Proceedings of 2000 USENIX Annual Technical Conference

San Diego, Cdlifornia, USA, June 18-23, 2000

GECKO: TRACKING
A VERY LARGE BILLING SYSTEM

Andrew Hume, Scott Daniels, and Angus MacL ellan

USENIX

ssssssssssssssssssssssssssssssssss

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rightsto individua papers remain with the author or the author's employer.
Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Gecko: tracking a very large billing system

Andrew Hume

AT&T Labs - Research
andrew@ esearch. att. com

Scott Daniels

Electronic Data Systems Corporation
scott.daniels@i.com

Angus MacLellan

AT&T Labs - Research
amacl el an@ns. att.com

Abstract

There is a growing need for very large databases which are not practical to implement with
conventional relational database technology. These databases are characterised by huge size and
frequent large updates; they do not require traditional database transactions, instead the atomic-
ity of bulk updates can be guaranteed outside of the database. Given the 1/0 and CPU resources
available on modern computer systems, it is possible to build these huge databases using simple
flat files and simply scanning all the data when doing queries. This paper describes Gecko, a sys-
tem for tracking the state of every call in a very large billing system, which uses sorted flat files to
implement a database of about 60G records occupying 2.6TB.

This paper describes Gecko’s architecture, both data and process, and how we handle inter-
facing with the existing legacy MVS systems. We focus on the performance issues, particularly
with regard to job management, 1/0 management and data distribution, and on the tools we
built. We finish with the important lessons we learned along the way, some tools we developed
that would be useful in dealing with legacy systems, a benchmark comparing some alternative

system architectures, and an assessment of the scalability of the system.

1. Introduction

Like most large companies, AT&T is
under growing pressure to take advantage
the data it collects while conducting its busi-
ness. Attempts to do this with call detail
(and in the near future, IP usage) are ham-
pered by the technical challenge of dealing
with very large volumes of data. Conven-
tional databases are not able to handle such
volumes, particularly when updates are fre-
guent, mostly because of the overhead of per-
forming these wupdates as transactions
[Kor86]. (In the following, many of the
names that follow, such as RAMP, are
acronyms. Most of the time, the expanded
version of the acronym is both obscure and

unilluminating; we therefore will treat them
simply as names. On the other hand, Gecko
iS not an acronym; it's simply a type of
lizard.)

Three existing examples show a range
of solutions. The bill history database, used
by customer care to access the last few
months of bills for residential customers
billed by RAMP, uses conventional database
technology and massive parallelism (many
thousands of instances of IMS databases) and
handles about 25% of AT&T’s daily call detail
volume. The SCAMP project, part of a fraud
detection system, uses the Daytona
database[Gre99] to maintain 63 days of full
volume call detail (250-300M calls/day).

AT&T
Network

collect call detail

BILLDATS

business

RICS

convert

\¥> LD MPS

4ESS/5ESS
settle with ledger
RIPS
cyclic billing
RAMP
IDB

render and distribute

store until needed

Figure 1: High level billing data flow

Each call is represented by a modest (28
fields) fixed sized record. Finally, Grey-
hound uses a flat file scheme to store call
detail and customer account information
which is then used to build various aggregate
data, such as marketing and segmentation
models, for marketing.

This problem, to track every message as
it went through the billing process, all the
way from recording through to settlement,
was first raised with us in late 1995. This is
an extremely hard problem; not only are the
volumes huge (about four times the daily call
volume), but there is no simple way to corre-
late the various records (from different sys-
tems) for a message. After a team at
Research, including two interns from Con-
sumer Billing, built a successful prototype in
1996, the decision was made to build a pro-
duction version. A team of six people
(within Consumer Billing) started in March
1997 and the system went live in December
1997.

2. The problem

The business problem

The flow of records through AT&T’s
billing systems, from recording to settlement,
is fairly complicated. Even for simple resi-
dential billed calls, the records flow through
seven major systems (see figure 1) and are
processed by a few hundred different pro-
cessing steps. There is considerable churn
both at the process level, and at the architec-
tural level. In the face of this complexity and
change, how do we know that every call is
billed exactly once? This is the business
guestion that Gecko answers.

Gecko attacks this question in a novel
way: it tracks the progress of (or records cor-
responding to) each call throughout the
billing process by tapping the dataflows
between systems and within systems.
Although this seems an obvious solution, the
volumes involved have hitherto made this
sort of scheme infeasible.

The technical problem

The problem is threefold: we need to
convert the various dataflow taps into a
canonical fixed-length form (tags), we need to
match tags for a call together into tagsets and
maintain them in a datastore (or database),

and we need to generate various reports
from the datastore. A tagset consists of one
or more tags sharing the same key (24 bytes
including fields like originating number and
timestamp). Each day, we add tags gener-
ated from new tap files, age off certain
tagsets (generally these are tagsets that have
been completely processed), and generate
various reports about the tagsets in the datas-
tore. The relevant quantitative information is

= there are now about 3100 tap files
per day, totaling around 240GB, producing
about 1.2B tags.

e each tag is 96 bytes; a tagset is
80+24n bytes (where the tagset has n tags).

= the datastore will typically contain
about 60B tags in 13B tagsets.

= the target for producing reports is
about 11 hours; the target for the entire cycle
is about 15 hours (allowing some time for
user ad hoc queries), with a maximum of 20
hours (allowing some time for system main-
tenance).

Tagsets which have exited the billing
process, for example, calls that have been
billed, are eventually aged out of the datas-
tore. Typically, we keep tagsets for 30 days
after they exit (in order to facilitate analysis).

Finally, there needs to be a mechanism
for examining the tagsets contributing to any
particular numeric entry in the reports; for
example, if we report that 20,387 tagsets are
delayed and are currently believed to be
inside RICS, the users need to be able exam-
ine those tagsets.

3. The current architecture

The overall architecture had two main
drivers: minimising the impact on the exist-
ing internal computing and networking
infrastructure, and the inability of conven-
tional database technology to handle our
problem.

Our internal network support was
apprehensive about Gecko because of its
prodigious data transmission requirements.
It was felt that adding an extra 200GB per
day to the existing load, most of it long haul,
was not feasible; it is close to 15% of the total
network traffic. The data does compress well
but it takes CPU resources to do the compres-
sion, and because our internal computing
charges are based largely on CPU usage,

Gecko would end up paying an awful lot.
(Actually, the project could not survive the
MVS cost of data compression and would
have been cancelled.) There is a loophole
where small systems are billed at a flat
monthly rate. Thus, we have a satellite/cen-
tral server design where uncompressed data
is sent from the tapped systems over a LAN
to a local Gecko system (satellite) which com-
presses the tap data and then transmits it to
the central server.

The design we implemented to solve
the database problem does not use conven-
tional database technology; as described in
[Hum99], we experimented with an Oracle-
based implementation, but it was unsatisfac-
tory. The best solution only stored the last
state for a call, and not all the states, and
even then, the daily update cycle took 16
hours. Backup at that time was horrendous,
although better solutions exist now. Finally,
the database scheme depended intimately on
the desired reports; if the reports changed
significantly, you would likely have to redo
the whole database design.

Instead, we used sorted flat files and
relied on the speed and 1/0 capacity of mod-
ern high-end Unix systems, such as large SGI
and Sun systems.

The following description reflects our
current implementation; in some cases, as
described in section 6, this was rather differ-
ent than our original design.

3.1 High level system design: Gecko is con-
structed from three systems, as shown in fig-
ure 2. Two systems, dt el | a (in Alpharetta)
and tokay (in Kansas City), are simple
buffer systems; they receive files from local
legacy systems, compress them, and then
transmit them to the central system
gol deye. These “tap files” are received into
the loading dock, which does integrity and
completeness checks, makes archival copies
on tape, and then creates tags which are put
into the tag cache. Finally, each file in the tag
cache is split up into a subfile in each of the
filesystems making up the datastore. The
processing for a file is scheduled when it
arrives, which can be 24 hours/day.

Once a day, currently at 00:30, we per-
form an update cycle which involves taking
all the tag files that have been split and
adding them to the datastore.

continuous cyclic

Alpharetta: dtel |l a

| | |

| | |

| | |

| | |

| | |

| | |

| |

| . | |

1 collection node f loading dock | 1

| | |

| Ctorr;nps:‘isrs data integrity Lo

‘ tag creation 1 | datastore datastore
| | |

! L update

| Vo

| |

| Kansas City: t okay e

| | |

: |

| | |

| |

‘ tag cache o y
| - | |

|] spooling |

| collection node Lo reports
| compress L

| transfer Lo

| | |

| | |

| | |

Figure 2: High level logical and system design

After all the datastore has been updated, we
generate the reports.

3.2 Data design: The system supporting the
datastore is a Sun E10000, with 32 processors
and 6GB of memory, running Solaris 2.6. The
datastore disk storage is provided by 16
A3000 (formerly RSM2000) RAID cabinets,
which provides about 3.6TB of RAID-5 disk
storage. For backup purposes, we have a
StorageTek 9310 Powderhorn tape silo with 8
Redwood tape drives. Each drive can read
and write at about 10MB/s. The silo has a
capacity of 6000 50GB tapes.

The datastore is organised as 93 filesys-
tems, each with 52 directories; each directory
contains a partition of the datastore (the vari-
ous magic numbers here are explained in sec-
tion 3.5). Tagsets are allocated to one of these
4836 partitions according to a hash function
based on the originating telephone number.
Currently, the datastore is about 2.6TB.
Because of Solaris’s inability to sustain large
amounts of sequential file 170 through the
buffer cache, all the datastore filesystems are
mounted as direct 1/0; that is, all file /0 on
those filesystems bypasses the buffer cache.

This “feature’ turned out to be a bless-
ing in disguise because it helped us discover
an unexpected and deep design paradigm:
designing for a scalable cluster of systems
networked together is isomorphic to design-
ing for a single system with a scalable num-
ber of filesystems. Just as with a cluster of
systems, where you try to do nearly all the
work locally on each system and minimise
the inter-system communications, you
arrange that processing of data on each
filesystem is independent of processing on
any other filesystem. The goal, of course, is
to make the design scalable and have pre-
dictable performance. In this case, using the
system-wide buffer cache would be an
unnecessary bottleneck. This isomorphism is
so pervasive that when we evaluate design
changes, we think of filesystems as having
bandwidths and copying files from one
filesystem to another is exactly the same as
ftping files over a network.

This isomorphism seems related to the
duality discussed in [Lau79], a duality
between systems made of a smaller number
of larger processes communicating by

modest numbers of messages and systems
comprising large numbers of small processes
communicating via shared memory. By
replacing ’shared memory’ by ’intrasystem
file 1/0’ and ’'message passing’ with ’net-
worked file 1/0’, Lauer and Needham’s
arguments about the fundamental equiva-
lence of the two approaches seem fresh and
persuasive.

It also helps with extracting maximal
performance out of each filesystem, which
depends, and has always depended, on min-
imising the amount of disk head movement.
We did this by two design principles: access-
ing data sequentially rather than random
access, and carefully controlling the amount
of simultaneous access to the filesystem. The
implementation also needs care; the two
most important techniques are strict adher-
ence to a good set of 1/0 block sizes (we use
256KB chosen to match the stripe width of
the RAID-5 configuration of the underlying
storage array), and using multiple buffers so
that there is always an 1/0 request outstand-
ing (we use an internally developed buffer-
ing scheme, based on POSIX threads, that
currently uses 3 readers or writers).

Controlling the amount of simultane-
ous access to each filesystem was easy
because we use a single tool, woomera, to con-
trol the over 10,000 jobs needed to update the
datastore. The relevant part of woomera,
which is described in more detail in section
5.4, is that jobs can be marked as using vari-
ous resources and it is easy to specify limits
on how many jobs sharing a resource may
run simultaneously. By marking all the jobs
that access filesystem gb with a resource
LVOLgb, we can set the limit for the resource
LVOLgb to one and thus ensure that at most
one job will access that filesystem at any
given time.

3.3 Report architecture: Gecko is required to
generate three different reports. Two of the
reports describe calls that are still being pro-
cessed, and the other describes the eventual
disposition of calls. This Ilatter report
requires a summary of all calls ever pro-
cessed. The current reporting architecture is
a combination of two things. One, the his-
tory file, is a summary of all tagsets that have
been deleted from the datastore. This sum-
mary is a fairly general breakdown that can
support a fairly wide range of reports related

to the existing reports. Thus, most changes
to the reports do not require modifying the
history; just its interpretation and tabulation.
The history file is currently a few hundred
MB in size and grows slowly over time. The
second are summaries, in an intermediate
report format (IRF), of tagsets still in the
datastore. These latter summaries are never
stored for any length of time; they are simply
intermediate results for the daily
update/report cycle.

More details on the report process are
given below, but eventually, reports are gen-
erated. After the reports are generated, they
are shipped to a web site for access by our
customers.

3.4 Process architecture: The current process-
ing architecture is fairly straightforward.
With the exception of the first step, which
occurs throughout the day, the remaining
steps occur as part of the daily update cycle.

The first step is to distribute the incom-
ing tags out to the datastore. For every
source file, files with the same name are cre-
ated in each filesystem (and not partition)
and filled with tags that hash to any partition
on that filesystem.

The next step examines all the filesys-
tems, determines which input files will be
included in this cycle, and then generates all
the jobs to be executed for this update cycle.
The 10,000+ jobs are then given to woomera
for execution.

Within each filesystem, the incoming
tags are sorted together in 1GB parcels. The
resulting files are merged and then split out
into each of the 52 partitions. The end result
is the add file, a sorted file of tags to be added
to each partition’s data file. (The 1GB size is
an administrative convenience; from this we
experimentally tuned the various sorting
parameters, most noticeably the amount of
memory used.)

The next process, pu, updates the parti-
tion data file by merging in the new tags,
deleting appropriate tagsets, and generating
an IRF output for the new partition data file.
The deleted tagsets are put into the delete file.
We then generate an IRF output for the delete
file. Because the underlying filesystem is
unbuffered, all tag-related 1/0 goes through
a n-buffering scheme (we currently use triple
buffers). We generate a summary description

of the delete file.

The next step, performed after all the
partitions on a specific filesystem have been
processed, rolls up the two different report
summaries in all those partitions into two
equivalent files for the whole filesystem.

The next step generates the reports for
that cycle. First, we combine the summary
for the deleted tagsets with the old history
file and generate a new history file. Second,
we combine that and the 93 filesystem sum-
maries and generate a single set of reports.

Finally, we backup the datastore in two
passes. The first pass stores all the add files
and delete files. The second pass stores a
rotating sixth of the 4836 datastore partitions.
(This is exactly analogous to incremental and
full backups.)

3.5 Numerology: The system layout
described above contains several seemingly
arbitrary numbers; this section explains their
derivation.

The number of filesystems (93) is a con-
sequence of our RAID hardware. We had 16
cabinets, each with 2 UltraSCSI channels and
arranged as 7 (35GB) LUNs. We wanted all
our LUNs to have good but predictable per-
formance so we used one LUN per filesystem
and 3 LUNs per SCSI bus, giving us 96 possi-
ble filesystems. Three of these were needed
for other purposes, leaving us 93 for the data-
store. The 7th LUN in each cabinet was used
for storage, such as the tag cache, not used
during the daily update cycle.

The other numbers derived from a sin-
gle parameter, namely how long it takes to
process the average database partition.
Although of little overall consequence, this
affects how much work is at risk in a system
crash and how long it takes to recover or
reprocess a partition. We set this at 3 min-
utes, which implies an average partition size
of 5-600MB. For a database of 2.6TB, this is
about 5000 partitions. Here’s where it gets
weird: midway through Gecko’s production
life, we had to move the hardware from Mesa
(Arizona) to Kansas City. It was infeasible to
suspend the data feeds during the move, so
we sent some RAID cabinets ahead to hold
the data, which meant we had to run with
only 78 filesystems for a few weeks, but after
the move we would be back to 93. Changing
the number of partitions is extremely

expensive (about 4 days clock time), but if
the number of partitions is constant, then
redistributing them amongst different num-
bers of filesystems (essentially renaming
them), is relatively cheap (5-6 hours clock
time for file copies). The least common mul-
tiple of 78 and 93 is 2418 and so we chose
4836 partitions, which meant 52 partitions
per filesystem.

We chose 1GB for the parcel size as a
compromise between two factors: it is more
efficient to sort larger files, but larger files
require much more temporary space. This
latter restriction was critical; peak disk usage
for sorting 1GB is 3GB which was 10% of our
filesystem. Our average disk utilisation was
about 85%, and thus we couldn’t afford
larger files.

4. Current performance

We can characterise Gecko’s perfor-
mance by two measures. The first is how
long it takes to achieve the report and cycle
end gates. The second is how fast we can
scan the datastore performing an ad hoc
search/extract.

The report gate is reached when the
datastore has been completely updated and
we’ve generated the final reports. Over the
last 12 cycles, the report gate ranged between
6.1 and 9.9 wall clock hours, with an average
time of 7.6 hours. The cycle end gate is
reached after the updated datastore has been
backed up and any other housekeeping
chores have been completed. Over the last 12
cycles, the cycle end gate ranged between
11.1 and 15.1 wall clock hours, with an aver-
age time of 11.5 hours. Both these averages
comfortably beat the original requirements.

There are a few ways of measuring how
fast we can scan the datastore. The first is
tagstat, which is a C program gathering vari-
ous statistics about the datastore. The second
and third are different queries to a SQL-like
selection engine (comb). The second is a null
qguery 1, which is always true. The third is a
simple query which selects tagsets with a
specific originating number and biller:
(onum == 7325551212) && (bsid ==
34) . The speeds and total run times are

query | runtime speed

tagstat 71 min | 606MB/s
null 110 min | 392MB/s
simple | 170 min | 255MB/s

Note that we have not yet tuned comb to
increase its performance.

5. Tools

The implementation of Gecko relies
heavily on a modest nhumber of tools in the
implementation of its processing and the
management of that processing. Nearly all of
these have application beyond Gecko and so
we describe them here. Most of the code is
written in C and ksh; the remainder is in awk.

5.1 Reliable file transmission: By internal fiat,
we used CONNECT:Direct for file transmis-
sion; it is essentially a baroque embellish-
ment of ftp. No matter what file transfer
mechanism we used, we wanted to avoid
manual intervention in the case of file trans-
fer errors. The scheme used is a very simple,
very reliable one:

a) the sender registers a file to go.

b) the xmit daemon transmits the file, and
a small control file containing the
name, length and checksum, and logs
the file as sent.

c) on the receiving system, the rcv dae-
mon waits for control files and upon
receipt, verifies the length and check-
sum. If they match, the file is dis-
tributed (in whatever way is conve-
nient) and is logged as a received file.

d) after the xmit daemon has been idle for
some time (typically 30 minutes), it
sends a control file listing the last sev-
eral thousand files transmitted.

e) when the rcv daemon receives the con-
trol file list from d), it compares that list
against its own and sends retransmit
requests for any that appear to have
been transmitted but were not received.

This has proved very resilient against all
sorts of failures, including system crashes
and cases where due to operator error, the
file is safely received but inadvertently
removed or corrupted (in this latter case, we
can simply rerequest the file!).

5.2 Parser generation: One of the greatest

challenges for Gecko is being able to parse
the various data tap feeds. Roughly 60% of
our input are AMA records (standard
telecommunications formats). There are
about 230 AMA formats; these formats rarely
change, but a few new formats are added
each year. The rest are described by
copybooks, which are the COBOL equivalent
of a C struct definition combined with the
printf format used to print it out. We have a
reference library of tens of thousands of
copybooks, but the data we need to parse
seems to only involve a few tens of copy-
books. The copybooks change fairly fre-
qguently.

In both cases, parsing has the same
structure: we convert the raw record into an
internal C structure, and then populate a tag
from that C structure. The latter function has
to be handcoded as it involves semantic anal-
ysis of the raw record fields. The former
function is completely automated and
depends only on either an online database of
AMA record formats or the copybooks them-
selves. For example, we have a copybook
compiler (a rather complicated awk script)
that takes a copybook as input and produces
C definitions for the equivalent structs, a
procedure that takes an EBCDIC byte stream
and populates the C equivalent (in ASCII
where appropriate), and a structured pretty-
printing function that lets you look at the
EBCDIC byte stream in a useful way. Most
copybook changes involve adding new mem-
bers or rearranging members; this is handled
transparently by just dropping in the new
copybook. Over 80% of the C code in Gecko
is generated in this fashion.

5.3 Job management: Gecko performs many
thousands of jobs per day. We needed a tool
that could support conditional execution
(stalling some jobs when other jobs failed),
sequential execution (stalling some jobs until
other jobs have run), parallel execution (exe-
cute as many jobs in parallel as we can), and
management of these jobs. The resulting
tool, a job dispatch daemon, was called
woomera (an Aboriginal term for an imple-
ment to enhance spear throwing), and wreq
(which submits requests to woomera). The
essential aspects of woomera are:

= the two main concepts are jobs and
resources.

= jobs consist of a name, priority,

optional after clauses (or more accurately,
prerequisite conditions), an optional list of
resources and a ksh command.

= resources are capitalised names and
have one major property: an upper limit.

« jobs become runnable when their
prerequisites complete. A job prerequisite
means waiting for that job to complete suc-
cessfully (that is, with a zero exit status). A
resource prerequisite means waiting for all
jobs using that resource to finish successfully.

= when ajob is runnable, it is executed
subject to resource limits (and certain other
limits, such as total number of jobs and
actual machine load). If a resource Rsr ¢ has
a limit of 3, then at most 3 jobs using the
resource Rsr ¢ can run simultaneously.

= there are various administrative
functions such as deleting jobs, dumping the
internal state, and forcing a job to be
runnable.

The ubiquitous use of woomera has been of
enormous benefit. It provides a uniform
environment for the execution of Gecko jobs,
logging job executions, and a very flexible
mechanism for controlling job execution. For
example, during the daily datastore update,
we need to halt parsing activities. This is
simply done by making all the parse jobs use
a specific resource, say PRS_LI M T, and set-
ting it’s limit to zero. The jobs themselves are
unaware of these activities.

5.4 Execution management: Initially, we con-
trolled the job flow by manually setting vari-
ous resources within woomera. After a while,
this became mechanical in nature so we auto-
mated it as a ksh script called bludge. Every
few minutes, bludge analyses the system
activity and determines what state the
machine is in, and sets various limits accord-
ingly. For example, when the tag cache
becomes uncomfortably full, bludge sets the
limit for PRS_LI M T to zero so that no more
tags will be produced and avoid the situation
where tags would be thrown away. (Even
though its a cache, recreating the data would
likely involve accessing magnetic tape which
we would really like to avoid!)

Bludge calculates the system state from
scratch each times it runs, rather than
“knowing” what ought to be happening or
remembering what was happening last time.
Although this is less efficient, it is far more
robust and is resilient against ad hoc changes

in the system environment or workload.

5.5 Tape store/restore: Gecko has relatively
simple needs for tape operations. There are
three classes of files we backup to tape:

= raw tap files, backed up 6 times a
day, retention is forever, about 40GB/day.

-« full datastore backups (the actual
data files), once per cycle, retention is 3
copies, about 400GB/day.

= incremental datastore backups (the
add and delete files), once per cycle, reten-
tion is 3-6 months, about 135GB/day.

In each case, we have an exact list of the
absolute filenames to backup. Recovery is
infrequent, but it also uses a list of absolute
filenames.

By internal fiat we were forced to use a
specific product, Alexandria. We’'ve been
assured that someone is happy with Alexan-
dria, but we are not. We’ve had to build and
maintain our own database of files we’ve
backed up in order to get plausible perfor-
mance out of Alexandria. Overall, our sim-
ple store/restore (a list of files) operations
require over 2000 lines of ksh scripts and
about 1GB of databases as wrappers around
the basic Alexandria commands.

In retrospect, the tape subsystem, con-
sisting of the StorageTek Powderhorn silo
with Redwood drives and Alexandria soft-
ware, was surprisingly unreliable. Of the 600
tapes we wrote successfully, about 20 physi-
cally failed upon reading (tape shapping or
creasing). Alternatively, about 15% of file
recoveries failed for software reasons and
would eventually succeed after prodding
Alexandria (and sometimes, the tape silo) in
various ways.

5.6 Gre: The Gecko scripts make extensive
use of grep, and in particular, fgrep for search-
ing for many fixed strings in a file. Solaris’s
fgrep has an unacceptably low limit on the
number of strings (we routinely search for
5-6000 strings, and sometimes 20000 or so).
The XPG4 version has much higher limits,
but runs unacceptably slowly with large lists.
We finally switched to gre, developed by
Andrew Hume in 1986. For our larger lists, it
runs about 200 times faster, cutting run times
from 45 minutes down to 15 seconds or so.
While we have not measured it, we would
expect the GNU grep to perform about as
well as gre. Both tools use variants of the

Commentz-Walter algorithm [Com79], which
is best described in [Aho90] (the original
paper has a number of errors). Commentz-
Walter is effectively the Aho-Corasick algo-
rithm used in the original fgrep program com-
bined with the Boyer-Moore algorithm.

6. What we learned along the way

6.1 Decouple what from how: The natural way
to perform the daily update cycle is to have
some program take some description of the
work and figure out what to do and then do
it, much like the Unix tool make. We deliber-
ately rejected this scheme in favour of a three
part scheme: one program figures out what
has to be done (dsum), and then gives it to
another to schedule and execute (woomera),
while another program monitors things and
tweaks various woomera controls (bludge).
Although superficially more complicated,
each component is much simpler to build
and maintain and allows reuse by other parts
of Gecko. More importantly, it allows real-
time adjustments (e.g. pause all work
momentarily) as well as structural con-
straints (e.g. keep the system load below 60
or no more than 2 jobs running on filesystem
gb).

The decision to execute everything
through woomera and manage this by bludge
has worked out extremely well. We get log-
ging, flexible control, and almost complete
independence of the mechanics of job execu-
tion and the management of that execution.
We can’t imagine any real nontrivial produc-
tion system not using similar schemes. In
addition, this has allowed us to experiment
with quite sophisticated 1/0 management
schemes; for example, without affecting any
other aspect of the daily update cycle, we
played with:

< minimising head contention by
allowing only one job per filesystem (by
adding a per filesystem resource)

= managing RAID controller load by
restricting the number of jobs using filesys-
tems associated with specific RAID con-
trollers (by adding a per controller resource)

= managing SCSI bus load (by adding
a per SCSI bus resource)

We typically conducted these experiments
during production runs, manually adjusting
limits and measuring changes in processing

rates and various metrics reported by the
standard Unix system performance tools
iostat, vmstat, and mpstat.

6.2 Cycle management: As described above,
bludge manages the overall system environ-
ment by tweaking various resource limits
within woomera. For example, when we are
in the CPU-intensive part of the update cycle,
bludge sets the limit for PRS_LI M T to zero in
order to prevent tap file parsing during the
update cycle.

More importantly for the cycle, bludge
ensures that processing on all filesystems fin-
ishes at about the same time, thus minimis-
ing the overall cycle length (there is signifi-
cant variation in the processing time required
for each filesystem, and by simple round-
robin scheduling, the cycle would take as
long as the longest filesystem). Recall that
the datastore update jobs have a resource
indicating the filesystem containing the parti-
tion, say LVOLgb. Typically, we run about 50
update jobs simultaneously. So if bludge
notices that filesystem gb is 70% done and
filesystem bf is only 45% done, it will likely
set LVOLgb to zero and LVOLbf to 1 or 2
until filesystem bf catches up.

6.3 Recovery: For the first few months of pro-
duction, we averaged a system crash every
2-3 days. This caused us to quickly develop
and test effective techniques for restarting
our update cycle. The two key concepts were
careful logging of program start and end,
and arranging that programs like pu were
transactions that either completed cleanly, or
could be rerun safely (regardless if they had
either failed or just hadn’t finished).

6.4 Centralising tag 1/0: All tag 1/0 flows
through one module. While this seems an
obvious thing to do, it has meant this module
is the most difficult piece of code in the entire
project, and for performance reasons, the
most sensitive to code and/or operating sys-
tem changes. The most visible benefits have
been: performance improvements (such as
when we changed from normal synchronous
170 to asynchronous multibuffered 1/0) are
immediately available to all tools processing
tags or tagsets, application ubiquity (files can
be transparently interpreted as files of tags or
tagsets regardless of what was in the original
file), and functional enhancements (such as
when we supported internal tagset

compression) are immediately available to all
tools processing tags or tagsets.

6.5 Weakness of system hardware/software:
While most people would agree that Gecko is
pushing the limits of what systems can
deliver, we were surprised by how many sys-
tem hardware and software problems
impacted our production system. Most were
a surprise to us, so we’ll list a few as a warn-
ing to others:

< we originally had fewer, larger
filesystems made by striping together 3 36GB
LUNSs. We expected to get faster throughput,
but instead ran into controller throughput
bottlenecks and baffling (to both Sun and us)
performance results as we varied the stripe
width.

< trying to force several hundred
MB/s of sequential 1/0 through the page
cache never really worked; it either ran
slowly or crashed the system. Apparently,
the case of sequentially reading through ter-
abytes of disk was never thought of by the
designers of the virtual memory/page cache
code. (To be fair, large sequential 1/0 also
seems to confuse system configurers and
RAID vendors, who all believe more cache
memory will solve this problem.) Tuning
various page cache parameters helped a lit-
tle, but in the end, we just gave up and made
the filesystems unbuffered and put double-
buffering into our application. (Of course,
that didn’t help the backup software or any
other programs that run on those filesystems,
but c’est la vie.)

= we ran into unexplained bottlenecks
in the throughput performance of pipes.

e we ran into annoying filesystem
bugs (such as reading through a directory not
returning all the files in that directory) and
features (such as the internal filename lookup
cache has a hard coded name length limit;
unfortunately all our source filenames, about
60-70 characters long, are longer than that
limit!).

= it is fairly easy to make the Solaris
virtual memory system go unstable when
you have less physical swap space than
physical memory. While this is an easy thing
to avoid, it took several months before we
found someone at Sun who knew this.

6.6 Trust but verify: A significant aspect of
our implementation, and one we didn’t antic-
ipate, involves performing integrity checks

whenever we can. This extends from check-
ing that when we sort several hundred files
together, the size of the output equals the
sum of the sizes of the input files, to when-
ever we process tagset files, we verify the for-
mat and data consistency. (And recently, in
order to track down a bug in our RAID sys-
tems where a bad sector is recorded every
30-40TB, we have been checksumming every
256KB block of tag data we write and verify-
ing the checksum after we close the file!)
Although this is tedious and modestly
expensive, it has been necessary given the
number of bugs in the underlying software
and hardware.

6.7 Sorting: the initial sorting takes about
25% of the report gate time budget. The orig-
inal scheme split the source tag files directly
into each partition, and then sorted the files
within each partition as part of the pu process
step. This ran into a filename lookup bottle-
neck. Not only did it require 52 times as
many filename lookups (once per partition
rather than once per filesystem), these
lookups were not cached as the filenames
were too long. The current scheme is much
better, but we thought of a superior scheme,
derived from an idea suggested by Ze-Wei
Chen, but have not yet implemented it yet.
Here, we would split the original source tag
files into several buckets (based on ranges of
the sorting key) in each filesystem. After we
sort each bucket, we can simply split the
result out to the partitions appending to the
add file. This eliminates the final merge pass
and avoids the pipe performance bottleneck.

6.8 Distributed design: The distributed layout
of the datastore has worked out very well. It
allows a high degree of parallel processing
without imposing a great load on the operat-
ing system.

Although we have not yet made use of
it, it also allows processing distributed across
distinct systems as well as filesystems. If we
had implemented Gecko on a central server
and a number of smaller servers (rather than
one big SMP), then the only significant traffic
between servers would be the background
splitting of tags out to the smaller server
throughout the day and copying the rolled
up report summaries back to the central
server. This latter amounts to only a couple
of GB, which is easily handled by modern
LANS.

6.9 Move transactions outside the database:
Because we only update the datastore as part
of a scheduled process, we can assure the
atomicity of that update operationally, rather
than rely on mechanisms within the datas-
tore itself. This had several advantages,
including simpler datastore code, more effi-
cient updates, and a simple way of labelling
the state of the datastore (namely, the name
of the update cycle performing the updates).
This label was embedded in all the add and
delete files, figured prominently in all the
reports, and allowed complete unambiguity
and reproducibility of both datastore and
reports.

6.10 Processing MVS feeds: Although the
most obvious problem in dealing with MVS
feeds has been a surprisingly large number
of file header/trailer sequencing schemes,
the worst problem has been a simple one: the
absence of a unambiguous date and time
stamp. Some feeds only have a date, and not
a time of day. But even those that do have a
time of day neglect to indicate a timezone. It
is quite hard, therefore, to nail down in abso-
lute terms what time the file was generated.
(We guess based on the processing center.)

6.11 Tools, not objects: Contrary to popular
trends, our approach was very much tool
based, rather than object based. It seems that
this is a performance issue; if you really need
a process to go fast, you make a tool to
implement that process and tune the heck
out of it (you don’t start with objects and
methods and so on).

6.12 Focus: We did one thing that really
helped our design, which unfortunately
might not be applicable to most developers:
we had a clear vision of what our design
could do well, and we rejected suggestions
that did not suit the design. This sounds
worse than it is; we are able to produce all
the reports that our customers have required.
However, as in all architectures, the customer
will ask for things that seriously compromise
the basic system design, and we denied those
rather than warp or bloat the design.

7. Performance comparisons

The Gecko system is quite portable,
requiring a regular ISO C environment aug-
mented by sockets and POSIX threads. This
allows to port the system to different systems

and do true benchmarking. This section will
describe the results and price/performance
for the original Sun system and an SGI sys-
tem. We had intended to include a Compaq
4 CPU server but were stymied by inadequa-
cies in PC environments easily available to
us. (None of the POSIX environments for
Windows, such as UWIN, support threads,
and we have not yet been able to bludgeon
the GCC/Linux environment and their so-
called extensions into submission.) Given
the poor compatibility of the various thread
libraries, the only practical solution is to
remove threads and depend on file system
buffering to work.

We can calculate the price/performance
rating for a system by combining three fac-
tors:

1) CPU speed (how fast can a single
process do a specific amount of work)

2) system efficiency (how fast can the
system execute a set of processes)

3) price
The overall rating is simply the product of
these three numbers. Given the vagaries of
computer pricing, this section will omit the
pricing factor.

In more detail, we benchmarked the
update cycle. (The other significant activity
we do is parsing of tap files, and this is heav-
ily CPU-bound and covered by 1) above.)
The production task is to run 4836 pu jobs;
our benchmark ran a smaller number that
depended on the particular system capacity.
It is infeasible to carry around terabytes of
data for benchmarking. Our solution was to
replicate a small group of filesystems to
whatever size we need; we tracked total
filesystem processing times and found j at
was consistently around the 25th percentile,
ea around the 50th percentile, and nd
around the 75th percentile (we named our 93
filesystems as [a-o][a-f] and p[a-c]).
To follow the real data sizes, we replicated
groupsof5:ja ea ea ea nd.

We measured the CPU speed by aver-
aging the user time needed to process all
unique data files in the benchmark.

Task Resource Cur. Value Comments
al networking | 250GB/day | raw data feeds into the satellites
a2 CPU 760Ks/day | compress raw data feeds
a3 networking | 40GB/day | compressed data feeds from satellites to goldeye
a4 CPU 265Ks/day | tag creation (from data feeds) into tag cache
a5 interFS 100GB/day | tags from tag cache to datastore filesystems
bl CPU&FS 61H sorting new tags
b2 CPU 166H updating the datastore
b3 interFS 2GB/day intermediate report files from datastore filesys-
tems to goldeye
b4 CPU 0.5H final report generation
b5 TAPE&FS 4H datastore backup

Table 1: Performance model

Efficiency is simply the ratio of total CPU
time to real (clock) time. The final factors
are:

Factor Sun E10k | SGI O2K | SGI/Sun
CPU 63.2s 49.0s 1.28
Efficiency 0.183 0.357 1.95

In this case, multiplying these factors
together gives about a 2.5 advantage to SGI.
Of course, performance is but one factor in
choosing a vendor; in our case, Sun was cho-
sen for other reasons. In addition, your
application will behave differently. But do
keep in mind the issue of system efficiency;
the size of this factor was a surprise to us.

8. Scalability

We are often asked whether Gecko is
scalable; the answer is “Of course!” The real
guestion is somewhat different: given a spec-
ified workload, do we have a way to predict
the expected processing time and the neces-
sary resources? Yes, we do.

The model, shown in Table 1, concen-
trates on the two main aspects of any batch-
oriented system; moving bytes, and process-
ing bytes. In our discussion, we’ll refer to
two architectures: one is the SMP scheme
that we described above, and the second is a
(smaller) central server connected to a cluster
of small machines with the datastore dis-
tributed amongs the small machines. In the
following, we will denote the amount of
incoming tags for a day by i; the size of the
datastore by d, and the total amount of tape
throughputis t.

The first section is the work that runs

asynchronously from the daily update cycle.
Resources consumed by tasks al, a2 and a3
are linear in the size of the raw data feeds.
We can increase the resources for al and a2 at
a linear rate by simply adding more satellites.
The networking for a3 will scale almost lin-
early until we hit fairly large limits imposed
by hardware limits on the number of net-
work cards; this is unlikely to be a problem
as modern large servers can support several
100BaseT or GigaBit connections capable of
supporting 250+GB/hour. For the cluster
architecture, we could implement the loading
dock as a separate system and start replicat-
ing that. The CPU needed for a4 will scale
linearly. Task a5 on goldeye (SMP) takes
about 2 hours; perversely, it would probably
run faster over a network to a cluster. It
should scale linearly until we run into either
backplane limits on total /0 movement or
operating system bottlenecks (the two ones
we’ve seen most are virtual memory related
and file system related locking).

The second set of tasks (b?) make up
the daily cycle. The tasks bl, b2, b3 and b4
can run in parallel limited only by the num-
ber of processors and independent filesys-
tems available. In particular, tasks bl and b2
are composed of 4836 subtasks, all of which
can be run in parallel. Task bl involves sort-
ing and thus takes O(ilogi); b2 and b3 are
both O(d). Task b4 takes time linear in sum
of the number of days represented by data in
the datastore and the history file. Task b5

. i+d
will take O(T)'

Our Sun implementation would proba-
bly process up to 2-3 times the daily input

that we do now. Switching to a faster SMP,
such as an SGI, could push that to 4-6 times.
For real growth, though, you would want to
go with a cluster implementation. Carefully
constructed, this would make nearly every
aspect of the workload scale linearly by
adding more systems. The only task that
doesn’t is the sorting step bl, and even that
could be mitigated by presorting files as they
arrive on each filesystem and thus make the
part of b1 necessary for the update cycle be a
linear performance merge pass.

9. Conclusion

By any measure, Gecko aims at solving
a very large problem. Indeed, originally it
was thought that the problem was not solv-
able at all (and during our darkest days, we
almost believed this as well). But the fact
remains that we have a system in production
today that handles the volumes and meets its
deadlines. Furthermore, the project initially
went live only 8 months after starting with
all design and development done by a team
of 6 people.

And even after a year, the volumes are
still stunning. On an average day, we process
about 240GB of legacy data, add about 1B
tags to a 13B tagset datastore stored on 2.6TB
of disk, and backup about 900GB of data to
tape. And on our peak day (recovering from
our system’s move from Mesa to Kansas
City), those numbers have stretched to 5B
tags added and 1.2TB backed up to tape.

The datastore design, a myriad of
sorted flat files, has proved to be a good one,
even though it isn’t a conventional database.
It works, it comfortably beats its processing
deadlines, and has proved flexible enough to
cope with several redesigns.

References

[Aho90]Alfred V. Aho, Algorithms for Finding
Patterns in Strings, Handbook of Theo-
retical Computer Science, Elsevier,
1990. pp 278-282.

[Com79]Beate Commentz-Walter, A string
matching algorithm fast on the average,
Proceedings of the 6th Internat. Coll. on
Automata, Languages and Program-
ming, Springer, Berlin, 1979. pp
118-132.

[Gre99]R. Greer, Daytona and the Fourth-

Generation Language Cymbal, ACM SIG-
MOD Conference, June 1999.

[Hum99]A. Hume and A. MacLellan, Project
Gecko: pushing the envelope, NordU’99
Proceedings, 1999.

[Kor86]H. F. Korth and A. Silberschatz,
Database System Concepts, McGraw-Hill,
1986.

[Lau79]Hugh C. Lauer and Roger M. Need-
ham, “On the Duality of Operating Sys-
tem Structures”, Operating Systems
Review, 13(2), 3-19 (1979).

Acknowledgements

This work was a team effort; the other
Gecko developers are Ray Bogle, Chuck
Francis, Jon Hunt, Pam Martin, and Connie
Smith. There have been many others within
the Consumer Billing and Research organisa-
tions with AT&T who have helped; in fact,
too many to list here. We have had invalu-
able help from our vendors, but Martin
Canoy, Jim Mauro and Richard McDougall
from Sun were outstanding.

The comments of the reviewers and our
shepherd greatly improved this paper; the
remaining errors are those of the authors. We
thank Rob Kolstad for suggesting the Lauer
and Needham paper.

This is an experience paper, and as
such, contains various statements about cer-
tain products and their behaviour. Such
products evolve over time, and any specific
observation we made may well be invalid by
the time you read this paper. Caveat emptor.

