
USENIX Association

Proceedings of the
FREENIX Track:

2001 USENIX Annual
Technical Conference

Boston, Massachusetts, USA
June 25–30, 2001

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2001 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Cost Effective Secur ity for Small Businesses:
A Guide to Open Source Solutions

Sean R. Brown

Applied Geographics, Inc.
Boston, MA

srbrown@appgeo.com

Abstract

As high bandwidth Internet access becomes more
readily available at lower cost, many small companies
are leveraging the Internet to expand their market
share and grow their business. Companies choosing to
connect their internal LANs to the Internet often
sacrifice the security of local network resources for
the sake of expediency and cost. With the availability
of inexpensive hardware and the proliferation of open
source software projects, highly reliable network
security solutions are no longer just for large
corporations.

The object of this paper is to provide a general
overview of how a small or medium sized business
can implement advanced and highly reliable network
security solutions using freely distributable and open
source software.

1. Introduction

In June of 1999 a destructive worm was released into
the wild affecting users of the Microsoft Windows
based operating system and the Outlook E−mail
client. The worm, known as ExploreZip [1], was one
in a series of viruses and worms to exploit known
vulnerabilities in Windows network filesharing and
Outlook attachment processing [2]. The ExploreZip
worm spread rampantly throughout the US leaving
many company LANs and personal home computers
unusable or severely incapacitated. It destroyed or
zeroed out random Microsoft Office documents on
user and fileserver hard drives before spreading itself
to other susceptible hosts. By some estimates [3] the
ExploreZip worm caused up to $7.6 billion damage
before slowly fading away. The author of this worm
was never caught.

In February of 2000, Yahoo, Amazon.com, Ebay,
Etrade, and several other high profile ecommerce sites
were targeted by a series of distributed denial of
service (DDOS) attacks severely affecting site
performance and leaving some sites unreachable [4].

The computer systems used in the attacks were largely
owned by individuals, small businesses, universities
and large companies, all with dedicated high
bandwidth internet connections. Compromised
through known vulnerabilities and published exploits
the resulting network of infected host systems
provided the platform from which the DDOS attacks
were launched. In most cases, system owners had no
idea that their computers were being used in the
attacks.

Recent vulnerabilities in ISC’s Bind, Washington
University’s wu−ftpd, lprng, and the ubiquitous
rpc.statd resulted in the spread of three new Linux
worms since January 2001 [5][6][7]. These worms
perform a root compromise on the vulnerable system
allowing the attacker complete control thus providing
the launchpad for future attacks. Like the distributed
denial of service attacks which struck in February
2000, these compromised systems are capable of
forming networks creating the potential for additional
DDOS attacks.

The above examples make it abundantly clear that
businesses need to take responsibility for protecting
themselves and their bottom line from malicious
intruders. The rush to get connected was pursued
without understanding the potential dangers of being
online. Now that they are online, many businesses get
buried under the added cost of cleaning up after the
latest virus or recovering from a denial of service
attack. While the costs associated with these attacks
can often be mitigated over the short term, their
impact can persist for months and even years as
corrupt data, destroyed files and, in some cases, lost
business.

While there are many ways to protect networks from
external and internal attack, the simple fact is, many
small businesses do not have not the financial
resources required to implement costly hardware and
software security solutions. However, there are
numerous freely available security solutions that can,
at a minimum, eliminate the upfront software costs of
protecting small business networks.

This does not suggest that installing some free
software will make a company’s network security
problems disappear. First, network security is a
process which requires a change in mindset about how
a business interfaces with the rest of the world. Just as
you would not leave the front door to the office open
and unlocked when no one is at work, you should
likewise, not leave the database server containing all
of your companies financial and accounting data
connected directly to the internet. Second, any
security based software you install, whether it be a
proprietary, closed source firewall or a free, open
source intrusion detection system, will require
configuration, installation and monitoring. Like it or
not, the price of network security becomes the cost of
doing business online, no matter what the marketing
engines say.

The focus of this paper is threefold; first, to look at the
various open source or free software available for
protecting small networks, second, to describe a case
study in open source network security, and third, to
summarize the effectiveness of open source
firewalling from the perspective of the case study.

2. Tools

While there is an abundance of open source and free
software available for securing networks, I will focus
on those which I have used in production
environments. I will arbitrarily categorize the tools by
function in the following way:

�
Firewall

�
System Integrity/Host Intrusion Detection

�
Central Logging

�
Encryption Software and Protocols

�
Network Intrusion Detection

Obviously, the technological environment in which we
live is constantly changing. Software developers are
continually updating existing tools and creating new
ones to address security threats. While there are a
number of tools discussed in this paper, it is by no
means, an exhaustive list, nor is that the intent.
Rather, this should be considered a primer on some
common solutions and a reference for further
investigation.

2.1 Firewall

In any networked environment, threats to system
integrity come from sources both external and internal
to that network. At its most fundamental level a
firewall is intended to mitigate external threats by
monitoring all traffic entering or leaving a network

and allowing or denying that traffic based on packet
content. As such a firewall is the first line of defense
against external threats.

There are two basic types of firewalls: packet filters
[8] and application layer gateways or proxies [9]. A
packet filter inspects each packet at the network and
transport layers of the Open Systems Interconnection
(OSI) model and acts based upon user defined criteria.
An advanced form of packet filtering called stateful
packet filtering exists when the firewall maintains the
state of active sessions. The first packet in the session
is compared to the filter rules. If the packet is allowed
an entry is created in the state table and successive
packets belonging to the same session are allowed
without having to pass through the rules test.

21/04/2001 22:48:52.238630 STATE:NEW 192.168.2.34,137 −>
192.168.2.255,137 PR udp

21/04/2001 22:50:51.960067 STATE:EXPIRE 192.168.2.34,137 −>
192.168.2.255,137 PR udp Pkts 1 Bytes 78

21/04/2001 22:51:18.565050 STATE:NEW 10.10.10.5,1051 −>
192.168.2.254,22 PR tcp

21/04/2001 22:52:03.960073 STATE:EXPIRE 192.168.10.26,27910
−> 10.10.10.1,27900 PR udp Pkts 2 Bytes 774

The above is an example of state table entries in
OpenBSD. The first and second entries are from a
NetBIOS name service broadcast which expired after
two minutes of inactivity. The third entry is from a
newly established SSH session. The fourth is the
expiration of a session from a Quake server
advertisement.

Packet filtering which does not maintain state
compares every packet to the rules list and acts
accordingly. The downside of not keeping state is that
every packet must traverse the rules before being
blocked or allowed. If your ruleset is large, the load
on your firewall can be burdensome.

The advantage of having a stateful packet filter is the
added control over what is and is not allowed through
the firewall. Since IP header information including
sequence numbers and time−to−live (TTL) values are
kept in state for active sessions, bogus packets
claiming to be from an established session will be
denied. A stateless packet filter would not have any
basis for denying the packet and the traffic would be
allowed.

The other basic type of firewall is the application layer
gateway or proxy. A true proxying firewall prevents
any packet transfer from one side of the firewall to
other. In its most secure form, IP forwarding will not
be enabled in the kernel. This is known as a dual−
homed configuration. Application proxies reside on
the firewall and act as surrogates to the original traffic,
accepting source packets from one side of the firewall

and creating new packets to forward on to the
destination. This design effectively isolates
heterogeneous internal systems and the peculiarities of
their TCP/IP stacks from having any contact with
external devices.

There is a great deal of flexibility in firewall
configuration by utilizing elements of both packet
filtering and proxying. Large organizations requiring
a highly secure environment but also requiring a great
deal of functionality may use a stateful packet filter to
block all but specific TCP/UDP ports in combination
with an application gateway for all traffic from
internal hosts. Smaller businesses may choose to only
implement non−stateful packet filtering and no proxy
services. While the ‘best’ configuration depends on
the needs of the site, the flexibility in firewall options
makes it possible to address most requirements.

The design of an inexpensive firewall solution for a
small business must account for the operating system
and hardware available for the task. The goal is to
keep costs at a minimum while not sacrificing
security, stability or reliability. Many organizations
have rollover plans to replace aging desktop
workstations and servers. Older systems can easily be
reapportioned to various ‘back end’ tasks, one of
which might be as a network firewall. For
organizations lacking this type of replace and reuse
capability, there are a number of outlets for obtaining
obsolete hardware at a reasonable cost.

While the types of available hardware may vary, the
systems that seem most abundant in many businesses
are those of the Intel x86 architecture. Other types
may be available, such as the Alpha, Sun or Power PC
platforms, however, this paper will focus on the use of
dated x86 hardware for the given purpose.

There are a number of open source operating systems
that have favorable characteristics for building
network firewalls. These characteristics include cost,
stability, reliability, performance, and scalability.
GNU/Linux [10] is probably the most well known
UNIX−like operating system running on the x86
system architecture. Its popularity has resulted in not
only a large number of available applications, but also
a wide range of support options. These include
mailing lists, usenet news, web sites and various
commercial support offerings.

GNU/Linux is a stable and reliable platform for
firewalling. It is easily configured to support different
requirements for secure networking such as network
address translation (NAT), port forwarding, and packet
filtering. The GNU/Linux kernel just went through a
recent upgrade to version 2.4. As a result, numerous

changes were made to the packet−filtering capabilities
requiring a complete upgrade and redesign of existing
firewalls if use of the new kernel is desired.

Another open source operating system which may be
more favorable than GNU/Linux in many
implementations is OpenBSD [11]. OpenBSD is
based on the original 4.4BSD public source release.
During a two year period starting in 1996, the
OpenBSD source code went through an intensive line
by line audit for potential vulnerabilities. The default
build of OpenBSD has been optimized for security
making it an ideal candidate for an open source
firewall solution. Since it is based on the original
4.4BSD source tree, it is a very mature OS supporting
options like stateful packet filtering, large partitions
and filesystem journaling which are only now
becoming available for Linux. Performance tests [12]
also suggest a faster TCP/IP stack and better I/O than
Linux 2.2.x on x86.

Since OpenBSD is optimized for security, it natively
supports a number of enhanced encryption capabilities
such as SSH remote shells, Kerberos authentication
and password encryption using algorithms like
blowfish, 3DES, and RSA. OpenBSD also touts the
fact that in three years there has never been a remote
hole in the default install.

Most UNIX−like operating systems support packet
filtering though not all support keeping state. Up until
the release of the GNU/Linux kernel 2.4, the kernel
did not support stateful packet filtering. However,
advances in kernel design and the use of the new
netfilter application have made stateful packet
filtering possible on the Linux platform. OpenBSD,
on the other hand, has provided native support for
stateful packet filtering since its inception in 1996.

There are other operating systems which could easily
meet the requirements outlined above. Among them
include FreeBSD and NetBSD. While, after proper
hardening, any of these operating systems would be
capable of performing the required tasks, each has
been developed with specific functionality in mind,
(i.e. FreeBSD: performance on i386, NetBSD:
portability to different architectures). Length
restrictions require that the discussion of other capable
platforms be limited. However, the reader is
encouraged to investigate other available open source
operating systems and evaluate them according to
their own needs.

Normally the default install of any operating system is
going to have many vulnerabilities which need to be
addressed before the system is placed online. That
these vulnerabilities are present in the OS has less to

do with laziness on the part of the manufacturer and
more to do with the fact that new vulnerabilities are
always being discovered and software is constantly
being upgraded.

There are a number of resources useful for
maintaining the stability and security of any operating
system. OS vendors will usually have information on
critical security updates and how to apply patches to
secure your system. Among the more prominent
resources on newly discovered vulnerabilities is
Bugtraq [13]. Subscribing to the Bugtraq mailing list
is one important way to get timely information on
protecting your site. Two other important outlets for
information on currently active threats is the
Computer Emergency Response Team (CERT) [14]
and the System Administration and Network Security
Institute (SANS) [15]. SANS compiles the SANS Top
Ten which provides information on the most common
threats to computer security and how to eliminate
them on your site. The use of these resources provides
an important way for security personnel to learn about
and ensure the security of their sites.

Table 2.1 − Open Source Operating Systems

OS Advantages Disadvantages

GNU/Linux
v2.2.x

Multiple architectures

Wide user support

Many compatible
applications

No kernel support for
keeping state (v2.2.x)

Numerous vulnerabilities
in default install.

OpenBSD
v2.8

‘Secure by default’

High performance

OS source code
thoroughly audited

Not as widely supported

Steeper learning curve
for inexperienced admins

There are many open source proxy applications for
individual daemon services. Squid [16] is one
example of an application proxy for internal http
traffic to external web sites. Squid has many
advanced features including configurable caching of
http traffic, load balancing over multiple proxy
servers, and filtering capabilities. For smaller sites
with limited bandwidth, Squid can dramatically
increase the performance of web browsing through its
caching and read−ahead features.

One firewall proxy suite which encompasses many
applications in one package and which is available in
source form is the Firewall Tool Kit (FWTK) from
Trusted Information Systems [17]. The FWTK is a set
of applications which act as proxies for production
services which would normally be directly connected
to the outside world. Daemon services such as SMTP,
FTP, HTTP, as well as generic port forwarding are
easily handled at the application layer and passed
through the firewall by means of a corresponding

proxy. FWTK is based on the source code from which
the original Gauntlet [18] firewall was built, though
their source trees are now widely divergent.

FWTK is not under active development and the
license restrictions prevent it from being widely
implemented and supported by third party support
providers. While the source code is available for free,
it is tightly controlled by Network Associates, who
purchased Trusted Information Systems, and who now
produce the Gauntlet firewall product. The license
restricts redistribution of the source code and does not
allow third party commercial support of the software.
In other words, users may download, compile, and use
FWTK within their own organization. However, they
cannot pay for, nor can someone sell FWTK support.

There have been many efforts to change these
restrictions and make FWTK a true open source
initiative, so far without success. However, for the
dedicated individual that has the desire to make
FWTK work in their environment, the user support
community is extremely helpful in solving most, if not
all, problems dealing with FWTK implementation.
FWTK source will compile on a number of operating
platforms including Linux and OpenBSD.

2.2 System Integr ity/Host Intrusion
Detection

Host based intrusion detection (HID) involves using
tools to detect unauthorized modifications to a specific
host. Sometimes referred to as system integrity
software, HID detects changes in file size, inode
number, permissions, etc. which could indicate
undesirable activity occurring on the host. System
integrity tools also include the capability of storing
MD5, CRC32 and/or SHA1 secure hashes of user
defined files when the software is initially installed.

Table 2.2 − Application Proxies
Application Advantages Disadvantages

Squid HTTP
proxy

Integrated caching
support

HTTP filtering
capabilities

Load balancing across
multiple servers/networks

Requires extensive tuning
to get best performance

High put a heavy load on
a single server
configuration with
multiple roles

FWTK v2.1 High level of security for
included application
proxies

Many user provided
enhancements and
patches

Strong user support
community

Restrictive licensing
prevents widespread use

No longer actively
developed by copyright
owners

Subsequent integrity checks can verify changes to
these files.

Tripwire [19] is a well supported, proven HID system.
It is available for a number of different platforms and
is scalable to the enterprise. It is also a commercial
product which can be very expensive for small
companies. However, there are two versions of
Tripwire which are available as source code. The
academic source release is available to qualified
educational institutions and academics. It is not the
latest version of the software and does not support
some of the newer features such as an encrypted
database. However, it is a stable and reliable solution
if your needs are limited.

Tripwire for Linux v2.2.1 has been released under the
GNU Public License (GPL) [20] and is now being
actively developed by the open source community
[21]. This version supports database encryption which
is lacking from the academic source version.
Encrypting the system integrity database protects it
from an intruder who might otherwise be able to
manipulate it to hide their actions. If the database
were not encrypted, it would be possible to
programmatically modify the system integrity
database during a host compromise. Subsequent
integrity checks would not reveal the presence of the
compromised system files and hide the actions of the
intruder. Database encryption is another mechanism
by which Tripwire for Linux ensures the integrity of
the host.

Since the GPL’d version of Tripwire is written for
Linux, it will not compile under other operating
environments like OpenBSD. However, precompiled
binaries of the Linux based software can be run in
Linux compatibility mode on other operating systems
like OpenBSD and FreeBSD. This makes the GPL’d
Linux version of Tripwire a popular option for host
based intrusion detection.

Another HID system is a program called the Advanced
Intrusion Detection Engine or AIDE [22]. It is
designed to be very similar to Tripwire in its
capabilities, however, like the academic source
version of Tripwire, it does not yet support database
encryption. Its configuration and policy file are very
similar to Tripwire making migration a simple task.
AIDE has also been released under the GPL and will
compile on many different OS’s.

2.3 Central Logging

System logs provide a critical layer in monitoring the
security of your network. Because of this, it is often
the first thing to be tampered with by a malicious

intruder trying to cover their tracks. Syslog provides
an easy way to send system log messages to a remote
server dedicated as a central log repository. By
having a replica of all system logs for a given machine
you are able to protect yourself from having the
original logs modified.

A convenient way to implement centralized logging is
by using the remote logging capabilities of syslog. A
central log server listens for log messages sent from
remote servers. The messages are sent to the central
server in plain ascii text using UDP as a transport.
However, sending system logs over an untrusted
network in plain text makes it very easy for anyone
with a packet sniffer to see those logs without having
to gain access to either the logging host or the remote
server.

One way to alleviate this issue is to send the logs over
an encrypted channel using a combination of syslog−
ng [23] and stunnel [24]. Stunnel allows you to create
an encrypted tunnel between two machines making it
possible to send sensitive data over the network in a
secure manner. Stunnel uses SSL to build a secure
TCP connection on arbitrary ports between two
devices. Unfortunately, since syslog uses UDP as a
transport it is prevented from functioning with stunnel.

Syslog−ng functions as a replacement for syslog on
most UNIX−like operating environments. It has many
new features like regular expression matching of
system log messages, hashing of log files, and
forwarding of logs over TCP connections. Using
syslog−ng in combination with stunnel, it is possible
to send your logs over an encrypted tunnel to your
central log server.

Monitoring system logs is not the most exciting task,
especially if you have a central log server collecting
logs for many machines on a network. It can be very
tedious without an easy and effective way to parse the

Table 2.3 − Host Based Intrusion Detection
Application Advantages Disadvantages

Tripwire
v.2.2.1

Centralized integrity
checking for multiple
hosts

Recently moved from
commercial to GPL
license

Native DB encryption

Cumbersome
management

No GUI based central
console

Linux only (Plans for
FreeBSD and other ports)

AIDE v0.7 Multiple levels of system
integrity checks

Intuitive configuration
file

Multi platform support

New product with few
bells and whistles

No encryption

No site management

data you want. Luckily, there are a number of tools
available to help.

Psionic Logcheck [25] is a package which monitors
system log files at regular intervals searching for user
specified regular expressions and sending alerts if any
of those expressions are matched. The software has a
compiled executable which monitors log file changes
between specified run intervals, and a shell script
which is configured with variables pointing to the log
files to be monitored. There are also a few
configuration files listing the regular expressions to
match against. The regular expressions use a standard
syntax and are easily modified for different
environments.

Another tool for monitoring log files is a package
called Swatch [26] or the Simple Watcher. Swatch has
been around for many years and was first introduced
at the 1993 LISA conference. It performs some of the
functions of Logcheck but is a smaller package and
has some additional functionality. Swatch is run once
and monitors your logs in real time versus running as
a scheduled cron task. This has many advantages in
situations where real time notification of security
events is absolutely necessary.

Some of Swatch’s other capabilities include executing
arbitrary code, color coding program output, and
piping output to commands, all based on user defined
criteria. However, Swatch is limited to monitoring a
single logfile at a time, unless multiple instances are
run concurrently. This makes it difficult to configure
monitoring multiple logs under one process.

2.4 Encryption Protocols

For many years, all network traffic was unencrypted,
plain ascii text, easily viewed by anyone running a
packet sniffer. Even today, most email, ftp
downloads, irc, and web traffic transport their data in
plain ascii text. While encryption technology is
gradually making its way into mainstream, everyday
use, there are definitely programs available now to

allow the use of high encryption for most, if not all,
traffic over untrusted networks.

Encryption of network traffic normally occurs in one
of two ways. A person uses an application to
manually encrypt the data prior to sending it over the
network. This is the common method for encrypting
messages like email or news posts. The encryption is
handled by the user at the application layer. Only the
specific data encrypted by the end user is secured.
Mail headers and any other information outside the
envelope of encryption is left in plain text.

Common programs for encrypting files and messages
include Pretty Good Privacy [27] and GNU Privacy
Guard [28], both of which use a technology called
public key cryptography. It is far beyond the scope of
this paper to detail the technical aspects of public key
cryptography, suffice to say that this technology is
making military grade encryption possible for those
wishing to protect their files and data.

Another method of encrypting network traffic is by
either using an application which supports native
transport of encrypted packets such as OpenSSH [29],
and OpenSSL [30] or by sending all data and packets
through an encrypted tunnel using an application like
Stunnel or a protocol like IPSEC [31] and Point−to−
Point Tunneling Protocol (PPTP) [32]. Encrypted
tunnels are the basis for VPN’s. For applications that
do not natively support encryption, a tunneling

Table 2.4 − Centralized Logging
Application Advantages Disadvantages

Syslog Fast delivery of log
messages

Standard UNIX software

UDP protocol means
unreliable delivery of log
messages

Syslog−ng Uses TCP for reliable log
delivery

Encryption capable using
third party TCP tunneling

Pattern matching logging

TCP has added overhead
with possible load issues

Table 2.5 − Logfile Monitoring
Application Advantages Disadvantages

Logwatch
v.1.1.1

Standard pattern
matching syntax

Easily configured for
multiple log file formats

Periodic vs. realtime
monitoring

No active alerting
capability

Swatch Realtime monitoring vs.
periodic checking

Active alerting and
program execution

Cannot monitor multiple
logs in different locations

Table 2.6 − Encryption
Application Advantages Disadvantages

Pretty Good
Privacy, PGP

The first widely
accessible encryption
program

Support for multiple
algorithms

Most development in
recent years has been on
the Windows client

Now a commercial
program with free version
available

GNU Privacy
Guard

Open Source

Backwards compatible
with PGP secret keys

Wide user support and
GUI add−ons

Clumsy GUI support

protocol is an ideal way to encrypt all the traffic
between systems on opposite ends of a tunnel.

2.5 Network Intrusion Detection

While host based intrusion detection monitors the
integrity of individual hosts, this does nothing to
detect or monitor malicious traffic on the network.
Network based intrusion detection (NID) fills this gap
by providing a way to see exactly what packets are
traversing your network allowing you to evaluate
whether or not they should be permitted. There are
two types of NIDS: anomaly detection and pattern
matching [33].

Anomaly detection compares network traffic patterns
to an established baseline of normal activity.
Deviations from that norm are flagged for further
analysis. One benefit of anomaly detection is that it
does not rely on predefined signatures for detecting
abnormal activity. Rather it uses a statistical analysis
to determine whether current traffic falls within the
parameters of ‘normal’ activity. In this way it can
detect previously unrecognized activity or new
intrusion methods which are not detectable through
other means.

Pattern matching, as the name suggests, compares
packets against predefined signatures. The goal is to
detect specific traffic based on a given signature and
then optionally taking some type of action. Signatures

are established through analysis of previous intrusions.
Characteristics which can be used to identify a
specific intrusion attempt, such as a particular
combination of TCP flags or a TTL value which falls
within a certain range, can be used to create a profile
of the activity making it detectable through packet
analysis. The advantage of pattern matching is that it
can be a quick, efficient way to screen for known
intrusion activity. However, unlike anomaly
detection, it cannot detect unknown attacks.

NID systems are normally either installed directly on a
firewall or on a separate system configured to listen on
all traffic going through the firewall. Most modern
switches provide this capability through port
mirroring.

There are a number of freely available NID systems.
One popular and highly effective NIDS is Snort [34].
Snort, released under the GNU Public License, is
under constant development and is continuously
having new capabilities added. Snort relies on user
defined rulesets to detect and flag suspect network
traffic. The rules language is very flexible allowing
pattern matching on packet headers and data content.
These sample rules [35] look for a specific virus and
backdoor activity.

alert tcp any any −> $HOME_NET 139 (msg:"Virus − Possible QAZ
Worm Infection"; flags:A; content: "/71 61 7a 77 73 78 2e 68 73
71/"; reference:MCAFEE,98775;)

alert tcp $EXTERNAL_NET 27374 −> $HOME_NET any (msg:
"BACKDOOR SIG − SubSseven 22"; flags: A+; content:
"|0d0a5b52504c5d3030320d0a|"; reference:arachnids,485;)

Newer plugins for Snort enable more advanced
features like statistical anomaly detection and
fragmentation reassembly. There are a number of
logging options a user can choose such as logging
directly to syslog, a flat ascii text file, XML, or a
number of client server databases including MySQL
and Postgres SQL.

Snort was designed to be easily extended through
plugins which add new capability to the core program.
There has also been a minor explosion in Snort add−
ons and partner programs. Some of these work
directly with Snort output to create customized
reports, correlate attacks, and provide active, real time
alerting of intrusion attempts and suspicious network
traffic. Most of these add−ons are also GPL’d open
source and are freely available.

A support tool useful for analyzing data captured by
Snort is the Analysis Console for Intrusion Databases
(ACID) [36]. ACID is a web application which
interacts with the database tables populated by Snort.
ACID has features which allow for close examination

Table 2.7 − Tunneling Applications/Protocols
Protocol/App Advantages Disadvantages

Stunnel Quick tunnel for specific
applications

Works on the transport
layer and limited to TCP

IPSEC Functions on the network
layer

Highly secure

Internet standard

Limited application
support

PPTP Application support on
multiple platforms

Known vulnerabilities

Not an internet standard

Becoming obsolete with
advances in IPSEC
support

OpenSSH Terminal access

Capable of tunneling
arbitrary connections

Useful for encrypted file
transfer

No UDP encryption

OpenSSL Create self signed SSL
certificates

Open Source alternative
to Verisign

Self signed certificates
are not trusted by remote
users

Need a root Certificate
Authority for production
sites

of individual packets and the calculation of summary
statistics, useful for observing trends and patterns.
Whois lookup capabilities and detailed querying of the
packet database make it possible to thoroughly
investigate where a packet originated, what it
contains, and its context with other network traffic,
whether concurrent or not. While there are other ways
to extract usable information from Snort logs, the
combination of ACID and MySQL is a very
convenient and useful option (Figure 2.1).

Another pseudo NID software is tcpdump [37],
included on most UNIX−like OS’s. More of a highly
configurable packet logger, tcpdump is based on the
same packet capture library as Snort and therefore
suffers some of the same limitations under heavy load.
Tcpdump is a great diagnostic tool but was never
intended to perform advanced intrusion detection.
However, it is included here as part of an overall
combination of applications useful for intrusion
detection.

Ethereal [38] is a GUI based protocol analyzer which,
like Snort and tcpdump, also uses the pcap packet
capture library. Ethereal, while capable of capturing
raw traffic, really shines in its usefulness in analyzing
tcpdump format packet capture files. Raw packets are
shown in both hex and ascii and deciphered into an
easily readable format for easy scanning (Figure 2.2).

3. Case Study − Applied Geographics

While it is one thing to describe the free tools
available for helping to secure a network it is often
helpful to provide an example of them implemented in
a real world situation. A case study can be very
informative regarding both the problems encountered,

as well as the benefits, should someone want to
replicate the environment for themselves.

Applied Geographics, Inc. (AGI) [39] is a Geographic
Information Systems (GIS) consulting company
specializing in municipal GIS, web based map server
development, and facilities database integration for
large organizations. Much of the companies web
development projects evolve as prototype map
applications running on hosted Microsoft IIS web
servers at AGI. These web based applications are
made available to clients during the development
phase. Since client access is very mobile, it is not
possible to restrict access through IP address filtering.
Therefore, diligent efforts must be made to protect
both AGI’s and our clients interests.

3.1 Past Suffer ing

In June of 1999, AGI suffered the results of the
ExploreZip worm which swept through large segments
of the Internet [40]. The worm tore through the
companies fileservers zeroing out thousands of
documents and development project files and
generally wreaking havoc on the email system. This

Figure 2.2: Ethereal Console

Figure 2.1: ACID Console

Table 2.8 − Network Intrusion Detection
Applications Advantages Disadvantages

Snort Very flexible detection
and reporting

Multiple plugins
available

Can drop packets under
load

Tcpdump Advanced packet logging Can drop packets under
load

Ethereal GUI interface

Excellent interface for
analyzing packet logs

Known root exploits

was not an uncommon occurrence for companies
relying on Microsoft technology for their email and
office productivity software.

If anything positive came out of the ExploreZip event,
it was a greater awareness of the threats that exist to
companies directly connected to the Internet. When I
came to AGI in September of 1999, ExploreZip was
still fresh in the minds of the company. It was made
clear that protection from the type of threat
ExploreZip represented, i.e. opportunistic exploitation
of critical system wide vulnerabilities, was a top
priority.

I conducted an audit of our existing exposure and
found a number of things which needed attention.
These included an unpatched Linux 2.0.x firewall with
several vulnerable daemons including bind, wu−ftpd,
and rpc, no packet filtering, an ftp server open to
anonymous uploads, an open mail relay which I later
found was being used as a spam relay, telnet access,
and intranet fileserver browsing access available from
outside the firewall. Any one of these vulnerable
points of exposure could have resulted in disaster and
it’s a wonder that the phone wasn’ t ringing off the
hook with angry system administrators from remote
sites.

3.2 Needs Assessment

The first step in designing a security solution is to
determine what exactly needs to be secured. This may
sound absurd but having a set of guidelines to address
specific network security issues is very important.
What is the required functionality for internal users?
What external access is required to internal resources?
Is it necessary to encrypt all network traffic or only
external authentication traffic? These are questions
which need to be answered before proceeding to
installation and configuration of particular software.

At the time of the initial assessment the network
environment at AGI was represented by a 40−50 node
TCP/IP network running a heterogeneous mixture of
Windows NT Server, Windows NT Workstation,
Linux, and Digital UNIX. Connectivity to the Internet
was a through a 416 Kbps SDSL link. Since we were
actively replacing our older workstations with newer
systems, we had a potentially ready supply of
backend, special purpose servers at our disposal.

Required functionality was defined in terms of what
services to provide employees on the inside, and what
services were required to serve AGI’s clients on the
outside. The design of the solution also needed to be
flexible enough to support future added functionality
without sacrificing security or core services. As

always, cost was an important element in the design
decisions.

3.3 Internal Services

AGI’s network was a relatively open environment with
few restrictions on access to resources. As a small
company, employees were used to having mostly
unfettered access to any and all resources within the
corporate network. Therefore, most efforts to protect
the internal network were focused on external threats.
To minimize potential threats posed by accessing
remote resources, access to common internet resources
needed to be proxied. Also, network address
translation was required for any connections where a
proxy was not available.

To accommodate these requirements a new firewall
was designed using Red Hat Linux v6.1 [41] with a
2.2.x kernel. While the GNU/Linux kernel v2.2.x
does not support stateful packet inspection, it was felt
at the time that the trade off of using Linux for its
software compatibility versus an OS platform that
maintains state was acceptable. Red Hat was readily
available and therefore chosen as the firewall OS.

While a default install of most operating systems is
quite insecure, it is fairly straightforward to put the
system into a secure state through post installation
modifications. A spare 100MHz Pentium system with
96MB of RAM was chosen as the hardware platform
for the new firewall. A minimal install of Red Hat 6.1
was then hardened by removing all unneeded services,
locking down user authentication, installing OpenSSH
for terminal access, and creating ACL’s for access to
both local and remote services.

Since the main concern was for external security there
was no requirement to encrypt the transmission of
syslog messages to the central server. A central log
server was installed and configured to use syslog as a
listener for the internal network. Syslog was also a
requirement due to the heterogeneous nature of AGI’s
network. Syslog−ng is not supported on older Digital
UNIX and Windows NT systems, all of which needed
to forward their log messages to the central server.

Since the amount of traffic passing through the
firewall was relatively minimal the packet filter and
application gateway were configured on the same
device. In larger implementations, this may not be
appropriate.

Squid was installed to provide gateway services to all
external http resources. The added functionality and
performance of Squid made it an appropriate choice
for AGI. Since http traffic is the primary external

resource accessed at AGI, it was felt to be important to
have a proxy in place. Many other services, including
Real Audio and ICQ, have the ability to use http as a
transport obviating the need for additional proxy
support beyond Squid. Other resources, such as
external ftp servers, were kept unproxied.

Network address translation (NAT) hides internal
devices that access external resources by replacing the
source ip address of the internal system with the ip
address of the firewall. The ipchains [42] utility
allows for the easy configuration of NAT using one
simple rule:

ipchains −A forward −i $EXT −j MASQ

This will masquerade all packets exiting the local
network on the external interface.

3.4 External Services

Providing access to services and resources from
external, untrusted networks requires careful planning
to minimize threat exposure. It was necessary for AGI
to provide a number of services to clients, employees,
and the general public. These services consisted of an
SMTP mail server for local and remote mail delivery,
web hosting for both AGI and our client prototype
applications, an ftp server for anonymous downloads
and authenticated uploads, a VPN for telecommuting,
and an administrative console capability.

The following action items were established to satisfy
the functional requirements of the AGI network. First,
a packet filter was needed to provide access controls
to the AGI network. These included egress filtering of
RFC 1597 private addresses. While this step does not
necessarily protect AGI, it does promote responsible
network management. Second, daemon services
should be proxied where possible. Third, AGI
employees should be able to access internal network
resources from home or on the road. Fourth, at a
minimum, all authentication of external sessions to
internal resources (web access, VPN, terminal) should
be encrypted. If possible, the entire session should
also be encrypted.

The v2.2.x Linux kernel uses a program called
ipchains to manage packet filtering. The three
default chains, input, output, and forward, were all
defaulted to deny access. By denying everything and
then selectively allowing specific traffic, you create an
awareness of the nature of all traffic entering or
leaving the protected site. You also protect yourself
from overlooking a type of traffic that would normally
not be allowed. At AGI, it was necessary to allow
access to a number of specific TCP and UDP ports

including 21 (FTP), 22 (SSH), 25 (SMTP), 80
(HTTP), 143 (IMAP), 443 (HTTPS) and 993
(IMAPS). Servers listening on these ports were
regularly monitored and patched to prevent possible
compromise.

Egress filtering is a method to prevent broken packets
or packets with non−routable addresses from being
routed outside the protected network. All packets with
RFC 1918 source addresses (10.0.0.0/8, 172.16.0.0/12,
and 192.168.0.0/16) should be blocked from routing to
the internet. This is good networking practice and
reduces the routing of unwanted traffic.

The TIS Firewall Toolkit (FWTK) provided the
application gateway support required for SMTP
transport. The original source code for FWTK’s smap
proxy does not support a restricted mail relay or spam
filtering. The end result is that while sites are
protected from exposing their mail servers directly to
the internet, the proxy, itself, is vulnerable as an open
spam relay. However, there are a number of highly
effective patches to the original FWTK source code
which add the necessary open relay controls while
also providing support for spam filtering. This makes
the FWTK smap proxy a usable mail proxy for AGI’s
site. The FWTK also supports proxies for a number of
other application services such as FTP, HTTP, X
server, Telnet, and SMTP. However, the SMTP
gateway was the only FWTK server proxy used at
AGI.

In addition to filtering and proxying network traffic to
and from AGI, it was necessary to encrypt as much of
the remaining traffic as possible, protecting
usernames, passwords and sensitive data. E−mail
encryption is still fairly non−standard and
cumbersome making it difficult to implement in any
mildly heterogeneous environment, let alone with any
outside clients and contacts. These unresolved issues
made it exceedingly difficult to control the use of
application level encryption. However, it was possible
to control the encryption of user logon sessions to
IMAP mailboxes, access to internal web based
information, and remote access.

The primary concern was authenticated, encrypted
access by AGI employee’s and clients to protected
resources. Creating a root Certificate Authority (CA)
for AGI permitted the creation of self−signed web and
email server SSL certificates. These certificates
would permit SSL access for testing and pre−
production phases of the development cycle.
OpenSSL was used to created a root certificate which
was then used to sign certificates created by web and
email servers. Most modern web and email servers
including IIS, Apache and Exchange, are capable of

utilizing SSL transport of data. Once the certificates
were installed on the servers, users of the site needed
to install the CA root certificate as a trusted root
authority in the web browser. This prevented errors
about untrusted root certificates from being generated
by the browser. Email clients were configured to use
port 993 (IMAP over SSL) to connect to the IMAP
server. These two steps eliminated 90% of the
plaintext authentication and data stream to/from AGI’s
protected resources.

One of the core requirements for a new firewall
solution was an effective remote access capability that
did not open AGI to excessive risk. Any solution
needed to rely on encryption of initial session
negotiation, authentication, and data flow.

As a GIS solutions provider, there are specific
software dependancies that AGI must support. In the
past this software was multi−platform allowing the use
of any number of operating system and hardware
choices. AGI’s legacy GIS applications run on aging
Digital UNIX servers accessed through X terminal
sessions. These applications and hardware platforms
continue to be supported at AGI. However, changes in
the GIS software market have dictated a migration to a
Microsoft−centric operating platform at the desktop.
In addition, widely available broadband internet
connections have made telecommuting a viable
alternative to battling the morning commute for many
of AGI employee’s. Initial research into a solution
enumerated a couple of potential open source
solutions such as PoPToP [43] and FreeS/WAN [44].
However, both were fairly new initiatives which did
not fully support the type of access required, vis à vis
full replication of the desktop environment at AGI
through an encrypted tunnel. The decision was made
to use PPTP on NT Server passing the traffic through
the firewall.

Since the focus of this paper is on the use of free, open
source security solutions, a discussion of the relative
merits and limitations of using Microsoft’s PPTP
implementation versus some of the more reliable,
secure or open source VPN solutions on the market
will be avoided. Given further refinement of the
existing initiatives, an open source solution would
provide an attractive alternative. However, while most
open source VPN solutions focus on providing secure
router <−> router links using IPSEC thereby obviating
the need for dedicated client software, any VPN
remote access solution for workstation <−> server
would require a software client developed for the
Windows desktop. Commercial products are available
which fill this gap, however, open source VPN client
software that supports IPSec and is able to run on the
Windows desktop is noticeably absent.

In addition to a secure remote access solution for AGI
employees, a secure method of administering the
network while off site was also required. OpenSSH
provided a highly reliable and secure method for
establishing terminal connections to AGI network
servers from remote sites. OpenSSH has many
configurable parameters including key length, cipher,
and authentication mechanisms such as Kerberos,
RSA key authentication and username/password
combinations. OpenSSH also provides methods for
creating encrypted tunnels over arbitrary TCP ports,
secure file transmissions, and secure X window
negotiation if desired.

3.5 System Integr ity

One of the key problems with host compromises is
that they are usually not discovered until long after the
compromise took place and the intruder has already
damaged your site or someone else’s. Recent attacks
on exploitable vulnerabilities in bind, rpc, wu−ftpd,
and lpd make it abundantly clear that undiscovered
system compromises contribute to the spread of
worms, both kiddies and automated, looking for
further victims. Unchecked, these compromised
systems pose a serious risk to the stability of the
internet.

A good host level intrusion detection capability is a
necessary component of any system exposed to direct
connections from the internet. At AGI, it was
necessary to provide host based intrusion detection on
the GNU/Linux firewall as well as any other Linux
systems installed on the network. Since the goal was
to use open source software, system integrity software
for other OS platforms will not be presented.

Two open source solutions were previously described.
While both Tripwire and the Advanced Intrusion
Detection Engine (AIDE) provide system integrity
checking, only the recently open sourced Tripwire
2.2.x for GNU/Linux has built−in capability of
encrypting the system database. This functionality is
planned for AIDE, however, with the GPL’ ing of the
Linux client, the maturity of the application, and with
the support for running Linux binaries on BSD
systems in compatibility mode, Tripwire provided an
ideal solution at AGI.

3.6 Network Intrusion Detection

Solutions for an adequate firewall and host level
intrusion detection provide a solid base for protecting
private networks. However, these tools do not actually
allow you to see the traffic entering and leaving the
network. A network based intrusion detection system

provides a means to identify unwanted network traffic
and take appropriate action.

AGI required a system which could be modified to
detect new and customized signatures, log alerts to a
central database, and provide the means to analyze
detects. Snort provided the ability to create advanced
rulesets for detecting unwanted network activity, and
report that activity to a remote database. The Snort
configuration at AGI combines a subset of rules made
available by the Snort development team and a custom
ruleset created to account for known traffic patterns on
AGI’s network. Alerts are logged to a local binary
tcpdump format logfile in addition to a remote
MySQL database. Analysis of all alerts logged to the
MySQL database is conducted using ACID.

In addition to the use of ACID for analyzing the Snort
alert database, Ethereal’s filtering and sorting
capabilities make it an extremely useful companion
for analyzing the tcpdump format binary files created
by Snort. The drill down capability of Ethereal allows
for a complete and precise view of each packet.

The use of these tools highlights another important
benefit to using open source software for network
security. There are no limitations to the combinations
of software that can be used for any specific objective.
Commercial software gets expensive if you have to
keep buying new packages for additional functionality.
If you don’ t like an open source application, there’s no
financial incentive to try and ‘make’ it work if it
simply will not serve your purpose. If an application
has some useful features but does not provide all the
functionality required, there are other packages
available which can either replace the existing
software or compliment it with the new features.
Either way, the investment in the software costs you
nothing.

3.7 Cost Considerations

As stated in the introduction, the cost of network
security is part and parcel of the cost of doing
business online. Hardware, software, time and skills,
all come at a price. Formal training and certification
programs can be expensive. Conflicting priorities and
responsibilities can make it difficult for system
administrators to spend the time needed to learn new
skills and keep current on the technology.
Fortunately, with the availability of inexpensive
legacy hardware, free and open source software, and a
wealth of information online, those costs have neither
to be exorbitant nor unmanageable. In fact, the
money spent on network security now may be an
investment in your businesses online future.

The choices made at AGI on software and hardware
paid off immensely. Through the use of spare
hardware, a solid open source OS, and the open source
security tools described above, it was possible to
implement a highly secure network environment at
AGI. The software required to build the solution cost
nothing. The cost incurred in implementing the
solution was the time spent initially building the
system, and the subsequent hours spent updating,
monitoring, and maintaining the software. Since these
duties fall within the role of System Administrator at
AGI, the costs were negligible as a separate line item
and were well justified.

3.8 Future Directions

In the year and a half since the original solution was
implemented, the GNU/Linux box running on a five
year old Pentium 100 desktop workstation, has never
crashed, failed or been compromised. It was rebooted
twice, due to physical location changes and handled
all the network traffic for 35 employees, six hosted
production web sites, 6 staging and developmental
beta web sites, and up to 10 concurrent VPN
connections without any interruption of service.

Recent changes in the network infrastructure at AGI,
demands for additional bandwidth, and additional
hosting requirements, required moving the firewall to
a larger box and adding stateful packet filtering
capabilities. Since stateful packet inspection is a
recent addition to GNU/Linux and may have some
lingering unresolved vulnerabilities [45], and since
software compatibility issues are no longer an issue in
using *BSD based systems, OpenBSD was used rather
than Linux. The move will allow AGI to maintain
existing capabilities, while enabling stateful packet
filtering for better performance and less overhead.

The bandwidth at AGI has moved from 416Kbps
SDSL to two full 1.544Mbps T1’s. The network
performance statistics on *BSD vs. Linux [12] as well
as the reputation of OpenBSD with its focus on
security made the decision to switch an easy one. The
capabilities and reliability of open source operating
systems and software make them an extremely
attractive alternative to commercial OS’s and security
software.

4. Summary

In the mid−1990’s, when computer programmers and
system integrators realized that a date change from the
year 1999 to 2000 might have major implications for
government and business computer systems, billions
of dollars were spent resolving the problem. After
literally millions of person hours spent by developers

and technicians repairing code and fixing systems
Y2K fizzled on New Years, 2000. Some argued that
the money was ill spent since nothing happened.
Their logic does not account for the diligent efforts of
those who worked on Y2K’s demise. It rather suggests
that "nothing was going to happen anyway so why did
we spend all the money?"

Network security suffers from similar misconceptions.
If you take steps to minimize your exposure and suffer
no intrusions you are doing your job. But then was all
the money and effort really worth the expense? One
need only refer to CERT, SANS, NIPC, or a number
of other resources specifically designed to keep users
informed on the threats that exist.

As mentioned above, the solution implemented at
Applied Geographics has never crashed, failed, or
been compromised. However, this is not to say that
people haven’ t tried. Since April, 2000, the
monitoring of AGI’s network resulted in over 30,000
events, including numerous worm detections, root
exploit attempts, errant packets and useful traffic
analysis leading to network design changes and
improvements in overall system performance.

While cost is always an important factor in deciding
how best to secure a network, this paper has attempted
to show that one need not spend thousands of dollars
on commercial software. Any network security
solution is going to cost money in the form of
someone to provide support, installation and
monitoring. However, to believe that you must also
incur the added cost of the software is to overlook the
solid, cutting edge, and secure open source solutions
that are available for free.

5. Acknowledgements

I would like to thank Ted Faber and Peter Girard for
their extremely helpful comments and suggestions.
Any errors in content are, of course, solely the
responsibility of the author.

6. References

[1] Computer Emergency Response Team. CERT
Advisory CA−1999−06.
http://www.cert.org/advisories/CA−1999−
06.html, June, 1999.

[2] Computer Emergency Response Team. CERT
Advisory CA−1999−04.
http://www.cert.org/advisories/CA−1999−
04.html, April, 1999.

[3] Ohlson, K. "Viruses, Other Attacks Cost
Businesses $7.6B: Report".
http://www.computerworld.com/cwi/story/0,1199
,NAV47_STO28244,00.html, June, 1999

[4] National Infrastructure Protection Center. Alert
00−0034.
http://www.nipc.gov/warnings/alerts/2000/00−
034.htm, February, 2000.

[5] Vision, M. Ramen Internet Worm Analysis.
http://projet7.tuxfamily.org/docs/security/ramen.
html, 2001.

[6] System Administration, Networking and Security
Institute (SANS) Global Incident Analysis Center
(GIAC). Lion Worm.
http://www.sans.org/y2k/lion.htm, March, 2001.

[7] SANS GIAC. Adore Worm.
http://www.sans.org/y2k/adore.htm, April, 2001.

[8] Strom, D. "The Packet Filter: A Basic Network
Security Tool".
http://www.sans.org/infosecFAQ/firewall/packet_
filter.htm, September, 2000.

[9] Curtin, M. and M. J. Ranum. Internet Firewalls:
Frequently Asked Questions, rev 10.0.
http://www.interhack.net/pubs/fwfaq, December,
2000.

[10] GNU/Linux, v2.4.x. http://www.kernel.org

[11] OpenBSD, v2.8. http://www.openbsd.org

[12] Graichen, T. "Performance Comparison and
Tuning of Free Operating Systems".
http://innominate.org/~tgr/slides/performance,
2000.

[13] Bugtraq vulnerability mailing archive,
SecurityFocus.com.
http://www.securityfocus.com/bugtraq/archive

[14] Computer Emergency Response Team (CERT).
http://www.cert.org

[15] System Administration, Networking and Security
Institute (SANS) Global Incident Analysis Center
(GIAC). http://www.sans.org

[16] Squid Web Proxy Cache. http://www.squid−
cache.org

[17] Firewall Tool Kit, Trusted Information Systems,
Network Associates, Inc.
http://www.fwtk.org/main.html

[18] Gauntlet Firewall, PGP Security, Network
Associates, Inc.
http://www.pgp.com/products/gauntlet

[19] Tripwire commercial software.
http://www.tripwire.com

[20] GNU General Public License. The GNU Project.
http://www.gnu.org/philosophy/license−list.html

[21] GPL Tripwire project, v2.2.1 for Linux.
http://sourceforge.net/projects/tripwire

[22] Advanced Intrusion Detection Engine (AIDE)
v0.70. http://www.cs.tut.fi/~rammer/aide.html

[23] Syslog−ng, v1.4x.
http://lists.balabit.hu/products/syslog−ng

[24] Stunnel Universal SSL Wrapper, v3.14.
http://www.stunnel.org

[25] Logcheck, v1.1.1.
http://www.psionic.com/abacus/logcheck

[26] Hansen, S.E. and E.T. Atkins. "Centralized
System Monitoring with Swatch". 1993 LISA
Conference. Usenix Association.
http://www.stanford.edu/~atkins/swatch/lisa93.ht
ml

[27] Pretty Good Privacy (PGP), PGP Security,
Network Associates, Inc. http://www.pgp.com

[28] GNU Privacy Guard, v1.04.
http://www.gnupg.org

[29] OpenSSH, v2.52. http://www.openssh.org

[30] OpenSSL, v0.96a. http://www.openssl.org

[31] Kent, S., and R. Atkinson. "Security Architecture
for the Internet Protocol". RFC 2401.
November, 1998.

[32] Hamzeh, K., et. al. "Point−to−Point Tunneling
Protocol". RFC 2637. July, 1999.

[33] Lee, W., C.T. Park, and S.J.Stolfo. "Automated
Intrusion Detection Using NFR: Methods and
Experiences". In Workshop on Intrusion
Detection and Network Monitoring (ID ’99)
Proceedings, pages 63−72, April, 1999. Usenix
Association. Berkeley, CA.

[34] Snort Lightweight Intrusion Detection for
Networks, v1.7x. http://www.snort.org

[35] Forster, J. Snort Ruleset Database.
http://www.snort.org/Database/rules.asp

[36] Analysis Console for Intrusion Detection (ACID),
v0.9.6x. http://www.cert.org/kb/acid/

[37] Tcpdump/Libpcap. http://www.tcpdump.org

[38] Ethereal, v0.8.17. http://www.ethereal.com

[39] Applied Geographics, Inc.
http://www.appgeo.com

[40] ExploreZip.worm.
http://vil.nai.com/vil/dispVirus.asp?virus_k=103
39

[41] Red Hat Linux 6.x. Http://www.redhat.com

[42] Linux IP Firewalling Chains, v1.3.10.
http://netfilter.filewatcher.org/ipchains/

[43] PoPToP, v1.0.1, The PPTP Server for Linux.
http://poptop.lineo.com

[44] Linux FreeS/WAN, v1.9.
http://www.freeswan.org

[45] IPTables FTP Stateful Inspection Arbitrary Filter
Rule Insertion Vulnerability. Bugtraq ID #2602.
http://www.securityfocus.com/bugtraq/archive

