
A Thread Performance Comparison:
Windows NT and Solaris on A Symmetric Multiprocessor

Fabian Zabatta and Kevin Ying
Brooklyn College and CUNY Graduate School

{fabian,kevin}@sci.brooklyn.cuny.edu

Outline

• Introduction

• NT and Solaris Implementation

• Experiments

• Conclusions

Decreasing Cost of Parallel Hardware

$138,000

$15,000 $13,000

1994 1995 1996 1997 1998 1999 2000

Year

Cost

PC Based SMP with 4
PPros 200MHz, with
512 MB RAM

PC Based SMP with 4
Pentium II Xeon 400
MHz, with 512 MB RAM

A basic IBM SP2 with 2
66-70 MHz processors,
with 128 MB RAM

Kernel-Level Objects of Execution

Classic Process

• One unit of control

Modern Process

• Divided into sub-objects

• Each sub-object has its own context

• Each sub-object functions independently

• Each sub-object shares the same address space and
resources with sub-objects of the same process

Advantages of Design

• Overlap Processing

• Parallel Execution

• Scalability

• Communication

• Inexpensive

• Well Structured Programming Paradigm.

User-Level
Object of
Execution

Kernel-level
Object of
Execution

The Operating System Kernel

Processor Structure

Generic Thread Architecture

Fibers

Threads

Process Structure

Global Data

The Windows NT Kernel

Application Code

NT’s Thread Architecture

Solaris’s Thread Architecture

Thread Library
Threads

LWPs

Process Structure

Application code,
global data, ect.

The Solaris Kernel

Scheduler

Implementation Comparison

Windows NT Solaris

Kernel-level Thread LWP

User-level Fiber Thread

Hybrid model User Must Implement Thread Library

Preemptive Priority

Non Time Sliced

Preemptive Priority Preemptive Priority

Time Sliced Time Sliced

One-One Variation of many-many

(Fiber: many-many) (Coexist of one-one)

Win32 UNIX International

Kernel

User Fibers (user controlled)

Implementation Model

Scheduling Model

Programming Interface

Multiplexing Model

Motivation

Test each system’s chosen thread API to discover the
performance impact of each design on various
applications.

• NT: Thread

• Solaris: Bound, Unbound and CL=4

Experiments

1. Number of allowable kernel threads.

2. Execution time of thread creation.

3. Execution time of thread creation on a heavily loaded system.

4. Performance of CPU intensive threads that do not require
synchronization.

5. Performance of CPU intensive threads that require extensive
synchronization.

6. Performance of threads on a parallel search.

7. Performance of threads that have bursty processor
requirements.

Measure and Compare:

Parameters

Hardware

•SMP Machine (Sag Electronics) with 4-200 MHz Pentium Pros
(256K Cache Each)

•512 MB RAM & 4 GB SCSI Hard Drive

Software

•NT Server 4.0 (Service Pack 3) & Solaris 2.6

•GNU gcc Version 2.8.1 Compiler

Description NT Solaris
of Threads Created 9817 2294
Memory Usage 68MB 19MB
Execution Time (sec.) 24.12 2.68

1. Thread Limits

2. Thread Creation Speed

0.00

0.50

1.00

1.50

2.00

2.50

0 500 1000 1500 2000 2500

Number of Threads Created

E
xe

cu
ti

on
 T

im
e

(s
ec

.)

NT

Solaris Bound

Solaris CL=4

Solaris Unbound

Solaris Bound

NT

Solaris Unbound

Solaris CL=4

3. Thread Creation of CPU Intensive Threads

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

0 32 64 96 128 160

Number of Threads

E
xe

cu
ti

on
 T

im
e

(s
ec

.)

NT
Solaris Bound

NT

Solaris Bound

4. No Synchronization-CPU Intensive Threads

• There is very few differences between NT threads and
Solaris bound threads.

• Solaris thread library did not increase nor decrease the
size of LWP pool for CL=4 and unbounded threads.

• CL=4 has equivalent performance to that of the bound
threads.

- This implies that additional LWPs did not increase the
performance.

- The time it takes Solaris’s thread library to schedule threads
on LWPs is not a factor in performance.

5a. Extensive Synchronization (Process Scope)

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

0 250 500 750 1000 1250 1500 1750 2000 2250

Number of Threads

E
xe

cu
ti

on
 T

im
e

(S
ec

.)

NT CS
Solaris Bound
Solaris CL=4
Solaris Unbound

Solaris Unbound

NT CS

Solaris Bound

Solaris CL=4

5b. Extensive Synchronization (System Scope)

0.00

20.00

40.00

60.00

80.00

100.00

120.00

0 500 1000 1500 2000 2500

Number of Threads

E
xe

cu
ti

on
 T

im
e

(s
ec

.)

NT Mutex
Solaris Bound
Solaris CL=4
Solaris Unbound

NT

Solaris CL=4

Solaris Bound
Solaris Unbound

6. Parallel Search

We explored the classic symmetric traveling salesman
problem (TSP). The problem was modeled with threads
that required limited synchronization to perform a
parallel depth-first branch and bound search.

• NT version of the TSP slightly outperformed the
Solaris version. Both systems were able to achieve an
almost linear speed up (3.9+).

7. Threads with CPU Bursts

This experiment tested the performance of threads that
have bursty processor requirements. This is analogous
to applications that involve any type of I/O, e.g.
Networking or client/server applications.

• CL=4 showed a slightly better performance in
comparison to NT’s threads or Solaris bound and
unbound threads. This can be directly attributed to
Solaris’s two-tier thread architecture.

Comparison Conclusions

• Both utilized multiprocessors and scaled well.

• Solaris’s design was more flexible at the cost of
complexity.

• NT’s critical section outperformed Solaris’s mutex.

• Solaris’s mutex outperformed NT’s mutex.

• Solaris’s design excelled on tasks with bursty processor
requirements.

• Thread library’s automatic control of concurrency
level is limited.

• Set the concurrency level to the number of processors
and create unbounded threads when needed.

Independent Performance Conclusions: Solaris

Independent Performance Conclusions: NT

• The number of threads should be roughly equal to the
number of CPUs.

• When extensive intra-process synchronization is
required use a “critical section”.

Closing Notes

• Threads are important and powerful programming
tools.

• Differences exist on how they should be implemented.

• Differences in implementations are tradeoffs.

• Pthreads (POSIX): Standard thread API.

