
The following paper was originally published in the
Proceedings of the Sixth Annual Tcl/Tk Workshop

San Diego, California, September 14–18, 1998

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

Creating High Performance Web Applications
using Tcl, Display Templates, XML, and Database Content

Alex Shah and Tony Darugar
Binary Evolution, Inc.

Creating High Performance Web
Applications using Tcl, Display
Templates, XML, and Database
Content

Alex Shah
Technical Director
Binary Evolution, Inc.
ashah@binevolve.com

Tony Darugar
President
Binary Evolution, Inc.
tdarugar@binevolve.com

Abstract

We describe an online system that provides a
framework for the rapid creation of high
performance, database driven web sites based on
content from XML files. The software that “glues”
the content to the presentation is written in Tcl. The
proposed architecture uses a pool of persistent Tcl
engines to substantially improve performance and
robustness as compared to traditional server-side
programming techniques.

Introduction

Today's online applications demand more from web
technology than C-based CGI programming can
provide. A web site is a living document: the content,
the presentation, and the software that drives that
presentation need to change often. To meet the day to
day requirements of a dynamic web site, a developer
must use tools and technology that maximize
flexibility and minimize development time.

We will describe an online system that provides a
framework for the creation of high performance,
database driven dynamic web sites. Simple HTML
templates that can be manipulated in WYSIWYG
editors will be used for display of the content.
Content will be stored in XML documents or within a
database, allowing publishers to update the site
easily. The software that glues the database and
XML content to the display templates will be written
with one of the most stable, well supported scripting
technologies available: Tcl. The Tcl language was
chosen because it is non-proprietary, platform and
operating system independent and is familiar to most

web developers. Superior web performance will be
achieved through the use of Tcl engines that maintain
persistent database connections and communicate
directly with the web server via the ISAPI or NSAPI
protocols.

Performance Issues

Traditional server-side programming has relied
heavily on the Common Gateway Interface (CGI)
standard, first implemented in the NCSA server. The
CGI protocol is fairly easy to understand and allows
developers to write server-side applications in the
language of their choice. Since applications run in
separate processes, CGI based applications can crash
without bringing down the entire web server. Nearly
every web server, regardless of platform, has
implemented the CGI standard.

CGI has some significant performance drawbacks.
The operating system overhead associated with
starting a new process for each request often utilizes
more resources than the script itself. Under load,
incoming requests are scattered by the scheduler:
some requests are processed immediately; others may
wait for hundreds of seconds. When content is stored
in a database, the additional overhead from opening
and closing the connection often results in huge lags,
even for the simplest transaction.

In response to the performance problems associated
with CGI, several vendors have developed high
performance, proprietary APIs for their servers. The
most notable are Netscape’s NSAPI, Microsoft’s
ISAPI and Apache’s server API. Applications
compiled using one of these proprietary server APIs
are faster than CGI programs. By running an
application within the server process, the overhead of
starting up and initializing a new process for each
request is removed. Requests are handled in the
order received and are not subject to rearrangement
by the operating system’s process scheduler.
Database connections can be opened once, and
reused.

Unfortunately, server APIs are missing many of
CGI’s benefits. Server APIs are difficult to learn and
force the developer to use C or C++ to develop their
application. Since the application is loaded into the
server process, a bug in the application can bring
down the entire server. Once written, an application
cannot be easily ported to a new server or platform
without rewriting the code.

Several solutions try to combine the ease of use of
CGI and the performance of server APIs. One

approach is the creation of an entirely new
programming language and API for the sole purpose
of server programming. Cold Fusion is an example
of this approach. While easier to use than server
APIs, Cold Fusion has several obvious
disadvantages, such as the need to learn a new,
proprietary language. Cold Fusion users do not have
access to a large, established development
community and must rely on a single vendor for all
advances and extensions to the language.

Unlike Cold Fusion, NeoWebScript and others use
established open languages such as Tcl that are
already familiar to many developers and have a large
user and development community [Lehen].
NeoWebScript takes the approach of adding a Tcl
interpreter to the Apache server process and allows
the web developer to embed Tcl code within their
HTML pages. Since a new Tcl process is not created
for each request, NeoWebScript’s performance is
substantially better than CGI. Despite
NeoWebScript’s ease of use and performance, a few
drawbacks do exist. The approach of embedding the
Tcl interpreter directly into the http process only
works for non-multithreaded servers such as Apache.
Existing CGI-Tcl scripts must be rewritten to
conform to NeoWebScript’s programming paradigm.

Another approach is to improve and extend the CGI
protocol by removing the overhead of starting a new
process for each new request. FastCGI implements
this approach by introducing an accept loop, whereby
the script accepts an incoming request, processes it,
and goes back the accepting state [FastCGI]. Many
of the benefits of CGI are retained by this approach,
including being language independent and protecting
the http server process by executing the scripts in a
separate process. However, FastCGI’s improved
performance comes at the expense of greater effort
on the part of the developer . Since the scripts are
required to be persistent, they must be memory and
resource leak free. The cleanup automatically done
by the operating system when using CGI (by
restarting the process for each request) must now be
handled by the developer. FastCGI encourages the
creation of large, monolithic programs, as opposed to
small, modular scripts in order to have less processes
to manage [FastCGI2].

Ideally, an improved CGI would increase
performance as well as ease server-side
programming, rather than complicate it. A successful
CGI adaptation would take the benefits of the
existing CGI protocol, combine them with the
performance advantages of server APIs, be easy to
use, and be based on open languages.

High Performance Architecture

The architecture we will use for our sample
application uses Binary Evolution’s VelociGenTM

[VelociGen]. The VelociGen for TclTM (VET)
combines the performance associated with server
APIs with the benefits of CGI (see Figure 1).

Figure 1. VelociGenTM Architecture

In VET’s default configuration, requests for files that
end with .vet or .htcl are processed by the
VelociGenTM interface. VET can be configured to
run scripts with different file extensions, or from a
specific directory, for example /cgi-bin.

When a Tcl request is received by the http server, the
VelociGenTM shared object searches for an available
Tcl engine to handle the request. If no Tcl engines
are available and the user defined maximum number
of Tcl processes has not been exceeded, a new Tcl
engine is spawned. The request is queued when all of
the Tcl engines are busy processing prior requests.

Upon startup, the Tcl engine creates a master
interpreter which remains in memory until the Tcl
engine is exited. The master interpreter evaluates a
file called persistent.tcl which contains user
generated Tcl code that will be shared by all requests.
Code for creating persistent socket or database
connections should be added to the persistent.tcl file.
Since code evaluated by the master interpreter is pre-
compiled and cached, maximum Tcl performance can

be obtained by moving procedures from your Tcl
script into persistent.tcl.

After executing persistent.tcl, the Tcl engine waits
for a request to arrive from the parent process. The
VelociGenTM shared object will pass the filename for
the script, CGI variables, and POST data to the Tcl
engine. After this information is received, the Tcl
engine will evaluate a file called slave.tcl. The
purpose of slave.tcl is to create a new slave
interpreter and alias any necessary procedures from
the master interpreter. By modifying slave.tcl the
developer can choose whether the Tcl script should
be run using a safe or unrestricted interpreter.

If the script to be run is mostly HTML with some
embedded Tcl code (.vet), the startup.tcl file will be
evaluated next. The startup.tcl file contains Tcl
code to simplify CGI programming. For example, it
stores the query string in a Tcl associative array
called QUERY and cookies into the COOKIE
associative array. It also provides support for
multipart form data, http file uploads and
miscellaneous procedures for common web
programming tasks. Depending on user preference,
the startup.tcl file can be easily replaced with
another CGI Tcl library such as the cgi.tcl package
written by Don Libes [Libes]. After executing
startup.tcl, the .vet file is processed as follows:
HTML is passed onto the web server without further
processing by the Tcl engine. Tcl code defined
within user specified tags, for example: <tcl>...</tcl>
is evaluated by the slave interpreter; standard output
is passed onto the web server.

Scripts ending with .htcl run in VET’s CGI
compatible mode. In this mode, startup.tcl is not
evaluated. CGI variables are copied to Tcl’s env
array. POST data is placed on stdin; data written to
stdout will be communicated to the web server and
eventually reach the client browser.

In the event that a Tcl script crashes the interpreter,
only the current request is affected. Other Tcl
engines, and the server http process continue to run
without incident. The VelociGenTM shared object can
detect when a Tcl engine has crashed, display an
appropriate error message on the client browser, and
restart the engine when the next Tcl request is
received. VelociGenTM can also be configured to
forcefully terminate a script after a user defined
number of seconds.

After script termination, the slave interpreter is
destroyed, freeing variables, file handles, and other
resources used in the processing of the .vet or .htcl

script. The master interpreter is not cleared out: Tcl
code, variables, and socket or database connections
defined in persistent.tcl remain cached and pre-
compiled in the Tcl engine. The Tcl engine now
waits for another Tcl request to arrive. The
connection between the http server and Tcl engine is
never closed.

Comparison of VelociGenTM to Other
Server-Side Programming Solutions

Like CGI and FastCGI, applications written with
VET run in separate, isolated processes. Scripts
submitted to the Tcl engine for processing can crash,
block on IO, or go into infinite loops, without
affecting the web server. Only a small amount of
well tested, thread-safe code for managing and
communicating with the Tcl engines needs to be
loaded into the web server.

Unlike CGI, the Tcl process or engine remains
persistent and does not exit after each request, thus
eliminating substantial operating system overhead.
By keeping the Tcl engine in memory, persistent
connections can be made to the database, further
increasing performance. VET requests are less
susceptible to rearrangement by the operating system
process scheduler. Since requests are handled in the
order that they are received, response time stays
consistent, even under heavy load.

By separating the web server and Tcl into separate
processes, the potential exists for running the Tcl
engines on remote machines. The architecture
provides scalability: request handling and server
performance can be easily increased by distributing
Tcl processing over several machines.

Unlike FastCGI, VET is capable of handling existing
CGI-Tcl scripts without modification. Developers
can continue to code small scripts without
performance loss. Freeing of system resources is
handled by VET rather than the developer. Several
requests to the same Tcl script are processed
simultaneously, rather than serialized in an accept
loop.

Rather than taking Cold Fusion’s approach of
creating a entirely new language for server-side
programming, VET shares the approach taken by
NeoWebScript. The VET interface is based on the
well established and proven Tcl language. VET
pages can also parse and process Tcl embedded
within HTML pages. The embedded Tcl code is
placed within user defined tags, for example: <tcl>,

</tcl>, <%, %>, [[,]]. Unlike NeoWebScript, VET is
backward compatible with CGI scripts written in Tcl.
By separating the Tcl interpreter from the http server
process, thread-safe VelociGenTM technology
supports multithreaded servers such as Netscape
Enterprise, Microsoft IIS, and O’Reilly Web Site Pro,
as well as Apache.

The VET interface is not dependent on a particular
platform or server architecture. Any web server that
provides a high performance interface compatible
with Netscape’s NSAPI, Microsoft’s ISAPI, or
Apache’s server API will work with VET. Since Tcl
has been designed to run on nearly any platform, the
VET interface allows developers to write an
application once and then deploy on nearly any
operating system, platform, or web server.

Why use Tcl?

Scripting languages such as Tcl represent a very
different style of programming than system
programming languages such as C or JavaTM.
Scripting languages are designed to achieve a higher
level of programming and more rapid application
development than system programming languages.
Scripting languages also provide a simplified
environment for performing online tasks. Content
can be pulled from databases or XML and
manipulated using regular expressions or other built-
in string functions without having to build data
structures and algorithms from scratch.

The Tcl language was chosen as a base for our
system because it has only a few fundamental
constructs and relatively little syntax, which makes it
easy to learn. The Tcl syntax is meant to be simple
and flexible. Developers can easily add commands
and functionality to Tcl using C or C++ code when
needed. As John Ousterhout, the creator of Tcl puts
it, Tcl is designed for "gluing" applications together.

Support and extensions for Tcl are widely available,
making it a very attractive language for online
development. In addition to the text manipulation
functions that come with Tcl, a powerful regular
expression library can be installed into the
interpreter. Support for nearly any database is
available for Tcl. Steve Ball has recently made an
XML extension available as well [Ball]. Extensions
also exist for creating and manipulating graphs and
GIF images.

Tcl 8.0 also comes with a byte compiler. VET’s
ability to pre-compile and cache Tcl code is ideal in a
web environment where scripts are run over and over.

By using pre-compiled Tcl, the overhead of
interpreting Tcl source code is removed. Since most
Tcl routines map to compiled C, pre-compiled Tcl
can execute at speeds that come very close to the
performance of server APIs.

With respect to online publishing, Tcl scripts are
especially powerful. A developer can quickly and
easily update a script and see the changes on the next
server request, without having to recompile the entire
application. Tcl allows editors, graphics artists and
developers to update the content, the presentation of
that content, and the logic driving that presentation
on a daily basis, while still maintaining high
performance and flexibility.

Online Recipe Application based on XML
and Tcl

A vast amount of documentation and information is
available on the Internet, with more being added at an
incredible pace every day. Most of this information is
stored in HTML, the Web’s ubiquitous formatting
language. This has been a very successful model both
because of the ease of authoring HTML documents
and because of the relative ease of displaying them.

While HTML is effective as a formatting and display
language, it does not allow the author of the
document to store structural or fielded data within the
document. In fact, the only information maintained
within the document is how to display it. More and
more, the need for structured, fielded documents is
becoming obvious.

To demonstrate this, imagine all of the different
cooking recipes available on the Internet. Each has its
own look, order for placement of sections and
wording for the headings. If you wanted to collect
these disparate recipes into a single collection with a
uniform look, you would have to expend a large
amount of energy figuring out how each recipe is laid
out and converting it to your own look. Or, imagine
if you wanted to place the ingredient list of each
recipe into a central database, so that you could
search for recipes that used a particular combination
of ingredients. Since each recipe lists its ingredients
in a different way, a large amount of effort would be
needed. These data management issues also apply to
collections of movie reviews and stock portfolio
information.

XML can be used to remedy this situation. An XML
tagged document resembles HTML, although the
meaning of those tags are defined by the author of the

document [XMLRec]. Unlike HTML, XML tags add
meta information to the document rather than
determine how the document will be displayed. By
separating the display characteristics of the document
from the content, XML allows one to change the
presentation without having to modify content spread
across hundreds or thousands of documents. Also,

since the tags are structured and can be nested, meta-
data can be stored within the document itself. For
example, a recipe document could have the tag
<ingredient>carrot</ingredient> to indicate that
carrots are used in that recipe, making it very obvious
what each ingredient is. The following listing shows
a partial recipe for carrot cake in XML:

<recipe course="dessert" calories="325">
 <name>Carrot Cake</name>
 <description>
 A favorite classic. Stays moist and freezes well.
 </description>
 <note status="credit">Betty Crocker’s Cookbook</note>
 <ingredient-list yields="16">
 <ingredient quantity="1 1/2 cups">sugar</ingredient>
 ...
 <ingredient quantity="3 cups">shredded carrots</ingredient>
 <ingredient quantity="1 cup">coarsely chopped nuts</ingredient>
 </ingredient-list>
 <preparation preptime="about 1 1/2 hours">
 <step>Heat oven to 350 degrees</step>
 <step>Grease and flour rectangular pan, 13 x 9 x 2 inches</step>
 ...
 <step>Frost with cream cheese frosting if desired</step>
 </preparation>
</recipe>

Listing 1. Carrot Cake Recipe in XML

Using XML important information about the
structure of a document can be placed within the
document itself.

The following example demonstrates how VelociGen
for TclTM can be used in conjunction with an XML
parser to display recipes stored in XML format.

Since XML tags are guaranteed to be balanced, valid
XML documents can be parsed and placed into a tree
data structure. For our example, we use Steve Ball’s
XML parser for Tcl [Ball] which transforms the
XML document into a tree structure using Tcl lists.
Each node in the tree is made up of four elements:

node: type tag attribute content

The type element is set to one of two values:
‘parse:elem’ or ‘parse:text’. When type is

‘parse:elem’, tag is set to the name of the XML tag,
attribute is set to a list of attributes placed within the
XML tag, and content is set to one or more nodes
found between the start and end tags. When type is
‘parse:text’, tag is set to the text found between the
start and end tags, attribute and content are set to
empty Tcl lists: ‘{}’.

A simple approach to giving XML presentation is to
simply map the XML tags to appropriate HTML tags.
Listing 2 shows this approach. The tag_map defines
these simple mappings - one for the start of each tag,
and one for the end. As the tree is recursively
traversed, using the process function, each tag is
handled as follows: the HTML code defined by the
tag_map is displayed, followed by the content of the
tag, followed by the end HTML code defined by the
tag_map.

--
The tag map: Each item consists of the tag name, the HTML to output at the beginning
of processing the tag, and the HTML to output at the end of processing the tag.
set tag_map {
{RECIPE "" "" }
{DESCRIPTION {<blockquote>} {</blockquote>} }
{NAME {<center><h2>} {</h2></center>} }
{NOTE {<!--} {-->} }
{INGREDIENT-LIST {<p><h3>Ingredients</h3>} {} }
{INGREDIENT {} "" }
{PREPARATION {<p><h3>Preparation</h3>} {} }
{STEP {} "" }
}

Listing 2. XML to HTML conversion tag_map

The XML tags are processed using a simple recursive
traversal of the parse tree:

Output start HTML, XML tag contents, and
end HTML as defined in tag_map for the
XML tag “$tag”

process_tag start $tag
process $content
process_tag end $tag

Using this approach XML documents can be
converted to HTML quickly and easily. However,
Listing 2 does not allow for the handling of tag
attributes - they are simply ignored. To deal with the

more complicated aspects of XML we need a more
powerful mapping.

The more powerful approach involves defining Tcl
procedures to handle the XML tags. Rather than
using text substitution, each XML tag becomes a Tcl
procedure, taking the attributes and content as
arguments. This approach provides the full power of
Tcl for handling the XML tags.

Listing 3 shows this approach. tag_map is now a
namespace instead of a Tcl list. Each procedure in
this namespace corresponds to an XML tag and
defines what is to be done with that tag.

namespace eval tag_map {

proc DESCRIPTION {attr content} {
 puts "<blockquote>"
 process $content
 puts "</blockquote>"
}

proc NOTE {attr content} {
 set value [lindex $attr 1]
 switch $value {
 credit {
 puts "
From: <i>" ; process $content ; puts "</i>
"
 }
 default { }
 }
}

proc INGREDIENT-LIST {attr content} {
 puts "<table border=0 bgcolor=yellow width=100%><tr><td>"
 puts "<h3>Ingredients:</h3>"
 process $content
 puts "</td></tr></table>"
}

proc INGREDIENT {attr content} {
 puts ""
 process $content
 puts "<i>[lindex $attr 1]</i>
"
}

...
End tag_map namespace
}

Listing 3. XML to HTML conversion namespace.

A typical procedure inspects and processes the tag
attributes, outputs some HTML code, calls process to
recursively handle the contents of the tag, and outputs
the ending HTML code. The call to process is
needed in order to reach the current tag’s child nodes;
omitting it allows you to suppress the display of the
tag’s contents, including its subtrees. For example,
by removing the process call from the
INGREDIENT-LIST procedure, the listing of
ingredients can be suppressed.

Using this system the documents can be written and
maintained in XML, providing all of the benefits
discussed above, and displayed in HTML, allowing
the system to be deployed today, using existing web
technologies. Further benefits of authoring and
storing the documents can be seen in the following
section, where the XML document is very easily
converted to SQL and stored in a database.

Online Recipe Application based on
Databases and Tcl

XML provides structure to a document, but does not
provide a mechanism to search and query the content.
For such purposes, it is often useful to store content
within a database. Our next example will
demonstrate how recipe information can be stored in
a database and then retrieved and displayed in HTML
using Tcl.

Listing 4 shows the schema for storing the recipe
example in a SQL database. The recipe is stored in
three tables: recipe, which stores the meta level
information about the recipe; ingredients, which
contains the list of ingredients; and prep, which
contains the preparation steps.

Listing 3, which defines the mapping from XML to
HTML, can be modified to map from XML to SQL
statements, allowing us to store our document in a

SQL database. Listing 5 shows the necessary
modifications. Notes are ignored simply by not
processing their contents.

create table recipe (
 id int,
 course char(1),
 calories int,
 name char(30),
 description char(254)
);

create table ingredients (
 rec_id int,
 quantity char(20),
 name char(20)
);

create table prep (
 rec_id int,
 step_num int,
 description char(254)
);

Listing 4. Database Schema

namespace eval tag_map {

proc RECIPE {attr content} {
 puts

"insert into recipe (id) values (1);"
 process $content
}

proc NAME {attr content} {
 puts "update recipe set name=’[process $content]’;"
}

proc DESCRIPTION {attr content} {
 puts "update recipe set description=’[process $content]’;"
}

proc NOTE {attr content} {
 # Ignored
 return
}

proc INGREDIENT-LIST {attr content} {
 process $content
}

proc INGREDIENT {attr content} {
 puts "insert into ingredients values (1, ’[lindex $attr 1]’, ’[process $content]’);"
}
...
End tag_map namespace
}

Listing 5. XML to SQL tagmap namespace

To create SQL output instead of HTML, only the
mappings need to be redefined. This demonstrates
the flexibility and power of XML. By adding
structure to a document without including
presentation information, XML allows easy
conversion of the document to other formats,
including HTML and SQL.

Listing 6 shows a code segment for displaying the
recipe, drawing data from the database. The
necessary data is retrieved from the database using
SQL statements and made into HTML via an HTML
template. The HTML template can be manipulated
using an HTML editor, allowing site designers to
modify the look of the page without having to

understand the Tcl code. The following listing uses
the MySQL database with Tcl-GDBI [Darugar] as the

Tcl interface.

...
<tcl>
set select "select * from recipe where id=1"
set nrows [sql query $conn $select]
set row [sql fetchrow $conn]

get the fields out of the returned row.
set idx 0
foreach field {id course calories name description} {
 set $field [lindex $row $idx]
 incr idx
}
</tcl>

<center><h2><tcl>puts $name</tcl></h2></center>
<blockquote>
<tcl>puts $description</tcl>
</blockquote>

<!-- Ingredients --------------------------------------- -->
<table border=0 bgcolor=yellow width=100%><tr><td>
<h3>Ingredients:</h3>

<tcl>
set select "select * from ingredients where rec_id=1"
set nrows [sql query $conn $select]

while {[set row [sql fetchrow $conn]] != ""} {
 set quantity [lindex $row 1]
 set name [lindex $row 2]
</tcl>

<tcl>puts $name</tcl><i><tcl>puts $quantity</tcl></i>

<tcl>
end of while loop for ingredients
}
</tcl>

</td></tr></table>
...

Listing 6. Displaying content from a database.

In real life situations drawing content from a database
or using XML/SGML to serve popular sites has often
been avoided because of the performance
implications: each request requires accessing a
database and formatting the content into HTML, or
parsing and translating XML into HTML.
Traditional server programming systems such as CGI
make this overhead prohibitive, forcing the developer
to use static HTML instead.

Performance Results

VET shrinks the performance gap between static
HTML and dynamically generated HTML. Figure 2
shows response times for displaying recipes at
various user loads using CGI-Tcl scripts, VET driven

Tcl scripts, and static HTML. The Tcl scripts used
for the performance comparison retrieve and display
recipe data from an Oracle database (see Listing 6).
For testing purposes, slight modifications were made
to Listing 6 in order to use the exact same script
under CGI and VET. The script was converted into
CGI-Tcl by placing puts before each line of HTML
and removing the <tcl>, </tcl> tags. We also
replaced our MySQL interface [Darugar] with the
more widely used Oratcl library [Poindexter].
Additional performance was attained by maintaining
persistent database connections in VET. Tests were
done on a Sun IPX running Solaris 2.5.1, Netscape
Fasttrack Server 2.01, Oracle Workgroup Server
7.3.2.2.0 and VelociGen for TclTM v1.0c.

Figure 2. VelociGen for TclTM vs. CGI Performance

As seen in Figure 2, VET’s performance is much
better than an equivalent system written with CGI.
As the load increases to 50 simultaneous requests, the
average response time for the CGI based system
jumps to over 140 seconds, which is unacceptable for
most web applications. The VET based system
handles the load well, taking about 10-20 seconds
under stress. Requesting the recipe as a static HTML
page does outperform the VET solution slightly, a
small price to pay for the ability to search, query your
XML data and manipulate the presentation.

Conclusion

Tcl is very well suited for online applications. The
language provides a simple syntax and built-in
functions for handling many online tasks. It is
multiplatform, well tested and supported, and is non-
proprietary. It also has the additional benefit of being
supported by an entire community of developers

rather than a single vendor. This allows users to take
advantage of the latest technologies as they appear,
well before they can be implemented into proprietary
systems. In our simple recipe example, we have
demonstrated Tcl’s ability to easily load and display
content from both databases and XML.

When combined with Binary Evolution’s
VelociGenTM, the use of Tcl for the creation of high
performance web sites becomes possible. The
proposed system cleanly separates content from
presentation, allowing easy manipulation of both the
site’s look and substance. Rather than waiting 2 to 3
years for widespread XML support in the browser,
this solution allows developers to use XML
technology today. By tightly integrating database
technology, Tcl and HTML templates, our proposed
system provides a flexible framework for meeting the
day to day needs of today’s dynamic web sites.

References

[Ball] Steve Ball, Steve.Ball@tcltk.anu.edu.au, “TclXML”, URL: http://tcltk.anu.edu.au/XML/

[Darugar] Parand T. Darugar, tdarugar@binevolve.com, “Tcl-GDBI : Tcl MySQL interface”,

URL: http://www.binevolve.com/~tdarugar/tcl-sql/

[FastCGI] Open Market Inc., “FastCGI”, URL: http://www.fastcgi.com/

[FastCGI2] Open Market Inc., “FastCGI: A High-Performance Web Server Interface”, April 1996,

URL: http://www.fastcgi.com/kit/doc/fastcgi-whitepaper/fastcgi.htm

[Lehen] Karl Lehenbauer, karl@neosoft.com, “NeoWebScript”,

URL: http://www.neosoft.com/neowebscript/

[Libes] Don Libes, libes@nist.gov, “cgi.tcl”, URL: http://expect.nist.gov/cgi.tcl/

[Libes96] Don Libes, libes@nist.gov, “Writing CGI scripts in Tcl”,

Fourth Annual USENIX Tcl/Tk Workshop, 1996,

URL: http://www.usenix.org/publications/library/proceedings/tcl96/libes.html,

URL: http://www.mel.nist.gov/msidlibrary/summary/9622.html

 [Poindexter] Tom Poindexter, “Oratcl” and “Sybtcl”,

URL: http://www.nyx.net/~tpoindex/tcl.html#Oratcl

URL: http://www.nyx.net/~tpoindex/tcl.html#Sybtcl

[VelociGen] Binary Evolution, Inc., info@binevolve.com, “VelociGen: Fast, Efficient, and Simple Server

Programming with Perl and Tcl”, URL: http://www.binevolve.com

[XMLRec] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, “Extensible Markup Language (XML) 1.0”

 W3C Recommendation 10-February-1998, URL: http://www.xml.com/axml/target.html

