
Proceedings of 2000 USENIX Annual Technical Conference
San Diego, California, USA, June 18–23, 2000

A U T O - D I A G N O S I S O F F I E L D P R O B L E M S
I N A N AP P L I A N C E O P E R AT I N G S Y S T E M

Gaurav Banga

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Auto-diagnosisof field problemsin an applianceoperating system

Gaurav Banga
NetworkApplianceInc.,

495E. JavaDrive, Sunnyvale, CA94089
gaurav@netapp.com

Abstract
The use of network appliances,i.e., computersys-

tems specializedto perform a single function, is be-
coming increasinglywidespread. Network appliances
have many advantagesover traditionalgeneral-purpose
systemssuchashigherperformance/costmetrics,easier
configurationandlowercostsof management.

Unfortunately, while thecomplexity of configuration
and managementof network appliancesin normal us-
ageis muchlower thanthatof general-purposesystems,
this is not always true in problemsituations. The de-
buggingof configurationandperformanceproblemswith
appliancecomputersis a tasksimilar to the debugging
of suchproblemswith general-purposesystems,andre-
quiressubstantialexpertise.

Thispaperexaminestheissuesof appliance-likeman-
agementandperformancedebugging.Wepresentanum-
berof techniquesthatenableappliance-likeproblemdi-
agnosis. Theseinclude continuousmonitoring for ab-
normalconditions,diagnosisof configurationproblems
of network protocolsvia protocol augmentation, path-
basedproblemisolationvia cross-layeranalysis, andau-
tomaticconfigurationchangetracking. We alsodescribe
theuseof thesetechniquesin a problemauto-diagnosis
subsystemthatwe have built for theDataONTAP oper-
atingsystem.Our experiencewith this systemindicates
a significantreductionin thecostof problemdebugging
andamuchsimpleruserexperience.

1 Intr oduction
The useof network appliances,i.e., computersspe-

cialized to perform a single function, is becomingin-
creasinglywidespread.Examplesof suchappliancesare
file servers [24, 6], e-mail servers [19, 13], web prox-
ies [25, 5], web accelerators[25, 5, 16] and load bal-
ancers[4, 12]. Appliancecomputershave many poten-
tial advantagesovertraditionalgeneral-purposesystems,
suchashigherperformance/costmetrics,simplerconfig-
uration and lower costsof management.With the re-
centgrowth in theuseof networkedsystemsby thenon-
expert, mainstreampopulation,all of theseadvantages

havesignificantimportance.
A network applianceis typically constructedusing

off-the-shelfhardwarecomponents.Theappliance’sser-
vice is implementedby customsoftwarerunningon top
of aspecializedoperatingsystem.(Oftentheserversoft-
ware is tightly integratedwith the OS in the samead-
dressspace.) The operatingsystemitself is either de-
signedandconstructedfrom scratch,e.g.,Network Ap-
pliance’s DataONTAP [26], or is a stripped-down ver-
sionof a general-purposeoperatingsystem,e.g.,BSDI’s
EmbeddedBSD/OS[8].

While appliancecomputersystemshavedeliveredthe
promiseof higher performance/costvis-a-vis general-
purposesystems,the sameis not strictly true of their
manageabilityaspects. While the complexity of con-
figuration and managementof appliancecomputersin
normalcircumstancesis significantlylower thanthatof
general-purposesystems,thedebuggingof configuration
andperformanceproblemsof appliances(whenthey do
occur)remainsa taskthat requiressubstantialoperating
systemandnetworking expertise.In this respect,appli-
ancesystemsaresimilar to general-purposesystems.

Thisstateof technologyis notverysurprising:Today,
the term “appliance-like” is usuallytaken to meanspe-
cializedto doa singlecoherenttaskwell. Specialization
of this form hasallowedappliancevendorsto build and
maintainsmalleramountsof codethanusedon general-
purposecomputersystems. The narrower functional-
ity of applianceshasenabledsimplerconfiguration,and
more aggressive optimizationsleadingto superiorper-
formance.Theability to easilydebug configurationand
performanceproblemshashoweverbeenasecondaryis-
suesofar, andhasnot receivedmuchattention.

Applianceoperatingsystemsoftencontainsignificant
code derived from general-purposeoperatingsystems,
particularlyUNIX. For instance,the BSD TCP/IPpro-
tocol code[33] is a commonbuilding block in appliance
operatingsystems.Like general-purposesystems,appli-
anceoperatingsystemsexport a setof commandinter-
facesthatallow usersto displayvaluesof variousstatis-
tic counterscorrespondingto thevariouseventsthathave

occurredduringtheoperationof thesystem.Somecom-
mand interfacesdisplay systemconfigurationparame-
ters. As with general-purposesystems,thesecommand
interfacesare the key tools to debugging performance
andconfigurationproblemswith appliancesystems.

For example,theTCP/IPcodeof many appliancesys-
temsexports its event statisticsandconfigurationvia a
variantof the UNIX netstatcommand.Whena person
debugginga configurationor performanceproblemsus-
pectsa bug or problemin thenetwork subsystemof the
targetappliance,sheexecutesthenetstatcommand(pos-
sibly multiple timeswith differentoptions)andanalyzes
theoutputfor aberrationsfrom expectednormalvalues.
Any deviationsof thesestatisticsfrom thenormprovide
cluesto what might be wrong with the system. Using
theseclues,thepersondebuggingtheproblemmayper-
form additionalobservationsof the system’s statistics,
usingothercommands,followedby furtheranalysisand
correctiveactions(suchasconfigurationchanges).

The fundamentalproblemwith this style of statistic-
inspectionbasedproblemdiagnosisis the needfor hu-
man intervention,and specializednetworking and per-
formancedebuggingexpertisein theinterveninghuman.
For example,consideraworkstationthatis experiencing
poorNFS[27] file accessperformance.Assumethatthe
causeof thisproblemis excessive packet lossin thenet-
work pathbetweentheclientandanNFSserverdueto a
Ethernetduplex mismatchat theserver. To diagnosethis
problemtoday, thepersondebuggingtheproblemneeds
to first isolatetheproblemto theproblematicserver, then
checkthe packet drop statisticsfor the transportproto-
col in use(UDP or TCP), andcorrelatethesestatistics
with excessive valuesfor CRC errorsor late-collisions
maintainedby the appropriatenetwork interfacedevice
driver

�

. After this, the problemdebuggerhasto check
theappropriateswitch’s configurationto verify theexis-
tenceof aduplex mismatch.

For any organizationengagedin sellingandsupport-
ing appliancecomputersystems,it is very expensive to
provide a largenumberof humanexpertswith this level
of expertisefor theon-sitedebuggingof customerprob-
lems.In theabsenceof sufficientnumbersof humanex-
perts,problemFAQs,andsemi-interactive troubleshoot-
ing guidesarecommonlyusedby customersandby the
(mostly)non-expertcustomersupportstaff of theappli-
ancevendorsfor diagnosingfield problems.

Another limitation of this style of problem debug-
ging is thatfield problemsareusuallydetectedafter they
occur. Problemsarefirst detectedby unusualbehavior
(e.g.,poorperformance)at theapplicationlevel andthen
tracedback to the causeby a humanexpert via an ex-

�

Notethattheduplex mismatchcannotbesimplyavoidedasacon-
figurationor installationtime automaticcheckby theserver’s OS; the
Ethernetprotocolspecificationdoesnot containsufficient logic for an
end-systemto detectaduplex mismatch.

haustive searchandpattern-matchthroughthe system’s
statistics. While thereis usuallya well-understoodno-
tion of normalandbadvaluesfor the variousstatistics,
thereexistsnosoftwarelogic tocontinuouslymonitorthe
statistics,andto catchshifts in their valuesfrom normal
to bad. Problems(andresultingserviceoutages)which
could otherwisebe avoidedby taking timely corrective
actionsarenotavoided.

For all of thesereasons,the useof anappliancesys-
temcansometimesbeasomewhatfrustratingexperience
for anon-expertcustomer. Thesubjectof thispaperis the
problemof enablingsimpleandeasy, i.e.,appliance-like,
debuggingof the field problemsof appliances.We de-
scribefour techniques,continuousstatisticmonitoring,
protocolaugmentation, cross-layeranalysisandconfig-
urationchangetracking, thatwehavedevelopedto make
thediagnosisof applianceproblemseasier. We alsode-
scribetheapplicationof theseideasin anauto-diagnosis
subsystemof theDataONTAP operatingsystem.

Specifically, continuousmonitoringinvolvesperiodi-
cally checkingthesystem’s collectedoperationalstatis-
tics for potentialproblems,while actively analyzingand
fixing whicheverproblemsit can.Protocolaugmentation
allows configurationproblemswith a network protocol
to bediagnosedusingspeciallyconstructedhigher-level
protocol tests. Cross-layeranalysisis a path-basedap-
proach[23] for isolatinga problemwith a multi-layered
systemto a specificsystemlayer. Automaticconfigura-
tion changetrackingkeepstrack of changesin the sys-
tem’s configurationmakingit easierto pinpointa prob-
lemto its cause.

Our discussionin the remainderof the paperis set
in the context of an applianceoperatingsystem. More
specifically, we focus on problemsthat arisewith file
server appliancesystemsbuilt andsoldby Network Ap-
pliance.However, we believe thatmostof theideasthat
wepresentaredirectlyapplicableto thespaceof general-
purposeoperatingsystems. Indeed,the classof field
problemsinvolvinggeneral-purposecomputersystemsis
much larger than the classof appliancefield problems
becauseof thebroaderfunctionalityandservicesoffered
by general-purposesystems. It is probablyjust as im-
portant(anduseful) to provide for easierdebuggingof
field problemswith general-purposesystemsasit is with
appliancesystems.Later in this paper, we will briefly
outline how our auto-diagnosistechniquescanbe used
in a general-purposeoperatingsystem,suchasBSD.

The restof the paperis structuredasfollows. In the
next section,wediscussthenatureof commonfieldprob-
lemsof appliancecomputersystems.In Section3, we
describethe four techniquesthat we have developedto
diagnosesuchproblemsautomaticallyandefficiently. In
Section4,wedescribetheimplementationof theNetApp
Auto-diagnosisSystem(NADS).Section5 describesour
experiencewith this auto-diagnosissystem. Section6

coversrelatedwork. Finally, Section7 summarizesthe
paperandofferssomedirectionsfor futurework.

2 The nature of field problemswith
appliancesystems

Beforegettinginto thedetailsof whatcanbedoneto
make thedebuggingof applianceperformanceandcon-
figurationproblemseasier, it is importantto understand
thenatureof field problemsof appliancesystems.In this
section,we presentan overview of the commoncauses
of field problemsof appliancesandtry to give thereader
a senseof why it is hardto debugsuchproblems.

As mentionedearlier, for the purposesof concrete
illustration, we usethe exampleof a file server (filer)
appliance. A filer providesaccessto network-attached
disk storageto client systemsvia a varietyof distributed
file systemprotocols,suchasNFS [27] andCIFS [15].
A usefulmodel is to think of a filer’s OS astwo high-
performancepipesbetweena systemof disksanda sys-
temof network interfaces.Onepipeallowsfor dataflow
from the disks to the network; the othercarriesthe re-
verseflow. Fieldproblemsusuallyarisewhensomething
in thefiler or in its environmentcausesone(or both)of
thesepipesto performbelow expectedlevels.

Thetaxonomyof commonfield problemsthatwede-
scribebelow wasobtainedfrom a detailedstudyof the
call recordsof Network Appliance’s customerservice
database.We examinedinformationpertainingto cus-
tomercasesthatwerehandledin thetime periodFebru-
ary1994throughAugust1999.Fromthisdatait appears
that the threemost importantcausesof field problems
aresystemmisconfiguration,inadequatesystemcapacity
andhardwareandsoftwarefaults. The relative ratio of
thesethreeproblemtypesis hardto quantifybecausea
large numberof customercasesinvolve morethanone
subproblemof eachtype and becausethe specificmix
hasvariedfrom monthto monthandfrom yearto year.
However, betweenthesethreeproblemtypes,they cover
about98%of all field problems.

2.1 Misconfiguration
A leadingcauseof field problemswith network appli-

ancesis systemmisconfiguration.This mayseemsome-
what paradoxialsince by definition an applianceis a
simple computersystemthat hasbeenspeciallydevel-
opedto performasinglecoherenttask.Thisdefinitionis
supposedto allow an appliancesystemto besimplerto
configureanduse. In reality, appliancesby themselves
areusuallymuchsimplerthangeneral-purposesystems.
However, the taskof makingapplianceswork correctly
in arealnetwork in avarietyof applicationenvironments
maystill havesignificantconfigurationcomplexity.

Onemajorreasonfor theconfigurationcomplexity as-
sociatedwith a appliancesystemis thatanappliancein
use is only a part of a potentially complex distributed

system. For example, the perceived performanceof a
filer is theperformanceof adistributedsystemconsisting
of a client system(usuallya general-purposecomputer
system)connectedvia apotentiallycomplicatednetwork
fabric (switches,routers,cables,patchpanelsetc.) to
thefiler. Thesecomponentstypically comefrom differ-
entvendorsandneedtobeall configuredandfunctioning
correctlyfor thefiler to functionat its ratedperformance.
Unfortunately, this doesnot alwayshappenfor a variety
of reasons,asdiscussedbelow.

First, the client systemusually has a fairly com-
plicatedand error-proneconfigurationprocedure. The
client’s configurationcomplexity is muchmoreso than
thefiler’sbecausetheclient is ageneral-purposesystem.
Often, the default configurationsin which most client
systemsshiparesimplynotsetfor optimalperformance.
(This issueof defaultconfigurationis discussedin some-
whatmoredetail later.) In many cases,theconfiguration
controlsaretoocoarsefor any allowablesettingto result
in good performancefor all activities that the general-
purposeclientmaybeengagedin.

Second,while mostcomponentsof thenetwork fabric
areappliances(andthereforepresumablyeasierto con-
figurethanclient systems),therearenumerouspotential
incompatibilitiesbetweenthem. For example,it is not
uncommonfor implementationsof network communica-
tion protocolsfrom differentvendorsto not work with
eachother. Usually, thecorrespondingvendordocumen-
tation clearly statesthis incompatibility, but customers
try to usetheincompatibleimplementationsanyway, and
theresultis afield problem.

Perhapsmore importantly, some commonly used
standardnetwork protocolshave seriousinadequacies.
For example, the Ethernetstandardincludesan auto-
negotiationprotocolfor negotiatingthelink speedsof the
communicatingentities. The standarddoesnot provide
for reliablenegotiationof duplex settings. As a result,
perfectlylegal configurationsettingsfor link andduplex
at two communicatingendpointsmayresultin a duplex-
mismatch,a misconfigurationwhoseeffect on a filer’s
throughputis disastrous.

Furthermore,network componentsoften use proto-
cols thatarevendor-specificor ad-hocstandards.These
“early” protocolswork well in mostsituations,but notat
all (or poorly) in othercircumstances.In thefastmoving
world of network technology, therearea fair numberof
ad-hoc,unstandardized,or incompleteprotocolsin wide
useat any given time. An exampleof this is theEther-
Channellink aggregationprotocol. This protocoldoes
not specifythealgorithmfor performingloadbalancing
of network traffic betweenthe links of the EtherChan-
nel. Vendorshave their own proprietymethodsfor this
process,oftenwith surprisinginteractionswith how the
client systemsandthe restof the network elementsare
setup. Theseinteractionssometimeshave a significant

effectonperformanceandresultin field problems.
A secondimportantcauseof the configurationcom-

plexity associatedwith appliancesystemsis the sub-
optimal managementof configurationparameters.The
appliancephilosophyis to exposea very small number
of configurationparametersat installation. Thereis a
secondtier of parametersthat areassigneddefault val-
ueswhich resultin goodperformancein themajority of
installations.For someinstallationswith atypicalwork-
loads,thesesettingsmaynotbeoptimal.Thereis usually
no automaticlogic to tunethesesecondtier parameters.
In thesecases,theseknobsmayrequiretuningby anex-
pertfor goodperformance.

With thewidespreadincreasein thevarietyandnum-
ber of applianceusers,this atypicalpopulationcanbe-
come a significant overall number, potentially result-
ing in a large numberof field problems. This prob-
lem of configurationparametermanagementalsoexists
with general-purposeoperatingsystems,including sys-
tems that are usedas clients for filers. In fact, with
general-purposesystems,a large numberof parameters
oftenneedto betunedfor a typicaluserenvironment.

2.2 Capacity problems
A secondclassof field problemswith appliancesys-

tems arise becauseof their poor handling of capacity
overloads

�

. Most commonly-usedgeneral-purposeop-
eratingsystems,andmany applianceoperatingsystems,
performwell whentherequestloadto which thesystem
is beingsubjectedlies within thecapacityof system,but
poorlywhentheofferedloadexceedsthecapacityof the
system[20, 7]. Historically, the problemof poor over-
load performanceof computersystemsis well known,
but hasbeendeemedof somewhatmarginal importance.
In mostcircumstancesit is notdesirableto operateasys-
tem underoverloadconditionsfor any length of time;
instead,the focusso far hasbeento avoid overloadby
trying to ensurethattherearealwayssufficienthardware
resourcesavailablein orderto handlethemaximumof-
feredload.

In the filer appliancemarket, systemsareoften pur-
chasedby customerswith a certainclient load in mind.
The numberand typesof systemspurchasedis chosen
basedonratedcapacitiesof thefilers,by in-housebench-
marking,or from knowledgebasedonprior-useof filers.
Filersareusuallyassignedratedcapacitiesbasedontheir
performanceundersomestandardizedbenchmark,e.g.
theSpecFS(SFS)benchmark[30]. For many customers’
sites,however, the requestload profile is significantly
different from the SFSprofile, andthe real capacityof
a filer in operationmay be very differentfrom its rated

�

We usethe term “capacityoverload” to refer to a broadclassof
situationswheretheserver systemcannothandlethefull client request
load that it is subjectto becauseof somesystemresourcethat is not
availablein sufficient quantity. Theseresourcesinclude“soft” system
resourcessuchasmemorybuffers,file systembuffersetc.

capacity. Whenofferedload doesexceedreal capacity,
poorperformanceandafield problemresults.

2.3 Hardwareand softwarefaults
Last but not least, somefield problemswith appli-

ancesoccur becauseof software and hardware faults.
Unlike the other causesof field problems discussed
above, faultsarethe resultof somebug in the system’s
implementation,andusuallyresultin systemdown-time.
For a maturesystemmadeby a technicallysoundor-
ganization,thenumberof field disruptionsdueto faults
shouldbeverysmall.

Fieldproblemsdueto faultsarenot discussedfurther
in this paper. The techniquesthat we describein this
paperto enableeasydebuggingof field problemsmay
have someapplicability to diagnosingcertaintypesof
field disruptionsdue to faults,but in this paperwe re-
strict our focusto diagnosingconfigurationandcapacity
problems.

2.4 Why arefield problemshard to debug?
Whena field problemoccurswith an appliancesys-

tem due to any of the reasonsdescribedabove (except
faults), it is often hard to debug. Considera filer cus-
tomer who observes performancethat is substantially
lower thanthefiler’s ratedperformance.Thereasonfor
this poorperformancemaybea misconfigurationsome-
wherein theclient-to-filerdistributedsystem,i.e., in the
client, in thefiler, or in thenetwork fabric. Alternately,
the problemmay be an overloadedfiler; this particular
environmentmayhaveanatypicalloadandthefiler may
havealowercapacityfor thisworkloadthanfor thestan-
dardSFSworkload.

As the end effect of all of thesepotentialcausesis
usually the same,i.e., poor file accessperformanceas
seenfrom theclient system,it is not easyto discernthe
exact causeof the problem. The problemdebuggeris
forcedto performa sanitycheckof all the components
of theclient-to-filerdistributedsystemin orderto ensure
that eachcomponentis functioning correctly. For the
filer, thisimpliesaverificationof all filer subsystemsper-
formedby invoking the variousstatisticcommandsand
analyzingtheoutputfor aberrations.

This processis time-consuming,tediousand error-
prone. As explained earlier, this task requiresa fair
amountof expertise,anda certaindebugging“instinct”
that comesfrom experience. This task is also compli-
catedby the fact that the persondebugging the field
problem,being a memberof the filer vendor’s organi-
zation, often hasno direct accessto the systembeing
debugged. In that case,the variousstatisticcommands
areexecutedby the customerwho is in communication
with thesupportpersonvia emailor phone.This aspect
of the problemdebuggingprocessmakesit slow, caus-
ing large down-time. Combinedwith the high expec-
tationsof appliance-like simplicity that mostappliance

customershave, it makesthe problemdebuggingexpe-
riencefrustratingfor bothpartiesinvolved,thecustomer
andthesupportperson.

The discussionabove is fully applicableto general-
purposesystems;appliancesare usually considerably
easierto debug thangeneral-purposesystems.However,
the debuggingof field problemswith appliancesis cer-
tainly not as simple, or “appliance-like”, as we would
like. In thenext section,we will presenta new problem
diagnosismethodologythatattemptsto apply theappli-
anceto the debuggingof field problemswith appliance
systems.

3 Problemauto-diagnosismethods
In this section,we describea new methodologythat

we have developedto make the diagnosisof appliance
field problems simpler. Our goal in designing this
methodologywasto enableproblemdiagnosisto be as
automatic,preciseandquick aspossible.We wantedto
eliminatethe needfor expert humaninterventionin the
problemdiagnosisprocesswhenever possible.Further-
more,for thosesituationswhereexpertmanualanalysis
is necessary, we wantedto provide powerful debugging
tools, preciseand comprehensive systemconfiguration
(and configurationchange)information and the results
of partialauto-analysisto thehumanexpert,allowing for
fastdiagnosisandsmallerdown-times.

Ourproblemdiagnosismethodologyis basedon four
specifictechniques,i.e., continuousmonitoring, proto-
col augmentation,cross-layeranalysisandconfiguration
changetracking.Eachof thesetechniquesis describedin
detailbelow. In this section,we will focuson thefunda-
mentalprinciplesunderlyingthesetechniques;the next
sectionwill containspecificdetailsabouttheapplication
of thesetechniquesin the auto-diagnosissubsystemof
theDataONTAP operatingsystem.

We will alsobriefly discussissuesrelatedto the ex-
tensibility of our new problemdiagnosismethodology.
This featureis importantfor theproblemauto-diagnosis
systemto bemaintainablein thefield.

3.1 Continuousmonitoring
As describedin Section1,currentapplianceoperating

systemsmaintaina largenumberof statistics.To helpin
auto-detectinganddiagnosingproblems,wehave devel-
opedamethodof continuousstatisticanalysislayeredon
top of this statisticcollectionprocedure.Softwarelogic
in the appliancesystemcontinuouslymonitorsthe sys-
temfor problems,activelyanalyzingandfixing whatever
problemsit can.Continuousmonitoringhastwo compo-
nentsto it, a passivepartandanactivepart.

Thepassive partof continuousmonitoringis a statis-
tic monitoring subsystemof the appliance’s operating
system.This subsystemperiodicallysamplesandanal-
ysesthe statisticsbeinggatheredby the operatingsys-

tem. It automaticallylooks for any aberrantvaluesin
thesestatisticsandappliesa setof predefinedruleson
any aberrationsfrom expected“normal” valuesto move
thesysteminto oneof asetof errorstates.For example,a
filer maycontinuouslymonitortheaverageresponsetime
of NFSrequests.A capacityoverloadsituationis flagged
whentheresponsetimeexceedsahigh-watermark.

Some abnormal system states may correspond
uniquely to specificproblems;other statesmay be in-
dicativeof oneof asetof possibleproblems.In thelatter
case,thecontinuousmonitoringsubsystemmayalsoau-
tomaticallyexecutespeciallydesignedtestsin order to
pin-point the specificproblemwith the system.This is
theactivepartof continuousmonitoring.For example,a
largenumberof packet losseson a TCPconnectionat a
filer maybe indicative of, amongotherproblems,a du-
plex mismatchat oneof thefiler’s network interfacesor
a high level of network congestionin thepathfrom the
relevant client to the filer. We can usethe techniques
describedbelow in sections3.2–3.4to differentiatebe-
tweentheseproblems.

Making continuous system monitoring viable in-
volvesthefollowing:

� Developmentof softwarelogic thatformally codi-
fiestheinformalnotionof expectedstatisticvalue.
This activity must be performedfor all of the
statisticsthataregatheredby thesystem.Theend-
resultof this activity is a setof equationsthat test
thestateof thesystemandreturneither“GOOD”
or movethesysteminto an“ERROR” state.

� Developmentof softwarelogic thatselectsanap-
propriate problem pin-pointing procedurewhen
oneof severalproblemsis suspectedbasedon ob-
servationsof aberrantsystemstatistics.

� Development of formal procedures for pin-
pointingcommonfield problemsof appliances.

Formally codifying the notion of expectedvaluesof
thevariousstatisticsis a hardproblem.This is because,
in general,thenormalvaluesof thevarioussystemstatis-
ticsandtherelativesetsof valuesthatindicateerrorcon-
ditionsdependonhow aparticularsystemis beingused.
For example,an averageCPU utilization of 70%might
beOK for asystemthatis usuallynotsubjectto burstsof
loadthatgreatlyexceedtheaverage.Thismay, however,
beabig problemfor a systemwhosepeakloadoftenex-
ceedstheaverageby largefactors.

To make the developmentof this logic tractable,it
may be necessaryto be somewhat conservative in the
choiceof thespecificproblemsto becharacterized.For
any particularappliance,this logic canstartfrom being
very simple,codifying only the mostobviousproblems
initially, andmove towardsmorecomplex checksasthe

appliance’svendorgainsexperiencewith how theappli-
anceis usedin thefield. At any point in anappliance’s
life-cycle, there will be somelogic that can be com-
pletely automaticallyexecutedand its resultspresented
directly to thecustomer/user. Other, morecomplex logic
mayattemptto performpartial-analysisandmake these
resultsavailableto a supportpersonlooking at the sys-
tem,shouldmanualdebuggingbenecessary. Still more
complicatedanalysismaybeleft to thehumanexpert.

The idea behind developing active tests for pin-
pointingproblemsis to try to mimic theactivity of prob-
lemanalysisby ahumanexpert.While debuggingafield
problem,this personmay take a certainset of statistic
valuesasa cluethat thesystemis suffering from oneof
a certainset of problems. He may then executea se-
riesof carefullyconstructedteststo verify hishypothesis
andpin-pointtheexactproblem.Continuousmonitoring
with active testsattemptsto mimic thisdebuggingstyle.

The algorithm developmentactivity for active tests
motivatesthe next threetechniques,i.e., protocolaug-
mentation,cross-layeranalysisandconfigurationchange
monitoringthat we describebelow. The softwarelogic
to triggerthesetestsis usuallystraightforward,oncethe
mainlogic of continuousmonitoringis in place.

Of course,thecontinuousmonitoringlogic hasto be
lightweight.It shouldwork with asfew systemresources
aspossibleandshouldnot impactsystemperformance
in any noticeableway. Theactive componentof system
monitoringshouldnot affect the system’s environment,
e.g.,thenetwork infrastructureto which it is attached,in
any adversemanner. We will discusssomepracticalas-
pectsrelatedto theuser-interfaceof thecontinuousmon-
itoring subsystemin thenext section.

Oncecontinuousmonitoringis in place,it hasmany
benefits. A sizablefraction of field problemscan be
auto-diagnosedwithout interventionof thesupportstaff.
If expert interventionis needed,all information that is
normally gatheredby a humanexpert after (potentially
time-consuming)interactionwith thecustomeris already
available. Changingsystembehavior thatslowly moves
the systemtowardsan ERROR statemay be detected
early, andcorrected,beforeit resultsin down-time. For
example, increasingaverageload that slowly drives a
systeminto capacityoverloadcanbeauto-detected.

Similarly, othershiftsin asystem’senvironment,such
as the load mix to which it is subjected,may be auto-
detectedandsuitableactionmaybeinitiated.Continuous
monitoringmayalsohelpanappliancevendorin tuning
his productbetterbecausehe now hasaccessto more
detailedinformationaboutthevariouscustomerenviron-
mentsin whichtheproductoperates.In essence,continu-
ousmonitoringis likehaving adedicatedsupportperson
attachedto everyappliancein theinstalledbase,but at a
verysmallfractionof thecost.

3.2 Protocolaugmentation
Thetechniqueof protocolaugmentationrefersto the

processby which a higher-level protocol in a stacked
modular systemconfiguresand operatesa lower-level
protocolthrougha seriesof carefullychosenconfigura-
tionsandoperatingloads.Thegoalof protocolaugmen-
tation is to determinethe optimal configurationof the
lower-level protocolwhenit is impossibleto determine
this settingwithin the protocolitself. This is necessary
becausethelower-level protocolis eitherinadequate, in-
completelyspecifiedor if oneof thecommunicatingen-
titieshasabrokenprotocolimplementation.

As briefly mentionedin the previous section,some
network protocolsareinadequatein thatit is impossible
to detectconfigurationproblemsof the communicating
entitieswithin theprotocolitself. An exampleof this is
Ethernetauto-negotiation,which doesnot alwaysallow
for the correctnegotiationof the duplex settingsof the
communicatingentities.

Somenetwork protocolsare incompletelyspecified.
For instance,thealgorithmsfor congestioncontrolwere
not specifiedaspart of the original TCP protocolstan-
dard.Congestioncontrolwasincorporatedby mostTCP
implementationsmuch later from a de-facto standard
publishedby the researcherswho developedtheseal-
gorithms. Often, suchde-factostandardsinvolve areas
of the protocol that are not necessaryfor correctness,
andarethereforenot enforced.A TCP implementation
that doesnot performcongestioncontrol correctlymay
still beableto communicateadequatelywith otherTCP
implementations;however, correctcongestioncontrol is
imperative for system-widestabilityandperformance.

A number of protocol implementations,especially
where unofficial de-facto standardsare involved, are
broken. For example, some commonly used auto-
negotiatingGigabit Ethernetdevicesdetectlink only if
thepeerentity is alsosetto auto-negotiate.

Whena problemoccursdueto any of the threerea-
sonsmentionedabove, the continuousmonitoringsub-
systemdetectsthissituationandflagsanerrorcondition.
If an active testhasbeenassociatedwith the equations
thattriggeredthis errorstate,this active testis executed.
Theactive testwill useprotocolaugmentationto mimic
ahumanexpertin thedebuggingprocess.For example,a
testdesignedto detectanEthernetduplex mismatchmay
try all legal settingsof speedandduplex coupledwith
initiation of carefullyconstructedEthernettraffic. It may
analyzetheresultingchangein systembehavior to deter-
minethecorrectsettingsfor speedandduplex.

Protocolaugmentationis a powerful techniquethat
canbe usedasa guiding framework to formalizemany
ad-hocproblemdebugging techniquesusedby human
experts.Any manualdebuggingtechniquethat involves
a seriesof stepswherenetwork configurationchanges
alternatewith functionalityor performancetests(to val-

idatetheconfiguration)is really a form of protocolaug-
mentation. Using this techniqueasa designguide,we
cancomeupwith problemdiagnosisproceduresthatare
morepreciseandsystematicthanthead-hoctechniques
normallyusedin manualdiagnosis.In thenext section,
we will describesomeexamplesof theuseof this tech-
niquein designingautomaticproblemdiagnosistestsfor
commonlyoccurringfiler problems.

3.3 Cross-layer analysis
Many subsystemsof applianceoperatingsystemsare

implementedas stacked modules. For example, the
TCP/IPsubsystemconsistsof thelink layer, thenetwork
layer(IP), thetransportlayer(TCPandUDP)andtheap-
plicationlayerorganizedasa protocolstack.Eachlayer
of astackedsetof modulesmaintainsanindependentset
of statisticsfor error conditionsand performancemet-
rics. Whena problemoccurs,it may manifestitself as
aberrantstatisticvaluesin multiple layersin thesystem.
In classicalsystems,thereis nologic thatcorrelatesthese
aberrantstatisticvaluesacrossdifferentsystemlayers.

Cross-layeranalysis is a new techniquewhereby
statistic values in different layers of a subsystemare
linked together, andco-analyzed.Essentially, we iden-
tify paths [23] in OS subsystemsand link together
the statisticvaluesin the variouslayersthat eachpath
crosses.Whencontinuousmonitoringdetectsa problem
in a path,the variouslayersof the pathcanbe quickly
examinedto isolatethespecificproblem.

As a debugging technique,cross-layeranalysisis a
formalizationof the ad-hoctechniqueusedby human
expertsin manualproblemdebuggingwherean obser-
vationof anaberrantstatisticvaluein onelayertriggers
a studyof thestatisticvaluesof anadjacentlayer. Con-
sideringthe pipelineanalogyof an applianceoperating
system,cross-layeranalysisguidesthe debuggingpro-
cessby tracing throughand ensuringthe healthof the
variouslayersthatimplementthedisk-to-network pipes.

As a guidingframework, cross-layeranalysiscanaid
thedesignof logic thatcausesthecontinuousmonitoring
subsystemto trigger thevariousactive tests.For exam-
ple, the logic to performa checkfor a duplex mismatch
on a network interfacemaybe triggeredby anobserva-
tion of excessive TCP level packet lossin a connection
thatgoesthroughthis interface.Cross-layeranalysiscan
alsoguidethedesignof thestatisticdataandits collec-
tion logic soasto allow problemdebuggingto beeasier.
For example,theneedto docross-layeranalysismayre-
quirea modificationof theBSD tcpstatandipstatstruc-
turessoasto keepsomestatisticsona perflow basis.

3.4 Automatic configuration changetracking
Many field problems with appliancesystemsare

causedby changesin the system’s environment. These
includesystemconfigurationchangesandchangesin the
offeredload. As describedearlier, thereis a lot of value

in continuousmonitoring of systemstatisticsto notice
shifts in metricslike averagesystemload. Likewise, it
is usefulto trackchangesin thesystem’s configuration,
bothexplicit aswell asimplicit.

Automatictrackingof configurationchangesis useful
in finding thecauseof applianceproblemsthatoccuraf-
ter a systemhasbeenup andrunningcorrectlyfor some
time. This techniquealsohelpsin prescribingsolutions
for theproblemsfoundby otherauto-diagnosismethods.
In many organizations,there are multiple administra-
tors responsiblefor the IT infrastructure.Configuration
changetrackingallows for actionsof oneadministrator
thatresultin anapplianceproblemto beeasilyreversed
by anotheradministrator. This is alsousefulwheread-
ministrative boundariespartition thenetwork fabricand
theclientsfrom thefiler.

Thefundamentalmotivationbehindautomaticconfig-
urationchangetrackingis to automaticallygatherinfor-
mation that is asked for by humanproblemdebuggers
in a large majority of cases.Anyonefamiliar with the
processof field debuggingprobablyknows that oneof
the first questionsthat a customerreportinga problem
getsaskedby theproblemsolvingexpert is: “What has
changedrecently?” The answerto this is often only
looselyaccurate(especiallyin a multi-administratoren-
vironment), or even incorrect, dependingon the skill
level of the customer/user. Automatic configuration
changetrackingmakespreciseandcomprehensive state
changeinformationavailableto theproblemsolver, i.e.,
theauto-diagnosislogic or a humanexpert.

Configurationchangesaretrackedby a specialmod-
ule of theapplianceOS.As hintedabove, configuration
changesareof two types: the first type of changesare
explicit, andcorrespondto statechangesinitiatedby its
operator. Thesecondtypeof changesareimplicit, e.g.,
an event of link-statuslossandlink-statusregain when
a cableis pulledout andre-insertedinto oneof a filer’s
network interfacecards. The systemlogs both explicit
and implicit changes.The amountof changeinforma-
tion thatneedsto bekeptaroundis a systemdesignpa-
rameter, andmay requiresomeexperiencein gettingto
optimalfor any particularappliance.

Givencomprehensive configurationchangeinforma-
tion, whena problemoccursthevariouseventsbetween
thelastinstanceof timewhichwasknown to beproblem
freeto thecurrenteventareexaminedandanalyzed.The
softwarelogic to do this analysis,like thelogic for con-
tinuousmonitoring,is systemspecificandmay needto
beevolvedover time. In somecases,theauto-diagnosis
systemcandirectly infer thecausefor thefield problem,
andreport this. In othercases,the setof all applicable
configurationchangescanbe madeavailableto the hu-
mandebuggingthesystem.

Notethatit is not absolutelyimperative to log all rel-
evant configurationchangeinformation. (In fact, some

configurationchangesmay not be easily visible to the
appliance.For example,thepathbetweena client anda
filer may involve multiple routers,andit may be possi-
ble to change/re-configureoneof thesewithout thefiler
noticing any changesin its environment.) Statechange
informationis however only a setof hints thatguidethe
problemdiagnosisprocessandmake it easier. If some
relevantstatechangeinformationis not logged,diagnos-
ing thecauseof a specificproblemmaybecomeharder,
but not necessarilyimpossible. In our experience,log-
ging evena modestly-sized,carefullychosensetof con-
figurationchangeinformation, is extremelyvaluablein
theproblemdiagnosisprocess.

Aberration?
�

Continuous Monitoring Rules

No

Yes
� Active tests?

�

Yes
�

State Change
Information

Configuration
Change Trap
Points

No

Active Test
�

 Logic (uses
Protocol Augmentation
Cross−layer analysis

Diagnosis Output

Continuous Monitoring
 Thread

Fig. 1: Roleof differentauto-diagnosistechniques.

Figure1 shows therole of thevariousauto-diagnosis
techniquesin theproblemdiagnosisprocess.In thefig-
ure,dashedlines indicateflow of datawhile solid lines
indicateflow of control. Theshadedrectanglesindicate
storesof dataor logic rules. The unshadedrectangles
indicateprocessingsteps.Notethattheproblemdiagno-
sis processusesall the techniqueswe describedabove.
Thetechniquesarecomplementaryanddesignedto work
with eachother; they are not different typesof proce-
durestargetedto addressdisjointproblemsets.

3.5 Extensibility issues
It is important for an auto-diagnosissystembuilt

aroundthe techniquesdescribedabove to beextensible.
As explainedabove,thechecksandactionsperformedby

thecontinuousmonitoringlogic needto bedevelopedin
a phasedandconservativemanner. Eachtimeanew ver-
sionof this logic is available,a vendormaywant to up-
gradethesystemsin thefield with this logic, evenif the
customersdo not wish to upgradetherestof thesystem.
A customermaynot wish to take on the risk associated
with a new softwarerelease,or maynot want to payfor
therelease,especiallyif it doesnotcontainany function-
ality that the customerneeds.It is, however, usuallyin
thevendor’s interestto upgradetheauto-diagnosislogic
becauseof thelittle associatedrisk andpotentialbenefits
of lowersupportcosts.

For example,an applianceproblemmay have been
first discoveredatonecustomer’s installationbecauseof
anenvironmentchange,e.g.,theadditionof anew model
of somehardwarein thenetwork fabric. In somecases,
significanteffort by humanexpertsmay be requiredto
debug this problemsince it hasnot beenseenbefore.
Ideally, wewould like to leverageoff thiseffort by codi-
fying thedebugginglogic usedin this manualdiagnosis
into the appliance’s auto-diagnosislogic andupgrading
the auto-diagnosissubsystemsof all the systemsin the
field. This may save a lot of time and effort by auto-
diagnosingsubsequentinstancesof this problemwhich
wouldotherwiserequiresignificanthumanintervention.

Extensibility can be achieved in a variety of ways.
Onemethodis for thecontinuousmonitoringsystemto
usea configurationfile containingequationsthatdefine
the variousperiodicchecksthat the monitoringsystem
performsandconditionsthat trigger the flaggingof an
ERROR state,or causeanactive subtestto beexecuted.
This requiresa languageto expressthe logic of the pe-
riodic checks,andan interpreterfor this languageto be
partof theproblemauto-diagnosissubsystem.

4 Implementation of the NetApp Auto-
diagnosisSystem

We have implementeda semi-automaticproblemdi-
agnosis system, the NetApp Auto-diagnosisSystem
(NADS), in the Data ONTAP operatingsystem. This
systemappliesthe techniquesdescribedin the previous
sectionto field problemswith filers and NetCacheap-
pliances.Currentlythis auto-diagnosissystemonly tar-
getsproblemsrelatedto thenetworking portionof Data
ONTAP, andsomeof the interactionsof this codewith
therestof DataONTAP. Extensionof theauto-diagnosis
systemto otherONTAP subsystemsis in progress.

An interestingsocialproblemthatwe hadto address
while developingtheauto-diagnosissystemwasto how
not to make the auto-diagnosislogic intrusive. We did
not want our expert customersto be turned-off by an
overbearingproblemdiagnosis“assistant”andimmedi-
atelydisabletheauto-diagnosissystem.We alsodid not
wantour non-expertcustomersto be leadoff on a side-
trackby a bug in theauto-diagnosislogic. For this rea-

son,we decidedthatwe would make theauto-diagnosis
processsemi-automaticinitially, and later, as both we
and our customersgainedexperiencewith the system,
make it fully automatic.

4.1 Core implementation
In its currentform the NetApp Auto-diagnosisSys-

temconsistsof acontinuousmonitoringsubsystemanda
setof diagnosticcommands.ONTAP’scontinuousmon-
itoring logic consistsof a threadthat wakes up every
minuteandperformsa seriesof checkson statisticsthat
are maintainedby variousONTAP subsystems.These
checksmayflag thesystemasbeingin anERRORstate.
This logic is currently hard-codedinto ONTAP (as C
codetightly integratedinto the kernel)andneedsto be
tunedwith every maintenancerelease.Thresholdvalues
and most constantsusedby this logic are readfrom a
file presentroot filesystemof thefiler

�

. This logic does
not yet performany outputfor directuserconsumption;
nor doesthis logic executeany active tests.Insteadthis
output is loggedinternally in ONTAP for consumption
by thevariousdiagnosticcommands,whichalsoexecute
any active teststhat are needed. Since in ONTAP all
commandsareimplementedin thesameaddressspaceas
thekernel,it is straightforwardfor thedatagatheredby
continuousmonitoringto be accessedby the diagnostic
commands.Likewise, it is easyfor theactive testlogic
to beexecutedby thediagnosticcommands.

Whenthe customeror a supportpersondebugginga
field problemsuspectsthat the problemlies in the net-
working portion of ONTAP, she executesthe netdiag
command. The netdiag commandanalyzesthe infor-
mationloggedby thecontinuousmonitoringsubsystem,
performingany active teststhat may be called for and
reportstheresultsof thisanalysis,andsomerecommen-
dationson how to fix any detectedproblems,to theuser.
Our planis to have thecomputationof thevariousdiag-
nostic commandsbe performedautomaticallyafter the
next few releasesof ONTAP.

The checks that ONTAP’s continuousmonitoring
systemperforms and the various thresholdsused by
this logic have been defined using data from a vari-
ety of sourcesof collectedknowledge. Theseinclude
FAQs compiled by the NetApp engineeringand cus-
tomersupportorganizationsovertheyears,troubleshoot-
ing guidescompiledby NetAppsupport,historicaldata
from NetApp’scustomercall recordandengineeringbug
databases,information from advancedONTAP system
administrationand troubleshootingcoursesthat areof-
fered to NetApp’s customers,and ideascontributedby
someproblemdebuggingexpertsatNetApp.

The specificmonitoringrulesandthe valuesof var-
ious constantsand thresholdsusedby the monitoring
logic andeven the list of problemsthat ONTAP’s auto-

�

Seethesubsectiononextensibilityfor how this is goingto change.

diagnosissubsystemwill addresswhencompleteis fairly
extensive;dueto spaceconsiderationswe will not cover
thisinformationin full detail. Instead,wewill restrictthe
following discussionto somecommonnetworkingprob-
lems that ONTAP currentlyattemptsto auto-diagnose.
We will describethe set of problemstargetedby this
logic andillustrateits operationwith two examples.

At the link layer, ONTAP attempts to diagnose
Ethernetduplex and speedmismatches,Gigabit auto-
negotiationmismatches,problemsdue to incorrectset-
ting of storeandforwardmodeon somenetwork inter-
facecards(NICs),link capacityproblems,EtherChannel
load balancingproblemsand somecommonhardware
problems. At the IP layer, ONTAP candiagnosecom-
monroutingproblemsandproblemsrelatedto excessive
fragmentation.At the transportlayer, ONTAP can di-
agnosecommoncausesof poor TCP performance.At
thesystemlevel, ONTAP candiagnoseproblemsdueto
inconsistentinformationin differentconfigurationfiles,
unavailability or unreachabilityof importantinformation
serverssuchas DNS and NIS servers, and insufficient
systemresourcesfor thenetworking codeto functionat
theloadbeingofferedto it.

To seehow the techniquesdescribedin the previous
sectionareused,considerthelink layerdiagnosislogic.
The continuousmonitoringsystemmonitorsthe differ-
ent event statisticssuchas total packets in, total pack-
ets out, incomingpackets with CRC errors,collisions,
latecollisions,deferredtransmissionsetc.,thataremain-
tainedby the variousNIC device drivers. Assumethat
the continuousmonitoringlogic noticesa largenumber
of CRCerrors.Usually, this will alsobenoticedaspoor
application-level performance.

Withoutauto-diagnosis,themannerin whichthisfield
problemis handleddependsontheskill level andthede-
buggingapproachof thepersonaddressingtheproblem.
Somepeoplewill simplyassumebadhardwareandswap
theNIC. Otherpeoplewill first checkfor a duplex mis-
match(if theNIC is anEthernetNIC) by looking at the
duplex settingsof theNIC andthecorrespondingswitch
port,andif no mismatchis foundmaytry a differentca-
bleandadifferentswitchport in successionbeforeswap-
ping theNIC.

With thenetdiag command,thisprocessis muchmore
formal and precise(Figure 2). The netdiag command
first executesa protocolaugmentationbasedtestfor de-
tecting if thereis a duplex mismatch. Specifically, the
commandforcessome“reversetraffic” from the other
machineson the network to the filer usinga variety of
differentmechanismsin turn until onesucceeds.These
mechanismsinclude an ICMP echo-requestbroadcast,
layer 2 echo-requestbroadcastandTCP/UDPtraffic to
well-known portsfor hostsin theARP cacheof thefiler.
First theambientrateof packet arrival at thefiler using
whatevermechanismthatgeneratedsufficientreturntraf-

Filer

Filer

Force Reverse Traffic
Measure Ambient Response

Force Reverse Traffic
Jam Link
Measure Actual Response
Measure Statistics

Network

Network

Step 1

Step 2

Fig. 2: Diagnosinga duplex mismatchusing protocol
augmentation.

fic is measured(Figure2, Step1). Next this reversetraf-
fic is initiatedagainusingthesamemechanismasbefore
and the suspectoutgoinglink is jammedwith back-to-
back packets destinedto the filer itself (which will be
discardedby theswitch). Thereversetraffic rateis then
measured,alongwith thenumberof physicallevel errors
duringthejam interval (Figure2, Step2). If thereis in-
deedaduplex mismatch,theseobservationsaresufficient
to discoverit, sincethereverseratewill interferewith the
forwardflow inducingcertaintypesof errorsonly if the
duplex settingsarenotconfiguredcorrectly. In thiscase,
the netdiag commandprints informationon how to fix
themismatch.

If the reasonbehindtheduplex mismatchis a recent
changeto thefiler’s configurationparameters,this infor-
mationwill alsobe inferredby theauto-diagnosislogic
andprintedfor thebenefitof theuser. If theNIC in ques-
tion noticeda link-down-upevent in therecentpastand
no CRCerrorshadbeenseenbeforethatevent,thenet-
diag commandwill print out this informationasit could
indicatea switchport settingchange,or a cablechange
or a switch port changeevent which might have trig-
geredoff themismatch.Thisextra information,which is
madepossibleby automaticconfigurationchangetrack-
ing, is importantbecauseit helpsthecustomerdiscover
thecauseof the problemandensurethat it doesnot re-

peat. This problemmay have beencausedby, for ex-
ample,two administratorsinadvertentlyactingat cross-
purposes.

If thereis noduplex mismatch,thenetdiag command
printsaseriesof recommendations,suchaschangingthe
cable,switch port and the NIC, in the preciseorder in
which they shouldbe tried by theuser. Theorderitself
is basedon historicaldataregardingtherelative ratesof
occurrenceof thesecauses.

As anotherexample,considertheTCPauto-diagnosis
logic. ONTAP’s TCP continuouslymonitorsthe move-
ment of eachpeer’s advertisedwindow and the exact
timingsof dataandacknowledgmentpacket arrivals. A
numberof rules(whicharedescribedin detailin a forth-
comingpaper)areusedto determineif the peer, or the
network, or eventhefiler is thebottleneckfactorin data
transfer. For instance,if thefiler is sendingdatathrough
a Gigabit interfacebut the receiver client doesnot ad-
vertisea window that is large enoughfor the estimated
delay-bandwidthproductof theconnection,theclient is
flaggedas“needingreconfiguration”.If thereceiver did
initially (at thebeginningof theconnection)advertisea
window thatwassufficiently large,but subsequentlythis
window shrank,this indicatesthattheclient is unableto
keepup with protocolprocessingat the maximumrate
supportedby thenetwork, andthissituationis flagged.

Cross-layeranalysisis usedto make the TCP logic
awareasto what time-periodsof a TCP connectionare
“interesting”fromthepointof view of performanceauto-
diagnosisof thetypedescribedin thepreviousparagraph.
Forexample,thebeginningof alargeNFSreadmayindi-
catethebeginningof an“interesting”time periodfor an
otherwiseidle TCP connection.Protocolaugmentation
(usingICMP ping basedaverageRTT measurement)is
usedto estimatethedelay-bandwidthproductof thepath
to variousclients.

4.2 Extensibility
DataONTAP containsanimplementationof theJava

VirtualMachine.Ourapproachto addressingtheissueof
extensibilityis towritemostof theauto-diagnosissystem
in Java. This providesuscompleteflexibility to change
the auto-diagnosislogic in a new version,and support
older versionsof ONTAP. In a Java scenario,the auto-
diagnosislogic shipsasa collectionof Java classesthat
resideon therootfile systemof thefiler.

Note that the current versionof the auto-diagnosis
systemis in C; weplanto useJava in thenext majorver-
sion of ONTAP. As mentionedearlier, a file containing
constantand thresholdvaluesprovideslimited extensi-
bility in thecurrentimplementation.

4.3 Implementation in other operating systems
Basedon our knowledgeof theinternalsof BSD-like

general-purposeoperatingsystemsand our experience
with the implementationof the NetApp Auto-diagnosis

System,it appearsthatit shouldberelatively straightfor-
ward to implementan auto-diagnosissubsystembased
on the techniquespresentedin this paperin BSD-like
systems.Like in ONTAP, a kernelthreadcanbeusedto
implementcontinuousmonitoring.Therulesandthresh-
oldsusedby thecontinuousmonitoringlogic canbecho-
senbasedon field informationabouttheproblemsitua-
tions being targeted. The continuousmonitoring logic
canbe partitionedinto sub-logicblocksfor eachmajor
OSsubsystem.

Thespecificactive teststo be implementedwill also
dependon the field problemsbeing targeted. Protocol
augmentationand cross-layeranalysiscan be usedas
guiding principlesin the designof suchtests. The im-
plementationof active teststriggeredautomaticallyby
the in-kernel auto-diagnosislogic shouldbe relatively
straightforward. If a command-basedapproach(like our
diagnosticcommandsbasedapproach)is to beusedfor
userinteraction,the BSD kvmkernelmemoryinterface
maybeusedfor transferringinformationbetweenthein-
kernelcontinuousmonitoringlogic anduser-land diag-
nosticcommands.Alternatively, an approachbasedon
the/procfile systemmaybeused.

Specialinterfaceswill be neededfor commandsto
trigger in-kernelactive tests. Again, several alternative
approachesarepossible. The testsmay be enumerated
andmadeavailableasa seriesof systemcallsor differ-
ent ioctls for a specialdiagnosticspseudo-device. For
someactive tests,it might alsobe possibleto write the
testsentirely in user-spaceusinglow level kernel inter-
faces(e.g.raw IP sockets).Extensibilitycanbeprovided
by implementingthekernelportionof theauto-diagnosis
logic asoneor moreloadablekernelmodules.

5 Performanceand experience
In this section, we will briefly discussthe perfor-

manceof the NetApp Auto-diagnosisSystem,and our
experiencewith its effectivenessin making the taskof
debuggingfield problemssimple.

The continuousmonitoring subsystemof ONTAP
takesvery few resources.Its CPUoverheadis lessthan
0.25%CPU,even on the slowestsystemsthat we ship.
The memoryfootprint is lessthan400KB for a typical
system. The time that the netdiag commandtakesde-
pendson the configurationof the systemand the load
on the system. On our slowest filer that is configured
with the maximumnumberof allowablenetwork inter-
facesandis saturatedwith client load,netdiag takesno
more than15 secondsto execute. On mostsystems,it
takeslessthan5 seconds.

Specifically, on a F760 classfiler (600 Mhz 21164
Alpha, 2GB RAM) configuredwith 4 network inter-
facesandunderfull client load,theCPUusageof auto-
diagnosiscontinuousmonitoringcodeis lessthan0.1%
CPU.Onthissystem,netdiag takesapproximately4 sec-

ondsto execute.
The version of ONTAP that contains the NetApp

Auto-diagnosisSystemhas only recently been made
available to customers.However, sincethis versionof
ONTAP hasnotyetshippedto ourcustomersin volume,
wehavenotbeenableto seehow well theauto-diagnosis
subsystemis ableto dealwith real-life problemsin the
field. Instead,we have beenforced to rely on a study
in the laboratory. In this studywe simulateda sample
of field problemcasesfrom our customersupportcall
recorddatabaseand measuredthe effectivenessof the
auto-diagnosissystemin solvingtheproblems.For each
case,we re-createdthespecificproblemsituationin the
laboratoryand measuredthe effectivenessof the auto-
diagnosislogic.

We first lookedat a sampleof 961calls thatcamein
duringthemonthof September1999.Thissetdid not in-
cludecallscorrespondingto hardwareor softwarefaults.
Wealsodidnotconsidercallsthatwererelatedto general
informationabouttheproductaskedfor by thecustomer.
All othertypesof callswereconsidered.Themonthof
September1999wasthefirst monthwhosecall datawe
did not include in our analysisof historicalcall record
datawhile designingONTAP’sauto-diagnosislogic.

Of these961 calls, 84 hadsomethingto do with the
networkingcodeandits interactionswith therestof ON-
TAP. Auto-diagnosis,when simulatedon thesecases,
wasabletoauto-detecttheproblemcausefor all but12of
thesecalls,at a success-rateof 84.5%.Theaveragetime
that it took the netdiag commandto diagnosethe prob-
lemwasapproximately2.5seconds.We did notevenat-
temptto quantifythesecondaryeffect on thecustomer’s
level of satisfactionthatauto-diagnosiswouldcausedue
thethedramaticreductionin averageproblemdiagnosis
time.

Of the12 callson which auto-diagnosisdid not diag-
nose,7 wererelatedto transientproblemswith external
networking hardware,1 wasdueto a NIC that wasex-
hibiting veryoccasionalerrorsandhadneededre-seating
and4 wereproblemsfor which we did not have appro-
priateauto-diagnosislogic.

Of the877callsnotcorrespondingto networking,we
performeda staticmanualanalysisin orderto figureout
whichof theseproblemscouldbeauto-diagnosedby the
completeONTAP auto-diagnosissystem.This analysis
wasperformedagainsta designdescriptionof theauto-
diagnosislogic for other subsystemsof ONTAP. Our
study indicatesthat aboutthreequartersof theseprob-
lemscould indeedby addressedby auto-diagnosis.An-
other 124 (about 20%) of thesecalls correspondedto
problemswhosediagnosiscouldbesped-upsignificantly
by thepartialauto-diagnosisinformationthatthediagno-
sissystemprovided.

We repeatedthis simulation and analysisfor calls
thatcamein duringOctober1999. We considered1023

cases,97 networking and 926 other. Simulation of
thenetworkingcasesindicatedthatauto-diagnosiscould
solve88%of these.All but 5 of thenetworkingproblems
thatcouldnotbeauto-diagnosedwererelatedto miscon-
figured clients. The rest were problemsfor which we
havenotyet developedappropriateauto-diagnosislogic.
Staticmanualanalysisof thenon-networkingcasesindi-
cateda success-rateof about70%.

We also considered500 randomly chosensamples
from thecustomercall datafrom themonthsof Novem-
ber1999throughFebruary2000.We repeatedtheabove
describedanalysisand simulation for these500 calls.
Our resultsfor this sampleof callswerevery similar to
theresultsfor SeptemberandOctober1999.

In summary, ourhistoricalcall dataseemsto indicate
thatourauto-diagnosissystemwill behugelysuccessful
in makinga lot of problemsthatcurrentlyrequirehuman
interventionto beautomaticallyaddressed.This should
leadto a big reductionin thecostof handlingcustomer
callsbecauseof a significantreductionin thenumberof
calls per installedsystem. We wereunableto directly
quantify the increasein simplicity of the problem di-
agnosisprocess;the only (relatively weak) metric that
we couldquantifywasturnaroundtime for theproblem,
with andwithoutauto-diagnosis.Thismetricwasat least
threeordersof magnitudelower for auto-diagnosis.

6 Relatedwork
To placeour work in context, we briefly survey other

approachesto field problemdiagnosisof computersys-
tems,andhow ourwork relatesto thesetechniques.

6.1 Ad-hoc monitoring of UNIX and UNIX-lik e
systems

As briefly describedbefore,mostUNIX andUNIX-
likeoperatingsystemsmaintaina largenumberof statis-
tics correspondingto variouseventsthat have occurred
in the operationof the system. Accessto thesestatis-
ticsandotherconfigurationinformationis providedby a
numberof commandinterfaces.Problemdiagnosisusu-
ally consistsof manuallyobtainingappropriatestatistics
andperusingthemfor aberrantvalues.

Systemadministratorsin someorganizationsthatuse
alargenumberof UNIX systemsoftenuseasetof home-
grown (or commerciallyavailable)frameworksof auto-
matedscriptsto obtaininformationfrom a largenumber
of systemsandanalysethesevalues. Thereis a wealth
of literaturedescribingthesetools[29, 10, 9,2]. In some
ways,this is similar to ourtechniqueof continuousmon-
itoring. The information gatheredby theseautomated
scripts,however, is atthegranularityatwhichthevarious
operatingsystemsexportsysteminformation.Thisgran-
ularity is usuallytoo coarsefor extensiveauto-diagnosis
of thekind thatwecanperforminsidetheoperatingsys-
temkernelwith reasonablesystemoverhead.Theseen-

vironmentsare also limited in the typesof active tests
thatthey canperformfor pin-pointingproblems.

6.2 SNMP
The Simple Network Management Protocol

(SNMP) [3] allows for the managementof systemsin
a TCP/IPnetwork within a coherentframework. In the
SNMPworld, network managementconsistsof network
managementstations, calledmanagers,communicating
with the varioussystemsin the network (hosts,routers,
terminalserversetc.), callednetworkelements. SNMP
basedmanagementconsistsof threeparts: 1) a Man-
agementInformation Base(MIB) [18] that definesthe
variousvariables(bothstandardizedandvendor-specific)
thatnetwork elementsmaintainthatcanbequeriedand
setby themanager, 2) asetof commonstructuresandan
identificationschema,called the Structureof Manage-
ment Information(SMI) [28], that is usedto reference
thevariablesin theMIB, and3) theprotocolwith which
managersandelementscommunicate,i.e.,SNMP.

The systemworks as follows: The network man-
agersperiodically sendqueriesto the elementsto get
the stateof the variouselements.Elementssendtraps
to managerswhencertaineventshappen.Themanager
mayanalysetheinformationavailableto it via resultsof
queriesto build a picture of the healthof the network
andpresentthis informationto thehumannetwork man-
agerin avarietyof ways.Pluginsthatextendamanagers
functionality in a vendor-specificmannerare available
to handlevendorspecificMIBs. An exampleof a com-
monlyusedmanageris HP’sOpenView [11].

The problemof usingSNMP is in somewayssimi-
lar to theproblemof definingappropriatechecksfor our
continuousmonitoringsystem.Thevarioussystemvari-
ablesthat arechecked by continuousmonitoringequa-
tions correspondto MIB variables. The auto-diagnosis
checkinglogic correspondsto logic in thenetwork man-
agerplugin handlingthevendor-specificMIBs. Thusis-
suesthat arisein definingthe checksthat a continuous
monitoringsystemshouldexecutealsoapply to the de-
signof SNMPlogic.

SNMPis differentfrom oursystemin two mainways:
First,SNMPdoesnotreallyhaveaparallelfor ouractive
tests. A managercanmanipulatea network elementin
somelimited fashion,e.g.,by usingsettingappropriate
MIB variables.However, this is not nearlyasgeneralor
aspowerful aswhatcanbedoneby anactivetestexecut-
ing in theconcernedsystemitself.

Second,the fact thatSNMPdependson thenetwork
connectivity to bepresentbetweenthenetwork elements
andthemanagerlimits thetypesof problemsthatcanbe
effectivelyauto-diagnosedby usingSNMP. In particular,
problemseffectingnetwork connectivity maynotbeeas-
ily diagnosedby SNMP.

In somewaystheuseof SNMPcomplementsourap-

proach.A systemof auto-diagnosisusingthetechniques
thatwe describedearliermayberesponsiblefor the“lo-
cal” healthof asystemandits interactionswith othernet-
working entitiesthat it communicateswith. An SNMP
basednetwork managementinfrastructuremay provide
overall informationaboutthehealthof a network using
informationgainedby communicationwith network ele-
mentsandtheirauto-diagnosissubsystems.

6.3 Problemdiagnosissystemsfr om the mainframe
and telecommunicationsworld

A numberof papersandpatentsin the literaturede-
scribevariouscomponentsof semi-automaticproblem
diagnosissystemsthat weredevelopedandusedin the
context of mainframecomputersystems[14, 31, 22],
otherhighly reliablesystems[1, 17, 32] andthe phone
system[35, 21]. Thesesystemsused the technique
of continuousmonitoring of the healthof the system.
Eventsaffecting the healthof the systemwerefed into
a decisiontreebasedexpert diagnosissystem.The ex-
pertsystemusedtheinput eventsto walk down its deci-
siontreeto narrow down thesetof possibleproblematic
situationsthatmightbepresent.

Thehardestpartof building sucha systemwasdefin-
ing the set of eventsto be monitoredand building the
knowledgebase(thedecisiontree)of theexpertsystem.
Thereis someliteraturethatdescribesatanabstractlevel
how suchknowledgebaserule-setscanbecreatedfor a
specificsystembasedon probabilisticdataaboutevents
and problems[35, 34]. Presumably, in practice,these
knowledgebaseswerecreatedbasedon experiencein-
formationgatheredfrom thefield.

In someways the work that we describein this pa-
peris similar to thisolderwork. We alsousecontinuous
monitoringandhavearule-setandusethresholdsto trig-
geroff furtherdiagnosisstepsincludingvariouskindsof
active tests.

Our work differs from this older work in that it pro-
videsnovel guidingprinciplesanda certainstructureto
theproblemof designingrule-sets,thresholds,causality
in relateddiagnosisproceduresandactivetests.Thefour
auto-diagnosistechniquesthatwepresentweredesigned
basedon our knowledgeof commonfield problemsand
how theoccurrenceof suchfield problemseffectsthedy-
namicsof modernlayeredoperatingsystems.Thetech-
niqueof protocolaugmentationdirectlytargetsproblems
that ariseout of inadequate,incompletelyspecifiedor
poorly implementedopennetwork protocols.Suchprob-
lemsaremuchmorewidespreadandimportantin today’s
network-centricopencomputinginfrastructuresthan in
olderenvironmentswherecommunicationwasbasedon
closedproprietaryprotocols.

7 Summary and futur e work
To summarize,wedescribedsomegeneraltechniques

to enableappliance-like debuggingof field problemsof
network appliances.Thesetechniquesformalizevarious
ad-hocdebuggingtechniquesthatareusedin manualde-
buggingof systemproblemsby humanexperts. These
techniquesalso help in making the task of debugging
hardproblemsmanuallymuchsimplerandquicker than
it currentlyis.

We have implementedtheseideasin the Data ON-
TAP operatingsystem. Our laboratorystudiesprimed
with realhistoricalcasedataseemto indicatethatauto-
diagnosisas a methodologyis very viable and hasthe
potentialof greatlyreducingthecomplexity of problem
analysisthatis exposedto thecustomer.

In termsof futurework, we would like to expandour
continuousmonitoringlogic to encompassmorecompli-
catedproblems.As mentionedearlier, wearein thepro-
cessof makingtheauto-diagnosissystemextensibleand
easyto re-configure;thisproblemhasa numberof inter-
estingissues.It would alsobe interestingto seea new
user-interfaceparadigmlinked with the ideasdiscussed
in thispaperthatcanvary theamountof detailandcom-
plexity in theoutputof thesystembasedontheexpertise
of theuser.

While our discussionhasfocusedon Data ONTAP,
from our experienceit seemsthat most of the ideas
describedin this paperaredirectly applicablegeneral-
purposeoperatingsystems.ONTAP’s network codeis
basedonBSD,andmuchof ourauto-diagnosislogic can
bedirectlyappliedto any BSDbasedTCP/IPsubsystem.
Welook forwardto anapplicationof someof theseideas
to general-purposeoperatingsystems.

Acknowledgements
Lots of peopleat NetApp helped in the work de-

scribedin this paper. BarbaraNaden,Henk Bots, Devi
Nagraj, Mark Smith, Diptish Datta, Brian Pawlowski,
JanetTakami,SusanWhitford, Paul Normananda large
numberof folks in NetApp’s customersatisfaction de-
partmentcontributedin termsof usefulideas,discussion
andfeedback.WearealsogratefultoourshepherdAaron
Brown, andtheanonymousUSENIX reviewersfor their
valuablefeedback.

References
[1] Alex Winokur and JosephShiloachand Amnon

Ribak andYuangengHuang. Problemdetermina-
tion methodfor local areanetwork system. US
Patent5539877,1996.

[2] M. BurgessandR. Ralston. Distributed resource
administrationusingcfengine.Software—Practice
andExperience, 27,1997.

[3] J. D. Case,M. S. Fedor, M. L. Schoffstall, and

C. Davin. SimpleNetwork ManagementProtocol
(SNMP). RFC1157,May 1990.

[4] CiscoLocalDirector. http://www.cisco.com/warp/
public/cc/cisco/mkt/scale/locald/.

[5] CobaltCacheRaQ2. http://www.cobalt.com/pro-
ducts/cache/index.html.

[6] CobaltNASRaQ.http://www.cobalt.com/products/
nas/index.html.

[7] P. DruschelandG. Banga.Lazy Receiver Process-
ing (LRP): A Network SubsystemArchitecturefor
ServerSystems.In Proceedingsof theSecondSym-
posiumon Operating SystemsDesignand Imple-
mentation, Seattle,WA, Oct.1996.

[8] e/BSD: BSDI EmbeddedSystems Technology.
http://www.BSDI.COM/products/eBSD/.

[9] M. Gomberg, C. Stacey, and J. Sayre. Scalable,
RemoteAdministrationof Windows NT. In Pro-
ceedingsof the SecondLarge InstallationSystems
Administration of WindowsNT Conference(LISA-
NT), Seattle,WA, July1999.

[10] S.HansenandT. Atkins. CentralizedSystemMon-
itoring With Swatch.In Proceedingsof theSeventh
SystemsAdministration Conference(LISA), Mon-
terey, CA, Nov. 1993.

[11] HPOpenView. http://www.openview.hp.com/.

[12] IBM SecureWayNetworkDispatcher.http://www.-
ibm.com/software/network/dispatcher/.

[13] Intel InBusinesseMail Station.http://www.intel.-
com/network/smallbiz/inbusinessemail.htm.

[14] L. KovedandG. Waldbaum.Improving Availabil-
ity of SoftwareSubsystemsThroughOn-LineError
Detection. IBM SystemsJournal, 25(1):105–115,
1986.

[15] P. J. LeachandD. C. Naik. A CommonInternet
File System(CIFS/1.0)Protocol. InternetDraft,
Network WorkingGroup,Dec.1997.

[16] J.Liedtke,V. Panteleenko, T. Jaeger, andN. Islam.
High-performancecachingwith theLavahit-server.
In Proceedingsof theUSENIX1998AnnualTech-
nical Conference, New Orleans,LA, June1998.

[17] Luan J. Denny. Thresholdalarmsfor processing
errorsin a multiplex communicationssystem.US
Patent4817092,1989.

[18] K. McCloghrieandM. T. Rose.ManagementInfor-
mationBasefor Network managementof TCP/IP-
basedInternets:MIB-II. RFC1213,Mar. 1991.

[19] MirapointInternetMessageServer.http://www.mi-
rapoint.com/products/servers/index.asp.

[20] J.C. Mogul andK. K. Ramakrishnan.Eliminating

receive livelock in an interrupt-driven kernel. In
Proc. of the 1996USENIXTechnical Conference,
pages99–111,1996.

[21] MohammadT. FatehiandFredL. Heismann.Per-
formancemonitoring and fault location for opti-
cal equipment,systemsandnetworks. US Patent
5296956,1994.

[22] R. E. Moore. Utilizing theSNA Alert in theMan-
agementof MultivendorNetworks. IBM Systems
Journal, 27(1):15–31,1988.

[23] D. Mosberger and L. L. Peterson. Making paths
explicit in thescoutoperatingsystem.In Proceed-
ings of the SecondSymposiumon Operating Sys-
temsDesignandImplementation, Seattle,WA, Oct.
1996.

[24] Network Appliance – Products – Filers.
http://www.netapp.com/products/filer/.

[25] Network Appliance – Products – NetCache.
http://www.netapp.com/products/netcache/.

[26] Network ApplianceTechnicalLibrary. http://ww-
w.netapp.com/techlibrary/.

[27] B. Pawlowski, C. Juszczak,P. Staubach,C. Smith,
D. Lebel,andD. Hitz. NFSVersion3: Designand
Implementation. In Proceedingsof the USENIX
1994SummerTechnical Conference, Boston,MA,
June1994.

[28] M. T. RoseandK. McCloghrie.StructureandIden-
tification of managementInformationfor TCP/IP-
basedInternets.RFC1155,May 1990.

[29] E. SorensonandS. R. Chalup. RedAlert: A Scal-
ableSystemfor ApplicationMonitoring . In Pro-
ceedingsof the ThirteenthSystemsAdministration
Conference(LISA), Seattle,WA, Nov. 1999.

[30] SPECSFS97.http://www.specbench.org/osg/sfs-
97/.

[31] T. P. Sullivan. CommuncationsNetwork Man-
agementEnhancementsfor SNA Networks: An
Overview. IBM SystemsJournal, 22(1/2):129–142,
1983.

[32] Wing M. Chan. Dataintegrity checkingwith fault
tolerance.USPatent4827478,1989.

[33] G.R.WrightandW. R.Stevens.TCP/IPIllustrated
Volume2. Addison-Wesley, Reading,MA, 1995.

[34] Yuval Lirov andOnC. Yue. Techniquefor produc-
ing anexpertsystemfor systemfaultdiagnosis.US
Patent5107497,1992.

[35] Yuval Lirov andSwaminathanRavikumarandOn-
Ching Yue. Arrangementfor automatedtrou-
bleshootingusing selective adviceand a learning
knowledgebase.USPatent5107499,1992.

