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Abstract

Malloc(3) is considered to be a robust building
block. However, we found that many malloc imple-
mentations suffer from excessive heap fragmentation
when used with Hummingbird, a long-running ap-
plication which stores a large number of fixed-sized
and variable-sized objects in dynamic memory. This
paper characterizes the dynamic memory activity
pattern of Hummingbird and GNU Emacs. It com-
pares the behavior of nine different mallocs when
used with Hummingbird and GNU Emacs dynamic
memory activity traces. In the Hummingbird case,
the best malloc caused 30.5% fragmentation (in-
creased heap size above the amount of live memory),
while the worst malloc caused a heap overflow. In
the GNU Emacs case, the best malloc caused 2.69%
fragmentation, and the worst one caused 101.5%
fragmentation.

1 Introduction

Dynamic memory allocation is considered to be a
solved problem for most applications. The ubiqui-
tous malloc(3) routine is a part of the C run-time
library, and most programmers use it without a sec-
ond thought. Much research and development ef-
forts have been invested in optimizing malloc to fit
the typical allocation pattern of applications, which
is characterized by a small number of object sizes [2].

Most real (commercial) applications consider mem-
ory allocation performance early on. They often
rewrite the memory allocator specifically to tune it
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to their application. For example, the Apache web
server [8] and a large n-body simulation program [1,
column 6] contained specialized implementation of
malloc.

We also considered malloc to be a robust building
block, and we used it with Hummingbird [7], a light-
weight file system for caching web proxies. To our
surprise, when we run Hummingbird on several op-
erating systems with different malloc implementa-
tions, the heap size of the process was several times
larger than the total size of live memory objects. We
knew that it was not a memory leak problem, since
we run Hummingbird under Purify [5]. When we
used other malloc implementations, most of them
also caused excessive heap fragmentation (increased
heap size). This is a serious problem, since it may
cause heap overflows, thrashing or reduce the size of
memory that can be used to store live objects. One
malloc implementation even caused a heap over-
flow, which is unacceptable.

Hummingbird implements a memory-based cache,
which stores variable-sized objects in addition to
fixed-sized objects. The total size of live objects
is fixed. We believe the Hummingbird’s mem-
ory access pattern is actually quite common for
many long-running applications, which store dy-
namic memory objects of variable sizes. This could
be the memory access pattern of many Web related
programs that maintain a cache in memory.

Many algorithms for memory allocators have been
studied and documented. Most memory alloca-
tions are optimized for short-lived programs with a
few fixed allocation sizes [9, 2]. Recently, Larson
and Krishnan [4] studied the scalability of mem-
ory allocators and the impact of memory alloca-
tion on long-running applications with fixed-size ob-
jects. Not many people have studied the effect



of heap fragmentation on long-running applications
with variable-sized objects.

While the excessive heap fragmentation was surpris-
ing to us, it is not a new problem. System developers
have been facing the problem of malloc consuming
excessive memory due to fragmentation, and have
alleviated the problem by implementing their own
memory management schemes. For example, the
Apache web server [8] uses its own scatter-gather
memory allocation scheme.

In this paper we describe the dynamic memory ac-
tivity pattern of Hummingbird, and compare the
operation of multiple malloc implementations given
the same sequence of memory allocation and deal-
location operations, which were captured from a
live run of Hummingbird. We observed wide vari-
ation of heap consumption and running times be-
tween various malloc implementations. The best
malloc we measured was PhK/BSD malloc ver-
sion 42. It caused 30.5% heap fragmentation. The
worst malloc was SunOS “space efficient” malloc,
distributed with Sun OS version 5.8. It could not
complete the run due to a heap overflow.

Since Hummingbird is not a commonly used pro-
gram, we looked for a widely available tool that al-
locates objects of varying sizes and runs for a long
time. We picked GNU Emacs version 20.7, and cap-
tured its dynamic memory activity when it was used
to edit the source files in a large source hierarchy.
See Section 3 for details. The memory activity of
GNU Emacs is quite different than that of Hum-
mingbird regarding object size distribution, object
lifetime, and total amount of live memory, as de-
scribed in Section 3. In particular, Emacs’s total
amount of live memory grows continuously during
the run, while Hummingbird’s total amount of live
memory is fixed. We measured a smaller variation
between the various mallocs when used with the
Emacs dynamic memory activity trace relative to
the Hummingbird trace. The best malloc we mea-
sured was Doug Lea’s malloc version 2.6.6, which
caused 2.69% fragmentation. The worst malloc was
again the SunOS “space efficient” malloc, which
caused 101.48% fragmentation. PhK/BSD malloc
was a close fifth with 3.65% fragmentation.

The main contribution of this paper is in expos-
ing an unexpected problem with malloc, which is
an existing building block that has been extensively
optimized. Since the internal algorithms of the var-
ious mallocs are so different, we did not attempt

to analyze the root cause of this problem. We hope
that this paper will help future developers recognize
that some mallocs may cause excessive fragmenta-
tion, which can be alleviated by switching to a dif-
ferent malloc. In the long run, we hope that this
paper will spur research in dynamic memory alloca-
tion in order to analyze and rectify the problem we
identified.

The rest of the paper is organized as follows. Sec-
tion 2 describes the Hummingbird light-weight file
system and characterizes its dynamic memory ac-
tivity. Section 3 describes the GNU Emacs work-
load and characterizes its dynamic memory activ-
ity. Section 4 explains the trace-driven program we
used to compare the various malloc implementa-
tions. Section 5 contains a measurements of the var-
ious malloc implementations using the Humming-
bird and Emacs memory activity traces, and Sec-
tion 6 concludes.

2 Hummingbird and Its
Memory Activity

Dynamic

Hummingbird is a light-weight file system for
caching web proxies. Caching web proxies are ded-
icated to caching and delivering web content. Typ-
ically, they are located on a firewall or at the point
where an Internet Service Provider (ISP) peers with
its network access provider. To increase their hit
rate, proxies use disks to store large amounts of
cacheable objects. Most publicly available caching
proxies use the Unix file system to store cacheable
object using the Unix file hierarchy. However, the
Unix file system is not well-suited for this appli-
cation, which cause a great performance penalty.
Hummingbird is a light-weight portable file-system
library that was designed specifically to improve the
access time of caching web proxies to cached objects
stored on the disk.

2.1 Hummingbird’s Memory Objects

Hummingbird stores two types of objects in main
memory: files and clusters. Files are variable-sized
cacheable objects, such as HTML pages and images.
Clusters are fixed-sized objects containing files and
some meta-data. The caching web proxy provides
locality hints to Hummingbird by requesting that



certain files be co-located. These files are usually
the HTML page and its embedded images. Hum-
mingbird uses these hints to pack files into clusters.
However, the packing occurs as late as possible,
which is when space is needed in the main mem-
ory. When the contents of a cluster is written to
the disk, its associated main memory is freed. Only
a small amount of meta-data is left behind in the
memory in order to facilitate fast lookup of cached
files. Clusters are read into memory and written to
disk in one I/O operation to amortize the cost of the
I/0. The total size of live objects in Hummingbird
is bounded.

Hummingbird maintains three types of meta-data
information: file system meta-data, file meta-data,
and cluster meta-data. File and cluster meta-data
are fixed-sized objects, which are associated with
the variable-sized files and clusters. The file system
meta-data is needed for the system to maintain state
and manage the memory.

In summary, Hummingbird stores fixed-sized and
variable-sized objects in memory for various dura-
tions (not all objects are short-lived or long-lived).
Some memory objects, such as frequently accessed
files and clusters may stay in memory for an ex-
tended period of time, while other objects, such as
files and clusters which are rarely used, stay in mem-
ory only for a brief time. Some meta-data objects
are never deleted from memory or have very long
lifetimes.

2.2 Hummingbird’s Dynamic Memory
Activity

We instrumented Hummingbird to generate a trace
of its dynamic memory activity. The trace we stud-
ied was captured from a Hummingbird run corre-
sponding to the processing of an HTTP proxy log
of four days. The trace contains about 58 million
events (dynamic memory allocations and dealloca-
tions). These events correspond to the dynamic
memory activity of Hummingbird when it was pro-
cessing 4.8 million HTTP requests. Those requests
contain 14.3 GB of unique data and 27.6 GB total
data.

The total amount of live memory in Hummingbird
was fixed at about 217 MB. Note that many memory
allocation events in the trace have no corresponding
deallocation events. These events correspond to the

allocation of memory objects that stayed in memory
when the run ended.

Figure 1 depicts the distribution of Hummingbird’s
object sizes against their frequency. The left portion
of the graph, which corresponds to objects less than
128 bytes in size, indicates that there is a large num-
ber of fixed-sized objects holding meta-data, and
these objects are only of a few fixed sizes. The
graph also shows that there is a large number of
object sizes longer than 128 bytes. These are the
variable-sized objects holding the file data. There
are no object sizes which are especially common, ex-
cept for 32 KB, which is the cluster size. A unique
feature of the graph is that the distribution of ob-
jects larger than 128 bytes is represented by almost
a straight line on the log —log scale. This feature
suggests that the distribution of the variable-sized
objects is Zipfian [10].

In a Zipf distribution, the frequency of occurrences
of an event is inversely proportional to its rank r
using the formula r%, where a is close to unity. In
other words, the relative frequency of the most com-
mon event is 1, since its rank is also 1. The relative
frequency of the nth most common event is #, since

its rank is n.

Table 1 shows the most common Hummingbird ob-
ject sizes, their relative frequency, and the fraction
of the memory allocated to objects of this size. The
“total size allocated” column is the total amount
of memory allocated for objects of this size (or size
range) during the entire run. Note that more than
half of the total allocated memory was for objects of
size 32 KB, which is the Hummingbird cluster size.
Since most disk accesses (reads and writes) are to
full clusters, objects containing clusters are created
and deleted frequently.

Figures 2 and 3 depict the lifetime of objects. The
object lifetime is presented in two metrics: the aver-
age amount of new dynamic memory allocated dur-
ing the lifetime of the object (Figure 2), and the
average number of new dynamic memory objects al-
located during the lifetime of the object (Figure 3).
Both figures show that objects larger than 128 bytes
and less than 32 KB are very long-lived, that is, an
absence of locality in the patterns of sizes of deallo-
cations and requests for new chunks of memory.
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object % of total | % of total
size objects size
(bytes) allocated | allocated
8 25.813 0.118
32 23.775 0.436
24 9.848 0.136
o6 7.518 0.242
16 7.056 0.065
48 6.604 0.182
64 3.705 0.136
40 3.196 0.073
32768 2.975 95.935
72 1.588 0.066
80-120 0.911 0.045
128-32760 6.647 20.197
32776-39966072 0.364 22.370
total 100.000 100.000

Table 1: The distribution of the most frequent ob-
ject sizes in Hummingbird. The table is sorted by
decreasing frequency. Object sizes are always a mul-
tiple of double word (8 bytes).

From the above discussion, we can observe that
Hummingbird’s dynamic memory activity is very
different from the kind of activity that memory allo-
cators are designed and optimized for. Most studies
conclude that there are a small number of distinct
dynamic object sizes in real programs. Johnstone
and Wilson [2] say that 99.9% of the objects are of
just 141 sizes! However, Hummingbird allocates a
very large number of object sizes (more than 18000).
Many mallocs assume that there is a strong tempo-
ral correlation between allocation and deallocation
sizes. In other words, an allocation is likely to spec-
ify the memory size of a recently deallocated object.
However, Hummingbird’s dynamic memory activity
has little correlation between the recently freed ob-
jects and new allocation requests.

3 GNU Emacs and Its
Memory Activity

Dynamic

The second application we studied was GNU Emacs
version 20.7. We picked GNU Emacs due to its
wide use, and because many people use Emacs for
their main working environment, and run a sin-
gle Emacs session for an extended period of time
(many days). GNU Emacs is available from http:
//www.gnu.org/software/emacs/emacs.html.

We instrumented Emacs to generate a trace of
its dynamic memory activity. We ran an Emacs
macro that listed the contents of /usr/src/ using
the dired directory editing mode, visited all of
the *.[ch] files found, and changed the string
int to unit32 in all files. Emacs edited those
files sequentially (one at a time). The directory
/usr/src/ contained the source trees of the follow-
ing Linux kernels: 1inux-2.0.34, linux-2.1.131,
linux-2.2.10-siginfo, linux-2.2.10-swapmod,
linux-2.2.10-up-default, linux-2.2.12,
linux-2.2.14, linux-2.2.14-mvia,
linux-2.2.14-up, linux-2.2.17, linux-2.4.2,
linux-ctl, linux-eager and linux-net. There
were 73,212 *.[ch] files with total size 2.7GB.
Emacs was executing on a PC running linux-
2.2.16-SMP. The dynamic memory activity trace
contained about 20 million memory allocations and
deallocations.

Figure 4 depicts the distribution of Emacs’s object
sizes against their frequency. It shows that Emacs
allocated almost entirely small objects (less than
2K bytes). There seems to be two classes of ob-
jects based on their allocation frequency: objects
that are allocated a large number of times (more
than 1,000) and objects that are allocated a small
number of times (less than 32). There is no clear
correlation between the object size and its alloca-
tion frequency.

Table 2 shows the most common Emacs object sizes,
their relative frequency, and the fraction of the
memory allocated to objects of this size. The “to-
tal size allocated” column is the total amount of
memory allocated for objects of this size (or size
range) during the entire run. Unlike the Humming-
bird object size distribution, Emacs has no single
object size which dominates the total storage allo-
cated. Moreover, more than 98% of all Emacs ob-
jects were small or equal to 648 bytes, and their size
was about 65% of the total bytes allocated.

Figures 5 and 6 depict the average number of bytes
and objects allocated during the lifetime of an ob-
ject, respectively. Figure 6 clearly shows that most
objects have a similar lifetime, which ranges from
64 K to 1 M object allocations. It seems that
those objects were allocated for each source file that
Emacs edited, and then they were deallocated when
Emacs moved to the next source file.
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object % of total | % of total
size objects size
(bytes) allocated | allocated
40 51.335 8.902
648 15.625 43.897
104 11.368 5.126
64 6.013 1.668
16 3.926 0.272
8 1.496 0.052
16-32 1.549 0.169
48-56 3.075 0.744
72-96 0.141 0.059
112-640 3.554 3.599
656-23568 1.917 35.520
total 100.000 100.000

Table 2: The distribution of the most frequent ob-
ject sizes in Emacs. The table is sorted by decreas-
ing frequency. Object sizes were rounded to the next
multiple of double word (8 bytes).

4 Dynamic Memory Activity Trace

The dynamic memory activity trace was captured
from Hummingbird and GNU Emacs runs as de-
scribed in Sections 2 and 3 above. The Humming-
bird trace contained about 58 million events (dy-
namic memory allocations and deallocations) while
the Emacs trace contained about 20 million events.

The memory activity trace is a text file. Each line
in the file corresponds to either a memory allocation
or deallocation operation. The format of the trace
lines is:

Allocate <tag> <size>
Free <tag>

The tag field is used to match the memory allocation
with the corresponding memory deallocation oper-
ation. We used the virtual address of the allocated
area in the instrumented program as the tag. Of
course, when we run the trace with different mallocs
on different operating systems, the memory alloca-
tions will results in different virtual addresses than
the tags in the trace file. However, the tags can still
be used to match the malloc operations with the
corresponding free operations.

An alternate implementation of the trace file might
have used the allocation sequence number as the

tag. In other words, the first allocated memory ob-
ject will get tag # 1, the second will get tag # 2,
etc. We did not implement this option since it ne-
cessitates auxiliary data structures in the trace gen-
eration routines, which may perturb the measured
application. However, it is easy to generate this al-
ternate trace format by post-processing the current
trace file format.

We wrote a simple driver program that reads the
trace and calls the corresponding malloc and free
based on the current trace file entry. The driver
program keeps a hash table with the tags of all live
memory objects. In this way, it can locate the cor-
responding memory object for the free operation
given its tag.

5 Measurements

We measured the heap size of the following nine
mallocs when used with the same Hummingbird
and Emacs dynamic memory access traces, which
were described in Sections 2 and 3 above. We picked
mostly open source malloc packages which are com-
mon on Linux and FreeBSD. We also included two
Solaris mallocs, since the Solaris 3X malloc caused
the heap overflow that prompted us to investigate
the fragmentation problem in the first place.

The following description of the mallocs is sorted
by increasing heap fragmentation at the end of the
Hummingbird trace run. This is also the the order
of entries in Table 3. The fragmentation percentage
is computed by 100 x (1eapsize _ _ 1)

live memory

e PhK/BSD malloc version 42

Written by  Poul-Henning Kamp  [3]
and distributed with FreeBSD, NetBSD
and OpenBSD. Available from ftp:
//ftp.FreeBSD.org/pub/FreeBSD/src/
1ib/libc/stdlib/malloc.c .

e Solaris default
This is the default malloc distributed on
SunOS 5.6.

¢ GNU malloc last modified in 1995
Written by Mike Heartel and distributed with
the GNU libraries. Available from ftp://www.
leo.org/pub/comp/os/unix/gnu .



The latest version of GNU malloc is avail-
able from ftp://ftp.leo.org/pub/comp/os/
unix/gnu/malloc.tar.gz .

e Modified binary buddy

A modified binary buddy algorithm, which
coalesces any two neighboring free blocks of
the same size, even if the resulting block is
not aligned on the new block size boundary.
This algorithm uses a hash table to deter-
mine quickly if a neighboring block of the same
size is completely free. This routine was writ-
ten by the second author of this paper and
will be available from http://www.bell-1labs.
com/“eran/malloc .

e Doug Lea’s malloc version 2.6.6
This malloc is optimized both for speed and
fragmentation and is the basis for the GNU
g++ malloc. Written by Doug Lea and avail-
able from http://gee.cs.oswego.edu/pub/
misc/malloc.c.

e Quick Fit malloc
An implementation of Weinstock and Wulf’s
fast segregated-storage algorithm based on an
array of free lists. available from ftp://ftp.
cs.colorado.edu/pub/cs/misc/qf.c .

e CSRI malloc version 1.18
Written by Mark Moraes from the University
of Toronto. Available from ftp://ftp.cs.
toronto.edu/pub/moraes/malloc.tar.gz.

¢ Vmalloc written on 1/16/1994

Kiem Phong-Vo’s malloc with the “default”
setting, which is optimized for “typical”
workloads. The results of the “best” setting
were very similar to the “default” setting
for both Hummingbird and Emacs traces, so
we reported only the results of the “default”
setting. Available from http://portal.
research.bell-labs.com/orgs/ssr/book/

reuse/license/packages/95/vmalloc.html.

e Solaris 3X
This is a “space efficient” malloc distributed
with SunOS 5.8. It is available through link-
ing with -1malloc. Its manual page is man 3x
malloc.

We ran all tests a dual processor Intel Pentium IIT
with 700 MHz clock speed running SunOS 5.8 (So-
laris 8 distribution). Note that the driver program is
single threaded, so it did not use the 2nd processor.

5.1 Hummingbird Measurements

Table 3 shows the final heap size and the heap frag-
mentation at the end of the Hummingbird trace.
It also shows the CPU consumption for running the
malloc on the full trace. The execution time column
in Table 3 indicates that increased CPU consump-
tion does not correspond to reduction in fragmen-
tation. The best malloc is not the slowest, and the
fastest malloc does not cause most fragmentation.

Figure 7 shows the heap size of the same mallocs
as a function of the time. The rightmost point in
all graphs in Figure 7 is the final heap size shown in
Table 3. Note that the fragmentation described in
Table 3 is independent of the operating system we
used. Executing the same malloc code on a differ-
ent operating system will cause similar fragmenta-
tion.

Table 3 shows that the heap fragmentation ranges
from 30.5% to infinity (heap overflow). Moreover,
most mallocs do not reuse memory properly, which
is indicated by continuously increasing heap size in
Figure 7.

PhK/BSD performed best among all the studied
mallocs for the Hummingbird trace. Not only it
had the smallest heap fragmentation, it also did
a better job at reclaiming freed areas. Figure 8
compares the heap size of the four best mallocs:
PhK/BSD, Solaris default, GNU and modified bin
buddy with the live memory. Figure 8 has the same
time scale as Figure 7.

Figure 8 indicates that the Solaris default, GNU and
modified bin buddy mallocs allocated some area on
the heap, and they were not able (or not designed
to) reduce the heap size if there was an opportunity
to do so. Such an opportunity arises when the last
memory area in the heap is freed. Only PhK/BSD
was able to reduce the heap size on these occasions,
which may explain its overall better operation.

5.2 Emacs Measurements

Table 4 shows the final heap size and the heap frag-
mentation at the end of the Emacs trace. It also
shows the CPU consumption for running the malloc
on the full trace.
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malloc package final heap % user time | system time
name size (MB) fragmentation (sec.) (sec.)

PhK/BSD 283.8 30.5 448 11
Solaris default 291.7 34.7 360 9
GNU 308.3 41.8 455 17
Modified bin buddy 327.8 50.7 557 11
DougLea 392.6 80.6 641 21
Quickfit 518.9 138.7 457 12
CSRI 778.5 258.8 14171 29
Vmalloc 1364.7 527.7 384 52
Solaris 3X heap overflow — — —

Table 3: Comparison of the heap size, fragmentation and CPU consumption at the end of the Hummingbird
trace. The table is sorted by increasing fragmentation. Live memory at the end of the trace was 217.4 MB.

malloc package final heap % user time | system time
name size (MB) | fragmentation (sec.) (sec.)

DougLea 136.48 2.69 74 4
CSRI 137.01 3.08 585 4
Quickfit 137.02 3.09 74 3
Vmalloc 137.36 3.35 75 4
PhK/BSD 137.76 3.65 78 4
Solaris default 137.76 3.65 76 4
GNU 161.41 21.44 78 5
Modified bin buddy 172.54 29.82 84 4
Solaris 3X 267.79 101.48 372 8

Table 4: Comparison of the heap size, fragmentation and CPU consumption at the end of the Emacs trace.
The table is sorted by increasing fragmentation. Live memory at the end of the trace was 132.9 MB.
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Figure 8: Comparison of the four best mallocs when used with the Hummingbird dynamic memory activity
trace. Note that PhK/BSD was able to reduce the heap size on several occasions.
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Figure 9: Comparison of the heap size of nine mallocs when used with the Emacs dynamic memory activity
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Figure 9 shows the heap size of the nine mallocs
as a function of the time. The rightmost point in
all graphs in Figure 9 is the final heap size shown in
Table 4. Note that most mallocs except GNU, mod-
ified binary buddy and Solaris 3X caused very little
fragmentation and are very similar to each other
in that respect. The Solaris 3X again caused most
fragmentation, which may indicate that its imple-
mentation is broken.

5.3 Discussion

We did not study the internal algorithm of any of
the mallocs we measured, except for the modified
binary buddy algorithm. We treated them as “black
boxes”, since this is the way most application devel-
opers use them. Thus we can not explain why some
mallocs consumed much more heap space than oth-
ers.

One could argue that we can resolve the memory
fragmentation problem in Hummingbird by round-
ing the sizes of all memory blocks to the next power
of two, and then use an existing malloc. In this
way, splitting memory blocks and coalescing mem-
ory blocks will not cause fragmentation. However,
as Table 3 shows, the modified binary buddy allo-
cator caused 50.7% fragmentation, which is much
worse than the best allocator, which caused only
30.5% fragmentation. Remember that the binary
buddy actually allocates memory only in chunk sizes
which are a power of two. Moreover, some imple-
mentation of malloc append a header to all memory
blocks. Thus coalescing two blocks of the same size
will generate a block whose size is slightly larger
than twice the size of each original block. Thus this
method will not eliminate fragmentation.

The large increase of the heap size experienced with
Solaris 3X malloc when used with the Humming-
bird trace is within the theoretical bounds for worst
case fragmentation of first fit and best fit alloca-
tion algorithms [6]. The maximal memory needed
for first fit is about M log, n, where M is the total
size of live memory, and n is the size of the largest
object. The maximal memory needed for best fit
is about Mmn, which is much larger. In our case,
M is 217.4 MB and n is 39.9 MB. Considering the
above worst case analysis, most mallocs (except So-
laris 3X) required a much smaller amount of mem-
ory than the worst case.

The Emacs measurements showed that even when
the object distribution is “more typical”, some
mallocs are better than others. In particular, the
GNU malloc caused 21.4% fragmentation, while the
better mallocs caused about 3% fragmentation.

6 Summary and Conclusions

We studied the behavior of Hummingbird, a long-
running program with dynamic memory allocation
and deallocation patterns which do not conform to
the typical pattern for which dynamic memory allo-
cators are optimized. We also studied the dynamic
memory activity of GNU Emacs when it was used
to edit files in a large source hierarchy. We stud-
ied the fragmentation caused by the different im-
plementations of malloc when used with the same
Hummingbird and Emacs dynamic memory activ-
ity traces. We found that most mallocs caused ex-
tensive fragmentation for the Hummingbird trace.
However we also found that some of them performed
well. This is in contrast with the Emacs trace, which
caused little fragmentation for most mallocs. How-
ever, there was a noticeable difference between the
best mallocs and the rest. No malloc performed
the best for both traces, while one malloc was con-
sistently the worst.

While dynamic memory management, for programs
that allocate a small number of object sizes has been
studied extensively, further research is needed to
understand the dynamic memory management for
long-running programs which allocate a large num-
ber of memory object sizes with varying sizes and
lifetimes. Moreover, the low memory fragmentation
of the best malloc for Hummingbird, PhK/BSD
malloc [3], is purely serendipitous based on a cor-
respondence with its author, Poul-Henning Kamp.
Moreover, P-H Kamp did not claim to have tried to
reduce fragmentation in case of a very large number
of object sizes. In other words, he does not know
why it performed so well on our workload.

We hope that this paper will spur renewed interest
in dynamic memory allocation, and would lead to
better understanding why particular dynamic mem-
ory allocation schemes work better for the kind
of dynamic memory activity described in this pa-
per. Future malloc implementors should consider a
dynamic memory activity pattern similar to Hum-
mingbird’s when updating their code. At the min-



imum, application developers should become aware
of the excessive memory fragmentation problem de-
scribed in this paper, and if they encounter one,
they should try to alleviate it by picking a different
malloc package.

7 Availability

The Hummingbird and Emacs memory activity
traces, the source of our driver program, and the
source of the modified bin buddy allocator will be
available at http://www.bell-labs.com/~eran/
malloc/ .

In addition, Benjamin Zorn has a site with links to
several mallocs: http://www.cs.colorado.edu/
“zorn/Malloc.html .
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