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Abstract

We describe a general-purpose architecture for apply-
ing economic mechanisms for resource allocation in
distributed systems. Such economic mechanisms are
required in settings such as the Internet, where re-
sources belong to different owners. Our architecture
is built above standard distributed-object frameworks,
and provides a “market” for arbitrary distributed ob-
ject resources. We first describe the abstract elements
and properties of an architecture that can be applied
over essentially any distributed object-based platform.
We then describe the MAJIC! system that we have
implemented over Suns’ Jini platform. A key novel
aspect of our system is that it handles multiple pa-
rameters in the allocation and in the specification of
utilities and costs for each distributed service. We pro-
vide both theoretical and experimental results show-
ing the following three key properties of this system:
(1) Efficient resource allocation. (2) Motivation for
resource owners to share them with others. (3) Load
balancing.

1 Introduction

1.1 Motivation

The following concept may be viewed as the holy grail
of “Internet Computing”: Every user connected to the
Internet should have complete access to all resources
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available anywhere on the Internet. The user should
be presented with an illusion of a single centrally orga-
nized “global computer”. The main challenge of com-
puter engineering, in this context, is to design the
protocols, algorithms, paradigms, and systems that
achieve this illusion by using the aggregation of the
physical computers, communication links, and other
resources that are available on the Internet.

Ideally, such systems would optimally allocate all
available resources across the Internet. There are in-
deed a wide variety of such resources: computational
resources (such as CPU time, or file servers), infor-
mation resources (Databases, video), communication
resources (links, QoS), services (help-desk, access to
specialized algorithms), hardware (printers, cameras),
and more. A dream suite of protocols and algorithms
for the Internet would allow all these resources, as well
as others, to be optimally and transparently allocated
across the Internet.

There are clearly many aspects that need to be ad-
dressed on the way to this “holy grail”, and many of
these aspects have received much attention in the lit-
erature. In this paper we concentrate on the interplay
and synergy between two key paradigms that address
different, aspects of this challenge: the distributed ob-
jects paradigm for basic technological interoperability
and the economic paradigm for motivating resource
sharing by different users or organizations.

1.2 Distributed Objects Paradigm

In recent years the paradigm of distributed object ser-
vices is becoming the basic backbone of communica-
tion and cooperation between components of a dis-



tributed system. In a distributed object framework,
computers on a network encapsulate their shareable
resources (services) in well defined procedural inter-
faces. Other computers then use these resources by
performing remote procedure calls (RPC), or in an
OOP terminology, remote method invocations (RMTI)
on them. In its pure object-oriented variant this
paradigm is the basis of most modern commercial dis-
tributed platforms: CORBA [5], Microsoft’s DCOM
[6], Java’s RMI [35]. Taking a wider perspective, web
servers follow this paradigm on the level of web pages
(static or dynamic), and with standards such as XML
[49] and protocols such as SOAP [41], a true web-like
infrastructure for distributed processing that follows
this paradigm emerges. Indeed many authors have
proposed variants and implementations of this vision
under names such as “Web of Objects”’, “Distributed
Objects Everywhere”, etc [33, 48, 42, 13, 3.

1.3 Economic Paradigms for Resources
Sharing

A major difficulty in achieving efficient sharing of re-
sources across the Internet is the obvious fact that
the different computers and resources belong to dif-
ferent organizations. An Internet-wide resource shar-
ing system must provide motivation for the owners
of resources to share them with others. Any such
motivation leads to some kind of economic system,
and in its simplest form involves payments for ser-
vices. Such economic systems for distributed allo-
cation of computing resources have been applied to
CPU time [9, 47, 46, 45, 27, 34], communication
[20, 40, 37, 19], and other resources [21, 15, 38, 45],
and have received much theoretical interest lately
[20, 25, 10, 32, 16, 39, 28, 29]. Such systems pur-
sue two complementary goals: that participants are
indeed motivated to share these resources with others
and that the resources are indeed allocated well.

1.4 This Paper

We first propose a general architecture for augment-
ing a distributed-object system with payments, and a
market-based mechanism for allocating resources. We
then describe a system of this sort, the MAJIC system,
that we have implemented over Sun’s Jini infrastruc-
ture. More details are available in the MAJIC web site
[22]. This architecture allows, for the first time, ap-
plying the ideas of economic-based cooperation to the

full spectrum of resources available on the Internet:
CPU time, file servers, Databases, online entertain-
ment, communication bandwidth, algorithms, print-
ers and other hardware, etc. Moreover, this is done
in a way that is easily inter-operable with the current
leading technologies. We provide both general argu-
ments (and mathematical proofs) showing that such
an augmented system would indeed function well, and
specific experimental results from MAJIC, supporting
these findings.

This architecture provides, for the first time, an
economy based general-purpose infrastructure for all
kind of resources, compared with earlier similar sys-
tems, which were dedicated to one kind of resource. A
key novel aspect of our architecture is that it allows
multiple parameters in specifying utilities and costs
for each service request and handles these parameters
in an efficient and non-trivial way.

It is clear that any system that achieves serious re-
source sharing over the Internet must address both the
issue of technical inter-component communication and
the issue of motivating selfish entities to share their re-
sources. We believe that systems built along the prin-
ciples laid here answer both issues in an integrated,
inter-operable, and efficient way and could provide a
general-purpose architecture that allows true efficient
resource sharing on the Internet!

2 A blueprint for a market of dis-
tributed object services

2.1 Basic idea

The starting point of our architecture is simple: each
object that provides a service may attach a “price-tag”
to it. When another object wishes to use a particular
type of service, it calls a central “service market place”
that functions as the object request broker. The mar-
ket performs a “reverse auction” for this service, where
all available objects (service providers) that provide a
service of this type can participate. The provider that
charges the lowest price wins, and gets to service the
request for the agreed-upon price.

A simple example that we will use throughout
the paper is a printing service. Our starting point
assumes that printers provide the service of print-
ing a page by providing the simple remote method:
printer.print(page). Each printer has a price for this
service: printer.getPrice(). A computer that wants



to print a page on a printer that does not belong to
him gets the reference to the cheapest printer from the
“printing market” and can then print on this printer:
market.getPrinter().print(page).

Several basic issues need to be addressed before this
can be made into a workable system, and we describe
the major ones.

2.2 Parameterized Services

Looking at the previous printing example, one is im-
mediately concerned with the differences between dif-
ferent printers and printing jobs. In reality many pa-
rameters distinguish one print job from another: num-
ber of pages, page size, printer’s location, printing
speed, print quality, etc. Clearly any serious system
that handles printing services must be aware of these
differences. More generally, distributed object services
receive input parameters - it is quite clear that the
price requested for a service must be tightly related to
these parameters. Additionally, inter-changeable dis-
tributed service providers are still not totally equiva-
lent in many of their parameters (such as their quality,
virtual location or their speed).

This is not a simple issue to tackle when one at-
tempts to produce a “market” for these services. Ig-
noring the parameters in the market will simply make
any type of efficiency in resource allocation impossible.
Taking all the parameters into account in the defini-
tion of the “market” will lead to a logically separate
market for each request and for each service provider,
eliminating competition and thus any flexibility in al-
locations. The solution is clearly to work within a sin-
gle market, but take parameters into account during
resource assignment.

In our system each service type specifies the set
of parameters of the service, defining the parameter
space of the service. Each service provider can supply
the service in some specified subset of the parameter
space. Back to our example, a certain printer may
only be able to print on “A4” or “letter” page sizes,
but not on “A3” size, while another may also offer “A3”
size. Similarly, a printer will usually only supply the
printing service at a certain physical location or with
a certain time delay (depending on its current load).
Each service request may be in a single point of the
parameter space (“I need A4 pages”), or may be satis-
fied with a whole subset of the parameter space (“A4
or letter is fine”), possibly with preferences among the
different, possibilities.

In economic terms, each point in the parameter
space of a service type is a separate product type.
The products that correspond to different points in
the parameter space of a single service type are partial
substitutes to each other - both for service providers
and for service requesters. The challenge we face (and
solve below) is to organize a single market for all these
products, while handling the partial substitution in an
economically efficient way.

2.3 Sellers’ Quote and Buyers’ Utility

Our economic system is based on a common cur-
rency in which all participants can express their eco-
nomic preferences. Thus we assume that each service
provider - seller - has a certain internal cost for sup-
plying the service at each point of the parameter space
that can be provided by him. Similarly, each service
requester - buyer - has a certain economic benefit from
receiving the service, a benefit that may depend on
the parameters. Denote by P the parameter space
of a certain service type, our economic model of par-
ticipants is given by the following two functions: (1)
Sellers’ cost function: cs : P — RY. For a point
p € P, cs(p) specifies seller S’s internal cost for sup-
plying the service with parameters p. lL.e., he would
like to provide this service with these parameters if
he is paid more than cg(p), and would not agree to
provide the service for a lower price. We take the
convention that if S cannot provide the service with
parameters p at all then cs(p) = oo. (2) Buyers’ wtil-
ity function: ug : P — R*. For a point p € P,
up(p) specifies buyer B’s benefit from receiving the
service with parameters p. Le., he would like to re-
ceive this service with these parameters if he pays less
than ug(p), and would not agree to buy the service
for a higher price. We take the convention that if the
service with parameters p is not acceptable at all to
him, then up(p) = 0.

In our system, each seller sends to the market a
function corresponding to his cost function — called the
quote function qs : P — R™. For a point p € P, qs(p)
specifies his “quote” for the service with parameters p
—i.e. the amount of money he demands for providing
the service with these parameters. The quote func-
tion gg is essentially a catalog specifying a price for
each choice of parameters that can be supplied by S.
Informally speaking, the quote function gg of a seller
should correspond tightly to his cost function cg. This
however cannot be guaranteed at this point as a seller



will likely send to the market a quote function aimed
for maximizing his profits - not aimed at any partic-
ular correspondence with his cost function. We will
return to this point below. The system allow sellers
to modify their quote functions occasionally, taking
into account changes in status.

When a buyer requests a service he sends to the
market a representation of his wtility function. The
market matches this buyer with the seller that fits him
best. The abstract process that takes place is that
the market creates an agent for the buyer based on
his utility function. This agent is presented with the
catalogs (quote functions) of all sellers, and chooses
the best seller and parameters. The details of this
process are explained in section 2.4.

The representation of the quote and wutility functions
as objects may be given by specifying the formulas
that define them as a function of the different param-
eter values or may be given by opaque distributed ob-
jects that encapsulate these functions. The choice of
representation will usually depend on the service type
and has consequences in how the system can function.

2.4 The Market Mechanism

As mentioned, the market holds the current quotes
from all sellers {gs}, and when it receives a request
from a buyer - specified by the buyer’s utility function
up — it attempts matching this request to the best
seller and choosing the best parameter values. The
optimization criteria is the surplus: surplusg s(p) =
up(p) — qs(p). For a given supplier S, the parame-
ters p are chosen as to maximize this surplus: pp ¢ =
argmax,{surplusp s(p)}. In case this search over the
parameter space is computationally feasible (this de-
pends on the representations of the parameter space
and the quote and utility functions), the buyers’ agent
can directly find these optimal parameters. Otherwise,
the system allows each buyer to supply a “parameter
search engine” that attempts finding these parameters,
given a quote function (encapsulated by an object)
as input. We expect this mechanism to be computa-
tionally efficient in many cases, either because of the
simplicity of the parameter space, or because of the
small number of parameters. However, when search-
ing in complex parameter space, we expect the buyer’s
search engine to find a close approximation in reason-
able time.

The optimal supplier is chosen as to optimize
the surplus under the optimal parameters: S* =

argmax, {surplusp s(pp g)}- At this point the buy-
ers’ agent must check that this surplus is indeed pos-
itive: surplusp, s« (p7375*) > 0. Otherwise, the buyer
is not willing to pay as much as the optimal seller is
asking, and the service request should be canceled. As
analyzed theoretically in section 4, and demonstrated
experimentally in section 5, this agent-based alloca-
tion produces efficient allocations in terms of reported
utilities and quotes.

Once the optimal S*and p*are found, the mar-
ket may in principle fix any payment d in the range
gs+(p*) < d <up(p*). Any price in this range will be
acceptable both to the buyer and to the seller. The
simplest choice would be to use the quote function as
the price: the buyer must pay the seller the amount
of gs«(p*). This is certainly the usual choice in com-
merce as it corresponds to the catalog price of the
chosen product. In terms of auction theory, this cor-
responds to a first price auction [31, 24].

We suggest also a different choice of payment, gen-
eralizing Vickrey’s second price auction [44]. The mo-
tivation for this payment rule is to motivate sellers to
send the market a quote that is equal to their cost
function gs = cs — a property known as incentive
compatibility. This is extremely important due to the
fact that otherwise the assignment does not optimize
the allocation according to the true costs but rather
according to the quotes. Indeed the previously men-
tioned payment rule motivates sellers to announce a
quote that is higher than their costs — thus potentially
leading to a wrong choice of seller. For general back-
ground on this topic see [14, 4, 23|, and for specific
discussion in the context of computation resources see
[28, 26, 36, 43].

The payment rule we suggest is as follows. Let S
be the second best choice for supplier: S? = 5% =
argmaxsxsy {surplusp,s(pp g)}. The surplus with
supplier S? is less or equal to the surplus with sup-
plier S*. This payment method mandates that the
buyer only gets the surplus of S2, while the opti-
mal seller gets the difference between the two sur-
pluses. Thus the payment to supplier S* is given
by: d = up(p*p ) — surplusp s2(p*p g2). The main
theoretical result we show, using the standard game-
theoretic models of rational behavior, is that this pay-
ment method results in incentive compatibility, and
thus all rational sellers indeed quote their true costs
leading to efficiency of allocations in the system.



2.5 Load Balancing as a By Product

As described above, this type of system ensures opti-
mal allocation of each request to the service provider
that is best for it. In cases that requests do not con-
flict with each other, this implies that the system ob-
tains optimal global performance. This is clearly not
the usual case! The whole point of allocation in dis-
tributed systems is handling the conflicts — different
requests should normally be split between the avail-
able servers. Going back to our printing example,
not everyone can gain access to the best and cheapest
printer — this would likely cause a bottleneck there.
Indeed, perhaps the most basic requirement from a
distributed system is that of load balance: the load
should be reasonably split between available servers.

A key observation is that economic-based systems
can provide this load balancing — if designed correctly.
Specifically, when one considers the underlying reason
why load balancing is usually desired, it seems that
the reason is simply that users want their requests to
be served quickly. Putting this into economic terms,
users’ utilities depend on the time until their request is
serviced. This is rarely formalized, but may be easily
formalized if service-time is a parameter in the param-
eter space of the service type — as it is in our system.
E.g., a request may specify a firm deadline by setting
the utility to be zero if the service-time is greater than
the required deadline. Similarly, gentler penalties for
tardiness may be applied by tailoring the utility func-
tion’s dependence on time. Suppliers, on the other
hand, must make sure that their quotes do indeed re-
flect their current capabilities in terms of service-time
and must modify them when their load changes.

Load balancing emerges automatically once the
quotes of the different suppliers do indeed reflect their
actual service-time capabilities. As a certain service
supplier gets more requests assigned to it, it must
raise the service-time promised in his quotes. This
will automatically cause time-sensitive requests to be
allocated to other service suppliers — those with lower
loads. Requests that are less sensitive to service-time
and more sensitive to other parameters that are opti-
mized by a loaded supplier may still be assigned to it.
This form of load balancing strikes a balance between
optimized matching of service parameters and reduc-
ing the service-time in a way that is locally perfect:
exactly according to the specification of the service
request.

This local optimization does not necessarily imply

global optimal balance of load: an assignment of a
certain supplier to one request may result in a heavy
penalty for the next request. Indeed, any formaliza-
tion of optimal global allocation is computationally
intractable (NP-complete) [11], and moreover, cannot
be done in an online mode — servicing requests as they
come [8]. Yet, we supply theoretical evidence as well
as experimental results, suggesting that load balance
emerges.

3 The MAJIC system: Multi-
parameter Auctions for JIni
Components

The MAJIC system is built on top of Sun’s Jini plat-
form, while implementing the basic architecture de-
scribed above. We chose the Jini platform since it is
a simple yet powerful distributed object system with
open source. Moreover, Jini’s object-broker mecha-
nism — the lookup service — turned out to be easily
adapted to our purposes. In addition, Jini uses Java’s
code mobility capabilities, which in our case allows
transfer of utility functions and quote functions en-
capsulated in objects.

3.1 Jini overview

The Jini™ system is a distributed systems technol-
ogy released by Sun Microsystems in 1999. The Jini
technology enables all types of digital devices to work
together in a community, without extensive planning
or installation. It is built on top of the Java envi-
ronment [17] and the RMI mechanism [35]. Detailed
specifications and explanations regarding the Jini sys-
tem can be found in [1, 7]; on-line documentation can
be found in [18]. We now describe only the bare es-
sentials that are directly required for our purposes.
The Jini technology infrastructure provides mech-
anisms for devices, services, and users to join and
detach spontaneously from a network, and be visible
and available to those who wants to use it. Each Jini
system is built around one or more lookup services.
A lookup service is a service that maintains a list of
known services and provides the ability to search and
find services via the lookup protocol. When a ser-
vice is booted on to the network, it uses the discovery
protocol to find the local lookup service. The service
then registers its proxy object (a Java object) with



the lookup service using the join protocol. When a
client program queries the lookup service for a par-
ticular service (using the lookup protocol), the lookup
service returns the appropriate service proxy (or a set
of service proxies) to the client. Then, the client can
invoke methods of the chosen service using the proxy.
The invocation can be done either locally or remotely
(using Java RMI protocol). Figure 1 illustrates the
system normal flow.

L. Dizcovery
and Join.

4. Service
[trrocation

Figure 1 - Jini protocols flow

We use two other Jini concepts inside MAJIC; the
first is the leasing mechanism ([7] ch. 10), which pro-
vides Jini its self-healing nature. This mechanism is
a timed-based resource reservation: if a service fails
or stops (either intentionally or unintentionally) with-
out “cleaning up” after itself, its leases will eventually
expire and the service will be deleted. The second con-
cept is the service attribute set ([7] ch. 7), a flexible
way for services to annotate their proxy objects with
information describing the service; thus helping clients
to find their required services.

3.2 MAJIC Architecture overview

The MAJIC architecture is based on the general
blueprint described above applied to Jini platform.
The main considerations were to preserve interoper-
ability and the programming paradigms of the original
Jini platform, while providing maximal flexibility. In
addition, the market mechanisms should have minimal
effect on the performance of the system.

3.2.1 Service Types

Each service type in our architecture is implemented
as a Jini service that additionally implements the
Economy Service Interface (ESI). Each service type
has a well known set of parameters that defines the

parameter space. The parameters are partitioned into
seller parameters, those that are totally fixed by each
seller, and buyer parameters which can be chosen by
each buyer. Each service type defines a Service Con-
tract class (a subclass of the abstract SC class de-
scribed below) for sellers and a Buyer Valuation class
(a subclass of the abstract BV class described below)
for buyers.

3.2.2 The market

The market is implemented as an extension (subclass)
of Jini’s lookup service that uses economic mechanisms
to perform efficient allocation. When service providers
(sellers) join the market, they submit their quote
wrapped in a Seller Contract (SC) object, passed as
one of the service attributes. Whenever a buyer per-
forms a lookup using the market, the buyer submits his
utility function and its parameter search engine, both
wrapped in a Buyer Valuation (BV) object. This is
used by the market to create a buyer agent that per-
forms the economic search for the optimal seller and
parameters. Finally, the market returns a proxy to
the optimal seller as the result of the lookup request.
Additionally, a Final Contract object encapsulating
the closed deal is created and sent to the buyer and to
the seller. We have implemented two distinct markets,
corresponding to the two payment methods described
in the blueprint (first or second price).

3.2.3 The seller

The seller is a Jini service provider (thus additionally
implementing the ESI interface). When joining a mar-
ket, the seller should submit its quote function encap-
sulated in the SC object. Note that the quote function
may be implemented as an arbitrary Java method; the
method’s code is actually transferred to the market. In
addition to the quote function, the SC object also in-
cludes the fixed values of all seller parameters as well
some timing-control information to be described be-
low. Using the ESI interface, the seller receives online
notifications of all Final Contracts (described below)
and must be able to update and resubmit its SC ob-
ject to the market. When the seller is actually invoked
by a buyer using a previously obtained proxy, it must
verify the validity of the corresponding FC.



3.2.4 The buyer

The buyer is a simple Jini client that in a lookup re-
quest sends the market its BV object. The BV ob-
ject encapsulates both the utility function and the pa-
rameter search engine that finds the best values for
the buyer parameters (accessed through a getBuyer-
Parameters() method). Both of these may be im-
plemented as arbitrary Java methods whose code is
transferred to the market and used as the buyers’
agent. The parameter search engine may use well-
known structure information regarding the parameter
space of a particular service type, or may perform an
exhaustive search of the parameter space.

3.2.5 Final contract

The Final Contract (FC) is a sealed contract that rep-
resents a closed deal between a buyer and a seller; it is
constructed by the market and contains the following:
a unique identifier, the SC, the chosen Buyer Param-
eters (BP), and the payment details. The FC should,
in principle, be digitally signed by the market (this is
not currently implemented) and is to be used as the
basis for the actual electronic fund transfers.

3.2.6 Time-control mechanisms

Two mechanisms are supplied for ensuring that sellers’
time-dependent quotes are used only if they are up to
date. Every SC that is submitted to the market allows
specifying a maximum number of contracts that may
be created according to this SC. Whenever the maxi-
mum is reached, the market removes this seller from its
list of service providers. Sellers with time-dependent
quotes can specify a low maximum and then must peri-
odically update their SC prior to this maximum being
reached. In addition, each FC contains a lease control
object (LCO) that ensures sellers that their services
will be invoked by buyers within a predefined time in-
terval. When the lease expires, the service proxy can
no longer be used and an exception is raised.

3.3 Participants obligations

There are some implicit contracts (commitments and
obligations) between all entities (players). The most
significant assumption is that the market is trustable
and accepted by all sides.

The market can assign buyers to a seller, as long as
its SC is wvalid. The SC is valid as long as the service

is registered at the lookup service and the seller hasn’t
supplied the maximum number of contracts mentioned
in his SC. The seller must provide the service accord-
ing to the parameters published in the FC, as long
as the FC is valid (i.e. the FC lease hasn’t expired).
The seller is required to change all necessary parame-
ters inside its SC whenever relevant (time dependent
parameters). The buyer can execute the service dur-
ing the lease duration, defined in the FC. Both seller
and buyer accept the payment details described inside
the FC.

4 Theoretical Analysis

We describe a theoretical model that analyze our mul-
tiparameter market system.

4.1 The Model

The Model is based on two types of players: a buyer
and a seller, and a market place. Denote by P the
parameter space of a certain service type.

Each Seller S, has:

1. A private cost function: cs : P — R™. If S can-
not, provide the service with parameters p, then
cs(p) = 0.

2. A public quote function gs : P — R™*. This func-
tion is sent to the market.

Each Buyer B, has two functions that are coupled to-
gether:

1. A wtility function: up : P — RT. If the service
with parameters p is not acceptable at all to him,
then up(p) = 0.

2. A function gg : Q — P , where @ is the space of
all possible gquote functions. This function acts as
the parameter search engine that finds appropri-
ate parameters, given a quote function.

See section 2.3 for explanations.

Definition 1. gg is called optimal if Vqs, ggr(gqs) €
argmaxpep{up(p) —gs(p)}. Le., gp finds the param-
eters that maximize the buyer surplus.

4.1.1 The assignment mechanism

The market holds the current quotes from all sellers
{gs}, and when it receives a request from a buyer B,
(up, gB), it attempts matching this request to the best



seller and choosing the best parameter values. The
optimization criteria is the surplus. For a given sup-
plier S, the parameters p are chosen by the buyer’s
parameter search engine: pp s = gp(gs). The opti-
mal seller is chosen as to optimize the surplus under
these parameters: S* = argmax {surplusg,s(pp s)}
If surplusp,s« < 0 then the request is denied. Other-
wise, the market fixes a payment dp s- according to
one of the following payment methods:

e first price: dp s+ = qg+ (pfg,s*)

e second price:
let S% = arg max .. {surplusp s}.
dp,s+ = up(pp ) — surplusg s2(pp g2)
If surplusg sz < 0 or S? does not exist then
dp,s~ = up(pp g+)-

Finally, the market outputs the assignment B +— S*
and the payment dp g«.

We assume the following: (1) Several sellers have
registered at the market and can alter their quote func-
tions at any moment. (2) Buyers arrive to the market
online and immediately receive a seller assignment.

4.2 Model Properties

We show that this model has the following properties:
incentive compatibility, allocation efficiency and load
balancing. Our analysis uses game theoretic notions
that are standard in the field of mechanism design
(see [23, 30]). Proofs for all theorems can be found in
the full version of the paper [22].

Definition 2. (seller gain) For a fixed buyer

(up, gp) the gain of seller S is

B gets Swithp
otherwise

) dp.s —
gains(qs,q-s) = { B8 Ocs(p)

where g_g is a vector of the quotes of all other sellers.
Definition 3. (Dominant strategy) A strategy
(quote) qs of seller S is called dominant if for ev-
ery other declared quote gs and for every declara-
tions of all other players q_gs , gains(qs,q—s) >
gains(qs,q-s)-

Definition 4. (Incentive Compatibility) A mar-
ket mechanism will be called incentive compatible if
declaring the true cost function (gs = cg) is a domi-
nant strategy for all sellers.

Note: We do not discuss in this paper incentive com-
patibility for buyers as it is known that this can not

be achieved concurrently with incentive compatibility
of sellers as known from the analysis of bilateral trade
[23].

Theorem 4.1. Assume that (1) the assignment of
services does not cause changes in any cs and (2) gB
is optimal for all buyers, then the second price MAJIC
mechanism is incentive compatible.

Remark. According to [29], when gp is not optimal,
the VCG mechanism is not incentive compatible. Nev-
ertheless, there are methods that achieve feasible ap-
proximation to incentive compatibility; such methods
are described in [29].

Under assumptions of theorem 4.1,
YupVqsVq-s gains(cs,q-s) > gains(qs,q-s)-

Lemma.

Definition 5. The total welfare achieved by the
market is ZBgets S with p_(UB(P) —cs(p))-

Theorem 4.2. Assume that (1) for all sellers qs =
cs; (2) for each buyer gp is optimal; (8) the assign-
ment of services does mot cause changes in any cs.
Then, for every sequence of service requests the total
welfare is optimized by the market’s allocation.

We can show that the load balancing achieved by
this economic-based model is good in many situations.
Specifically, if all service suppliers are identical, then
we would expect for almost uniform allocation of work
among the suppliers.

Theorem 4.3. Assume that (1) All the service
providers are identical; (2) All buyers place a positive
utility on faster service-time; (8) All quotes are cor-
rectly updated to reflect to the service suppliers true
load. Then, the allocation obtained by the market
achieves a makespan (last completion time of a ser-
vice) that is within a factor of 2 w.r.t. the optimal
allocation.

It is shown in [2] that no algorithm can achieve a
better competitive ratio. As usual, and as demon-
strated by our experiments, typical behavior is much
better and applies in a wider class of situations.

5 Experimental results

We have performed several kinds of tests on the MA-
JIC system: the system performance overhead, the
load balancing effect, and the resource allocation ef-
ficienc. We have created two types of services and



corresponding clients: a trivial service, called Simple,
and a complex one, called Printer. The simple service
has a single parameter (price) and the corresponding
client has a fixed utility function. The printer service
has several parameters: price per page, service-time
(the time that the client request can be served), qual-
ity and speed. The service-time parameter varies with
time to achieve simulation of time dependent services.

5.1 Testing environment description

We have built a network based testing environment
that enables us to execute services and clients on sev-
eral machines simultaneously. The entities (lookup
service, services and clients) and their parameters can
be externally configured. We have used a single ma-
chine (PIII-600 processor, 128KB RAM, WinNT 4.0
0OS) for invoking the lookup service and the service
providers, and another machine (PIII-600 processor,
2GB RAM, Linux OS) for invoking the clients. The
machines were connected by LAN (Ethernet 10Mb/s).
The flow of events of each test was as follows: (1)
Activating a specific type of lookup service. (2) Ac-
tivating the required service providers. (3) Activat-
ing the clients with configurable time interval between
their invocations. (4) The clients initiate the lookup
protocol and eventually invoke the given service.

5.2 Results

5.2.1 System performance

The performance of the system has been measured by
the lookup protocol response time, since it is the most
significant difference between the Jini and the MAJIC
systems. This is measured at the buyer side and con-
tains the lookup search time and the network latency.
Fig 2 shows the performance results in high load sce-
nario (no time interval between clients). In low load
scenarios the results are similar, but the relative over-
head is larger (see the full version of the paper [22]).
The tests have been performed using 1000 clients and
variable number of “simple” services. The main pur-
pose of this test is to examine the MAJIC system
overhead due to the market mechanism (including the
parameter search engine) and the additional message
(FC) that is being sent to the chosen seller after every
assignment. We should emphasis that the additional
overhead is only for the lookup service itself, which is
normally insignificant compared to invocations of ser-

vices. From these results, we see indeed that the MA-
JIC overhead is not prohibitive: in the low load case,
we observed a 50% MAJIC overhead, while in the high
load case we observed only 15% overhead. The differ-
ence between the two cases can be explained by the
fact that in the high load scenario most of the lookup
time is spent on waiting for entering the lookup service
and therefore the MAJIC overhead is less significant.

Figure 2: Lookup response
time in high load scenario
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5.2.2 Load balancing

The load balancing tests have been performed on 8
printer services with 500 clients (500ms time interval
between clients invocations). The services were iden-
tical in all parameters. Each seller’s service-time was
constantly updated to reflect its current load. Each
buyer had a 60 ms job duration and a utility function:
up = 120 — 0.05 - service — time. Fig 3 shows the
assignments of clients to services by the MAJIC sys-
tem (for example, service number 1 was assigned to 64
clients). The average number of clients assigned to a
service is 62.5, moreover, the maximal deviation from
the average is 10%. Pure online algorithms geared to
load balancing, which are 2-competitive, show similar
results [12].



Figure 3: Load balancing in
the MAJIC system
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5.2.3 Resource allocation efficiency

In order to demonstrate resource allocation efficiency,
we chose to perform tests on the quality attribute of a
printer service. We have designed a system that con-
tains printer services with different printing qualities.
In this system, each buyer had a particular preference
for a printing quality. We expected from the MA-
JIC system to assign buyers with preference for higher
quality to high quality printers and vice versa. We
have used 3 printer services with the following qual-
ities: High (quality=150, price=15), Medium (qual-
ity=100, price=10) and Low (quality=>50, price=5).
Note that as quality decreases the printing price de-
creases as well. Each buyer has a parameter, f,
which is a continuous quality factor that is chosen
uniformly in the range of [0,1]. This factor represents
the buyer’s preference for printing quality. We acti-
vated 100 clients using the following utility function:
up = 40+ f, - quality. As f, increases, the buyer util-
ity grows faster with quality. Thus, we expect that as
the quality factor gets higher, the client will tend to be
assigned to higher quality printer, although it charges
higher price. In Fig 4, we show buyers assignments
on the described services with respect to their quality
. As we can see, buyer with higher quality factor is
assigned to higher quality service. For example, the
buyer with f, = 0.8 is assigned to the High quality
service.

Fig &
Assignment by quality
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In addition, we have tested the same scenario when
the printer service-time had also been taken into con-
sideration: up = 100+ f,-quality—0.25-service _time.
As we can see in Fig 5, the service-time parameter
caused a load balancing effect; when one of the ser-
vices was loaded, the clients that were supposed to be
assigned to this service have been assigned to an adja-
cent service instead. We observe that even when the
system manifests load balancing, the clients’ quality



preferences still effect the assignments.

6 Conclusions

We have introduced a blueprint for an infrastructure
that performs on line auctions for computer services
over distributed object systems. We implemented
such a system on top of Sun’s Jini system. We
have presented both theoretical and initial empirical
studies showing the efficiency of such systems. Two
major aspects of our architecture distinguishes our
work from previous related systems: (1) we provide
a general-purpose architecture as opposed to previous
economically-based systems that were dedicated to a
single resources. (2) Our infrastructure handles a mul-
tiparameter space in a non trivial way.

The main future test that should be applied to our
system is using it on a large scale for some specific ser-
vice types. This way, we can examine some parameters
of the MAJIC system: the system efficiency, possible
implementations of parameters search engines, inte-
gration with existing security environments, etc.
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