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Abstract

Multiple threads running in a single, shared address
space is a simple model for writing parallel programs
for symmetric multiprocessor (SMP) machines and for
overlapping I/O and computation in programs run on ei-
ther SMP or single processor machines. Often a long
running program’s user would like the program to save
its state periodically in a checkpoint from which it can
recover in case of a failure. This paper introduces the
first system to provide checkpointing support for mul-
tithreaded programs that use LinuxThreads, the POSIX
based threads library for Linux.

The checkpointing library is simple to use, automatically
takes checkpoint, is flexible, and efficient. Virtually all
of the overhead of the checkpointing system comes from
saving the checkpoint to disk. The checkpointing library
added no measurable overhead to tested application pro-
grams when they took no checkpoints. Checkpoint file
size is approximately the same size as the checkpointed
process’s address space. On the current implementation
WATER-SPATIAL from the SPLASH2 benchmark suite
saved a 2.8 MB checkpoint in about 0.18 seconds for
local disk or about 21.55 seconds for an NFS mounted
disk. The overhead of saving state to disk can be mini-
mized through various techniques including varying the
checkpoint interval and excluding regions of the address
space from checkpoints.

1 Introduction

Computer systems are prone to hardware and software
failures and the probability that a machine will crash be-
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fore a process finishes running grows in proportion to
the process’s run time. A process can save its state in a
checkpoint to help tolerate system downtime. A multi-
threaded process has both private state and shared state.
A thread’s private state includes its program counter,
stack pointer, and registers. Its shared state includes ev-
erything common to all threads in the process, such as
the address space and open file state. A multithreaded
checkpointing library must save and recover the pro-
cess’s shared state and each thread’s private state.

User-level thread libraries are implemented outside the
kernel using timers to preempt threads when their time
slice is over. Implementing a checkpointing library for
a user-level threads package is a straightforward exten-
sion of a single-threaded checkpointing library because
a user-level multithreaded process is no different from
a single-threaded process from the operating system’s
point of view. User-level threads cannot take advantage
of a symmetric multiprocessor (SMP), however, because
the kernel is not aware of the threads. Thus it cannot
schedule them to run concurrently on separate proces-
sors.

With kernel-level threads, like LinuxThreads in Linux
or lightweight processes in Solaris, the kernel schedules
threads and keeps track of their state. Not only must the
checkpointing library save and restore the address space
of the process to recover the thread state, but it must also
call the kernel to restart threads during recovery.

Hybrid thread libraries like the one found in Solaris,
use both kernel-level and user-level threads. User-level
threads are scheduled to run inside several kernel-level
threads, called light-weight processes (LWP) in Solaris.
The library usually starts with one LWP per processor.
If a user-level thread makes a blocking call and there
are more runnable threads the thread library starts a new
LWP so the whole process does not need to block. A
hybrid thread library cannot be checkpointed like a user-
threads library because it uses kernel-level threads.



We have tested our checkpointing library on several pro-
grams in the SPLASH-2 benchmark suite in addition to
some simple test programs. The WATER-SPATIAL ap-
plication ran with no noticeable overhead other than the
time to save a checkpoint. It saved a 2.8 MB checkpoint
to local disk in about 0.18 seconds or to an NFS mounted
disk in about 21.55 seconds. The time to save a check-
point to disk is about the same as the time required to
copy a file of the same size as the checkpoint with the
cp command.

Section 2 discusses related work and section 3 describes
how programmers and users use the checkpointing li-
brary. Section 4 presents the design and implementation
of such a library. Section 5 describes restrictions on pro-
grams using the checkpointing library. Finally, section 6
shows experimental results and performance.

2 Related work

Checkpointing is a popular way of providing fault-
tolerance for computer systems. Both user-level and
kernel-level systems have been developed for single
threaded processes, however, ours is the first to provide
support for multithreaded programs. In addition our sys-
tem provides this functionality in the form of a user-level
library which makes it easier to use and the design is still
efficient.

Several other user-level checkpointing libraries for sin-
gle processes run on multiple versions of Unix [12,
14, 16]. libckpt has many features including asyn-
chronous (forked) checkpointing, incremental check-
pointing, memory exclusion and user-directed check-
pointing [12]. It has been ported to many different ver-
sions of Unix. However, libckpt does not handle
multithreaded processes or dynamically linked executa-
bles.

Condor is a process migration system designed to use
idle cycles in the network [14]. When the system de-
cides to migrate a process it checkpoints the process on
one machine then restarts it on another. Condor runs
on a number of operating systems including Solaris and
Linux. It neither supports multithreaded programs nor
does it have freely available source code.

libckp was developed at AT&T Bell Laboratories
to checkpoint Unix processes [16]. In contrast with
libckpt, Condor and our own checkpointing library,
libckp saves files along with the checkpoint to guar-

antee they will be the same when the program recovers
from a checkpoint. Saving copies of all open files guar-
antees all the files will exist during recovery and allows
libckp to handle arbitrary file I/O access patterns, but
it can make the checkpoint much bigger. Many scientific
programs do not need the extra guarantees if the user is
willing to retain the input and output files and the appli-
cation only writes to files in sequential order. libckp
also does not support multithreaded programs.

Process hijacking uses dynamic executable rewriting to
add checkpointing to programs that were not compiled
with checkpointing support [19]. Process hijacking does
not support multithreaded processes.

MOSIX and epckpt provide kernel-level checkpoint-
ing solutions. MOSIX is a set of kernel extensions which
have been ported to BSD and Linux [4, 3]. MOSIX uses
a kernel module to provide transparent load balancing
and process migration. epckpt is a Linux kernel patch
that adds support for processes and process groups [1].
It is in an early stage of development and requires patch-
ing, recompiling, and installing a new kernel. Neither
MOSIX nor epckpt work for multithreaded programs.

Process migration in general [11, 18] is related to check-
pointing. Several process migration facilities, like Con-
dor and MOSIX, use checkpointing to provide process
migration. In the case of process migration a process is
transported through space to another machine. In check-
pointing the process is transported to a later time on the
same or a different machine. The difference is that a
process may recover from a checkpoint at a later time
when the environment has changed. Resources the orig-
inal process was using may be unavailable when it re-
covers.

Checkpointing for distributed message passing systems
has been heavily studied [8]. Most message passing al-
gorithms work to reduce synchronization overhead and
handle in transit messages, which are not an issue for
multithreaded processes.

The LinuxHA project [2] is bringing support for high
availability to Linux. LinuxHA’s failure detection mech-
anisms could be used with our library to automatically
restart programs. Most of the LinuxHA work is fo-
cused on replicating processes on different machines for
fault-tolerance. Replication can offer better guaranteed
bounds on recovery time, but usually requires a dupli-
cate machines to take over for each replicated process
when a machine fails. Checkpointing only needs extra
machines when a machine fails, and then only enough to
replace the failed machines. The program can wait until



the the failed machines are repaired if no machines are
available and the application can tolerate the delay.

The IEEE Portable Application Services Committee
(PASC) 1003.1m Checkpointing Restart working group
has been developing a standard API for checkpoint-
ing [5].

3 Features

The checkpointing library we introduce here allows, for
the first time, LinuxThreads programs to automatically
be checkpointed. In addition to checkpointing multi-
threaded programs our checkpointing library provides
features that help meet our goals of being simple to use,
flexible, and efficient.

Adding checkpointing support to a C program is
straightforward with our checkpointing library. The ap-
plication programmer only needs to add one line to in-
clude the checkpoint header file:

#include "checkpoint.h"

and one line to call checkpoint initialization in main.

checkpoint_init(&argc, argv, NULL);

checkpoint init initializes data structures the
checkpointing library uses to track thread and file state.
Passing argc and argv to checkpoint init al-
lows the checkpointing library to read options from the
command line. The user can control the checkpoint pe-
riod by passing optional command line arguments to the
checkpointing library. The checkpointing library reads
all the arguments after the “--” argument. For example,

% prog -- -t period

runs the prog program with a checkpoint period of
period seconds. A checkpoint period of 0 disables
checkpointing. The user can also pass options to the
checkpointing library by putting the options in the
CHKPTOPTS environment variable. The programmer
can set checkpointing options directly using third argu-
ment to checkpoint init.

Checkpoints are automatically stored in prog.chkpt.n
where prog is the name of the program and n is the

checkpoint number. The user can change the default
checkpoint base name with the -b option.

To recover from a checkpoint, the user runs the program
with the recovery option and specifies a checkpoint file.
For example,

% prog -- -r prog.chkpt.n

runs the prog program, loading the state from the check-
pointing file prog.chkpt.n.

An application program can install callback functions to
save any state not saved by the checkpointing library.
For example, we have used callback functions to help
add checkpointing to the Unify distributed shared mem-
ory system [9]. Unify processes communicate through
UDP sockets, but the checkpointing library does not save
their state. To make checkpointing work Unify makes
sure checkpoints are consistent and uses a recovery call-
back function to reopen the UDP sockets when it recov-
ers from a failure.

A process can install callback functions that will
be called before a checkpoint, after a check-
point, and after recovering from a checkpoint.
chkpt callback push installs three functions:
a pre-checkpoint callback called before each check-
point, but after all application threads have been
stopped, a post-checkpoint callback called after the
checkpoint, but before any application thread has been
restarted, and a post-recovery callback called after
recovering from a checkpoint.

Pushing a new set of callback functions does not remove
any of the old ones. Instead they are pushed onto a
stack. The most recently pushed pre-checkpoint call-
back function is called last. The most recently pushed
post-checkpoint and post-recovery callback functions
are called first. The program can remove callback
functions in any order using the ID returned by
chkpt callback push. The pushing and popping
mechanism simplifies installing and removing callbacks
to handle different kinds of state as a program enters dif-
ferent phases.

Our checkpointing library provides memory exclusion
similar to that provided by libckpt [12]. Memory
exclusion allows the application to specify regions of
memory that need not be saved in the checkpoint. Ex-
cluding large areas of memory that the application does
not need reduces the size of the checkpoint.



4 Implementation

The difficulty of checkpointing multithreaded programs
comes from making sure that the thread library is in a
useful state after recovering from a checkpoint. Threads
must be carefully restarted in the correct order to match
the way they were originally created.

The basic idea behind our checkpointing library is sim-
ple. During initialization the main thread, the only
thread that exists when the program starts, starts the
checkpoint thread. After initializing itself, the check-
point thread blocks with a timed wait on a condition
variable. When the timer expires or when another thread
calls checkpoint now the checkpoint thread starts a
checkpoint. The checkpoint thread is also responsible
for running application callback functions.

To take a checkpoint, the checkpointing library blocks
all threads, except the main thread, to prevent any
threads from changing the process’s state while it is be-
ing saved. The main thread then saves the process’s state
and unblocks all the remaining threads.

To recover from a checkpoint, the checkpointing library
restarts the threads that were running at the time of the
checkpoint. The restarted threads block while the main
thread loads the process’s state from a checkpoint. Then
the main thread unblocks the other threads and they con-
tinue running from the checkpoint. Section 4.1 and Sec-
tion 4.2 describe the algorithm in more detail.

The difficulty comes from doing everything in the cor-
rect order, making sure threads do not try to change the
address space while it is being saved, and making sure
the process’s idea of its state matches the operating sys-
tem’s idea of the state. For example the thread library
keeps track of the process IDs of all the threads. The
checkpointing library must be able to update the thread
library’s copies of the thread process IDs.

The process state saved in a checkpoint includes the ad-
dress space, thread registers, thread library state, signal
handlers, and open file descriptors. The checkpointing
library cannot save every part of the program’s state.
The unsaved parts lead to the restrictions described in
Section 5.

A process’s address space is made up of several seg-
ments. These segments include the code segment, data
segment, heap, stack segment, code and data segments
for each of the shared libraries linked with the program,
and thread stacks. The checkpointing library uses the

/proc(4) file system interface to find the segments that
are mapped into memory.

4.1 Saving a Checkpoint

Figure 1 shows how the checkpointing library takes a
checkpoint.
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Figure 1: Each thread coordinates with the others to save
the process’s state. This figure shows how the threads
interact.

1. Checkpoint thread unblocks. The check-
point starts when either the checkpoint thread’s
timed wait expires or an application thread calls
checkpoint now.

2. Send a signal to application threads. To start
a checkpoint, the checkpoint thread sends a sig-
nal to each of the application threads. Unlike So-
laris, when a thread in Linux receives a signal it
enters the signal handler for the signal regardless of



the state of the mutex associated with the condition
variable [7].

3. Call pre-checkpoint callbacks. The checkpoint
thread calls the pre-checkpoint callbacks.

4. Send a signal to the checkpoint thread. For sym-
metry the checkpoint thread sends a signal to itself
to force itself into its signal handler like all the other
threads.

5. Block signals and wait. Once in the signal handler
every thread blocks all signals and waits at a barrier
for the rest of the threads to enter the signal handler.

6. Save private thread state. When all threads have
entered the signal handler, each thread, except
the main thread (and the manager thread), saves
its context to memory by calling sigsetjmp(3).
Each thread, except the main thread, then blocks at
another barrier.

7. Save signal handlers. The main thread saves the
process’s signal handlers using sigaction(2).

8. Wait for other threads. The main thread waits un-
til all the other threads have called sigsetjmp(3)
and reached the barrier.

9. Stop the manger thread. The checkpoint thread
cannot send a signal to the manager thread when
it is signalling all the other threads in step 2 be-
cause the manager thread has no thread ID. In-
stead the main thread sends a message to the pipe
the manager thread normally uses to communicate
with other threads. When the manager thread re-
ceives the message it blocks until the main thread
unblocks it.

10. Save main thread stack environment.The main
thread calls sigsetjmp(3) to save its stack en-
vironment.

11. Save file state Once the other threads have reached
the barrier the main thread saves the current file
pointer for all open regular files.

12. Save address space. The main thread saves the en-
tire address space to the checkpoint file.

13. Unblock Manager Thread. The main thread un-
blocks the manager thread.

14. Wait at barrier. The main thread waits at the same
barrier as the other threads causing all threads to
continue.

15. Wait at barrier. After leaving the barrier all
threads except the checkpoint thread and manager
thread wait at another barrier.

16. Run post-checkpoint callbacks. The checkpoint
thread runs all registered post-checkpoint callback
functions while the rest of the threads wait at the
barrier.

17. Resume execution. Finally, the checkpoint thread
joins the barrier and all the threads leave the barrier,
restore their signal mask, and return from the signal
handler.

4.2 Restoring From a Saved Checkpoint

When a program recovers from a checkpoint it starts out
as a single threaded program. During initialization, the
checkpoint library restores the program’s state as shown
in Figure 2.

1. Restart threads. The main thread opens the check-
point file, reads the saved thread table, and restarts a
new thread for each thread in the original program.
The thread library automatically creates the man-
ager thread when the checkpointing library creates
the first thread.

2. Restore thread stacks. The main thread waits
while the child threads restore their stack point-
ers. Each thread restores its stack by calling
siglongjmp(3) which causes the thread to re-
turn from the sigsetjmp(3) call it made when it
saved its state in the checkpoint. The threads move
their stack pointers before the main thread loads
the address space because the act of moving them
needs to use local variables, which would corrupt
the stacks if they were loaded first.

3. Wait for the main thread. The child threads wait
at a barrier for the main thread to finish restoring
the program’s state.

4. Get thread ID to process ID mapping. Af-
ter starting all the threads, the main thread
calls pthread chkpt restart to get the new
thread ID to process ID mapping. The main thread
copies the mapping into an area of memory that will
not be overwritten when the main thread restores
the address space. pthread chkpt restart
also sends a message to the manager thread telling
it to call siglongjmp(3) and block so it will be
prepared for its stack to be restored.
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Figure 2: Each thread coordinates with the others to save
the process’s state. This figure shows how the threads
interact.

5. Load main thread stack. Once all of the child
threads and the manager thread have blocked, the
main thread restores its own stack pointer. The
main thread stack is not necessarily as large as it
was when the the program saved the checkpoint.
Therefore the main thread recursively calls a func-
tion until the its stack is as large as it was when
it saved the checkpoint. The main thread can tell
when its stack is large enough by comparing the
address of a local variable to the address of a local
variable when it saved its state.

6. Remap the process’s address space The main
thread then maps every segment except the main
thread stack into the program’s address space from
the checkpoint file using mmap(2) similar to the
method Condor uses [10]. The checkpointing li-
brary uses mmap(2) to remap segments because
mmap(2) does not cause the data to be loaded im-
mediately. The operating system demand loads the
contents of the segments when the program ac-
cesses them.

7. Restore signal handlers. The main thread restores
the signal handlers with sigaction(2).

8. Restore main thread stack pointer The main
thread calls siglongjmp(3) to continue execu-
tion where the program was when it saved the
checkpoint.

9. Restore file state The main thread opens all the
files that were open during the checkpoint and
moves the file pointer to its position at the time of
the checkpoint.

10. Restore thread ID to process ID mapping. Next
the main thread restores the thread ID to process
ID mapping and unblocks the manager thread by
calling pthread chkpt postrestart.

11. Wait at barrier. The main thread waits at the same
barrier as the other threads causing all threads to
continue.

12. Wait at barrier. After leaving the barrier all
threads except the checkpoint thread wait at another
barrier.

13. Run post-checkpoint callbacks. The checkpoint
thread runs all registered post-checkpoint callback
functions while the rest of the threads wait at the
barrier.

14. Resume execution. Finally, the checkpoint thread
joins the barrier and all the threads leave the barrier,
restore their signal mask, and return from the signal
handler.



4.3 Intercepting Library Functions

The checkpointing library takes advantage of dynamic
linking to intercept some library function calls and sys-
tem calls so it can track the program’s state. The check-
pointing library intercepts library functions by provid-
ing an intercepting function with the same name as
the library function. The checkpointing library calls
dlsym(3) with the RTLD NEXT option during initial-
ization to get the addresses of all the intercepted library
functions so the intercepting function can call the sys-
tem version of the function. This method works for sys-
tem calls as well as library functions because the code to
setup and make system calls is part of the C library.

For example, when the application calls
pthread create(3), it gets the checkpointing
library’s version. The checkpointing library records
the parameters passed to pthread create(3) so
it can use them during recovery. Then it calls the
system pthread create(3) using the address
it got from dlsym(3) during initialization. If the
pthread create(3) call is successful, the check-
pointing library updates the number of running threads
and returns. Otherwise, it cleans up its thread table and
passes the error on to the application program.

4.4 Handling Open File Descriptors

The checkpointing library uses an array that mirrors the
kernel’s file descriptor table to save the state of open files
in each checkpoint. To re-open the files during recov-
ery the checkpointing library needs the filename, mode,
and current offset into each open file. When the pro-
cess opens a file with open(2) the checkpointing li-
brary adds an entry in its table for that file descriptor
with the filename and mode. If the process calls dup(2)
or dup2(2) the checkpointing library links the new file
descriptor information to the old file descriptor informa-
tion. When the process closes the file descriptor its entry
is removed from the checkpointing library’s file descrip-
tor table. The read(2) and write(2) system calls are
not intercepted.

When the process takes a checkpoint the checkpointing
library saves the current file pointer of every regular file.
When the process recovers from a checkpoint it uses the
information in the checkpointing library’s file descrip-
tor table to re-open files and seek the file pointer to the
position at the time of the checkpoint.

The checkpointing library intercepts the popen(2) call
to keep track of pipes that are open. During recovery
the checkpointing library reopens pipes to replace those
that existed at the time of the checkpoint. However, the
checkpointing library does not keep track of data read
from or written to the pipe, so data buffered in the kernel
may be lost. It also does not handle processes outside
the main process. The pipe support is only useful if two
threads in the same process share a pipe.

4.5 Linux Specific Issues

Implementing checkpointing for LinuxThreads pro-
grams is simpler than for Solaris because LinuxThreads
is simpler than the Solaris pthread library. The Solaris
kernel treats threads, lightweight processes (LWPs), and
processes as different entities. Handling the interactions
between threads and LWPs in Solaris is complex. In
addition Solaris adds some rules about when a process
can handle a signal that complicate the checkpointing li-
brary [6].

The Linux kernel is less complex than Solaris be-
cause the Linux kernel does not distinguish between
threads and processes. LinuxThreads creates threads
with clone(2) a generalized version of fork(2).
Like fork(2), clone(2) creates a new process, but
clone(2) allows the caller to specify which resources
the new process shares with its parent and which re-
sources the new process copies from its parent. Thus
threads in a LinuxThreads program are separate pro-
cesses that happen to share an address space and file de-
scriptors with all other threads.

We had to modify the thread LinuxThreads library to
handle two different problems. First, the thread library
stores a mapping from thread IDs to process IDs in its
data segment. When the checkpointing library reloads
the process’s address space from a checkpoint, the thread
ID to process ID mapping is restored to the mapping at
the time of the checkpoint, which is out of date for the re-
stored process. To handle this problem, the checkpoint-
ing library saves the thread ID to process ID mapping in
memory that will not be reloaded from the checkpoint
before it restores the address space, but after it restarts
threads. The checkpointing library corrects the thread
ID to process ID mapping after it restores the process’s
address space.

Second, the thread library uses a manager thread to
create processes. When a thread creates a new thread
it sends a message to the manager thread through a



pipe and the manager thread creates the new thread.
The checkpointing library coordinates with the manager
thread during checkpoints to save the manager thread’s
private state.

The checkpointing library adds four functions to
the thread library to handle its interactions with
the thread library. The checkpointing library calls
pthread chkpt precreate before it saves the pro-
cess’s address space. pthread chkpt precreate
sends the manager thread a message telling it a check-
point is beginning. The manager thread saves its en-
vironment by calling sigsetjmp(3) and blocks. The
checkpointing library unblocks the manager thread by
calling pthread chkpt postcreate after saving
the checkpoint.

When restoring a process from a checkpoint, the check-
pointing library calls pthread chkpt prerestart
to get a copy of the thread ID to process ID mapping and
to send a message to the manager thread telling it to call
siglongjmp(3) and block. The thread library saves
the thread ID to process ID mapping in memory that will
not be overwritten when the address space is restored.
After restoring the address space, the checkpointing
library calls pthread chkpt postrestart to re-
store the thread ID to process ID mapping and unblocks
the manager thread. The pthread chkpt calls are
the only added entry points to the thread library.

5 Restrictions

Our checkpointing library supports programs that access
regular files sequentially or use signal handlers for sig-
nals. At least one signal must be available for the check-
pointing library. The checkpointing library cannot re-
store process IDs and it does not support programs that
randomly access files or communicate with other pro-
cesses. In most cases, however, the application program-
mer can add recovery code in callback functions to re-
cover the file or communication state. For example, we
are using the checkpointing library to add checkpointing
to the Unify distributed shared memory system [9].

Random access reads do not present a problem as long as
the program never writes to the file. General random ac-
cess files are difficult to handle because the checkpoint-
ing library must be able to roll the file back during re-
covery to the state it was in during the checkpoint. One
simple way to do this is to save the entire file with the
checkpoint [16]. Saving could increase the checkpoint

size a lot if the program uses a lot of large files. The
checkpointing library could avoid some of the overhead
by not saving files opened with mode O RDONLY. As-
suming the files do not change between when they are
opened and when the program finishes using them.

The other alternative for handling random access files
would be to log each change made to the file. During re-
covery the checkpointing library could undo all changes
made since the last checkpoint. The disadvantage of log-
ging changes is that it adds overhead to log every write
operation and the log grows with each write between
checkpoints. We did not want to add this overhead when
our applications want to use sequential access files. We
could reduce overhead by only logging files that are open
with mode O RDWR. In our current implementation, an
application writer that wants to save random access files
with a checkpoint could write a callback routine to man-
ually save the desired files during a checkpoint.

POSIX threads (and LinuxThreads) do not provide a
way to create a thread with a particular thread ID. The
checkpointing library assumes that the thread library al-
ways assigns thread IDs in the same order. As long as
that assumption is true, the checkpointing library can
guarantee each thread has the same thread ID after re-
covering by creating threads in the order in which they
were originally created. Currently our checkpointing li-
brary does not handle programs with threads that exit
before the end of the program. If a thread exits early,
the thread created immediately after the thread that ex-
ited early will get the exited thread’s ID during recovery.
This problem could be fixed during recovery by creat-
ing a thread that exits immediately in place of the exited
thread to use up the exited thread’s ID. Alternatively we
could modify the thread library to allow programs to re-
quest particular thread IDs, but we wanted to minimize
the changes to the thread library to make it easier to work
with different versions of the thread library. The appli-
cations we work with create all the threads they need at
the start and the threads keep running until the program
exits so it was not a problem for our applications.

During recovery, described in section 4.2, the check-
pointing library restarts all the threads and restores the
process’s entire address space from a checkpoint, includ-
ing the thread library data segment. The checkpointing
library assumes that the thread library will function cor-
rectly with the newly created threads and the thread data
structures from before the checkpoint. This assumption
is not entirely true in Linux and thus the thread library
must be modified as described in section 4.5.

The checkpointing library interrupts each thread with a



signal to start a checkpoint. When the checkpointing li-
brary installs its signal handler, it passes SA RESTART
flag to sigaction(2) to tell the Linux kernel to restart
interrupted system calls if possible. The application
code must restart system calls that the Linux kernel can-
not restart.

We added nothing extra to support thread cancellation
functions. The problem with thread cancellation is recre-
ating the threads with the correct thread IDs as described
above. Otherwise the checkpointing library would just
need minor adjustments to cleanup the canceled thread
after its last cancellation handler is called.

We also did nothing special to support thread scheduling
priorities. Handling thread scheduling priorities would
be a matter of logging the calls to the thread scheduling
priority calls and reissuing them to restore scheduling
priorities during recovery. Support may be added if there
is demand.

The checkpointing library does not handle interprocess
communication, but it does reopen pipes open at the time
of a checkpoint. It cannot make another process use ei-
ther end of the pipe it opens, and it does not save any data
buffered in the kernel. Thus pipes will only be restored
if they are used between threads in the same process and
no data is buffered in the pipe at the time of the check-
point.

Handling IPC, either between processes on the same ma-
chine or on different machines, is difficult in general.
Both processes must agree on when they take check-
points or make assumptions about how deterministic
they are to avoid inconsistent checkpoints. Otherwise
one process could fail and recover from a checkpoint
that rolls it back to a state in which it has not sent a mes-
sage on which another process depends. At that point
the program is in a state which it could not have reached
without a failure. The second process is in a state the
causally depends on a state that never happened, as far
as the first process is concerned. In that case the two pro-
cesses are said to be inconsistent. Issues of consistency
have been well studied and are beyond the scope of this
paper [8]. Extending our checkpointing library to work
for a general case with multiple processes communicat-
ing with pipes or TCP sockets would be non-trivial.

The checkpointing library does not intercept or modify
time related system calls in any way. A program that
uses absolute time values may behave strangely after
recovering from a checkpoint. For example, assume a
thread blocks using pthread cond timedwait(3)
to wait for several seconds and the process checkpoints

while the thread is blocked. The process is killed and
restarts from the checkpoint several minutes later. After
recovery, the thread will immediately unblock because
the timer has expired.

Strictly speaking this behavior is correct because the cur-
rent time is later than the time for which the thread was
waiting. Applications that have time based events, how-
ever, might get a flood of expired timers when recovering
from a checkpoint. We could intercept all calls that have
anything to do with absolute time and adjust the time
they see after recovering from a checkpoint, but some
programs need to know what the absolute time really is.
Instead we leave it up to the application programmer to
write a callback function to adjust any time values that
need to be adjusted after recovering from a checkpoint.

6 Results

The checkpointing library adds overhead due to inter-
cepting calls, overhead due to the checkpointing thread,
and overhead due to saving checkpoints. The check-
pointing library only intercepts thread creation, file
open, and file close calls. Unless the program opens
and closes files often or creates and destroys threads of-
ten that overhead will be low. The checkpointing thread
does not add much overhead because it is blocked except
during checkpointing.

6.1 Applications

To verify that checkpointing adds little overhead when it
is not writing a checkpoint, we ran several applications
from the SPLASH2 [17] benchmark suite. SPLASH2
is a set of benchmarks designed to test the performance
parallel shared memory machines. The benchmarks are
based on applications and kernels commonly used in sci-
entific computing. We present the results of running
the BARNES and WATER-SPATIAL benchmarks be-
low. The other SPLASH2 benchmarks we ran gave sim-
ilar results.

BARNES simulates the gravitational effects of a num-
ber of bodies in space using the Barnes-Hut algorithm.
It uses a tree to represent the locations of the bodies
in space. WATER-SPATIAL simulates the the interac-
tion of water particles using a 3 dimensional grid. We
increased the problem sizes of both applications from
the size used in the original SPLASH2 paper [17] to in-



crease the running time of the benchmarks. For WATER-
SPATIAL we increased the number of particles to 8000
instead of 512. For BARNES we used 65536 particles
instead of 16384.

The test machine was a two processor 500 MHz Pen-
tium III SMP machine with 512 KB L2 cache and
128 MB of main memory running Linux kernel ver-
sion 2.2.10 with NFS v2 and glibc2. The file sys-
tems mounted for the NFS tests were served by an
UltraSPARC-10 running Solaris 5.7. The network over
which the NFS disk was mounted was a moderately used
100 Mb/s switched Ethernet connected by a Cisco Cata-
lyst 2924 XL auto-sensing 10/100 Mb/s switch. None of
the machines used in the test shared a port on the switch
with any other machine.

Table 1 compares running each of the benchmarks with
and without checkpointing linked for one and two pro-
cessors. With checkpointing linked, the program called
the checkpoint initialization code, but did not take any
checkpoints. This test shows how much overhead check-
pointing adds not including the time to save the check-
point to disk. Table 1 shows that the checkpointing li-
brary does not add much overhead when the program is
not checkpointing. This overhead is important because
the program will spend most of its time running, not
checkpointing.

In some cases, code with checkpointing linked but not
used runs faster than without checkpointing. Changes in
the program’s memory layout cause this speedup. Link-
ing the benchmark with unused code gave the same ef-
fect as linking with the checkpointing library.

Table 2 shows the amount of time BARNES and
WATER-SPATIAL spend taking a checkpoint using a lo-
cal disk or an NFS mounted disk. Most of the time is
spent saving the checkpoint to a file. These numbers are
intended to give a feel for how long it takes for applica-
tion programs to checkpoint and how the checkpointing
time is spent. In both the local disk and the NFS disk
cases the amount of time spent synchronizing threads
before and after the checkpoint is several orders of mag-
nitude smaller than the amount of time to save the check-
point to disk. Saving the checkpoint to disk is the largest
overhead of checkpointing.

6.2 Checkpoint Size

The size of the checkpoint file is directly proportional
to the size of the process’s address space. Most of the

overhead of taking a checkpoint comes from writing the
address space to disk. Figure 3 gives an idea how long
a program will take to save a checkpoint depending the
size of the checkpoint and whether it is saving to a local
disk or an NFS mounted disk.

The amount of time required to save the checkpoint de-
pends on the file system to which it is saved. The figure
shows times for local disk and NFS. Writing a check-
point to an NFS mounted disk1 takes much longer than
writing to a local disk. The figure also shows that the
amount of time required to save a checkpoint is directly
proportional to the size of the checkpoint.

In this case, the time required to save a checkpoint to the
NFS mounted disk can be approximated by the equa-
tion
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for checkpoints

larger than about 1.3 MB, where
�

is the size of check-
point. The user can use

���#�
to decide which checkpoint

interval to use. A simple method is to calculate the
maximum percentage of execution time taken by check-
pointing given

�����
and the maximum address space size

(checkpoint size) of the program. More sophisticated
methods can determine the checkpoint interval that will
minimize the program’s expected run time given

�$���
and

a particular failure rate [13, 15].

7 Conclusion

Our checkpointing library provides checkpointing mul-
tithreaded Linux programs. It adds little overhead except
when taking a checkpoint. The overhead that it does add
is directly proportional to the size of the address space.
Saving the checkpoint to local disk is much faster than
saving it to an NFS mounted disk.

Our checkpointing library combines simplicity for many
programs but flexibility for programs willing to use
it. Callback function provide flexibility for applications
that have special needs. Features like memory exclusion
can and user directed checkpointing can reduce overhead
when taking a checkpoint. We are considering adding
incremental and asynchronous checkpointing to further
reduce the overhead of saving a checkpoint.

The latest version of the checkpointing library is avail-
able through our web site at:

http://www.dcs.uky.edu/˜chkpt

1The disk with mounted with rsize=8192,wsize=8192.



1 Processor 2 Processors
Not Linked Linked Overhead Not Linked Linked Overhead

Benchmark (seconds) (seconds) (percent) (seconds) (seconds) (percent)
BARNES 53 53 0 32 31 -3.1
WATER-SPATIAL 666 678 1.8 335 340 1.5

Table 1: This table gives execution times of several SPLASH2 applications. For the “Not Linked” case, the application
was run without the checkpointing library linked to it. In the “Linked” case, the checkpointing library was linked to
the application, but it did not take any checkpoints. This case measures checkpointing overhead outside not directly
related to taking checkpoints. All times are in seconds.

Local Disk NFS
Total Time Save Time Sync Time Total Time Save Time Sync Time

Benchmark (seconds) (seconds) (seconds) (seconds) (seconds) (seconds)
BARNES 9.8351 9.8330 0.0021 337.1552 337.1536 0.0017
WATER-SPATIAL 0.0736 0.0716 0.0020 16.3965 16.2361 0.1604

Table 2: This table lists the time required to save checkpoints for several SPLASH2 applications. “Total Time” is the
total amount of time to take a checkpoint. “Save Time” is the amount of time required to save the checkpoint to a file.
“Sync Time” is the amount of time required for processes to synchronize before and after the checkpoint. All times
are in seconds with 2 Processors.
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Figure 3: This graph shows a plot of the time to save a checkpoint as a function of checkpoint size. The line through
the NFS data points was fitted using the method of least squares.
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