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Abstract
Stackable file systems can provide extensible file sys-
tem functionality with minimal performance overhead and
development cost. However, previous approaches provide
only limited functionality. In particular, they do not sup-
port size-changing algorithms (SCAs), which are important
and useful for many applications such as compression and
encryption. We propose fast indexing, a technique for effi-
cient support of SCAs in stackable file systems. Fast index-
ing provides a page mapping between file system layers in
a way that can be used with any SCA. We use index files to
store this mapping. Index files are designed to be recover-
able if lost and add less than 0.1% disk space overhead. We
have implemented fast indexing using portable stackable
templates, and we have used this system to build several ex-
ample file systems with SCAs. We demonstrate that fast in-
dex files have low overhead for typical user workloads such
as large compilations, only 2.3% over other stacked file
systems and 4.7%over non-stackable file systems. Our sys-
tem can deliver better performance with SCAs than user-
level applications, as much as five times faster.

1 Introduction
Size-changing algorithms (SCAs) are those that take as in-
put a stream of data bits and produce output of a different
number of bits. These SCAs share one quality in common:
they are generally intended to work on whole streams of in-
put data, from the beginning to the end of the stream. Some
of the applications of such algorithms fall into several pos-
sible categories:

Compression: Algorithms that reduce the overall data size
to save on storage space or transmission bandwidths.

Encoding: Algorithms that encode the data such that it has
a better chance of being transferred, often via email, to
Appeared in proceedings of the 2001 Annual USENIX Technical
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its intended recipients. For example, Uuencode is an
algorithm that uses only the simplest printable ASCII
characters and no more than 72 characters per line. In
this category we also consider transformations to sup-
port internationalization of text as well as unicoding.

Encryption: These are algorithms that transform the
data so it is more difficult to decode it without an
authorization—a decryption key. Encryption algo-
rithms can work in various modes, some of which
change the data size while some modes do not [23].
Typically, encryptionmodes that increase data size are
also more secure.

There are many useful user-level tools that use SCAs,
such as uuencode, compress, and pgp. These tools
work on whole files and are often used manually by users.
This poses additional inconvenience to users. When you
encrypt or decompress a data file, even if you wish to ac-
cess just a small part of that file, you still have to encode or
decode all of it until you reach the portion of interest—an
action that consumes many resources. SCAs do not pro-
vide information that can help to decode or encode only the
portion of interest. Furthermore, running user-level SCA
tools repeatedly costs in additional overhead as data must
be copied between the user process and the kernel several
times. User-level SCA tools are therefore neither transpar-
ent to users nor do they perform well.
Instead, it would be useful for a file system to support
SCAs. File systems are (1) transparent to users since they
do not have to run special tools to use files, and (2) perform
well since they often run in the kernel. File systems have
proven to be a useful abstraction for extending system func-
tionality. Several SCAs (often compression) have been im-
plemented as extensions to existing disk-based file systems
[2, 3, 18]. Their disadvantages are that they only work with
specific operating systems and file systems, and they only
support those specific SCAs. Supporting general-purpose
SCAs on a wide range of platforms was not possible.
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Stackable file systems are an effective infrastructure for
creating new file system functionality with minimal perfor-
mance overhead and development cost [10, 12, 22, 24, 28,
29, 25]. Stackable file systems can be developed indepen-
dently and then stacked on top of each other to provide new
functionality. Also, they are more portable and are easier to
develop [29]. For example, an encryption file system can
be mounted on top of a native file system to provide secure
and transparent data storage [27]. Unfortunately, general-
purpose SCAs have never been implemented in stackable
file systems. The problem we set out to solve was how to
support general-purpose SCAs in a way that is easy to use,
performs well, and is available for many file systems.

We propose fast indexing as a solution for supporting
SCAs in stackable file systems. Fast indexing provide a
way to map file offsets between upper and lower layers in
stackable file systems. Since the fast indexing is just a map-
ping, a lower-layer file system does not have to know any-
thing about the details of the SCA used by an upper-level
file system. We store this fast indexing information in in-
dex files. Each encoded file has a corresponding index file
which is simply stored in a separate file in the lower-layer
file system. The index file is much smaller than the orig-
inal data file, resulting in negligible storage requirements.
The index file is designed to be recoverable if it is some-
how lost so that it does not compromise the reliability of
the file system. Finally, fast indexing is designed to deliver
good file system performance with low stacking overhead,
especially for common file operations.

We have implemented fast indexing using stackable tem-
plates [28, 29, 25]. This allows us to provide transparent
support for SCAs in a portable way. To demonstrate the
effectiveness of our approach, we built and tested several
size-changing file systems, including a compression file
system. Our performance results show (1) that fast index
files have low overhead for typical file system workloads,
only 2.3% over other null-layer stackable file systems, and
(2) that such file systems can deliver as much as five times
better performance than user-level SCA applications.

This paper describes fast index files and is organized as
follows. Section 2 reviews the stacking file-system infras-
tructure used for this work and discusses related work in
SCA support in file systems. Section 3 details the design
of the index file. Section 4 describes the usage of the in-
dex file in relation to common file operations and discusses
several optimizations. Section 5 details our design for a
consistent and recoverable index file. Section 6 summa-
rizes important implementation issues. Section 7 describes
the file systems we built using this work and evaluates our
system. Finally, we present conclusions and discuss direc-
tions for future work.

2 Background
In this section we discuss extensibility mechanisms for file
systems, what would be required for such file systems to
support SCAs, and other systems that provide some support
for compression SCAs.

2.1 Stacking Support
Stackable file systems allow for modular, incremental de-
velopment of file systems by layering additional function-
ality on another file system [13, 15, 21, 24]. Stacking pro-
vides an infrastructure for the composition of multiple file
systems into one.

CompressFS

VFS_WRITE()

write()

ext2fs_write()

compressfs_write()

Ke
rn
el

EXT2FS

Us
erUser Process

Virtual File System (VFS)

Figure 1: An example stackable compression file system. A sys-
tem call is translated into a generic VFS function, which is trans-
lated into a file-system specific function in our stackable com-
pression file system. CompressFS then modifies (compresses) the
data passed to it and calls the file system stacked below it with the
modified data.

Figure 1 shows the structure for a simple single-level
stackable compression file system called CompressFS.
System calls are translated into VFS calls, which in turn in-
voke their CompressFS equivalents. CompressFS receives
user data to be written. It compresses the data and passes it
to the next lower layer, without any regard to what type of
file system implements that layer.
Stackable file systems were designed to be modular and
transparent: each layer is independent from the layers
above and below it. In that way, stackable file system
modules could be composed together in different config-
urations to provide new functionality. Unfortunately, this
poses problems for SCAs because the decoded data at the
upper layer has different file offsets from the encoded data
at the lower layer. CompressFS, for example, must know
how much compressed data it wrote, where it wrote it, and
what original offsets in the decoded file did that data rep-
resent. Those pieces of information are necessary so that
subsequent reading operations can locate the data quickly.
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If CompressFS cannot find the data quickly, it may have to
resort to decompression of the complete file before it can
locate the data to read.
Therefore, to support SCAs in stackable file systems, a
stackable layer must have some information about the en-
coded data—offset information. But a stackable file sys-
tem that gets that information about other layers violates
its transparency and independence. This is the main reason
why past stacking works do not support SCAs. The chal-
lenge we faced was to add general-purpose SCA support
to a stacking infrastructure without losing the benefits of
stacking: a stackable file system with SCA support should
not have to know anything about the file system it stacks
on. That way it can add SCA functionality automatically to
any other file system.

2.2 Compression Support
Compression file systems are not a new idea. Windows
NT supports compression in NTFS [18]. E2compr is a set
of patches to Linux’s Ext2 file system that add block-level
compression [2]. Compression extensions to log-structured
file systems resulted in halving of the storage needed while
degrading performance by no more than 60% [3]. The
benefit of block-level compression file systems is primar-
ily speed. Their main disadvantage is that they are specific
to one operating system and one file system, making them
difficult to port to other systems and resulting in code that
is hard to maintain.
The ATTIC system demonstrated the usefulness of au-
tomatic compression of least-recently-used files [5]. It was
implemented as a modified user-level NFS server. Whereas
it provided portable code, in-kernel file systems typically
perform better. In addition, the ATTIC system decom-
presses whole files which slows performance.
HURD [4] and Plan 9 [19] have an extensible file system
interface and have suggested the idea of stackable compres-
sion file systems. Their primary focus was on the basic
minimal extensibility infrastructure; they did not produce
any working examples of size-changing file systems.
Spring [14, 16] and Ficus [11] discussed a similar idea
for implementing a stackable compression file system.
Both suggested a unified cache manager that can automat-
ically map compressed and uncompressed pages to each
other. Heidemann’s Ficus work provided additional de-
tails on mapping cached pages of different sizes.1 Unfor-
tunately, no demonstration of these ideas for compression
file systems was available from either of these works. In
addition, no consideration was given to arbitrary SCAs and

1Heidemann’s earlier work [13] mentioned a “prototype compression
layer” built during a class project. In personal communications with the
author, we were told that this prototype was implemented as a block-level
compression file system, not a stackable one.

how to efficiently handle common file operations such as
appends, looking up file attributes, etc.

3 The Index File

In a stacking environment that supports SCAs, data offsets
may change arbitrarily. An efficient mapping is needed that
can tell where the starting offset of the encoded data is for
a given offset in the original file. We call this mapping the
index table.
The index table is stored in a separate file called the index
file, as shown in Figure 2. This file serves as the fast meta-
data index into an encoded file. For a given data file ,
we create an index file called .idx. Many file systems
separate data and meta data; this is done for efficiency and
reliability. Meta-data is considered more important and so
it gets cached, stored, and updated differently than regular
data. The index file is separate from the encoded file data
for the same reasons and to allow us to manage each part
separately and simply.

Decoded (original) File

Encoded
Data File

Index
File Lower Layer

Upper Layer

Figure 2: Overall structure of size-changing stackable file sys-
tems. Each original data file is encoded into a lower data file.
Additional meta-data index information is stored in an index file.
Both the index file and the encoded data files reside in the lower
level file system.

Our system encodes and decodes whole pages or their
multiples—which maps well to file system operations. The
index table assumes page-based operations and stores off-
sets of encoded pages as they appear in the encoded file.
Consider an example of a file in a compression file sys-
tem. Figure 3 shows the mapping of offsets between the
upper (original) file and the lower (encoded) data file. To
find out the bytes in page 2 of the original file, we read
the data bytes 3000–7200 in the encoded data file, decode
them, and return to the VFS that data in page 2.
To find out which encoded bytes we need to read from
the lower file, we consult the index file, shown in Table 1.
The index file tells us that the original file has 6 pages, that
its original size is 21500 bytes, and then it lists the ending
offsets of the encoded data for an upper page. Finding the
lower offsets for the upper page 2 is a simple linear deref-
erencing of the data in the index file; we do not have to
search the index file linearly. Note that our design of the
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Encoded File (lower)

Decoded File (upper)
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Figure 3: An example of a 32-bit file system that shrinks data
size (compression). Each upper page is represented by an encoded
lower “chunk.” The mapping of offsets is shown in Table 1.

index file supports both 32-bit and 64-bit file systems, but
the examples we provide here are for 32-bit file systems.

Word Representing Regular With Fast
(32/64 bits) IDX File Tail (ft)
1 (12 bits) flags ls=0,ft=0,... ls=0,ft=1,...
1 (20/52 bits) # pages 6 5
2 orig. file size 21500 21500
3 page 0 1100 1100
4 page 1 3000 3000
5 page 2 7200 7200
6 page 3 7700 7700
7 page 4 10000 10000
8 page 5 10120

Table 1: Format of the index file for Figures 3 and 4. Fast Tails
are described in Section 4.2. The first word encodes both flags
and the number of pages in the index file. The “ls” (large size)
flag is the first bit in the index file and indicates if the index file
encodes a 32-bit (0) or 64-bit (1) file system.

The index file starts with a word that encodes flags and
the number of pages in the corresponding original data
file. We reserve the lower 12 bits for special flags such
as whether the index file encodes a file in a 32-bit or a 64-
bit file system, whether fast tails were encoded in this file
(see Section 4.2), etc. The very first bit of these flags, and
therefore the first bit in the index file, determines if the file
encoded is part of a 32-bit or a 64-bit file system. This way,
just by reading the first bit we can determine how to inter-
pret the rest of the index file: 4 bytes to encode page offsets
on 32-bit file systems or 8 bytes to encode page offsets on
64-bit file systems.
We use the remaining 20 bits (on a 32-bit file system) for
the number of pages because 4KB pages (the typical
page size on i386 and SPARCv8 systems) would give us
the exact maximum file size we can encode in 4 bytes on
a 32-bit file system, as explained next; similarly 4KB
pages is the exact maximum file size on a 64-bit file system.

The index file also contains the original file’s size in the
second word. We store this information in the index file
so that commands like ls -l and others using stat(2)
would work correctly; a process looking at the size of the
file through the upper level file system would get the origi-
nal number of bytes and blocks. The original file’s size can
be computed from the starting offset of the last data chunk
in the encoded file, but it would require decoding the last
(possibly incomplete) chunk (bytes 10000–10120 in the en-
coded file in Figure 3) which can be an expensive operation
depending on the SCA. Storing the original file size in the
index file is a speed optimization that only consumes one
more word—in a physical data block that most likely was
already allocated.
The index file is small. We store one word (4 bytes on a
32-bit file system) for each data page (usually 4096 bytes).
On average, the index table size is 1024 times smaller than
the original data file. For example, an index file that is ex-
actly 4096 bytes long (one disk block on an Ext2 file sys-
tem formatted with 4KB blocks) can describe an original
file size of 1022 pages, or 4,186,112 bytes (almost 4MB).
Since the index file is relatively small, we read it into
kernel memory as soon as the main file is open and manip-
ulate it there. That way we have fast access to the index
data in memory. The index information for each page is
stored linearly and each index entry typically takes 4 bytes.
That lets us compute the needed index information simply
and find it from the index table using a single dereference
into an array of 4-byte words (integers). To improve perfor-
mance further, we write the final modified index table only
after the original file is closed and all of its data flushed to
stable media.
The size of the index file is less important for SCAs
which increase the data size, such as unicoding, uuencod-
ing, and some forms of encryption. The more the SCA
increases the data size, the less significant the size of the
index file becomes. Even in the case of SCAs that decrease
data size (e.g., compression) the size of the index file may
not be as important given the savings already gained from
compression.
Since the index information is stored in a separate file, it
uses up one more inode. We measured the effect that the
consumption of an additional inode would have on typical
file systems in our environment. We found that disk data
block usage is often 6–8 times greater than inode utiliza-
tion on disk-based file systems, leaving plenty of free in-
odes to use. To save resources even further, we efficiently
support zero-length files: a zero-length original data file is
represented by a zero-length index file.
For reliability reasons, we designed the index file so it
could be recovered from the data file in case the index file
is lost or damaged (Section 5.) This offers certain improve-
ments over typical Unix file systems: if their meta-data (in-
odes, inode and indirect blocks, directory data blocks, etc.)
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is lost, it rarely can be recovered. Note that the index file
is not needed for our system to function: it represents a
performance enhancing tool. Without the index file, size-
changing file systems would perform poorly. Therefore, if
it does not exist (or is lost), our system automatically re-
generates the index file.

4 File Operations
We now discuss the handling of file system operations in
fast indexing as well as specific optimizations for common
operations. Note that most of this design relates to perfor-
mance optimizations while a small part (Section 4.4) ad-
dresses correctness.
Because the cost of SCAs can be high, it is important
to ensure that we minimize the number of times we invoke
these algorithms and the number of bytes they have to pro-
cess each time. The way we store and access encoded data
chunks can affect this performance as well as the types and
frequencies of file operations. As a result, fast indexing
takes into account the fact that file accesses follow several
patterns:

The most popular file system operation is stat(2),
which results in a file lookup. Lookups account for
40–50% of all file system operations [17, 20].

Most files are read, not written. The ratio of reads
to writes is often 4–6 [17, 20]. For example, compil-
ers and editors read in many header and configuration
files, but only write out a handful of files.

Files that are written are often written from beginning
to end. Compilers, user tools such as cp, and editors
such as emacs write whole files in this way. Further-
more, the unit of writing is usually set to match the
system page size. We have verified this by running
a set of common edit and build tools on Linux and
recorded the write start offsets, size of write buffers,
and the current size of the file.

Files that are not written from beginning to end are
often appended to. The number of appended bytes is
usually small. This is true for various log files that
reside in /var/log as well as Web server logs.

Very few files are written in the middle. This happens
in two cases. First, when the GNU ld creates large bi-
naries, it writes a sparse file of the target size and then
seeks and writes the rest of the file in a non-sequential
manner. To estimate the frequency of writes in the
middle, we instrumented a null-layer file system with
a few counters. We then measured the number and
type of writes for our large compile benchmark (Sec-
tion 7.3.1). We counted 9193 writes, of which 58
(0.6%) were writes before the end of a file.

Second, data-base files are also written in the middle.
We surveyed our own site’s file servers and worksta-
tions (several hundred hosts totaling over 1TB of stor-
age) and found that these files represented less than
0.015% of all storage. Of those, only 2.4% were mod-
ified in the past 30 days, and only 3% were larger than
100MB.

All other operations (together) account for a small
fraction of file operations [17, 20].

We designed our system to optimize performance for the
more common and important cases while not harming per-
formance unduly when the seldom-executed cases occur.
We first describe how the index file is designed to support
fast lookups, file reads, and whole file writes, which to-
gether are the most common basic file operations. We then
discuss support for appending to files efficiently, handling
the less common operation of writes in the middle of files,
and ensuring correctness for the infrequent use of truncate.

4.1 Basic Operations
To handle file lookups fast, we store the original file’s size
in the index table. Due to locality in the creation of the
index file, we assume that its name will be found in the
same directory block as the original file name, and that the
inode for the index file will be found in the same inode
block as the encoded data file. Therefore reading the index
file requires reading one additional inode and often only
one data block. After the index file is read into memory,
returning the file size is done by copying the information
from the index table into the “size” field in the current inode
structure. Remaining attributes of the original file come
from the inode of the actual encoded file. Once we read the
index table into memory, we allow the system to cache its
data for as long as possible. That way, subsequent lookups
will find files’ attributes in the attribute cache.
Since most file systems are structured and implemented
internally for access and caching of whole pages, we also
encode the original data file in whole pages. This improved
our performance and helped simplify our code because in-
terfacing with the VFS and the page cache was more nat-
ural. For file reads, the cost of reading in a data page is
fixed: a fixed offset lookup into the index table gives us the
offsets of encoded data on the lower level data file; we read
this encoded sequence of bytes, decode it into exactly one
page, and return that decoded page to the user.
Using entire pages made it easier for us to write whole
files, especially if the write unit was one page size. In the
case of whole file writes, we simply encode each page size
unit, add it to the lower level encoded file, and add one
more entry to the index table. We discuss the cases of file
appends and writes in the middle in Sections 4.2 and 4.3,
respectively.

5



We did not have to design anything special for handling
all other file operations. We simply treat the index file at
the same time we manipulate the corresponding encoded
data file. An index file is created only for regular files; we
do not have to worry about symbolic links because the VFS
will only call our file system to open a regular file. When
a file is hard-linked, we also hard-link the index file using
the name of the new link with a the .idx extension added.
When a file is removed from a directory or renamed, we
apply the same operation to the corresponding index file.

4.2 Fast Tails
One common usage pattern of files is to append to them.
Often, a small number of bytes is appended to an existing
file. Encoding algorithms such as compression and encryp-
tion are more efficient when they encode larger chunks of
data. Therefore it is better to encode a larger number of
bytes together. Our design calls for encoding whole pages
whenever possible. Table 1 and Figure 3 show that only
the last page in the original file may be incomplete and that
incomplete page gets encoded too. If we append, say, 10
more bytes to the original (upper) file of Figure 3, we have
to keep it and the index file consistent: we must read the
1020 bytes from 20480 until 21500, decode them, add the
10 new bytes, encode the new 1030 sequence of bytes, and
write it out in place of the older 1020 bytes in the lower
file. We also have to update the index table in two places:
the total size of the original file is now 21510, and word
number 8 in the index file may be in a different location
than 10120 (depending on the encoding algorithm, it may
be greater, smaller, or even the same).
The need to read, decode, append, and re-encode a chunk
of bytes for each append grows worse as the number of
bytes to append is small while the number of encoded bytes
is closer to one full page. In the worst case, this method
yields a complexity of in the number of bytes that
have to be decoded and encoded, multiplied by the cost
of the encoding and decoding of the SCA. To solve this
problem, we added a fast tails runtime mount option that
allows for up to a page size worth of unencoded data to be
added to an otherwise encoded data file. This is shown in
the example in Figure 4.
In this example, the last full page that was encoded is
page 4. Its data bytes end on the encoded data file at off-
set 10000 (page 2). The last page of the original upper file
contains 1020 bytes (21500 less 20K). So we store these
1020 bytes directly at the end of the encoded file, after off-
set 10000. To aid in computing the size of the fast tail, we
add two more bytes to the end of the file past the fast tail it-
self, listing the length of the fast tail. (Two bytes is enough
to list this length since typical page sizes are less than
bytes long.) The final size of the encoded file is now 11022
bytes long.

Encoded File (lower)

Decoded File (upper)

FT Size

Tail
Fast

0 4K 8K 12K 16K
Page 0 Page 1 Page 2 Page 3 Page 4 Page 5

20K

0
Page 0 Page 1 Page 2

4K 8K
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00
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00

72
00
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00

0

21500 (EOF)
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2 
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O
F)
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00

Figure 4: Size-changed file structure with fast-tail optimization.
A file system similar to Figure 3, only here we store up to one page
full of unencoded raw data. When enough raw data is collected to
fill a whole fast-tail page, that page is encoded.

With fast tails, the index file does not record the offset
of the last tail as can be seen from the right-most column
of Table 1. The index file, however, does record in its flags
field (first 12 bits of the first word) that a fast tail is in use.
We put that flag in the index table to speed up the compu-
tations that depend on the presence of fast tails. We append
the length of the fast tail to the encoded data file to aid in
reconstruction of a potentially lost index file, as described
in Section 5.
When fast tails are in use, appending a small number of
bytes to an existing file does not require data encoding or
decoding, which can speed up the append operation con-
siderably. When the size of the fast tail exceeds one page,
we encode the first page worth of bytes, and start a new fast
tail.
Fast tails, however, may not be desirable all the time ex-
actly because they store unencoded bytes in the encoded
file. If the SCA used is an encryption one, it is insecure to
expose plaintext bytes at the end of the ciphertext file. For
this reason, fast tails is a runtime global mount option that
affects the whole file system mounted with it. The option
is global because typically users wish to change the overall
behavior of the file system with respect to this feature, not
on a per-file basis.

4.3 Write in the Middle
User processes can write any number of bytes in the middle
of an existing file. With our system, whole pages are en-
coded and stored in a lower level file as individual encoded
chunks. A new set of bytes written in the middle of the
file may encode to a different number of bytes in the lower
level file. If the number of new encoded bytes is greater
than the old number, we shift the remaining encoded file
outward to make room for the new bytes. If the number of
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bytes is smaller, we shift the remaining encoded file inward
to cover unused space. In addition, we adjust the index ta-
ble for each encoded data chunk which was shifted. We
perform shift operations as soon as our file system’s write
operation is invoked, to ensure sequential data consistency
of the file.
To improve performance, we shift data pages in memory
and keep them in the cache as long as possible: we avoid
flushing those data pages to disk and let the system decide
when it wants to do so. That way, subsequent write-in-
the-middle operations that may result in additional inward
or outward shifts will only have to manipulate data pages
already cached and in memory. Any data page shifted is
marked as dirty, and we let the paging system flush it to
disk when it sees fit.
Note that data that is shifted in the lower level file does
not have to be re-encoded. This is because that data still
represents the actual encoded chunks that decode into their
respective pages in the upper file. The only thing remaining
is to change the end offsets for each shifted encoded chunk
in the index file.
We examined several performance optimization alterna-
tives that would have encoded the information about in-
ward or outward shifts in the index table or possibly in
some of the shifted data. We rejected them for several rea-
sons: (1) it would have complicated the code considerably,
(2) it would have made recovery of an index file difficult,
and (3) it would have resulted in fragmented data files that
would have required a defragmentation procedure. Since
the number of writes in the middle we measured was so
small (0.6% of all writes), we do consider our simplified
design as a good cost vs. performance balance. Even with
our simplified solution, our file systems work perfectly cor-
rectly. Section 7.3.2 shows the benchmarks we ran to test
writes in the middle and demonstrates that our solution pro-
duces good overall performance.

4.4 Truncate
One design issue we faced was with the truncate(2)
system call. Although this call occurs less than 0.02% of
the time [17, 20], we still had to ensure that it behaved cor-
rectly. Truncate can be used to shrink a file as well as en-
large it, potentially making it sparse with new “holes.” We
dealt with four cases:

1. Truncating on a page boundary. In this case, we trun-
cate the encoded file exactly after the end of the chunk
that now represents the last page of the upper file. We
update the index table accordingly: it has fewer pages
in it.

2. Truncating in the middle of an existing page. This
case results in a partial page: we read and decode the
whole page and re-encode the bytes within the page

representing the part before the truncation point. We
update the index table accordingly: it now has fewer
pages in it.

3. Truncating in the middle of a fast tail. In that case
we just truncate the lower file where the fast tail is
actually located. We then update the size of the fast
tail at its end and update the index file to indicate the
(now) smaller size of the original file.

4. Truncating past the end of the file is akin to extend-
ing the size of the file and possibly creating zero-filled
holes. We read and re-encode any partially filled page
or fast tail that used to be at the end of the file before
the truncation; we have to do that because that page
now contains a mix of non-zero data and zeroed data.
We encode all subsequent zero-filled pages. This is
important for some applications such as encryption,
where every bit of data—zeros or otherwise—should
be encrypted.

5 Index File Consistency
With the introduction of a separate index file to store the
index table, we now have to maintain two files consistently.
Normally, when a file is created, the directory of that file
is locked. We keep both the directory and the encoded data
file locked when we update the index file. This way both
the encoded data file and the index file are guaranteed to be
written correctly.
We assume that encoded data files and index files will
not become corrupt internally due to media failures. This
situation is no worse than normal file systems where a ran-
dom data corruption may not be possible to fix. However,
we do concern ourselves with three potential problemswith
the index file: partially written file, a lost file, and trivial
corruptions.
An index file could be partially written if the file sys-
tem is full or the user ran out of quota. In the case
where we were unable to write the complete index file,
we simply remove it and log a warning message through
syslog(3)—where the message could be passed on to
a centralized logging facility that monitors and generates
appropriate alerts. The absence of the index file on subse-
quent file accesses will trigger an in-kernel mechanism to
recover the index file. That way the index file is not nec-
essary for our system to function; it only aids in improving
performance.
An index file could be lost if it was removed intention-
ally (say after a partial write) or unintentionally by a user
directly from the lower file system. If the index file is lost
or does not exist, we can no longer easily tell where en-
coded bytes were stored. In the worst case, without an in-
dex file, we have to decode the complete file to locate any
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arbitrary byte within. However, since the cost of decoding
a complete file and regenerating an index table are nearly
identical (see Section 7.6), we chose to regenerate the in-
dex table immediately if it does not exist, and then proceed
as usual as the index file now exists.
We verify the validity of the index file when we use the
index table. We check that all index entries are monoton-
ically increasing, that it has the correct number of entries,
file size matches the last entry, flags used are known, etc.
The index file is regenerated if an inconsistency is detected.
This helps our system to survive certain meta-data corrup-
tions that could occur as a result of software bugs or direct
editing of the index file.
We designed our system so that the index file can be re-
covered reliably in all cases. Four important pieces of in-
formation are needed to recover an index file given an en-
coded data file. These four are available in the kernel to the
running file system:

1. The SCA used.

2. The page size of the system on which the encoded data
file was created.

3. Whether the file system used is 32-bit or 64-bit.

4. Whether fast tails were used.

To recover an index file we read an input encoded data
file and decode the bytes until we fill out one whole page
of output data. We rely on the fact that the original data
file was encoded in units of page size. The offset of the in-
put data where we finished decoding onto one full page be-
comes the first entry in the index table. We continue read-
ing input bytes and producemore full pages andmore index
table entries. If fast tails were used, then we read the size of
the fast tail from the last two bytes of the encoded file, and
we do not try to decode it since it was written unencoded.
If fast tails were not used and we reached the end of
the input file, that last chunk of bytes may not decode to
a whole output page. In that case, we know that was the
end of the original file, and we mark the last page in the
index table as a partial page. While we are decoding pages,
we sum up the number of decoded bytes and fast tails, if
any. The total is the original size of the data file, which we
record in the index table. We now have all the information
necessary to write the correct index file and we do so.

6 SCA Implementation
Our SCA support was integrated into FiST [29, 25]. The
FiST system includes portable stackable file system tem-
plates for several operating systems as well as a high-
level language that can describe new stackable file systems
[26, 28]. Most of the work was put into the stackable tem-
plates, where we added substantially more code to support

SCAs: 2119 non-comment lines of C code, representing a
60% increase in the size of the templates. Because this ad-
ditional code is substantial and carries an overhead with it
that is not needed for non-size-changing file systems (Sec-
tion 7), we made it optional. To support that, we added one
additional declaration to the FiST language, to allow de-
velopers to decide whether or not to include this additional
support.
To use FiST to produce a size-changing file system, de-
velopers need to include a single FiST declaration in their
input file and then write only two routines: encode data
and decode data. The main advantage of using FiST for
this work has been the ease of use for developers that want
to write size-changing file systems. All the complexity is
placed in the templates and is mostly hidden from devel-
opers’ view. Developers need only concentrate on the core
implementation issues of the particular algorithm they wish
to use in their new file system.
The FiST system has been ported to Linux, Solaris, and
FreeBSD. Current SCA support is available for Linux 2.3
only. Our primary goal in this work was to prove that size-
changing stackable file systems can be designed to perform
well. When we feel that the design is stable and addresses
all of the algorithmic issues related to the index file, we will
port it to the other templates. We would then be able to de-
scribe an SCA file system once in the FiST language; from
this single portable description, we could then produce a
number of working file systems.
There are two implementation-specific issues of interest:
one concerning Linux and the other regarding writes in the
middle of files. As mentioned in Section 3, we write any
modified index information out when the main file is closed
and its data flushed to stable media. In Linux, neither data
nor meta-data are automatically flushed to disk. Instead,
a kernel thread (kflushd) runs every 5 seconds and asks
the page cache to flush any file system data that has not
been used recently, but only if the system needs moremem-
ory. In addition, file data is forced to disk when either the
file system is unmounted or the process called an explicit
fflush(3) or fsync(2). We take advantage of this
delayed write to improve performance, since we write the
index table when the rest of the file’s data is written.
To support writes in the middle correctly, we have to
make an extra copy of data pages into a temporary loca-
tion. The problem is that when we write a data page given
to us by the VFS, we do not know what this data page will
encode into, and howmuch space that new encoding would
require. If it requires more space, then we have to shift data
outward in the encoded data file before writing the new
data. For this first implementation, we chose the simpli-
fied approach of always making the temporary copy, which
affects performance as seen in Section 7. While our code
shows good performance, it has not been optimized much
yet; we discuss avenues of future work in Section 9.
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7 Evaluation
To evaluate fast indexing in a real world operating system
environment, we built several SCA stackable file systems
based on fast indexing. We then conducted extensive mea-
surements in Linux comparing them against non-SCA file
systems on a variety of file system workloads. In this sec-
tion we discuss the experimentswe performed on these sys-
tems to (1) show overall performance on general-purpose
file system workloads, (2) determine the performance of
individual common file operations and related optimiza-
tions, and (3) compare the efficiency of SCAs in stackable
file systems to equivalent user-level tools. Section 7.1 de-
scribes the SCA file systems we built and our experimental
design. Section 7.2 describes the file system workloads we
used for our measurements. Sections 7.3 to 7.6 present our
experimental results.

7.1 Experimental Design
We ran our experiments on five file systems. We built three
SCA file systems and compared their performance to two
non-SCA file systems. The three SCA file systems we built
were:

1. Copyfs: this file system simply copies its input bytes
to its output without changing data sizes. Copyfs ex-
ercises all of the index-management algorithms and
other SCA support without the cost of encoding or de-
coding pages.

2. Uuencodefs: this is a file system that stores files in
uuencoded format and uudecodes files when they are
read. It is intended to illustrate an algorithm that in-
creases the data size. This simple algorithm converts
every 3-byte sequence into a 4-byte sequence. Uuen-
code produces 4 bytes that can have at most 64 values
each, starting at the ASCII character for space (20 ).
We chose this algorithm because it is simple and yet
increases data size significantly (by one third).

3. Gzipfs: this is a compression file system using the
Deflate algorithm [7] from the zlib-1.1.3 package [9].
This algorithm is used by GNU zip (gzip) [8]. This
file system is intended to demonstrate an algorithm
that (usually) reduces data size.

The two non-SCA file systems we used were Ext2fs,
the native disk-based file system most commonly used in
Linux, and Wrapfs, a stackable null-layer file system we
trivially generated using FiST [25, 29]. Ext2fs provides
a measure of base file system performance without any
stacking or SCA overhead. Wrapfs simply copies the data
of files between layers but does not include SCA support.
By comparing Wrapfs to Ext2fs, we can measure the over-
head of stacking and copying data without fast indexing

and without changing its content or size. Copyfs copies
data like Wrapfs but uses all of the SCA support. By com-
paring Copyfs to Wrapfs, we can measure the overhead of
basic SCA support. By comparing Uuencodefs to Copyfs,
we canmeasure the overhead of an SCA algorithm incorpo-
rated into the file system that increases data size. Similarly,
by comparing Gzipfs to Copyfs, we can measure the over-
head of a compression file system that reduces data size.
One of the primary optimizations in this work is fast tails
as described in Section 4.2. For all of the SCA file systems,
we ran all of our tests first without fail-tails support enabled
and then with it. We reported results for both whenever fast
tails made a difference.
All experiments were conducted on four equivalent
433Mhz Intel Celeron machines with 128MB of RAM and
a Quantum Fireball lct10 9.8GB IDE disk drive. We in-
stalled a Linux 2.3.99-pre3 kernel on each machine. Each
of the four stackable file systems we tested was mounted on
top of an Ext2 file system. For each benchmark, we only
read, wrote, or compiled the test files in the file system be-
ing tested. All other user utilities, compilers, headers, and
libraries resided outside the tested file system.
Unless otherwise noted, all tests were run with a cold
cache. To ensure that we used a cold cache for each test, we
unmounted all file systems which participated in the given
test after the test completed and mounted the file systems
again before running the next iteration of the test. We ver-
ified that unmounting a file system indeed flushes and dis-
cards all possible cached information about that file system.
In one benchmark we report the warm cache performance,
to show the effectiveness of our code’s interaction with the
page and attribute caches.
We ran all of our experiments 10 times on an other-
wise quiet system. We measured the standard deviations
in our experiments and found them to be small, less than
1% for most micro-benchmarks described in Section 7.2.
We report deviations which exceeded 1% with their rele-
vant benchmarks.

7.2 File System Benchmarks

We measured the performance of the five file systems on
a variety of file system workloads. For our workloads,
we used five file system benchmarks: two general-purpose
benchmarks for measuring overall file system performance,
and three micro-benchmarks for measuring the perfor-
mance of common file operations that may be impacted
by fast indexing. We also used the micro-benchmarks to
compare the efficiency of SCAs in stackable file systems to
equivalent user-level tools.
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7.2.1 General-Purpose Benchmarks
Am-utils: The first benchmark we used to measure overall
file system performance was am-utils (The Berkeley Au-
tomounter) [1]. This benchmark configures and compiles
the large am-utils software package inside a given file sys-
tem. We used am-utils-6.0.4: it contains over 50,000 lines
of C code in 960 files. The build process begins by run-
ning several hundred small configuration tests intended to
detect system features. It then builds a shared library, about
ten binaries, four scripts, and documentation: a total of 265
additional files. Overall this benchmark contains a large
number of reads, writes, and file lookups, as well as a fair
mix of most other file system operations such as unlink,
mkdir, and symlink. During the linking phase, several large
binaries are linked by GNU ld.
The am-utils benchmark is the only test that we also ran
with a warm cache. Our stackable file systems cache de-
coded and encoded pages whenever possible, to improve
performance. While normal file system benchmarks are
done using a cold cache, we also felt that there is value
in showing what effect our caching has on performance.
This is because user level SCA tools rarely benefit from
page caching, while file systems are designed to perform
better with warm caches; this is what users will experience
in practice.
Bonnie: The second benchmark we used to measure
overall file system performance was Bonnie [6], a file sys-
tem test that intensely exercises file data reading and writ-
ing, both sequential and random. Bonnie is a less general
benchmark than am-utils. Bonnie has three phases. First, it
creates a file of a given size by writing it one character at a
time, then one block at a time, and then it rewrites the same
file 1024 bytes at a time. Second, Bonnie writes the file one
character at a time, then a block at a time; this can be used
to exercise the file system cache, since cached pages have
to be invalidated as they get overwritten. Third, Bonnie
forks 3 processes that each perform 4000 random lseeks
in the file, and read one block; in 10% of those seeks, Bon-
nie also writes the block with random data. This last phase
exercises the file system quite intensively, and especially
the code that performs writes in the middle of files.
For our experiments, we ran Bonnie using files of in-
creasing sizes, from 1MB and doubling in size up to
128MB. The last size is important because it matched the
available memory on our systems. Running Bonnie on a
file that large is important, especially in a stackable setting
where pages are cached in both layers, because the page
cache should not be able to hold the complete file in mem-
ory.

7.2.2 Micro-Benchmarks
File-copy: The first micro-benchmark we used was de-
signed to measure file system performance on typical bulk

file writes. This benchmark copies files of different sizes
into the file system being tested. Each file is copied just
once. Because file system performance can be affected by
the size of the file, we exponentially varied the sizes of the
files we ran these tests on—from 0 bytes all the way to
32MB files.
File-append: The second micro-benchmark we used
was designed to measure file system performance on file
appends. It was useful for evaluating the effectiveness of
our fast tails code. This benchmark read in large files of
different types and used their bytes to append to a newly
created file. New files are created by appending to them
a fixed but growing number of bytes. The benchmark ap-
pended bytes in three different sizes: 10 bytes representing
a relatively small append; 100 bytes representing a typical
size for a log entry on a Web server or syslog daemon; and
1000 bytes, representing a relatively large append unit. We
did not not try to append more than 4KB because that is the
boundary where fast appended bytes get encoded. Because
file system performance can be affected by the size of the
file, we exponentially varied the sizes of the files we ran
these tests on—from 0 bytes all the way to 32MB files.
Compression algorithms such as used in Gzipfs behave
differently based on the input they are given. To account
for this in evaluating the append performance of Gzipfs, we
ran the file-append benchmark on four types of data files,
ranging from easy to compress to difficult to compress:

1. A file containing the character “a” repeatedly should
compress really well.

2. A file containing English text, actually written by
users, collected from our Usenet News server. We ex-
pected this file to compress well.

3. A file containing a concatenation of many different bi-
naries we located on the same host system, such as
those found in /usr/bin and /usr/X11R6/bin.
This file should be more difficult to compress because
it contains fewer patterns useful for compression al-
gorithms.

4. A file containing previously compressed data. We
took this data from Microsoft NT’s Service Pack 6
(sp6i386.exe) which is a self-unarchiving large
compressed executable. We expect this file to be diffi-
cult to compress.

File-attributes: The third micro-benchmark we used
was designed to measure file system performance in get-
ting file attributes. This benchmark performs a recursive
listing (ls -lRF) on a freshly unpacked and built am-utils
benchmark file set, consisting of 1225 files. With our SCA
support, the size of the original file is now stored in the in-
dex file, not in the inode of the encoded data file. Finding
this size requires reading an additional inode of the index
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file and then reading its data. This micro-benchmark mea-
sures the additional overhead that results from also having
to read the index file.

7.2.3 File System vs. User-Level Tool Benchmarks
To compare the SCAs in our stackable file systems versus
user-level tools, we used the file-copy micro-benchmark
to compare the performance of the two stackable file sys-
tems with real SCAs, Gzipfs and Uuencodefs, against their
equivalent user-level tools, gzip [8] and uuencode, re-
spectively. In particular, the same Deflate algorithm and
compression level (9) was used for both Gzipfs and gzip.
In comparing Gzipfs and gzip, we measured both the
compression time and the resulting space savings. Because
the performance of compression algorithms depends on the
type of input, we compared Gzipfs to gzip using the file-
copy micro-benchmark on all four of the different file types
discussed in Section 7.2.2.

7.3 General-Purpose Benchmark Results
7.3.1 Am-Utils
Figure 5 summarizes the results of the am-utils benchmark.
We report both system and elapsed times. The top part
of Figure 5 shows system times spent by this benchmark.
This is useful to isolate the total effect on the CPU alone,
since SCA-based file systems change data size and thus
change the amount of disk I/O performed. Wrapfs adds
14.4% overhead over Ext2, because of the need to copy
data pages between layers. Copyfs adds only 1.3% over-
head overWrapfs; this shows that our index file handling is
fast. Compared to Copyfs, Uuencodefs adds 7% overhead
and Gzipfs adds 69.9%. These are the costs of the respec-
tive SCAs in use and are unavoidable—whether running in
the kernel or user-level.
The total size of an unencoded build of am-utils is
22.9MB; a Uuencoded build is one-third larger; Gzipfs re-
duces this size by a factor of 2.66 to 8.6MB. So while
Uuencodefs increases disk I/O, it does not translate to a
lot of additional system time because the Uuencode algo-
rithm is trivial. Gzipfs, while decreasing disk I/O, however,
is a costlier algorithm than Uuencode. That’s why Gzipfs’s
system time overhead is greater overall than Uuencodefs’s.
The additional disk I/O performed by Copyfs is small and
relative to the size of the index file.
The bottom part of Figure 5 shows elapsed times for this
benchmark. These figures are the closest to what users
will see in practice. Elapsed times factor in increased CPU
times the more expensive the SCA is, as well as changes in
I/O that a given file system performs: I/O for index file, in-
creased I/O for Uuencodefs, and decreased I/O for Gzipfs.
On average, the cost of data copying without size-
changing (Wrapfs compared to Ext2fs) is an additional
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Figure 5: The Am-utils large-compile benchmark. Elapsed times
shown on top and system times shown on bottom. The standard
deviations for this benchmark were less than 3% of the mean.

2.4%. SCA support (Copyfs over Wrapfs) adds another
2.3% overhead. The Uuencode algorithm is simple and
adds only 2.2% additional overhead over Copyfs. Gzipfs,
however, uses a more expensive algorithm (Deflate) [7],
and it adds 14.7% overhead over Copyfs. Note that the
elapsed-time overhead for Gzipfs is smaller than its CPU
overhead (almost 70%) because whereas the Deflate algo-
rithm is expensive, Gzipfs is able to win back some of that
overhead by its I/O savings.

Using a warm cache improves performance by 5–10%.
Using fast tails improves performance by at most 2%. The
code that is enabled by fast tails must check, for each read
or write operation, if we are at the end of the file, if a fast
tail already exists, and if a fast tail is large enough that it
should be encoded and a new fast tail started. This code has
a small overhead of its own. For file systems that do not
need fast tails (e.g., Copyfs), fast tails add an overhead of
1%. We determined that fast tails is an option best used for
expensive SCAs where many small appends are occurring,
a conclusion demonstrated more visibly in Section 7.4.2.
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7.3.2 Bonnie

Figure 6 shows the results of running Bonnie on the five file
systems. Since Bonnie exercises data reading and writing
heavily, we expect it to be affected by the SCA in use. This
is confirmed in Figure 6. Over all runs in this benchmark,
Wrapfs has an average overhead of 20% above Ext2fs,
ranging from 2–73% for the given files. Copyfs only adds
an additional 8% average overhead over Wrapfs. Uuen-
codefs adds an overhead over Copyfs that ranges from 5%
to 73% for large files. Gzipfs, with its expensive SCA, adds
an overhead over Copyfs that ranges from 22% to 418% on
the large 128MB test file.
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Figure 6: The Bonnie benchmark performs many repeated reads
and writes on one file as well as numerous random seeks and
writes in three concurrent processes. We show the total cumu-
lative overhead of each file system. Note that the overhead bands
for Gzipfs and Uuencodefs are each relative to Copyfs. We report
the results for files 1MB and larger, where the overheads are more
visible.

Figure 6 exhibits overhead spikes for 64MB files. Our
test machines had 128MB of memory. Our stackable sys-
tem caches two pages for each page of a file: one encoded
page and one decoded page, effectively doubling the mem-
ory requirements. The 64MB files are the smallest test files
that are large enough for the system to run out of mem-
ory. Linux keeps data pages cached for as long as possible.
When it runs out of memory, Linux executes an expensive
scan of the entire page cache and other in-kernel caches,
purging as many memory objects as it can, possibly to disk.
The overhead spikes in this figure occur at that time.
Bonnie shows that an expensive algorithm such as com-
pression, coupled with many writes in the middle of large
files, can degrade performance by as much as a factor of
5–6. In Section 9 we describe certain optimizations that we
are exploring for this particular problem.

7.4 Micro-Benchmark Results
7.4.1 File-Copy
Figure 7 shows the results of running the file-copy bench-
mark on the different file systems. Wrapfs adds an average
overhead of 16.4% over Ext2fs, which goes to 60% for a
file size of 32MB; this is the overhead of data page copying.
Copyfs adds an average overhead of 23.7% over Wrapfs;
this is the overhead of updating and writing the index file
as well as having to make temporary data copies (explained
in Section 6) to support writes in the middle of files. The
Uuencode algorithm adds an additional average overhead
of 43.2% over Copyfs, and as much as 153% overhead
for the large 32MB file. The linear overheads of Copyfs
increase with the file’s size due to the extra page copies
that Copyfs must make, as explained in Section 6. For all
copies over 4KB, fast-tails makes no difference at all. Be-
low 4KB, it only improves performance by 1.6% for Uuen-
codefs. The reason for this is that this benchmark copies
files only once, whereas fast-tails is intended to work bet-
ter in situations with multiple small appends.
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Figure 7: Copying files into a tested file system. As expected,
Uuencodefs is costlier that Copyfs, Wrapfs, and Ext2fs. Fast-tails
do not make a difference in this test, since we are not appending
multiple times.

7.4.2 File-Append
Figure 8 shows the results of running the file-append
benchmark on the different file systems. The figure shows
the two emerging trends in effectiveness of the fast tails
code. First, the more expensive the algorithm, the more
helpful fast tails become. This can be seen in the right col-
umn of plots. Second, the smaller the number of bytes ap-
pended to the file is, the more savings fast tails provide, be-
cause the SCA is called fewer times. This can be seen as the
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Figure 8: Appending to files. The left column of plots shows appends for Uuencodefs and Copyfs. The right column shows them for
Gzipfs, which uses a more expensive algorithm; we ran Gzipfs on four different file types. The three rows of two plots each show, from
top to bottom, appends of increasing sizes: 10, 100, and 1000 bytes, respectively. The more expensive the SCA is, and the smaller the
number of bytes appended is, the more effective fast tails become; this can be seen as the trend from lower leftmost plot to the upper
rightmost plot. The standard deviation for these plots did not exceed 9% of the mean.
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trend from the bottom plots (1000 byte appends) to the top
plots (10 byte appends). The upper rightmost plot clearly
clusters together the benchmarks performed with fast tails
support on and those benchmarks conducted without fast
tails support.
Not surprisingly, there is little savings from fast tail sup-
port for Copyfs, no matter what the append size is. Uuen-
codefs is a simple algorithm that does not consume too
much CPU cycles. That is why savings for using fast tails
in Uuencodefs range from 22% for 1000-byte appends to
a factor of 2.2 performance improvement for 10-byte ap-
pends. Gzipfs, using an expensive SCA, shows significant
savings: from a minimum performance improvement fac-
tor of 3 for 1000-byte appends to as much as a factor of 77
speedup (both for moderately sized files).

7.4.3 File-Attributes

Figure 9 shows the results of running the file-attributes
benchmark on the different file systems. Wrapfs add an
overhead of 35% to the GETATTR file system operation be-
cause it has to copy the attributes from one inode data struc-
ture into another. SCA-based file systems add the most sig-
nificant overhead, a factor of 2.6–2.9 over Wrapfs; that is
because Copyfs, Uuencodefs, and Gzipfs include stackable
SCA support, managing the index file in memory and on
disk. The differences between the three SCA file systems
in Figure 9 are small and within the error margin.
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While the GETATTR file operation is a popular one, it is
still fast because the additional inode for the small index
file is likely to be in the locality of the data file. Note that
Figure 9 shows cold cache results, whereas most operating
systems cache attributes once they are retrieved. Our mea-
sured speedup of cached vs. uncached attributes shows an
improvement factor of 12–21. Finally, in a typical work-
load, bulk data reads and writes are likely to dominate any
other file system operation such as GETATTR.

7.5 File System vs. User-Level Tool Results
Figure 10 shows the results of comparing Gzipfs against
gzip using the file-copy benchmark. The reason Gzipfs
is faster than gzip is primarily due to running in the ker-
nel and reducing the number of context switches and ker-
nel/user data copies.

0

100

200

300

400

0 2 8 32 12
8

51
2 2K 8K 32
K

12
8K

51
2K 2M 8M 32
M

File Size (bytes) [log]

Sp
ee

du
p 

of
 G

zip
fs

 o
ve

r G
NU

 Z
ip

 (%
)

all-a
binary
text
compressed

Figure 10: Comparing file copying into Gzipfs (kernel) and us-
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As expected, the speedup for all files up to one page
size is about the same, 43.3–53.3% on average; that is be-
cause the savings in context switches are almost constant.
More interesting is what happens for files greater than 4KB.
This depends on two factors: the number of pages that are
copied and the type of data being compressed.
The Deflate compression algorithm is dynamic; it will
scan ahead and back in the input data to try to compress
more of it. Deflate will stop compressing if it thinks that
it cannot do better. We see that for binary and text files,
Gzipfs is 3–4 times faster than gzip for large files; this
speedup is significant because these types of data compress
well and thus more pages are manipulated at any given time
by Deflate. For previously compressed data, we see that the
savings is reduced to about double; that is because Deflate
realizes that these bits do not compress easily and it stops
trying to compress sooner (fewer pages are scanned for-
ward). Interestingly, for the all-a file, the savings average
only 12%. That is because the Deflate algorithm is quite
efficient with that type of data: it does not need to scan the
input backward and it continues to scan forward for longer.
However, these forward-scanned pages are looked at few
times, minimizing the number of data pages that gzip
must copy between the user and the kernel. Finally, the
plots in Figure 10 are not smooth because most of the in-
put data is not uniform and thus it takes Deflate a different
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amount of effort to compress different bytes sequences.
One additional benchmark of note is the space savings
for Gzipfs as compared to the user level gzip tool. The
Deflate algorithm used in both works best when it is given
as much input data to work with at once. GNU zip looks
ahead at 64KB of data, while Gzipfs currently limits itself
to 4KB (one page). For this reason, gzip achieves on av-
erage better compression ratios: as little as 4% better for
compressing previously compressed data, to 56% for com-
pressing the all-a file.
We also compared the performance of Uuencodefs to the
user level uuencode utility. Detailed results are not pre-
sented here due to space limitations, but we found the per-
formance savings to be comparable to those with Gzipfs
compared to gzip.

7.6 Additional Tests
We measured the time it takes to recover an index file and
found it to be statistically indifferent from the cost of read-
ing the whole file. This is expected because to recover the
index file we have to decode the complete data file.
Finally, we checked the in-kernel memory consumption.
As expected, the total number of pages cached in the page
cache is the sum of the encoded and decoded files’ sizes (in
pages). This is because in the worst case, when all pages
are warm and in the cache, the operating system may cache
all encoded and decoded pages. For Copyfs, this means
doubling the number of pages cached; for Gzipfs, fewer
pages than double are cached because the encoded file size
is smaller than the original file; for Uuencodefs, 2.33 times
the number of original data pages are cached because the
algorithm increased the data size by one-third. In practice,
we did not find the memory consumption in stacking file
systems on modern systems to be onerous [29].

8 Conclusions
The main contribution of our work is demonstrating that
SCAs can be used effectively and transparently with stack-
able file systems. Our performance overhead is small and
running these algorithms in the kernel improves perfor-
mance considerably. File systems with support for SCAs
can offer new services automatically and transparently to
applications without having to change these applications
or run them differently. Our templates provide support for
generic SCAs, allowing developers to write new file sys-
tems easily.
Stackable file systems also offer portability across differ-
ent file systems. File systems built with our SCA support
can work on top of any other file system. In addition, we
have done this work in the context of our FiST language,
allowing rapid development of SCA-based file systems on
multiple platforms [25, 29].

9 Future Work
We are investigating methods of improving the perfor-
mance of writes in the middle of files by decoupling the
order of the bytes in the encoded file from their order in
the original file. By decoupling their order, we could move
writes in the middle of files elsewhere—say the end of the
file (similar to a journal) or an auxiliary file. Another al-
ternative is to structure the file differently internally: in-
stead of a sequential set of blocks, it could be organized
as a B-tree or hash table where the complexity order of in-
sertions in the middle is sub-linear. These methods would
allow us to avoid having to shift bytes outward to make
space for larger encoded units. However, if we begin stor-
ing many encoded chunks out of order, large files could get
fragmented. We would need a method for compaction or
coalescing all these chunks into a single sequential order.
An important optimization we plan to implement is to
avoid extra copying of data into temporary buffers. This
is only needed when an encoded buffer is written in the
middle of a file and its encoded length is greater than its
decoded length; in that case we must shift outward some
data in the encoded data file to make room for the new en-
coded data. We can optimize this code and avoid making
the temporary copies when files are appended to or being
newly created and written sequentially.
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[26] E. Zadok and I. Bădulescu. A Stackable File System Inter-
face for Linux. LinuxExpo Conference Proceedings, 1999.
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