shows
execution time in seconds, on a log scale. The top curve
in Figure 6 shows that even for this large graph, lp solve

always found the optimal solution in under 90 seconds.
The typical case was much better: 95 percent of the ex-
ecutions reached optimality in under 10 seconds. While
this shows that an optimal solution is typically discov-
ered in a reasonable length of time, that solution is not
necessarily known to be optimal. If the solver is used
to prove optimality, both worst and typical case runtimes
become much longer, as shown by the lower CDF curve
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Figure 6: CDF of the time required for lp solve to reach an
optimal partitioning for the full EEG application (1412 oper-
ators), invoked 2100 times with data rates. The higher curve
shows the execution time at which an optimal solution was
found, while the lower curve shows the execution time required
to prove that the solution is optimal. Execution times are from
a 3.2 GHz Intel Xeon.

(yet still under 12 minutes). To address this, we can use
an approximate lower bound to establish a termination
condition based on estimating how close we are to the
optimal solution.

7.2 Speech Detection Application

The speech detection application is a linear pipeline of
only a dozen operators. Thus the optimization process
for picking a cut point should be trivial—a brute force
testing of all cut points will suffice. Nevertheless, this
application’s simplicity makes it easy to visualize and
study, and the fact that the data rate it needs to process all
data is unsustainable for TinyOS devices provides an op-
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Figure 7: Data is reduced by processing, lowering bandwidth
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portunity to examine the other side of Wishbone’s usage:
what to do when the application doesn’t fit.

In applying Wishbone to the development process for
our speech detection application, we were able to quickly
assess the performance on several different platforms.
Figure 7 is a detailed visualization of the performance
trade-offs, showing only the profiling results for TMote
Sky (a TinyOS platform). In this figure, the X axis repre-
sents the linear pipeline of operators, and the Y axis rep-
resent profiling results. Each vertical impulse represents
the number of microseconds of CPU time consumed by
that operator per frame (left scale), while the line repre-
sents the number of bytes per second output by that op-
erator. It is easy to visualize the trade-off between CPU
cost and data rate. Each point on the X-axis represents a
potential graph cut, where the sum of the red bars to the
left provides the processing time per frame.

Thus, we see that the MFCC dataflow has multiple
data-reducing steps. The algorithm must natively process
40 frames per second in real time, or one frame every
25 ms. The initial frame is 400 bytes; after applying the
filter bank the frame data is reduced to 128 bytes, using
250 ms of processing time; after applying the DCT, the
frame data is further reduced to 52 bytes, but using a total
of 2 s of processing time. This structure means that al-
though no split point can fit the application on the TMote
at the full rate, we can achieve different CPU/bandwidth
trade-offs by selecting different split points. Selecting
a bad partitioning can result in retrieving no data, and
the best “working” partition provides 20 times more data
than the worst. Figure 5(b) shows an axes-flipped ver-
sion of Figure 5(a): predicted data-rate as a function of
the partition point. Only viable (data reducing) cutpoints
are shown. Bars falling under the horizontal line indicate
that the platform cannot be expected to keep up with the
full (8 kHz) data rate.

As expected, the TMote is the worst performing plat-
form, with the Nokia N80 performing only about twice
as fast—surprisingly poor performance given that the
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forms. Relative execution costs of operators vary greatly on the
tested systems.

N80 has a 32-bit processor running at 55X the clock rate
of the TMote. This is due to the poor performance of
the JVM implementation. The 412 MHz iPhone plat-
form using GCC performed 3X worse than the 400 MHz
Gumstix-based Linux platform; we believe that this is
due to the frequency scaling of the processing kicking in
to conserve power.

We can also visualize the relative performance of dif-
ferent operators across different platforms. For each plat-
form processing the complete operator graph, Figure 8
shows the fraction of time consumed by each operator. If
the time required for each operator scaled linearly with
the overall speed of the platform, all three lines would be
identical. However, the plot clearly shows that the dif-
ferent capabilities of the platforms result in very differ-
ent relative operator costs. For example, on the TMote,
floating point operations, which are used heavily in the
cepstrals operator, are particularly slow. This
shows that a model that assumes the relative costs of op-
erators are the same on all platforms would mis-estimate
costs by over an order of magnitude.

7.3 Wishbone Deployment

To validate the quality of the partitions selected by Wish-
bone, we deployed the speech detection application on
a testbed of 20 TMote Sky nodes. We also used this
deployment to validate the specific performance predic-
tions that Wishbone makes using profiling data (e.g., if
a combination of operators were predicted to use 15%
CPU, did they?).

7.3.1 Network Profiling

The first step in deploying Wishbone is to profile the
network topology in the deployment environment. It is
important to note that simply changing the network size
changes the available per-node bandwidth and thus re-
quires re-profiling of the network and re-partitioning of
the application. We run a portable WaveScript program
that measures the goodput from each node in the net-
work. This tool sends packets from all nodes at an iden-
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tical rate, which gradually increases. For our 20 node
testbed the resulting network profile is typical for TMote
Sky devices: each node has a baseline packet drop rate
that stays steady over a range of sending rates, and then
at some drops off dramatically as the network becomes
excessively congested. Our profiling tool takes as input a
target reception rate (e.g. 90%), and returns a maximum
send rate (in msgs/sec and bytes/sec) that the network
can maintain.For the range of sending rates within this
upper bound the assumption mentioned in 4.3 holds—
attempting to send more data does not result in actual
bytes of data received. Thus we are free to maximize
the data rate within the upper bound provided by the net-
work profiling tool, and thereby maximize total applica-
tion throughput. This enables us to use binary search to
find the the maximum sustainable data rate when we are
in an overload situation.

To empirically verify that our computed partitions are
optimal, we established a ground truth by exhaustively
running the speech detection application at every cut
point on our testbed. Figures 9 and 10 show the results
for six relevant cutpoints, both for a single node network
(testing an individual radio channel) and for the full 20
node TMote network. Wishbone counts missed input
events and dropped network messages on a per-node ba-
sis. The relevant performance metric is the percentage
of sample data that was fully processed to produce out-
put. This is roughly the product of the fraction of data
processed at sensor inputs, and the fraction of network
messages that were successfully received.

Figure 9 shows the input event loss and network loss
for the single TMote case, as well as the resulting good-
put. On a single mote, the data rate is so high at early
cutpoints that it drives the network reception rate to zero.
At later cutpoints too much computation is done at the
node and the CPU is busy for long periods, missing in-
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Figure 10: Goodput rates for a single TMote and for a network
of 20 TMotes, over different partitionings when running on our
TMote testbed.

put events. In the middle, even a underpowered TMote
can process 10% of sample windows. This is equivalent
to polling for human speech four times a second—a rea-
sonably useful configuration.

Figure 10 compares the goodput achieved with a sin-
gle TMote and basestation to the case of a network of 20
TMotes. For the case of a single TMote, peak through-
put rate occurs at the 4th cut point (filterbank), while for
the whole TMote network in aggregate, peak throughput
occurs at the 6th and final cut point (cepstral). As ex-
pected, the throughput line for the single mote tracks the
whole line closely until cut point six. For a high-data
rate application with no in-network aggregation, a many
node network is limited by the same bottleneck as a net-
work of only one node: the single link at the root of the
routing tree. At the final cut point, the problem becomes
compute bound and the aggregate power of the 20 TMote
network makes it more potent than the single node.

We also ran the same test on an a Meraki Mini based
on a low-end MIPS processor. While the Meraki has rel-
atively little CPU power—only around 15 times that of
the TMote—it has a WiFi radio interface with at least
10x higher bandwidth. Thus for the Meraki the optimal
partitioning falls at cut point 1: send the raw data directly
back to the server.

Having determined the optimal partitioning in our
real deployment, we can now compare it to the recom-
mendation of our partitioning algorithm. Doing this is
slightly complex as the algorithm does not model mes-
sage loss; instead, it keeps bandwidth usage under the
user-supplied upper bound (using binary search to find
the highest rate at which partitioning is possible), and
minimizes the objective function. In the real network,
lost packets may cause the actual delivered bandwidth
to be somewhat less than expected by the profiler. For-
tunately, the cut-point that maximizes throughput should
be the same irrespective of loss as CPU and network load
scale linearly with data rate.
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In this case, binary search found that the highest data
rate for which a partition was possible (respecting net-
work and CPU limits) was at 3 input events per second
(with each event corresponding to a window of 200 au-
dio samples). The optimal partitioning at that data rate4

was in fact cut point 4, right after filterbank, as in the
empirical data. Likewise, the computed partitions for
the 20 node TMote network and single node Meraki test
matched their empirical peaks, which gives us some con-
fidence in the validity of the model.

In the future, we would like to further refine the preci-
sion of our CPU and network cost predictions. To use
our ILP formulation we necessarily assume that both
costs are additive—two operators using 10% CPU will
together use 20%, and don’t account for operating sys-
tem overheads or processor involvement in network com-
munication. For example, on the Gumstix ARM-linux
platform the entire speaker detection application was pre-
dicted to use 11.5% CPU based on profiling data. When
measured, the application used 15% CPU. Ideally we
would like to take an automated approach to determin-
ing these scaling factors.

8 Related Work
First we overview other systems that, like Wishbone,
automatically partition programs—either dynamically or
statically—to run on multiple devices. Generally speak-
ing, Wishbone differs from these existing systems by us-
ing a profile-driven approach to automatically derive a
partitioning, as well as its support for diverse platforms.

The Pleiades/Kairos systems [13] statically partition
a centralized C-like program into a collection of node-
level nesC programs that run on motes. Pleiades is pri-
marily concerned with the correct synchronization of
shared state between nodes, including consistency, seri-
alizability, and deadlocks. Wishbone, in contrast, is con-
cerned with high-rate shared-nothing data processing ap-
plications, where all nodes run the same code. Because
Wishbone programs are composed of a series of dis-
crete dataflow operators that repeatedly process stream-
ing data, they are amenable to our profile-based approach
for cost estimation. Finally, by constraining ourselves
to a single cut point, we can generate optimal partition-
ings quickly, whereas Pleiades uses a heuristic partition-
ing approach to generate a number of cut points.

Triage [3] is a related system for “microservers” that
act as gateways in sensor network applications. Triage’s
focus is on power conservation on such servers by using a
lower-power device to wake a higher-power device based
on a profile of expected power consumption and utility
of data coming in over the sensor network. However,

4In this case with α = 0, β = 1, although the linear combination
in the objective function is not particularly when we are maximizing
data rate we are saturating either CPU or bandwidth

it does not attempt to automatically partition programs
across the two device classes as Wishbone does.

In stream processing there has been substantial work
looking at the problem of migrating operators at run-
time [2, 18]. Dynamic partitioning is valuable in environ-
ments with variable network bandwidth, unpredictable
load, but also comes with serious downsides in terms
of runtime overheads. Also, by focusing on static par-
titioning, Wishbone is able to provide feedback to users
at compile time about whether their program will “fit”
their sensor platform and hardware configuration.

There has been related work in the context of tradi-
tional, non-sensor related distributed systems. For ex-
ample, the Coign [11] system automatically partitions
binary applications written using the Microsoft COM
framework across several machines, with the goal of
minimizing communication bandwidth. Like Wishbone,
it uses a profile-driven approach. Unlike Wishbone,
Coign does not formulate partitioning as an optimiza-
tion problem, and only targets Windows PCs. Neubauer
and Thiemann [15] present a similar framework for parti-
tioning client-server programs. Automatic partitioning is
also widely-used in high-performance computing, where
it is usually applied to some underlying mesh, and in au-
tomatic layout of circuits. Finally, several systems, in-
cluding JESSICA2 [25], MagnetOS [4], and cJVM [1],
implement distributed Java virtual machines that appear
as a single system. These systems must use runtime
methods to load-balance threads between machines. The
overheads on communication and synchronization are
typically high, and only applications with a high ratio
of computation to communication will scale effectively.

Tenet [9] proposes a two-tiered architecture with pro-
grams decomposed across sensors and a centralized
server, much as in Wishbone. The VanGo system [10],
which is related to Tenet, proposes a framework for
building high data rate signal processing applications in
sensor networks, similar to the applications that inspired
our work on Wishbone. But VanGo is constrained to a
linear chain of filters, does not support automatic parti-
tioning, and runs only TinyOS code.

Marionette [24] and SpatialViews [17] use static par-
titioning of programs between sensor nodes and a server
that is explicitly under the control of the programmer.
These systems work by allowing users to invoke pre-
defined handlers (written in, for example, nesC) from a
high-level centralized program that runs on a server, but
neither offers automatic partitioning.

Abstract Regions [22] and Hood [23] enable opera-
tions over clusters of nodes (or “regions”) rather than sin-
gle sensors. They allow data from multiple nodes to be
combined and processed, but are targeted at coordinating
sensors rather than stream processing.
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9 Future Work/Conclusions
The model presented in this paper enables communica-
tion between embedded endpoints and a central server.
But it would be straightforward to extend our model
with a basic form of in-network aggregation: namely,
tree-based aggregation that happens at every node in the
network, useful, for example, for taking average sensor
readings. This communication pattern would be exposed
as a “reduce” operator that would reside in the logical
node partition, but would implicitly take its input not just
from streams within the local node, but from child nodes
routing through it in an aggregation tree. The partition-
ing algorithm remains the same. If the reduce operator
is assigned to the embedded node, aggregation happens
in-network, otherwise all data is sent to the server.

Also, while our prototype implementation only sup-
ports networks of one type of node, the model can also
handle certain kinds of mixed networks. A single log-
ical node partition can take on different physical parti-
tions at different nodes. This is accomplished simply by
running the partitioning algorithm once for each type of
node. The server would need to be engineered to deal
with receiving results from the network at various stages
of partial processing. In the future, mixed partitions may
be desirable even for homogeneous networks. Varying
wireless link quality can create a situation where each
node should partitioned differently.

A more radical change would extend the model with
multiple logical partitions corresponding to categories of
devices. This opens up several design choices; for exam-
ple, what communication relationship should the logical
partitions should have? We have verified that we can use
an ILP approach for a restricted three tier network ar-
chitecture. (Motes communicate only to microservers,
and microservers to the central server.) But going further
would require revisiting the partitioning algorithm.
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Abstract
Voice over IP (VoIP) in 802.11 wireless networks

(WiFi) is an attractive alternative to cellular wireless tele-

phony. Unfortunately, VoIP traffic is well known to make

inefficient use of such networks. Indeed, we demon-

strate that increasing handset deployment has the poten-

tial to cripple existing hotspot and enterprise WiFi net-

works. Our experiments show that VoIP halves the avail-

able TCP capacity of an 802.11b hotspot when six to

eight VoIP stations share the medium, and effectively

extinguishes TCP connectivity when ten VoIP stations

are present. Further, we show that neither the higher

data rates of 802.11a/g nor the 802.11 standard for qual-

ity of service, 802.11e, fully ameliorate the problem.

Instead, the problem is rooted in WiFi’s contention-

based medium-access control mechanism and consider-

able framing overhead.

To remedy this problem, we propose Softspeak, a pair

of backwards-compatible software extensions that en-

ables VoIP traffic to share the channel in a more effi-

cient, TDMA-like manner. Softspeak does not require

any modifications to the WiFi protocols and significantly

reduces the impact of VoIP on TCP capacity while si-

multaneously improving key VoIP call-quality metrics.

Results show improvements in TCP download capacity

of 380% for 802.11b and 25-200% for 802.11g.

1 Introduction

Voice-over-IP (VoIP) technology is now pervasive in

wire-line networks, embodied by wildly successful ap-

plications like Skype. Wireless deployment, in contrast,

has so far been limited to certain niche products. Re-

cently, however, WiFi-capable consumer phone handsets

such as T-Mobile’s UMA and the Apple iPhone have

been released to the US market in large numbers, por-

tending a huge influx of WiFi VoIP users once third-party

applications like iCall [1] become widely available for

these platforms. In the near future, it may not be unusual

for a dozen active WiFi VoIP handsets to be in range of a

single WiFi hot-spot, for example at a local Starbucks.

One might imagine that such a scenario would be eas-

ily supported by existing installations, as VoIP is a rela-

tively low-bandwidth protocol. For example, given an

802.11b channel with 11 Mbps of capacity, a G.7291

VoIP codec rate of 6.4 Kbps, and a combined header

size of RTP, UDP and IP of 40 bytes, one might ex-

pect a single AP to support over 70 bidirectional VoIP

calls and still leave half of the channel capacity for data

traffic. It is well known, however, that nothing could be

further from the truth; previous researchers have shown

that an 802.11b network supports as few as six simulta-

neous VoIP sessions [4, 9, 20], depending upon the par-

ticular characteristics of the network and codecs in use.

This counterintuitive result is due to the large per-packet

overhead imposed by WiFi for each VoIP packet—both

in terms of protocol headers and due to WiFi contention.

Call quality has traditionally been a major concern for

WiFi VoIP deployments, since real-time audio traffic has

stringent requirements in terms of loss rate, delay and

jitter, and needs to be sent at a high rate (e.g., 50–100

packets per second for many VoIP codecs) to maintain

acceptable audio quality. In mixed-use cases, best-effort

traffic can cause excessive queuing of VoIP traffic at ac-

cess points and may increase packet loss rate due to con-

tention for the medium. Since a VoIP call occupies only a

very small amount of bandwidth (possibly as few as eight

bytes of voice data per packet), many researchers [4, 25]

and commercial providers [2] have proposed prioritizing

VoIP packets, with the unstated assumption that the im-

pact on overall network performance will be minimal.

However, as we demonstrate experimentally, as few as

six VoIP calls may remove over half of the TCP capac-

ity in 802.11b. Moreover, prioritizing VoIP sessions runs

the very real danger of drowning out all competing best-

effort traffic, such as Web browsing and email messag-

ing. Somewhat surprisingly, our experiments show that

neither the increased speed of 802.11a/g nor the quality-

of-service mechanisms of 802.11e change this reality.

In this paper, we address the impending potential dis-

aster: that widespread VoIP usage will cripple hotspot

and enterprise WiFi networks. In addition to quantify-

ing and explaining the impact of VoIP on the capacity

of WiFi, we propose backward-compatible modifications

to 802.11 that aggregate multiple VoIP clients into the

equivalent of a single VoIP client, thus reducing VoIP’s

impact on the network’s data-carrying capacity.
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Previous work in this domain has proposed the con-

cept of ‘downlink aggregation’ in simulation [23, 24],

which encapsulates multiple VoIP packets into a single

packet at the AP, addressed to all VoIP stations associated

with the same AP. Our experiments demonstrate, how-

ever, that downlink aggregation is insufficient to fully

address the problem. We present a complementary tech-

nique for the uplink direction that serializes channel ac-

cess by establishing a TDMA-like schedule. We show

that this can be done in a distributed manner by inde-

pendent VoIP stations. We combine uplink TDMA and

downlink aggregation mechanisms to develop a system

called Softspeak that simultaneously improves VoIP call

quality while preserving network capacity for best-effort

data transfer.

We implement and evaluate Softspeak on a testbed of

Linux-based 802.11b/g/e devices within an operational

enterprise WiFi network. We show that Softspeak im-

proves residual downlink TCP capacity of the network

substantially, e.g., by 380% in the presence of ten VoIP

calls in 802.11b and by 200% in 802.11g (protected

mode). We also achieve significant improvements in

UDP and TCP uplink capacity, as well as in 802.11g un-

protected mode. Furthermore, we show that Softspeak

can improve VoIP call quality, providing an important in-

centive for client deployment. To the best of our knowl-

edge, our work is the first to present a system based on

commodity hardware that performs both uplink TDMA

and downlink aggregation to improve the performance

of multiple, simultaneous VoIP sessions while increasing

the residual data-carrying capacity of the WiFi network.

2 The impact of VoIP on WiFi

In this section we empirically demonstrate the degrada-

tion of WiFi network capacity as well as VoIP call quality

in the presence of an increasing number of VoIP clients.

We then employ a detailed simulation of the 802.11 DCF

algorithm to determine the precise source of the problem.

2.1 Sources of overhead

The 802.11 protocol is designed to allow clients to access

the channel in a distributed manner. Uncoordinated ap-

proaches are known to be inefficient under heavy load as

collisions become more frequent and the total airtime uti-

lization of the wireless channel reduces dramatically due

to airtime wasted on garbled frames. This problem is par-

ticularly relevant in the case of VoIP traffic, since VoIP

clients contend often due to the real-time nature of the

traffic. The resulting increased collision rate increases

loss and jitter, which in turn degrade TCP performance

and harm VoIP call quality.

Furthermore, given the small data payload of VoIP

packets the overhead of transmitting the various head-

ers in a VoIP packet becomes considerable: each VoIP

packet in a WiFi network is typically encumbered with

RTP, UDP, IP, MAC and PHY headers as well as a syn-

chronous 802.11 ACK frame. For example, a G.729

packet may take 157 µs to transmit at the maximum rate

in 802.11b, or 273 µs if we include the ACK frame (and

assume it is sent at maximum rate). Of this time, the

eight bytes of voice data carried inside the packet take

up only six microseconds; the entire IP packet requires

only 35 µs of airtime, resulting in 680% overhead. Al-

though 802.11g can reduce this overhead to 240% in the

best case, the overhead remains substantial at over 400%

(again optimistically assuming maximum rates are used)

in protected mode, which is required when any legacy

802.11b device is present.

Additionally, airtime usage may increase in response

to loss rate, as rate control algorithms frequently lower

the transmission rate in response to loss, regardless of

whether the loss was due to poor signal quality or frame

collision. Finally, we note that the resulting increase in

airtime scarcity in turn tends to increase collision proba-

bility and loss rate as more stations attempt to seize the

channel at once, thereby completing a vicious circle.

2.2 Experimental observation

To quantify the impact of VoIP traffic on background data

transmissions, we have configured a testbed to reflect a

realistic scenario for VoIP usage in the enterprise: sta-

tions sending and receiving VoIP traffic are spread out

over several offices and are connected to an operational

building-wide wireless network. For controlled exper-

imentation we ensure that all stations associate to the

same AP and do not roam between different APs. We

use wireless cards from two different manufacturers to

ensure our results are not artifacts of a particular piece of

hardware and consider 802.11b, g and e. (Full details of

the testbed are included in Section 4.1.) Unless specified

otherwise, all experiments employ a 10-ms G.729 codec.

2.2.1 Residual capacity

We are interested in the residual WiFi capacity as well

as VoIP call quality in the presence of a varying number

of VoIP stations. Here, we measure the residual capacity

by simultaneously running a bulk flow and measuring its

throughput. We conduct separate experiments for uplink

and downlink bulk flows, using both TCP and UDP. Our

experiments with UDP measure the raw channel capacity

available, while TCP measures the effective capacity for

flows that are sensitive to loss and delay. For simplicity,

we restrict our discussion to experiments using a single

non-VoIP flow at a separate client; we present results for

multiple data clients in Section 4.5.

Figure 1 plots the throughput of TCP in the presence

of a varying number of VoIP stations in an 802.11b net-

work. As we increase the number of VoIP streams, the



USENIX Association	 NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation	 411

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0  1  2  3  4  5  6  7  8  9  10

T
C

P
 t

h
ro

u
g

h
p

u
t 

(K
B

/s
)

# voip stations

downlink
uplink

Figure 1: TCP throughput as a function of the number

of VoIP streams in 802.11b (Avaya AP-8 access point).

throughput of a TCP uplink flow (where “uplink” refers

to the direction of the TCP data packets) degrades, halv-

ing at around eight VoIP streams. In typical TCP us-

age (e.g., Web traffic) more throughput is required from

the downlink direction than from the uplink direction.

Unfortunately, throughput degradation is far worse for a

TCP downlink flow, which can be explained as follows.

TCP’s congestion control mechanism attempts to use the

maximum bandwidth available given the loss rate and the

RTT. For both cases, the TCP sender needs to share the

AP with other traffic for its downlink traffic (data pack-

ets for TCP downlink or ACK packets for TCP uplink),

and it is therefore at the AP that most losses are expected

to occur. Losing a data packet is far worse than losing

an ACK packet, however. Therefore, TCP is able to tol-

erate a higher loss rate at the AP and achieve a higher

throughput when sending data uplink. As a result, TCP

downlink throughput halves at six VoIP streams and de-

grades by over 85% in the presence of ten VoIP streams.

UDP throughput degradation is less severe than that

of TCP because UDP is less sensitive to loss and delay.

Nevertheless we observe a significant throughput degra-

dation (over 55% with ten VoIP sessions). We further

note that the behavior of uplink UDP and TCP traffic

and their impact on VoIP traffic appears quite similar,

indicating that in our testbed the TCP uplink behavior is

characterized mostly by channel capacity, rather than by

loss and delay.

2.2.2 Call quality

As we increase the number of simultaneous VoIP ses-

sions, the individual call quality also decreases. Call

quality is a function of packet loss rate, delay and de-

lay jitter, and is typically represented as a Mean Opin-

ion Score (MOS) ranging from 1 (bad) to 5 (good). We

use an approximation of MOS based on network-level

metrics [6] with codec-specific parameters calibrated us-

ing simulation [7]. We assume a playout buffer that is

able to adapt its de-jitter delay such that on average no

more than 1% of packets are late. We find that in the

presence of TCP and bulk UDP uplink traffic, MOS de-

creases from 3.8 to 1 as the number of VoIP stations in-

creases from one to ten. In these cases VoIP traffic under-

goes severe loss (reaching 50%) due to drop-tail queuing

at the AP queue where it competes with bulk data or TCP

acknowledgments. Conversely, TCP downlink traffic is

suppressed by VoIP traffic to such an extent that the VoIP

MOS remains relatively unaffected. A major challenge is

thus to improve TCP downlink performance without sac-

rificing call VoIP quality.

2.2.3 802.11 protocol extensions

To evaluate whether higher bit rates alleviate problems of

contention and overhead we perform the same set of ex-

periments using 802.11g. We find that throughput degra-

dation is less severe in pure 802.11g networks than in

802.11b. For example, TCP downlink performance does

not drop as sharply as it does in 802.11b, but degrades

in a similar way to TCP uplink and UDP performance.

The loss in capacity when ten VoIP clients are present is

still substantial, however, ranging from a 32% reduction

in the case of UDP downlink to 39% for TCP downlink

traffic. Similarly, while VoIP MOS is higher in 802.11g,

it is still unacceptably low, dropping from 3.8 to 1.3 as

the number of VoIP sessions increases from one to ten

due to frequent losses.

In practice, however, our enterprise WiFi deploy-

ment almost never supports only 802.11g clients. For

backwards compatibility, 802.11g requires a “protected

mode” be used when 802.11b stations are detected. In

protected mode an 802.11g station precedes each trans-

mission by a clear-to-send (CTS) frame, thus increas-

ing per-frame overhead. We observe that the capac-

ity degradation caused by 802.11g VoIP clients in an

802.11g protected-mode network is comparable to that

of native 802.11b. Thus, the presence of a single legacy

802.11b client (VoIP or otherwise) alongside ten VoIP

clients removes 87% of TCP downlink capacity. In addi-

tion, we find that whereas VoIP uplink loss is negligible

in 802.11b in the presence of TCP downlink traffic, it

varies from 10–40% in 802.11g protected mode, result-

ing in an average VoIP MOS value of 2.0.

The 802.11e protocol is specifically designed to allow

real-time and data traffic to co-exist efficiently by prior-

itizing real-time traffic. We compare the performance of

802.11b and 802.11b+e using a popular 802.11e capa-

ble access point (a Linksys WAP4400N, different from

the Avaya AP-8 used in the previous experiments, which

does not support 802.11e), with VoIP traffic configured

to be classified and prioritized over other traffic at both

the AP and the clients. In the presence of TCP uplink

traffic, we observe that compared to 802.11b, 802.11e
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Figure 2: TCP uplink throughput as a function of the

number of VoIP stations in both 802.11b and 802.11b+e

(Linksys WAP4400N access point).
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does indeed improve the MOS of VoIP traffic. However,

as shown in Figure 2, this improvement is achieved at the

expense of TCP uplink throughput, which degrades far

more severely than is the case for 802.11b. TCP down-

link performance is essentially similar to that of 802.11b,

with a slight improvement in MOS. We conclude that

while 802.11e (at least as implemented by a popular AP

vendor) is able to improve call quality in some cases, it

does not mitigate throughput degradation in the presence

of a large number of VoIP clients.

2.2.4 Less aggressive codecs

By combining multiple 10-ms voice frames into a sin-

gle IP packet, G.729 can be run at longer inter-packet

intervals, thereby making more efficient use of network

resources. Figure 3 considers a 20-ms G.729 codec in

combination with TCP in 802.11g protected mode. As

expected, the impact is less than for a 10-ms codec yet re-

mains severe; the MOS for uplink VoIP traffic drops from

4 to 3 on average (compared to 2 in the 10-ms case) and,

more importantly, becomes highly erratic. Uplink and

downlink TCP throughput reduce by around 40% (not

shown, c.f. 87% in the 10-ms case for TCP downlink).

2.3 802.11b simulator

While our experiments clearly demonstrate real-world

performance problems, it is often difficult to determine

to what extent the degradation measured is due to the

802.11 protocol rather than interference, fading, hidden

terminals, or other environmental factors. In order to

cleanly separate these factors, we have implemented an

802.11 protocol simulator that allows us to evaluate how

aspects of the standard distributed coordination function

(DCF) algorithm impact performance, in particular resid-

ual capacity. We specifically omit the simulation of RF

properties, rate adaptation, background broadcast traffic

(e.g., DHCP and ARP), and hardware imperfections, in

order to show that the DCF algorithm by itself explains

our experimental observations of residual capacity. We

focus on the percentage of time a client uses the medium,

since it not only directly reflects bulk UDP throughput,

but also indirectly reflects loss rate: in a DCF-based

model losses are caused by colliding packets, which in

turn occupy airtime.

2.3.1 Configuration and validation

The simulator contains objects representing the AP and

wired and wireless stations that send UDP traffic (bulk

traffic or based on the traffic characteristics of a VoIP

codec). Wired stations are modeled as directly connected

to the AP. The wireless stations and AP contend for ac-

cess using the standard 802.11 DCF algorithm. We pa-

rameterize the simulator to mimic the behavior of our

testbed hardware (particular settings are detailed later in

Table 1) and use a bit rate of 11 Mbps. We configure an

AP queue length of 500 and station queue lengths of 10,

but note that our simulation results are not sensitive to

the choice of queue-length parameters.

We simulate the 802.11b experiment described earlier

for UDP and find that the results are very similar in air-

time. For example, simulated throughput degradation is

within 10% of the experimental results. The largest dif-

ference between the simulated and experimental results

is seen in the uplink VoIP loss rate which is 0.8–2.3% for

ten VoIP stations versus less than 0.02% on the testbed.

2.3.2 DCF’s share of VoIP impact

Having established that our simulation exhibits a similar

behavior as the testbed in 802.11b, and that a DCF-based

model is sufficient to explain the degradation of residual

capacity in our testbed under VoIP, we now analyze the

simulation data to determine which aspect of DCF causes

the observed behavior. Figure 4 shows the simulated air-

time used by each of the following components: non-

colliding bulk traffic (bulk), non-colliding VoIP uplink
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Figure 4: Simulated airtime versus the number of VoIP

streams, in the presence of 802.11b UDP uplink traffic.

and downlink traffic (voipup, voipdown), colliding pack-

ets (collisions), and times when all stations are backing

off or sensing the medium (backoff ).

VoIP takes up a large fraction of the airtime, e.g., 40%

for ten sessions, exceeding the airtime used by bulk traf-

fic. Most of the VoIP airtime (35%) consists of fram-

ing overhead. Additionally, 33% of total airtime is over-

head due to contention (20% backoff plus 13% wasted on

collisions). The techniques presented in the next section

are capable of reducing a significant portion of overhead,

specifically the framing overhead of downlink VoIP traf-

fic (11%) and the collision time (13%). Based upon these

numbers alone there is potential to almost double the

residual channel capacity.

3 Softspeak

Softspeak targets the key challenges of excessive con-

tention and framing to build a software-only solution

that can be deployed on existing commodity hardware.

The main idea is to aggregate voice traffic by combin-

ing many small packets into larger ones, thereby reduc-

ing per packet overhead. Others have observed that all

downlink packets must pass through the AP; hence, the

opportunity to aggregate exists at either at the AP itself

or just before the packets are sent to the AP [23, 24].

However, physically aggregating uplink VoIP packets is

challenging since there are multiple, independent VoIP

senders. Instead, we propose a time-division multiple

access (TDMA) scheme that approximates uplink aggre-

gation to the extent that it provides a similar reduction

in contention overhead. Our uplink TDMA scheme can

function independently of the downlink scheme and re-

quires only client-side modifications. Downlink aggre-

gation, on the other hand, also requires either modifying

the AP, or, more realistically, adding a separate “VoIP

aggregator” device upstream from the AP. Both mecha-

nisms conform to the existing 802.11 specification and

coexist with VoIP stations that do not use Softspeak.

3.1 Uplink TDMA

Our uplink approach reduces the amount of contention

created by VoIP clients. Specifically, we alter the con-

tention behavior of the VoIP clients to no longer con-

tend with non-VoIP clients, and then devise a distributed

mechanism to schedule the VoIP clients in a TDMA fash-

ion so that they no longer contend with each other either.

We remove the VoIP clients from the standard con-

tention process by modifying their backoff behavior. In-

stead of sensing the medium for the 802.11-mandated

DCF inter-frame spacing (DIFS) followed by a random

backoff before sending, a Softspeak VoIP client senses

for a shorter period of time and does not perform back-

off, thus preventing collisions with non-VoIP traffic. (In

the absence of hidden terminals, collisions with ACKs

are prevented by 802.11’s NAV mechanism.) This be-

havior effectively prioritizes uplink VoIP traffic and im-

proves call quality. (A similar mechanism is employed

by a commercial product, SVP [2].) By itself, however,

this alteration inhibits DCF’s ability to prevent collisions

among the VoIP stations. In fact, when we simulate

only two VoIP stations that sense for a short inter-frame

spacing (SIFS) without backoff in combination with bulk

traffic that uses standard contention, we find that neither

VoIP station is able to sustain a viable VoIP session.

To prevent VoIP stations from colliding with each

other, we introduce coarse-grained time slots and con-

struct a TDMA schedule for the VoIP clients. When used

in combination with downlink aggregation, the downlink

aggregator node can assign TDMA slots as well as per-

form admission control, since it has knowledge of all the

clients using our scheme. In the absence of a central-

ized scheduler, we devise a distributed mechanism (Sec-

tion 3.1.1) that leverages management frames within the

802.11 protocol to allocate slots.

3.1.1 Slot allocation and admission control

In an ideal deployment, the network operator will have

installed a Softspeak VoIP downlink aggregator that can

assign slots for uplink TDMA. If all available slots are

in use it can deny access to a new Softspeak client, in

which case that client resorts to normal 802.11 DCF. In

some scenarios, however, it may be easier for individ-

ual clients to install Softspeak software than to convince

network operators to install new hardware. Moreover,

uplink TDMA is useful by itself, i.e., without downlink

aggregation, since it reduces contention by uplink VoIP

stations. Hence, if clients are unable to locate a VoIP ag-

gregator (Section 3.2 describes the registration process),

they proceed with a distributed allocation process.

Independent of how TDMA slots are allocated to

clients, VoIP stations need to be synchronized in order

to correctly use their assigned slots. Each client uses

the periodic beacon frame broadcast by an 802.11 AP to
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synchronize with other VoIP clients. Beacons are sent at

fixed intervals (usually 100 ms), and, since they are sent

by the AP at a low bit rate, are typically received by all

clients. It is important to note that a VoIP client may also

hear beacons from an AP other than the one to which

it is associated. To use beacon-based synchronization,

VoIP clients need two important pieces of information:

a) The AP to whose beacons other nearby VoIP clients

are synchronizing, and b) which TDMA slots they are

using. The slot allocation process provides both pieces

of information. In the case of distributed slot allocation

each VoIP client encodes the information by temporarily

spoofing its MAC address (6 octets) as follows:

• The first three octets (known as the OUI) are taken

from a reserved OUI address space to ensure the

resulting address is valid and unique.

• The next two octets are the same as the last two

octets of the BSSID of the AP to whose beacons

the VoIP station is synchronizing.

• The last octet is used to denote the particular real

time slot the VoIP station is using or wants to use.

The main concern when coordinating clients is that

there is no guarantee they can hear each other’s trans-

missions. Hence, Softspeak clients coerce the AP into

generating specially crafted packets that the other clients

can hear. VoIP stations using uplink TDMA periodically

(e.g. once a second) send directed Probe-Requests on the

channel and to the AP to which they are currently associ-

ated using the modified MAC address. The destination

(unmodified) AP will respond with a Probe-Response

packet whose destination is the VoIP station’s modified

MAC address, which is heard by all associated clients.

A new VoIP station that wants to use uplink TDMA

first enters promiscuous mode for a few seconds to sense

the channel to check if there are any special Probe-

Response packets (easily identifiable by the first three

octets of the destination MAC address), thus determin-

ing which AP’s beacons are being used for synchroniza-

tion and which slots are in use. If the VoIP client detects

any such Probe-Responses, it extracts the encoded AP

and uses that for TDMA synchronization. Otherwise it

synchronizes using the AP with which it is associated.

In either case, the VoIP client picks an unused slot and

starts to periodically broadcast a Probe-Request with its

source MAC address denoting its slot and the AP it is us-

ing for synchronization. As before, the AP sends Probe-

Responses which can be heard by new VoIP clients want-

ing to join. Finally, when a VoIP station finishes its ses-

sion it stops sending Probe-Requests.

Our slot assignment scheme seamlessly supports dy-

namic node arrivals and departures. Moreover, this

scheme works even when nearby clients are associated to

different APs, since a client may synchronize with an AP

Figure 5: Time series of transmission times by a single

station, no synchronization.

other than the one it is associated to. Finally, our scheme

works if APs use various 802.11 security features since

Probe-Request and Probe-Responses are always sent un-

encrypted. We have deployed our scheme with an AP

that employs MAC-address-based access control, WPA2

or WEP encryption, and disabled SSID broadcasting.

A drawback of the distributed allocation scheme as

currently described is that it is unable to detect multi-

ple clients attempting to allocate the same slot simulta-

neously. We observe that this problem can be solved (or

made unlikely to occur) by adding some bits of random-

ness to the spoofed MAC address, allowing the clients to

arbitrate among conflicting slot allocations. For exam-

ple, the scheme may be extended by having VoIP clients

announce the BSSID and the slot number in separate

Probes, thus allowing room for some bytes to be set ran-

domly by each client.

3.1.2 Synchronizing TDMA slots

To implement uplink TDMA, we modify the Ralink

RT2560F wireless card protocol stack in Linux 2.6.21

(without modifying the WiFi hardware or firmware). Ide-

ally, once slots are allocated, each VoIP station contends

for the channel in its assigned slot and refrains from con-

tending outside its slot. By default, the Linux 2.6 ker-

nel timer interrupt is programmed to fire every millisec-

ond; we show later that this also happens to be close to

the optimal granularity for VoIP slotting in 802.11b. Us-

ing one-millisecond slots, a TDMA scheme can support

ten simultaneous VoIP stations using a codec with 10-

ms inter-packet arrival rate, or 20 stations using a 20-

ms codec. Since 802.11a/g frames for these codecs take

less airtime, Softspeak could use smaller slots, allowing

a larger number of VoIP stations to be admitted; we have

not yet implemented sub-millisecond slotting.

A straightforward implementation of one-millisecond

slotting is to suspend and resume transmission from
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within Linux’s timer interrupt handler in accordance with

a station’s assigned slot. However, the naı̈ve approach

faces two problems: clock skew and timer inaccuracy.

Figure 5 illustrates both. In this experiment, a single sta-

tion uses iperf to emulate a G.729 VoIP codec with

a 10-ms inter-packet arrival rate. We manually assign

the station a static TDMA slot; there is little to no back-

ground traffic on the same AP during the experiment

In the figure, the x axis plots time in seconds, and the

y axis shows the start time of each transmission modulo

10,000 µs (10 ms). The figure shows the effect of the

timer interrupt firing faster than 1,000 times per second

as well as iperf sending slightly slower than the con-

figured rate of 100 packets per second. If the timer inter-

rupt and iperf operated at their correct rate, we would

expect to see a single horizontal band corresponding to

the station’s assigned slot. Instead, iperf schedules

packets at a rate slower than the timer interrupt, and as

a result iperf and the implemented TDMA slot drift with

respect to each other. When iperf happens to send in-

side the slot, a short almost horizontal line appears start-

ing at the bottom of the slot (the slight upward slope of

this line is the clock skew). Once transmissions reach the

top of the slot, packets are buffered until the start of the

next slot, causing the downward sloping lines. The slope

is caused by the timer interrupt firing too fast.

Different stations may exhibit different degrees of

skew, possibly even varying across time. We address

this issue by effectively slaving each station’s clock to an

AP. Specifically, we reset the timer every time a station

hears the periodic beacon frame from the AP that was as-

signed during the slot allocation process. On the Soekris

net4801 in our testbed, Linux uses the programmable in-

terval timer (PIT) as its time interrupt source. Therefore,

we modify the driver to reset the PIT every time it hears

a beacon, which we have measured to be roughly once

every 102–103 ms for the APs in our network.

Manipulating the PIT timer in this way may conceiv-

ably cause unintended timing artifacts in the station’s op-

eration. Therefore, we have developed an alternative im-

plementation that uses Linux’s high-resolution timers to

schedule the VoIP slots and have observed a similar de-

gree of synchronization. However, the results in this pa-

per are based on manipulating the PIT timer.

3.1.3 Controlling transmission timing

An obvious complication with our scheme is that when

a TDMA slot starts, a station other than the station that

has been assigned the slot may already be transmitting a

frame. At 11 Mbps a maximum-sized IP packet (1500

bytes) together with ACK will take 1376 µs, potentially

delaying the station by that time from the start of its slot

into the next slot.2 In addition, the VoIP station may re-

peatedly fail to capture the channel even while actively

Figure 6: Illustration of dynamic IFS showing the vari-

ous contention parameters, depending on the TDMA slot

stai is contending in.

Figure 7: Dynamic IFS in the presence of other data

traffic. In TDMA slot i + 1 stai wins over stai+1 since

it contends with SIFS rather than SIFS + cwslot

contending. We address this challenge by letting the

WiFi card driver adjust the way VoIP station contends

for the channel during its assigned slot, a mechanism we

term dynamic IFS (dynamic inter-frame spacing).

In standard DCF, stations contend using an inter-frame

spacing of SIFS + (2 · cwslot) followed by a random

backoff. (By cwslot we denote an 802.11 contention-

window slot—20 µs in 802.11b—not Softspeak’s 1-ms

TDMA slot.) We use the two 20-µs cwslot intervals

starting at SIFS and (SIFS + cwslot), respectively, to

(a) prioritize the VoIP traffic over non-VoIP traffic and

(b) prioritize among different VoIP stations to avoid col-

lisions. Accordingly, we let each station contend as fol-

lows: Figure 6 considers a station stai which is assigned

TDMA slot i. During the station’s assigned TDMA

slot it contends with (SIFS + cwslot) (and no back-

off). In slot i + 1, it contends with SIFS (and no back-

off). In any other slot it contends as specified by DCF

(SIFS + (2 · cwslot) + backoff).

Now let us consider the scenario as illustrated in Fig-

ure 7, in which a station stai in TDMA slot i is delayed

into the next TDMA slot (i + 1) by an ongoing trans-

mission and assume for the moment that stai’s packet

was ready at the start of the slot i. After the transmis-

sion has ended, stations stai and stai+1 contend for the

channel. However, due to the assigned contention pa-
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rameters, stai is guaranteed to win over station stai+1.

Furthermore, after stai has finished transmitting and re-

ceived its ACK (after 430 µs for a large-payload G.711

codec), there is still at least (2 ms - 1376 µs - 430 µs

= 194 µs) for stai+1 to commence its transmission and

therefore not contend in TDMA slot (i + 2). It can be

shown that in the absence of retransmissions, as long as

(a) the duration of a VoIP frame is less than one TDMA

slot and (b) the duration of a bulk frame is less than two

TDMA slots, station i will never contend in slot (i + 2).
Even if due to, e.g., 802.11 retransmissions or imperfect

control of timing by Softspeak, a station ends up con-

tending in a TDMA slot other than i or (i + 1), it will do

so using conventional DCF contention parameters and do

no worse than without our improvements.

Figure 8 plots the transmission start times of ten VoIP

stations, each assigned a separate TDMA slot, when

competing against background traffic. In particular, a

bulk UDP sender generates background traffic in the

downlink direction to a separate wireless station. Us-

ing dynamic IFS, the slotting is clearly defined: while

the bands are longer than 1 ms due to delays caused by

ongoing background traffic transmissions (as explained

above), the majority of transmissions do not commence

more than one slot away.

The first slot (assigned to the VoIP station plotted in

the first column of Figure 8) commences roughly 500 µs

after the beacon time. This offset is caused by inevitable

delays between the time that the beacon is generated by

the AP and when it is received and processed by a station,

and also between the time the station driver generates a

packet for a particular slot and the time that it is trans-

mitted. In particular, 400 µs of this time is accounted for

by beacon transmission time, the remainder consisting

of processing delays in the station. While some of these

processing delays may vary across different stations, as

subsequent figures show, the delay is consistent enough

across multiple stations with the same hardware config-

uration that a station’s synchronization can be tuned for

that hardware.

3.2 Downlink aggregation

Downlink aggregation introduces an aggregator compo-

nent that is placed at or before the WiFi AP (uplink from

the AP). The aggregator is on-path and transparently for-

wards all traffic to and from the AP; non-VoIP traffic is

forwarded without modification. The aggregator buffers

VoIP frames destined for wireless stations and releases

a frame encapsulating the buffered frames at a regular

interval (every M ms, where M is the minimum packe-

tization interval of the VoIP codecs in use.) By combin-

ing all the VoIP sessions into one packet per codec in-

terval, downlink aggregation can virtually eliminate the

marginal header and contention overhead of additional

Figure 8: TDMA slotting by ten VoIP stations using dy-

namic IFS in the presence of UDP downlink background

traffic. Each column represents a distinct VoIP station.

VoIP clients. There is a down side however: when the

aggregator buffers a packet, it adds a constant delay of

M /2 ms in expectation, e.g., 5 ms given a 10-ms codec.

When a new Softspeak VoIP session starts up (or when

the station roams to a different AP) it registers with

the aggregator node, which we implement on a sepa-

rate Linux machine. When the aggregator receives a

downlink packet addressed to a registered VoIP client, it

buffers the packet and combines it with all other buffered

packets into a single encapsulated packet that it sends

out at fixed intervals (e.g., 10 ms for G.729). The ag-

gregator node uses the IP header information from the

most recently heard uplink packet (say from station S1)

to construct a new frame. Addressing the packet to S1
increases the likelihood that the packet will be acknowl-

edged by a currently active VoIP client. We define an

aggregation header that stores the set of destinations and

original IP packet lengths for each station. The aggrega-

tion header is prepended to the UDP header and packet

payload for S1, and then the respective IP and UDP

headers and payloads for the remaining buffered VoIP

packets are appended.

In contrast to previous proposals [23], we address the

aggregated frame to only one of the VoIP stations; we

configure the WiFi interface of each of the VoIP sta-

tions to be in promiscuous mode to allow them to re-

ceive the aggregated packets regardless of the destina-

tion. The client passes aggregated packets to the Soft-

speak module that de-encapsulates the packet, extracts

the portion meant for the current station, and passes it up

the networking stack. Because the aggregated packet is

addressed to only one station, there will be at most one

MAC-layer acknowledgment. Wang et al., on the other

hand, propose the use of multicast in order to eliminate

the MAC ACK frame. We preserve the ACK frame for

two pragmatic reasons. First, in our experience, while
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Card CWmin CWmax Retry limit

Ralink RT2560F 8 256 8

Atheros AR5212 32 32 11

Avaya AP-8 16 16 11

Table 1: 802.11b contention parameters measured for

our wireless hardware.

obviously unable to eliminate all loss, the single ACK

frame is a cost-effective mechanism to protect the ag-

gregated packet against many collisions. Secondly, and

perhaps more importantly, commodity access points typ-

ically transmit multicast frames only at a multiple of the

beacon interval to inter-operate with clients in power-

save mode, introducing intolerable delay.

4 Evaluation

We now evaluate the effect of downlink aggregation

and uplink TDMA, both independently and in concert.

In particular, we show that (a) our schemes signifi-

cantly increase the available channel capacity while usu-

ally maintaining—and sometimes improving—VoIP call

quality, and (b) our implementation of Softspeak is close

to optimal in terms of throughput improvement.

4.1 Experimental testbed

The wireless infrastructure in our building is a managed

802.11b/g deployment of enterprise-class Avaya AP-8

access points. There are multiple APs per floor which

are configured to orthogonal channels to increase spatial

diversity. We configure eleven Soekris net4801 boxes

to act as VoIP stations. Each has two mini-PCI wire-

less cards: an Atheros AR5212 chipset-based card and

an Ralink RT2560F-based interface. The net4801 is a

single-board based computer with a 266-MHz CPU run-

ning the Linux operating system. To simplify our ex-

periments, we emulate VoIP traffic using iperf. We

use iperf to generate UDP traffic that mimics a com-

monly used VoIP codec, G.729, at 10-ms inter-packet in-

tervals. RTS/CTS is disabled on all Soekris boxes and

APs. All experiments are conducted late at night to min-

imize background wireless activity.

We employ ten commodity PCs connected over wired

gigabit Ethernet as endpoints for the (emulated) VoIP

traffic generated by the Soekris boxes. Essentially, each

PC-Soekris pair serves as a distinct bi-directional VoIP

call. One additional PC-Soekris pair conducts a bulk

transfer (TCP or UDP) to measure the residual capac-

ity of the wireless channel in the presence of the VoIP

traffic. The TCP receive-window size is configured to be

large enough that our TCP transfers are never receive-

window limited. Unless otherwise noted, bulk transfer

is conducted through the Atheros card, while the Ralink

interfaces send and receive VoIP traffic.

Table 1 reports the default contention parameters for

the various devices in our testbed as measured by the Jig-

saw wireless monitoring infrastructure [5]. We note that

neither the Atheros card nor the Avaya AP appears to

double its contention window size on retries, in contrast

with the default behavior specified by 802.11.

4.2 Results for 802.11b
Figures 9 and 10 compare bulk throughput and VoIP

call quality across all combinations of applying uplink

TDMA and/or downlink aggregation in 802.11b, for TCP

uplink and downlink. The results for UDP bulk uplink

(not shown) are similar to those of TCP uplink. We dis-

cuss the case of UDP bulk downlink in Section 4.3. The

most important conclusions are that (a) applying a com-

bination of uplink TDMA and downlink aggregation im-

proves residual bulk throughput, in some cases drasti-

cally, (b) with one exception, call quality is preserved or

greatly improved, (c) applying only one of uplink TDMA

or downlink aggregation does not achieve these results

across all three cases of bulk traffic load.

We summarize the benefits of Softspeak (combined

uplink TDMA and downlink aggregation) over 802.11,

for the case of ten VoIP sessions, as follows:

TCP uplink and UDP uplink: Capacity increases by

around 50% (Figure 9(a)). Downlink VoIP im-

proves from being completely unusable for VoIP to

being usable (Figure 9(b)). The bulk of this im-

provement comes from a reduction in downlink loss

rate (from 55% to 4.8%) by downlink aggregation.

However, uplink TDMA contributes significantly

by further reducing the downlink loss rate (to 1.8%),

resulting in a substantial increase in MOS. For up-

link VoIP (Figure 9(c)) most of the MOS improve-

ment comes from downlink aggregation, which re-

duces the RTT from over 400 ms to below 25 ms by

reducing queuing at the AP.3

TCP downlink: Capacity multiplies 4.8 times (380%

increase) from 92 KB/s to 445 KB/s (Figure 10(a)).

Unfortunately, VoIP downlink MOS degrades

somewhat (Figure 10(b)). On closer examination,

we find that downlink MOS suffers from an in-

creased loss rate from downlink aggregated packets:

since Softspeak’s downlink aggregation scheme re-

ceives link-layer acknowledgments from only one

VoIP client, only frame losses experienced by that

client result in retransmission. Frame corruption ex-

perienced by other clients remains unnoticed. We

address this issue when we present our results for

802.11g (Section 4.4) where higher frame rates may

further increase the probability of frame corruption.

While these results show that Softspeak improves the

efficiency of 802.11b networks in the presence of VoIP
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Figure 9: Impact of a varying number of VoIP stations in combination with TCP uplink traffic (802.11b).
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Figure 10: Impact of a varying number of VoIP stations in combination with TCP downlink traffic (802.11b).

in terms of residual TCP capacity (while mostly preserv-

ing VoIP call quality), an important question is whether

further improvements to our implementation could be

made. For example, it might be the case that our im-

plementation of uplink TDMA lacks sufficient control

of VoIP packet scheduling, causing collisions. An op-

timal implementation (e.g., one that is implemented in

the 802.11 hardware or firmware) might do a better job

at controlling the emission of frames according to the

TDMA schedule.

To investigate to what extent further improvements

may be made to our implementation (but while remain-

ing faithful to Softspeak), we compare our results with

those based on an emulation of an optimal implemen-

tation. We emulate downlink aggregation by replacing

the individual VoIP senders that generate downlink VoIP

traffic by a single sender that generates packets of the

size produced by the downlink aggregator, eliminating

any jitter and loss potentially caused by the downlink

aggregator. Furthermore, downlink packets are sent to,

and their loss rate measured at, a single VoIP station,

eliminating any losses due to imperfect overhearing. We

emulate uplink TDMA by replacing the VoIP stations

by a single VoIP station that sends packets on behalf

of all VoIP stations, in other words, it sends packets at

ten times the codec rate. The single VoIP station nat-

urally serializes the transmission of uplink VoIP pack-

ets, thereby eliminating any collision among VoIP sta-

tions. To minimize the probability of colliding with other

traffic, it uses SIFS without backoff. In Figures 9 and

10 the results of the emulation are plotted as an ‘opti-

mal’ point for ten VoIP clients. In terms of capacity and

uplink MOS, Softspeak achieves close to what is opti-

mally achievable. For downlink MOS, consistent with

our earlier observation, Softspeak performs worse than

optimal due to imperfect overhearing. However, note that

in Figure 10(b) even optimal Softspeak’s downlink MOS

is worse than that of ‘no softspeak’. This may be ex-

pected, given that (optimal) Softspeak enables TCP traf-

fic to considerably increase network resource usage. For

example, we measure a 25% increase in RTT (as well

as an increased RTT variance) due to a higher AP queue

occupation, which in turn explains the higher loss rate of

downlink VoIP traffic.

4.3 UDP and 802.11e

While Softspeak can improve the capacity available for

bulk UDP downlink traffic in 802.11b networks (Ta-

ble 2), it cannot simultaneously reduce the high VoIP

downlink loss rate that result from competing with a

CBR UDP flow. These losses are caused by the AP

queue filling with bulk UDP downlink traffic, combined

with the fact that UDP does not respond to increasing

loss and delay. Similarly, when replacing a single bulk
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Metric No Spk Spk Spk+Prio

Downlink bulk tput (KB/s) 375 605 561
Downlink VoIP loss rate 67% 61% <0.1%
Uplink VoIP loss rate 0.82% <0.1% <0.1%

Table 2: The effectiveness of combining Softspeak

(Spk) with prioritization (Prio) in the presence of ten

VoIP stations and downlink bulk UDP traffic (802.11b,

simulated). (UDP throughput without VoIP is 924 KB/s.)
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Figure 11: Simulated Softspeak airtime usage versus

the number of active VoIP streams, in the presence of

802.11b UDP uplink bulk traffic (c.f. Figure 4).

TCP stream by a sufficiently large number of bulk TCP

streams, the AP queue fills up with TCP packets causing

large delay. These losses and delays can only be ame-

liorated by adding prioritization at the AP: (aggregated)

VoIP packets would therefore not be dropped regardless

of the amount of non-VoIP traffic buffered at the AP.

Luckily, prioritization is part of the 802.11e standard.

4.3.1 Prioritization

Unfortunately, our testbed hardware cannot simultane-

ously support 802.11e (supported only by the Atheros

chipset) and Softspeak (which is currently only imple-

mented for the Ralink interfaces). We therefore evaluate

Softspeak combined with 802.11e-like prioritization at

the AP using our simulator. Consistent with our results

in Section 2.3.2, our simulator produces results similar to

those measured experimentally for the case of UDP with-

out prioritization for the combination of uplink TDMA

and downlink aggregation, and we therefore believe that

we can extrapolate to the case of AP prioritization. Ta-

ble 2 shows that when we combine Softspeak with pri-

oritization, we not only achieve a 47% improvement on

downlink bulk UDP capacity, but also improve VoIP loss

rate compared to the baseline.

4.3.2 Airtime utilization

Implementing Softspeak in our simulator also allows us

to isolate the source of our performance improvement.

Figure 11 shows the simulated airtime plot correspond-

Softspeak enabled No measures Fixed=11b Fixed=11b,
optout

No 3.7 ± 0.095
Yes 2.8 ± 1.0
Yes, fixed Station 1 3.4 ± 0.63 3.5 ± 0.23
Yes, fixed Station 2 2.7 ± 1.0 3.2 ± 0.81 3.5 ± 0.31

Table 3: Downlink aggregation losses in the presence

of TCP downlink traffic (802.11g protected mode). The

values given are the average and standard deviation MOS

across all downlink VoIP sessions.

ing to Figure 4, but with uplink TDMA and downlink

aggregation enabled (and no prioritization). The figure

indicates that we have achieved our objective of convert-

ing almost all time spent on downlink framing overhead

and on collision into bulk data capacity. Consistent with

the reduction in collision airtime we have also reduced

the collision rate, thereby improving loss rate, jitter, and

as a result, VoIP call quality and TCP throughput.

4.4 Results for 802.11g

For 802.11g we observe that Softspeak as currently de-

scribed makes significant improvements in capacity (24–

32% for ten VoIP stations), while maintaining or lower-

ing jitter and VoIP uplink loss to negligible levels. Recall

that when 802.11g runs in protected mode, TCP down-

link capacity suffers tremendously in the presence of

VoIP. Using Softspeak we are able to triple (increase by

200%) the TCP downlink capacity for ten VoIP stations.

However, Softspeak also introduces significant downlink

VoIP loss, rising to 30% for some stations, where in some

cases virtually none was experienced without enabling

Softspeak. In the case of 802.11g protected mode this re-

duces MOS from 3.7 to 2.8 on average and substantially

increases the variance of MOS (Table 3, no measures).

As noted in Section 4.2 for 802.11b, downlink ag-

gregation is susceptible to frame corruption by any re-

ceiver that is not the link-layer recipient of the aggre-

gated packet, and the higher rates of 802.11g only in-

crease the likelihood of frame corruption. Our solu-

tion to this problem is three-fold. First, we observe that

judiciously selecting a fixed station as the destination

for aggregated packets may greatly alleviate loss: pick-

ing a station that consistently experiences frame corrup-

tion causes the AP to often retransmit aggregated frames

thereby increasing each station’s probability of receiving

a correct copy. For a particular choice of station (Sta-

tion 1 in Table 3), we observe that the average downlink

loss rate consistently reduces to below 2%, resulting in

an average MOS of 3.4. However, the MOS variance re-

mains high. Second, the selected station can be made to

associate with the AP at a lower rate, causing aggregated

packets to be transmitted at the lower rate and further re-

ducing frame corruption. To test this, we force Station 1

to associate in 802.11b mode (fixed=11b in Table 3) and
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Figure 12: 10-ms code VoIP in combination with TCP

traffic (802.11g protected mode, two stations opt out).

 0

 200

 400

 600

 800

 1000

 1200

 1400

tput doMOS upMOS

T
C

P
 t
h
ro

u
g
h
p
u
t 
(K

B
/s

) no softspeak
softspeak

(a) TCP downlink.

tput doMOS upMOS
 1

 2

 3

 4

 5

M
O

S

no softspeak
softspeak

(b) TCP uplink.

Figure 13: 20-ms codec VoIP in combination with TCP

traffic (802.11g protected mode, two stations opt out).

obtain a MOS of 3.5 as well as reduced variance. Note

that to avoid condemning one of the stations to low-rate

communication, a dummy 802.11 receiver can be added

to the downlink aggregator box (or placed separately)

and made to associate at the lower rate.

Our third measure is to have any remaining bad re-

ceivers opt out of the downlink portion of Softspeak (not

evaluated for Station 1). By de-registering with the ag-

gregator, these clients receive separate VoIP frames as

in the non-aggregated case (while continuing to measure

loss rate from received aggregated packets to help de-

cide whether and when to re-register). Note that these

stations can still participate in uplink aggregation. To

demonstrate that such a scheme can gracefully address

this situation in practice, we evaluate all three measures

when making a poor choice for the fixed station: Station

2 in Table 3, which gives a low MOS value of 2.7. After

making the fixed station associate in 802.11b (improving

average MOS to 3.2), we find that two stations consis-

tently experience a high loss rate and MOS. Once these

two stations opt out of downlink aggregation, we arrive

at a MOS of 3.5 with low variance (fixed=11b,optout).

Of course, several of these measures have the potential

of sacrificing much of the bulk traffic throughput gains

that were obtained from downlink aggregation in the

first place. We evaluate both TCP throughput and VoIP

quality based on the above Station 2 and while apply-

ing all three measures. Downlink TCP throughput (Fig-

ure 12(a)) does not much suffer much from these coun-
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Figure 14: VoIP in combination with bulk TCP traffic

(802.11g protected mode, no opt-out). Only five VoIP

stations are active. In (c) and (d) the remaining five sta-

tions engage in Web traffic. The throughput measured is

that of bulk TCP.

termeasures: Softspeak continues to more than triple

TCP downlink throughput. However, the resulting up-

link TCP throughput (781KB/s, Figure 12(b)) is 12%

less than the throughput achievable by Softspeak without

enabling these countermeasures (not shown). Neverthe-

less, even with the countermeasures enabled Softspeak

is able to achieve a significant improvement on residual

throughput (34%) on TCP uplink traffic. For both TCP

downlink and uplink Softspeak mostly maintains or sig-

nificantly improves VoIP quality. For completeness, Fig-

ure 13 presents the corresponding results when all clients

use a 20-ms G.729 codec. As expected, Softspeak deliv-

ers less benefit in terms of throughput increase, yet re-

mains critical for uplink VoIP call quality.

4.5 Softspeak and Web traffic
So far we have focused on Softspeak’s impact on bulk

traffic, without other traffic present. In reality, of course,

one may expect a diverse traffic mix. We next evaluate

how our results change in the presence of Web traffic, by

running an equal number of VoIP clients and Web clients

in combination with a bulk TCP stream, where each of

the Web clients repeatedly downloads the front page of

cnn.com (630 KB). Note that the size of our testbed

limits us to five VoIP clients and five Web clients, and

the magnitude of improvement is expected to be smaller

than for a larger number of clients. In Figure 14, we plot

Softspeak’s improvements before (a and b) and after (c

and d) adding Web traffic. Comparing the two scenarios

we find that, independent of the presence of Web traf-
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fic, Softspeak (a) raises uplink MOS to an identical level,

(b) roughly maintains downlink MOS, and (c) improves

downlink TCP throughput to the same degree (roughly

35%). However, we also find that the gains made by Soft-

speak on TCP uplink throughput diminish in the presence

of Web traffic. In summary, it appears that, with the ex-

ception of TCP uplink throughput, Softspeak’s improve-

ments on the efficiency of the network are maintained,

even when Web traffic is present.

5 Limitations and discussion

The scalability of Softspeak is limited by the number

of slots available for uplink TDMA, i.e., ten clients in

802.11b (given 10-ms inter-packet interval VoIP codecs).

In 802.11g (non-protected mode) the number of clients

can be raised to twenty by choosing 500-µs TDMA slots

(assuming a 48-Mbps sending rate). In addition, the

number of available slots can be further doubled in the

case that only 20-ms codecs are in use.

Softspeak relies on clients overhearing each other’s

VoIP communication to perform downlink aggregation.

Therefore, if a WLAN uses a WiFi encryption protocol

such as WPA2, downlink aggregation is no longer possi-

ble. Uplink TDMA, on the other hand, is not affected by

encryption. Protocols encrypted above the MAC layer,

such as Skype, can continue to take advantage of Softs-

peak’s downlink aggregation, as long as they allow some

way of being detected as VoIP.

Another consequence of downlink aggregation is that

Softspeak places a station’s interface in promiscuous

mode, raising concerns of increased power usage. Sta-

tions engaging in VoIP traffic cannot currently benefit

from 802.11 power saving mode (PSM) with or without

Softspeak enabled, since PSM’s duty cycling granular-

ity is too coarse (a multiple of the beacon interval time).

However, Softspeak introduces a well-defined schedule,

both for uplink (TDMA) and downlink traffic (the ag-

gregator’s schedule), even in the face of jitter caused

by VoIP applications or the wide-area network. Future

rapid-duty cycling hardware may be able to exploit Soft-

speak to provide more fine-grained power savings.

VoIP silence suppression may go some way towards

mitigating the impact of VoIP, decreasing the need for

Softspeak. However, it appears that silence suppres-

sion is not universally implemented or supported by all

codecs. For example, while monitoring a G.711 call be-

tween a Linksys VoIP phone and a softphone (Twinkle),

we observe no change to inter-packet time in traffic sent

by either side, even when the sender is muted. The same

applies when we monitor a SkypeOut call. On the other

hand, we have observed that Skype-to-Skype calls do

employ silence suppression by lowering the sending rate,

rather than eliminating traffic completely.

6 Related work

Researchers have studied VoIP call quality in wireless

networks and attempted to quantify how many VoIP calls

traditional WiFi networks can handle while maintaining

various quality-of-service (QoS) metrics. These range

from analytical and simulation-based studies [3, 14, 22,

25] to those that validate findings by measurements on

actual experimental testbeds [4, 9, 20]. While precise

findings vary, all studies agree that the effective VoIP ca-

pacity of a WiFi network is less than one might expect

given the bandwidth usage of typical VoIP streams.

The poor performance of VoIP in WiFi networks is

not protocol specific, but is symptomatic of a general is-

sue with any CSMA (carrier-sense, multiple-access) net-

work: channel access and arbitration becomes increas-

ingly inefficient as load (in terms of number of attempted

channel accesses) increases. TDMA can be far more ef-

ficient under heavy load. Indeed, 802.11 includes both a

point coordination function (PCF) mode and a hybrid co-

ordination function (HCF) mode, in which the AP explic-

itly arbitrates channel access. Unfortunately, very few

deployed 802.11 networks employ these modes.

If one considers modifying the hardware, a variety

of options exist. For example, researchers have pro-

posed modifying 802.11 PCF [3, 11] as well as alter-

native ways of implementing 802.11e-like functional-

ity [22]. Of course, non-backwards compatible modifi-

cations do not address the issue facing today’s networks.

Accordingly, researchers have proposed a variety of ex-

plicit time-slotting mechanisms, both within the context

of infrastructure-based networks [10, 15, 16, 18, 21] and

multi-hop mesh networks [13, 17].

MadMAC [18], ARGOS [13], and the Overlay MAC

Layer (OML) [17] each propose to enable time-slotting

on the order of 20 ms. Snow et al. [21] present a simi-

lar TDMA-based approach to power savings where each

slot is of the order of 100 ms and requires changes at

the access points themselves. These scheduling granu-

larities are too coarse to effectively support most VoIP

codecs. While software TDMA (STDMA) [10] proposes

to do TDMA for all traffic, they focus particularly on

the performance of VoIP. Their approach is a substan-

tial and backward-incompatible modification to 802.11

that requires accurate clock synchronization. More sig-

nificantly, each of the above schemes require the entire

network to support the new TDMA architecture with no

support for unmodified clients.

Over and above TDMA mechanisms, the Soft-

MAC [15] and MultiMAC [8] projects also suggest mod-

ifications to 802.11 MAC behavior, including changing

the ACK timing and modifying back-off parameters. The

authors do not provide many details about their imple-

mentations, however, nor do they evaluate their scheme

with deadline-driven VoIP traffic.
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Focusing explicitly on improving the performance of

VoIP traffic in mixed-use networks, various proposals

have suggesting prioritizing VoIP traffic [4, 25], no-

tably a commercial product, Spectralink Voice Priority

(SVP) [2]. SVP prioritizes downlink VoIP packets in

the AP transmit queue and does not back-off when at-

tempting VoIP transmissions. While we leverage similar

optimizations, SVP does not do scheduling, thereby in-

creasing collision rate due to the lack of back-off.

Finally, several studies [12, 19] have shown using

simulations that prioritizing traffic, using modified con-

tention parameters, can lead to fairness and better re-

source allocation in both uplink and downlink directions.

In contrast to our work, these proposals aim only to bal-

ance uplink and downlink traffic flows and do not evalu-

ate TCP traffic in combination with VoIP traffic.

7 Conclusion
As WiFi-capable smartphone handsets become more

popular, the number of simultaneous VoIP users is likely

to increase dramatically in WiFi hotspots and enterprise

networks. While previous work has aggregated downlink

VoIP traffic, it has focused on improving VoIP call qual-

ity in the face of competing best-effort traffic, but has ig-

nored the impact of a large number of simultaneous VoIP

sessions on the residual capacity of the network.

We present Softspeak, a set of backward-compatible

changes to WiFi that address contention and framing

overhead. We show that our dynamic IFS contention

scheme, combined with downlink aggregation, dramati-

cally reduces the impact of VoIP on network capacity yet

improves call quality. Our project page (including au-

dio samples) is at http://sysnet.ucsd.edu/wireless/

softspeak/.
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1In G.729 each direction has a 10-ms inter-packet arrival, an eight-

byte voice payload, and twelve additional bytes of RTP header. Vari-
ants of G.729 also run at longer inter-packet times and/or increased
voice payload sizes.

2We assume short preambles throughout the paper.
3Note that delay in one direction affects MOS in both directions.
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Abstract

TCP has well-known problems over multi-hop wireless
networks as it conflates congestion and loss, performs
poorly over time-varying and lossy links, and is fragile
in the presence of route changes and disconnections.

Our contribution is a clean-slate design and implemen-
tation of a wireless transport protocol, Hop, that uses re-
liable per-hop block transfer as a building block. Hop is
1) fast, because it eliminates many sources of overhead
as well as noisy end-to-end rate control, 2) robust to par-
titions and route changes because of hop-by-hop control
as well as in-network caching, and 3) simple, because it
obviates complex end-to-end rate control as well as com-
plex interactions between the transport and link layers.
Our experiments over a 20-node multi-hop mesh network
show that Hop is dramatically more efficient, achieving
better fairness, throughput, delay, and robustness to par-
titions over several alternate protocols, including gains of
more than an order of magnitude in median throughput.

1 Introduction
Wireless networks are ubiquitous, but traditional trans-
port protocols perform poorly in wireless environments,
especially in multi-hop scenarios. Many studies have
shown that TCP, the universal transport protocol for re-
liable transport, is ill-suited for multi-hop 802.11 net-
works. There are three key reasons for this mismatch.
First, multi-hop wireless networks exhibit a range of
loss characteristics depending on node separation, chan-
nel characteristics, external interference, and traffic load,
whereas TCP performs well only under low loss condi-
tions. Second, many emerging multi-hop wireless net-
works such as long-distance wireless mesh networks, and
delay-tolerant networks exhibit intermittent disconnec-
tions or persistent partitions. TCP assumes a contem-
poraneous end-to-end route to be available and breaks
down in partitioned environments [13]. Third, TCP has
well-known fairness issues due to interactions between
its rate control mechanism and CSMA in 802.11, e.g.,

it is common for some flows to get completely shut out
when many TCP/802.11 flows contend simultaneously
[37]. Although many solutions (e.g. [16, 32, 38]) have
been proposed to address parts of these problems, these
have not gained much traction and TCP remains the dom-
inant available alternative today.

Our position is that a clean slate re-design of wireless
transport necessitates re-thinking three fundamental de-
sign assumptions in legacy transport protocols, namely
that 1) a packet is the unit of reliable wireless transport,
2) end-to-end rate control is the mechanism for dealing
with congestion, and 3) a contemporaneous end-to-end
route is available. The use of a small packet as the gran-
ularity of data transfer results in increased overhead for
acknowledgements, timeouts and retransmissions, espe-
cially in high contention and loss conditions. End-to-end
rate control severely hurts utilization as end-to-end loss
and delay feedback is highly unpredictable in multi-hop
wireless networks. The assumption of end-to-end route
availability stalls TCP during periods of high contention
and loss, as well as during intermittent disconnections.

Our transport protocol, Hop, uses reliable per-hop
block transfer as a building block, in direct contrast to
the above assumptions. Hop makes three fundamen-
tal changes to wireless transport. First, Hop replaces
packets with blocks, i.e., large segments of contiguous
data. Blocks amortize many sources of overhead includ-
ing retransmissions, timeouts, and control packets over
a larger unit of transfer, thereby increasing overall uti-
lization. Second, Hop does not slow down in response
to erroneous end-to-end feedback. Instead, it uses hop-
by-hop backpressure, which provides more explicit and
simple feedback that is robust to fluctuating loss and de-
lay. Third, Hop uses hop-by-hop reliability in addition to
end-to-end reliability. Thus, Hop is tolerant to intermit-
tent disconnections and can make progress even when
a contemporaneous end-to-end route is never available,
i.e., the network is always partitioned [3].

Large blocks introduce two challenges that Hop con-



424	 NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation	 USENIX Association

verts into opportunities. First, end-to-end block retrans-
missions are considerably more expensive than packet
retransmissions. Hop ensures end-to-end reliability
through a novel retransmission scheme called virtual re-
transmissions. Hop routers cache large in-transit blocks.
Upon an end-to-end timeout triggered by an outstand-
ing block, a Hop sender sends a token corresponding to
the block along portions of the route where the block is
already cached, and only physically retransmits blocks
along non-overlapping portions of the route where it is
not cached. Second, large blocks as the unit of transmis-
sion exacerbates hidden terminal situations. Hop uses a
novel ack withholding mechanism that sequences block
transfer across multiple senders transmitting to a single
receiver. This lightweight scheme reduces collisions in
hidden terminal scenarios while incurring no additional
control overhead.

In summary, our main contribution is to show that
reliable per-hop block transfer is fundamentally better
than the traditional end-to-end packet stream abstraction
through the design, implementation, and evaluation of
Hop. The individual components of Hop’s design are
simple and perhaps right out of an undergraduate net-
working textbook, but they provide dramatic improve-
ments in combination. In comparison to the best variant
of 1) TCP, 2) Hop-by-hop TCP, and 3) DTN 2.5, a delay
tolerant transport protocol [8],
 Hop achieves a median goodput benefit of 1.6× and

2.3× over single- and multi-hop paths respectively.
The corresponding lower quartile gains are 28× and
2.7× showing that Hop degrades gracefully.

 Under high load, Hop achieves over an order of
magnitude benefit in median goodput (e.g., 90×
over TCP with 30 concurrent large flows), while
achieving comparable or better aggregate goodput
and transfer delay for large as well as small files.

 Hop is robust to partitions, and maintains its perfor-
mance gains in well-connected WLANs and mesh
networks as well as disruption-prone networks. Hop
also co-exists well with delay-sensitive VoIP traffic.

2 Why reliable per-hop block transfer?
In this section, we give some elementary arguments
for why reliable per-hop block transfer with hop-by-
hop flow control is better than TCP’s end-to-end packet
stream with end-to-end rate control in wireless networks.

Block vs. packet: A major source of inefficiency
is transport layer per-packet overhead for timeouts, ac-
knowledgements and retransmissions. These overheads
are low in networks with low contention and loss but in-
crease significantly as wireless contention and loss rates
increase. Transferring data in blocks as opposed to pack-
ets provides two key benefits. First, it amortizes the over-
head of each control packet over larger number of data

packets. This allows us to use additional control packets,
for example, to exploit in-network caching, which would
be prohibitively expensive at the granularity of a packet.
Second, it enables transport to leverage link-layer tech-
niques such as 802.11 burst transfer capability [1], whose
benefits increase with large blocks.

Transport vs. link-layer reliability: Wireless chan-
nels can be lossy with extremely high raw channel loss
rates in high interference conditions. In such networks,
the end-to-end delivery rate decreases exponentially with
the number of hops along the path, severely degrading
TCP throughput. The state-of-the-art response today is
to use a sufficiently large number of 802.11 link-layer
acknowledgements (ARQ) to provide a reliable channel
abstraction to TCP. However, 802.11 ARQ 1) interacts
poorly with TCP end-to-end rate control as it increases
RTT variance, 2) increases per-packet overhead due to
more carrier sensing, backoffs, and acknowledgments,
especially under high contention and loss (in §5.1.1,
we show that 802.11b ARQ has 35% overhead). Note
that TCP’s woes cannot be addressed by just setting the
802.11 ARQ limit to a large value as it would reduce the
overall throughput by disproportionately using the chan-
nel for transmitting packets over bad links. Unlike TCP,
Hop relies solely on transport-layer reliability and avoids
link-layer retransmissions for data, thereby avoiding neg-
ative interactions between the link and transport layers.

Hop-by-hop vs. end-to-end congestion control: Rate
control in TCP occurs in response to end-to-end loss and
delay feedback reported by each packet. However, end-
to-end feedback is error-prone and has high variance in
multi-hop wireless networks as each packet observes sig-
nificantly different wireless interference across different
contention domains along the route. This variance hurts
TCP’s utilization as: 1) its window size shrinks conserva-
tively in response to loss, and 2) it experiences frequent
retransmission timeouts when no data is sent.

Our position is that fixing TCP’s rate control algorithm
in environments with high variability is fundamentally
difficult. Instead, we circumvent end-to-end rate control,
and replace it with hop-by-hop backpressure. Our ap-
proach has two key benefits: 1) hop-by-hop feedback is
more robust than end-to-end feedback as it involves only
a single contention domain, and 2) block-level feedback
provides an aggregated link quality estimate that has less
variability than packet-level feedback.

In-network caching: The use of reliable per-hop
block transfer enables us to exploit caching at interme-
diate hops for two benefits. First, caching obviates re-
dundant retransmissions along previously traversed seg-
ments of a route. Second, caching is more robust to inter-
mittent disconnections as it enables progress even when
a contemporaneous end-to-end route is unavailable. Hop
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can also use secondary storage if needed in partitionable
networks with long disconnections and reconnections.

3 Design
This section describes the Hop protocol in detail. Hop’s
design consists of six main components: 1) reliable per-
hop block transfer, 2) virtual retransmissions for end-
to-end reliability, 3) backpressure congestion control, 4)
handling routing partitions, 5) ack withholding to handle
hidden terminals, and 6) a per-node packet scheduler.

3.1 Reliable per-hop block transfer

The unit of reliable transmission in Hop is a block, i.e.,
a large segment of contiguous data. A block comprises
a number of txops (the unit of a link layer burst), which
in turn consists of a number of frames (Figure 1). The
protocol proceeds in rounds until a block B is success-
fully transmitted. In round i, the transport layer sends
a BSYN packet to the next-hop requesting an acknowl-
edgment for B. Upon receipt of the BSYN, the receiver
transmits a bitmap acknowledgement, BACK, with bits
set for packets in B that have been correctly received. In
response to the BACK, the sender transmits packets from
B that are missing at the receiver. This procedure repeats
until the block is correctly received at the receiver.

Control Overhead: Hop requires minimal control
overhead to transmit a block. At the link layer, Hop dis-
ables acknowledgements for all data frames, and only en-
ables them to send control packets: BSYN and BACK.
At the transport layer, a BACK acknowledges data in
large chunks rather than in single packets. The reduced
number of acknowledgement packets is shown in Fig-
ure 2, which contrasts the timeline for a TCP packet
transmission alongside a block transfer in Hop. For large
blocks (e.g. 1 MB), Hop requires orders of magnitude
fewer acknowledgements than for an equivalent number
of packets using TCP with link-layer acknowledgements.
In addition, Hop reduces idle time by ensuring that pack-
ets do not wait for link-layer ACKs, and at the transport
layer by disabling rate control. Thus, Hop nearly always
sends data at a rate close to the link capacity.

Spatial Pipelining: The use of large blocks and hop-
by-hop reliability can hurt spatial pipelining since each
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node waits for the successful reception of a block be-
fore forwarding it. To improve pipelining, an intermedi-
ate hop forwards packets as soon as it receives at least a
txop worth of new packets instead of waiting for an en-
tire block. Thus, Hop leverages spatial pipelining as well
as the benefits of burst transfer at the link layer.

3.2 Ensuring end-to-end reliability

Hop-by-hop reliability is insufficient to ensure reliable
end-to-end transmission. A block may be dropped if 1)
an intermediate node fails in the middle of transmitting
the block to the next-hop, or 2) the block exceeds its TTL
limit, or 3) a cached block eventually expires because no
next-hop node is available for a long duration.

Hop uses virtual retransmissions together with in-
network caching to limit the overhead of retransmitting
large blocks. Hop routers store all packets that they over-
hear. Thus, a re-transmitted block is likely cached at
nodes along the original route until the point of failure or
drop, and might be partially cached at a node that is along
a new path to the destination but overheard packets trans-
mitted on the old path. Hence, instead of retransmitting
the entire block, the sender sends a virtual retransmis-
sion, i.e., a special BSYN packet, using the same hop-by-
hop reliable transfer mechanism as for a block. Virtual
retransmissions exploit caching at intermediate nodes by
only transmitting the block (or parts of the block) when
the next hop along the route does not already have the
block cached as shown in Figure 3.

A premature timeout in TCP incurs a high cost both
due to redundant transmission as well as its detrimental
rate control consequence, so a careful estimation of time-
out is necessary. In contrast, virtual retransmissions due
to premature timeouts do little harm, so Hop simply uses
the most recent round-trip time as its timeout estimate.
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Figure 4: Example showing need for backpressure. Without
backpressure, Node A would allocate 1/5th of out-going ca-
pacity to each flow, resulting in queues increasing unbounded
at nodes B through E. With backpressure, most data is sent to
node F, thereby increasing utilization.

3.3 Backpressure congestion control

Rate control in response to congestion is critical in TCP
to prevent congestion collapse and improve utilization.
In wireless networks, congestion collapse can occur both
due to increased packet loss due to contention [11], and
increased loss due to buffer drops [9]. Both cases result
in wasted work, where a packet traverses several hops
only to be dropped before reaching the destination. Prior
work has observed that end-to-end loss and delay feed-
back has high variance and is difficult to interpret unam-
biguously in wireless networks, which complicates the
design of congestion control [2, 32].

Hop relies only on hop-by-hop backpressure to avoid
congestion. For each flow, a Hop node monitors the dif-
ference between the number of blocks received and the
number reliably transmitted to its next-hop as shown in
Figure 4. Hop limits this difference to a small fixed
value, H , and implements it with no additional over-
head to the BSYN/BACK exchange. After receiving H
complete blocks, a Hop node does not respond to fur-
ther BSYN requests from an upstream node until it has
moved at least one more block to its downstream node.
The default value of H is set to 1 block.

Backpressure in Hop significantly improves utiliza-
tion. To appreciate why, consider the following scenario
where flows 1, . . . , k all share the first link with a low
loss rate. Assume that the rest of flow 1’s route has
a similar low loss rate, while flows 2, . . . , (k − 1) tra-
verse a poor route or are partitioned from their destina-
tions. Let C be the link capacity, p1 be the end-to-end

loss observed by the first flow, and p2 be the end-to-
end loss rate observed by other flows (p1  p2). With-
out backpressure, Hop would allocate a 1/k fraction of
link capacity to each flow, yielding a total goodput of
C ((1−p1)+(1−p2)·(k−1))

k . And the number of buffered
blocks at the next-hops of the latter k − 1 flows grows
unbounded. On the other hand, limiting the number of
buffered blocks for each flow yields a goodput close to
C · (1− p1) in this example.

Why does Hop limit the number of buffered blocks, H ,
to a small default value? Note that the example above can
be addressed simply by choosing the block correspond-
ing to the flow with the largest differential backlog (along
A-F). Indeed, classical backpressure algorithms known
to achieve optimal throughput [33] work similarly. Hop
limits the number of buffered blocks to a small value in
order to ensure small transfer delay for finite-sized files,
as well as to limit intra-path contention.

3.4 Robustness to partitions

A fundamental benefit of Hop is that it continues to make
progress even when the network is intermittently parti-
tioned. Hop transfers a blocks in a hop-by-hop manner
without waiting for end-to-end feedback. Thus, even if
an end-to-end route is currently unavailable, Hop contin-
ues to make progress along other hops.

The ability to make progress during partitions relies
on knowing which next-hop to use. Unlike typical mesh
routing protocols [23, 4], routing protocols designed for
disruption-tolerance expose next-hop information even
if an end-to-end route is unavailable (e.g. RAPID [3],
DTLSR [7]). In conjunction with such a disruption-
tolerant routing protocol, Hop can accomplish data trans-
fer even if a contemporaneous end-to-end route is never
available, i.e., the network is always partitioned.

In disruption-prone networks, a Hop node may need
to cache blocks for a longer duration in order to make
progress upon reconnection. In this case, the backpres-
sure limit needs to be set taking into account the fraction
of time a node is partitioned and the expected length of
a connection opportunity with a next-hop node along a
route to the destination (see §5.7 for an example).

3.5 Handling hidden terminals

The elimination of control overhead for block transfer
improves efficiency but has an undesirable side-effect —
it exacerbates loss in hidden terminal situations. Hop
transmits blocks without rate control or link-layer re-
transmissions, which can result in a continuous stream
of collisions at a receiver if the senders are hidden from
each other. While hidden terminals are a problem even
for TCP, rate control mitigates its impact on overall
throughput. Flows that collide at a receiver observe in-
creased loss and throttle their rate. Since different flows
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get different perceptions of loss, some reduce their rate
more aggressively than others, resulting in most flows
being completely shut out and bandwidth being devoted
to one or few flows [37]. Thus, TCP is highly unfair but
has good aggregate throughput.

Hop uses a novel ack withholding technique to mit-
igate the impact of hidden terminals. Here, a receiver
acknowledges only one BSYN packet at any time, and
withholds acknowledgement to other concurrent BSYN
packets until the outstanding block has completed. In this
manner, the receiver ensures that it is only receiving one
block from any sender at a given time, and other senders
wait their turn. Once the block has completed, the re-
ceiver transmits the BACK to one of the other transmit-
ters, which starts transmitting its block.

Although ack withholding does not address hidden
terminals caused by flows to different receivers, it of-
fers a lightweight alternative to expensive and conser-
vative techniques like RTS/CTS for the common single-
terminal hidden terminal case. The high overhead of
RTS/CTS arises from the additional control packets, es-
pecially since these are broadcast packets that are trans-
mitted at the lowest bit-rate. The use of broadcast also
makes RTS/CTS more conservative since a larger con-
tention region is cleared than typically required [39]. In
contrast, ack withholding requires no additional control
packets (as BSYNs and BACKs are already in place for
block transfer).

3.6 Packet scheduling

Hop’s unit of link layer transmission is a txop, which is
the maximum duration for which the network interface
card (NIC) is permitted to send packets in a burst without
contending for access [1]. Hop’s scheduler leverages the
burst mode and sends a txop’s worth of data from each
concurrent flow at a time in a round-robin manner.

Hop traffic is isolated from delay-sensitive traffic
such as VoIP or video by using link-layer prioritiza-
tion. 802.11 chipsets support four priority queues—
voice, video, best-effort, and background in decreasing
order of priority—with the higher priority queues also
having smaller contention windows [1]. Hop traffic is
sent using the lowest priority background queue to mini-
mize impact on delay-sensitive datagrams.

The design choices that we have presented so far can
be detrimental to delay for small files (referred to as
micro-blocks) in three ways: 1) the initial BSYN/BACK
exchange increases delay for micro-blocks, 2) a sender
may be servicing multiple flows, in which case a micro-
block may need to wait for multiple txops, and 3) ack-
withholding can result in micro-blocks being delayed by
one or more large blocks that are acknowledged before
its turn. Hop employs three techniques to optimize delay
for micro-blocks. First, micro-blocks of size less than a

fixed BSYN batch threshold (few tens of KB) are sent
piggybacked with the BSYN with link-layer ARQ via
the voice queue. This optimization eliminates the ini-
tial BSYN/BACK delay, and avoids having to wait for
a BACK before proceeding, thereby circumventing ack-
withholding delay. Second, the packet scheduler at the
sender prioritizes micro-blocks over larger blocks. Fi-
nally, Hop use a block-size based ack-withholding policy
that prioritizes micro-blocks over larger blocks.

4 Implementation
We have implemented a prototype of Hop with all the
features described in §3. Hop is implemented in Linux
2.6 as an event-based user-space daemon in roughly 5100
lines of C code. Hop is currently implemented on top
of UDP (i.e., there is a UDP header in between the IP
and Hop headers in each frame in Figure 1). Below, we
describe important aspects of Hop’s implementation.

4.1 MAC parameters

Our implementation uses the Atheros-based wireless
chipset and the Madwifi open source 802.11 device
driver [18], a popular commodity implementation. By
default, the MadWifi driver (as well as other commodity
implementations) supports the 802.11e QoS extension.
However, MadWiFi supports the extension only in the
access point mode, so we modify the driver to enable it
in the ad-hoc mode as well. Hop uses default 802.11
settings, except for the following. The transmission op-
portunity (txop) for the background queue is set to the
maximum value permitted by the MadWifi driver (8160
µs or roughly 8KB of data). Link-layer ARQ is disabled
for all data frames sent via Hop but enabled for control
packets (BSYN, BACK, etc).

4.2 Hop implementation

Parameters A large block size increases batching ben-
efits [15], so we set the default maximum block size to
1MB. Note that this means that a Hop block is allowed to
be up to 1MB in size, but may be any smaller size. Hop
never waits idly in anticipation of more application data
in order to obtain batching benefits. The BSYN batch
threshold for micro-blocks is set to a default value of
16KB, and the backpressure limit, H , is set to 1. The
virtual retransmission timeout is set to an initial value of
60 seconds and simply reset to the round-trip block delay
reported by the most recent block. The TTL limit for a
virtual retransmissions is set to 50 hops. In the current
implementation, an intermediate Hop node keeps all the
blocks that it has received in memory.

Header format: The Hop header consists of the fol-
lowing fields. All frames contain the msg_type that
identifies if the frame is a data, BSYN, BACK, virtual
retransmission BSYN, or an end-to-end BACK frame;
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the flow_id that uniquely identifies an end-to-end Hop
connection; and the block_num identifies the current
block. Data frames also contain the packet_num that
is the offset of the packet in the current block. The
packet_num is also used to index into the bitmap re-
turned in a BACK frame.

End-to-end connection management: Because Hop
is designed to work in partitionable networks, it does not
use a three-way handshake like TCP to initiate a connec-
tion. A destination node sets up connection state upon
receiving the first block. The loss of the first block due
to a node failure or expiry or the loss of the first end-
to-end BACK is handled naturally by virtual retransmis-
sions. In our current implementation, a Hop node tears
down a connection simply by sending a FIN message and
recovering state; we have not yet implemented optimiza-
tions to handle complex failure scenarios.

5 Evaluation
We evaluate the performance of Hop in a 20-node wire-
less mesh testbed. Each node is an Apple Mac Mini
computer running Linux 2.6 with a 1.6 Ghz CPU, 2 GB
RAM and a built-in 802.11a/b/g Atheros/MadWiFi wire-
less card. Each node is also connected via an Ethernet
port to a wired backplane for debugging, testing, and data
collection. The nodes are spread across a single floor of
the UMass CS building as shown in Figure 5.

All experiments, except those in §5.9 and §5.10, were
run in 802.11b mode with bit-rate locked at 11 Mbps.
There is significant inherent variability in wireless con-
ditions, so in order to perform a meaningful comparison,
a single graph is generated by running the corresponding
experiments back-to-back interspersed with a short ran-
dom delay. The compared protocols are run in sequence,
and each sequence is repeated many times to obtain con-
fidence bounds.

We compare Hop against two classes of protocols:
end-to-end and hop-by-hop. The former consists of 1)
UDP, and 2) the default TCP implementation in Linux
2.6 with CUBIC congestion control [10]; we did not use
the Westwood+ congestion control algorithm since it per-
formed roughly 10% worse. The latter consists of 3)
Hop-by-Hop TCP, and 4) DTN2.5 [8]. Hop-by-Hop TCP
is our implementation of TCP with backpressure. It splits
a multi-hop TCP connection into multiple one-hop TCP
connections, and leverages TCP flow control to achieve
hop-by-hop backpressure. Each node maintains one out-
going TCP socket and one incoming TCP socket for each
flow. When the outgoing socket is full, Hop-by-Hop TCP
stops reading from the incoming socket, thereby forcing
TCP’s flow control to pause the previous hop’s outgoing
socket. This “backpressure” propagates up to the source
and forces the source to slow down. DTN2.5 is a ref-
erence implementation of the IEEE RFC 4838 and 5050

Figure 5: Experimental testbed with dots representing nodes.

from the Delay Tolerant Networking Research Group [8]
that reliably transfers a bundle using TCP at each hop.
Hop and UDP were set to use the same default packet
size as TCP (1.5KB). In all our experiments, the delay
and goodput of TCP are measured after subtracting con-
nection setup time.

5.1 Single-hop microbenchmarks

In this section, we answer two questions: 1) What are
the best 802.11 settings for link layer acknowledgments
(ARQ) and burst mode (txop) for TCP and UDP?, 2)
How does Hop’s performance compare to that of TCP
and UDP given the benefit of these best-case settings?
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Figure 6: Experiment with one-hop flows. Hop improves lower
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goodput by 1.6× over TCP with the best link layer settings.
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Figure 7: Experiment with one-hop flows. Box shows
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shows mean. Increasing 802.11 ARQ limit and using txops
helps TCP but Hop is still considerably better. UDP results
show that ARQs incur significant performance overhead (35%).
Hop is within 24% of UDP without ARQ (achievable goodput).
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Sec. Experiment setup Experiment Result: Median (Mean)
§5.1 One single-hop flow Hop vs. TCP 1.6× (1.6×)
§5.2 One multi-hop flow Hop vs. TCP 2.3× (2×)

Hop vs. Hop-by-Hop TCP 2.5× (2×)
Hop vs. DTN2.5 2.9× (3.9×)

§5.3 Many multi-hop flows Hop vs. TCP 90× (1.25×)
Hop vs. Hop-by-Hop TCP 20 × (1.4×)

§5.4 Performance breakdown Base Hop (1×)
+ ack withholding (2.5×)
+ backpressure (3.7×)
+ ack withholding + backpressure (4.8×)

§5.5 WLAN AP mode Hop vs. TCP 2.7× (1.12×)
Hop vs. TCP + RTS/CTS 2× (1.4×)

§5.6 Single small file Hop vs. TCP 3× to 15× lower delay
Concurrent small files Hop vs. TCP Comparable or lower delay

§5.7 Disruption-tolerance Hop vs. DTN2.5 2.8× (2.9×)
§5.8 Impact on VoIP traffic Hop vs. TCP Slightly lower MOS score but sig-

nificantly higher throughput
§5.9 Network and link-layer dynamics Hop vs. TCP + OLSR 4× (1×)

Hop vs. TCP + auto-rate 95× (2.4×)
Hop vs. TCP + OLSR + auto-rate 5× (1.8×)

§5.10 Under 802.11g Hop vs. TCP 22× (1×)
Hop vs. TCP + auto-rate 6× (3×)

Table 1: Summary of evaluation results. All protocols above are given the benefit of burst-mode (txop) and the maximum number
of link-layer retransmissions (max-ARQ) supported by the hardware.

5.1.1 Randomly picked links

In this experiment, we evaluate the single-hop perfor-
mance of TCP, UDP, and Hop over 802.11 across links
in our mesh testbed. The testbed has total of 56 unique
links from which a random sequence of 100 links was
sampled with repetition for this experiment. The average
and median loss rates were 25% and 1% respectively. For
each sampled link, a 10MB file is transferred using each
protocol; for bad links, flows were cut off at 10 minutes,
and goodput measured until the last received packet. The
metric for comparison is the goodput that is measured as
the total number of unique packets received at the re-
ceiver divided by the time until the last byte is received.

We compare Hop against TCP for three 802.11 set-
tings: 1) 11 link layer retries (ARQ) with no txop, the
default settings of the MadWifi driver, 2) 11 ARQ +
txop, and 3) maximum permitted ARQ setting (18 for
the Atheros card) + txop. We do not consider TCP with
no ARQ since it (expectedly) performs poorly without
802.11 retransmissions on lossy links. We also compare
against UDP under different 802.11 settings. Since UDP
has no transport-layer control overhead, and transmits as
fast as the card can transmit packets, it provides an up-
per bound on the achievable capacity on the link. For
clarity of presentation, we show cumulative distributions
(CDFs) for Hop and the best TCP combination and sum-
mary statistics for the other combinations (for which full
distributions are available in [15]).

Figure 6 shows that Hop significantly outperforms

TCP/max-ARQ/txop, the best TCP combination. The
Q1, Q2, and Q3 gains over TCP/max-ARQ/txop TCP
combination are 28×, 1.6×, and 1.2× respectively. The
Q1 gain is notable and shows Hop’s robust performance
on poor links compared to TCP.

Figure 7 shows the summary statistics for Hop and two
best TCP and UDP schemes using a box plot represen-
tation. The “box” shows the upper quartile (Q3), me-
dian (Q2) and lower quartile (Q1), and the “whiskers”
show the maximum and minimum goodput. UDP/no-
ARQ/txop is the best UDP combination and provides an
upper bound on the achievable rate. The median Hop
is about 24% lower than the achievable rate. Interest-
ingly, turning on ARQ degrades UDP by 35% showing
that ARQ in 802.11 comes at a high overhead and ARQ
alone is not sufficient to fix TCP’s problems.

As we find that TCP performance consistently im-
proves by using txops and ARQ with the maximum
possible limit, we give TCP and its variants the ben-
efit of txop/max-ARQ in the rest of our evaluation.

5.1.2 Graceful performance degradation

A key benefit of Hop is robustness, i.e., its performance
gracefully degrades with increasing link losses and in-
terference. To confirm this, we further analyze the data
from the experiment in §5.1.1. Figure 8(a) shows the per-
link throughput across the 56 links in the testbed (with
multiple runs over the same link averaged) sorted by TCP
goodput. Hop degrades gracefully to some of the poorest
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Figure 8: Graceful degradation to adverse channel conditions.
First plot shows per-link goodputs from one-hop experiment
sorted in TCP order. Second plot shows controlled experiments
demonstrating impact of loss. In both cases, Hop is more ro-
bust and degrades far more gracefully than TCP.

links in the testbed where TCP’s throughput is near-zero.
The average goodput for the worst 20 TCP flows is 334
Kbps, whereas Hop’s goodput for the same flows is 2.37
Mbps, a difference of 7×.

To understand the cause of TCP’s fragile behavior,
we evaluate the impact of loss perceived at the trans-
port layer on the performance of Hop and TCP. We start
with a perfect link that has a near-zero loss rate and in-
troduce loss by modifying the MadWifi device driver to
randomly drop a specified fraction of incoming pack-
ets. Figure 8(b) shows that, unsurprisingly, TCP goodput
drops to near-zero when loss rate is roughly 20%. Hop
shows graceful near-linear degradation and is operational
until the loss rate is about 80%.

5.2 Multi-hop microbenchmarks

How does Hop perform on multi-hop paths compared to
existing alternatives? To study this question, we pick
a sequence of 100 node pairs randomly with repetition
from the testbed. Static routes are set up a priori between
all node pairs to isolate the impact of route flux (consid-
ered in §5.3). The static routes were obtained by run-
ning OLSR with the default ETX metric until the routing
topology stabilized at the beginning of the experiment.
Among the 100 randomly chosen flows, 30% are two-
hop, 30% are three-hop, 10% are four-hop, 20% are five-
hop, and the remaining 10% are seven-hop flows. We
compare the multi-hop goodput of Hop to TCP, Hop-by-
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Figure 9: Experiment with multi-hop flows. Hop improves
lower quartile goodput by 2.7×, median goodput by 2.3×, and
mean goodput by 2×.
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Figure 10: Boxplot of multi-hop single-flow benchmarks. Hop
has 2-3× median, and 2-4× mean improvements over other
reliable transport protocols. Hop is comparable to UDP/no-
ARQ/txop in terms of median/mean — the latter is extremely
fast since it has no overhead, but experiences more loss.

Hop TCP, DTN2.5, and UDP.
Figure 9 shows the CDF of goodput for just Hop and

TCP, while Figure 10 shows the summary statistics for
all the protocols. Hop consistently outperforms all other
protocols. The Q1, Q2, and Q3 gains over TCP are
2.7×, 2.3× and 1.9× respectively. The Q1 gain over
TCP is lower than for the single-hop experiment be-
cause only good links selected by OLSR are used in this
experiment (as evidenced by the better performance of
UDP/no-ARQ/txop compared to UDP/max-ARQ/txop).
Over lossier paths, Hop’s gains are much higher. We
also find that the gains also grow with increasing num-
ber of hops (refer technical report [15]). For example,
the lower quartile gains grow from about 2.7× for two
hops to more than 4× for five and six hops.

5.3 Hop under high load

The experiments so far considered one flow in isolation.
Next, we evaluate Hop in a heavily loaded network to un-
derstand the effect of increased contention and collisions
on Hop’s performance and fairness. We compare Hop,
TCP, and Hop-by-Hop TCP. The experiment consists of
thirty concurrent flows that transfer data continually be-
tween randomly chosen node pairs in the testbed. All
protocols are run over a static mesh topology identical to
§5.2. To focus on multihop benefits, we pick src-dst pairs
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Figure 11: Hop for 30 concurrent flows. Dots on each line
shows mean goodput. Median gains of Hop over Hop-by-Hop
TCP and regular TCP are huge (20× and 90× respectively)
while mean gains are modest (roughly 25% improvement).

that are not immediate neighbors of each other. We run
the experiment five times, and for each run, we measure
the goodputs of flows half an hour into the experiment,
since the network reaches a steady state at this time.

5.3.1 Goodput

Figure 11 shows that Hop achieves a huge improvement
in median goodput over TCP and Hop-by-Hop TCP. Hop
achieves a median goodput of 54.9 Kbps whereas all the
other protocols achieve less than 2.8 Kbps—an improve-
ment of over an order of magnitude! Hop also improves
the Q1 goodput by more than two orders of magnitude
and upper quartile goodput by 2× over the other proto-
cols. The exact numbers of Hop’s median and Q1 gains
over other protocols are sensitive to environmental con-
ditions, but we consistently observe them to be large un-
der different conditions. The figure also shows that Hop-
by-Hop TCP achieves more than 4× improvement over
TCP’s median goodput. This shows that end-to-end rate
control hurts TCP utilization and using hop-by-hop back-
pressure with TCP improves its performance. We also
run UDP (not shown for clarity), but due to lack of con-
gestion control, around 67% flows get zero goodput (i.e.,
the median is zero) and the mean goodput is 0.32Kbps.

Hop’s mean gain over TCP is just 25%, which is not
as impressive as the quartile gains. This is to be expected
as TCP is highly unfair and starves a large number of
flows to acquire the channel for only a few flows. In
many cases, the top three TCP flows get around 90% of
the total goodput. In contrast, Hop is significantly fairer
and has higher throughput than most of the TCP flows.

Fairness index
Hop 0.78 (0.09)
TCP 0.12 (0.04)
Hop-by-Hop TCP 0.21 (0.05)

Table 2: Fairness indexes for the 30 flow experiment. Paren-
theses show 95% confidence intervals.

5.3.2 Fairness

Table 2 shows the fairness index for different protocols.
The fairness metric that we use is hop-weighted Jain’s
fairness index (JFI [28]). When there are n flows, with
throughput x1 through xn and hop lengths h1 through
hn, it is computed as follows: JFI = (

Pn
i=1 xi·hi)

2

n
Pn

i=1(xi·hi)2
.

Hop is significantly fairer than both TCP-based proto-
cols. It is noteworthy that while TCP sacrifices fairness
for goodput, Hop is superior on both metrics.

5.4 Hop performance breakdown

How much do components of Hop individually con-
tribute to its overall performance? To answer this ques-
tion, we compare four versions of Hop: 1) the basic Hop
protocol that only uses hop-by-hop block transfer, 2) Hop
with ack withholding turned on, 3) Hop with backpres-
sure turned on, and 4) Hop with both ack withholding
and backpressure turned on. Since the impact of these
mechanisms depends on the load in the network, we con-
sider 10, 20 and 30 concurrent flows between randomly
picked sender-receiver node pairs. A static mesh topol-
ogy identical to §5.2 was used. The length of the ran-
domly picked paths are between three and seven hops.
The average path length is 3.9 hops in the 10 flow case,
4 hops in the 20 flow case, and 3.9 hops in the 30 flow
case. Each flow transmits a large amount of data, and we
take a snapshot of the measurements after half an hour.
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Figure 12: Hop performance breakdown showing contribution
of ack withholding and backpressure. Ack withholding and
backpressure improve Hop’s performance by more than 4.8x
under high load.

Figure 12 shows the performance of the different
schemes. The benefit of ack withholding and backpres-
sure increases with network load. In the 10 flow case,
both ack withholding and backpressure increase goodput
by around 20%. With greater network load, congestion
increases dramatically, hence the gains due to backpres-
sure is more than due to ack withholding. For exam-
ple, in the 30 flow case, Hop with backpressure yields
3.7× improvement over basic Hop, whereas Hop with
ack withholding yields 2.5× improvement. Furthermore,
the benefits of using both backpressure and ack withhold-
ing are considerably more than using either one of them.
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For instance, the full-fledged Hop yields 4.8× improve-
ment over basic Hop for the 30 flow case.

5.5 Hop with WLAN access points

Next, we evaluate how ack withholding in Hop compares
to the 802.11 RTS/CTS mechanism for dealing with hid-
den terminals. We emulate a typical one-hop WiFi net-
work where a number of terminals connect to a single
access point. We setup a 7-to-1 topology for this experi-
ment, by selecting a node in the center of our testbed to
act as the “AP node”, and transmitting data to this node
from all its seven neighbors. Among the seven transmit-
ters, six pairs were hidden terminals (i.e. they could not
reach each other but could reach the AP). We verified
this by checking to see if they could transmit simultane-
ously without degradation of throughput. In each run, the
nodes transmit data continually, and we measure goodput
after 30 minutes when the flow rates have stabilized.

Mean Median Fairness
Hop 663 (24) 652 (33) 0.93 (0.01)
TCP 587 (88) 244 (142) 0.35 (0.06)
TCP + RTS/CTS 463 (20) 333 (87) 0.4 (0.05)

Table 3: Mean/median goodput and Fairness for a many-to-one
“AP” setting. 95% confidence intervals shown in parenthesis

We compare Hop against TCP both with and without
802.11 RTS/CTS enabled. The results are presented in
Table 3, and show that Hop beats TCP with or with-
out RTS/CTS both in throughput and fairness. While
the mean gains over TCP without RTS/CTS are only
12%, the median improvement is about 2.7×. TCP
has a crafty way of maintaining high aggregate good-
put amidst hidden terminals by squelching all but one
of the flows and in effect serializing them. In contrast,
Hop achieves almost perfectly fair allocation across the
different flows. The addition of RTS/CTS to TCP hurts
aggregate throughput but improves median throughput
and fairness. However, Hop achieves 1.4× the aggregate
throughput, 1.96× the median throughput, in addition to
hugely improving fairness over TCP with RTS/CTS.

5.6 Hop delay for small file transfers

How does Hop impact the delay incurred by micro-
blocks (small files)? Recall that Hop uses two mecha-
nisms to speed micro-block transfers: 1) It piggybacks
micro-blocks less than 16KB in size with the initial
BSYN to reduce connection setup overhead, 2) It’s ack
withholding mechanism prioritizes micro-blocks.

5.6.1 Single-hop transfer delay for small files

First, we evaluate the benefits of Hop’s size-aware ack
withholding policy. To evaluate this, we pick a one-hop
Wifi network where five nodes are connected to an AP
(similar setup as our WLAN experiments). In each ex-

periment, one of the five nodes (randomly chosen), trans-
mits a micro-block to the AP at a random time, whereas
the other four nodes continually transfer large amounts
of data. Each experiment runs until the micro-block
completes, at which point we compute the delay for the
transfer. We compare against TCP with and without
RTS/CTS, and report aggregate numbers over five runs.
Figure 13 shows that the transfer delay of the micro-
block with Hop is always lower than for TCP (with or
without RTS/CTS). In many cases, the delay gains are
significant, e.g., for file sizes less than 16KB, the gains
range from 3× to 15×. This experiment shows that Hop
can be used for delay-sensitive transfers like web trans-
fers, ssh, and SMS in many-to-one AP settings.
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Figure 13: Hop for WLAN: Hop improves delay for all file
sizes with improvements between 3-15×

5.6.2 Multi-hop transfer delay for Web file sizes

Next, we evaluate Hop and TCP over a larger workload
that comprises predominantly of micro-blocks. (We do
not consider TCP with RTS/CTS enabled, since it con-
sistently introduces more delay.) In particular, we con-
sider a Web traffic pattern where most files are small web
pages [5]. The flow sizes used in this experiment were
obtained from a HTTP proxy server trace obtained from
the IRCache project [12]. The CDF obtained was sam-
pled to obtain the representative flow sizes used in this
experiment. The distribution of file sizes is as follows:
roughly 63% of the files are less than 10KB, 25% are
between 10KB-100KB, and remaining are greater than
100KB. To stress multi-hop performance, the sender and
receiver for each flow are chosen randomly among the
node-pairs that were multiple hops away in our mesh
network. Flows followed a Poisson arrival pattern with
λ = 2 flows per second. We present results from 100
flows aggregated in bins of size [2n−1, 2n] except the
bins at the edge, i.e. ≤2KB, and ≥512.

Figure 14 shows that Hop has less or comparable de-
lay to TCP for almost all file sizes except those between
16K-32K. This dip occurs because 16KB is our thresh-
old for piggybacking data with BSYNs. This suggests
that a slightly larger threshold might be more effective,
but we leave the optimization for future work. For other
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Figure 14: Performance for web traffic: Except the 32KB bin,
Hop has comparable or better delay, with gains upto 6×

bins, delay with Hop is mostly lower than TCP (be-
tween 19% higher to 6× lower than TCP), demonstrating
its benefits for micro-block transfer. Detailed file size
microbenchmarks in isolation (i.e., without concurrent
transfers) show a similar behavior (detailed in [15]).

5.7 Robustness to partitions

A key strength of Hop is its ability to operate even under
disruptions unlike end-to-end protocols such as TCP. We
now evaluate how, in a partitioned scenario, Hop com-
pares to hop-by-hop schemes such as DTN2.5 that are
designed primarily for disruption-tolerance. In this ex-
periment, we pick a seven hop path and simulate a par-
tition scenario by bringing down the third node and fifth
node in succession along the path for one minute each
in an alternating manner. Table 4 shows the goodput ob-
tained by Hop averaged over five runs under two differ-
ent backpressure settings: 1) backpressure limit (H) is
set to 1 and 2) backpressure limit is set to 100. Hop out-
performs DTN2.5, a protocol specifically designed for
partitioned settings, by 2× when H = 1, and 3× when
H = 100. The results show that Hop achieves excellent
throughput under partitioned settings, and a large back-
pressure limit improves throughput by about 15%. This
result is intuitive as having a larger threshold enables
maximal use of periods of connectivity between nodes.
In contrast to Hop, TCP achieves zero throughput since
a contemporaneous end-to-end path is never available.

Goodput (Kbps)
Hop w/ H=1 320 (29)
Hop w/ H=100 457 (18)
DTN2. 159 (15)

Table 4: Goodput achieved by Hop and DTN2.5 in a partitioned
network without an end-to-end path.

5.8 Hop with VoIP

In this experiment, we quantify the impact of Hop and
TCP on Voice-over-IP (VoIP) traffic. We use two met-
rics: 1) the mean opinion score (MoS) to evaluate the

quality of a voice call, and 2) the conditional loss proba-
bility (CLP) to measure loss burstiness. The MoS value
can range from 1-5, where above 4 is considered good,
and below 3 is considered bad. The MOS score for a
VoIP call is estimated as in [6]. The CLP is calculated as
the conditional probability that a packet is lost given that
the previous packet was also lost.

The experiment consists of a single VoIP flow and
multiple Hop/TCP flows that transmit data continually
over randomly picked 3-hop paths in the testbed. We em-
ulate the VoIP flow as a stream of 20 byte packets with
data rate at 8 Kbps. We evaluate two cases: one VoIP
flow with five Hop/TCP flows, and one VoIP flow with
ten Hop/TCP flows.

Table 5 shows that Hop achieves significantly better
throughput than TCP (in terms of median/mean) but has
more impact on the quality of VoIP calls. This is to be ex-
pected as TCP starves most of its flows as evidenced by
the abysmal median throughput (1-2 Kbps), and there-
fore has lower impact on the VoIP flow. In contrast,
Hop obtains median throughput of a few hundreds of
Kbps, while sacrificing a little VoIP quality. We believe
that even this discrepancy can be reduced by exploiting
802.11e to set larger contention window parameters to
the background queue (e.g. higher backoff), but have not
experimented with this so far.

Load Goodput (Kbps) CLP MOS
5 flows Hop Median: 468.5 0.37 4.12

Mean: 1474 (51)
TCP Median: 2 0.48 4.19

Mean: 1372 (14)
10 flows Hop Median: 184 0.57 3.92

Mean: 336 (24.8)
TCP Median: 1.7 0.31 4.16

Mean: 260 (8.5)

Table 5: Impact of Hop and TCP on VoIP flows. Result shows
the median/mean goodput, conditional loss probability, and
MOS for VoIP with 95% confidence intervals in parentheses.

5.9 Network and link layer dynamics

Our experiments so far were run with static routes and
with a fixed wireless bit-rate. Now, we evaluate the im-
pact of dynamic routing using OLSR and auto bit-rate
control using the default Madwifi Sample algorithm. We
run TCP under all four combinations of static/dynamic
routes and fixed/auto bit-rate selection. We compare
these to Hop with a fixed bit-rate and static/dynamic
routes. We are unable to evaluate Hop with auto-rate
control as the current implementation of Hop disables
link-layer ARQs that auto-rate control requires to esti-
mates link quality. As in §5.3, we consider thirty con-
current long-lived flows between randomly chosen node
pairs, and run the experiment five times.
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Figure 15: Hop for 30 concurrent flows under dynamic routing
and auto bit-rate. Dots on each line shows mean goodput. Me-
dian gains by Hop with fixed bit-rate are around 4× over TCP
with OLSR and more than 90× over TCP with static routing.

Figure 15 shows that Hop is better than TCP across
all combinations, with median gains of 4× over the best
of them. (Hop behaves almost identically with dynamic
or static routes, therefore we only show the static case in
the figure.) Surprisingly, we see that the best combina-
tion for TCP is with OLSR and fixed bit-rate. OLSR
significantly improves TCP’s median goodput or fair-
ness, thereby reducing Hop’s gain over TCP in com-
parison to the static case (§5.3). OLSR benefits TCP
as it constantly changes the routing topology with con-
current TCP flows, which makes high goodput flows
backoff and yield transmission opportunities to the previ-
ously low goodput flows. While the constant shuffling of
flows increases TCP’s median goodput, OLSR’s impact
on TCP’s mean goodput is small (25%) because the links
in the network are already heavily loaded. Auto-rate
control makes almost no improvement to TCP since the
testbed remains well-connected at 11 Mbps, and hence
OLSR choses good links at this bit-rate.

5.10 Hop under 802.11g
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Figure 16: Hop for 30 concurrent flows under 802.11g. Dots
on each line shows mean goodput. Hop’s median gain is 22×
over TCP with bit-rate fixed at 24Mbps, and is 6× over TCP
with auto-rate control. Hop’s mean gain is 3× over TCP with
auto-rate control.

All of our experiments so far were done with 802.11b.
How does Hop perform under higher bit-rates obtained
using 802.11g? To answer this question, we consider an
experiment similar to that in §5.3 with thirty long-lived

concurrent flows between randomly chosen node pairs.
We use a subset of our testbed (15 nodes) for this exper-
iment as many nodes get disconnected under 802.11g.
We ran this experiment with a static routing topology
obtained by running OLSR under 802.11g. We consider
Hop and TCP with a fixed 802.11g bit-rate of 24 Mbps
that yields a reasonably connected topology, as well as
TCP with auto-rate control.

Figure 16 shows that Hop improves median goodput
by 6× over TCP with auto-rate control and by 22× over
TCP with fixed bit-rate. The gains over TCP with auto-
rate are lower than in the case of our 802.11b experi-
ments in §5.3 because the maximum bit-rate in 802.11g
is higher than the selected fixed bit-rate of 24 Mbps.
Thus, TCP with auto-rate control can take advantage of
the fact that the maximum bit-rate on 802.11g links is 54
Mbps, whereas Hop’s bit-rate is fixed at 24 Mbps. As a
result, the highest goodput achieved by a flow that uses
TCP with auto-rate control is 23 Mbps, which is higher
than Hop’s maximum goodput of 16 Mbps. The fact that
Hop shows considerable benefits despite using a static
best bit-rate suggests that Hop with a good bit-rate selec-
tion scheme can benefit even more.

Figure 16 also shows that auto-rate control improves
TCP’s fairness (median goodput increases by 3.2×) but
hurts network utilization (mean goodput decreases by
65%). This is because auto-rate improves the low good-
put flows over lossy links by reducing the bit-rate (and
thereby the loss rate), but impacts high goodput flows
as flows over low bit-rate links are slow and consume a
large portion of transmission opportunities.

5.11 Discussion: Hop vs. TCP

Although the above results show Hop’s benefits across a
wide range of scenarios, our evaluation has some limi-
tations. First, our results are based on a 20-node indoor
testbed, so we can not claim that they will hold in other
wireless mesh networks. For example, it is conceivable
that the benefits due to ack withholding are because of
hidden terminals specific to our testbed’s topology. Nev-
ertheless, our experience with Hop has been encourag-
ing. Over the last few months, we have experimented
with different node placements, static topology configu-
rations, and diurnal as well as seasonal variations in cross
traffic and channel conditions, and have seen results con-
sistent with those described in this paper. Second, we
have not compared Hop to a large number of proposed
TCP modifications for multi-hop wireless networks for
which implementations are not available (refer §6.1). We
present Hop as a simple and robust alternative to end-to-
end rate control schemes, but do not claim that end-to-
end rate control can not be fixed to obtain comparable
benefits at least in well-connected environments.

TCP’s strengths are undeniable. Under high load, it is
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difficult to outperform TCP significantly in terms of ag-
gregate throughput (refer Figures 11 and 16). TCP backs
off aggressively on bad paths reducing contention for
flows on good paths resulting in an efficient but unfair al-
location. TCP has a similar effect on hidden terminals—
by squelching most of the colliding flows, TCP in effect
unfairly serializes them but ensures high throughput. Fi-
nally, despite its many woes in wireless environments,
TCP enjoys the luxury of experience through widespread
deployment, setting a high bar for alternate proposals.

Hop is not designed to be TCP-friendly. For exam-
ple, in the 30 flow scenario, if we convert just 7 of the
30 TCP flows to use Hop instead of TCP, the median
goodput of the remaining 23 drops by an order of mag-
nitude [15]. This is unsurprising as Hop’s bursty traffic
increases the loss and contention perceived by TCP flows
causing them to aggressively back off.

6 Related work
Wireless transport, especially the performance and fair-
ness of TCP over 802.11, has seen large body of prior
work. Our primary contribution is to draw upon this
work and show that reliable per-hop block transfer is a
better building block for wireless transport through the
design, implementation, and evaluation of Hop.

6.1 Proposed alternatives to TCP

TCP performance: TCP’s drawbacks in wireless net-
works include its inability to disambiguate between con-
gestion and loss [2], and its negative interactions with
the CSMA link layer. Proposed solutions include: 1)
end-to-end approaches that try to distinguish between
the different loss events [25], attempt to estimate the
rate to recover quickly after a loss event [19], or re-
duce TCP congestion window increments to be fractional
[21], 2) network-assisted approaches that utilize feed-
back from intermediate nodes, either for ECN notifica-
tion [38], failure notification [17] or for rate estimation
[32], and 3) link-layer solutions that use a fixed win-
dow TCP in conjunction with link-layer techniques such
as neighborhood-based Random Early Detection ([9]) or
backpressure flow control (RAIN [16]) to prevent losses
due to link queues filling up.
TCP fairness: TCP unfairness over 802.11 stems pri-
marily from: 1) excess time spent in TCP slow-start,
which is addressed in [32] by use of better rate esti-
mation, and 2) interactions between spatially proximate
interfering flows [37, 29] by using neighborhood-based
random early detection and rate control techniques.

In comparison to the above schemes, Hop does not
rely on end-to-end rate control, and thereby eliminates
the complex interaction between TCP and 802.11 that is
the root of its performance and fairness problems. In-
stead, Hop uses simple mechanisms—batching, hop-by-

hop backpressure and ack withholding—to improve per-
formance as well as fairness. Hop requires no modifica-
tions to the 802.11 MAC protocol.

6.2 Implemented alternatives to TCP

Few implemented alternatives to TCP are available for
reliable transport in 802.11 networks today. At the time
of writing, we found only two such implementations—
TCP Westwood+ and DTN2.5—both of which we com-
pare against Hop. Hop’s use of hop-by-hop reliability
and backpressure is similar to a recent proposal, CXCC
[31], but differs in its use of burst-mode, ack withhold-
ing, virtual retransmissions, etc. We could not compare
Hop against CXCC as it is not implemented for 802.11.

Two recent systems, WCP [30] and Horizon [27],
also address TCP’s performance and fairness problems
over 802.11. WCP, similar in spirit to NRED [37],
augments TCP’s end-to-end rate control with network-
assisted feedback about contention along the path. WCP
shows significant gains in median throughput (or fair-
ness) under load, but often reduces the mean through-
put considerably. Horizon uses backpressure scheduling
with multi-path routing as a shim between unmodified
TCP and 802.11 layers, and shows improved fairness un-
der load in a majority of experimental runs at the cost
of mean throughput. In comparison, Hop consistently
shows significant improvement in fairness and mild im-
provement in mean throughput under load. Although we
have not performed a head-to-head comparison to Hop,
we note that both WCP and Horizon rely on link-layer
ARQ per frame that our experiments (Figures 7 and 10)
suggest are inefficient for lossy wireless links.

6.3 Other related work

Backpressure: Backpressure was first investigated in
ATM [24] and high-speed networks [20] to handle data
bursts. A seminal paper by Tassiulas and Ephremides
[33] showed that backpressure scheduling can achieve
the stable capacity region of a wireless network. This
paper sparked off a large body of theoretical work [34]
on optimal scheduling, routing, and flow control in wire-
less networks. However, backpressure scheduling is NP-
hard, incurs a high signaling overhead per transmission,
and is difficult to implement with the 802.11 MAC layer,
so few practical implementations exist.

In recent times, backpressure-like ideas have been
adapted for congestion control as an alternative to TCP
[31] or underneath TCP [16, 27]; for unreliable hierar-
chical data aggregation in sensor networks [11]; for reli-
able bulk transport in linear sensor networks and a single
flow [14], etc. In comparison, Hop performs backpres-
sure over blocks to amortize the signaling overhead, uses
ack withholding to to alleviate hidden terminal losses,
and uses per-hop reliability with virtual retransmissions
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to efficiently deal with in-network losses.
Batching: Ng et al. [22] show that adapting the burst
size of txop’s in 802.11e to the load can improve TCP
fairness in WLAN settings. WildNet [26] leverages
batching with FEC and bulk acknowledgments at the
link layer over long-distance unidirectional 802.11 links.
Kim et al. [35] aggregate TCP frames using the 802.11n
burst mode to amortize the MAC protocol overhead. In
comparison, Hop jointly leverages batching both at the
link and transport layers.

7 Conclusions
The last decade has seen a huge body of research on
TCP’s problems over wireless networks, but TCP for
good reasons continues to to be the dominant real-world
alternative today. One reason may be that TCP is good
enough in the common case of wireless LANs, and so-
lutions proposed for more challenged environments do
not perform well in the common case. A natural ques-
tion is if we can have one simple transport protocol that
yields robust performance across diverse networks such
as WLANs, meshes, MANETs, sensornets, and DTNs.
Our work on Hop suggests that this goal is achievable.
Hop achieves significant throughput, fairness, and de-
lay gains both in well-connected WLANs and mesh net-
works as well as disruption-prone networks.
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Abstract

Despite many attempts to fix it, the Internet’s interdo-

main routing system remains vulnerable to configuration

errors, buggy software, flaky equipment, protocol oscil-

lation, and intentional attacks. Unlike most existing so-

lutions that prevent specific routing problems, our ap-

proach is to detect problems automatically and to iden-

tify the offending party. Fault detection is effective for a

larger class of faults than fault prevention and is easier to

deploy incrementally.

To show that fault detection is useful and practical, we

present NetReview, a fault detection system for the Bor-

der Gateway Protocol (BGP). NetReview records BGP

routing messages in a tamper-evident log, and it enables

ISPs to check each other’s logs against a high-level de-

scription of the expected behavior, such as a peering

agreement or a set of best practices. At the same time,

NetReview respects the ISPs’ privacy and allows them to

protect sensitive information. We have implemented and

evaluated a prototype of NetReview; our results show

that NetReview catches common Internet routing prob-

lems, and that its resource requirements are modest.

1 Introduction

Global Internet connectivity is the result of a competitive

cooperation of tens of thousands of Autonomous Sys-

tems (ASes) using the Border Gateway Protocol (BGP).

Unfortunately, interdomain routing is plagued with many

serious problems: BGP is hard to manage, and BGP mis-

configurations and software bugs can create severe net-

work disruptions [8, 24, 37]. Equipment failures in one

AS can cause route flapping and trigger excessive routing

announcements in ASes many hops away [35]. The inad-

vertent configuration of conflicting routing policies in a

collection of ASes can lead to persistent oscillation [14].

An adversary that controls a BGP-speaking router can in-

tentionally ‘hijack’ another AS’s address block in order

to discard the data packets, snoop on the traffic, imper-

sonate the legitimate destination, or send spam [25, 27].

Many (but not all) of these problems are rooted in the

absence of a mechanism to verify routing information.

BGP essentially allows anyone to announce any route,

whether that route actually exists or not. Hence, there

has been a lot of work on securing BGP. However, most

of this work focuses on fault prevention, that is, mask-

ing routing problems by suppressing invalid route an-

nouncements. This approach is effective against many

common problems, but it cannot prevent other, equally

common faults; for example, an ISP might fail to an-

nounce a route because of an incorrect export filter. Ex-

isting security extensions to BGP, such as S-BGP [22]

and soBGP [34], are not effective against such faults.

Moreover, existing fault prevention systems require sig-

nificant buy-in before they can yield much benefit, and

they require an Internet-wide public-key infrastructure

(PKI); for these and other reasons, prevention systems

have not yet achieved widespread deployment.

In this paper, we take a different and complementary

approach, namely fault detection. If we cannot prevent

every routing problem, why not at least ensure that each

problem is detected and linked to the ISP that caused it?

Fault detection is easy to deploy incrementally: it does

not require a central PKI or cryptography on the criti-

cal path, and it yields benefits even when the deployment

consists of just a few ISPs (or even a single ISP). More-

over, if we accept the possibility of some delay between

the occurrence of a fault and its detection, we can catch a

very general class of faults, including router and link fail-

ures, software bugs, misconfigurations, policy violations,

and even attacks by hackers or spammers. In particular,

we can detect faults that would be difficult or impossible

to prevent, e.g., when a faulty or misconfigured router

fails to propagate certain routes.

Fault detection has two main benefits. The first (and

most obvious) benefit is that ISPs are automatically in-

formed about routing problems and their causes, which

enables them to respond quickly. Thus, ISPs no longer

have to rely on monitoring heuristics or customer com-

plaints to find out about problems, which increases cus-
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tomer satisfaction and enables ISPs to swiftly respond

even to minor problems. Also, since detection links

faults to their causes, ISPs no longer need to diagnose

faults manually. Finally, ISPs obtain a ‘safety net’ that

enables them to respond to unexpected problems.

The second, more indirect benefit of fault detection is

that it makes an ISP’s reliability transparent. Today, ISPs

may have little to gain from pushing reliability beyond

a certain point, since customers cannot easily attribute

a given routing problem to a particular ISP. Fault de-

tection is an opportunity for reliable ISPs to showcase

their good performance and to distinguish themselves

from the competition, which could help them attract new

customers. In the long term, this could even result in a

market for reliability, in which customers could directly

compare the routing performance of potential providers.

At first, fault detection may appear to be a simple mat-

ter of keeping logs of all routing messages and inspect-

ing them (perhaps even manually) for routing problems.

However, the problem is complicated by several unique

aspects of the interdomain routing system. First, detect-

ing certain types of faults requires that ISPs share infor-

mation, because the fault cannot be detected based on

one ISP’s view of the network alone. However, ISPs wish

to minimize the amount of information they release to

their competitors. Thus, a detection system must balance

its detection power against the scope of the information

ISPs need to release. Second, the amount of log data col-

lected is so vast that manual inspection is out of the ques-

tion, except in the most egregious cases. Third, the logs

may be incomplete or even incorrect, not least because

the routing system is often attacked by hackers who may

try to manipulate records in order to cover their tracks.

Finally, if the information about faults is to be used as a

measure of reliability, we must avoid both false positives

and false negatives, which rules out heuristic solutions.

To demonstrate that fault detection is viable, we

present NetReview, a system that implements fault de-

tection for BGP. NetReview reliably and automatically

detects routing problems by checking secure traces of

BGP messages against high-level specifications of the

expected routing behavior. NetReview respects the ISPs’

privacy and provides strong guarantees: it does not pro-

duce false positives or false negatives even when under

attack by a Byzantine adversary. Using a prototype im-

plementation of NetReview, we show that its resource

requirements are modest, and that it is effective against

common Internet routing problems.

Existing work on securing interdomain routing has

proven difficult to deploy. A natural question is whether

a fault detection system would be hampered by similar

problems. To address this concern, we show that Net-

Review can overcome common deployment hurdles: it

can work with existing router hardware, it does not re-

quire a global PKI, it can be deployed incrementally, and

it offers immediate benefits to early adopters.

The rest of this paper is structured as follows. In Sec-

tion 2, we begin by giving some background on BGP,

and we discuss the specific challenges of BGP fault de-

tection. In Sections 3 and 4, we present the design of

NetReview and its specification language. In Section 5,

we report results from a feasibility study to show that

fault detection is practical. In Section 6, we present so-

lutions to various deployment-related problems, such as

operation in a partial deployment or without a CA, and

we point out incentives for adoption by ISPs. In Sec-

tion 7, we describe some advanced features that could be

added to NetReview. Section 8 discusses related work,

and Section 9 concludes this paper.

2 Background

2.1 Interdomain routing with BGP

The Internet consists of independent administrative en-

tities called autonomous systems (ASes). An AS usu-

ally corresponds to a network run by an Internet Service

Provider (ISP), although some large ISPs have multiple

ASes. Each AS is assigned a unique AS number (ASN);

in 2008, about 40,000 ASNs were in active use. In ad-

dition, each AS owns a set of IP addresses, which it can

assign to its hosts and routers. Usually, ASes use large

contiguous sets of addresses that share a common prefix;

for example, the prefix 128.42.0.0/16 covers all IP

addresses whose first two octets are 128 and 42.

To exchange routing information with each other, all

ASes use the Border Gateway Protocol [28]. Each AS

designates some of its routers as BGP speakers, which

are then connected to BGP speakers in adjacent ASes.

When a BGP speaker learns of a route to a new prefix, it

can announce that route to its peers in adjacent ASes; if

the route becomes unavailable later, it must withdraw the

announcement. BGP is a path-vector protocol, that is,

each announcement contains the sequence of ASes that

the route traverses in an attribute called AS PATH.

BGP specifies a mechanism for exchanging routing

information. Which routes to use and whether or not

to announce them to peers is decided independently by

each AS according to its own policy; for example, an AS

might prefer short routes to reduce latency. Some aspects

of the policy are determined by an AS’s business rela-

tionships; for example, an AS might agree to act as the

provider for another AS, and it would then be expected

to offer its customer a route to every prefix it can reach.

Adjacent ASes usually sign a peering agreement, which

specifies the obligations of each peer.
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2.2 What is a BGP fault?

The specification of BGP in RFC 4271 [28] describes a

message format and a few basic rules; everything else

is left to the implementation and the policy of an AS.

Therefore, we use a very generic definition of a BGP

fault. Suppose we have a complete message trace Ma

of all BGP messages a given AS a has sent or received

over time (both internally and to/from its peers). Then

we simply assume that there is a deterministic function

Fa(Ma, t), and we say that AS a is faulty at time t if and

only if Fa(Ma, t) = true, otherwise we say that AS a

is correct at time t.1 Note that Fa is specific to AS a; a

different AS b could have a different function Fb.

How can such a function Fa be defined? There are

several sources of information that can be used for this

purpose (of course, multiple sources can be combined):

• RFC 4271: The AS is faulty if it violates the BGP

specification, e.g., by sending a malformed mes-

sage, or by announcing a path that contains a loop.

• ASN and prefix assignment: The AS is faulty if

it uses a foreign AS number, or if it announces a

prefix it does not own.

• BGP best practices: The AS is faulty if it does not

follow current best practices, e.g., by failing to ag-

gregate prefixes correctly.

• Peering agreements: The AS is faulty if it does not

honor the peering agreements it has negotiated with

its peers, e.g., by failing to export its customers’

routes, or by choosing a route through an AS it has

promised to avoid.

• Connectivity: The AS is faulty if it fails to offer

routes to certain prefixes, e.g., because an internal

link or equipment failure has caused a partition.

• Internal goals: The AS is faulty if its routers fail to

achieve some goal the AS has set for itself, e.g., by

choosing an expensive route over a cheaper one due

to a configuration error.

Note that our definition does not say who defines Fa

and who evaluates it; we will address these challenges

in Section 3, and we will show which information needs

to be shared to ensure that faults are detected. Also, our

definition does not imply that there is a unique correct

message trace for each AS. For example, if an AS is of-

fered multiple routes to a given prefix and its policy does

not prefer any route in particular, it can choose any route.

According to our definition, each fault is local to a sin-

gle AS. Thus, if a faulty AS a exports a bad route to a

1A similar definition can be used for router-level faults. We focus

on AS-level faults because they are more general.

neighbor b, b does not become faulty for propagating the

route – except if propagating the route constitutes a fault

according to its own function Fb. A special case occurs

when a link between two neighboring ASes fails. Since

the link is shared by two ASes, we cannot attribute this

event to an individual AS, so we attribute it to the pair of

ASes instead.

2.3 Challenges in BGP fault detection

To illustrate the challenges in building a practical BGP

fault detection system, we first consider a simple straw-

man implementation of fault detection that works as fol-

lows. Every ISP enables full logging on all their routers

and periodically uploads the logs to a central server, to-

gether with a description of their peering agreements and

internal goals. Because the central server has full infor-

mation, it can reconstruct the message trace Ma for each

AS a, and it can evaluate Fa for any (past) point in time.

This solves the fault detection problem because the cen-

tral server can eventually detect anyBGP fault, no matter

how complex it is.

However, there are several reasons why this strawman

solution would not work in practice:

• Privacy: The strawman’s logs contain sensitive in-

formation that ISPs would not agree to reveal to a

third party, such as their routing policy and internal

topology. A practical system must protect the ISPs’

business secrets while retaining its detection power.

• Reliability: The information in the strawman’s logs

is not necessarily accurate: routers can malfunction,

and hackers can tamper with the logs to conceal an

attack. A practical system must ensure that no faults

go undetected, even when it is under attack.

• Automation: Collecting and processing the vast

amounts of trace data could prove expensive. A

practical system must be able to efficiently check

this data without manual intervention.

• Decentralization: It is unlikely that ISPs around

the world would accept and trust a single fault de-

tector entity. A practical system must not introduce

any new trusted entities or require ISPs to coordi-

nate with ISPs they do not already cooperate with.

• Deployability: The strawman assumes global de-

ployment. A practical system must have a clear

deployment path, with immediate benefits for early

adopters and a migration path for legacy equipment.

A fault detection system for BGP should address these

five challenges.
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AS 1 AS 2

AS 3

AS 4

Internal router

Recorded Not recorded

BGP speaker Tamper-evident logs

Figure 1: System model. Each BGP speaker main-

tains a tamper-evident log of the BGP messages it ex-

changes with other ASes. Internal routing messages are

not recorded.

3 NetReview

To demonstrate that the above challenges can be ad-

dressed in a practical system, we now present a detection

system called NetReview. For clarity of presentation, we

initially assume that NetReview is deployed universally,

and that the allocation of ASNs and IP prefixes to ASes is

certified by a trusted certification authority (CA). In Sec-

tion 6, we describe solutions for partial and incremental

deployment, and we show how NetReview can be used

without a CA.

3.1 Overview

At a high level, each BGP speaker maintains a log of all

the BGP messages it sends and receives (Figure 1). In

addition, each AS states a set of rules that describe best

practices, routing policies, etc. that the AS adopts (the

union of these rules specify Fa and thus define what con-

stitutes a fault; they do not necessarily describe the entire

routing policy of the AS). Both the logs and the rules are

then made available to certain other ASes, who can audit

them to check whether the rules have been followed. If a

rule was broken, NetReview guarantees that at least one

auditor can detect this and obtain verifiable evidence of

the fault, which it can then use to convince third parties.

NetReview only records BGP messages that are ex-

changed with other ASes, but no internal routing mes-

sages. Thus, the log only contains information that an

AS would reveal to other ASes anyway; the ISP’s pro-

prietary information, such as its internal topology, is not

revealed. In addition, each ISP is free to decide which

rules it wants to reveal to each auditor. For example, an

ISP might choose to reveal its best-practice rules to ev-

eryone, and, in addition, it might reveal to each of its

business partners a set of rules that describes its policy

towards that partner. This is safe because the partner al-

ready knows that aspect of the policy from the peering

agreement.

NetReview uses cryptographic authenticators [17] to

detect if routing messages are not logged correctly. The

log itself is tamper-evident, that is, it can detect if log

entries are modified after the fact. Thus, NetReview can

guarantee that log corruption – due to software bugs or

hardware malfunctions – cannot cause faults to go un-

detected. This guarantee holds even in the presence of

Byzantine faults, e.g., when hackers or spammers at-

tempt to cover up the traces of an attack.

NetReview includes a simple specification language

for writing rules. The resulting rules can be checked ef-

ficiently; we show that a commodity workstation is suf-

ficient to audit several ASes in real time.

NetReview is designed to leverage existing trust and

business relationships between neighboring ASes. We

consider two ASes to be neighbors if they are connected

by a direct link.

3.2 Assumptions and guarantees

NetReview’s design relies on the following assumptions:

1. Each AS has at least one diligent neighbor. By

diligent, we mean that this neighbor regularly audits

the AS and collects evidence. This is a reasonable

assumption because ASes have a natural interest in

learning about routing problems of their neighbors.

2. Each AS is willing to publish a list of its neigh-

bors. Knowing the nature of the business relation-

ships is not necessary, just the fact that two ASes

are connected. This is a reasonable assumption, be-

cause the information can already be determined us-

ing tools like traceroute or RouteViews [30].

3. Each AS can eventually send control messages

to any other AS. This property holds for the Inter-

net because the AS graph is connected, and because

link failures are repaired in a timely fashion (that is,

within at most a few days).

4. No attacker can invert the hash function or

break cryptographic keys. This is a common as-

sumption for protocols that rely on cryptography.

Note that NetReview is not subject to the limitations

for Byzantine fault tolerance techniques, such as the need

for 3f + 1 replicas to tolerate f faults. Fault detection is

an easier problem, so this bound does not apply.

NetReview focuses on detecting observable faults,

that is, faults that a) causally affect at least one non-faulty

AS [16], and b) violate a rule that is revealed to at least

one diligent AS. This restriction is inevitable because we
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cannot expect faulty routers to help with fault detection.

An example of an unobservable fault would be two faulty

routers sending bad routing updates to each other, but

neither of them logging the messages or forwarding the

authenticators to the other’s neighbors. Such a fault can-

not be detected as long as it does not affect a correct AS.

Under the above assumptions, NetReview guarantees

that a) any observable fault is eventually detected and

irrefutably linked to a faulty AS, and that b) no verifiable

evidence is ever generated against a non-faulty AS.

3.3 Maintaining tamper-evident logs

In NetReview, each border router maintains a log of all

routing messages it has sent to, or received from, a router

in another AS. In addition, the logs contain periodic

checkpoints of the BGP routing tables, as well as a hash

of each rule the AS has adopted. This additional infor-

mation is needed for auditing and will be discussed in

Sections 3.8 and 3.9, respectively.

NetReview’s logs are based on the logs in PeerRe-

view [17]. The logs are tamper-evident, that is, a router

either records precisely the messages it has exchanged

with other routers, or it is possible to detect that the router

is faulty. Note that, since our goal is fault detection, we

do not need to prevent faulty routers from tampering with

their logs – being able to detect tampering is sufficient

because it is clear evidence of a fault. Specifically, Net-

Review detects if a router (i) records a message it did

not send or receive, (ii) omits a message it did send or

receive, (iii) changes an existing log entry, or (iv) keeps

multiple logs or a branched log. For lack of space, we

only sketch the most important aspects of the log here.

Please refer to [17] for a complete description.

Operation: Each log is structured as a hash chain,

i.e., every entry ei is associated with a sequence num-

ber si and a hash value hi that covers the entry itself and,

transitively, all the previous entries. To explain the proto-

col for logging message exchanges, we use the example

of two routers, Alice and Bob. Whenever Alice sends a

message m to Bob, Alice first appends a SEND(m) entry

to her log and then attaches an authenticator to m, which

is a signed statement that Alice has logged the transmis-

sion of m. The authenticator αi = σAlice(si, hi) for an

entry ei includes the entry’s value in the hash chain hi

and is signed with Alice’s cryptographic key σAlice. The

authenticator has two purposes: first, it convinces Bob,

and any auditors of Bob’s log, that the message is authen-

tic, which rules out (i). Second, it serves as evidence that

a SEND(m) entry must appear in Alice’s log, which ad-

dresses case (ii) and, because of the hash chain, case (iii).

When the message m arrives, Bob appends a RECV(m)

entry to his log and then returns an acknowledgment to

Alice, which includes an authenticator for the RECV(m)

entry. At this point, both Alice and Bob have obtained

evidence that the other side has properly recorded the

message in their log.

NetReview imposes a limit on the number of unac-

knowledged messages that can be in flight between Alice

and Bob at any given time. If this limit is reached, e.g.,

during an unplanned physical link failure or because Bob

refuses to send acknowledgments, the operators are no-

tified and must resolve the problem by leveraging their

existing business relationship.

What if Alice or Bob log the message at first but mod-

ify or remove it later? When Bob receives the authentica-

tor from Alice, he detaches it from the message (to save

bandwidth) and forwards it to Alice’s neighbors. Thus,

Alice’s neighbors eventually learn of all log entries for

which Alice issued authenticators. Each neighbor pe-

riodically inspects Alice’s log to check whether these

entries actually appear. If an authenticator is properly

signed but the corresponding entry is missing, then Alice

must have tampered with the log, maintained multiple

logs or a log with multiple branches, and the authentica-

tor is a signed confession. This addresses (iv).

Protocol support: NetReview extends BGP with sup-

port for authenticators and acknowledgments. To limit

the crypto overhead during bursts of updates, it also in-

troduces a new composite message that allows multiple

updates to be covered by a single authenticator (and thus

by a single signature). We call this protocol variant BGP

with acknowledgments, or BGP-A.

Log truncation: Routers require some storage for

keeping the log. This storage does not have to be in the

router itself – it could be on a separate blade, or on an-

other computer – but capacity is limited, and log entries

cannot be stored indefinitely. Therefore we allow routers

to discard entries that are older than some time Tmax,

e.g., one year. Since the log contains periodic snapshots

of the routing tables, discarding old entries does not de-

stroy information about long-lived routes.

For routers to agree when Tmax elapses, clocks must

be loosely synchronized, e.g., within a few hours. Net-

Review enforces this by checking the timestamps on the

authenticators. If a router’s clock is not set properly, its

messages will not be accepted by the adjacent routers.

If a log entry were not audited at least once during

its lifetime, some faults could remain undetected. How-

ever, the typical audit period can be expected to be much

shorter than the lifetime of log entries because ASes are

likely to be interested in timely fault detection.

3.4 Auditing

To ensure that no fault goes undetected, the logs of each

AS must be inspected regularly. Technically, it is pos-

sible to allow each AS to audit any other AS; however,
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NetReview requires only that each AS audit the logs of

its neighbors. Neighbors have a natural incentive to learn

about each other’s routing problems, and because of their

existing business relationships, they are in a good posi-

tion to take action if a problem is discovered. Also, re-

call our assumption that each AS has at least one diligent

neighbor; this ensures that each log entry is properly in-

spected at least once.

To inspect an interval I := [t1, t2] of a target’s log, the

auditor proceeds as follows:

1. If the auditor is not a neighbor of the target, it asks

the target’s neighbors for authenticators from inter-

val I .

2. The auditor asks each of the target’s border routers

for a set of rules2 and a signed segment of its log

that covers interval I .

3. The auditor checks whether the following properties

hold for the set of logs it has obtained:

• Consistency: All authenticators match an en-

try in one of the logs.

• Conformance: The sequence of messages in

each log conforms to BGP-A.

• Compliance: The target has followed each of

the rules it has revealed.

3.5 Extracting evidence

When an auditor discovers an interval I ′ := [t′
1
, t′

2
] ⊆ I

for which one of the above properties does not hold, it

extracts the corresponding log segment, starting at the

most recent snapshot. Then it removes all entries that

are not essential for checking the property (such as addi-

tional snapshots), as well as any parts of the first snapshot

that are not needed to replay this particular segment. The

result is a compact data structure that irrefutably ties the

fault to the cryptographic key of the responsible AS, and

thus (via the certificate) to its principal. This data can be

used as evidence of the fault, and a third party can verify

it independently without having to repeat the audit.

Once an auditor has obtained evidence, it notifies the

local administrator, who can use the evidence in sev-

eral ways. For example, if a best-practice rule has been

violated, the auditor can choose to make the evidence

publicly available; thus, it is possible to evaluate an

ISP’s performance by asking its neighbors for evidence

of faults. If a private rule was broken, the evidence can

be used to convince an arbitrator or a judge.

2In Section 3.9, we describe how the auditor can verify that the rules

are genuine.

3.6 Consistency and conformance checks

The consistency check detects if the target AS has tam-

pered with its log. Recall that each BGP-A message or

acknowledgment contains a signed authenticator that is

linked to a specific log entry, and thus to a specific point

in the hash chain. If the target has returned a valid log

segment, it will be consistent with all the authenticators;

otherwise the log segment and the mismatched authenti-

cator constitute a proof of misbehavior. Since neighbors

collect each other’s authenticators, and since we assume

that each AS has at least one diligent neighbor, we know

that any forged, omitted, or modified log entry is eventu-

ally detected by at least one neighbor.

The conformance check detects if the target has de-

viated from the BGP-A protocol. This is a purely syn-

tactic check that does not consider which routes were

announced, but rather how they were announced. For

example, NetReview checks whether each message was

well-formed and whether sessions were opened with the

proper handshake before announcements were sent.

If the target AS passes the consistency and confor-

mance checks, the auditor is convinced that the log ac-

curately reflects the target’s BGP traffic. The remaining

check is designed to detect routing problems.

3.7 Extracting the routing state

The previous two checks are performed on logs from in-

dividual border routers of an AS. However, many routing

problems arise because of inconsistencies between mul-

tiple routers. Therefore, the auditor must perform the

compliance check based on the ‘global’ routing state of

the AS, which it obtains by merging the logs from the

individual routers.

NetReview models the ‘global’ routing state of an AS

as follows. At any given point in time, the AS has a set of

peering pointswith neighboring ASes, and for each peer-

ing point there are two routing information bases (RIBs):

the outRIB contains routes that the AS has announced

to its neighbor, and the inRIB contains routes that the

neighbor has announced to the AS. Since BGP does not

permit the announcement of multiple alternative routes,

each RIB can contain at most one route for each prefix.

To determine how the target’s routing state evolved

over time, the auditor starts by loading the oldest check-

point from each log, which contains a snapshot of the

RIBs. Then it repeatedly picks the unprocessed message

entry with the earliest timestamp across all logs, and it

applies the updates in the message to the corresponding

pair of RIBs. Thus, it obtains a sequence of routing states

S(ti), where ti indicates the time of the message that

triggered the change. Note that each S(ti) contains a
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pair of RIBs for each router or peering point; it is not a

‘global’ RIB for the entire AS.

3.8 Compliance check

The compliance check detects if the target has broken

any of its rules. Conceptually, this is done by checking

each rule against each of the routing states S(ti). Recall

that even the complete set of rules does not necessarily

amount to a full specification of the AS’s routing pol-

icy; thus, checking rules is not equivalent to re-evaluating

each routing decision the AS has made.

We have developed a simple specification language

that ASes can use to formulate rules. In this lan-

guage, a rule is written as a predicate on an indi-

vidual routing state S(ti). For example, the rule

∀c∀r∈outRIB(18, c) :
(prefix(r)∈P ) ⇒(123∈communities(r))

stipulates that, when a route r belongs to a prefix from

the set P and is announced to AS 18 over any peering

point c, r must be tagged with the community 123. We

give more details on the specification language and the

rule checker in Section 4.

3.9 Rule commitment and access control

For the compliance check, the auditor must know which

rules should hold for the target during the audited inter-

val. Also, if a rule is violated, the auditor should obtain

evidence that the rule existed at the time of the fault.

The easiest way to accomplish both would be to sim-

ply record the rules in the tamper-evident log. However,

since the logs are visible to each of the target’s neigh-

bors, this might reveal proprietary information about the

target’s routing policies.

Instead, we only require that ASes commit to their

rules by logging a hash value H(si, ri) for each rule ri.

si is a 128-bit salt, which makes it difficult for an inquisi-

tive auditor to learn sensitive information by checking for

well-known rules, or to run a dictionary attack. On the

other hand, if an auditor knows ri and si a priori (per-

haps from a peering agreement it shares with that AS, or

because the AS has revealed them earlier), it can easily

check whether the corresponding hash value is present.

If not, it can use the log as evidence and file a complaint

against the AS for breaking the contract.

Why would an AS commit to any rules at all, and why

would it reveal a rule to an auditor? For example, ASes

can use NetReview to enforce provisions from their peer-

ing contracts. The parties could agree to a set of rules and

add them to their respective logs; they would then reveal

these rules to each other, but not to anyone else. Or an

AS could adopt a set of best-practice rules to highlight

its good performance, and reveal these rules to everyone.

4 Writing and checking rules

NetReview includes a simple specification language that

ASes can use to formulate rules. In this section, we de-

scribe this language in more detail, and we explain how

rules in this language are evaluated.

4.1 Language design

The language includes three features we believe to be key

for BGP fault detection. First, the language is declara-

tive and refers to a high-level property, rather than to a

specific algorithm for choosing routes. This makes rules

easier to write and debug than, say, router configura-

tion files. Moreover, many properties can be specified

as rule templates that only require a few AS-specific pa-

rameters. A number of common templates are already

included with NetReview.

Second, rules are partial specifications of the expected

behavior. The above example only describes what should

happen to routes that are announced to AS 18 and whose

prefix is in P , but it does not say anything about the other

routes. Thus, an AS can reveal a rule without revealing

its entire routing policy. Also, we can vary the strength

and number of rules and thus control how restrictive the

checking should be.

Finally, rules are time-local, that is, they depend only

on a small number of past and future states. This is pos-

sible because interdomain routing is essentially memo-

ryless: whether or not a route is exported depends solely

on which routes are currently available; it is irrelevant

whether a route was available earlier, or will become

available later.3 This improves efficiency considerably,

since NetReview only needs to remember a small num-

ber of routing states at any given time.

4.2 Specifying rules

Each NetReview rule consists of a set of constants and a

set of predicates in first-order logic. The predicates are

written using boolean operators, existential and univer-

sal quantifiers, and equality. They can use two functions

called inRIB(i,j) and outRIB(i,j) to access the

RIBs for a peering point j with a neighbor with AS num-

ber i. An optional third argument contains an interval

operator.

3A notable exception is age-based tie breaking. We handle this by

including the age of each route in the RIBs.
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const setof(integer) asns = { 8, 9 };
forall cpref in affectedPrefixes, peer in asns {

forall p1 in peeringPoints(peer), p2 in peeringPoints(peer) {
(p1 != p2) => forall route in outRIB(peer, p1, intersect[now-5.0s,now]) {

(prefix(route) == cpref) => exists route2 in outRIB(peer, p2, union[now-5.0s,now]) {
(prefix(route2) == prefix(route)) and (sizeof(as path(route2)) == sizeof(as path(route)))

} } } };

Figure 2: Example rule in the syntax used by the NetReview rule checker. intersect[a,b] selects routes that

were announced continuously between time a and time b, while union[a,b] selects routes that were announced at

any point between time a and time b. now is the point in time for which the rule is evaluated.

Additionally, NetReview’s rule checker has several

built-in functions and operators for manipulating num-

bers, routes, sets, and sequences. These include basic

arithmetic operators, functions for accessing the individ-

ual elements of a route, and set operators such as union,

intersection, containment, and indexing. Figure 2 shows

an example rule. This rule says that, when exporting

a route to AS 8 or 9, the adopting AS must advertise

AS PATHs of the same length over all peering points

with that AS.

4.3 Interval operators

Why do rules ever have to depend on future or past

states? The reason is that, due to propagation delays and

clock skew, RIBs from different routers may be slightly

out of sync. Hence, there can be short intervals during

which a route appears in an inRIB but in none of the out-

RIBs, or vice versa. To an auditor, this might look like a

transient rule violation.4

To avoid false positives in this case, we must introduce

a bit of leeway. NetReview’s specification language con-

tains two timing-related operators. Both operators take

an interval I = [t − α, t + β] as an argument, where t is

an instant in time and α and β specify how far the inter-

val extends into the past and into the future, respectively.

The union operator returns all routes that have been ad-

vertised at some point in I , and the intersection operator

returns all routes that have been advertised continuously

during I . This allows us to mask transient inconsisten-

cies. For example, we might stipulate that a route may

only be exported if a prefix of that route was available

within two seconds of the current time, or that a route

must be exported to some neighbor if it has been avail-

able for at least five seconds. We limit α and β to 60 sec-

onds each; thus, the auditor must remember at most two

minutes’ worth of past or future states.

If a rule contains interval operators, it can miss actual

transient faults that exist for less than α+β seconds. The

interval needs to be no larger than the maximum propa-

4The use of a distributed snapshot algorithm such as [6] could avoid

this problem, but it would require changes to the ISPs’ internal route

distribution mechanism.

gation delay plus the maximum clock skew among the

routers of an AS, so this is not a serious limitation.

4.4 Optimizations for checking rules

Conceptually, an auditor must evaluate each predicate

whenever a) the routing state of the target AS changes

due to an incoming or outgoing BGP-A message, or b)

the value of an interval operator changes. For example,

if a rule contains two intervals I1 = [t − 5, t + 3] and

I2 = [t − 2, t + 3], the auditor must also evaluate each

predicate five and two seconds before and three seconds

after each routing change.

In practice, we can dramatically reduce the num-

ber of predicate evaluations using two simple optimiza-

tions. First, since rules typically consider each pre-

fix individually, we can often restrict universal quanti-

fiers to the set of prefixes that are actually affected by

a routing change during the current evaluation. This

set of prefixes is made available in a special vari-

able called affectedPrefixes. Second, we can

apply some simple query optimizations. For exam-

ple, in the rule in Figure 2, NetReview combines the

check for prefix(route)==cpref with the inner-

most forall quantifier, which reduces the quantifier to

a simple projection.

4.5 Discussion

Even though our specification language is very simple,

we have found that it is sufficient to describe many of

the routing problems that have been reported in the lit-

erature, including origin misconfigurations [24], incor-

rect use of communities [24], incorrect extensions of im-

ported routes [29], route deaggregation, redistribution at-

tacks, and inconsistent path lengths [9]. We note that

the particular details of the language are not critical to

NetReview; NetReview just needs a way to specify and

check constraints on the behavior of an AS. Our language

could easily be extended or replaced without affecting

the rest of NetReview.
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No origin misconfi-

guration

∀a∀p∀r ∈ outRIB(a, p,∩[t−40, t]) : (|as path(r)|=1 ∧ prefix(r) ∈ ownPrefixes) ∨ (∃a
′∃p

′∃r
′ ∈

inRIB(a′
, p

′
,∪[t−40, t+5]): prefix(r)=prefix(r′)∧startsWith(r, r′)∧(∀n∈r−r

′:n ∈ ownPrefixes))

Export customer

routes

∀a∈ customers ∀p∀r∈ inRIB(a, p): ((∀n∈ as path(r): n = a)⇒∀a
′ ∈ (peers ∪ providers)∀p

′∃r
′ ∈

outRIB(a′
, p

′
,∪[t − 15, t + 15]): prefix(r) = prefix(r′) ∧ endsWith(r, r′))

Honor no-advertise

community

∀a∀p∀r ∈ inRIB (a, p,∩[t − 5, t]) : NO ADVERTISE ∈ communities(r) ⇒ (¬∃a
′∃p

′∃r
′ ∈

outRIB(a′
, p

′): prefix(r) = prefix(r′) ∧ getElement(as path(r), 1) = a)

Consistent path

length

∀a ∈ (customers ∪ peers) ∀p∀p
′ : (p = p

′) ∨ (∀r ∈ outRIB (a, p,∩[t − 5, t]) ∃r
′ ∈ outRIB(a, p

′) :
prefix(r) = prefix(r′) ∧ |as path(r)| = |as path(r′)|)

Backup link ∀a ∈ backups ∀a
′ ∈ (customers ∪ peers) ∀p ∀r ∈ outRIB(a′

, p) : (|as path(r)| > 1 ∧
getElement(as path(r), 1) = a)⇒(¬∃a

′′ ∈ providers ∃p
′∃r ∈ inRIB(a′′

, p
′
,∩[t − 5, t]))

Table 1: Rules we checked in our experiments. Each rule is explained in Section 5.3. The variables a, a′ are for AS

numbers, p, p′ are for peering points, and r, r′ are for routes. inRIB(a, p) and outRIB(a, p) stand for the sets of routes

imported and exported, respectively, to AS a over peering point p; they can be combined with an interval operator.5
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Figure 3: AS topology in our experiments. AS 2 receives

updates from an Internet BGP trace.

5 Feasibility study

In this section, our goal is to demonstrate that NetReview

(and, more generally, the fault detection approach) is

practical. Using a prototype implementation of Net-

Review, we answer the following high-level questions:

• Are NetReview’s rules expressive enough to de-

scribe common routing problems?

• How much storage and bandwidth is needed to

maintain the tamper-evident logs?

• Is fault detection feasible at Internet scale?

5.1 Methodology

In NetReview, all communication related to a given AS

occur among the direct neighbors of that AS. Hence, a

5The interval sizes we use are worst-case values for a mirroring

monitor (mainly due to MRAI timers). Much smaller intervals would

suffice if the monitor is attached via port replicators or BMP [31].

small-scale deployment is sufficient to estimate the over-

head. However, getting even a small number of contigu-

ous Internet ASes to deploy experimental software would

be extremely difficult. Instead, we used software routers

to emulate a small AS topology in the lab, but we en-

sured that the routing table sizes and the amount of BGP

traffic closely approximated those of real Internet ASes.

To achieve this, we injected an Internet BGP trace

into one of the ASes, including a checkpoint of the ini-

tial routing table. From there, the routes were propa-

gated to the other ASes via BGP, creating BGP traffic on

each link and populating the other routing tables. This

mimicked the conditions that would have occurred if our

model topology had been part of the global Internet, so

we could get realistic estimates for many performance

metrics, e.g., how quickly the logs grow and how much

time is required for checking. We found that, since the

first trace already contained a route to each available pre-

fix, injecting additional traces would not have increased

the routing table sizes.

5.2 Experimental setup

Our NetReview prototype implements the basic system

we have described so far, plus the additional techniques

described later in Section 6, which enable NetReview to

operate without a CA, in a partial deployment and with

existing routers. These techniques add some overhead to

our results, so the overhead of the basic algorithm would

be lower than what we report here.

For our experiments, we set up a synthetic network of

35 Zebra BGP daemons [12], which form a topology of

10 ASes (Figure 3). Our network contains a mix of AS

types, ranging from large tier-1 ASes to small stub ASes,

as well as both customer/provider and peering relation-

ships. This diversity allowed us to implement and check

a variety of different routing policies. Note that AS 8

and AS 5 have two separate peering points, which will

become important later.
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For each AS, we configured a default routing policy

that satisfies the Gao-Rexford conditions [11]. If a route

is imported from a customer, it is exported to all neigh-

bors; otherwise (if the route is from a peer or provider),

it is exported only to customers. In some of our experi-

ments, we vary this policy by injecting configuration er-

rors or imposing additional constraints. Internally, each

AS uses a full-mesh iBGP topology. We did not set up

route reflectors because NetReview is oblivious to iBGP.

We injected routing updates from a RouteViews BGP

trace [30] into AS 2. We used a 15-minute trace that

was collected by a Zebra router at Equinix in Ashburn,

VA, on January 27, 2008. The collecting router peers

with nine other ASes. The trace contains 15,141 updates

from these neighbors, and the corresponding RIB snap-

shot contains 243,198 unique prefixes. Thus, AS 2 be-

haved as if it were connected to the Internet in Ashburn,

VA, and it exported a realistic set of prefixes to the other

ASes.

NetReview’s overhead depends in part on the number

of neighbors an AS has. Unless otherwise noted, the

numbers we report are for AS 5. Since 92% of Internet

ASes have degree five or less [3], our results are repre-

sentative of all but the largest Internet ISPs.

5.3 Rules we checked

In our experiments, we used NetReview to enforce five

rules, which are shown in Table 1. In plain English, these

rules state the following:

• No origin misconfiguration: An AS may only ex-

port a route if it owns the corresponding IP prefix,

or if the exported route is an extension of another

route that the AS is currently importing (motivated

by [24]).

• Export customer routes: If an AS imports a direct

route from one of its customers, it must export that

route to its peers and providers.

• Honor no-advertise community: An AS must

honor the NO ADVERTISE community; it may not

re-export a route that is tagged with this community.

• Consistent path length: When exporting a route

to a customer or a peer, an AS must advertise

AS PATHs of the same length at all peering points

(motivated by [9]).

• Backup link: An AS may only export a route via a

backup path if its direct links become unavailable.

We chose these five rules because they can be used to

detect real problems that have been reported in the Inter-

net [9, 24, 29], and because they demonstrate the differ-

ent types of conditions NetReview can verify (of course,

each rule could be varied and customized in a number of

ways). Note that the first two rules are very powerful;

together, they can find almost all of the routing problems

that were studied in [24]. In particular, the first rule cov-

ers AS PATH manipulations, which are the main focus

of secure routing systems like S-BGP (it actually goes

beyond S-BGP in that it can also check for timely route

withdrawal). The last three rules catch routing problems

that would be difficult to find without a detection system,

since they can only be detected by combining informa-

tion from several routers and/or ASes.

5.4 Functionality check

We begin with a simple functionality check to show that

the prototype is fully functional and works as expected.

Recall that NetReview’s design precludes false positives

and false negatives if each AS is audited regularly.

We ran a series of six trials. In the first trial, we

used the correct configuration for each AS. In the fol-

lowing five trials, we made a configuration change to a

NetReview-enabled AS at some point during the exper-

iment that caused one of the five rules to be violated.

After each trial, we audited all the logs.

As expected, NetReview did not report any problems

during the first trial. In each of the other trials, it re-

ported the fault we had injected. The output also in-

cluded the time interval in which the fault appeared, as

well as the variable assignments (prefixes, AS numbers

etc.) for which the corresponding rule did not hold. This

is valuable for administrators because it shows not only

where the fault occurred (in the audited AS) but also for

which prefix the exported paths did not have the same

length, which peering points were affected, etc.

5.5 Processing power

BGP-A speakers and monitors must generate and ver-

ify cryptographic signatures. The necessary processing

time is a function of the number of messages they send

and receive. In our experiment, the monitor in AS 5

sent 1,973 BGP-A messages and received 1,579 during

the 15-minute period. Since all messages are acknowl-

edged, this required 3,552 signatures to be generated and

an equal number to be validated, on average four signa-

tures and validations per second. On a 3 GHz Pentium 4,

a 1024-bit RSA signature can be generated and verified

in less than 3.5ms.

Unlike BGP messages, BGP-A messages can contain

updates for multiple different routes, which explains why

the number of messages is much lower than the number

of routing changes in our BGP trace. This also limits the

number of validations that are required when updates ar-

rive in bursts. For example, if a router is restarted and re-
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Figure 4: Average processing time required to check a

rule over one second of log data (the error bars show the

5th and the 95th percentile). The speed is sufficient for

checking multiple ASes in real time.

ceives full routing tables from its neighbors, it only needs

to check one signature per routing table. This is in con-

trast to S-BGP [22], which needs to check a signature for

every single route.

Auditors need processing power to extract the routing

state from the logs, and to check it against the specified

rules. In our experiments, we found that the processing

time was dominated by rule checking, which in turn de-

pends on the number of routing changes as well as the

complexity of the rules. Our five rules can be evaluated

independently for each prefix, so the first optimization

from Section 4.4 can be used. It would take more time

to check rules that depend on a large number of differ-

ent prefixes, but we are not aware of any useful rules that

have this property.

Figure 4 shows the average time required to check a

one-second log segment against each of our five rules.6

Our 15-minute log required 11,629 such checks, which

took 41.5 seconds on a Pentium-4 workstation.

In practice, the checking time would also depend on

the number and complexity of the rules the target AS is

revealing to the auditor. There is little published infor-

mation about the policies used by commercial ASes, so

we cannot say how large a ‘typical’ set of rules would be.

We already included a generic policy rule (rule #2) in our

set, which may be sufficient for small ASes. Even if we

assume that a typical set contains 20 rules (four times

the size of our set), an AS with five neighbors would still

only need a single workstation to perform real-time au-

diting. If an AS has more neighbors, it can spread the

load across multiple machines, since rule checking can

be trivially parallelized.

6The processing time varies considerably because some one-second

intervals contain many updates, while others contain none at all.

5.6 Storage space

BGP-A speakers require storage for checkpoints, the

tamper-evident log, and for the certificates that bind each

key to the identity of an AS. An X.509 certificate with

1024-bit RSA keys is about 1kB. With web-of-trust sig-

nature chains (described in Section 6.1) and a typical

AS-path length of four, each certificate is 5kB; thus, a

database with certificates for 40,000 ASes would require

approximately 195 MB.

The size of a checkpoint is dominated by the RIBs; it

depends on the number of prefixes and peering points.

One RIB with 244,000 prefixes and a 90-second history

takes about 9.0 MB, so, if we conservatively assume that

each prefix appears in every inRIB and every outRIB, a

complete checkpoint for an AS with six peering points

could take up to 108 MB. If the AS records one check-

point every minute and keeps all checkpoints for one day,

plus one checkpoint for each day of the last year, it would

require up to 190 GB.

In our experiment, the log grew at a rate of about

332 kB per minute (without checkpoints). Hence, we es-

timate that one year’s worth of log data would take about

166 GB. The log size is also a function of the number

of peering points and the frequency of routing changes.

Since the log mostly contains routing updates, its growth

rate is roughly proportional to the amount of BGP traf-

fic an AS generates. Recall that the numbers we report

are for an AS with five neighbors; if an AS has more

neighbors (and thus more peering points), its storage re-

quirements are higher. For the largest ASes (UUNet has

2,652 neighbors), on the order of a hundred Terabytes

of storage may be necessary to store the log for a year.

However, the log would be distributed over thousands of

routers.

Auditors require no permanent storage; however, it

makes sense for them to cache a recent checkpoint for

each AS they are auditing, so they do not have to down-

load one repeatedly.

5.7 Message overhead

BGP-A speakers generate traffic for maintaining BGP-A

sessions, for exchanging authenticators and for respond-

ing to audits. We look at each type of traffic in turn.

In terms of traffic, BGP sessions and BGP-A sessions

are quite similar. If 1024-bit keys are used, a BGP-A

message and its acknowledgment have 367 header bytes,

while a BGP message only has 16. On the other

hand, a BGP-A message can advertise many different

routes, while a BGP message can only advertise one. In

our experiment, AS 5 generated an average of 132 kB

of BGP-A messages and acknowledgments per minute;

these were equivalent to 135 kB of BGP messages.
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Upon receiving a message or an acknowledgment, a

BGP-A speaker detaches the authenticator and forwards

it to the sender’s neighbors. With 1024-bit keys, the

size of an authenticator is 156 bytes; in our experiment,

AS 5’s neighbors sent 2.1 MB of AS 5’s authenticators

over the 15-minute period. However, authenticators are

also collected from messages read during an audit, so

the required traffic is quadratic in the number of neigh-

bors: each neighbor audits each message and sends the

corresponding authenticator to each of the other neigh-

bors. This can be a problem for large ASes (e.g. UUNet).

Therefore, authenticators from large ASes should be sent

to only a subset of its neighbors. This does not affect

NetReview’s guarantees as long as the subsets used by

all neighbors intersect in at least one diligent neighbor.

In our experiment, all audits were incremental; the au-

ditor transferred a full checkpoint once and then retrieved

only the log entries that were added since the last audit.

In the limit, the required traffic is the size of the log times

the number of auditors, plus some overhead for headers.

In total, AS 5 caused about 420 kbps of BGP-A traf-

fic, including routing updates, auditing, and authentica-

tors sent by the neighbors. This corresponds to the band-

width of a typical DSL upstream, which is insignificant

compared to the amount of traffic ISPs routinely handle.

5.8 Summary

Our experiments show that NetReview’s simple rules

are sufficient to describe common, nontrivial routing

problems. Also, NetReview’s resource requirements are

moderate: in a typically-sized AS with five neighbors,

routers must sign less than four messages per second on

average, a single hard disk is sufficient to keep one year’s

worth of log data, and the total traffic is less than the ca-

pacity of a single broadband upstream link. Finally, we

have demonstrated that fault detection is feasible at In-

ternet update rates. By running the NetReview software

on just a single workstation, an ISP can audit dozens of

neighboring ASes in real time.

6 Practical challenges

In the previous two sections, we have shown that it is fea-

sible to build a fault detection system with strong guar-

antees, and that its resource requirements are moderate.

The goal of this section is to show how NetReview deals

with the various practical problems that have hampered

the deployment of previous solutions. In particular, we

will show that NetReview can operate without a CA, that

it can be effective in a partial deployment, that it can

initially be deployed without upgrading any routers, and

that it offers incentives for incremental deployment.

6.1 NetReview without a CA

Despite many proposals, deploying a global CA for pre-

fixes and ASes has so far not found acceptance [19]. Net-

Review can use such a CA if it exists, but it does not re-

quire it. In the absence of a CA, we need to find replace-

ments for two services that a CA provides: associating

each key pair with a real-world identity, and certifying

ownership of AS numbers and IP prefixes.

We solve this problem using a web-of-trust approach

that is inspired by [33, 34]. Each AS initially generates

a key pair and creates a self-signed certificate. Then it

sends the certificate to its immediate neighbors, who ap-

pend their own endorsement and forward it on to their

neighbors, etc. The overhead for flooding certificates is

not a concern, because the AS topology changes slowly.

Each AS obtains a database of all certificates, each

with a chain of endorsements that corresponds to the

shortest path between the local AS and the AS repre-

sented by a given certificate. Can these certificates be

trusted? We can safely assume that each AS knows the

true identity of the neighbor attached to each of its phys-

ical links. Moreover, we have assumed earlier that each

AS has a diligent neighbor. This neighbor can detect if

the AS signs a certificate that do not correspond to its true

identity, or endorses a certificate that does not come from

one of its neighbors. Thus, a node can (transitively) trust

every certificate that is endorsed by one of its neighbors.

In addition, we require each AS to log a public pledge

that specifies its current ASN and prefix ownerships.7

ASes extract this pledge during audits and compare it to

their database; if there is any change, they flood it to all

other ASes. Thus, NetReview can detect if two ASes

claim ownership of the same ASN or of overlapping pre-

fixes, and it provides each with evidence of the other’s

claim. The conflict can then be resolved through existing

mechanisms, e.g., by a mediator or a judge.

6.2 Partial deployment

It would be unrealistic to expect that all ASes adopt Net-

Review, much less that all ASes install the system at the

same time. Therefore, NetReview must be able to work

in a partial deployment, that is, it must be able to interact

with non-participants via BGP.

By default, BGP-A speakers and monitors record only

BGP-A messages in their logs, and auditors use only

BGP-A messages to reconstruct the routing information.

However, legacy neighbors have no components that

speak BGP-A. If we simply omitted all routes imported

from or exported to these neighbors, the information in

the log might not be sufficient to evaluate many interest-

7Prefixes used for IP anycast [26] require special handling because

they may be owned by multiple ASes simultaneously.
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ing conditions. For example, if an AS acts as a provider

for another AS, it may be required to export routes for all

prefixes it knows about, even if the corresponding route

is through a non-participant. Therefore, if an AS has

legacy neighbors, its BGP-A speakers and monitors ad-

ditionally record all the (unsigned) BGP messages they

exchange with these neighbors.

Why keep this information in the secure record if

a faulty participant AS can simply record whatever it

wants? There are three reasons. First, we can isolate

non-malicious faults such as misconfigurations or hard-

ware failures, where the faulty AS still records correct

information. Second, even if an AS lies about the routes

it is importing or exporting via BGP, it must lie consis-

tently to avoid detection by the auditors. For example, if

the AS claims to have imported a certain route via BGP,

it must re-export that route to each participating neighbor

if required by its peering agreement, and it cannot export

different versions to different neighbors.

Third, logging BGP messages enables an intermediate

level of participation in NetReview. If a non-participant

AS a is a neighbor of a participant AS b, a can act as

an auditor and compare b’s log to the BGP messages b

actually sent, without fully deploying fault detection it-

self. All a needs is the NetReview auditor software and

a current snapshot of its own BGP tables. If a finds a

discrepancy, it can investigate it by contacting the par-

ticipant AS b. This option could encourage neighbors of

participant ASes to ‘try out’ fault detection.

Partial deployment requires an addition to the web-of-

trust technique in Section 6.1. As long as the deployment

is contiguous in the AS graph (which is likely if tier-1

ASes join first), the technique works as described. When

a second ‘island’ of participants arises, at least one mem-

ber of each island must exchange cryptographic creden-

tials out-of-band. These members are then considered

NetReview neighbors (even though they do not share a

physical link), and they forward certificates from their

respective islands to ensure that each AS has a full set.

To increase the chance that ASes in small islands have

a diligent neighbor, they also collect authenticators for

each other and periodically audit each other’s log.

6.3 Using existing routers

Requiring ISPs to upgrade or replace their routers to

deploy NetReview would present a significant hurdle.

Therefore, it is useful to have an intermediate solution

that works with existing, unmodified routers. Our solu-

tion is to run the NetReview software on ordinary work-

stations, which we call monitors. The monitors speak

both BGP and BGP-A; they observe all BGP traffic in-

cident to the AS’s existing routers and maintain BGP-A

sessions with any monitors (or native BGP-A speakers

where available) in adjacent ASes. The monitors also

maintain tamper-evident logs and perform all crypto-

graphic operations. Thus, the existing routers need not

be modified.

There are two ways to configure a monitor [29]. A

proxying monitor interposes on all BGP connections of

its local AS. When it receives a BGP message from a

local border router, it sends an equivalent BGP-A mes-

sage to the remote BGP-A speaker (or monitor) and

vice versa. A mirroring monitor snoops on the exist-

ing control connections, e.g., using a port replicator, the

BGP monitoring protocol [31], or additional BGP ses-

sions. Whenever it sees an outgoing message on the

legacy BGP connection, it sends a BGP-A message with

the same information over a separate connection to the

neighbor’s BGP-A speaker or monitor.

Mirroring monitors are safer because the routers do

not depend on them. If a monitor fails, the routers can

still send or receive routing updates via BGP and nor-

mal operation is not affected. On the other hand, mirror-

ing monitors allow inconsistencies between the updates

sent via BGP and BGP-A. Consider a case where a mis-

configured or faulty router advertises some route A to its

monitor and a different route B to the adjacent AS. The

monitor would record route A in the tamper-evident log,

and the AS could not be held accountable for route B.

To address this case, mirroring monitors maintain a

third RIB for each peering point, which we will call

inRIB-BGP. The inRIB contains the routes advertised

via BGP-A as before, while the inRIB-BGP contains the

routes received over the monitor’s BGP sessions. Nor-

mally the two are identical; the scenario described ear-

lier would manifest itself as an inconsistency between

inRIB and inRIB-BGP in two adjacent ASes. Thus, an

inconsistency cannot go undetected; however, an audi-

tor cannot decide whether an inconsistency between in-

RIB and inRIB-BGP is caused by the audited AS or by

its neighbor, and therefore must suspect both. Because

BGP neighbors have a business relationship, they can be

expected to swiftly sort out a demonstrated inconsistency

between their advertised routes.

6.4 Incentives for deployment

If fault detection is to be deployed incrementally in the

current Internet, we need good arguments to persuade

ISPs to adopt it. Here, we present two arguments we

believe to be compelling: ISPs can use fault detection as

a distinguishing feature to attract more customers, and

they can use it for root-cause analysis in the entire Inter-

net, even in non-participating ASes.

Market forces: The first adopters of NetReview are

likely to be large ISPs, such as tier-1 and tier-2 ASes,

who tend to adopt new routing technology and best prac-
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tices early. As a result, their routing performance is of-

ten excellent. These ASes can demonstrate their excel-

lent performance by offering fault detection as a value-

added service to their customers and thus distinguish

themselves from the competition.

Once fault detection is on the market, competitors are

encouraged to measure up by offering the service them-

selves. Thus, small islands of participants emerge. At

this point, when a fault is caused by a non-participant,

the participants can handle any complaints by proving

that they are not the cause, and by tracing the problem to

a non-participant just outside the island’s perimeter, who

must then handle the complaint. This creates an incentive

for ASes to be inside the perimeter, and thus causes the

islands to expand and the gaps between them to shrink.

Note that this approach works for NetReview because,

unlike secure routing protocols like S-BGP, it is effective

even in a small deployment of just a few ASes.

Root-cause analysis: As an additional benefit, partic-

ipant ASes can use the fault detection system to diagnose

faults even if the cause is in a non-participatingAS. Since

non-participants do not sign messages, do not maintain

tamper-evident logs, and do not reveal any rules, we can-

not guarantee that the diagnosis will always be accurate,

and we cannot detect certain types of faults, such as pol-

icy violations. However, even an approximate diagnosis

enables the AS to respond more effectively to faults.

Since non-participants do not have tamper-evident

logs, we cannot directly apply auditing to find faults.

Instead, we can use the participants’ logs as a giant

BGP looking glass that provides information about BGP

updates from many vantage points. There are several

proposed systems that can use this data to diagnose

faults [10, 13, 21, 32]. In fact, because NetReview

records a history of past states, it provides even more in-

formation than existing systems need; this could be used

to develop even more powerful systems.

6.5 Accuracy in a partial deployment

When NetReview is used for root-cause analysis in a

partial deployment, it returns a candidate set – a set of

ASes that could have caused the fault. The size of this

set depends on the size of the NetReview deployment.

To estimate this dependency, we ran a simulation based

on CAIDA’s Internet AS topology [3], assuming a sce-

nario in which an AS suspects that a given route has been

spoofed. With NetReview in place, we can audit the par-

ticipant ASes on the path and thus localize the fault to ei-

ther a) a participant AS, b) a segment of non-participants

between two participants, or c) the path suffix after the

last participant. Here, we will ignore the possibility that

the participant ASes record incorrect information.
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Figure 5: Fault localization under partial deployment.

Shown is the average number of ASes that could have

caused an observed failure.

For each deployment size, we simulated 10,000 trials

as follows: we randomly picked an AS and calculated

the shortest path to a random other AS using the Gao-

Rexford conditions, then we picked a random AS on that

path as the faulty AS and measured the number of candi-

dates. We report averages over all 10,000 trials.

Figure 5 shows our results for two different deploy-

ment assumptions: either ASes deploy NetReview in ran-

dom order, or in order of decreasing node degree. The

first assumption is rather conservative; in practice, large

ISPs typically run the latest routers, are among the first

to apply best common practices and pride themselves on

their good performance, so they are more likely to be

early adopters.

In both cases, the average number of candidates starts

at four (the average AS path length on the Internet).

However, if the ASes with the most neighbors de-

ploy NetReview first, the average decreases much more

rapidly and reaches perfect localization with only a 15%

deployment. The reason is that there are only about 12-

15 tier-1 ASes; once these have deployed NetReview,

faults can already be localized to one half of the path.

85% of the ASes in the Internet do not have customers of

their own; once the other 15% participate, faults can be

localized to one of them or to one of their customers.

This result shows that early adopters of a fault de-

tection system like NetReview can derive considerable

benefits from it; a deployment that includes the 0.1%

highest-degree ASes would already be able to double the

accuracy of its diagnoses. In contrast, fault prevention

systems like S-BGP are only effective when they are al-

ready widely deployed.

7 Future work

In this section, we describe some advanced features that

could be added to NetReview.



USENIX Association	 NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation	 451

7.1 Simultaneously inspecting several ASes

NetReview inspects one log at a time, which is sufficient

to detect protocol violations and policy violations. How-

ever, NetReview cannot detect problematic interactions

between the policies of multiple ASes that way. An ex-

ample is bad gadgets [14], which only arise when the

routing policies of several ASes conflict in a circular

fashion. To detect bad gadgets, NetReview would have

to inspect the logs of multiple ASes simultaneously.

Technically, it is not difficult to fetch the logs from

multiple ASes and to evaluate rules over multiple RIBs.

However, routing policies are typically pair-wise confi-

dential; thus, the check would have to be performed by a

mutually trusted auditor. An alternative method to detect

such policy conflicts, proposed in [15], is to have ASes

annotate BGP advertisements with a history in a manner

that preserves the privacy of the routing policies. Be-

cause NetReview records and publishes histories of BGP

advertisements as part of its regular operation, this tech-

nique can be readily applied.

7.2 Detecting data-plane inconsistencies

In this paper, we have focused on providing fault de-

tection for the control plane – the BGP announcements

ASes send to each other. However, an AS could conceiv-

ably advertise one path in BGP and forward data pack-

ets on another, whether inadvertently or as part of an at-

tack. NetReview already provides two mechanisms that

can detect inconsistencies between the control and data

planes: (i) it offers authoritative information about the

route advertisement in the control plane, and (ii) it estab-

lishes the secure log that could also record observations

about the data plane.

For example, suppose AS B advertises route “B C”

to AS A but instead forwards A’s traffic to AS D. If D

passively monitors the traffic received from B, D can ob-

serve that A’s packets are misrouted. D can add this ob-

servation to its log, and any auditors can thus obtain evi-

dence of a data-plane inconsistency between B and D.

7.3 Internal audits

NetReview provides fault detection for BGP inter-

domain routing. It does not record any intra-domain rout-

ing messages in the tamper-evident log because these

could reveal confidential information, such as the AS’s

internal topology.

However, NetReview could easily be adapted to cover

intra-domain routing using a separate, private record.

ASes could then perform internal audits to discover mis-

configurations or compromised routers in their internal

network, even when these routers have not (yet) caused a

routing problem that would be visible to a neighbor.

8 Related Work

Detection: Anomaly detection techniques [7, 18, 21, 23,

36] use the BGP routing updates from one or more van-

tage points to build a de facto registry of the AS topol-

ogy and prefix ownership. They raise an alarm upon

receiving updates that disagree with the registry. Root-

cause analysis (RCA) algorithms analyze BGP update

messages from multiple vantage points to identify the

AS(es) responsible for a routing change [4, 5, 10]. In

RCA, each vantage point identifies a set of suspect ASes,

then the sets are correlated to determine the potential cul-

prit(s). The accuracy of RCA depends on the number

and location of the vantage points. Unlike both RCA and

anomaly detection, NetReview produces no false posi-

tives or false negatives, and it is not vulnerable to com-

promised ASes. In addition, NetReview can detect a

larger class of faults, and it produces evidence that can

be used to convince a third party.

AudIt [2] can determine which ASes are losing or de-

laying packets on the data plane. However, AudIt can

only reveal the symptoms of a malfunctioning control

plane, whereas control-plane fault detection can perform

diagnosis.

Prevention: Secure routing protocols [20, 22, 33, 34]

can ensure that (i) a route advertisement originates from

the legitimate origin AS and that (ii) the AS-path of a

route advertisement has not been modified or forged. On

the one hand, secure routing protocols can prevent cer-

tain types of faults, whereas NetReview can only detect

them; on the other hand, NetReview covers a larger class

of faults, including policy violations (such as a faulty AS

redistributing routes from one upstream provider to an-

other), it can localize faults, and it provides incentives

to avoid them. Perhaps more importantly, secure routing

protocols do not provide appreciable benefits until many

(if not all) ASes have adopted them, which explains in

part why they have not yet been deployed, whereas Net-

Review is effective even in small deployments

N-BGP [29] uses trusted hardware to enforce a BGP

safety specification for individual routers. Unlike N-

BGP, NetReview does not require trusted hardware and it

produces evidence of faults that can be verified by third

parties. Moreover, NetReview is designed to check an

entire AS’s operation, not only against a safety specifica-

tion but also against the AS’s routing policy as specified

in its peering agreements.

AIP [1] is a clean-slate redesign of IP that, among

other things, would greatly simplify the deployment of

a secure routing protocol. However, even if AIP were to

replace IP entirely, it would be subject to the limitations

of secure routing protocols described above.

Accountability: NetReview’s tamper-evident log is

based on the log in PeerReview [17], a general account-
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ability framework for distributed systems. However,

NetReview goes beyond PeerReview, which is based on

assumptions that do not hold in interdomain routing. For

example, PeerReview requires a certificate authority, it

cannot operate in a partial deployment, it cannot protect

the business secrets of ISPs, and it detects neither pol-

icy violations nor any other condition that involves more

than one router.

9 Conclusion

In this paper, we have presented the design, implemen-

tation, and evaluation of NetReview, a fault detection

system for interdomain routing. NetReview reliably de-

tects incorrect behavior and links it to the responsible

AS, while also enabling well-behaved ASes to prove

they have adhered to the protocol and their routing poli-

cies. NetReview’s correctness checks can detect and di-

agnose a wide variety of problems in BGP, including

faulty equipment, buggy software, policy violations, and

malicious attacks, which makes it an appealing alterna-

tive to specific solutions to any one of these problems.

NetReview does not require changes to the underlying

routers and is effective even in partial deployments. We

believe that a fault detection system like NetReview can

play an important role in improving the reliability, stabil-

ity, and security of interdomain routing.
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Abstract
This paper presents ViAggre (Virtual Aggregation), a

“configuration-only” approach to shrinking the routing
table on routers. ViAggre does not require any changes
to router software and routing protocols and can be
deployed independently and autonomously by any ISP.
ViAggre is effectively a scalability technique that allows
an ISP to modify its internal routing such that individual
routers in the ISP’s network only maintain a part of the
global routing table.
We evaluate the application of ViAggre to a few tier-

1 and tier-2 ISPs and show that it can reduce the routing
table on routers by an order of magnitude while impos-
ing almost no traffic stretch and negligible load increase
across the routers. We also deploy Virtual Aggregation
on a testbed comprising of Cisco routers and benchmark
this deployment. Finally, to understand and address
concerns regarding the configuration overhead that our
proposal entails, we implement a configuration tool that
automates ViAggre configuration. While it remains to
be seen whether most, if not all, of the management
concerns can be eliminated through such automated
tools, we believe that the simplicity of the proposal
and its possible short-term impact on routing scalability
suggest that it is an alternative worth considering.

I. Introduction
The Internet default-free zone (DFZ) routing table

has been growing rapidly for the past few years [20].
Looking ahead, there are concerns that as the IPv4
address space runs out, hierarchical aggregation of
network prefixes will further deteriorate resulting in a
substantial acceleration in the growth of the routing
table [31]. A growing IPv6 deployment would worsen
the situation even more [29].
The increase in the size of the DFZ routing ta-

ble has several harmful implications for inter-domain
routing.1 [31] discusses these in detail. At a technical
level, increasing routing table size may drive high-
end router design into various engineering limits. For
instance, while memory and processing speeds might
just scale with a growing routing system, power and heat
dissipation capabilities may not [30]. On the business
side, the performance requirements for forwarding while
being able to access a large routing table imply that the

cost of forwarding packets increases and hence, net-
works become less cost-effective [27]. Further, it makes
provisioning of networks harder since it is difficult to
estimate the usable lifetime of routers, not to mention
the cost of the actual upgrades. As a matter of fact,
instead of upgrading their routers, a few ISPs have
resorted to filtering out some small prefixes (mostly
/24s) which implies that parts of the Internet may not
have reachability to each other [19]. This suggests that
ISPs are willing to undergo some pain to avoid the cost
of router upgrades.
Such concerns regarding FIB size growth, along with

problems arising from a large RIB and the concomitant
convergence issues, were part of the reasons that led
a recent Internet Architecture Board workshop to con-
clude that scaling the routing system is one of the most
critical challenges of near-term Internet design [30]. The
severity of these problems has also prompted a slew
of routing proposals [7,8,11,14,18,29,32,40]. All these
proposals require changes in the routing and addressing
architecture of the Internet. This, we believe, is the
nature of the beast since some of the fundamental
Internet design choices limit routing scalability; the
overloading of IP addresses with “who” and “where”
semantics represents a good example [30]. However,
the very fact that they require architectural change has
contributed to the non-deployment of these proposals.
This paper takes the position that a major architec-

tural change is unlikely and it may be more pragmatic to
approach the problem through a series of incremental,
individually cost-effective upgrades. Guided by this and
the aforementioned implications of a rapidly growing
DFZ FIB, this paper proposes Virtual Aggregation or
ViAggre, a scalability technique that focuses primar-
ily on shrinking the FIB size on routers. ViAggre is
a “configuration-only” solution that applies to legacy
routers. Further, ViAggre can be adopted independently
and autonomously by any ISP and hence the bar for its
deployment is much lower. The key idea behind ViAg-
gre is very simple: an ISP adopting ViAggre divides the
responsibility for maintaining the global routing table
amongst its routers such that individual routers only
maintain a part of the routing table. Thus, this paper
makes the following contributions:
• We discuss two deployment options through which
an ISP can adopt ViAggre. The first one uses FIB
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suppression to shrink the FIB of all the ISP’s routers
while the second uses route filtering to shrink both
the FIB and RIB on all data-path routers.

• We analyze the application of ViAggre to an actual
tier-1 ISP and several inferred (Rocketfuel [37]) ISP
topologies. We find that ViAggre can reduce FIB size
by more than an order of magnitude with negligible
stretch on the ISP’s traffic and very little increase in
load across the ISP’s routers. Based on predictions of
future routing table growth, we estimate that ViAggre
can be used to extend the life of already outdated
routers by more than 10 years.

• We propose utilizing the notion of prefix popularity
to reduce the impact of ViAggre on the ISP’s traffic
and use a two-month study of a tier-1 ISP’s traffic to
show the feasibility of such an approach.

• As a proof-of-concept, we configure test topologies
comprising of Cisco routers (on WAIL [3]) according
to the ViAggre proposal. We use the deployment
to benchmark the control-plane processing overhead
that ViAggre entails. One of the presented designs
actually reduces the amount of processing done by
routers and preliminary results show that it can reduce
convergence time too. The other design has high
overhead due to implementation issues and needs
more experimentation.

• ViAggre involves the ISP reconfiguring its routers
which can be a deterrent to adoption. We quantify this
configuration overhead. We also implement a config-
uration tool that, given the ISPs existing configuration
files, can automatically generate the configuration
files needed for ViAggre deployment. We discuss the
use of this tool on our testbed.
Overall, the incremental version of ViAggre that this

paper presents can be seen as little more than a simple
and structured hack that assimilates ideas from existing
work including, but not limited to, VPN tunnels and
CRIO [40]. We believe that its very simplicity makes
ViAggre an attractive short-term solution that provides
ISPs with an alternative to upgrading routers in order to
cope with routing table growth till more fundamental,
long-term architectural changes can be agreed upon and
deployed in the Internet. However, the basic ViAggre
idea can also be applied in a clean-slate fashion to
address routing concerns beyond FIB growth. While
we defer the design and the implications of such a
non-incremental ViAggre architecture for future work,
the notion that the same concept has potential both as
an immediate alleviative and as the basis for a next-
generation routing architecture seems interesting and
worth exploring.

II. ViAggre design
ViAggre allows individual ISPs in the Internet’s DFZ

to do away with the need for their routers to maintain
routes for all prefixes in the global routing table. An ISP
adopting ViAggre divides the global address space into
a set of virtual prefixes such that the virtual prefixes are
larger than any aggregatable (real) prefix in use today.
So, for instance, an ISP could divide the IPv4 address
space into 128 parts with a /7 virtual prefix representing
each part (0.0.0.0/7 to 254.0.0.0/7). Note that such a
naı̈ve allocation would yield an uneven distribution of
real prefixes across the virtual prefixes. However, the
virtual prefixes need not be of the same length and
hence, the ISP can choose them such that they contain
a comparable number of real prefixes.
The virtual prefixes are not topologically valid ag-

gregates, i.e. there is not a single point in the Internet
topology that can hierarchically aggregate the encom-
passed prefixes. ViAggre makes the virtual prefixes
aggregatable by organizing virtual networks, one for
each virtual prefix. In other words, a virtual topology is
configured that causes the virtual prefixes to be aggre-
gatable, thus allowing for routing hierarchy that shrinks
the routing table. To create such a virtual network, some
of the ISP’s routers are assigned to be within the virtual
network. These routers maintain routes for all prefixes in
the virtual prefix corresponding to the virtual network
and hence, are said to be aggregation points for the
virtual prefix. A router can be an aggregation point
for multiple virtual prefixes and is required to only
maintain routes for prefixes in the virtual prefixes it is
aggregating.
Given this, a packet entering the ISP’s network is

routed to a close-by aggregation point for the virtual
prefix encompassing the actual destination prefix. This
aggregation point has a route for the destination prefix
and forwards the packet out of the ISP’s network in
a tunnel. In figure 1 (figure details explained later),
router C is an aggregation point for the virtual prefix
encompassing the destination prefix and B → C → D
is one such path through the ISP’s network.

A. Design Goals
The discussion above describes ViAggre at a con-

ceptual level. While the design space for organizing
an ISP’s network into virtual networks has several
dimensions, this paper aims for deployability and hence
is guided by two major design goals:
1) No changes to router software and routing protocols:

The ISP should not need to deploy new data-plane
or control-plane mechanisms.

2) Transparent to external networks: An ISP’s decision
to adopt the ViAggre proposal should not impact its
interaction with its neighbors (customers, peers and
providers).
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These goals, in turn, limit what can be achieved
through the ViAggre designs presented here. Routers
today have a Routing Information Base (RIB) generated
by the routing protocols and a Forwarding Information
Base (FIB) that is used for forwarding the packets.
Consequently, the FIB is optimized for looking up desti-
nation addresses and is maintained on fast(er) memory,
generally on the line cards themselves [31]. All things
being equal, it would be nice to shrink both the RIB
and the FIB for all ISP devices, as well as make other
improvements such as shorter convergence time.
While the basic ViAggre idea can be used to achieve

these benefits (section VI), we have not been able to
reconcile them with the aforementioned design goals.
Instead, this paper is based on the hypothesis that
given the performance and monetary implications of
the FIB size for routers, an immediately deployable
solution that reduces FIB size is useful. Actually, one of
the presented designs also shrinks the RIB on routers;
only components that are off the data path (i.e. route
reflectors) need to maintain the full RIB. Further, this
design is shown to help with route convergence time
too.

B. Design-I: FIB Supression
This section details one way an ISP can deploy virtual

prefix based routing while satisfying the goals specified
in the previous section. The discussion below applies to
IPv4 (and BGPv4) although the techniques detailed here
work equally well for IPv6. The key concept behind
this design is to operate the ISP’s internal distribution
of BGP routes untouched and in particular, to populate
the RIB on routers with the full routing table but to
suppress most prefixes from being loaded in the FIB
of routers. A standard feature on routers today is FIB
Suppression which can be used to prevent routes for
individual prefixes in the RIB from being loaded into
the FIB. We have verified support for FIB suppression
as part of our ViAggre deployment on Cisco 7300
and 12000 routers. Documentation for Juniper [43] and
Foundry [42] routers specify this feature too. We use
this as described below.
The ISP does not modify its routing setup – the

ISP’s routers participate in an intra-domain routing
protocol that establishes internal routes through which
the routers can reach each other while BGP is used
for inter-domain routing just as today. For each virtual
prefix, the ISP designates some number of routers to
serve as aggregation points for the prefix and hence,
form a virtual network. Each router is configured to
only load prefixes belonging to the virtual prefixes it
is aggregating into its FIB while suppressing all other
prefixes.
Given this, the ISP needs to ensure that packets to

any prefix can flow through the network in spite of the
fact that only a few routers have a route to the prefix.
This is achieved as follows:

– Connecting Virtual Networks. Aggregation points for
a virtual prefix originate a route to the virtual prefix
that is distributed throughout the ISP’s network but not
outside. Specifically, an aggregation point advertises the
virtual prefix to its iBGP peers. A router that is not an
aggregation point for the virtual prefix would choose
the route advertised by the aggregation point closest to
it and hence, forward packets destined to any prefix in
the virtual prefix to this aggregation point.2

– Sending packets to external routers. When a router
receives a packet destined to a prefix in a virtual prefix
it is aggregating, it can look up its FIB to determine
the route for the packet. However, such a packet cannot
be forwarded in the normal hop-by-hop fashion since a
router that is not an aggregation point for the virtual
prefix in question might forward the packet back to
the aggregation point, resulting in a loop. Hence, the
packet must be tunneled from the aggregation point
to the external router that was selected as the BGP
NEXT HOP. While the ISP can probably choose from
many tunneling technologies, we use MPLS Label
Switched Paths (LSPs) for such tunnels. This choice was
influenced by the fact that MPLS is widely supported in
routers, is used by ISPs, and operates at wire speed. Fur-
ther, protocols like LDP [1] automate the establishment
of MPLS tunnels and hence, reduce the configuration
overhead.
However, a LSP from the aggregation point to an

external router would require cooperation from the
neighboring ISP. To avoid this, every edge router of
the ISP initiates a LSP for every external router it is
connected to. Thus, all the ISP routers need to maintain
LSP mappings equal to the number of external routers
connected to the ISP, a number much smaller than the
routes in the DFZ routing table (we relax this constraint
in section IV-B). Note that even though the tunnel
endpoint is the external router, the edge router can be
configured to strip the MPLS label from the data packets
before forwarding them onto the external router. This, in
turn, has two implications. First, external routers don’t
need to be aware of the adoption of ViAggre by the
ISP. Second, even the edge router does not need a FIB
entry for the destination prefix, instead it chooses the
external router to forward the packets to based on the
MPLS label of the packet. The behavior of the edge
router here is similar to the penultimate hop in a VPN
scenario and is achieved through standard configuration.

We now use a concrete example to illustrate the flow of
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Fig. 1. Path of packets destined to prefix 4.0.0.0/24 (or, 4/24) between
external routers A and E through an ISP with ViAggre. Router C is
an aggregation point for virtual prefix 4.0.0.0/7 (or, 4/7).

packets through an ISP network that is using ViAggre.
Figure 1 shows the relevant routers. The ISP is using
/7s as virtual prefixes and router C is an aggregation
point for one such virtual prefix 4.0.0.0/7. Edge router
D initiates a LSP to external router E with label l
and hence, the ISP’s routers can get to E through
MPLS tunneling. The figure shows the path of a packet
destined to prefix 4.0.0.0/24, which is encompassed by
4.0.0.0/7, through the ISP’s network. The path from the
ingress router B to the external router E comprises three
segments:
1) VP-routed: Ingress router B is not an aggregation

point for 4.0.0.0/7 and hence, forwards the packet to
aggregation point C.

2) MPLS-LSP: Router C, being an aggregation point
for 4.0.0.0/7, has a route for 4.0.0.0/24 with BGP
NEXT HOP set to E. Further, the path to router E
involves tunneling the packet with MPLS label l.

3) Map-routed: On receiving the tunneled packet from
router C, egress router D looks up its MPLS label
map, strips the MPLS header and forwards the packet
to external router E.

C. Design-II: Route Reflectors
The second design offloads the task of maintaining

the full RIB to devices that are off the data path.
Many ISPs use route-reflectors for scalable internal
distribution of BGP prefixes and we require only these
route-reflectors to maintain the full RIB. For ease of
exposition, we assume that the ISP is already using per-
PoP route reflectors that are off the data path, a common
deployment model for ISPs using route reflectors.
In the proposed design, the external routers connected

to a PoP are made to peer with the PoP’s route-
reflector. This is necessary since the external peer may
be advertising the entire DFZ routing table and we don’t
want all these routes to reside on any given data-plane
router. The route-reflector also has iBGP peerings with
other route-reflectors and with the routers in its PoP.
Egress filters are used on the route-reflector’s peerings
with the PoP’s routers to ensure that a router only gets

routes for the prefixes it is aggregating. This shrinks
both the RIB and the FIB on the routers. The data-
plane operation and hence, the path of packets through
the ISP’s network remains the same as with the previous
design.
With this design, a PoP’s route-reflector peers with

all the external routers connected to the PoP. The RIB
size on a BGP router depends on the number of peers it
has and hence, the RIB for the route-reflectors can po-
tentially be very large. If needed, the RIB requirements
can be scaled by using multiple route-reflectors which
may also be needed to provide customised routes to the
PoP’s neighbors. Note that the RIB scaling properties
here are better than in the status quo. Today, edge
routers have no choice but to peer with the directly
connected external routers and maintain the resulting
RIB. Replicating these routers is prohibitive because of
their cost but the same does not apply to off-path route-
reflectors, which could even be BGP software routers.

D. Design Comparison
As far as the configuration is concerned, configuring

suppression of routes on individual routers in design-I is
comparable, at least in terms of complexity, to configur-
ing egress filters on the route-reflectors. In both cases,
the configuration can be achieved through BGP route-
filtering mechanisms (access-lists, prefix-lists, etc.).
Design-II, apart from shrinking the RIB on the

routers, does not require the route suppression feature
on routers. Further, as we detail in section V-B, design-
II reduces the ISP’s route propagation time while the
specific filtering mechanism used in design-I increases
it. However, design-II does require the ISP’s eBGP peer-
ings to be reconfigured which, while straightforward,
violates our goal of not impacting neighboring ISPs.

E. Network Robustness
ViAggre causes packets to be routed through an

aggregation point which leads to robustness concerns.
When an aggregation point for a virtual prefix fails,
routers using that aggregation point are re-routed to
another aggregation point through existing mechanisms
without any explicit configuration by the ISP. In case of
design-I, a router has routes to all aggregation points for
a given virtual prefix in its RIB and hence, when the
aggregation point being used fails, the router installs
the second closest aggregation point into its FIB and
packets are re-routed almost instantly. With design-
II, it is the route-reflector that chooses the alternate
aggregation point and advertises this to the routers in its
PoP. Hence, as long as another aggregation point exists,
failover happens automatically and at a fast rate.
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F. Routing popular prefixes natively
The use of aggregation points implies that packets

in ViAggre may take paths that are longer than native
paths. Apart from the increased path length, the packets
may incur queuing delay at the extra hops. The extra
hops also result in an increase in load on the ISP’s
routers and links and a modification in the distribution
of traffic across them.
Past studies have shown that a large majority of

Internet traffic is destined to a very small fraction of
prefixes [10,13,34,38]. The fact that routers today have
no choice but to maintain the complete DFZ routing
table implies that this observation wasn’t very useful for
routing configuration. However, with ViAggre, individ-
ual routers only need to maintain routes for a fraction of
prefixes. The ISP can thus configure its ViAggre setup
such that the small fraction of popular prefixes are in
the FIB of every router and hence, are routed natively.
For design-I, this involves configuring each router with
a set of popular prefixes that should not be suppressed
from the FIB. For design-II, a PoP’s route-reflector can
be configured to not filter advertisements for popular
prefixes from the PoP’s routers. Beyond this, the ISP
may also choose to install customer prefixes into its
routers such that they don’t incur any stretch. The rest of
the proposal involving virtual prefixes remains the same
and ensures that individual routers only maintain routes
for a fraction of the unpopular prefixes. In section IV-
B.4, we analyze Netflow data from a tier-1 ISP network
to show that not only such an approach is feasible, it
also addresses all the concerns raised above.

III. Allocating aggregation points
An ISP adopting ViAggre would obviously like to

minimise the stretch imposed on its traffic. Ideally, an
ISP would deploy an aggregation point for all virtual
prefixes in each of its PoPs. This would ensure that for
every virtual prefix, a router chooses the aggregation
point in the same PoP and hence, the traffic stretch is
minimal. However, this may not be possible in practice.
This is because ISPs, including tier-1 ISPs, often have
some small PoPs with just a few routers and therefore
there may not be enough cumulative FIB space in the
PoP to hold all the actual prefixes. More generally,
ISPs may be willing to bear some stretch for substantial
reductions in FIB size. To achieve this, the ISP needs
to be smart about the way it designates routers to
aggregate virtual prefixes and in this section we explore
this choice.
A. Problem Formulation
We first introduce the notation used in the rest of this

section. Let T represent the set of prefixes in the Internet
routing table, R be the set of ISP’s routers and X is the

set of external routers directly connected to the ISP. For
each r ∈ R, Pr represents the set of popular prefixes for
router r. V is the set of virtual prefixes chosen by the ISP
and for each v ∈ V, nv is the number of prefixes in v.
We use two matrices, D = (di,j) that gives the distance
between routers i and j and W = (wi,j) that gives the
IGP metric for the IGP-established path between routers
i and j. We also define two relations:
– “BelongsTo” relation B: T → V such that B(p)=v if
prefix p belongs to or is encompassed by virtual prefix
v.
– “Egress” relation E: R x T→ R such that E(i, p)=j if
traffic to prefix p from router i egresses at router j.
The mapping relation A: R → 2V captures how

the ISP assigns aggregation points; i.e. A(r) =
{v1 . . . vn} implies that router r aggregates virtual
prefixes {v1 . . . vn}. Given this assignment, we can
determine the aggregation point any router uses for its
traffic to each virtual prefix. This is captured by the
“Use” relation U: R x V → R where U(i, v) = j or
router i uses aggregation point j for virtual prefix v if
the following conditions are satisfied:

1) v ∈ A(j)
2) wi,j ≤ wi,k ∀k ∈ R, v ∈ A(k)

Here, condition 1) ensures that router j is an aggregation
point for virtual prefix v. Condition 2) captures the
operation of BGP with design-I and ensures that a router
chooses the aggregation point that is closest in terms of
IGP metrics.3
Using this notation, we can express the FIB size on

routers and the stretch imposed on traffic.
1) Routing State: In ViAggre, a router needs to

maintain routes to the (real) prefixes in the virtual pre-
fixes it is aggregating, routes to all the virtual prefixes
themselves and routes to the popular prefixes. Further,
the router needs to maintain LSP mappings for LSPs
originated by the ISP’s edge routers with one entry for
each external router connected to the ISP. Hence, the
“routing state” for the router r, hereon simply referred
to as the FIB size (Fr), is given by:

Fr =
�

v∈A(r)

nv + |V | + |Pr| + |X |

The Worst FIB size and the Average FIB size are
defined as follows:

Worst FIB size = maxr∈R(Fr)

Average FIB size =
�

r∈R

(Fr)/|R|

2) Traffic Stretch: If router i uses router k as
an aggregation point for virtual prefix v, packets from
router i to a prefix p belonging to v are routed through
router k. Hence, the stretch (S) imposed on traffic to
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prefix p from router i is given by:
Si,p = 0, p ∈ Pi

= (di,k + dk,j − di,j), p ∈ (T − Pi), v = B(p)
k = U(i, v) & j = E(k, p)

The Worst Stretch and Average Stretch are defined
as follows:

Worst Stretch = maxi∈R,p∈T (Si,p)

Average Stretch =
�

i∈R,p∈T

(Si,p)/(|R| ∗ |T |)

Problem: ViAggre, through the use of aggregation
points, trades off an increase in path length for a reduc-
tion in routing state. The ISP can use the assignment
of aggregation points as a knob to tune this trade-off.
Here we consider the simple goal of minimising the FIB
Size on the ISP’s routers while bounding the stretch.
Specifically, the ISP needs to assign aggregation points
by determining a mapping A that

min Worst FIB Size
s.t. Worst Stretch ≤ C

where C is the specified constraint on Worst Stretch.
Note that much more complex formulations are pos-
sible. Our focus on worst-case metrics is guided by
practical concerns – the Worst FIB Size dictates how
the ISP’s routers need to be provisioned while the Worst
Stretch characterizes the most unfavorable impact of
the use of ViAggre. Specifically, bounding the Worst
Stretch allows the ISP to ensure that its existing SLAs
are not breached and applications sensitive to increase
in latency (example, VOIP) are not adversely affected.

B. A Greedy Solution
The problem of assigning aggregation points while

satisfying the conditions above can be mapped to
the MultiCommodity Facility Location (MCL) prob-
lem [33]. MCL is NP-hard and [33] presents a logarith-
mic approximation algorithm for it. Here we discuss a
greedy approximation solution to the problem, similar
to the algorithm in [25].
The first solution step is to determine that if router

i were to aggregate virtual prefix v, which routers can
it serve without violating the stretch constraint. This is
the can servei,v set and is defined as follows:

can servei,v = {j | j ∈ R, (∀p ∈ T, B(p) = v, E(i, p)
= k, (dj,i + di,k − dj,k) ≤ C)}

Given this, the key idea behind the solution is that
any assignment based on the can serve relation will
have Worst Stretch less than C. Hence, our algorithm
designates routers to aggregate virtual prefixes in ac-
cordance with the can serve relation while greedily
trying to minimise the Worst FIB Size. The algorithm,
shown below, stops when each router can be served

by at least one aggregation point for each virtual pre-
fix.

Worst FIB Size=0
for all r in R do
for all v in V do
Calculate can server,v

Sort V in decreasing order of nv

for all v in V do
Sort R in decreasing order of |can server,v|
repeat
for all r in R do
if (Fr + nv) ≤ Worst FIB Size then
A[r]=A[r] ∪ v # Assign v to r
Fr = Fr + nv # r’s FIB size increases
Mark all routers in can server,v as served
if All routers are served for v then
break

if All routers are not served for v then
# Worst FIB Size needs to be raised

for all r in R do
if v /∈ A[r] then

# r is not an aggregation point for v
A[r]=A[r] ∪ v
Fr = Fr + nv

Worst FIB Size = Fr

break
until All Routers are served for virtual prefix v

IV. Evaluation
In this section we evaluate the application of ViAggre

to a few Internet ISPs.

A. Metrics of Interest
We defined (Average and Worst) FIB Size and

Stretch metrics in section III-A. Here we define other
metrics that we use for ViAggre evaluation.
1) Impact on Traffic: Apart from the stretch im-

posed, another aspect of ViAggre’s impact is the amount
of traffic affected. To account for this, we define traffic
impacted as the fraction of the ISP’s traffic that uses
a different router-level path than the native path. Note
that in many cases, a router will use an aggregation
point for the destination virtual prefix in the same PoP
and hence, the packets will follow the same PoP-level
path as before. Thus, another metric of interest is the
traffic stretched, the fraction of traffic that is forwarded
along a different PoP-level path than before. In effect,
this represents the change in the distribution of traffic
across the ISP’s inter-PoP links and hence, captures
how ViAggre interferes with the ISP’s inter-PoP traffic
engineering.
2) Impact on Router Load: The extra hops traversed

by traffic increases the traffic load on the ISP’s routers.
We define the load increase across a router as the extra
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traffic it needs to forward due to ViAggre, as a fraction
of the traffic it forwards natively.

B. Tier-1 ISP Study
We analysed the application of ViAggre to a large

tier-1 ISP in the Internet. For our study, we obtained
the ISP’s router-level topology (to determine router set
R) and the routing tables of routers (to determine prefix
set T and the Egress E and BelongsTo B relations). We
used information about the geographical locations of
the routers to determine the Distance matrix D such
that di,j is 0 if routers i and j belong to the same
PoP (and hence, are in the same city) else di,j is set
to the propagation latency corresponding to the great
circle distance between i and j. Further, we did not
have information about the ISP’s link weights. However,
guided by the fact that intra-domain traffic engineering
is typically latency-driven [36], we use the Distance
matrix D as the Weight matrix W. We also obtained the
ISP’s traffic matrix; however, in order to characterise the
impact of vanilla ViAggre, the first part of this section
assumes that the ISP does not consider any prefixes as
popular.
1) Deployment decisions: The ISP, in order to adopt

ViAggre, needs to decide what virtual prefixes to use
and which routers aggregate these virtual prefixes. We
describe the approaches we evaluated.
– Determining set V. The most straightforward way to
select virtual prefixes while satisfying the two condi-
tions specified in section II is to choose large prefixes
(/6s, /7s, etc.) as virtual prefixes. We assume that the
ISP uses /7s as its virtual prefixes and refer to this as
the “/7 allocation”.
However, such selection of virtual prefixes could lead

to a skewed distribution of (real) prefixes across them
with some virtual prefixes containing a large number of
prefixes. For instance, using /7s as virtual prefixes im-
plies that the largest virtual prefix (202.0.0.0/7) contains
22,772 of the prefixes in today’s BGP routing table or
8.9% of the routing table. Since at least one ISP router
needs to aggregate each virtual prefix, such large virtual
prefixes would inhibit the ISP’s ability to reduce the
Worst FIB size on its routers. However, as we mentioned
earlier, the virtual prefixes need not be of the same
length and so large virtual prefixes can be split to yield
smaller virtual prefixes. To study the effectiveness of
this approach, we started with /7s as virtual prefixes and
split each of them such that the resulting virtual prefixes
were still larger than any prefix in the Internet routing
table. This yielded 1024 virtual prefixes with the largest
containing 4,551 prefixes or 1.78% of the BGP routing
table. We also use this virtual prefix allocation for our
evaluation and refer to it as “Uniform Allocation”.
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Fig. 2. FIB composition for the router with the largest FIB, C=4ms
and no popular prefixes.

– Determining mapping A. We implemented the algo-
rithm described in section III-B and use it to designate
routers to aggregate virtual prefixes.
2) Router FIB: We first look at the size and the

composition of the FIB on the ISP’s routers with a
ViAggre deployment. Specifically, we focus on the
router with the largest FIB for a deployment where
the worst-case stretch (C) is constrained to 4ms. The
first two bars in figure 2 show the FIB composition
for a /7 and uniform allocation respectively. With a
/7 allocation, the router’s FIB contains 46,543 entries
which represents 18.2% of the routing table today. This
includes 22,772 prefixes, 128 virtual prefixes, 23,643
LSP mappings and 0 popular prefixes. As can be seen,
in both cases, the LSP mappings for tunnels to the
external routers contribute significantly to the FIB. This
is because the ISP has a large number of customer
routers that it has peerings with.
However, we also note that customer ISPs do not

advertise the full routing table to their provider. Hence,
edge routers of the ISP could maintain routes advertised
by customer routers in their FIB, advertise these routes
onwards with themselves as the BGP NEXT HOP and
only initiate LSP advertisements for themselves and
for peer and provider routers connected to them. With
such a scheme, the number of LSP mappings that the
ISP’s routers need to maintain and the MPLS overhead
in general reduces significantly. The latter set of bars
in figure 2 shows the FIB composition with such a
deployment for the router with the largest FIB. For
the /7 allocation, the Worst FIB size is 23,101 entries
(9.02% of today’s routing table) while for the Uniform
allocation, it is 10,226 entries (4.47%). In the rest of
this section, we assume this model of deployment.
3) Stretch Vs. FIB Size: We ran the assignment

algorithm with Worst Stretch Constraint (C) ranging
from 0 to 10 ms and determined the (Average and
Worst) Stretch and FIB Size of the resulting ViAggre
deployment. Figure 3(a) plots these metrics for the /7
allocation. The Worst FIB size, shown as a fraction of
the DFZ routing table size today, expectedly reduces as
the constraint on Worst Stretch is relaxed. However, be-
yond C=4ms, the Worst FIB Size remains constant. This
is because the largest virtual prefix with a /7 allocation
encompasses 8.9% of the DFZ routing table and the
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Fig. 3. Variation of FIB Size and Stretch with Worst Stretch
constraint and no popular prefixes.

Today ViAggre
Worst – 0 2 4 8
Stretch (ms)

239K Quad. Fit Expired 2015 2020 2039 2051
FIB Expo. Fit Expired 2018 2022 2031 2035
1M Quad. Fit 2015 2033 2044 2081 2106
FIB Expo. Fit 2018 2029 2033 2042 2046

TABLE I
ESTIMATES FOR ROUTER LIFE WITH VIAGGRE

Worst FIB Size cannot be any less than 9.02% (0.12%
overhead is due to virtual prefixes and LSP mappings).
Figure 3(b) plots the same metrics for the Uniform allo-
cation and shows that the FIB can be shrunk even more.
The figure also shows that the Average FIB Size and the
Average stretch are expectedly small throughout. The
anomaly beyond C=8msec in figure 3(b) results from the
fact that our assignment algorithm is an approximation
that can yield non-optimal results.
Another way to quantify the benefits of ViAggre is

to determine the extension in the life of a router with
a specified memory due to the use of ViAggre. As
proposed in [21], we used data for the DFZ routing
table size from Jan’02 to Dec’07 [20] to fit a quadratic
model to routing table growth. Further, it has been
claimed that the DFZ routing table has seen exponential
growth at the rate of 1.3x every two years for the past
few years and will continue to do so [30]. We use
these models to extrapolate future DFZ routing table
size. We consider two router families: Cisco’s Cat6500
series with a supervisor 720-3B forwarding engine that
can hold upto 239K IPv4 FIB entries and hence, was
supposed to be phased out by mid-2007 [6], though
some ISPs still continue to use them. We also consider
Cisco’s current generation of routers with a supervisor
720-3BXL engine that can hold 1M IPv4 FIB entries.
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Fig. 4. Variation of the percentage of traffic stretched/impacted and
load increase across routers with Worst Stretch Constraint (Uniform
Allocation) and no popular prefixes.

For each of these router families, we calculate the year
to which they would be able to cope with the growth
in the DFZ routing table with the existing setup and
with ViAggre. Table I shows the results for the Uniform
Allocation.
For ViAggre, relaxing the worst-case stretch con-

straints reduces FIB size and hence, extends the router
life. The table shows that if the DFZ routing table were
to grow at the aforementioned exponential rate, ViAggre
can extend the life of the previous generation of routers
to 2018 with no stretch at all. We realise that estimates
beyond a few years are not very relevant since the ISP
would need to upgrade its routers for other reasons such
as newer technologies and higher data rates anyway.
However, with ViAggre, at least the ISP is not forced
to upgrade due to growth in the routing table.
Figure 4 plots the impact of ViAggre on the

ISP’s traffic and router load. The percentage of traffic
stretched is small, less than 1% for C ≤ 6 ms. This
shows that almost all the traffic is routed through an ag-
gregation point in the same PoP as the ingress. However,
the fact that no prefixes are considered popular implies
that almost all the traffic follows a different router-level
path as compared to the status quo. This shows up in
figure 4 since the traffic impacted is ≈100% throughout.
This, in turn, results in a median increase in load across
the routers by ≈39%. In the next section we discuss
how an ISP can use the skewed distribution of traffic
to address the load concern while maintaining a small
FIB on its routers.
4) Popular Prefixes: Past studies of ISP traffic pat-

terns from as early as 1999 have observed that a small
fraction of Internet prefixes carry a large majority of ISP
traffic [10,13,34,38]. We used Netflow records collected
across the routers of the same tier-1 ISP as in the
last section for a period of two months (20th Nov’07
to 20th Jan’07) to generate per-prefix traffic statistics
and observed that this pattern continues to the present
day. The line labeled “Day-based, ISP-wide” in figure 5
plots the average fraction of the ISP’s traffic destined
to a given fraction of popular prefixes when the set
of popular prefixes is calculated across the ISP on a
daily basis. The figure shows that 1.5% of most popular
prefixes carry 75.5% of the traffic while 5% of the
prefixes carry 90.2% of the traffic.
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Fig. 5. Popular prefixes carry a large fraction of the ISP’s traffic.

ViAggre exploits the notion of prefix popularity to
reduce its impact on the ISP’s traffic. However, the ISP’s
routers need not consider the same set of prefixes as
popular; instead the popular prefixes can be chosen per-
PoP or even per-router. We calculated the fraction of
traffic carried by popular prefixes, when popularity is
calculated separately for each PoP on a daily basis. This
is plotted in the figure as “Day-based, per-PoP” and the
fractions are even higher.
When using prefix popularity for router configuration,

it would be preferable to be able to calculate the popular
prefixes over a week, month, or even longer durations.
The line labeled “Estimate, per-PoP” in the figure shows
the amount of traffic carried to prefixes that are popular
on a given day over the period of the next month,
averaged over each day in the first month of our study.
As can be seen, the estimate based on prefixes popular
on any given day carries just a little less traffic as when
the prefix popularity is calculated daily. This suggests
that prefix popularity is stable enough for ViAggre
configuration and the ISP can use the prefixes that are
popular on a given day for a month or so. However, we
admit that that these results are very preliminary and we
need to study ISP traffic patterns over a longer period
to substantiate the claims made above.
5) Load Analysis: We now consider the impact of

a ViAggre deployment involving popular prefixes, i.e.
the ISP populates the FIB on its routers with popu-
lar prefixes. Specifically, we focus on a deployment
wherein the aggregation points are assigned to constrain
Worst Stretch to 4ms, i.e. C = 4ms. Figure 6 shows
how the traffic impacted and the quartiles for the load
increase vary with the percentage of popular prefixes
for both allocations. Note that using popular prefixes
increases the router FIB size by the number of prefixes
considered popular and thus, the upper X-axis in the
figure shows the Worst FIB size. The large fraction
of traffic carried by popular prefixes implies that both
the traffic impacted and the load increase drops sharply
even when a small fraction of prefixes is considered
popular. For instance, with 2% popular prefixes in case
of the uniform allocation (figure 6(b)), 7% of the traffic
follows a different router-level path than before while
the largest load increase is 3.1% of the original router
load. With 5% popular prefixes, the largest load increase
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Fig. 6. Variation of Traffic Impacted and Load Increase (0-25-50-
75-100 percentile) with percentage of popular prefixes, C=4ms.
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Fig. 7. FIB size for various ISPs using ViAggre.

is 1.38%. Note that the more even distribution of
prefixes across virtual prefixes in the uniform allocation
results in a more even distribution of the excess traffic
load across the ISP’s routers – this shows up in the load
quartiles being much smaller in figure 6(b) as compared
to the ones in figure 6(a).

C. Rocketfuel Study
We studied the topologies of 10 ISPs collected as

part of the Rocketfuel project [37] to determine the
FIB size savings that ViAggre would yield. Note that
the fact we don’t have traffic matrices for these ISPs
implies that we cannot analyze the load increase across
their routers. For each ISP, we used the assignment
algorithm to determine the worst FIB size resulting from
a ViAggre deployment where the worst stretch is limited
to 5ms. Figure 7 shows that the worst FIB size is always
less than 15% of the DFZ routing table. However, the
Rocketfuel topologies are not complete and are missing
routers. Hence, while the results presented here are
encouraging, they should be treated as conservative
estimates of the savings that ViAggre would yield for
these ISPs.
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PoP1 PoP2

RR1 RR2   

R1
(VP1)  

R4
(VP2)

R2
(VP2)

R3
(VP1)AS2 AS3 

R5 R6

Fig. 8. WAIL topology used for our deployment. All routers in the
figure are Cisco 7300s. RR1 and RR2 are route-reflectors and are not
on the data path. Routers R1 and R3 aggregate virtual prefix VP1
while routers R2 and R4 aggregate VP2.

D. Discussion
The analysis above shows that ViAggre can signif-

icantly reduce FIB size. Most of the ISPs we studied
are large tier-1 and tier-2 ISPs. However, smaller tier-
2 and tier-3 ISPs are also part of the Internet DFZ.
Actually, it is probably more important for such ISPs
to be able to operate without needing to upgrade to the
latest generation of routers. The fact that these ISPs
have small PoPs might suggest that ViAggre would
not be very beneficial. However, given their small size,
the PoPs of these ISPs are typically geographically
close to each other. Hence, it is possible to use the
cumulative FIB space across routers of close-by PoPs
to shrink the FIB substantially. And the use of popular
prefixes ensures that the load increase and the traffic
impact is still small. For instance, we analyzed router
topology and routing table data from a regional tier-2
ISP (AS2497) and found that a ViAggre deployment
with worst stretch less than 5ms can shrink the Worst
FIB size to 14.2% of the routing table today.
Further, the fact that such ISPs are not tier-1 ISPs

implies they are a customer of at least one other ISP.
Hence, in many cases, the ISP could substantially shrink
the FIB size on its routers by applying ViAggre to the
small number of prefixes advertised by their customers
and peers while using default routes for the rest of the
prefixes.

V. Deployment
To verify the claim that ViAggre is a configuration-

only solution, we deployed both ViAggre designs on
a small network built on the WAIL testbed [3]. The
test network is shown in figure 8 and represents an ISP
with two PoPs. Each PoP has two Cisco 7301 routers
and a route-reflector.4 For the ViAggre deployment, we
use two virtual prefixes: 0.0.0.0/1 (VP1) and 128.0.0.0/1
(VP2) with one router in each PoP serving as an
aggregation point for each virtual prefix. Routers R1
and R4 have an external router connected to them and
exchange routes using an eBGP peering. Specifically,
router R5 advertises the entire DFZ routing table and
this is, in turn, advertised through the ISP to router R6.
We use OSPF for intra-domain routing. Beyond this,
we configure the internal distribution of BGP routes
according to the following three approaches:

1). Status Quo. The routers use a mesh of iBGP
peerings to exchange the routes and hence, each router
maintains the entire routing table.
2). Design-I. The routers still use a mesh of iBGP
peerings to exchange routes. Beyond this, the routers
are configured as follows:
– Virtual Prefixes. Routers advertise the virtual prefix

they are aggregating to their iBGP peers.
– FIB Suppression. Each router only loads the routes

that it is aggregating into its FIB. For instance, router
R1 uses an access-list to specify that only routes
belonging to VP1, the virtual prefix VP2 itself and any
popular prefixes are loaded into the FIB. A snippet of
this access-list is shown below.
! R5’s IP address is 198.18.1.200
distance 255 198.18.1.200 0.0.0.0 1

! Don’t mark anything inside 0.0.0.0/1
access-list 1 deny 0.0.0.0 128.255.255.255
! Don’t mark virtual prefix 128.0.0.0/1
access-list 1 deny 0.0.0.0 128.0.0.0
! Don’t mark popular prefix 122.1.1.0/24
access-list 1 deny 122.1.1.0 0.0.0.255
! ... other popular prefixes follow ...

! Mark the rest with admin distance 255

access-list 1 permit any

Here, the distance command sets the adminis-
trative distance of all prefixes that are accepted by
access-list 1 to “255” and these routes are not
loaded by the router into its FIB.
– LSPs to external routers. We use MPLS for the

tunnels between routers. To this effect, LDP [1] is
enabled on the interfaces of all routers and establishes
LSPs between the routers. Further, each edge router (R1
and R4) initiates a Downstream Unsolicited tunnel [1]
for each external router connected to them to all their
IGP neighbors using LDP. This ensures that packets
to an external router are forwarded using MPLS to
the edge router which strips the MPLS header before
forwarding them onwards.
Given this setup and assuming no popular prefixes,

routers R1 and R3 store 40.9% of today’s routing table
(107,943 prefixes that are in VP1) while R2 and R4
store 59.1%.
3). Design-II. The routers in a PoP peer with the route-
reflector of the PoP and the route-reflectors peer with
each other. External routers R1 and R6 are reconfigured
to have eBGP peerings with RR1 and RR2 respectively.
The advertisement of virtual prefixes and the MPLS
configuration is the same as above. Beyond this, the
route-reflectors are configured to ensure that they only
advertise the prefixes being aggregated by a router to it.
For instance, RR1 uses a prefix-list to ensure that
only prefixes belonging to VP1, virtual prefix VP2 itself
and popular prefixes are advertised to router R1. The
structure of this prefix-list is similar to the access-list
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shown above. Finally, route-reflectors use a route-map
on their eBGP peerings to change the BGP NEXT HOP
of the advertised routes to the edge router that the
external peer is connected too. This ensures that the
packets don’t actually flow through the route-reflectors.

A. Configuration Overhead
A drawback of ViAggre being a “configuration-only”

approach is the overhead that the extra configuration
entails. The discussion above details the extra configu-
ration that routers need to participate in ViAggre. Based
on our deployment, the number of extra configuration
lines needed for a router r to be configured according
to design-I is given by (rint +rext +2|A(r)|+ |Pr |+6)
where rint is the number of router interfaces, rext is the
number of external routers r is peering with, |A(r)| is
the number of virtual prefixes r is aggregating and |Pr|
is the number of popular prefixes in r. Given the size of
the routing table today, considering even a small fraction
of prefixes as popular would cause the expression to be
dominated by |Pr| and can represent a large number of
configuration lines.
However, quantifying the extra configuration lines

does not paint the complete picture since given a list
of popular prefixes, it is trivial to generate an access or
prefix-list that would allow them. To illustrate this, we
developed a configuration tool as part of our deployment
effort. The tool is 334 line python script which takes as
input a router’s existing configuration file, the list of
virtual prefixes, the router’s (or representative) Netflow
records and the percentage of prefixes to be considered
popular. The tool extracts relevant information, such as
information about the router’s interfaces and peerings,
from the configuration file. It also uses the Netflow
records to determine the list of prefixes to be considered
popular. Based on these extracted details, the script
generates a configuration file that allows the router to
operate as a ViAggre router. We have been using this
tool for experiments with our deployment. Further, we
use clogin [41] to automatically load the generated
ViAggre configuration file onto the router. Thus, we
can reconfigure our testbed from status quo operation
to ViAggre operation (design-I and design II) in an
automated fashion. While our tool is specific to the
router vendor and other technologies in our deployment,
its simplicity and our experience with it lends evidence
to the argument that ViAggre offers a good trade-
off between the configuration overhead and increased
routing scalability.

B. Control-plane Overhead
Section IV evaluated the impact of ViAggre on the

ISP’s data plane. Beyond this, ViAggre uses control-
plane mechanisms to divide the routing table amongst
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Fig. 10. CPU Utilization quartiles (0-25-50-75-100 percentile) for
the three approaches and different fraction of Popular Prefixes (PP).

the ISP’s routers – Design-I uses access-lists and
Design-II uses prefix-lists. We quantify the per-
formance overhead imposed by these mechanisms using
our deployment. Specifically, we look at the impact of
our designs on the propagation of routes through the
ISP.
To this effect, we configured the internal distribu-

tion of BGP routes in our testbed according to the
three approaches described above. External router R5
is configured to advertise a variable number of prefixes
through its eBGP peering. We restart this peering on
router R5 and measure the time it takes for the routes
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to be installed into the FIB of the ISP’s routers and
then advertised onwards; hereon we refer to this as the
installation time. During this time, we also measure
the CPU utilization on the routers. We achieve this by
using a clogin script to execute the “show process cpu”
command on each router every 5 seconds. The com-
mand gives the average CPU utilization of individual
processes on the router over the past 5 seconds and we
extract the CPU utilization of the “BGP router” process.
We measured the installation time and the CPU

utilization for the three approaches. For status quo and
design-I, we focus on the measurements for router R1
while for design-II, we focus on the measurements
for route-reflector RR1. We also varied the number
of popular prefixes. Here we present results with 2%
and 5% popular prefixes. Figures 9 and 10 plot the
installation time and the quartiles for the CPU utilization
respectively.

Design-I Vs Status Quo. Figure 9 shows that the
installation time with design-I is much higher than
that with status quo. For instance, with status quo,
the complete routing table is transferred and installed
on router R1 in 273 seconds while with design-I and
2% popular prefixes, it takes 487 seconds. Further,
the design-I installation time increases significantly
as the number of popular prefixes increases. Finally,
figures 10(b) and 10(c) show that design-I leads to a
very high CPU load during the transfer which increases
as more prefixes are considered popular. This results
from the fact that access-lists with a large number
of rules are very inefficient and would obviously be
unacceptable for an ISP deploying ViAggre. We are
currently exploring ways to achieve FIB suppression
without the use of access-list.

Design-II Vs Status Quo. Figure 9 shows that the time
to transfer, install and propagate routes with design-II
is lesser than status quo. For instance, design-II with
2% popular prefixes leads to an installation time of
124 seconds for the entire routing table as compared
to 273 seconds for status quo. Further, the installation
time does not change much as the fraction of popular
prefixes increases. Figures 10(d) and 10(e) show that the
CPU utilization is low with median utilization being less
than 20%. Note that the utilization shown for design-II
was measured on route-reflector RR1 which has fewer
peerings than router R1 in status quo. This explains the
fact that the utilization with design-II is less than status
quo. While preliminary, this experiment suggests that
design-II can also help with route convergence within
the ISP.

C. Failover
As detailed in section II-E, as long as alternate

aggregation points exist, traffic in a ViAggre network is

automatically re-routed upon failure of the aggregation
point being used. We measured this failover time using
our testbed. In the interest of space, we very briefly
summarise the experiment here. We generated UDP
traffic between PCs connected to routers R5 and R6
(figure 8) and then crashed the router being used as the
aggregation point for the traffic. We measured the time
it takes for traffic to be re-routed over 10 runs with each
design. In both cases, the maximum observed failover
time was 200 usecs. This shows that our designs ensure
fast failover between aggregation points.

VI. Discussion
Pros. ViAggre can be incrementally deployed by an ISP
since it does not require the cooperation of other ISPs
and router vendors. The ISP does not need to change the
structure of its PoPs or its topology. What’s more, an
ISP could experiment with ViAggre on a limited scale
(a few virtual prefixes or a limited number of PoPs)
to gain experience and comfort before expanding its
deployment. None of the attributes in the BGP routes
advertised by the ISP to its neighbors are changed due
to the adoption of ViAggre. Also, the use of ViAggre by
the ISP does not restrict its routing policies and route
selection. Further, at least for design-II, control-plane
processing is reduced. Finally, there is incentive for
deployment since the ISP improves its own capability
to deal with routing table growth.
Management Overhead. As detailed in section V-
A, ViAggre requires extra configuration on the ISP’s
routers. Beyond this, the ISP needs to make a number
of deployment decisions such as choosing the virtual
prefixes to use, deciding where to keep aggregation
points for each virtual prefix, and so on. Apart from
such one-time or infrequent decisions, ViAggre may
also influence very important aspects of the ISP’s day-
to-day operation such as maintenance, debugging, etc.
All this leads to increased complexity and there is a cost
associated with the extra management.
In section V-A we discussed a configuration tool

that automates ViAggre configuration. It is difficult to
speculate about actual costs and so we don’t compare
the increase in management costs against the cost of
upgrading routers. While we hope that our tools will
actually lead to cost savings for a ViAggre network, an
ISP might just be inclined to adopt ViAggre because
it breaks the dependency of various aspects of its
operation on the size of the routing table. These aspects
include its upgrade cycle, the per-byte forwarding cost,
the per-byte forwarding power, etc.
Popular Prefixes. As mentioned earlier, ViAggre rep-
resents a trade-off between FIB shrinkage on one hand
and increased router load and traffic stretch on the
other. The fact that Internet traffic follows a power-
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law distribution makes this a very beneficial trade-off.
This power-law observation has held up in measurement
studies from 1999 [10] to 2008 (in this paper) and
hence, Internet traffic has followed this distribution for
at least the past nine years in spite of the rise in
popularity of P2P and video streaming. We believe
that, more likely than not, future Internet traffic will be
power-law distributed and hence, ViAggre will represent
a good trade-off for ISPs.
Other design points. The ViAggre proposal presented
in this paper represents one point in the design space
that we focussed on for the sake of concreteness.
Alternative approaches based on the same idea include
– Adding routers. We have presented a couple of tech-
niques that ensure that only a subset of the routing
table is loaded into the FIB. Given this, an ISP could
install “slow-fat routers”, low-end devices (or maybe
even a stack of software routers [16]) in each PoP
that are only responsible for routing traffic destined
to unpopular prefixes. These devices forward a low-
volume of traffic, so it would be easier and cheaper to
hold the entire routing table. The popular prefixes are
loaded into existing routers. This approach can be seen
as a variant of route caching and does away with a lot
of deployment complexity. In fact, ViAggre may allow
us to revisit route caching [24].
– Router changes. Routers can be changed to be
ViAggre-aware and hence, make virtual prefixes first-
class network objects. This would do away with a lot
of the configuration complexity that ViAggre entails,
ensure that ISPs get vendor support and hence, make
it more palatable for ISPs. We, in cooperation with a
router vendor, are exploring this option [15].
– Clean-slate ViAggre. The basic concept of virtual
networks can be applied in an inter-domain fashion.
The idea here is to use cooperation amongst ISPs to
induce a routing hierarchy that is more aggregatable and
hence, can accrue benefits beyond shrinking the router
FIB. This involves virtual networks for individual virtual
prefixes spanning domains such that even the RIB on
a router only contains the prefixes it is responsible for.
This would reduce both the router FIB and RIB and in
general, improve routing scalability. We intend to study
the merits and demerits of such an approach in future
work.

VII. Related Work
A number of efforts have tried to directly tackle

the routing scalability problem through clean-slate de-
signs. One set of approaches try to reduce routing
table size by dividing edge networks and ISPs into
separate address spaces [7,11,29,32,40]. Our work re-
sembles some aspects of CRIO [40] which uses virtual
prefixes and tunneling to decouple network topology

from addressing. However, CRIO requires adoption by
all provider networks and like [7,11,29,32], requires a
new mapping service to determine tunnel endpoints.
APT [22] presents such a mapping service. Alterna-
tively, it is possible to encode location information into
IP addresses [8,14,18] and hence, reduce routing table
size. Finally, an interesting set of approaches that trade-
off stretch for routing table size are Compact Routing
algorithms; see [26] for a survey of the area.
The use of tunnels has long been proposed as a

routing scaling mechanism. VPN technologies such as
BGP-MPLS VPNs [9] use tunnels to ensure that only
PE routers need to keep the VPN routes. As a matter of
fact, ISPs can and probably do use tunneling protocols
such as MPLS and RSVP-TE to engineer a BGP-free
core [35]. However, edge routers still need to keep the
full FIB. With ViAggre, none of the routers on the data-
path need to maintain the full FIB. Router vendors,
if willing, can use a number of techniques to reduce
the FIB size, including FIB compression [35] and route
caching [35]. Forgetful routing [23] selectively discards
alternative routes to reduce RIB size. [2] sketches the
basic ViAggre idea. In recent work, Kim et. al. [25] use
relaying, similar to ViAggre’s use of aggregation points,
to address the VPN routing scalability problem.
Over the years, several articles have documented the

existing state of inter-domain routing and delineated
requirements for the future [5,12,28]; see [12] for other
routing related proposals. RCP [4] and 4D [17] argue
for logical centralization of routing in ISPs to provide
scalable internal route distribution and a simplified
control plane respectively. We note that ViAggre fits
well into these alternative routing models. As a matter
of fact, the use of route-reflectors in design-II is similar
in spirit to RCSs in [4] and DEs in [17].

VIII. Summary
This paper presents ViAggre, a technique that can be

used by an ISP to substantially shrink the FIB on its
routers and hence, extend the lifetime of its installed
router base. The ISP may have to upgrade the routers
for other reasons but at least it is not driven by DFZ
growth over which it has no control. While it remains to
be seen whether the use of automated tools to configure
and manage large ViAggre deployments can offset the
complexity concerns, we believe that the simplicity
of the proposal and its possible short-term impact on
routing scalability suggest that is an alternative worth
considering.
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NOTES
1Hereon, we follow the terminology used in [39] and use the

term “routing table” to refer to the Forwarding Information Base or
FIB, commonly also known as the forwarding table. The Routing
Information Base is explicitly referred to as the RIB.
2All other attributes for the routes to a virtual prefix are the same

and hence, the decision is based on the IGP metric to the aggregation
points. Hence, “closest” means closest in terms of IGP metric.
3With design-II, a router chooses the aggregation point closest to

the router’s route-reflector in terms of IGP metrics and so a similar
formulation works for the second design too.
4These are used only for the design-II deployment. We used both

a Cisco 7301 and a Linux PC as a route-reflector.
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Abstract
We propose to construct routing overlay networks us-

ing the following principle: that overlay edges should be
based on mutual advantage between pairs of hosts. Upon
this principle, we design, implement, and evaluate Peer-
Wise, a latency-reducing overlay network. To show the
feasibility of PeerWise, we must show first that mutual
advantage exists in the Internet: perhaps contrary to ex-
pectation, that there are not only “haves” and “have nots”
of low-latency connectivity. Second, we must provide a
scalable means of finding promising edges and overlay
routes; we seek embedding error in network coordinates
to expose both shorter-than-default “detour” routes and
longer-than-expected default routes.
We evaluate the cost of limiting PeerWise to mutu-

ally advantageous links, then build the intelligent com-
ponents that put PeerWise into practice. We design and
evaluate “virtual” network coordinates for destinations
not participating in the overlay, neighbor selection algo-
rithms to find promising relays, and relay selection algo-
rithms to choose the neighbor to traverse for a good de-
tour. Finally, we show that PeerWise is practical through
a wide-area deployment and evaluation.

1 Introduction
We propose mutual advantage as a principle for the con-
struction of routing overlay networks: overlay edges
should exist only between hosts that benefit from each
other’s resources or position in the network. Hosts nego-
tiate connections based strictly on mutual advantage, and
overlay paths follow only these connections.
Several distributed protocols and applications use mu-

tual advantage as part of their design. BitTorrent [5]
peers that download the same file trade blocks the other
is missing. In backup systems [7], nodes store replicas
of files for each other. Autonomous systems in the In-
ternet negotiate peer-to-peer agreements to provide low-
cost connectivity to each other’s customers [9].
Bringing mutual advantage into the design of routing

overlays has several benefits. First, mutual advantage
induces better cooperation among nodes. Incentives to
participate become simpler, and long-lived, fair connec-
tions appear. Building systems grounded in incentives
for cooperation makes them robust to misbehavior and
selfishness [23, 29]. Second, users could freely discrim-

inate among the connections that they allow and would
have the ability to explicitly say how much service they
want to contribute. Finally, mutual advantage avoids the
tragedy of the commons in routing overlays, when only
a few, well-connected nodes provide transit. It keeps
the trades of connectivity fair, in contrast to file-sharing
where universities are net providers of content [27].
In this paper, we present the design, implementation,

and evaluation of PeerWise, a latency-reducing routing
overlay based on mutual advantage. PeerWise scalably
discovers detour routes: “indirect” one-hop paths that
have lower round trip latency than the “direct” path.
In a previous paper [17], we presented ideas that sup-

port a mutually advantageous latency-reducing overlay:
that mutual advantage is common in the context of Inter-
net latencies and that embedding error in network coor-
dinate systems, such as Vivaldi [8] or GNP [20], could be
used to scalably discover detours. However, we did not
evaluate the potential and limitations of mutual advan-
tage, nor did we design or implement a system to take
advantage of the existing detour routes. In this work,
we show that a mutually advantageous latency-reducing
overlay is feasible and efficient, and that detours toward
popular destinations are available. We design, imple-
ment, and evaluate a system that finds these detours.
We describe our contributions next.
First, we use a measurement-driven simulation to

show the potential of PeerWise (§4). We collect two
latency data sets to find what fraction of detours exist
subject to the mutual advantage requirement and, inde-
pendently, can be found by embedding error. The mu-
tual advantage requirement reduces the number of desti-
nations reachable via detour by approximately half, yet
even popular websites, using content distribution ser-
vices such as Akamai, are reachable by PeerWise-found
detours. Only 5% of potential detours are missed by em-
bedding error.
We next describe the design of PeerWise in two main

parts: mechanism (§5) and policies (§6). We implement a
virtual network coordinate approach to find coordinates
for the destinations that do not participate directly in the
overlay. Neighbor tracking determines the set of nodes
that are more likely to offer detours by remembering
those neighbors with high embedding error in the coordi-
nate space. Pairwise negotiation establishes connections
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promising mutual benefit while the maintenance compo-
nent ensures that each node receives approximately as
much benefit as it provides.
The second part of the design focuses on the decisions

that each PeerWise node makes. We evaluate neighbor
selection and relay selection algorithms. We show that
coordinates can be used to choose among detours. Our
environment is quite different from previous work on
latency prediction using coordinates. Instead of focus-
ing on source-to-destination, we must choose a source-
to-relay-to-destination path based on a relay coordinate
known to have high embedding error and a destination
coordinate that may be stale or inaccurate.
Finally, we describe the implementation of PeerWise

and its evaluation on PlanetLab (§7). We show that
PeerWise nodes find detours to popular destinations, that
these detours are stable, and that they offer significant la-
tency reductions. Most detours last for a long time and
are obtained using only one mutually advantageous peer-
ing. We then show how PeerWise detours translate into
real life and whether user applications can benefit.

2 Related Work
Routing overlays, such as RON [2], Detour [28],
SOSR [11], and OverQoS [31], promise to provide more-
reliable or faster paths through the Internet. They for-
ward packets along links in self-constructed meshes and
make routing decisions without support from routers or
ASes. RON [2] builds a fully connected mesh and mon-
itors all edges. When the direct path between two nodes
fails or has performance problems, communication is
established through the other overlay nodes. Nakao et
al. [19, 18] use static AS-level topology and geographi-
cal distance information to eliminate redundant overlay
edges and improve scalability. Gummadi et al. show that
all-to-all measurements are not necessary to find reliable
paths: routing through a randomly chosen intermediary
node is enough [11]. Similarly, we show that faster-than-
default paths can be discovered with limited information:
network coordinates and latencies to a few other nodes
are sufficient.
Various file-swarming systems [5, 15, 30] apply tit-

for-tat-like schemes to induce cooperation among peers.
Tit-for-tat applies when there is a mutual interest among
peers, which is common in file swarming; for any pair
of peers, one may have blocks the other does not. We
show that, perhaps surprisingly, mutual interest is com-
mon in low-latency routing in the Internet as well, and
that locating nodes of mutual interest can be done in a
decentralized fashion.
The requirements imposed by PeerWise on who can

connect to whom are reminiscent of the bilateral connec-
tion game (BCG) [6], a special case of network forma-
tion game. In BCG, a link between two nodes is estab-

direct paths

detours

peering
A B DC

Figure 1: Obtaining faster paths with PeerWise: A dis-
covers a detour to D through B; B also finds that it can
reach C faster if it traverses A; A and B create a mu-
tually advantageous peering that they both use to reach
their destinations more quickly.

lished only with the consent of both nodes, similarly to
PeerWise. However, nodes construct links that minimize
the cost of reaching other participating nodes, whereas
in PeerWise, nodes create peerings that offer detours to
destinations that do not necessarily participate.

3 PeerWise Philosophy
In this section, we present an overview of PeerWise. We
outline the two properties on which PeerWise is based:
that mutual advantage is common in the Internet latency
space and that network coordinate systems can help indi-
cate detour routes. A previous paper [17] describes these
properties in more detail. We then argue that it has the
potential to be applied to a wide range of applications.

3.1 Overview
The key idea of PeerWise is that two nodes can cooper-
ate to obtain faster end-to-end paths without either be-
ing compelled to offer more service than they receive.
Peers negotiate and establish pairwise connections to
each other based strictly on mutual advantage. Figure 1
shows an example. The default Internet path between
two nodes is the direct path. A shorter, alternate path
having one intermediate hop is a detour, using terminol-
ogy from Detour [28]. Node A discovers a faster path to
D via B. However, B will not help A unless A provides
a detour in exchange. Since there is a shorter path from
B to C going through A, A and B can help each other
communicate faster with their intended destinations.
Mutual Advantage Each participant in overlay net-
works contributes resources in exchange for the re-
sources of others. Unfortunately, free access and unre-
stricted demandmay lead to over-utilization of certain re-
sources, especially those of well-provisioned nodes. This
tragedy of the commons occurs because the benefits of
using common resources accrue to individuals, while the
costs of exploitation are shared by the resource providers.
Pairwise peerings based on mutual benefit offer users

an effective way to resolve the tragedy of the commons,
as they can freely discriminate among the connections
they allow. However, such decentralized policy may be
costly: if nodes accept only peerings that are mutually
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Figure 2: Embedding three points that form a TIV into
a metric space introduces inaccuracies. The numbers in
parentheses represent embedding errors.

advantageous, but mutual advantage is rare, the benefit
of the overlay is lost. In Section 4, we show that mutual
benefit is common and that a majority of nodes are in a
position to both provide and receive service.

Network Coordinates Embedding Error Measuring
and distributing the all-pairs latencies required to find
detours would limit the scalability of a latency-reducing
overlay. Instead, PeerWise detects triangle inequality vi-
olations (TIVs) and uses them to predict good detours.
Three nodes in the Internet form a TIV when the RTT

between two of them (the long side of the TIV) is greater
than the sum of the RTTs to the third node (the short
sides of the TIV). The left side of Figure 2 shows an ex-
ample TIV. Pairs of nodes that are long sides in TIVs
may benefit from detours; pairs that are short sides may
be part of detours.
To find TIVs scalably, PeerWise uses network coor-

dinates. A network coordinate system associates nodes
with points in a metric space such that the distance
between the points estimates the real latency between
nodes. Since TIVs are not allowed in metric spaces by
definition, this embedding may result in high errors on
the edges of the triangle (see Figure 2). The error for the
long side of the TIV will be very negative, or the error
for the sum of short sides of the TIV will be very pos-
itive. Thus, a pair of nodes with a negative estimation
error has a higher chance of benefiting from a shorter
path; conversely, when the nodes have a large estimation
error between them, they are more likely to be part of a
shorter path for another node.

3.2 Where does PeerWise apply?
We expect PeerWise has the most utility for latency-
sensitive traffic such as HTTP HEAD requests that check
for updates to a cached file before rendering, XML-
RPC requests for rapid updates of existing content such
as train status or sports scores, voice traffic relayed to
bypass firewalls, and online games such as first-person
shooters, whose playability hinges on low-latency up-
dates among players [3]. Existing overlay networks
could benefit from using PeerWise as a latency-reducing
substrate by guiding PeerWise’s neighbor- and relay-
selection algorithms to better suit the application’s needs.

Because PeerWise focuses on reducing latency, it can
find and use the low-latency paths that may not sup-
port high-bandwidth use—that is, the low-latency paths
that the default routing, likely tuned for high-bandwidth,
misses. Going through a peer is likely to traverse an-
other access link that might have low bandwidth. This
means that bandwidth-intensive applications, such as
video streaming, are unlikely to benefit from latency re-
duction with PeerWise.

4 Limitations of Mutual Advantage
We assess the potential performance of a mutually ad-
vantageous latency-reducing overlay. Because we re-
strict detour paths to mutually advantageous peerings, we
would not expect PeerWise to find the shortest detours or
find detours to all destinations. We simulate using two la-
tency data sets to show that nodes can find shorter paths
to the majority of destinations for which a shorter detour
exists, despite the requirement of mutual advantage. We
find that mutually advantageous detours exist even for
popular destinations hosted on many prefixes.

4.1 Collected Data Sets
We collected two real-world latency data sets and com-
puted all one-hop detours between each pair of nodes.
PW-King Data Set The first data set, PW-King, con-
tains RTTs between 1,953 DNS servers of hosts in the
Gnutella network. The list of hosts was gathered by
Dabek et al. for the Vivaldi [8] project. We use King [10]
to measure all-to-all latencies between the servers. King
uses recursive DNS queries to estimate the propagation
delay between two hosts as the delay between their au-
thoritative name servers. The 1,953 servers were chosen
for being in the same subnet as their hosts so that better-
connected DNS servers would not influence the estimates
of inter-client latencies. For each pair of nodes, we kept
the median of all latencies measured at random intervals
for a week in February 2008. Of the 1,953 servers, we
removed 238 that appeared to experience high load dur-
ing the measurement, as described by Dabek et al. [8].
A heavily-loaded DNS server can cause King to under-
estimate latencies to other nodes, which can lead to false
triangle inequality violations.
Popular Destinations Data Set The second data set,
PL-Dest, contains RTTs from 389 PlanetLab nodes to
500 popular web servers, measured in January 2008. We
selected the servers based on a ranking by the Alexa In-
ternet Company [1] using expected and measured client
access. For faster content delivery, many of the web-
sites have multiple IP addresses; users in different geo-
graphic regions see different IPs for the same server. To
gather the IP addresses associated with a website, as visi-
ble from PlanetLab, we performed DNS lookups on each
of the 500 names from the 389 PlanetLab nodes. We ob-
tained 2932 distinct IP addresses in 796 /24 prefixes. We
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Figure 3: Distribution of the frac-
tion of nodes with which a potential
peering exists. In PL-Dest, 18% of
nodes have no potential peerings; in
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other nodes.
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Figure 4: Distribution of the fraction of destinations reachable through mutu-
ally advantageous peerings for PL-Dest data set (left), and PW-King data set
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sources need no detours, and approximately half of the detours that could
be used are lost by the mutual advantage restriction. In PW-King, all nodes
have many detours available, and mutual advantage is less costly. In both,
embedding error finds nearly all detours.

probed each prefix and each PlanetLab node from every
PlanetLab node at random times over a week. We used
the median RTT values to represent the link.
The latency collection process can produce incorrect

data that may bias our results. We removed 52 servers
from the final data set because we could not measure any
RTT to them. Further, several PlanetLab nodes had very
low latencies (< 1 ms) to most destinations. These laten-
cies are likely caused by connection-tracking firewalls or
“transparent” proxies near the PlanetLab nodes that gen-
erate spoofed responses as if from the destination. We
removed those nodes from the data set since they would
artificially overstate the potential of PeerWise. Our final
latency matrix contains RTT values from 325 PlanetLab
nodes to 718 prefixes corresponding to 448 websites.
The PW-King and PL-Dest data sets illustrate two sce-

narios in which PeerWise can be useful. Latency reduc-
tion on PW-King shows the potential benefit to applica-
tions a set of peers may run, such as a distributed multi-
player network game or VoIP application. On PL-Dest,
reduced latency shows benefit for users accessing popu-
lar servers that would not participate in PeerWise.

4.2 Methodology
We built a simulation prototype of PeerWise to study
how well it finds detours with mutual advantage and em-
bedding error. To find network coordinates for nodes,
we use Vivaldi [8]. We allow each node to communicate
with all other nodes, to better study mutual advantage in
isolation. When requesting detours for its destinations, a
node starts with the neighbor that has the highest embed-
ding error [17]. We evaluate alternative relay selection
methods in Section 6.2.
For each pair of nodes in our data sets, we find all one-

hop detours. We define a good detour as a detour that
provides at least 10 ms and 10% latency reduction over

the direct path. We consider only good detours. This
cutoff helps avoid impractical or dubious detours due to
measurement error. In the PL-Dest data set, we may find
detours by server name: The detour path may end at a
different IP address associated with the same name.

4.3 Mutual Advantage
How much mutual advantage exists in our data sets? We
define a potential peering to exist between two nodes that
can provide a detour to each other, for at least one des-
tination, as between A and B in Figure 1. The number
of potential peerings for a node represents the number
of neighbors with which the node can construct mutu-
ally advantageous peerings. In Figure 3, we show a cu-
mulative distribution of the fraction of nodes for which
a potential peering exists. Each point represents a node,
and its placement on the x-axis what fraction of the other
nodes it shares a potential peering with. At least 50% of
the nodes in either data set have have potential peerings
with at least 50% of the rest of the nodes. The figure
also shows that there is more mutual advantage in the
PW-King data set than in PL-Dest.
Next, we show that mutual advantage sacrifices few

detours. We study the fraction of destinations that each
node can reach more quickly via mutually advantageous
peerings in Figure 4. Each graph considers four cases
to isolate the two main potential performance sacrifices:
the requirement of mutual advantage (that could make
detours unavailable) and relay choice by positive embed-
ding error (that might not find them despite being possi-
ble). The solid line represents an unconstrained detour
overlay. Considering mutual advantage eliminates over
half of the potential destinations for many nodes. For
some, mutual advantage eliminates all detours; trivially,
these are the nodes that cannot provide service to oth-
ers. Choosing among either set (constrained to mutual
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advantage or not) via embedding error between source
and relay sacrifices very few detours (the corresponding
lines are almost indistinguishable from each other in Fig-
ure 4). Mutual advantage does not impact the latency re-
duction to the destinations that are still reachable: only
at most 12% of the median latency reduction is lost due
to the requirement of mutual advantage.

4.4 Detours to Nearby Destinations
The destinations in PL-Dest include both regionally and
globally popular websites. We expect that a regional
website serves its pages from within the region of inter-
est, so the direct path latencies to the destination from
PeerWise nodes in that region should be small. Since
the PlanetLab nodes are globally diverse, some “detours”
may be for destinations unpopular in that node’s region.
For example, detours to popular websites in China may
be less useful for nodes in Europe or North America. In
Figure 5, we show that latency reduction is not limited to
distant destinations. Because our rule to define a “good”
detour requires at least 10 ms of reduction, few very short
paths are featured. However, mutually-advantageous de-
tours are found for direct paths too short to cross the At-
lantic or Pacific oceans (< 100 ms).

4.5 Multiple-IP Websites
For faster content delivery, around 20% of the popular
websites in the PL-Dest data set are served from geo-
graphically distributed locations. User requests are trans-
parently directed to the geographically (or administra-
tively) nearest IP address.
Using the PL-Dest data set, we compute how many

nodes can find detours to each of the 448 websites and
plot it against the total number of /24 prefixes of each

website. Figure 6 presents the results. Each point in the
plot is associated with one server name. Most websites
with IP addresses in at least two prefixes can be reached
faster from at least one PlanetLab node. We divide the
plot into six regions and describe each in the accompa-
nying table.
Figure 6 shows that PeerWise has the potential to be

effective in reducing latency to most popular websites,
even when they employ other latency-reducing tech-
niques such as mirroring or DNS redirection.

4.6 Simulation Limitations
First, our pairwise peerings are established expecting that
each destination will be accessed as often as any other.
Clearly, not all destinations are equally popular, but we
cannot estimate how often peers will use the peering.
Our evaluation might favor VoIP applications where the
endpoints are well distributed and no endpoint is orders
of magnitude more popular than the others. In Section 7,
we experiment with different access patterns, including
random and zipf, to try to apply likely relative popularity
models to traffic.
Second, the latencies between DNS servers or Planet-

Lab nodes may underestimate the latencies between end-
hosts in the Internet. Although the latency matrix be-
tween DNS servers and PlanetLab hosts may represent
the locations of hosts in the coordinate space, these data
sets may not represent the latencies seen by such hosts.
Third, using PlanetLab nodes to reach popular destina-

tions may raise questions about the validity of our eval-
uation. Connecting to a commercial site via a PlanetLab
relay may reveal detours that would not be discovered
had the relay been on the commercial network. How-
ever, Abilene and NLR, research networks that are part
of Internet2, use wavelengths on fiber leased from other
providers along rights-of-way shared with commercial
networks. We believe that this sharing prevents research
networks from providing an unfair advantage in latency
reduction. We have even observed detours between Pla-
netLab nodes—routing within the academic network is
not so latency-optimal as to prevent detours.
Finally, we do not model the bandwidth of the con-

nection. Even though mutual latency reductions lead to a
pairwise peering, limited bandwidth may prevent it from
helping. As described in Section 3, we expect to use
PeerWise only with latency-sensitive applications that do
not require high bandwidth.

5 Design, Part I: Mechanisms
We present next the design of the PeerWise routing over-
lay network. In this section, we focus on the key fea-
tures of PeerWise: detour detection using network co-
ordinates for scalability, neighbor tracking for improv-
ing efficiency, and pairwise negotiations for fairness. In
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Section 6, we describe and evaluate the policies of each
PeerWise node. We present the implementation and eval-
uation details in Section 7.

5.1 Virtual Network Coordinates
Every PeerWise node must compute its own network co-
ordinate before searching for detours. We use Vivaldi [8]
for network coordinates. Every node maintains a set of
neighbors that it probes periodically. It uses the round
trip time and the network coordinate of these neighbors
to update its own coordinate. After each probe, the node
computes the coordinate that minimizes the squared es-
timation error to all of its neighbors. To help the system
converge quickly, nodes with uncertain coordinates can
move farther with each measurement. Figure 7(a) shows
the coordinate computation process.
A node in PeerWise must learn the coordinates of des-

tinations to discover long or short sides of a TIV. How-
ever, if a destination is not participating in the overlay, it
will not provide its own network coordinate. We there-
fore extend Vivaldi to allow a node to compute a virtual
network coordinate for any non-participating host. We
refer to non-participating Internet nodes as hosts and to
PeerWise participants simply as nodes.
To generate virtual network coordinates for non-

participating hosts in Vivaldi, a participating node
chooses to become temporarily responsible for that host.
The node runs Vivaldi on behalf of the host with one
minor adjustment. Since the host is not participating in
the system, it cannot manage its own neighbor set or ac-
tively gather the round trip times needed to compute the
coordinate. Instead, the participating node uses its own
neighbor set as the neighbor set for the host, and requests
that those neighbors measure the latency to the host, as
shown in Figure 7(b). Our extensions are similar to those
recently described by Ledlie et al. [13].
Requiring all nodes to compute virtual coordinates for

all non-participating destinations would limit the scal-
ability of PeerWise. We include a gossip mechanism
to disseminate the calculated coordinates throughout the
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Figure 7: (a) Computing network coordinates for a Peer-
Wise node: A measures RTT to its neighbors and asks
for their coordinates (1); after it receives the replies (2) it
computes the coordinate that minimizes the squared esti-
mation error (3); (b) Computing network coordinates for
a non-PeerWise node D: A asks each of its neighbors (4)
to measure RTTs to D (5,6); after it receives the replies
from the neighbors (7), A runs the network coordinate
algorithm on behalf of D (8).

system. At fixed intervals (10s in our experiments), each
node picks one of its neighbors at random, then selects
a random destination and sends to the neighbor the IP
address, name and virtual coordinate of the destination.
A node decides to take responsibility for a destination

to which it wants to find a detour when the destination’s
coordinate does not yet exist, becomes too old (1 day in
our experiments), or becomes unstable (where stability
depends on the embedding error to other nodes). Any
node can generate coordinates independently; this de-
centralization may allow simultaneous, redundant work.
Rather than try to enforce a single consistent view of the
coordinate, we allow any of these coordinates to be con-
sidered valid estimates. When a node receives a new vir-
tual coordinate through the gossip protocol, it uses that
new coordinate only if it is more stable and it was up-
dated by the node responsible for it.
Virtual network coordinates are useful if a host is pop-

ular. If the host is not popular, a node trying to discover
a detour to that host will need to compute its virtual co-
ordinate. Since this requires that the node’s neighbors
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measure the round trip time to the host, the node would
know all three sides of the triangle, so it would trivially
discover TIVs. However, if the node knows the virtual
coordinate of a host already (because the host is pop-
ular and its coordinate has been gossiped), it will only
know the two adjacent sides of the triangle, and it will be
able to make predictions about the third side between the
neighbor and the destination. We evaluate these predic-
tions in Section 6.3.

5.2 Neighbor Tracking
The success of our protocol depends on the ability of
nodes to find other nodes to establish pairwise peerings.
There are many possible relays for a node, any of which
may have high embedding error with respect to the node.
Recall that high embedding error for a pair of nodes indi-
cates a higher probability that the pair is part of a detour.
We use neighbor tracking to find the nodes that are more
likely to offer detours. With neighbor tracking, a Peer-
Wise node remembers extra neighbors and learns about
good potential relays from its neighbors or from nearby
(in latency) nodes. The neighbors in this section are not
relays; they are only candidates for becoming so.
When joining PeerWise, a node bootstraps its potential

neighbor set from a known PeerWise node and uses it
to compute its network coordinate. Once the network
coordinate is stable, the node asks its neighbors about
their own neighbors, remembering those nodes with high
embedding error. For example, in Figure 8, A asks for
the neighbor set of B, formed of B1, B2 and B3. Node A
then computes the embedding error from itself to each of
B1, B2 and B3 and adds those nodes to which the error
is most positive to its neighbor list. These nodes are the
most likely to form a short side of a TIV with A.
For scalability, we limit the number of neighbors of

each node. Neighbors with higher potential to offer the
best detours replace less-efficient neighbors. We con-
sider and evaluate different methods for ranking poten-
tial neighbors in Section 6.1. Because PeerWise allows
a node to exchange information about neighbors with
neighbors, we expect each node to have ample choices.

5.3 Pairwise Negotiation
PeerWise nodes negotiate with their neighbors to request
or advertise alternate routes. As discussed in Section 3,
a detour to a destination is likely to exist if the estimated
distance to the destination is much smaller than the mea-
sured latency. In this case, a node asks its neighbors with
high embedding errors whether they can offer a faster
path (Figure 9(c)). Nodes are not limited to this simple
strategy. In Section 6.2, we evaluate different policies for
choosing relays and deciding whether to request detours
for a destination.
Actively requesting detours may be inefficient, espe-

cially if the connection to the destination is short-lived.

B1

B2

B3

(a) (b) (c)

A

B

A

B

A

B

Figure 8: Neighbor Tracking. (a) A chooses the neigh-
bor to which it has the highest embedding error and re-
quests its neighbor set; (b) A measures RTTs to each of
the nodes received from B; (c) A adds to its neighbor set
those nodes to which it has a positive embedding error.

In addition, the time to find a detour may dominate the
latency reduction achieved. To encourage fast detour dis-
covery, PeerWise nodes also proactively advertise paths
to popular destinations. For example, in Figure 9(d),
node A observes that the link to node D, which may or
may not be running PeerWise, has a high estimation er-
ror. This means that AD may be a short side in a TIV. A
advertises D on all other potential short sides (i.e., to all
neighbors to which it has a high estimation error).
Finding detours is not enough: PeerWise is based on

mutual agreements between nodes. A sender node can
use a detour only if the relay that offers it also finds value
in the sender. When requesting a detour from a neighbor,
a PeerWise node includes a list of possible destinations to
which it has high embedding error. The path to these des-
tinations is more likely to be part of a detour for another
node, as described in Section 3. Requests for detours are
accepted only when both the sender and the receiver find
mutual advantage in forwarding each other’s traffic.

5.4 Maintenance
Each PeerWise node maintains two tables: a peering ta-
ble and a negotiation table. The peering table tracks es-
tablished, mutually advantageous peering relationships.
The negotiation table is an antechamber for the peering
table and tracks the nodes with which no peering has
been established, but which are candidates for mutually
beneficial peerings. Once a peering is established, the
peer moves from the negotiation table to the peering ta-
ble. An entry in either table is associated with a node i
in the system and contains i’s IP address, network coor-
dinate, and a history of round trip times to i. The peering
table adds the SLA and the utilization of the peering.
The SLA specifies the benefit that each node is ex-

pected to receive and offer through the peering. We allow
different measures for the mutual benefit of a connection
as long as the peering nodes both agree upon them. Two
nodes can form a peering and agree that each of them
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Figure 9: Detour Requests and Advertisements. (a) A wants to connect to destination D; (b) A discovers the network
coordinate of D using Vivaldi or Virtual Vivaldi; (c) A requests a detour to D from the neighbor to which it has the
highest embedding error; (d) A advertises its path to D to all neighbors that have positive embedding error to A.

uses the other for the same number of detours. Alter-
natively, they may decide that their benefit is measured
in the average latency reduction obtained through each
other. For example, in Figure 1, nodes A and B may es-
tablish an SLA that promises an average latency reduc-
tion of 30 ms from A to D and from B to C. In addition,
two peers may establish an imbalanced peering, in which
one peer benefits more than the other, if both consider the
agreement to be fair.
Peerings may become imbalanced in time. This hap-

pens because latencies change due to failures or conges-
tion, because peers do not respect the agreement, or be-
cause they have different connection rates to their desti-
nations. PeerWise nodes renegotiate existing peerings to
account for latency changes and to find the best detours
available, as we describe in Section 7. However, we do
not monitor the byte-level usage of a peering. Our fo-
cus is on finding and taking advantage of mutual latency
reductions. In a previous paper [14], we describe a moni-
toring and accounting mechanism that ensures long-lived
and mutually advantageous peerings, even when nodes
are selfish or traffic demands differ.

6 Design, Part II: Policies
PeerWise is designed to be a scalable overlay for find-
ing low-latency detours. For scalability, each node
must choose which neighbors to maintain peerings with,
choose among neighbors to find a relay, and predict
whether to seek a relay for a destination.
PeerWise nodes must learn. Nodes compute coordi-

nates for new destinations to help other nodes predict
detours. Newly used relay paths can be instrumented
so that they can be dropped if the prediction of their
utility was incorrect or preserved if their utility is clear.
Finally, nodes must remember a recent destinations so
that a neighbor set can be customized to the likely traf-
fic stream. Learned behavior will depend on practical
deployment: for example, how frequently nodes return
to the same latency-sensitive destination. In fact, as a
destination is contacted again and again, PeerWise might

lower its standards for a “good” detour to provide im-
proved application performance, or try reaching the des-
tination via relays that are not obvious candidates. In
this section, we make no assumptions about the utility of
learned information, and instead focus on establishing a
broad base of PeerWise connections for reaching all des-
tinations.
To study neighbor and relay selection algorithms, we

collected latency measurements and coordinates for 262
PlanetLab nodes and the 448 popular web servers. We
considered only the PlanetLab nodes responsive at the
time of the measurement. To gather this PL-Dest-Pyxida
data set, we used Pyxida [24], an implementation of the
Vivaldi coordinate system. To compute coordinates for
the web servers, we extended Pyxida with our virtual co-
ordinate algorithm. Every 30 seconds, for 18 hours on
January 14, 2008, we took a snapshot containing RTT
measurements and coordinates (virtual and non-virtual).
We use only a subset of this data: median latency over
the past 10 measurements, and network coordinates, all
observed after Pyxida ran for two hours (to converge).

6.1 Choosing Neighbors
Each PeerWise node must be able to decide whether a
new node would offer better detours than existing neigh-
bors. A new neighbor may provide relays toward a region
of coordinate space or directly to known destinations.
Deciding upon future mutual advantage is a prediction of
future accesses and future performance. In this section,
we evaluate the ability of a PeerWise node to predict,
from coordinates and measurement, whether a neighbor
will contribute.
If nodes were to contact only a few, known destina-

tions, choosing neighbors would be simple: replace a
neighbor if the new one provides a better path to an in-
teresting destination. However, we do not expect access
patterns to be nearly so predictable. Instead, we wish
to determine, when a new neighbor arrives, whether it is
likely to provide a shortcut to a useful region in coordi-
nate space.



USENIX Association	 NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation	 475

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 1 10 100

F
ra

c
ti
o
n
 o

f 
D

e
to

u
re

d
 D

e
s
ti
n
a
ti
o
n
s

Number of Neighbors

Embedding Error
Proximity
Coverage

Angle
Random

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.04  0.2  1

C
D

F

Relative Latency Loss

Direct
Conservative
High-Risk
Random

Figure 10: (left) Neighbor selection algorithms. As the number of legitimate neighbors is restricted, coverage, prox-
imity and embedding error (for 32 or more neighbors) algorithms preserve the most detours. (right) Relay selection
algorithms. Best detours are found through relays selected using the direct and conservative algorithms.

We consider a few traffic-independent neighbor selec-
tion policies, expecting that a combination of schemes
would perform best. We separate them into two classes:
value schemes are likely to provide the best detours, but
may overlap; diversity schemes prefer relays that are dif-
ferent from those already chosen.
Value schemes include embedding error and proxim-

ity. Embedding error prefers neighbors with the largest
positive error in the embedding of the source to poten-
tial neighbor edge: these nodes are likely to traverse the
most coordinate distance with the lowest latency. Prox-
imity prefers neighbors with the smallest absolute latency
between the source and a potential neighbor.
By choosing the best neighbors exclusively, a node

may miss diversity. Coverage uses the relay’s coordinate
and latency to determine the region in coordinate space
that that relay covers. We split the space with a 24-tree
structure (for scalability) and prefer neighbors that mini-
mize the expected detour latency to every point in space.
Angle prefers neighbors in different directions in the co-
ordinate space. For all pairs of potential neighbors, a
node computes the angle between the line segments from
itself to the neighbors, and selects the neighbors with the
largest angles. Random chooses neighbors at random to
provide a point of comparison.
In Figure 10(left), we compare these neighbor selec-

tion algorithms. We vary how many neighbors a node
can have from 1 to 200. At each step, we add a new
neighbor based on one of the five schemes. Proximity
and coverage perform the best, but embedding error also
performs well with 32 or more neighbors. We choose
proximity as our primary neighbor selection metric be-
cause it performs similarly to coverage and is easier to
use.

6.2 Choosing Relays
Neighbor selection determines the set of neighbors that
may provide a detour path. With relay selection, a node

attempts to discover quickly the neighbor that offers
the best detour to a specific destination. Like server-
selection problems solved by network coordinates, re-
lay selection seeks the shortest combination of the di-
rect path to the relay and the predicted path between re-
lay and destination. Over time, this performance can be
measured, but to minimize latency, detour performance
should be predicted. At the very least, we hope to reduce
the number of relays that we need to simultaneously con-
tact to find a good detour when contacting a destination
for the first time.
We consider the following policies for choosing re-

lays for a destination. Direct prediction adds the mea-
sured source-to-relay latency to the estimated relay-to-
destination distance in coordinate space, then chooses
the relay with the lowest sum. Because latency measure-
ments may be more reliable than coordinates, we evalu-
ated a conservative prediction, which adds the source-to-
relay latency measurement again to increase its influence
in the prediction. This is based on the expectation that
coordinates are inaccurate and seeks greater likelihood
of a good detour in preference to the best detour at the
top of the list. A high-risk scheme chooses the neigh-
bor with the highest embedding error. Finally, random
provides a baseline.
We select 32 neighbors for each node using the

proximity-based algorithm and evaluate the four relay-
selection algorithms. In Figure 10(right), we show the
quality of predictions made using these algorithms in
terms of relative performance lost compared to the best
choice. The conservative approach performs best: ap-
proximately 80% of the detours chosen are only 20%
longer than the best detour between the same pair of
nodes.

6.3 Deciding Whether to Relay
Deciding whether to use a detour depends on a predic-
tion of whether it will improve application performance.
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Figure 11: As the latency to a destination increases, so
does the probability that there is a detour.

This has two components: whether the traffic is sensi-
tive to latency and whether a known neighbor is likely to
provide a detour path. We evaluate the latter. Whether
traffic is latency sensitive can be crudely inferred by
ports, by commercial packet scheduling products, or by
application-based proxies that can differentiate classes of
traffic. In this section, we assume that the traffic is la-
tency sensitive and attempt to predict whether to relay.
The decision of whether to relay depends first on

whether virtual coordinates for the relay are available and
recent. If there are no coordinates available for the des-
tination, a node may choose to seek a relay by probing.
If there are coordinates for the new destination, it may
speculatively use a predicted relay, collect more infor-
mation, or go directly to the destination without probing.
6.3.1 If the destination has no coordinates
If the destination lacks coordinates, the node should for-
ward the packet directly, and if the destination is some-
what distant, i.e., latency is long enough that a good de-
tour is possible, the node may trigger latency probing
from neighbors. The latency measurements by neighbors
will, first, allow coordinates to be estimated and, second,
provide direct latency measurements of the potential de-
tour paths. Conveniently, if a detour path is available,
the node may learn about it before the end of the second
round trip (by starting the latency probing as soon as 10
ms have elapsed in the first contact).
The distance to the destination may be an indicator

of whether the destination has a detour. In Figure 11,
we show how often a destination has a relay within the
neighbor set, given that the latency to the destination is
above some value. For 95% of the edges, as the latency
increases, so does the probability of a detour for the edge.
The plot suggests that, after sending a probe to the desti-
nation, the longer a node waits to receive a response, the
more likely it is that a detour exists for that destination.
For 15% of destinations (between 236 ms and 1054 ms
of latency), there is more than a 50% chance that a detour
exists. We expect that actual node behavior, in terms of
when to seek out a detour, will be application dependent.

Correct decision Incorrect decision
w/o with w/o with

probing probing probing probing
Detour 7.3% 11.1% 16.6% 12.8%exists
Detour 55.8% 57.3% 20.3% 18.8%absent
Total 63.1% 68.4% 36.9% 31.6%

Table 1: Using coordinates alone or coordinates with
a latency probe to the destination, nodes can predict
whether to use PeerWise. Probing the destination slightly
increases the probability of making a correct decision.

For instance, a node may always try to find a detour for
frequently contacted destinations.
6.3.2 If the destination has coordinates
If the destination has known coordinates that have been
gossiped, a node can decide before sending the first
packet: is there likely to be a detour among its neigh-
bors? Assuming that all coordinates are accurate, except
for the measured latencies to neighbors, the node can find
a shortcut without direct contact to the destination.
For certain uses of PeerWise, getting the relay right

before contacting a destination is useful. If the desti-
nation will be reached with a TCP connection, the first
choice can stick: the source address on the SYN packet
is fixed, and the connection cannot be easily migrated
to a relay. For interactive applications over long TCP
connections—shell, game, chat, perhaps voice—this de-
cision may be important.
We show that, most of the time, when the coordinates

of the destination are known, a node makes the correct
decision on whether to use PeerWise. We define a correct
decision as finding a good relay (within 25% of the best
latency reduction) when a detour exists, or not attempt-
ing to find one when a detour does not exist. All other
decisions of a node (i.e., attempting to find a relay when
a detour does not exist or finding a bad relay) are con-
sidered incorrect. We summarize all possible situations
in Table 1. We used the proximity policy for neighbor
selection and the conservative policy for relay selection.
Using coordinates alone, nodes make a correct decision
63.1% of the time. The prediction accuracy improves to
68.4% if the latency to the destination is known. We con-
sider the frequency of correct and incorrect decisions to
be acceptable; a more ambitious node might try to dis-
cover detours more often at the expense of making more
mistakes.

7 Implementation and Evaluation
We implement PeerWise and run it under real network
conditions on PlanetLab. In this section, we briefly de-
scribe our implementation, then show that this imple-
mentation can quickly find mutually advantageous de-
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Figure 12: Fraction of the popular destinations reachable
through mutually advantageous detours from PlanetLab.

tours that offer significant and continuous latency reduc-
tion. We then confirm that PeerWise detours can speed
short web transfers in practice.

7.1 Implementation
We divide the functionality of PeerWise into two parts:
the network coordinate system and a stand-alone dae-
mon that includes all other components described in Sec-
tion 5. We use Pyxida [24] for computing coordinates,
since it is the only network coordinate system imple-
mentation we are aware of that is tested extensively un-
der realistic network conditions [12]. Pyxida is written
in Java and uses the Vivaldi algorithm [8] to compute
coordinates for nodes. Each Pyxida node maintains a
variable number of neighbors, updated constantly, and
probes them at regular intervals. We augmented Pyxida
to compute virtual coordinates for hosts that do not par-
ticipate as described in Section 5.1.
We wrote the PeerWise daemon in approximately

3,000 lines of Ruby. The daemon listens for connections
from other PeerWise nodes, and negotiates, establishes,
and maintains mutually advantageous peerings. It com-
municates with Pyxida regularly, using RPC over TCP,
to update the measured latencies and coordinates of the
current set of neighbors as well as of the destinations that
are currently served. By relying on the latency measure-
ment and coordinate computation performed by Pyxida,
we minimize the communication overhead. On the av-
erage, every node consumes less than 1KB/s (including
Pyxida traffic).

7.2 Finding Detours
We ran PeerWise on 189 PlanetLab nodes, chosen for
their stability, in September 2008. We focus on what de-
tours PeerWise can find, where a detour is determined
by the pings not by actual transfers. We express mutual
advantage between two nodes as the number of detours
that each offers the other. We experimented with three
scenarios:

• All-dest: Each node tries to find detours to all 500
popular websites (described in Section 4) to which
it can measure an RTT.

• Rand-dest: Each node tries to find detours to a ran-
dom subset of the 500 websites.

• Zipf-dest: The popularity of destinations follows a
Zipf distribution.

Our discussion focuses on the All-dest experiment, but
we summarize the results from Rand-dest and Zipf-dest
in Table 2. Recall that the destinations are already very
popular servers, many of which use content distribution.
Therefore, All-dest is not a best case scenario.
We describe the behavior of each node next. Nodes

start looking for detours, after their network coordinates
have stabilized, by successively sending detour requests
to their neighbors. We limit the number of neighbors of
each node to 32 for scalability and use the proximity pol-
icy for selecting neighbors. We make sure that no two
detour requests are simultaneous: a new request is sent
only when a reply (either positive or negative) has ar-
rived for a previous one or a timeout has occurred. Each
request tries to find detours to as many destinations as
possible. Requests are sent continuously, even to the
nodes with which peerings have been established or to
the nodes that, in the past, could not offer detours. In this
way, we are constantly renegotiating the peerings and are
always ready to adapt to changes in latency.
PeerWise relies on the latency measurements and co-

ordinate computations performed by Pyxida. We update
both every 10 minutes. To avoid instability due to vary-
ing latencies, the updated values for latencies represent
moving medians across the last 10 samples collected.
We present results for the first 36 hours of the experi-

ment, counting from the time when nodes start request-
ing detours. For ease of exposition and to study startup
behavior, all nodes start requesting detours simultane-
ously. We show that most nodes find mutually advan-
tageous detours and that these detours lead to significant
and stable latency reductions.
7.2.1 PeerWise finds detours
For each node, we count the destinations that can be
reached using a mutually advantageous detour for the du-
ration of the experiment. Figure 12 shows the distribu-
tion of the fraction of reachable destinations. Focus only
on the line labeled “max” for now. Each point corre-
sponds to a node, and its projection on the horizontal axis
represents the fraction of destinations for which the node
finds detours. Around 25% of the nodes cannot find any
detours, while most nodes find detours to at least 10% of
the popular destinations. Our results are consistent with
those of the evaluation in Section 4 (see Figure 4). For
Rand-dest and Zipf-dest, fewer nodes (around 50%) are
able to find detours at all. This is because the number of
destinations is much smaller than in All-dest.
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Latency reduction (§ 7.2.3) Longevity (§ 7.2.4) Variability (§ 7.2.4)
relative (absolute) % of (src,dest) pairs % of (src,dst) pairs

median 10 percentile 90 percentile ≥0.9 0.5-0.9 <0.5 1 2-10 >10
All-dest 26% (29ms) 12% (12ms) 63% (131ms) 54% 18% 28% 67% 2% 31%

Rand-dest 25% (33ms) 12% (13ms) 60% (115ms) 36% 19% 45% 51% 23% 26%
Zipf-dest 24% (27ms) 12% (13ms) 59% (76ms) 31% 31% 38% 48% 23% 29%

Table 2: Characteristics of PeerWise detours: latency reduction, longevity and variability.

7.2.2 PeerWise finds detours quickly
How quickly are the detours discovered? We compute
the fraction of destinations to which a detour is discov-
ered by PeerWise within the first 10 minutes, 1 hour and
5 hours. Figure 12 shows the results as cumulative dis-
tributions. Many detours are discovered within the first
10 minutes of the experiment and the majority after less
than an hour. Fewer and fewer detours are discovered
afterward. These are mostly the detours that appear due
to varying latencies—they are discovered because Peer-
Wise constantly adapts to new latencies and coordinates.
7.2.3 PeerWise offers significant latency reduction
The detours discovered by PeerWise would not be very
useful if they offered minimal latency reductions com-
pared to the direct paths. We show that this is not the
case. Recall that we have set a threshold: we consider
only those detours that offer reduction of more than 10
ms and 10% of the direct-path latency. Here we focus on
the latency reductions negotiated by PeerWise. In Sec-
tion 7.3, we show how these reductions hold when user
traffic traverses the detour path.
We compute all latency reductions for each (source,

destination) pair for which a detour exists, both as ab-
solute (milliseconds) and relative (fraction of the direct
path latency) values. We show the median, 10th and 90th
percentiles in Table 2. The median latency reduction is
29 ms or 26% of the latency of the direct path. 10% of
the pairs have a reduction of more than 131 ms. This
is caused by unusually high direct-path latencies, possi-
bly due to traffic shaping. By circumventing these slow
links, PeerWise can offer significant latency reduction.
7.2.4 Longevity and variability
PeerWise nodes may offer continuous latency reduction
to a destination using several peerings. For each (source,
destination) pair, we evaluate how long PeerWise offers
reduction and with how many different relays. Ideally,
every destination will be reached continuously through
the same peering. Long-lived reductions through the
same peering offer nodes more choices in when to use
the mutually advantageous connection.
We consider two metrics: longevity and variability.

Longevity captures how PeerWise nodes maintain la-
tency reduction once a detour is discovered. We define
the longevity of a destination D from a node S as the
fraction of time that PeerWise offers S a detour to D, af-
ter PeerWise first learns about a shorter path from S to

D. A longevity of 1 for the pair (S, D) means that, af-
ter PeerWise discovers the first detour between S and D,
it will always offer some detour between S and D. Vari-
ability represents the number of different relays that S
uses to obtain continuous reduction to D. The lower the
variability, the easier it is to maintain latency reduction.
Table 2 summarizes longevity and variability for all

(source, destination) pairs for which PeerWise offers la-
tency reduction. ForAll-Dest, more than half of the pairs
have a longevity higher than 0.9. 67% of the pairs use
only one relay. When fewer destinations are selected at
random or using a Zipf distribution, the number of de-
tours, their longevity, and variability are reduced. How-
ever, about half of the (source, destination) pairs still
have longevity higher than 0.5 and variability of 1.

7.3 Using Detours
We show how the detours discovered by PeerWise trans-
late in real life. Can user-level applications benefit from
the network-level detours of PeerWise? From each Pla-
netLab node running PeerWise, we download the front
page of each of the 500 popular websites to which a
mutually-advantageous detour exists. We use wget to
perform two transfers every time it is called: one using
the direct path and one using the PeerWise detour. To
make the web request follow the detour path, we install
the tinyproxy HTTP proxy on every PlanetLab node that
can be used as a relay. We run each transfer 100 times, al-
ternating whether detour or direct comes first, and record
the individual completion times.
We verify whether the detours promised by PeerWise

are seen by the web transfers. For each (source, desti-
nation) pair with a detour in PeerWise, we compute the
wget reduction ratio—the ratio between the median relay
transfer time and the median direct transfer time—and
plot it against the PeerWise reduction ratio—the latency
reduction ratio promised by PeerWise. Figure 13(left)
presents the results. For 58% of the pairs, thewget reduc-
tion is less than 1; web transfers take less time through
the relay than through the direct path, as predicted by
PeerWise. However, many PeerWise detours do not ma-
terialize for the wget transfers.
We explain the dissonance between the PeerWise view

and the application view next. PeerWise detours are de-
termined by network-level pings. On the other hand, the
wget end-to-end latency includes server and proxy wait
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Figure 13: (left) Wget latency reduction versus PeerWise latency reduction: 58% of all PeerWise detours achieve
latency reduction in real life. (right) Distributions of average server wait times, relay times, and difference between
wget and PeerWise RTTs for all detour transfers. Relay times inflate application latencies the most.

times and thus may be larger than network latency. Fur-
ther, PeerWise detours are based on medians of latencies
gathered over long periods of time. Due to potential la-
tency variations, these medians may differ from the RTTs
at the time of the transfer.
To quantify the factors that inflate the application la-

tency, we instrument our experiment as follows. During
the web transfers, we run tcpdump on every relay node
and log all proxy traffic. Using the packet timestamps,
we compute, for each detour transfer, the network latency
(from the TCP connection setup), the time spent at the re-
lay and the time waiting for the server. Figure 13(right)
shows the distributions of average server time, relay time
and of the difference between network latency at transfer
time and latency promised by PeerWise. The time spent
at the relay and at the server accounts for most of the in-
flation in application latency: half of the relays induce
an additional average latency of at least 50 ms. PeerWise
predicts the network part of the wget transfer time well.
All relays are PlanetLab nodes; PlanetLab does not al-

ways reflect the realities of the Internet. We believe that
the slowness of PlanetLab is the main factor that con-
tributes to the unusually high relay time for our transfers.
To confirm, we set up tinyproxy on a computer with min-
imal load, located at University of Maryland and run web
transfers through it. The average relay time for all trans-
fers through the UMD proxy is 5ms, less than 95% of
all PlanetLab relays. If we consider the hypothetical sit-
uation in which all PlanetLab relay times were replaced
by the average UMD relay time—effectively minimizing
the time spent by a transfer at the relay node—then 78%
of our web transfers would see the detours promised by
PeerWise. We conclude that PeerWise has the potential
to improve application performance.

8 Discussion
We discuss some of the implications that wide adoption
of PeerWise would have for both ISPs and users.

8.1 Implications for ISPs
Overlay networks violate routing polices. How then
would inter-domain routing policy and traffic engineer-
ing practices coexist with widespread PeerWise deploy-
ment? Routing overlay networks enable rule violations:
customers and peers provide transit, and selfish rout-
ing [25] can subvert traffic engineering decisions. We
discuss each in turn.
Customers provide transit, which is forbidden in inter-

domain routing [9]. Even when a detour AS path pre-
cisely matches the direct (because an overlay node lies
within the address space of one of the autonomous sys-
tems of the path), the overlay node is still a customer and
a customer still provides transit. Whether that customer
has an autonomous system or instead pays a monthly fee
for a residential connection hardly matters.
Overlay networks bypass traffic engineering deci-

sions. It is unclear to what extent the excessively long
latency paths are deliberately chosen by network admin-
istrators. One might worry that a successful deploy-
ment of PeerWise would hamper ISP efforts to shape
traffic toward slower, but less utilized, links. Peer-
Wise is not intended for high-bandwidth transfers. Its
structure discourages bandwidth consumption: we in-
tend to shave packet transmission latency and, because
each pair of nodes must strive to maintain the fair-
ness of the application-level SLA that connects them,
they may not consume unnecessarily. Downloading a
large file through PeerWise may not reduce the down-
load time significantly, considering the many other bot-
tlenecks in the network (loss, client-side queuing, server
load, etc.) [21, 4, 22].

8.2 Implications for Users
Forwarding traffic through and on behalf of others raises
issues of privacy and liability for PeerWise users. Al-
though unencrypted traffic is “public” regardless of the
path it takes, it is reasonable to assume that users would
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be more reluctant to forward their traffic through other
users than directly through the “faceless” ISPs. Another
concern is being held liable for forwarding potentially il-
licit traffic on behalf of another user. While some such
traffic may be straightforward to filter (and negotiate in
a PeerWise SLA), say by mechanisms similar to parental
controls, such an approach requires knowing “question-
able” destinations ahead of time, and leads to both false
negatives and positives. A more general mechanism for
non-repudiation—a means of verifiably proving to au-
thorities the source of forwarded traffic—may be more
appropriate, but is beyond the scope of this paper.
A potential extension of PeerWise would be to limit

one’s neighbors to a set of trusted users, determined for
example via friend-of-friend links in an online social net-
work, similar to the f2f file store [16]. While such an
extension may obviate the concerns of non-repudiation,
it may exacerbate privacy concerns; users may be less
inclined to forward private traffic through their friends.
Interestingly, PeerWise can assist in securing an end-

user’s traffic. Reis et al. demonstrated that some ISPs
modify users’ web pages in transit [26]. PeerWise could
assist in routing around such ISPs, or perhaps in lending
greater credence to a page’s authenticity.

9 Conclusions
PeerWise is based on building overlay networks from
mutually advantageous peerings; we show that such a
simple, locally enforced mechanism is sufficient to pro-
vide detour routes in the Internet. Surprisingly, pairs of
nodes can help each other: few nodes are so well po-
sitioned that they need no help, and few are so poorly
positioned that they can help no one. Our evaluation
of PeerWise on two sets of real world latencies and on
PlanetLab shows that most nodes can find good detours,
reducing latency by at least 10 ms and 10%. PeerWise
finds detours to both regionally and globally popular des-
tinations, as well as to websites that use other latency-
reduction techniques such as mirroring or DNS redirec-
tion. Most detours are long-lived and stable and reflect
well the performance of applications using them.

Acknowledgments
We are grateful to our shepherd, Venugopalan Ramasubrama-
nian, and to the NSDI reviewers for their help in improving
this paper. We also thank Peter Druschel, Bo Han, Jay Lorch,
Harsha Madhyastha, Justin McCann, Larry Michele, Alan Mis-
love, Vivek Pai, and Angie Wu for their comments. This work
was supported by NSF grants CNS-0435065, CNS-0643443
and CNS-0626629, and by a Microsoft Live Labs fellowship.

References
[1] Alexa. http://www.alexa.com/.
[2] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and

R. Morris. Resilient overlay networks. In SOSP, 2001.

[3] A. Bharambe, J. R. Douceur, J. R. Lorch, T. Moscibroda,
J. Pang, S. Seshan, and X. Zhuang. Donnybrook: En-
abling large-scale, high-speed, peer-to-peer games. In
SIGCOMM, 2008.

[4] N. Cardwell, S. Savage, and T. Anderson. Modeling TCP
latency. In IEEE Infocom, 2000.

[5] B. Cohen. Incentives build robustness in BitTorrent. In
P2PEcon, 2003.

[6] J. Corbo and D. Parkes. The price of selfish behavior in
bilateral network formation. In PODC, 2005.

[7] L. Cox and B. Noble. Samsara: Honor among thieves in
peer-to-peer storage. In SOSP, 2003.

[8] F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Vivaldi: a
decentralized network coordinate system. In SIGCOMM,
2004.

[9] L. Gao. On inferring autonomous system relationships
in the Internet. IEEE/ACM Transactions on Networking,
9(6):733–745, 2001.

[10] K. Gummadi, S. Saroiu, and S. Gribble. King: Estimat-
ing latency between arbitrary Internet end hosts. In IMW,
2002.

[11] K. P. Gummadi, H. Madhyastha, S. D. Gribble, H. M.
Levy, and D. J. Wetherall. Improving the reliability of in-
ternet paths with one-hop source routing. In OSDI, 2004.

[12] J. Ledlie, P. Gardner, andM. Seltzer. Network coordinates
in the wild. In NSDI, 2007.

[13] J. Ledlie, M. Seltzer, and P. Pietzuch. Proxy network co-
ordinates. Tech. rep., Imperial College London, 2008.

[14] D. Levin, R. Baden, C. Lumezanu, N. Spring, and
B. Bhattacharjee. Motivating participation in Internet
routing overlays. In NetEcon, 2008.

[15] D. Levin, R. Sherwood, and B. Bhattacharjee. Fair file
swarming with FOX. In IPTPS, 2006.

[16] J. Li and F. Dabek. F2F: reliable storage in open net-
works. In IPTPS, 2006.

[17] C. Lumezanu, D. Levin, and N. Spring. PeerWise discov-
ery and negotiation of faster paths. In HotNets, 2007.

[18] A. Nakao and L. Peterson. Scalable routing overlay net-
works. In ACM SIGOPS Operating Systems Review,
2006.

[19] A. Nakao, L. Peterson, and A. Bavier. A routing underlay
for overlay networks. In SIGCOMM, 2003.

[20] T. S. E. Ng and H. Zhang. Predicting Internet network dis-
tance with coordinates-based approaches. In INFOCOM,
2002.

[21] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Mod-
eling TCP throughput: A simple model and its empirical
validation. In SIGCOMM, 1998.

[22] J. Padhye and S. Floyd. Identifying the TCP behavior of
web servers. In SIGCOMM, 2001.

[23] M. Piatek, T. Isdal, T. Anderson, A. Krishnamurthy, and
A. Venkataramani. Do incentives build robustness in Bit-
Torrent? In NSDI, 2007.

[24] Pyxida. http://pyxida.sourceforge.net/.
[25] L. Qiu, Y. R. Yang, Y. Zhang, and S. Shenker. On self-

ish routing in Internet-like environments. In SIGCOMM,
2003.

[26] C. Reis, S. D. Gribble, T. Kohno, and N. C. Weaver.
Detecting in-flight page changes with web tripwires. In
NSDI, 2008.

[27] S. Saroiu, K. P. Gummadi, R. J. Dunn, S. D. Gribble, and
H. M. Levy. An analysis of Internet content delivery sys-
tems. In OSDI, 2002.

[28] S. Savage, T. Anderson, A. Aggarwal, D. Becker,
N. Cardwell, A. Collins, E. Hoffman, J. Snell, A. Vahdat,
G. Voelker, and J. Zahorjan. Detour: A case for informed
Internet routing and transport. IEEE Micro, 19(1):50–59,
1999.

[29] S. Savage, N. Cardwell, D. Wetherall, and T. Ander-
son. TCP congestion control with a misbehaving receiver.
ACM CCR, 29(5):71–78, 1999.

[30] M. Sirivianos, J. H. Park, X. Yang, and S. Jarecki. Dande-
lion: Cooperative content distribution with robust incen-
tives. In USENIX, 2007.

[31] L. Subramanian, I. Stoica, H. Balakrishnan, and R. Katz.
OverQoS: An overlay based architecture for enhancing
Internet QoS. In NSDI, 2004.






	nsdi09_1a
	nsdi09_1b
	nsdi09_1c
	nsdi09_1d
	nsdi09_1e
	nsdi09_2a
	nsdi09_2b
	nsdi09_2c
	nsdi09_2d
	nsdi09_2e
	nsdi09_3a
	nsdi09_3b



