
USENIX Association

Proceedings of the
FREENIX Track:

2002 USENIX Annual Technical
Conference

Monterey, California, USA
June 10-15, 2002

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2002 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.



Congestion Control in Linux TCP

Pasi Sarolahti
University of Helsinki, Department of Computer Science

pasi.sarolahti@cs.helsinki.fi

Alexey Kuznetsov

Institute of Nuclear Research at Moscow
kuznet@ms2.inr.ac.ru

Abstract

The TCP protocol is used by the majority of the net-
work applications on the Internet. TCP performance
is strongly influenced by its congestion control algo-
rithms that limit the amount of transmitted traffic based
on the estimated network capacity and utilization. Be-
cause the freely available Linux operating system has
gained popularity especially in the network servers, its
TCP implementation affects many of the network inter-
actions carried out today. We describe the fundamentals
of the Linux TCP design, concentrating on the conges-
tion control algorithms. The Linux TCP implementation
supports SACK, TCP timestamps, Explicit Congestion
Notification, and techniques to undo congestion window
adjustments after incorrect congestion notifications.

In addition to features specified by IETF, Linux has
implementation details beyond the specifications aimed
to further improve its performance. We discuss these,
and finally show the performance effects of Quick ac-
knowledgements, Rate-halving, and the algorithms for
correcting incorrect congestion window adjustments by
comparing the performance of Linux TCP implementing
these features to the performance achieved with an im-
plementation that does not use the algorithms in ques-
tion.

1 Introduction

The Transmission Control Protocol (TCP) [Pos81b,
Ste95] has evolved for over 20 years, being the most
commonly used transport protocol on the Internet to-
day. An important characteristic feature of TCP are its
congestion control algorithms, which are essential for
preserving network stability when the network load in-
creases. The TCP congestion control principles require
that if the TCP sender detects a packet loss, it should re-
duce its transmission rate, because the packet was prob-
ably dropped by a congested router.

Linux is a freely available Unix-like operating system
that has gained popularity in the last years. The Linux
source code is publicly available1, which makes Linux
an attractive tool for the computer science researchers
in various research areas. Therefore, a large number of
people have contributed to Linux development during its
lifetime. However, many people find it tedious to study
the different aspects of the Linux behavior just by read-
ing the source code. Therefore, in this work we describe
the design solutions selected in the TCP implementation
of the Linux kernel version 2.4. The Linux TCP im-
plementation contains features that differ from the other
TCP implementations used today, and we believe that
the protocol designers working with TCP find these fea-
tures interesting considering their work.

The Internet protocols are standardized by the Internet
Engineering Task Force (IETF) in documents called Re-
quest For Comments (RFC). Currently there are thou-
sands of RFCs, of which tens are related to the TCP pro-
tocol. In addition to the mandatory TCP specifications,
there are a number of experimental and informational
specifications of TCP enhancements for improving the
performance under certain conditions, which can be im-

1The Linux kernel source can be obtained from
http://www.kernel.org/.



plemented optionally.

Building up a single consistent protocol implementation
which conforms to the different RFCs is not a straight-
forward task. For example, the TCP congestion con-
trol specification [APS99] gives a detailed description
of the basic congestion control algorithm, making it eas-
ier for the implementor to apply it. However, if the
TCP implementation supports SACK TCP [MMFR96],
it needs to follow congestion control specifications that
use a partially different set of concepts and variables
than those given in the standard congestion control
RFC [FF96, BAF01]. Therefore, strictly following the
algorithms used in the specifications makes an imple-
mentation unnecessarily complicated, as usually both al-
gorithms need to be included in the TCP implementation
at the same time.

In this work we present the approach taken in Linux TCP
for implementing the congestion control algorithms.
Linux TCP implements many of the RFC specifications
in a single congestion control engine, using the common
code for supporting both SACK TCP and NewReno TCP
without SACK information. In addition, Linux TCP re-
fines many of the specifications in order to improve the
TCP efficiency. We describe the Linux-specific protocol
enhancements in this paper. Additionally, our goal is to
point out the details where Linux TCP behavior differs
from the conventional TCP implementations or the RFC
specifications.

This paper is organized as follows. In Section 2 we
first describe the TCP protocol and its congestion con-
trol algorithms in more detail. In Section 3 we introduce
the main concepts of the Linux TCP congestion control
engine and describe the main algorithms governing the
packet retransmission logic. In Section 4 we describe a
number of Linux-specific features, for example concern-
ing the retransmission timer calculation. In Section 5 we
discuss how Linux TCP conforms to the IETF specifica-
tions related to TCP congestion control, and in Section 6
we illustrate the performance effects of selected Linux-
specific design solutions. In Section 7 we conclude our
work.

2 TCP Basics

We now briefly describe the TCP congestion control
algorithms that are referred to throughout this paper.
Because the congestion control algorithms play an im-
portant role in TCP performance, a number of further

enhancements for the TCP algorithms have been sug-
gested. We describe here the ones considered most im-
portant. Finally, we point out a few details considered
problematic in the current TCP specifications by IETF
as a motivation for the Linux TCP approach.

2.1 Congestion control

The TCP protocol basics are specified in
RFC 793 [Pos81b]. In order to avoid the network
congestion that became a serious problem as the number
of network hosts increased dramatically, the basic
algorithms for performing congestion control were
given by Jacobson [Jac88]. Later, the congestion control
algorithms have been included in the standards track
TCP specification by the IETF [APS99].

The TCP sender uses a congestion window (cwnd) in
regulating its transmission rate based on the feedback
it gets from the network. The congestion window is the
TCP sender’s estimate of how much data can be out-
standing in the network without packets being lost. Af-
ter initializing cwnd to one or two segments, the TCP
sender is allowed to increase the congestion window ei-
ther according to a slow start algorithm, that is, by one
segment for each incoming acknowledgement (ACK),
or according to congestion avoidance, at a rate of one
segment in a round-trip time. The slow start threshold
(ssthresh) is used to determine whether to use slow start
or congestion avoidance algorithm. The TCP sender
starts with the slow start algorithm and moves to con-
gestion avoidance when cwnd reaches the ssthresh.

The TCP sender detects packet losses from incoming du-
plicate acknowledgements, which are generated by the
receiver when it receives out-of-order segments. After
three successive duplicate ACKs, the sender retransmits
a segment and sets ssthresh to half of the amount of
currently outstanding data. cwnd is set to the value of
ssthresh plus three segments, accounting for the seg-
ments that have already left the network according to the
arrived duplicate ACKs. In effect the sender halves its
transmission rate from what it was before the loss event.
This is done because the packet loss is taken as an indi-
cation of congestion, and the sender needs to reduce its
transmission rate to alleviate the network congestion.

The retransmission due to incoming duplicate ACKs is
called fast retransmit. After fast retransmit the TCP
sender follows the fast recovery algorithm until all seg-
ments in the last window have been acknowledged. Dur-
ing fast recovery the TCP sender maintains the number



of outstanding segments by sending a new segment for
each incoming acknowledgement, if the congestion win-
dow allows. The TCP congestion control specification
temporarily increases the congestion window for each
incoming duplicate ACK to allow forward transmission
of a segment, and deflates it back to the value at the be-
ginning of the fast recovery when the fast recovery is
over.

Two variants of the fast recovery algorithm have been
suggested by the IETF. The standard variant exits the
fast recovery when the first acknowledgement advanc-
ing the window arrives at the sender. However, if there
is more than one segment dropped in the same win-
dow, the standard fast retransmit does not perform effi-
ciently. Therefore, an alternative called NewReno was
suggested [FH99] to improve the TCP performance.
NewReno TCP exits the fast recovery only after all seg-
ments in the last window have been successfully ac-
knowledged.

Retransmissions may also be triggered by the retrans-
mission timer, which expires at the TCP sender when no
new data is acknowledged for a while. Retransmission
timeout (RTO) is taken as a loss indication, and it trig-
gers retransmission of the unacknowledged segments. In
addition, when RTO occurs, the sender resets the con-
gestion window to one segment, since the RTO may in-
dicate that the network load has changed dramatically.

The TCP sender estimates packet round-trip
times (RTT) and uses the estimator in determin-
ing the RTO value. When a segment arrives at
the TCP sender, the IETF specifications instruct
it to adjust the RTO value as follows [PA00]:

RTTVAR <- 3

4
�RTTVAR + 1

4
� jSRTT �Rj

SRTT <- 7

8
� SRTT + 1

8
�R

RTO <- max(SRTT + 4 �RTTV AR; 1s:)

where R is the measured round-trip time, RTTVAR is
variation of the recent round-trip times, and SRTT is the
smoothed mean round-trip time based on the recent mea-
surements.

2.2 Enhancements

Recovery from the packet losses is inefficient in the stan-
dard TCP because the cumulative acknowledgements al-
low only one retransmission in a round-trip time. There-
fore, Selective Acknowledgements (SACK) [MMFR96]
were suggested to make it possible for the receiver to

acknowledge scattered blocks of incoming data instead
of a single cumulative acknowledgement, allowing the
TCP sender to make more than one retransmission in a
round-trip time. SACK can be used only if both ends of
the TCP connection support it.

Availability of the SACK information allows the TCP
sender to perform congestion control more accurately.
Instead of temporarily adjusting the congestion window,
the sender can keep track of the amount of outstanding
data and compare it against the congestion window when
deciding whether it can transmit new segments [BAF01].
However, the unacknowledged segments can be treated
in different ways when accounting for outstanding data.
The conservative approach promoted by IETF is to con-
sider all unacknowledged data to be outstanding in the
network. The Forward Acknowledgements (FACK) al-
gorithm [MM96] takes a more aggressive approach and
considers the unacknowledged holes between the SACK
blocks as lost packets. Although this approach often re-
sults in better TCP performance than the conservative
approach, it is overly aggressive if packets have been
reordered in the network, because the holes between
SACK blocks do not indicate lost packets in this case.

The SACK blocks can also be used for reporting spu-
rious retransmissions. The Duplicate-SACK (D-SACK)
enhancement [FMMP00] allows the TCP receiver to re-
port any duplicate segments it gets by using the SACK
blocks. Having this information the TCP sender can
conclude in certain circumstances whether it has unnec-
essarily reduced its congestion control parameters, and
thus revert the parameters to the values preceding the
retransmission. For example, packet reordering is a po-
tential reason for unnecessary retransmissions, because
out-of-order segments trigger duplicate ACKs at the re-
ceiver.

The TCP Timestamp option [BBJ92] was suggested to
allow more accurate round-trip time measurements, es-
pecially on network paths with high bandwidth-delay
product. A timestamp is attached to each TCP seg-
ment, which is then echoed back in the acknowledge-
ment for the segment. From the echoed timestamp the
TCP sender can measure exact round-trip times for the
segments and use the measurement for deriving the re-
transmission timeout estimator. In addition to the more
exact round-trip time measurement, use of TCP times-
tamps allows algorithms for protecting against old seg-
ments from the previous incarnations of the TCP con-
nection.

The timestamp option also allows detection of unneces-
sary retransmissions. The Eifel Algorithm [LK00] sug-



gests that if an acknowledgement for a retransmitted seg-
ment echoes a timestamp earlier than the timestamp of
the retransmission stored at the sender, the original seg-
ment has arrived at the receiver, and the retransmission
was unnecessarily made. In such a case, the TCP sender
can continue by sending new data and revert the recent
changes made to the congestion control parameters.

Instead of inferring congestion from the lost packets, Ex-
plicit Congestion Notification (ECN) [RFB01] was sug-
gested for routers to explicitly mark packets when they
arrive to a congested point in the network. When the
TCP sender receives an echoed ECN notification from
the receiver, it should reduce its transmission rate to mit-
igate the congestion in the network. ECN allows the
TCP senders to be congestion-aware without necessar-
ily suffering from packet losses.

2.3 Criticism

Some details in IETF specifications are problematic in
practice. Although many of the RFCs suggest a gen-
eral algorithm that could be applied to an implementa-
tion, combining the algorithms from several RFCs may
be inconvenient. For example, combining the congestion
control requirements for SACK TCP and NewReno TCP
turns out to be problematic due to different variables and
algorithms used in the specifications.

The TCP congestion control specifications artificially in-
crease the congestion window during the fast recovery in
order to allow forward transmissions to keep the number
of outstanding segments stable. Therefore, the conges-
tion window size does not actually reflect the number
of segments allowed to be outstanding during the fast
recovery. When fast recovery is over, the congestion
window is deflated back to a proper size. This proce-
dure is needed because the congestion window is tradi-
tionally evaluated against the difference of the highest
data segment transmitted (SND.NXT) and the first un-
acknowledged segment (SND.UNA). By taking a more
flexible method for evaluating the number of outstand-
ing segments, the congestion window size can be con-
stantly maintained at a proper level corresponding to the
network capacity.

Adjusting the congestion window consistently becomes
an issue especially when SACK information can be used
by the TCP sender. By using the selective acknowl-
edgements, the sender can derive the number of pack-
ets with a better accuracy than by just using the cumu-
lative acknowledgements. In order to make a coherent

implementation of the congestion control algorithms, it
is desirable to have common variables and routines both
for SACK TCP and for the TCP variant to use when the
other end does not support SACK.

Finally, the details of the RTO algorithm presented
above have been questioned. Since many networks have
round-trip delays of a few tens of milliseconds or less,
the RTO algorithm details may not have a significant ef-
fect on TCP performance, since the minimum RTO value
is limited to one second. However, there are high-delay
networks for which the effectiveness of the RTO calcu-
lation is important. It has been pointed out that the RTO
estimator results in overly large values due to the weight
given for the variance of the round-trip time, when the
round-trip time suddenly drops for some reason. On the
other hand, when the congestion window size increases
at a steady pace during the slow start, it is possible that
the RTO estimator is not increased fast enough due to
small variance in the round-trip times. This may result in
spurious retransmission timeouts. Alternative RTO esti-
mators, such as the Eifel Retransmission Timer [LS00],
have been suggested to overcome the potential problems
in the standard RTO algorithm. However, although the
Eifel Retransmission Timer is efficient in avoiding the
problems of the standard RTO algorithm, it introduces
a rather complex set of equations compared to the stan-
dard RTO. Therefore, evaluating the possible side effects
of different network scenarios on Eifel RTT dynamics is
difficult.

3 Linux Approach

Although Linux conforms to the TCP congestion con-
trol principles, it takes a different approach in carrying
out the congestion control. Instead of comparing the
congestion window to the difference of SND.NXT and
SND.UNA, the Linux TCP sender determines the num-
ber of packets currently outstanding in the network. The
Linux TCP sender then compares the number of out-
standing segments to the congestion window when mak-
ing decisions on how much to transmit. Linux tracks the
number of outstanding segments in units of full-sized
packets, whereas the TCP specifications and some im-
plementations compare cwnd to the number of trans-
mitted octets. This results in different behavior if small
segments are used: if the implementation uses a byte-
based congestion window, it allows several small seg-
ments to be injected in the network for each full-sized
segment in the congestion window. Linux, on the other
hand, allows only one packet to be transmitted for each



segment in the congestion window, regardless of its size.
Therefore, Linux is more conservative compared to the
byte-based approach when the TCP payload consists of
small segments.

The Linux TCP sender uses the same set of concepts
and functions for determining the number of outstand-
ing packets with the NewReno recovery and with the two
flavors of SACK recovery supported. When the SACK
information can be used, the sender can either follow the
Forward Acknowledgements (FACK) [MM96] approach
considering the holes between the SACK blocks as lost
segments, or a more conservative approach similar to the
ongoing work under IETF [BAF01]. In the latter al-
ternative the unacknowledged segments are considered
outstanding in the network. As a basis for all recovery
methods the Linux TCP sender uses the equations:

left_out <- sacked_out + lost_out
in_flight <- packets_out -

left_out + retrans_out

in defining the number of segments outstanding in the
network. In the equation above, packets out is
the number of originally transmitted segments above
SND.UNA, sacked out is the number of segments
acknowledged by SACK blocks, lost out is an esti-
mation of the number of segments lost in the network,
and retrans out is the number of retransmitted seg-
ments. Determining the lost out parameter depends
on the selected recovery method. For example, when
FACK is in use, all unacknowledged segments between
the highest SACK block and the cumulative acknowl-
edgement are counted in lost out. The selected ap-
proach makes it easy to add new heuristics for evaluating
which segments are lost.

In the absence of SACK information, the Linux TCP
sender increases sacked out by one for each incom-
ing duplicate acknowledgement. This is in conformance
with the TCP congestion control specification, and the
resulting behavior is similar to the NewReno algorithm
with its forward transmissions. The design chosen in
Linux does not require arbitrary adjusting of the conges-
tion window, but cwnd holds the valid number of seg-
ments allowed to be outstanding in the network through-
out the fast recovery.

The counters used for tracking the number of outstand-
ing, acknowledged, lost, or retransmitted packets re-
quire additional data structures for supporting them. The
Linux sender maintains the state of each outstanding
segment in a scoreboard, where it marks the known state

of the segment. The segment can be marked as outstand-
ing, acknowledged, retransmitted, or lost. Combinations
of these bits are also possible. For example, a segment
can be declared lost and retransmitted, in which case
the sender is expecting to get an acknowledgement for
the retransmission. Using this information the Linux
sender knows which segments need to be retransmit-
ted, and how to adjust the counters used for determin-
ing in flight when a new acknowledgement arrives.
The scoreboard also plays an important role when deter-
mining whether a segment has been incorrectly assumed
lost, for example due to packet reordering.

The scoreboard markings and the counters used for de-
termining the in flight variable should be in con-
sistent state at all times. Markings for outstanding, ac-
knowledged and retransmitted segments are straightfor-
ward to maintain, but when to place a lost mark depends
on the recovery method used. With NewReno recov-
ery, the first unacknowledged packet is marked lost when
the sender enters the fast recovery. In effect, this corre-
sponds to the fast retransmit of the IETF congestion con-
trol specifications. Furthermore, when a partial ACK not
acknowledging all the data outstanding at the beginning
of the fast recovery arrives, the first unacknowledged
segment is marked lost. This results in retransmission
of the next unacknowledged segment, as the NewReno
specification requires.

When SACK is used, more than one segment can be
marked lost at a time. With the conservative approach,
the TCP sender does not count the holes between the ac-
knowledged blocks in lost out, but when FACK is
enabled, the sender marks the holes between the SACK
blocks lost as soon as they appear. The lost out
counter is adjusted appropriately.

The Linux TCP sender is governed by a state machine
that determines the sender actions when acknowledge-
ments arrive. The states are as follows:

� Open. This is the normal state in which the TCP
sender follows the fast path of execution optimized
for the common case in processing incoming ac-
knowledgements. When an acknowledgement ar-
rives, the sender increases the congestion window
according to either slow start or congestion avoid-
ance, depending on whether the congestion window
is smaller or larger than the slow start threshold, re-
spectively.

� Disorder. When the sender detects duplicate ACKs
or selective acknowledgements, it moves to the Dis-
order state. In this state the congestion window



is not adjusted, but each incoming packet triggers
transmission of a new segment. Therefore, the
TCP sender follows the packet conservation prin-
ciple [Jac88], which states that a new packet is not
sent out until an old packet has left the network. In
practice the behavior in this state is similar to the
limited transmit proposal by IETF [ABF01], which
was suggested to allow more efficient recovery by
using fast retransmit when congestion window is
small, or when a large number of segments are lost
in the last window of transmission.

� CWR. The TCP sender may receive congestion no-
tifications either by Explicit Congestion Notifica-
tion, ICMP source quench [Pos81a], or from a local
device. When receiving a congestion notification,
the Linux sender does not reduce the congestion
window at once, but by one segment for every sec-
ond incoming ACK until the window size is halved.
When the sender is in process of reducing the con-
gestion window size and it does not have outstand-
ing retransmissions, it is in CWR (Congestion Win-
dow Reduced) state. CWR state can be interrupted
by Recovery or Loss states described below.

� Recovery. After a sufficient amount of successive
duplicate ACKs arrive at the sender, it retransmits
the first unacknowledged segment and enters the
Recovery state. By default, the threshold for enter-
ing Recovery is three successive duplicate ACKs, a
value recommended by the TCP congestion control
specification. During the Recovery state, the con-
gestion window size is reduced by one segment for
every second incoming acknowledgement, similar
to the CWR state. The window reduction ends when
the congestion window size is equal to ssthresh, i.e.
half of the window size when entering the Recov-
ery state. The congestion window is not increased
during the recovery state, and the sender either re-
transmits the segments marked lost, or makes for-
ward transmissions on new data according to the
packet conservation principle. The sender stays in
the Recovery state until all of the segments out-
standing when the Recovery state was entered are
successfully acknowledged. After this the sender
goes back to the Open state. A retransmission time-
out can also interrupt the Recovery state.

� Loss. When an RTO expires, the sender enters the
Loss state. All outstanding segments are marked
lost, and the congestion window is set to one seg-
ment, hence the sender starts increasing the conges-
tion window using the slow start algorithm. A ma-
jor difference between the Loss and Recovery states
is that in the Loss state the congestion window is in-

creased after the sender has reset it to one segment,
but in the Recovery state the congestion window
size can only be reduced. The Loss state cannot be
interrupted by any other state, thus the sender ex-
its to the Open state only after all data outstanding
when the Loss state began have successfully been
acknowledged. For example, fast retransmit can-
not be triggered during the Loss state, which is in
conformance with the NewReno specification.

Linux TCP avoids explicit calls to transmit a packet in
any of the above mentioned states, for example, regard-
ing the fast retransmit. The current congestion control
state determines how the congestion window is adjusted,
and whether the sender considers the unacknowledged
segments lost. After the TCP sender has processed an
incoming acknowledgement according to the state it is
in presently, it transmits segments while in flight is
smaller than cwnd. The sender either retransmits earlier
segments marked lost and not yet retransmitted, or new
data segments if there are no lost segments waiting for
retransmission.

There are occasions where the number of outstanding
packets decreases suddenly by several segments. For
example, a retransmitted segment and the following for-
ward transmissions can be acknowledged with a single
cumulative ACK. These situations would cause bursts of
data to be transmitted into the network, unless they are
taken into account in the TCP sender implementation.
The Linux TCP sender avoids the bursts by limiting the
congestion window to allow at most three segments to be
transmitted for an incoming ACK. Since burst avoidance
may reduce the congestion window size below the slow
start threshold, it is possible for the sender to enter slow
start after several segments have been acknowledged by
a single ACK.

When a TCP connection is established, many of the TCP
variables need to be initialized with some fixed values.
However, in order to improve the communication ef-
ficiency at the beginning of the connection, the Linux
TCP sender stores in its destination cache the slow start
threshold, the variables used for the RTO estimator, and
an estimator measuring the likeliness of reordering after
each TCP connection. If another connection is estab-
lished to the same destination IP address that is found
in the cache, the cached values can be used to get ad-
equate initial values for the new TCP connection. If
the network conditions between the sender and the re-
ceiver change for some reason, the values in the desti-
nation cache could get momentarily outdated. However,
we consider this a minor disadvantage.



4 Features

We now list selected Linux TCP features that differ
from a typical TCP implementation. Linux implements
a number of TCP enhancements proposed recently by
IETF, such as Explicit Congestion Notification [RFB01]
and D-SACK [FMMP00]. To our knowledge, these fea-
tures are not yet widely deployed in TCP implementa-
tions, but are likely to be in the future because they are
promoted by the IETF.

4.1 Retransmission timer calculation

Some TCP implementations use a coarse-grained re-
transmission timer, having granularities up to 500 ms.
The round-trip time samples are often measured once
in a round-trip time. In addition, the present retrans-
mission timer specification requires that the RTO timer
should not be less than one second. Considering that
most of the present networks provide round-trip times
of less than 500 ms, studying the feasibility of the tra-
ditional retransmission timer algorithm standardized by
IETF has not excited much interest.

Linux TCP has a retransmission timer granularity of
10 ms and the sender takes a round-trip time sample
for each segment. Therefore it is capable of achieving
more accurate estimations for the retransmission timer,
if the assumptions in the timer algorithm are correct.
Linux TCP deviates from the IETF specification by al-
lowing a minimum limit of 200 ms for the RTO. Because
of the finer timer granularity and the smaller minimum
limit for the RTO timer, the correctness of the algorithm
for determining the RTO is more important than with a
coarse-grain timer. The traditional algorithm for retrans-
mission timeout computation has been found to be prob-
lematic in some networking environments [LS00]. This
is especially true if a fine-grained timer is used and the
round-trip time samples are taken for each segment.

In Section 2 we described two problems regarding the
standard RTO algorithm. First, when the round-trip time
decreases suddenly, RTT variance increases momentar-
ily and causes the RTO value to be overestimated. Sec-
ond, the RTT variance can decay to a small value when
RTT samples are taken for every segment while the win-
dow is large. This increases the risk for spurious RTOs
that result in unnecessary retransmissions.

The Linux RTO estimator attacks the first problem by
giving less weight for the measured mean deviance

(MDEV) when the measured RTT decreases significantly
below the smoothed average. The reduced weight given
for the MDEV sample is based on the multipliers used in
the standard RTO algorithm. First, the MDEV sample is
weighed by 1

8
, corresponding to the multiplier used for

the recent RTT measurement in the SRTT equation given
in Section 2. Second, MDEV is further multiplied by 1

4

corresponding to the weight of 4 given for the RTTVAR
in the standard RTO algorithm. Therefore, choosing the
weight of 1

32
for the current MDEV neutralizes the effect

of the sudden change of the measured RTT on the RTO
estimator, and assures that RTO holds a steady value
when the measured RTT drops suddenly. This avoids the
unwanted peak in the RTO estimator value, while main-
taining a conservative behavior. If the round-trip times
stay at the reduced level for the next measurements, the
RTO estimator starts to decrease slowly to a lower value.
In summary, the equation for calculating the MDEV is as
follows:

if (R < SRTT and |SRTT - R| > MDEV) f
MDEV <- 31

32
�MDEV + 1

32
� jSRTT �Rj

g else f
MDEV <- 3

4
�MDEV + 1

4
� jSRTT �Rj

g

where R is the recent round-trip time measurement, and
SRTT is the smoothed average round-trip time. Linux
does not directly modify the RTTVAR variable, but
makes the adjustments first on the MDEV variable which
is used in adjusting the RTTVAR which determines the
RTO. The SRTT and RTO estimator variables are set ac-
cording to the standard specification.

A separate MDEV variable is needed, because the Linux
TCP sender allows decreasing the RTTVAR variable
only once in a round-trip time. However, RTTVAR is
increased immediately when MDEV gives a higher esti-
mate, thus RTTVAR is the maximum of the MDEV esti-
mates during the last round-trip time. The purpose of
this solution is to avoid the problem of underestimated
RTOs due to low round-trip time variance, which was
the second of the problems described earlier.

Linux TCP supports the TCP Timestamp option that al-
lows accurate round-trip time measurement also for re-
transmitted segments, which is not possible without us-
ing timestamps. Having a proper algorithm for RTO cal-
culation is even more important with the timestamp op-
tion. According to our experiments, the algorithm pro-
posed above gives reasonable RTO estimates also with
TCP timestamps, and avoids the pitfalls of the standard
algorithm.



The RTO timer is reset every time an acknowledgement
advancing the window arrives at the sender. The RTO
timer is also reset when the sender enters the Recovery
state and retransmits the first segment. During the rest
of the Recovery state the RTO timer is not reset, but a
packet is marked lost, if more than RTO’s worth of time
has passed from the first transmission of the same seg-
ment. This allows more efficient retransmission of pack-
ets during the Recovery state even though the informa-
tion from acknowledgements is not sufficient enough to
declare the packet lost. However, this method can only
be used for segments not yet retransmitted.

4.2 Undoing congestion window adjustments

Because the currently used mechanisms on the Inter-
net do not provide explicit loss information to the TCP
sender, it needs to speculate when keeping track of
which packets are lost in the network. For example, re-
ordering is often a problem for the TCP sender because it
cannot distinguish whether the missing ACKs are caused
by a packet loss or by a delayed packet that will arrive
later. The Linux TCP sender can, however, detect unnec-
essary congestion window adjustments afterwards, and
do the necessary corrections in the congestion control
parameters. For this purpose, when entering the Recov-
ery or Loss states, the Linux TCP sender stores the old
ssthresh value prior to adjusting it.

A delayed segment can trigger an unnecessary retrans-
mission, either due to spurious retransmission timeout
or due to packet reordering. The Linux TCP sender has
mainly two methods for detecting afterwards that it un-
necessarily retransmitted the segment. Firstly, the re-
ceiver can inform by a Duplicate-SACK (D-SACK) that
the incoming segment was already received. If all seg-
ments retransmitted during the last recovery period are
acknowledged by D-SACK, the sender knows that the
recovery period was unnecessarily triggered. Secondly,
the Linux TCP sender can detect unnecessary retrans-
missions by using the TCP timestamp option attached to
each TCP header. When this option is in use, the TCP
receiver echoes the timestamp of the segment that trig-
gered the acknowledgement back to the sender, allowing
the TCP sender to conclude whether the ACK was trig-
gered by the original or by the retransmitted segment.
The Eifel algorithm uses a similar method for detecting
spurious retransmissions.

When an unnecessary retransmission is detected by us-
ing TCP timestamps, the logic for undoing the conges-
tion window adjustments is simple. If the sender is in

the Loss state, i.e. it is retransmitting after an RTO
which was triggered unnecessarily, the lost mark is re-
moved from all segments in the scoreboard, causing the
sender to continue with transmitting new data instead of
retransmissions. In addition, cwnd is set to the maxi-
mum of its present value and ssthresh * 2, and the
ssthresh is set to its prior value stored earlier. Since
ssthresh was set to the half of the number of out-
standing segments when the packet loss is detected, the
effect is to continue in congestion avoidance at a similar
rate as when the Loss state was entered.

Unnecessary retransmission can also be detected by the
TCP timestamps while the sender is in the Recovery
state. In this case the Recovery state is finished nor-
mally, with the exception that the congestion window
is increased to the maximum of its present value and
ssthresh * 2, and ssthresh is set to its prior value.
In addition, when a partial ACK for the unnecessary re-
transmission arrives, the sender does not mark the next
unacknowledged segment lost, but continues according
to present scoreboard markings, possibly transmitting
new data.

In order to use D-SACK for undoing the congestion con-
trol parameters, the TCP sender tracks the number of
retransmissions that have to be declared unnecessary be-
fore reverting the congestion control parameters. When
the sender detects a D-SACK block, it reduces the num-
ber of revertable outstanding retransmissions by one. If
the D-SACK blocks eventually acknowledge every re-
transmission in the last window as unnecessarily made
and the retransmission counter falls to zero due to D-
SACKs, the sender increases the congestion window and
reverts the last modification to ssthresh similarly to
what was described above.

While handling the unnecessary retransmissions, the
Linux TCP sender maintains a metric measuring the ob-
served reordering in the network in variable reorder-
ing. This variable is also stored in the destination cache
after the connection is finished. reordering is up-
dated when the Linux sender detects unnecessary re-
transmission during the Recovery state by TCP times-
tamps or D-SACK, or when an incoming acknowledge-
ment is for an unacknowledged hole in the sequence
number space below selectively acknowledged sequence
numbers. In these cases reordering is set to the num-
ber of segments between the highest segment acknowl-
edged and the currently acknowledged segment, in other
words, it corresponds to the maximum distance of re-
ordering in segments detected in the network. Addition-
ally, if FACK was in use when reordering was detected,
the sender switches to use the conservative variant of



SACK, which is not too aggressive in a network involv-
ing reordering.

4.3 Delayed acknowledgements

The TCP specifications state that the TCP receiver
should delay the acknowledgements for a maximum
time of 500 ms in order to avoid the Silly Window Syn-
drome [Cla82]. The specifications do not mandate any
specific delay time, but many implementations use a
static delay of 200 ms for this purpose. However, a
fixed delay time may not be adequate in all network-
ing environments with different properties. Thus, the
Linux TCP receiver adjusts the timer for delaying ac-
knowledgements dynamically to estimate the doubled
packet interarrival time, while sending acknowledge-
ments for at least every second incoming segment. A
similar approach was also suggested in an early RFC by
Clark [Cla82]. However, the maximum delay for send-
ing an acknowledgement is limited to 200 ms.

Using delayed ACKs slows down the TCP sender, be-
cause it increases the congestion window size based on
the rate of incoming acknowledgements. In order to
speed up the transmission in the beginning of the slow
start, the Linux TCP receiver refrains from delaying the
acknowledgements for the first incoming segments at the
beginning of the connection. This is called quick ac-
knowledgements.

The number of quick acknowledgements sent by the
Linux TCP receiver is at most half of the number of seg-
ments required to reach the receiver’s advertised win-
dow limit. Therefore, using quick acknowledgements
does not open the opportunity for the Silly Window Syn-
drome to occur. In addition, the Linux receiver monitors
whether the traffic appears to be bidirectional, in which
case it disables the quick acknowledgements mecha-
nism. This is done to avoid transmitting pure acknowl-
edgements unnecessarily when they can be piggybacked
with data segments.

4.4 Congestion Window Validation

The Linux sender reduces the congestion window size if
it has not been fully used for one RTO estimate’s worth
of time. This scheme is similar to the Congestion Win-
dow Validation suggested by the IETF [HPF00]. The
motivation for Congestion Window Validation is that if
the congestion window is not fully used, the TCP sender

may have an invalid estimate of the present network con-
ditions. Therefore, a network-friendly sender should re-
duce the congestion window as a precaution.

When the Congestion Window Validation is triggered,
the TCP sender decreases the congestion window to half
way between the actually used window and the present
congestion window. Before doing this, ssthresh is
set to the maximum of its current value and 3

4
of the

congestion window, as suggested in RFC 2861.

4.5 Explicit Congestion Notification

Linux implements Explicit Congestion Notification
(ECN) to allow the ECN-capable congested routers to
report congestion before dropping packets. A congested
router can mark a bit in the IP header, which is then
echoed to the TCP sender by an ECN-capable receiver.
When the TCP sender gets the congestion signal, it en-
ters the CWR state, in which it gradually decreases the
congestion window to half of its current size at the rate
of one segment for two incoming acknowledgements.
Besides making it possible for the TCP sender to avoid
some of the congestion losses, ECN is expected to im-
prove the network performance when it is more widely
deployed to the Internet routers.

5 Conformance to IETF Specifications

Since Linux combines the features specified in different
IETF specifications following certain design principles
described earlier, some IETF specifications are not fully
implemented according to the algorithms given in the
RFCs. Table 1 shows our view of which RFC specifica-
tions related to TCP congestion control are implemented
in Linux. Some of the features shown in the table can be
found in Linux, but they do not fully follow the given
specification in all details. These features are marked
with an asterisk in the table, and we will explain the dif-
ferences between Linux and the corresponding RFC in
more detail below.

Linux fast recovery does not fully follow the behavior
given in RFC 2582. First, the sender adjusts the thresh-
old for triggering fast retransmit dynamically, based on
the observed reordering in the network. Therefore, it
is possible that the third duplicate ACK does not trig-
ger a fast retransmit in all situations. Second, the Linux
sender does not artificially adjust the congestion win-



Table 1: TCP congestion control related IETF specifi-
cations implemented in Linux. + = implemented, * =
implemented, but details differ from specification.

Specification Status

RFC 1323 (Perf. Extensions) +
RFC 2018 (SACK) +
RFC 2140 (Ctrl block sharing) +
RFC 2581 (Congestion control) *
RFC 2582 (NewReno) *
RFC 2861 (Cwnd validation) +
RFC 2883 (D-SACK) +
RFC 2988 (RTO) *
RFC 3042 (Lim. xmit) +
RFC 3168 (ECN) *

dow during fast recovery, but maintains its size while
adjusting the in flight estimator based on incom-
ing acknowledgements. The different approach alone
would not cause significant effect on TCP performance,
but when entering the fast recovery, the Linux sender
does not reduce the congestion window size at once, as
RFC 2582 suggests. Instead, the sender decreases the
congestion window size gradually, by one segment per
two incoming acknowledgements, until the congestion
window meets half of its original value. This approach
was originally suggested by Hoe [Hoe95], and later it
was named Rate-halving according to an expired Inter-
net Draft by Mathis, et. al. Rate-halving avoids pauses
in transmission, but is slightly too aggressive after the
congestion notification, until the congestion window has
reached a proper size.

As described in Section 4, the round-trip time estima-
tor and RTO calculation in Linux differs from the Pro-
posed Standard specification by the IETF. Linux follows
the basic patterns given in RFC 2988, but the imple-
mentation differs from the specification in adjusting the
RTTVAR. A significant difference between RFC 2988
and Linux implementation is that Linux uses the mini-
mum RTO limit of 200 ms instead of 1000 ms given in
RFC 2988.

RFC 2018 defines the format and basic usage of the
SACK blocks, but does not give detailed specification
of the congestion control algorithm that should be used
with SACK. Therefore, applying the FACK congestion
control algorithm, as Linux does by default, does not
violate the current IETF specifications. However, since
FACK results in overly aggressive behavior when pack-
ets have been reordered in the network, the Linux sender
changes from FACK to a more conservative congestion
control algorithm when it detects reordering. The IETF

currently has a work in progress draft defining a conges-
tion control algorithm to be used with SACK [BAF01],
which is similar to the conservative SACK alternative in
Linux. Furthermore, Linux follows the D-SACK basics
given in RFC 2883.

Linux implements RFC 1323, which defines the TCP
timestamp and window scaling options, and the limited
transmit enhancement defined in RFC 3042, which is
taken care of by the Disorder state of the Linux TCP
state machine. However, if the reordering estima-
tor has been increased from the default of three seg-
ments, the Linux TCP sender transmits a new segment
for each incoming acknowledgement, not only for the
two first ACKs. Finally, the Linux destination cache
provides functionality similar to the RFC 2140 that pro-
poses Control Block Interdependence between the TCP
connections.

6 Performance Issues

Before concluding our work, we illustrate the perfor-
mance implications of using quick acknowledgements,
rate-halving, and congestion window reverting. We do
this by disabling these features, and comparing the time-
sequence diagrams of a pure Linux TCP implementa-
tion and an implementation with the corresponding fea-
ture disabled. We use Linux hosts as connection end-
points communicating over a 256 Kbps link with MTU
of 1500 bytes. Between the sender and the 256 Kbps
link there is a tail-drop router with buffer space for seven
packets, connected to the sender with a high-bandwidth
link with small latency. The test setup is illustrated in
Figure 1. In addition to the low bandwidth, the link
between the router and TCP receiver has a fairly high
propagation delay of 200 ms. The slow link and the
router are emulated using a real-time network emula-
tor [KGM+01]. With the network emulator we can
control the link and the network parameters and collect
statistics and log about the network behavior to help the
analysis.

TCP sink TCP senderRouter

100 Mbps256 Kbps

200 ms 1 ms

Figure 1: Test setup.

We first illustrate the effect of quick acknowledgements
on TCP throughput. Figure 2(a) shows the slow start
performance of unmodified Linux implementing quick
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(a) Quick acknowledgements enabled.
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(b) Quick acknowledgements disabled.

Figure 2: Effect of quick acknowledgements on slow start performance.

acknowledgements, and Figure 2(b) shows the perfor-
mance of an implementation with the quick acknowl-
edgements mechanism disabled. The latter implementa-
tion applies a static delay of 200 ms for every acknowl-
edgement, but transmits an acknowledgement immedi-
ately if more than one full-sized segment’s worth of un-
acknowledged data has arrived. One can see that when
the link has a high bandwidth-delay product, such as
our link does, the benefit of quick acknowledgements
is noticeable. The unmodified Linux sender has trans-
mitted 50 KB in 2 seconds, but when the quick ac-
knowledgments are disabled, it takes 2.5 seconds for
the sender to transmit 50 KB. In our example, the un-
modified Linux receiver with quick acknowledgements
enabled sent 109 ACK packets, and the implementation
without quick acknowledgements sent 95 ACK packets.
Because quick acknowledgements cause more ACKs to
be generated in the network than when using the con-
ventional delayed ACKs, the sender’s congestion win-
dow increases slightly faster. Although this improves the
TCP performance, it makes the network slightly more
prone to congestion.

Rate-halving is expected to result in a similar average
transmission rate as the conventional TCP fast recovery,
but it paces the transmission of segments smoothly by
making the TCP sender reduce its congestion window
steadily instead of making a sudden adjustment. Fig-
ure 3(a) illustrates the performance of an unmodified
Linux TCP implementing rate-halving, and Figure 3(b)
illustrates the performance of an implementation with
the conventional fast recovery behavior. These figures

also illustrate the receiver’s advertised window (the up-
permost line), since it limits the fast recovery in our ex-
ample.

The scenario is the same in both figures: the router buffer
is filled up, and several packets are dropped due to con-
gestion before the feedback of the first packet loss ar-
rives at the sender. The packet losses at the bottleneck
link due to initial slow start is called slow start over-
shooting. The figures show that after 12 seconds both
TCP variants have transmitted 160 KB. However, the be-
havior of the unmodified Linux TCP is different from the
TCP with rate-halving disabled. With the conventional
fast recovery, the TCP sender stops sending new data un-
til the number of outstanding segments has dropped to
half of the original amount, but the sender with the rate-
halving algorithm lets the number of outstanding seg-
ments reduce steadily, with the rate of one segment for
two incoming acknowledgements. Both variants suffer
from the advertised window limitation, which does not
allow the sender to transmit new data, even though the
congestion window would.

Finally, we show how the timestamp-based undoing af-
fects TCP performance. We generated a three-second
delay, which is long enough to trigger a retransmission
timeout at the TCP sender. Figure 4(a) shows a TCP im-
plementation with the TCP timestamp option enabled,
and Figure 4(b) shows the same scenario with times-
tamps disabled. The acknowledgements arrive at the
sender in a burst, because during the delay packets queue
up in the emulated link receive buffers and are all re-
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Figure 3: Effect of Rate-halving on TCP performance.

leased when the delay is over2.

The timestamps improve the TCP performance consid-
erably, because the TCP sender detects that the acknowl-
edgement following the retransmission was for the orig-
inal transmission of the segment. Therefore the sender
can revert the ssthresh to its previous value and in-
crease congestion window. Moreover, the Linux TCP
sender avoids unnecessary retransmissions of the seg-
ments in the last window. The ACK burst injected by
the receiver after the delay causes 19 new segments to
be transmitted by the sender within a short time interval.
However, the sender follows the slow start correctly as
clocked by the incoming acknowledgements, and none
of the segments are transmitted unnecessarily.

A conventional TCP sender not implementing conges-
tion window reverting retransmits the last window after
the first delayed segment unnecessarily. Not only does
this waste the available bandwidth, but the retransmit-
ted segments appearing as out-of-order data at the re-
ceiver trigger several duplicate acknowledgments. How-
ever, since the TCP sender is still in the Loss state, the
duplicate ACKs do not cause further retransmissions.
One can see that, the conventional TCP sender without
timestamps has received acknowledgements for 165 KB
of data in the 10 seconds after the transmission begun,
while the Linux sender implementing TCP timestamps

2The delay stands for emulated events on the link layer, for example
representing persistent retransmissions of erroneous link layer frames.
The link receive buffer holds the successfully received packets until
the period of retransmissions is over to be able to deliver them in order
for the receiver.

and congestion window reverting has received acknowl-
edgements for 175 KB of data. The Linux TCP sender
having TCP timestamps enabled retransmitted 22.6 KB
in 16 packets, but the Linux TCP sender without times-
tamps retransmitted 37.1 KB in 26 packets in the test
case transmitting 200 KB. The link scenario was the
same in both test runs, having a 3-second delay in the
middle of transmission. When TCP timestamps were
not used, the TCP sender retransmitted 11 packets un-
necessarily.

7 Conclusion

We presented the basic ideas of the Linux TCP imple-
mentation, and gave a description of the details that dif-
fer from a typical TCP implementation. Linux imple-
ments many of the recent TCP enhancements suggested
by the IETF, some of which are still at a draft state.
Therefore Linux provides a platform for testing the in-
teroperability of the recent enhancements in an actual
network. The current design also makes it easy to imple-
ment and study alternative congestion control policies.

The Linux TCP behavior is strongly governed by the
packet conservation principle and the sender’s estimate
of which packets are still in the network, which are ac-
knowledged, and which are declared lost. Whether to
retransmit or transmit new data depends on the markings
made in the TCP scoreboard. In most of the cases none
of the requirements given by the IETF are violated, al-
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(a) TCP timestamps enabled.
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Figure 4: Effect of congestion window undoing on TCP performance.

though in marginal scenarios the detailed behavior may
be different from what is given in the IETF specifica-
tions. However, the TCP essentials, in particular the
congestion control principles and conservation of pack-
ets, are maintained in all cases.

The selected approach can also be problematic when im-
plementing some features. Because Linux combines the
features in different IETF specifications under the same
congestion control engine, an uncareful implementation
may break some parts of the retransmission logic. For
example, if the balance between congestion window and
in flight variable is broken, fast recovery algorithm
may not work correctly in all situations.
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