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Abstract

We introduceLazy Asynchronous I/O (LAIO), a
new asynchronous I/O interface that is well suited
to event-driven programming. LAIO isgeneral
in the sense that it applies to all blocking I/O
operations. Furthermore, it islazy in the sense
that it creates a continuation only when an op-
eration actually blocks, and it notifies the appli-
cation only when a blocked operation completes
in its entirety. These features make program-
ming high-performance, event-driven servers us-
ing LAIO considerably easier than with previous
interfaces.

We describe a user-level implementation of
LAIO, relying only on kernel support for sched-
uler activations, a facility present in many Unix-
like systems.

We compare the performance of web servers
implemented using LAIO to the performance ob-
tained with previous interfaces. For workloads
with an appreciable amount of disk I/O, LAIO
performs substantially better than the alterna-
tives, because it avoids blocking entirely. In one
such case, the peak throughput with LAIO is 24%
higher than the next best alternative. For in-
memory workloads it performs comparably.

1 Introduction

We introduceLazy Asynchronous I/O (LAIO),
a new asynchronous I/O interface that is well
suited to event-driven programs, in particular
high-performance servers.

To achieve the best possible performance, an
event-driven server must avoid blocking on any
type of operation, from I/O to resource alloca-
tion. Thus, in an event-driven server, the use of
asynchronous or non-blocking I/O is a practical

necessity. Asynchronous and non-blocking I/O
support in present Unix-like systems is, however,
limited in its generality. Non-blocking I/O can
be performed on network connections, but not on
disk files. POSIX asynchronous I/O (AIO) [11]
can be performed on disk files, but only supports
reading and writing. Many widely-used opera-
tions that require disk access as a part of their im-
plementation, such as opening a file or determin-
ing its size, have no asynchronous equivalents.

In principle, this problem could be addressed
by changes to the operating system. Such
changes would affect the operating system’s in-
terface as well as its implementation. In practice,
the scope of such changes has impeded such a so-
lution. As a consequence, developers faced with
this problem have either (1) abandoned an event-
driven architecture entirely for a multithreaded or
multiprocess architecture, (2) accepted that some
operations can block and the effect thereof on
performance, or (3) simulated asynchronous I/O
at user-level by submitting blocking operations to
a queue that is serviced by a pool of threads.

The tradeoff between multithreaded and event-
driven servers has received considerable atten-
tion [5, 6, 7, 13]. Event-driven servers ex-
hibit certain advantages including greater control
over scheduling, lower overhead for maintain-
ing state, and lower overhead for synchroniza-
tion. Recently, von Behren et al. [12] have ar-
gued that compiler support and non-preemption
can enable multithreaded servers to achieve per-
formance comparable to event-driven servers, but
such compiler support is not generally available.

Surprisingly, the second option does appear in
practice. The thttpd web server [8] is a notable
example, but as we show in Section 9, perfor-
mance suffers as a result of blocking.

The asymmetric multiprocess event-driven



(AMPED) architecture that was employed by the
Flash web server is representative of the third cat-
egory [7]. In essence, it is a hybrid architec-
ture that consists of an event-driven core aug-
mented by helper processes. Flash performs all
non-blocking operations in an event-driven fash-
ion and all potentially blocking operations are
dispatched to helper processes.

Unlike non-blocking I/O and AIO, LAIO is
general. LAIO offers a non-blocking counter-
part for each blocking system call, thereby avoid-
ing the tradeoffs and the programming difficulties
present with previous asynchronous I/O systems.

In addition to its generality, LAIO offerslazy
continuation creation. If a potentially blocking
system call completes without blocking, no con-
tinuation is created, avoiding the implementation
cost of its creation and the programming com-
plexity of dealing with it. Lazy continuation cre-
ation distinguishes LAIO from AIO in which exe-
cuting an AIO primitive always creates a continu-
ation, regardless of whether the call blocks or not.
Furthermore, the LAIO API provides an event
notification when a blocked call iscompleted in
its entirety. This feature distinguishes LAIO from
non-blocking I/O in which a return from a non-
blocking call may indicate partial completion and
in which the application may need to maintain
state related to that partial completion.

Our implementation of LAIO resides entirely
in a user-level library, without modification to the
operating system’s kernel. It requires support in
the kernel for scheduler activations [3] to deliver
upcalls to the LAIO library when an I/O opera-
tion blocks or unblocks.

The contributions of this paper are three-fold.
First, we introduce a new asynchronous I/O in-
terface, which is easier to program and performs
better than previous I/O interfaces for work-
loads with an appreciable amount of disk I/O.
Second, we document the ease of programming
by comparing LAIO to non-blocking I/O, AIO
and AMPED. For LAIO, non-blocking I/O, and
AMPED, we quantify this comparison by count-
ing the lines of affected code in the Flash web
server [7]. Third, we evaluate the performance of
LAIO by comparing the performance of two web
servers, thttpd [8] and Flash. We show that LAIO
reduces blocking compared to non-blocking I/O
and asynchronous I/O and incurs less overhead
than AMPED.

The remainder of this paper is organized as fol-
lows. Section 2 describes the LAIO API. Sec-
tion 3 provides an example of using LAIO. Sec-

tion 4 discusses other I/O APIs and their use in
event-driven programs, and compares them with
LAIO. Section 5 describes our LAIO implemen-
tation. Section 6 describes our experimental en-
vironment. Section 7 characterizes the perfor-
mance of our implementation using a set of mi-
crobenchmarks. Section 8 describes the web
server software and the workloads used in our
macrobenchmarks. Section 9 describes the exper-
imental results obtained with these macrobench-
marks. Section 10 discusses related work. Sec-
tion 11 concludes this paper.

2 The LAIO API

The LAIO API consists of three functions:
laio syscall(), laio gethandle(),
andlaio poll().
laio syscall() has the same signature as

syscall(), a standard function for performing
indirect system calls. The first parameter iden-
tifies the desired system call. Symbolic names
for this parameter, representing all system calls,
are defined in a standard header file. The rest
of the parameters correspond to the parameters
of the system call being performed. If the sys-
tem call completes without blocking, the be-
havior of laio syscall() is indistinguish-
able from that ofsyscall(). If, however,
the system call is unable to complete without
blocking,laio syscall() returns-1, setting
the global variableerrno to EINPROGRESS.
Henceforth, we refer to this case as “a back-
groundlaio syscall().” In such cases, any
input parameters that are passed by reference,
such as a buffer being written to a file, must not
be modified by the caller until the background
laio syscall() completes.
laio gethandle() returns an opaque han-

dle for the purpose of identifying a background
laio syscall(). Specifically, this handle
identifies the most recentlaio syscall() by
the calling thread that reportedEINPROGRESS.
If the most recentlaio syscall() com-
pleted without blocking,laio gethandle()
returns NULL. laio gethandle() is ex-
pected to appear shortly after the return of a
laio syscall() with return value-1 and
with errno equal toEINPROGRESS.
laio poll() waits for the completion

of backgroundlaio syscall() operations.
When one or more such operations have com-
pleted before a caller-specified timeout expires,
laio poll() returns a set ofLAIO com-



pletion objects, one per completed background
laio syscall(). A completion object con-
sists of a handle, a return value, and a pos-
sible error code. The handle identifies a
backgroundlaio syscall(), as returned by
laio gethandle(). The return value and
possible error code are determined by the partic-
ular system call that was performed by the back-
groundlaio syscall().

3 An LAIO Example

We present an example demonstrating how to
write an event-driven program using LAIO. In
this example, we also uselibevent [9], a general-
purpose event notification library. In gen-
eral, such libraries provide a unifying abstrac-
tion for the various mechanisms that apply to
different types of events. We have extended
libevent to support completion of a background
laio syscall() as an event type. LAIO can,
however, be used in isolation or with other event
notification libraries.

Three functions from the libevent inter-
face appear in this and subsequent exam-
ples: event add(), event del(), and
event set(). All of these functions work with
anevent object that has three principal attributes:
the object being monitored, the desired state of
that object, and a handler that is called when this
desired state is achieved. For example, an event
might designate a handler that is called when a
socket has data available to be read. An event
is initialized usingevent set(). For the pro-
grammer’s convenience,event set() also ac-
cepts as its final argument an opaque pointer that
is passed to the handler.event add() enables
monitoring for an initialized event. Unless an
event is initialized aspersistent, monitoring is
disabled when the event occurs.event del()
disables monitoring for events that are either per-
sistent or have not occurred.

In an event-driven program, event monitor-
ing is performed by an infinite event loop. For
each occurrence of an event, the event loop dis-
patches the corresponding event handler. Fig-
ure 1 shows the outline of the event loop in a
program using LAIO.laio poll() is used for
event monitoring. It returns a set of LAIO com-
pletion objects, one for each completed back-
ground laio syscall(). For each LAIO
completion object, the event loop locates the cor-
responding event object (code not shown in the
figure). It then invokes the continuation function

stored in that event object with the arguments re-
turned in the LAIO completion object.

Figure 2 presents an event handler that writes
data to a network socket. The write opera-
tion is initiated usinglaio syscall(). If
the write does not block, the number of bytes
written is returned. The execution continues to
client write complete(), and the event
handler returns to the event loop.

In the more interesting case in which the
write blocks, -1 is returned anderrno is
set to EINPROGRESS. The program calls
laio gethandle() to get the handle associ-
ated with the backgroundlaio syscall()
operation. It initializes an event object,
and associates the continuation function
client write complete() with that
LAIO handle. The event handler then returns
to the event loop. The continuation function is
invoked by the event loop after the background
laio syscall() completes (see Figure 1).

4 Comparison to Other I/O APIs

We describe non-blocking I/O and AIO and ex-
plain their usage in event-driven programming.
We compare the LAIO API with these other I/O
APIs.

4.1 Non-blocking I/O

With non-blocking I/O the programmer declares
a socket as non-blocking, and then performs the
normal I/O system calls on it. If the operation
does not block, the operation returns normally.
Otherwise, the operation returns when some part
of the operation has completed. The amount of
work completed is indicated by the return value.

Figures 3 and 4 illustrate how the event loop
and the event handler presented in Figures 1 and
2 are programmed using non-blocking I/O in-
stead of LAIO.

The event loop is conceptually the same as
with LAIO. For non-blocking I/O, polling in
the event loop can be done using any standard
event monitoring mechanism likeselect(),
poll(), orkevent().

The event handler clearly illustrates the con-
sequences of the fact that to avoid blocking the
system call may return with the operation only
partially completed. In this case the return value
is different from the number of bytes provided
as an argument to the system call. The applica-
tion needs to remember how much of the data has



for (;;) {
...
/* poll for completed LAIO operations; laioc_array is an array of LAIO completion
* objects; it is an output parameter */
if ((ncompleted = laio_poll(laioc_array, laioc_array_len, timeout)) == -1)

/* handle error */
for (i = 0; i < ncompleted; i++) {

ret_val = laioc_array[i].laio_return_value;
err_val = laioc_array[i].laio_errno;
/* find the event object for laioc_array[i].laio_handle */
eventp->ev_func(eventp->ev_arg/* == clientp */, ret_val, err_val);
/* disable eventp; completions are one-time events */

}
...

Figure 1: Event loop using LAIO

client_write(struct client *clientp)
{

...
/* initiate the operation; returns immediately */
ret_val = laio_syscall(SYS_write, clientp->socket, clientp->buffer,

clientp->bytes_to_write);
if (ret_val == -1) {

if (errno == EINPROGRESS) {
/* instruct event loop to call client_write_complete() upon completion
* of this LAIO operation; clientp is passed to client_write_complete() */

event_set(&clientp->event, laio_gethandle(), EV_LAIO_COMPLETED,
client_write_complete, clientp);

event_add(&clientp->event, NULL);
return; /* to the event loop */

} else {
/* client_write_complete() handles errors */
err_val = errno;

}
} else

err_val = 0;
/* completed without blocking */
client_write_complete(clientp, ret_val, err_val);
...

Figure 2: Event handler using LAIO

been written. When the operation unblocks, an
event is generated, and the event handler is called
again, with the remaining number of bytes to be
written. Several such write system calls may be
required to complete the operation. Hence, the
event is defined as persistent and deleted by the
event handler only when the operation has com-
pleted.

4.2 AIO

The AIO API provides asynchronous counter-
parts,aio read() andaio write(), to the
standard read and write system calls. In addi-
tion, aio suspend() allows the program to
wait for AIO events, andaio return() and
aio error() provide the return and the error

values of asynchronously executed calls. An AIO
control block is used to identify asynchronous
operations.

Figures 5 and 6 show the outline of the event
loop and an event handler, respectively, using
AIO. The event loop is very similar to LAIO, ex-
cept that two separate calls, toaio error()
and toaio return(), are necessary to obtain
the error and return values.

The more important differences are in the event
handler in Figure 6. First, an AIO control block
describing the operation is initialized. This con-
trol block includes information such as the de-
scriptor on which the operation is performed, the
location of the buffer, its size and the completion
notification mechanism. Then, the operation is
initiated. In the absence of errors, the event han-



for (;;) {
...
/* poll for fds that are ready to read and/or write; pfd_array is an array of
* pollfd objects listing blocked fds; it is an input and output parameter */
if ((nready = poll(pfd_array, pfd_array_len, timeout)) == -1)

/* handle error */
for (i = 0; nready > 0 && i < pfd_array_len; i++) {

if (pfd_array[i].revents & (POLLIN | POLLOUT)) {
if (pfd_array[i].revents & POLLIN) { /* ready to read */

/* find the read event object for pfd_array[i].fd */
eventp->ev_func(eventp->ev_arg/* == clientp */);

}
if (pfd_array[i].revents & POLLOUT) { /* ready to write */

/* find the write event object for pfd_array[i].fd */
eventp->ev_func(eventp->ev_arg/* == clientp */);

}
nready--;

}
}
...

Figure 3: Event loop using non-blocking I/O

dler returns to the event loop afterwards.
The control block is used as a handle to iden-

tify the asynchronous operation. In most imple-
mentations, the application determines that the
operation has finished through polling or an asyn-
chronous event notification mechanism, such as
signals. Figure 5 illustrates polling using the
aio suspend() operation.

4.3 Comparison

The three key distinguishing features of LAIO
are:

Generality LAIO works for all operations, e.g.,
file and socket operations.

Laziness LAIO creates a continuation only if the
operation blocks.

Completion notification LAIO notifies the ap-
plication when the event completes, not at
some intermediate stage.

A principal difference between LAIO on one
hand and non-blocking I/O and AIO on the other
hand is that LAIO allows any system call to be
executed asynchronously. Non-blocking I/O only
supports sockets, but does not support file oper-
ations. AIO only supports basic I/O operations,
like reading and writing. Common operations
that include I/O as part of their implementation,
such as opening a file or determining its size, are
not supported.

Furthermore, asynchronous I/O systems can be
distinguished along two dimensions: whether or

not they create continuations if the operation does
not block, and whether they provide a completion
or a partial completion notification. LAIO cre-
ates continuations lazily and provides a comple-
tion notification. The examples in Sections 3, 4.1
and 4.2 clearly show the benefits of this combina-
tion in terms of programmability. Non-blocking
I/O provides partial completion notification, re-
quiring the application to maintain state about
non-blocking calls in progress and to issue mul-
tiple I/O calls (see Figure 4). AIO creates con-
tinuations eagerly, requiring extra programming
effort and extra system calls even if the operation
does not block (see Figures 5 and 6).

5 An LAIO Implementation

LAIO is implemented as a user-level library.
The LAIO library maintains a pool of free

LAIO handles. Each handle is an opaque pointer.
The library passes an LAIO handle to the cur-
rent running thread through an opaque pointer
field in the thread structure. This is done
via the KSE interface [10] before making any
laio syscall(). The library remembers the
current handle in a variablecurrent handle.
The library maintains another variableback-
ground handle which is initialized toNULL
before anylaio syscall().
laio syscall() is a wrapper around any

system call. It saves the current thread’s con-
text and enables upcalls to be delivered. It then
invokes the system call. If the operation does
not block, it returns immediately to the appli-



client_write(struct client *clientp)
{

...
/* assume that the one-time operations, enabling non-blocking I/O and
* initializing the state of progress, have been performed elsewhere. */
...
/* attempt the operation; returns immediately */
ret_val = write(clientp->socket, &clientp->buffer[clientp->bytes_written],

clientp->bytes_remaining);
if (ret_val == clientp->bytes_remaining) { /* this write has completed */

err_val = 0;
} else if (ret_val > 0) { /* and implicitly less than bytes_remaining */

if (clientp->bytes_written == 0) {
/* instruct event loop to call client_write whenever clientp->socket
* is ready to write; clientp is passed to client_write() */

event_set(&clientp->event, clientp->socket, EV_PERSIST | EV_WRITE,
client_write, clientp);

event_add(&clientp->event, NULL);
}
/* update the state of progress */
clientp->bytes_written += ret_val;
clientp->bytes_remaining -= ret_val;
return; /* to the event loop */

} else if (ret_val == -1 && errno != EAGAIN) {
/* client_write_complete() handles errors */
err_val = errno;

}
if (clientp->bytes_written != 0) {

/* instruct libevent that calls are no longer needed */
event_del(&clientp->event);

}
client_write_complete(clientp, ret_val, err_val);
...

Figure 4: Event handler using non-blocking I/O

cation with the corresponding return value and
upcalls are disabled. If the operation blocks,
an upcall is generated by the kernel. The ker-
nel creates a new thread and delivers the up-
call on this new thread. At this point the thread
associated with the handlecurrent handle
has blocked. This handle is remembered in
background handlewhich now corresponds
to the backgroundlaio syscall(). Since,
the current running thread has now changed,
current handle is set to a new handle from
the pool of free LAIO handles. This new
value ofcurrent handle is associated with
the current running thread via the KSE inter-
face. laio gethandle() returns the han-
dle corresponding to the most recent background
laio syscall() which, as explained above,
is saved inbackground handle. The up-
call handler then steals the blocked thread’s
stack using the context previously saved by
laio syscall(). Running on the blocked
thread’s stack, the upcall handler returns from
laio syscall() with the return value set to
-1 and theerrno set toEINPROGRESS.

Unblocking of a background
laio syscall() generates another up-
call. The upcall returns the handle corresponding
to the unblocked thread via an opaque pointer
field within the thread structure. The library adds
this handle to a list of handles corresponding
to backgroundlaio syscall()s that have
completed and frees the thread. The application
calls laio poll() to retrieve this list. After
laio poll() retrieves a handle it is returned
to the pool of free LAIO handles.

We rely on scheduler activations [3] to pro-
vide upcalls for the implementation of the
LAIO library. Many operating systems support
scheduler activations, including FreeBSD [10],
NetBSD [14], Solaris, and Tru64.

6 Experimental Environment

All of our machines have a 2.4GHz Intel
Xeon processor, 2GB of memory, and a single
7200RPM ATA hard drive. They are connected
by a gigabit Ethernet switch. They run FreeBSD



for (;;) {
...
/* poll for completed AIO operations; aiocbp_array is an array of pointers
* to the unfinished aiocbs; it is an input parameter */
if (aio_suspend(aiocbp_array, aiocbp_array_len, timeout) == -1)

/* handle error */
for (i = 0; i < aiocbp_array_len; i++) {

err_val = aio_error(aiocbp_array[i]);
if (err_val == 0) { /* this aiocbp has completed */

ret_val = aio_return(aiocbp_array[i]);
/* find the event object for this aiocbp */
eventp->ev_func(eventp->ev_arg/* == clientp */, ret_val, err_val);
/* disable eventp; completions are one-time events */

} else if (err_val == EINPROGRESS) { /* this aiocbp has not completed */
continue;

} else
/* handle error */

}
...

Figure 5: Event loop using AIO

5.2-CURRENT which supportsKSE, FreeBSD’s
scheduler activations implementation.

7 Microbenchmarks

In order to compare the cost of performing I/O
using LAIO, non-blocking I/O, and AIO, we im-
plemented a set of microbenchmarks. These mi-
crobenchmarks measured the cost of 100,000 it-
erations of reading a single byte from a pipe
under various conditions. For AIO, the mi-
crobenchmarks include calls toaio error()
andaio return() in order to obtain the read’s
error and return values, respectively. We used a
pipe so that irrelevant factors, such as disk ac-
cess latency, did not affect our measurements.
Furthermore, the low overhead of I/O through
pipes would emphasize the differences between
the three mechanisms. In one case, when the
read occurs a byte is already present in the pipe,
ready to be read. In the other case, the byte
is not written into the pipe until the reader has
performed either thelaio syscall() or the
aio read(). In this case, we did not measure
the cost of a non-blocking read because the read
would immediately returnEAGAIN.

As would be expected, when the byte is already
present in the pipe before the read, non-blocking
I/O performed the best. LAIO was a factor of���

slower than non-blocking I/O; and AIO was a
factor of

� ���
and� �� slower than non-blocking

I/O and LAIO, respectively. In the other case,
when the byte was not present in the pipe before
the read, we found that LAIO was a factor of

����

slower than AIO.
In these microbenchmarks, only a single byte

was read at a time. Increasing the number of
bytes read at a time, did not change the order-
ing among LAIO, non-blocking I/O, and AIO as
to which performed best.

8 Macrobenchmarks

We use web servers as our benchmark applica-
tions. We make two sets of comparisons. First,
we compare the performance of single-threaded
event-driven servers using different I/O libraries,
in particular using non-blocking I/O, AIO and
LAIO. Second, we compare the performance of
an event-driven server augmented with helper
processes to the performance of a single-threaded
event-driven server using LAIO.

We use two existing servers as the basis for our
experiments, thttpd [8] and Flash [7]. We modify
these servers in various ways to obtain the desired
experimental results. We first describe thttpd and
Flash. We then document the changes that we
have made to these servers. We conclude with a
description of the workloads used in the experi-
ments.

8.1 thttpd

thttpd has a conventional single-threaded event-
driven architecture. It uses non-blocking network
I/O and blocks on disk I/O. All sockets are con-
figured in non-blocking mode. An event is re-
ceived in the event loop when a socket becomes



client_write(struct client *clientp)
{

...
/* initialize the control block */
aiocbp->aio_fildes = clientp->socket;
aiocbp->aio_buf = clientp->buffer;
aiocbp->aio_nbytes = clientp->bytes_to_write;
aiocbp->aio_sigevent.sigev_notify = SIGEV_NONE; /* do nothing; event loop polls
... * for completion */
/* initiate the operation; returns immediately */
if (aio_write(aiocbp) == -1) {

/* client_write_complete() handles errors */
client_write_complete(clientp, -1, errno);

} else {
/* instruct event loop to call client_write_complete() upon completion
* of the AIO operation; clientp is passed to client_write_complete() */

event_set(&clientp->event, aiocbp, EV_AIO_COMPLETED,
client_write_complete, clientp);

event_add(&clientp->event, NULL);
return; /* to the event loop */

}
...

Figure 6: Event handler using AIO

ready for reading or writing, and the correspond-
ing event handler is invoked. From these event
handlers thttpd makes calls to operations that may
block on disk I/O, which may in turn cause the
entire server to block.

We use the following terminology to refer to
the different versions of the servers. A version
is identified by a triple server-network-disk. For
instance,thttpd-NB-B is the thttpd server using
non-blocking network I/O and blocking disk I/O,
as described in the previous paragraph.

8.2 Flash

Flash employs the asymmetric multiprocess
event driven (AMPED) architecture. It uses non-
blocking I/O for networking, and helper pro-
cesses for operations that may block on disk
I/O. All potentially blocking operations like file
open or read are handled by the helper processes.
The event-driven core dispatches work to the
helper processes through a form of non-blocking
RPC [2]: after the event-driven core sends a re-
quest to a helper process, it registers an event han-
dler for execution upon receipt of the response.
Using the notation introduced in Section 8.1, we
refer to this server asFlash-NB-AMPED.

We use the most recent version of Flash, which
usessendfile(). The event-driven core reads
the requested URL after accepting a connection.
The corresponding file is opened by a helper pro-
cess. Then, the event-driven core usessend-

file() to write the file to the corresponding
socket. Ifsendfile() blocks in the kernel on
a disk I/O, it returns a specialerrno. The event-
driven core catches thiserrno, and instructs a
helper process to issue explicit I/O to bring the
file data into memory. After the event-driven core
receives the helper process’s response, indicat-
ing that the file data is in memory, it re-issues
thesendfile(). Flash thus performs I/O in a
lazy manner, analogous to LAIO. It callssend-
file() expecting it not to block, but if it blocks
on disk I/O, thesendfile() call returns with
a special error code, which is used to initiate I/O
via helper processes.

8.3 Introducing LAIO

We modify thttpd to use the LAIO API, both for
its network and disk operations. Blocking sock-
ets are used for networking. All blocking sys-
tem calls are invoked vialaio syscall().
Continuation functions are defined to handle
laio syscall() invocations that block and
finish asynchronously. This version is called
thttpd-LAIO-LAIO .

We first modify Flash to get a conventional
single-threaded version. This version has no
helper threads. Instead, all helper functions are
called directly by the main thread. Non-blocking
sockets are used as before to perform network
I/O. We refer to this version asFlash-NB-B.

We then modify Flash-NB-B to use LAIO.



All sockets are configured as blocking, and
potentially blocking operations are issued via
laio syscall(). This version is referred to
asFlash-LAIO-LAIO .

8.4 Additional Versions for Compar-
ison

We further modify Flash-NB-B to use AIO for
file reads. This version of Flash uses sockets in
a non-blocking mode. Since there is no AIO API
for stat() andopen(), it may block on those
operations. We call this version of FlashFlash-
NB-AIO .

We also modify Flash-NB-B to use LAIO for
file I/O only. We call this version of FlashFlash-
NB-LAIO .

Finally, we modify Flash-NB-AMPED to use
kernel-level threads instead of processes to im-
plement the helpers. Thus, the event-driven core
and the helper threads share a single address
space, reducing the cost of context switches be-
tween them. We call this version of FlashFlash-
NB-AMTED .

8.5 Summary of Versions

The versions considered in the rest of the paper
are summarized in Table 1.

8.6 Workloads

We use two trace-based web workloads for our
evaluation. These workloads are obtained from
the web servers at Rice University (Rice work-
load) and the University of California at Berkeley
(Berkeley workload).

Table 2 shows the characteristics of the two
workloads. The Rice and Berkeley workloads
contain 245,820 and 3,184,540 requests, respec-
tively. The columnsSmall, Medium, andLarge
indicate the percentage of the total number of
bytes transferred in small files (size less than or
equal to 8 Kilobytes), medium-sized files (size
in between 8 Kilobytes and 256 Kilobytes), and
large files (size greater than 256 Kilobytes). For
the purposes of our experiments the most impor-
tant characteristic is the working set of the work-
load: 1.1 Gigabytes for the Rice workload and 6.4
Gigabytes for the Berkeley workload. With the
server machine we are using, which has 2 Giga-
bytes of main memory, the Rice workload fits in
memory, while the Berkeley workload does not.

The trace file associated with each workload
contains a set of request sequences. A sequence
consist of one or more requests. Each sequence
begins with a connection setup and ends with a
connection teardown. Requests in a sequence
are sent one at a time, the response is read com-
pletely, and then the next request is sent. In Flash,
which supports persistent HTTP connections, all
requests in a sequence are sent over a persistent
connection. For thttpd, which does not support
persistent connections, a new connection is set up
before each request and torn down afterwards.

We use a program that simulates concurrent
clients sending requests to the web server. The
number of concurrent clients can be varied. Each
simulated client plays the request sequences in
the trace to the server. The program terminates
when the trace is exhausted, and reports overall
throughput and response time.

For each experiment we show acold cache and
a warm cache case. In the cold cache case, the
cache is empty when the experiment is started.
In the warm cache case, the cache is warmed up
by running the entire experiment once before any
measurements are collected.

9 Results

First, we compare single-threaded event-driven
servers using different I/O libraries. Then, we
compare LAIO to the Flash AMPED architecture
with user-level helper processes.

9.1 Single-Threaded Event-Driven
Servers

9.1.1 LAIO vs. Non-blocking I/O

Figure 7(a) shows the throughput for the Berke-
ley workload for thttpd-NB-B, thttpd-LAIO-
LAIO, Flash-NB-B and Flash-LAIO-LAIO in
both the cold and warm cache cases. thttpd-
LAIO-LAIO achieves between 12% and 38%
higher throughput than thttpd-NB-B, depend-
ing on the number of clients. Flash-LAIO-
LAIO achieves between 5% and 108% higher
throughput than Flash-NB-B. Figure 7(b) shows
the response times for the four servers under
the Berkeley workload. In both the cold and
warm cache cases, thttpd-LAIO-LAIO and Flash-
LAIO-LAIO achieve lower response times than
thttpd-NB-B and Flash-NB-B, respectively. The
Berkeley workload is too large to fit in memory.
Thus, thttpd-NB-B and Flash-NB-B frequently



Server Threaded Blocking Comments
Operations

thttpd-NB-B Single disk I/O stock version
conventional event-driven

thttpd-LAIO-LAIO Single normal LAIO

Flash-NB-AMPED Process-based Helpers stock version
multiple address spaces

Flash-NB-B Single disk I/O conventional event-driven
Flash-LAIO-LAIO Single normal LAIO
Flash-NB-AIO Single disk I/O other

than read/write
Flash-NB-LAIO Single
Flash-NB-AMTED Thread-based Helpers single, shared address space

Table 1: Different versions of the servers

Web Workload No. of requests Small Medium Large Total footprint
(� 8 KB) (� 8 KB and (� 256 KB)

� 256 KB)

Rice 245,820 5.5% 20.2% 74.3% 1.1 Gigabytes
Berkeley 3,184,540 8.2% 33.2% 58.6% 6.4 Gigabytes

Table 2: Web trace characteristics

block on disk I/O regardless of whether the cache
is cold or warm, while thttpd-LAIO-LAIO and
Flash LAIO-LAIO do not.

Figure 8(a) shows the throughput for the Rice
workload for the same servers in both the cold
and warm cache cases. For the cold cache case,
thttpd-LAIO-LAIO achieves between 9% and
36% higher throughput than thttpd-NB-B, de-
pending on the number of clients. Flash-LAIO-
LAIO achieves between 12% and 38% higher
throughput than Flash-NB-B. No gain is achieved
in the warm cache case. Figure 8(b) shows the re-
sponse times. Similarly, thttpd-LAIO-LAIO and
Flash-LAIO-LAIO only achieve lower response
times than thttpd-NB-B and Flash-NB-B, respec-
tively, in the cold cache case. For this work-
load, which fits in memory, LAIO shows gains
in throughput and response time only in the cold
cache case, stemming from compulsory misses,
which block in the absence of LAIO. In the warm
cache case, there is no disk I/O, and therefore no
improvement as a result of using LAIO.

We conclude that LAIO substantially improves
the performance of conventional single-threaded
servers using non-blocking I/O. As explained in
Section 4.1, LAIO is also easier to program than
non-blocking I/O.

9.1.2 Additional Comparisons

One may wonder whether even better perfor-
mance results could be obtained by using non-
blocking I/O for the network and LAIO for file
I/O. Figures 9(a) and 9(b) show the through-
put results for Flash-LAIO-LAIO and Flash-NB-
LAIO, for the Berkeley and the Rice workloads,
respectively. The results for thttpd and for the re-
sponse times follow the same general trend, so
from now on we only show throughput results
for Flash. The throughputs of Flash-NB-LAIO
and Flash-LAIO-LAIO are very close in all cases.
Given that no performance improvements result
from using non-blocking I/O for networking, and
given the simpler programming model offered by
LAIO, we argue that it is better to use LAIO uni-
formly for all I/O.

In our final experiment we measure the differ-
ence between using LAIO uniformly for all I/O
versus using non-blocking sockets for network
I/O and AIO for disk operations. Figures 10(a)
and 10(b) show the throughput of Flash-NB-AIO
and Flash-LAIO-LAIO for the Berkeley and Rice
workloads, respectively. For the Berkeley work-
load, Flash-LAIO-LAIO dominates Flash-NB-
AIO after 128 clients, achieving its largest im-
provement of 34% at 512 clients. This is because
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Figure 7: Results for the Berkeley workload with single-threaded event-driven web servers
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Figure 8: Results for the Rice workload with single-threaded event-driven web servers

AIO does not support asynchronous versions of
open() andstat(). For the Rice workload,
there is little difference between the two for either
the cold or warm cache cases. In the cold cache
case, the small number of files in the Rice work-
load results in relatively few of the operations that
AIO does not support. In the warm cache case,
the working set is in memory, so there is no disk
I/O.

We conclude that the unified programming
model offered by LAIO is preferable over mixed
models combining non-blocking sockets and
AIO or LAIO, both in terms of ease of program-
ming and in terms of performance.

9.2 AMPED vs. Single-Threaded
with LAIO

We compare the AMPED architecture with the
event-driven architecture using LAIO for all I/O
operations. First, we contrast these two architec-

tures from the view point of programming com-
plexity. Next, we compare the performance of
these two architectures. We use the Flash web
server for these results.

9.2.1 Programming Complexity of AMPED
vs. LAIO

We compare the programming complexity of the
AMPED architecture to the LAIO API. We use
lines of code as a quantitative measure of pro-
gramming complexity.

By using LAIO we avoid the coding complexi-
ties of using helper processes and communicating
between the main process and helper processes.
We also avoid the state maintenance for incom-
plete write operations on sockets. As a result the
programming effort is much reduced while us-
ing LAIO. This is illustrated in Table 3 which
shows the lines of code associated with the differ-
ent components of Flash for Flash-NB-AMPED
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Figure 9: Results for Flash using non-blocking sockets and LAIO for disk operations
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Figure 10: Results for Flash using non-blocking sockets andAIO for disk operations

and Flash-LAIO-LAIO.
Flash-NB-AMPED has two helper processes,

the read helper and the name conversion helper.
The read helper issues aread() on the file
from disk, while the name conversion helper does
stat() on the file and path name and checks
permissions. The read helper accounts for 550
lines of code in Flash-NB-AMPED. In Flash-
LAIO-LAIO the read helper code results in less
than 100 lines of code. The name conversion
helper required more than 600 lines of code in
Flash-NB-AMPED. The name conversion func-
tion requires less than 400 lines of code in Flash-
LAIO-LAIO. Eliminating the partial-write state
maintenance results in a saving of 70 lines of
code in Flash-LAIO-LAIO.

Considering the three components of Flash
where Flash-NB-AMPED differs from Flash-
LAIO-LAIO, Flash-NB-AMPED has more than
three times the number of lines of code as
Flash-LAIO-LAIO. Excluding comment lines

and blank lines, Flash-NB-AMPED has about
8,860 lines of code in total. Flash-LAIO-LAIO
has about 8,020 lines of code. So in Flash-LAIO-
LAIO we have reduced the code size by almost
9.5%.

9.2.2 Performance Comparison

Figure 11(a) shows the performance of Flash-
NB-AMPED, Flash-NB-AMTED and Flash-
LAIO-LAIO for the Berkeley workload under
cold and warm cache conditions. Flash-LAIO-
LAIO outperforms both Flash-NB-AMPED and
Flash-NB-AMTED by about 10% to 40%. There
is no noticeable performance difference between
Flash-NB-AMPED and Flash-NB-AMTED. The
Berkeley workload does not fit in memory and
the CPU is not the bottleneck for any of these
servers. The better performance of Flash-LAIO-
LAIO comes from its better disk utilization than
Flash-NB-AMPED or Flash-NB-AMTED. We



Component Flash-NB-AMPED Flash-LAIO-LAIO

File read 550 15
Name conversion 610 375

Partial-write state maintenance 70 0

Total code size 8860 8020

Table 3: Lines of code count for different versions of Flash
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Figure 11: Results for Flash using the AMPED architecture

validate this by measuring the disk I/O statis-
tics during a run of Flash-LAIO-LAIO and Flash-
NB-AMPED under warm cache conditions. In
particular, we measure total disk I/O (in bytes
transferred) and average disk transfer rate (in
bytes transferred per second). Flash-LAIO-LAIO
transfers about 15.6 Gigabytes of data from the
disk, which is about 15.7% lower than Flash-
NB-AMPED which transfers about 18.5 Giga-
bytes. Flash-LAIO-LAIO achieves a disk trans-
fer rate of 5.64 Mbytes/sec, which is about 5.8%
higher than Flash-NB-AMPED which achieves
a disk transfer rate of about 5.33 Mbytes/sec.
Thus, Flash-LAIO-LAIO utilizes the disk more
efficiently which translates into its higher per-
formance. The disk I/O statistics for Flash-
NB-AMTED are similar to that of Flash-NB-
AMPED. Since the CPU was not the bottleneck,
the context switching overhead (between address
spaces) in Flash-NB-AMPED does not degrade
its performance compared to Flash-NB-AMTED,
and as such both these servers have almost the
same performance.

Figure 11(b) shows the performance of Flash-
NB-AMPED, Flash-NB-AMTED and Flash-
LAIO-LAIO for the Rice workload under cold
and warm cache conditions. Performance of
these three servers is almost the same. The Rice

workload fits in memory. Hence, there is no disk
I/O with a warm cache and the three servers per-
form the same. There is disk I/O starting from a
cold cache, but the amount is much smaller than
for the Berkeley workload. Flash-NB-AMPED
and Flash-NB-AMTED perform almost the same
because the CPU is not the bottleneck in the cold
cache case and no I/O is required by the helpers
in the warm cache case.

We conclude that an event-driven server using
LAIO outperforms a server using the AMPED (or
AMTED) architecture when the workload does
not fit in memory, and matches the performance
of the latter when the workload fits in memory.

10 Related Work

Some prior work has been done in this area.
Other than AIO, the Windows NT [4] and
VAX/VMS [1] operating systems have provided
asynchronous I/O.

In Windows NT, the application can start an
I/O operation then do other work while the de-
vice completes the operation. When the device
finishes transferring the data, it interrupts the ap-
plication’s calling thread and copies the result to
its address space. The kernel uses a Windows
NT asynchronous notification mechanism called



asynchronous procedure call (APC) to notify the
application’s thread of the I/O operation’s com-
pletion.

Like NT, VAX/VMS allows for a process to re-
quest that it gets interrupted when an event oc-
curs, such as an I/O completion event. The inter-
rupt mechanism used is called an asynchronous
system trap (AST), which provides a transfer of
control to a user-specified routine that handles the
event.

Similar to AIO, asynchronous notifications in
both VAX/VMS and Windows NT are limited to
a few events, mainly I/O operations and timers.
This is not broad enough to support any system
call like in LAIO. Also asynchronous I/O in ei-
ther Windows NT or VAX/VMS is not lazy.

11 Conclusions

We have introduced Lazy Asynchronous I/O
(LAIO), a new asynchronous I/O interface that
is well suited to event-driven programming, par-
ticularly the implementation of high-performance
servers. LAIO is general in that it supports all
system calls, and lazy in the sense that it only
creates a continuation if the operation actually
blocks. In addition, it provides notification of
completion rather than partial completion.

LAIO overcomes the limitations of previous
I/O mechanisms, both in terms of ease of pro-
gramming and performance. We have demon-
strated this claim by comparing LAIO to non-
blocking I/O, AIO and AMPED.

By means of an example we have shown the
programming advantages of LAIO over the al-
ternatives. Furthermore, we have quantified the
comparison between LAIO, non-blocking I/O,
and AMPED by counting the affected lines of
code within the Flash web server. Flash-LAIO-
LAIO, a version of Flash using LAIO for both
networking and disk, has 9.5% fewer lines of
code than Flash-NB-AMPED, the stock version
of Flash using a combination of non-blocking I/O
for networking and AMPED for disk.

We have experimented with two web servers,
thttpd and Flash, to quantify the performance ad-
vantages of LAIO. We have shown that for work-
loads which cause disk activity LAIO outper-
forms all alternatives, because it avoids block-
ing in all circumstances and because it has low
overhead in the absence of blocking. For one
such workload, Flash-LAIO-LAIO achieved a
peak throughput that was 25% higher than Flash-
NB-AMPED and 24% higher than the next best

event-driven version, Flash-NB-AIO, using non-
blocking I/O for networking and AIO for disk.
Under workloads with no disk activity, there was
little difference in throughput among the servers.
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