
The following paper was originally published in the
Proceedings of the Fifth USENIX UNIX Security Symposium

Salt Lake City, Utah, June 1995.

For more information about USENIX Association contact:
1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

Simple Active Attack Against TCP

Laurent Joncheray
Merit Network, Inc.

Ann Arbor, MI 48105, USA

A Simple Active Attack Against TCP

Laurent Joncheray

Merit Network� Inc�
���� Plymouth Road� Suite C
Ann Arbor� MI ���	�� USA

Phone
 �� �
�
� �
� �	��
Fax
 �� �
�
� ���
���
E�mail
 lpj�merit�edu

April ��� ����

Abstract

This paper describes an active attack against the Transport Control Protocol �TCP� which allows a
cracker to redirect the TCP stream through his machine thereby permitting him to bypass the protection
o�ered by such a system as a one�time password �SKEY� or ticketing authentication �Kerberos�� The
TCP connection is vulnerable to anyone with a TCP packet sni�er and generator located on the path
followed by the connection� Some schemes to detect this attack are presented as well as some methods
of prevention and some interesting details of the TCP protocol behaviors�

� Introduction

Passive attacks using sni�ers are becoming more and
more frequent on the Internet� The attacker obtains
a user id and password that allows him to logon as
that user� In order to prevent such attacks peo�
ple have been using identi�cation schemes such as
one�time password �SKEY� or ticketing identi�cation
�Kerberos�� Though they prevent password sni�ng
on an unsecure network these methods are still vul�
nerable to an active attack as long as they neither
encrypt nor sign the data stream�� Still many people
are complacent believing that active attacks are very
di�cult and hence a lesser risk�

The following paper describes an extremely sim�
ple active attack which has been successfully used to
break into Unix hosts and which can be done with
the same resources as for a passive sni�ng attack��

Some uncommon behaviors of the TCP protocol are
also presented as well as some real examples and sta�
tistical studies of the attack	s impact on the network�
Finally some detection and prevention schemes are
explained� In order to help any reader unfamiliar

with the subtleties of the TCP protocol the article
starts with a short description of TCP�

The reader can also refers to another attack by R�
Morris presented in �Morris
��� Though the following
attack is related to Morris	 one� it is more widely us�
able on any TCP connection� In section
 we present
and compare this attack with the present one�

The presentation of the attack will be divided
into three parts� the �Established State� which is
the state where the session is open and data is ex�
changed� the set up �or opening� of such a session�
and �nally some real examples�

� Established State

��� The TCP protocol

This section o�ers a short description of the TCP
protocol� For more details the reader can refer
to �RFC
���� TCP provides a full duplex reliable
stream connection between two end points� A con�
nection is uniquely de�ned by the quadruple �IP ad�
dress of sender� TCP port number of the sender� IP

�Kerberos also provides an encrypted TCP stream option�
�The attacks have been performed with a test software and the users were aware of the attack� Although we do not have

any knowledge of such an attack being used on the Internet� it may be possible�

address of the receiver� TCP port number of the re�
ceiver�� Every byte that is sent by a host is marked
with a sequence number ��� bits integer� and is ac�
knowledged by the receiver using this sequence num�
ber� The sequence number for the �rst byte sent is
computed during the connection opening� It changes
for any new connection based on rules designed to
avoid reuse of the same sequence number for two dif�
ferent sessions of a TCP connection�

We shall assume in this document that one point
of the connection acts as a server �for instance a tel�
net server� and the other as the client� The following
terms will be used�

SVR SEQ� sequence number of the next byte to be
sent by the server�

SVR ACK� next byte to be received by the server
�the sequence number of the last byte received
plus one��

SVR WIND� server	s receive window�

CLT SEQ� sequence number of the next byte to be
sent by the client�

CLT ACK� next byte to be received by the client�

CLT WIND� client	s receive window�

At the beginning when no data has been ex�
changed we have SV R SEQ � CLT ACK and
CLT SEQ � SV R ACK� These equations are also
true when the connection is in a 	quiet	 state �no data
being sent on each side�� They are not true during
transitory states when data is sent� The more general
equations are�

CLT ACK � SV R SEQ � CLT ACK 	 CLT WIND

SV R ACK � CLT SEQ � SV R ACK 	 SV R WIND

The TCP packet header �elds are�

Source Port� The source port number�

Destination Port� The destination port number�

Sequence number� The sequence number of the
�rst byte in this packet�

Acknowledgment Number� The expected se�
quence number of the next byte to be received�

Data O�set� O�set of the data in the packet�

Control Bits�

URG� Urgent Pointer�

ACK� Acknowledgment�

PSH� Push Function�

RST� Reset the connection�

SYN� Synchronize sequence numbers�

FIN� No more data from sender�

Window� Window size of the sender�

Checksum� TCP checksum of the header and data�

Urgent Pointer� TCP urgent pointer�

Options� TCP options�

� SEG SEQ will refer to the packet sequence
number �as seen in the header��

� SEG ACK will refer to the packet acknowledg�
ment number�

� SEG FLAG will refer to the control bits�

On a typical packet sent by the client �no retransmis�
sion� SEG SEQ is set to CLT SEQ� SEG ACK to
CLT ACK�

TCP uses a �three�way handshake� to establish a
new connection� If we suppose that the client initi�
ates the connection to the server and that no data is
exchanged� the normal packet exchange is �C�f� Fig�
ure ���

� The connection on the client side is on the
CLOSED state� The one on the server side is
on the LISTEN state�

� The client �rst sends its initial sequence num�
ber and sets the SYN bit�

SEG SEQ � CLT SEQ��

SEG FLAG � SY N

Its state is now SYN�SENT

� On receipt of this packet the server acknowl�
edges the client sequence number� sends its own
initial sequence number and sets the SYN bit�

SEG SEQ � SV R SEQ��

SEQ ACK � CLT SEQ� � ��
SEG FLAG � SY N

and set

SV R ACK � CLT SEQ� � �

Its state is now SYN�RECEIVED

� On receipt of this packet the client acknowl�
edges the server sequence number�

SEG SEQ � CLT SEQ� � ��
SEQ ACK � SV R SEQ� � �

and sets

CLT ACK � SV R SEQ� � �

Its state is now ESTABLISHED

� On receipt of this packet the server enters the
ESTABLISHED state� We now have�

CLT SEQ � CLT SEQ� � �
CLT ACK � SV R SEQ� � �
SV R SEQ � SV R SEQ� � �
SV R ACK � CLT SEQ� � �

Closing a connection can be done by using the
FIN or the RST �ag� If the RST �ag of a packet
is set the receiving host enters the CLOSED state
and frees any resource associated with this instance
of the connection� The packet is not acknowledged�
Any new incoming packet for that connection will be
dropped�

If the FIN �ag of a packet is set the receiving host
enters the CLOSE�WAIT state and starts the pro�
cess of gracefully closing the connection� The detail
of that procces is beyond the scope of this document�
The reader can refer to �RFC
��� for further details�

In the preceding example we speci�cally avoided
any unusual cases such as out�of�band packets� re�
transmission� loss of packet� concurrent opening�
etc��� These can be ignored in this simple study of
the attack�

When in ESTABLISHED state� a packet is ac�
ceptable if its sequence number falls within the ex�
pected segment

�SV R ACK�SV R ACK � SV R WIND�

�for the server� or

�CLT ACK�CLT ACK � CLT WIND�

�for the client�� If the sequence number is beyond
those limits the packet is dropped and a acknowl�
edged packet will be sent using the expected sequence
number� For example if

SEG SEQ � ����

SV R ACK � ����

SV R WIND � ��

Then

SEG SEQ � SV R ACK � SV R WIND�

The server forms a ACK packet with

SEG SEQ � SV R SEQ

SEG ACK � SV R ACK

which is what the server expects to see in the packet�

��� A desynchronized state

The term �desynchronized state� will refer to the con�
nection when both sides are in the ESTABLISHED
state� no data is being sent �stable state�� and

SV R SEQ �� CLT ACK

CLT SEQ �� SV R ACK

This state is stable as long as no data is sent� If
some data is sent two cases can occur�

�� If CLT SEQ � SV R ACK � SV R WIND

and CLT SEQ � SV R ACK the packet is
acceptable� the data may be stored for later
use �depending on the implementation� but not
sent to the user since the beginning of the
stream �sequence number SV R ACK� is miss�
ing�

�� If CLT SEQ � SV R ACK �SV R WIND or
CLT SEQ � SV R ACK the packet is not ac�
ceptable and will be dropped� The data is lost�

In both case data exchange is not possible even if
the state exists�

��� The attack

The proposed attack consists of creating a desynchro�
nized state on both ends of the TCP connection so
that the two points cannot exchange data any longer�
A third party host is then used to create acceptable
packets for both ends which mimics the real packets�

Assume that the TCP session is in a desynchro�
nized state and that the client sends a packet with

SEG SEQ � CLT SEQ

SEG ACK � CLT ACK

Since CLT SEQ �� SV R ACK the data will not
be accepted and the packet is dropped� The third
party then sends the same packet but changes the
SEG SEQ and SEG ACK �and the checksum� such
that

SEG SEQ � SV R ACK�

SEG ACK � SV R SEQ

Server Client

LISTEN CLOSED

�

�
SYN�

CLT SEQ�

LISTEN SYN�SENT
SY N�

SV R SEQ��

CLT SEQ� 	

�
�

SYN�RECEIVED ESTABLISHED
SV R SEQ �

CLT SEQ� 	

CLT ACK �

SV R SEQ� 	

�

�
ACK�

CLT SEQ� 	

SV R SEQ� 	

ESTABLISHED
SV R SEQ �

SV R SEQ� 	

SV R ACK �

CLT SEQ� 	

Figure �� Example of a connection opening

which is acceptable by the server� The data is pro�
cessed by the server�

If CLT TO SV R OFFSET refers to
SV R ACK � CLT SEQ and
SV R TO CLT OFFSET refers to CLT ACK �
SV R SEQ then the �rst party attacker has to rewrite
the TCP packet from the client to the server as�

SEG SEQ� SEG SEQ	 CLT TO SV R OFFSET

SEG ACK � SEG ACK � SV R TO CLT OFFSET

Considering that the attacker can listen to any
packet exchanged between the two points and can
forge any kind of IP packet �therefore masquerad�
ing as either the client or the server� then every�
thing acts as if the connection goes through the at�
tacker machine� This one can add or remove any
data to the stream� For instance if the connec�
tion is a remote login using telnet the attacker can
include any command on behalf of the user �echo
merit�edu lpj �� � ��rhosts is an example of such
a command� and �lter out any unwanted echo so
that the user will not be aware of the intruder� Of
course in this case CLT TO SV R OFFSET and
SV R TO CLT OFFSET have to change� The new
values are let as an exercise for the reader��

��� �TCP Ack storm�

A �aw of the attack is the generation of a lot of
TCP ACK packets� When receiving an unaccept�
able packet the host acknowledges it by sending the
expected sequence number �As the Acknolegement
number� C�f� introduction about TCP� and us�
ing its own sequence number� This packet is itself
unacceptable and will generate an acknowledgement
packet which in turn will generate an acknowledge�
ment packet etc��� creating a supposedly endless loop
for every data packet sent�

Since these packets do not carry data they are
not retransmitted if the packet is lost� This means
that if one of the packets in the loop is dropped then
the loop ends� Fortunately �or unfortunately�� TCP
uses IP on an unreliable network layer with a non null
packet loss rate� making an end to the loops� More�
over the more packets the network drops� the shorter
is the Ack storm �the loop�� We also notice that these
loops are self regulating� the more loops we create the
more tra�c we get� the more congestion and packet
drops we experience and the more loops are killed�

�One can turn o� the echo in the telnet connection in order to avoid the burden of �ltering the output� The test we did
showed up a bug in the current telnet implementation �or maybe in the telnet protocol itself�� If a TCP packet contains both
IAC DONT ECHO and IAC DO ECHO the telnet processor will answer with IAC WONT ECHO and IAC WILL ECHO� The
other end point will acknowledge IAC DONT ECHO and IAC DO ECHO etc��� creating an endless loop�

The loop is created each time the client or the
server sends data� If no data is sent no loop appears�
If data is sent and no attacker is there to acknowledge
the data then the data will be retransmitted� a storm
will be created for each retransmission� and eventu�
ally the connection will be dropped since no ACK
of the data is sent� If the attacker acknowledges the
data then only one storm is produced �in practice the
attacker often missed the data packet due to the load
on the network� and acknowledge the �rst of subse�
quent retransmission��

The attack uses the second type of packet de�
scribed in Section ���� The �rst case in which the
data is stored by the receiver for later processing has
not been tested� It has the advantage of not generat�
ing the ACK storm but on the other hand it may be
dangerous if the data is actually processed� It is also
di�cult to use with small window connections�

� Setup of the session

This paper presents two methods for desynchronizing
a TCP connection� Others can be imagined but will
not be described here� We suppose that the attacker
can listen to every packet sent between the two end
points�

��� Early desynchronization

This method consists of breaking the connection in
its early setup stage on the server side and creating a
new one with di�erent sequence number� Here is the
process �Figure � summarizes this process�

� The attacker listens for a SYN�ACK packet
from the server to the client �stage � in the con�
nection set up��

� On detection of that packet the attacker sends
the server a RST packet and then a SYN packet
with exactly the same parameters �TCP port�
but a di�erent sequence number �referred to as
ATK ACK� in the rest of the paper��

� The server will close the �rst connection when
it receives the RST packet and then reopens a
new one on the same port but with a di�er�
ent sequence number �SV R SEQ�

�
� on receipt

of the SYN packet� It sends back a SYN�ACK
packet to the client�

� On detection of that packet the attacker sends
the server a ACK packet� The server switches
to the ESTABLISHED state�

� The client has already switched to the ES�
TABLISHED state when it receives the �rst
SYN�ACK packet from the server�

This diagram does not show the unacceptable ac�
knowledgement packet exchanges� Both ends are in
the desynchronized ESTABLISHED state now�

SV R TO CLT OFFSET � SV R SEQ� � SV R SEQ
�

�

is �xed by the server�

CLT TO SV R OFFSET � ATK SEQ� � CLT SEQ�

is �xed by the attacker�
The success of the attack relies on the correct

value being chosen for
CLT TO SV R OFFSET � Wrong value may make
the client	s packet acceptable and can produce un�
wanted e�ects�

��� Null data desynchronization

This method consists for the attacker in sending a
large amount of data to the server and to the client�
The data sent shouldn	t a�ect nor be visible to the
client or sever� but will put both end of the TCP
session in the desynchronized state�

The following scheme can be used with a telnet
session�

� The attacker watchs the session without inter�
fering�

� When appropriate the attacker sends a large
amount of �null data� to the server� �Null
data� refers to data that will not a�ect any�
thing on the server side besides changing
the TCP acknowledgment number� For in�
stance with a telnet session the attacker sends
ATK SV R OFFSET bytes consisting of the
sequence IAC NOP IAC NOP��� Every two
bytes IAC NOP will be interpreted by the tel�
net daemon� removed from the stream of data
and nothing will be a�ected�� Now the Server
has

SV R ACK � CLT SEQ	ATK SV R OFFSET

which of course is desynchronized�

� The attacker does the same thing with the
client�

The method is useful if the session can carry �null
data�� The time when the attacker sends that data is
also very di�cult to determine and may cause some
unpredictable side e�ects�

�The telnet protocol �RFC 	
�� de�nes the NOP command as
No Operation�� In other words� do nothing� just ignore those
bytes�

Server Client

LISTEN CLOSED

�

�
SY N�

CLT SEQ�

SYN�RECEIVED SYN�SENT
SY N�

SV R SEQ��

CLT SEQ� 	

�
�

ESTABLISHED
SV R SEQ �

CLT SEQ� 	

CLT ACK �

SV R SEQ� 	

�

�
RST�

CLT SEQ� 	

CLOSED

�

�
SY N�

ATK SEQ�

SY N�

SV R SEQ�

��

ATK SEQ� 	

�
�

SYN�RECEIVED

�

�
SYN�

ATK SEQ� 	
�
SV R SEQ�

� 	

ESTABLISHED

SV R SEQ �
SV R SEQ�

� 	

SV R ACK �

ATK SEQ� 	

Figure �� A attack scheme� The attacker	s packets are marked with �

� Examples

The following logs are provided by running a hacked
version of tcpdump �TCPDUMP� on the local ether�
net where the client resides� Comments are preceded

by ���	�

The �rst example is a normal telnet session open�
ing between ��� �����! �the client� and ��
���
�����
�the server��

�� The client sends a SYN packet� ���������� is its initial sequence number�

��	�
	��������� ����
��������
� � �������������
�	 S ����������	������������� win ����

�� The server answers with its initial sequence number and the SYN flag�

��	�
	��������� �������������
� � ����
��������
�	 S ���
������	���
��������� ack ���������� win ����

�� The client acknowledges the SYN packet�

��	�
	�����
��� ����
��������
� � �������������
�	 � ����������	������������� ack ���
������ win ����

�� Now the two end points are in the ESTABLISHED state�

�� The client sends � bytes of data�

��	�
	����
���
 ����
��������
� � �������������
�	 P ����������	���������
���

ack ���
������ win ����
��
�� �C
��
�� �X

�����

�� The rest of the log is the graceful closing of the connection

��	�
	��������� �������������
� � ����
��������
�	 F ���
������	���
��������� ack ��������
� win ����

��	�
	�����
��� ����
��������
� � �������������
�	 � ��������
�	��������
���� ack ���
������ win ����

��	�
	��������� ����
��������
� � �������������
�	 F ��������
�	��������
���� ack ���
������ win ����

��	�
	�����
��� �������������
� � ����
��������
�	 � ���
������	���
��������� ack ��������
� win ����

The next example is the same session with an in�
trusion by the attacker� The desynchronized state
is created in the early stage of the session �subsec�
tion ����� The attacker will add the command 	ls�	

to the stream of data� The user uses skey to identify
himself to the server� From the user	s point of view
the session looks like this�

�lpj�homefries	 �� telnet ������������

Trying ������������ ���

Connected to �������������

Escape character is �����

SunOS UNIX ��host�

login	 lpj

s�key
� cn��
�

�s�key required�

Password	

Last login	 Wed Nov �� ��	
�	
� from homefries�merit�edu

SunOS Release ������U� �GENERIC� �
	 Thu Jan
� ��	��	�� PST ����

�lpj��host	 �� pwd

Mail� mbox src�

elm� resize� traceroute�

�usr�users�lpj

�lpj��host	
� history

� ��	�� ls � pwd

 ��	�� history

�lpj��host	 �� logoutConnection closed by foreign host�

�lpj�homefries	
�

The user types only one command pwd and then
asks for the history of the session� The history shows
that a ls has also being issued� The ls command pro�
duces an output which has not been �ltered� The fol�
lowing log shows the TCP packet exchanges between
the client and the server� Unfortunately some pack�
ets are missing from this log because they have been
dropped by the sni�er	s ethernet interface driver�
One must see that log like a snapshot of a few in�

stants of the exchange more than the full transaction
log� The attacker	s window size has been set to un�
common values � ��� ���� ����� in order to make
its packets more easily traceable� The attacker is on
��� ���� three hops away from the server� on the path
from the client to the server� The names and ad�
dresses of the hosts have been changed for security
reasons�

�� The client sends a SYN packet� ��������� is its initial sequence number�

��	
�	��������� ����
����������� � �������������
�	 S ���������	������������ win ����

�� The server answers with its initial sequence number ������
����� and the SYN flag�

��	
�	��������� �������������
� � ����
�����������	 S �����
����	�����
������� ack ��������� win ����

�� The client acknowledges the SYN packet� It is in the ESTABLISHED state now�

��	
�	������
�� ����
����������� � �������������
�	 � ���������	������������ ack �����
���� win ����

�� The client sends some data

��	
�	�����
��� ����
����������� � �������������
�	 P ���������	��������
���

ack �����
���� win ����
��
�� �C
��
�� �X

�� The attacker resets the connection on the server side

��	
�	������
�
 ����
����������� � �������������
�	 R ���������	������������ win �

�� The attacker reopens the connection with an initial sequence number of ����
�
��

��	
�	��������
 ����
����������� � �������������
�	 S ����
�
��	����
�
����� win ���

�� The server answers with a new initial sequence number ������������ and the SYN flag�

��	
�	����

�
� �������������
� � ����
�����������	 S ����������	������������� ack ����
�
�� win ����

�� Since the last packet is unacceptable for the client� it acknowledges it

�� with the expected sequence number ������
�����

��	
�	����

��� ����
����������� � �������������
�	 � ��������
	��������
��� ack �����
���� win ����

�� Retransmission to the SYN packet triggered by the unacceptable last packet

��	
�	����
�
�� �������������
� � ����
�����������	 S ����������	������������� ack ����
�
�� win ����

�� The ACK storm loop

��	
�	����
���� ����
����������� � �������������
�	 � ��������
	��������
��� ack �����
���� win ����

��	
�	����
�
�� �������������
� � ����
�����������	 S ����������	������������� ack ����
�
�� win ����

��	
�	����
��

 ����
����������� � �������������
�	 � ��������
	��������
��� ack �����
���� win ����

�����

��	
�	������
�� �������������
� � ����
�����������	 S ����������	������������� ack ����
�
�� win ����

��	
�	��������
 ����
����������� � �������������
�	 � ��������
	��������
��� ack �����
���� win ����

��	
�	����
���
 �������������
� � ����
�����������	 S ����������	������������� ack ����
�
�� win ����

��	
�	����
���� ����
����������� � �������������
�	 � ��������
	��������
��� ack �����
���� win ����

�� Eventually the attacker acknowledges the server SYN packet with the attacker�s new

�� sequence number �����
�
���� The data in this packet is the one previously

�� sent by the client but never received�

��	
�	����

�
� ����
����������� � �������������
�	 � ����
�
��	����
�
�����

ack ���������� win ���
��
�� �C
��
�� �X

�� Some ACK storm

��	
�	����
�
�� �������������
� � ����
�����������	 � ����������	������������� ack ����
�
�� win ����

��	
�	����
���� ����
����������� � �������������
�	 � ��������
	��������
��� ack �����
���� win ����

��	
�	����
�
�
 �������������
� � ����
�����������	 � ����������	������������� ack ����
�
�� win ����

��	
�	����
���
 ����
����������� � �������������
�	 � ��������
	��������
��� ack �����
���� win ����

�����

��	
�	���
����� ����
����������� � �������������
�	 � ����
�

�	����
�

���� ack ���������� win ����

�� A retransmission by the client

��	
�	����

 ����
����������� � �������������
�	 P ���������	�������
����

ack �����
���� win ����
��
�� �A
��
�
 �A

��	
�	����
���� �������������
� � ����
�����������	 � ����������	������������� ack ����
�

� win ����

�����

��	
�	�
��
�
�
 ����
����������� � �������������
�	 � �������
�	�������
���� ack �����
���� win ����

��	
�	�
��
���� �������������
� � ����
�����������	 � ����������	������������� ack ����
�

� win ����

�� The user ID second character�

��	
�	�
��
���� ����
����������� � �������������
�	 P �������
�	�������
����

ack �����
���� win ���� p

��	
�	�
��
���� �������������
� � ����
�����������	 � ����������	������������� ack ����
�

� win ����

�����

��	
�	���
����� ����
����������� � �������������
�	 � ����
�
��	����
�
����� ack ���������� win ����

�� Retransmission

��	
�	���
��
�
 �������������
� � ����
�����������	 P ����������	�����������
�

ack ����
�
�� win ���� l p

��	
�	���
����� ����
����������� � �������������
�	 � �������

	�������

��� ack �����
���� win ����

�����

��	
�	���
����
 �������������
� � ����
�����������	 � ����������	������������� ack ����
�
�� win ����

��	
�	����

��� ����
����������� � �������������
�	 P �������
�	�������
����

ack �����
���� win ���� j �M ��

��	
�	����
���� �������������
� � ����
�����������	 � ����������	������������� ack ����
�
�� win ����

�����

��	
�	�����
�
� �������������
� � ����
�����������	 � ����������	������������� ack ����
�
�� win ����

�� The attacker rewrites the packet sent by the server containing the skey challenge

��	
�	�������
� �������������
� � ����
�����������	 P �����
����	�����
���
����

ack �������
� win ���� s � k e y
 � c n � �
 �
 �M �J

��	
�	�����
��� �������������
� � ����
�����������	 P �����
���
	�����
�����

�

ack �������
� win ���� � s � k e y r e q u i r e d � �M �J P a s s w o r d 	

��	
�	����

��� ����
����������� � �������������
�	 � �������
�	�������
���� ack �����
���� win ����

�����

��	
�	�������
� �������������
� � ����
�����������	 � ����������	������������� ack ����
�
�� win ����

�� Beginning of the skey password sent by the user �client�

��	
�	�
�����
� ����
����������� � �������������
�	 P �������
�	������������

ack �����
���� win ���� T

��	
�	�
����

� �������������
� � ����
�����������	 � ����������	������������� ack ����
�
�� win ����

�����

��	
�	�
���
��� �������������
� � ����
�����������	 � ����������	������������� ack ����
�
�� win ����

�� Echo of the beginning of the skey password sent by the server

��	
�	�
���
��� ����
����������� � �������������
�	 P ����
�
��	����
�
�����

ack ���������� win ���� T

��	
�	�
���
��� ����
����������� � �������������
�	 � ���������	������������ ack �����
���� win ����

�����

��	
�	�
������� �������������
� � ����
�����������	 � ����������	������������� ack ����
�
�� win ����

�� The attacker rewrites the skey password packet

��	
�	�
����
�� ����
����������� � �������������
�	 P ����
�
��	����
�
�
�
��

ack ���������� win ���� A U T S H I M L O F T V A S E M O O R I D �M ��

��	
�	�
������� ����
����������� � �������������
�	 � ���������	������������ ack �����
���� win ����

�����

��	
�	������

� ����
����������� � �������������
�	 � ���������	������������ ack �����
���� win ����

��	
�	��������� �������������
� � ����
�����������	 P �������
��	�������

�����

ack ����
�
�
 win ���� � l p j � �� r a d b 	 � �

��	
�	��������� ����
����������� � �������������
�	 � ���������	������������ ack �����
���� win ����

�����

��	
�	�������
� ����
����������� � �������������
�	 � ���������	������������ ack �����
�

� win ����

�� The �p� of the �pwd� command typed by the user�

��	
�	�����
��
 ����
����������� � �������������
�	 P ���������	������������

ack �����
�

� win ���� p

��	
�	��������
 �������������
� � ����
�����������	 � �������

�	�������

���� ack ����
�
�
 win ����

�����

��	
�	������
�� ����
����������� � �������������
�	 � ���������	������������ ack �����
�
�� win ����

��	
�	����
�

 ����
����������� � �������������
�	 P ���������	������������

ack �����
�
�� win ���� d �M ��

��	
�	����

��� �������������
� � ����
�����������	 � �������
��	�������
����� ack ����
�
�
 win ����

�����

��	
�	��������� ����
����������� � �������������
�	 � ���������	������������ ack �����
�
�� win ����

��	
�	��������� �������������
� � ����
�����������	 P �������
��	���������
����

ack ����
�

� win ���� M a i l � �I �I m b o x �I �I s r c � �M �J

��	
�	�����
�

 �������������
� � ����
�����������	 P ���������
	�����������
��

ack ����
�

� win ���� e l m � �I �I r e s i z e � �I �I t r a c e r o u t e � �M

�J

��	
�	��������� ����
����������� � �������������
�	 � ���������	������������ ack �����
�
�� win ����

��	
�	������
�� �������������
� � ����
�����������	 P ����������	��������������

ack ����
�

� win ���� � u s r � u s e r s � l p j �M �J

��	
�	�����
��� ����
����������� � �������������
�	 � ���������	������������ ack �����
�
�� win ����

��	
�	��������
 �������������
� � ����
�����������	 P ����������	��������������

ack ����
�

� win ���� � l p j � �� r a d b 	
 �

��	
�	����
��
� ����
����������� � �������������
�	 � ���������	������������ ack �����
�
�� win ����

�����

��	
�	���
����� ����
����������� � �������������
�	 P ����
�

�	����
�

��
�

ack ���������� win ���� t o

��	
�	���
����� �������������
� � ����
�����������	 P ����������	��������
��
�

ack ����
�

� win ���� t o

��	
�	���
����� ����
����������� � �������������
�	 � ���������	������������ ack �����
���� win ����

�����

��	
�	�
��
���
 ����
����������� � �������������
�	 P ���������	�������

���

ack �����
���� win ���� r y �M ��

��	
�	�
��

�
 �������������
� � ����
�����������	 � ��������
�	��������
���� ack ����
�

� win ����

�����

��	
�	�
����
�� ����
����������� � �������������
�	 � �������

	�������

��� ack �����
���� win ����

�� The �ry� of the �history� command sent by the client

��	
�	����
�
�
 ����
����������� � �������������
�	 P ���������	�������

���

ack �����
���� win ���� r y �M ��

��	
�	����
���� �������������
� � ����
�����������	 � ��������
�	��������
���� ack ����
�

� win ����

�����

��	
�	��������� ����
����������� � �������������
�	 � �������

	�������

��� ack �����
���� win ����

�� The same packet rewritten by the attacker�

��	
�	������

� ����
����������� � �������������
�	 P ����
�

�	����
�

����

ack ��������
� win ���� r y �M ��

�� answer to the history command sent by the server� We can notice the �ls �� inclusion

�� before the �pwd�

��	
�	������

� �������������
� � ����
�����������	 P ��������
�	���������
����

ack ����
�

� win ���� r y �M �� �M �J � �I � � 	
 � �I l s � p w

d �M �J
 �I � � 	
 � �I �� �� �� L �� �� �� T �

� ��
 ��� �� �G

�� �� �� �X �� �H ��
 ��� �� ��

��	
�	��������� ����
����������� � �������������
�	 � �������

	�������

��� ack �����
���� win ����

�����

��	
�	����
���� ����
����������� � �������������
�	 � �������

	�������

��� ack �����
���� win ����

�� The same packet rewritten by the attacker�

��	
�	����

��� �������������
� � ����
�����������	 P �����
����	�����
��������

ack �������

 win ���� r y �M �� �M �J � �I � � 	
 � �I l s � p w

d �M �J
 �I � � 	
 � �I �� �� �� L �� �� �� T �

� ��
 ��� �� �H �� �� ��

�X �� �H ��
 ��� �� ��

��	
�	����

��� �������������
� � ����
�����������	 � ���������
	���������
��� ack ����
�

� win ����

�����

�� The user log out�

��	
�	
��
����
 ����
����������� � �������������
�	 P ����
�
��	����
�
�
��� ack ���������
 win ���� g

��	
�	
��
�

�� �������������
� � ����
�����������	 � �����
����	�����
������� ack �������
� win ����

��	
�	
��
����� �������������
� � ����
�����������	 P �����
����	�����
������� ack �������
� win ���� o

��	
�	
��
�
��� �������������
� � ����
�����������	 P ����������	������������� ack ����
�
�
 win ���� g

��	
�	
��
�
��
 ����
����������� � �������������
�	 P �������
�	�������
���� ack �����
���� win ���� o

��	
�	
��
����
 �������������
� � ����
�����������	 � ����������	������������� ack ����
�
�
 win ����

��	
�	
��
���
� ����
����������� � �������������
�	 � �������
�	�������
���� ack �����
���� win ����

Almost all of the packets with the ACK �ag set
but with no data are acknowledgement of unaccept�
able packets� A lot of retransmission occurs due to
the load on the network and on the attacker host cre�
ated by the ACK storm� The real log �including all
ACK packets� is about ���� lines long whereas the
one shown here has been stripped to about ��� lines�
A lot of packets have also been lost and do not show
up in this log� The data collected during the test
shows that one real packet sent can generate between
�� and ��� empty Ack packets� Those numbers are
of course highly variable�

� Detection and Side E�ects

Several �aws of that attack can be used to detect
it� Three will be described here but one can imagine
some other ways to detect the intrusion�

� Desynchronized state detection� By comparing
the sequence numbers of both ends of the con�
nection the user can tell if the connection is in
the desynchronized state� This method is fea�
sible if we assume that the sequence numbers
can be transmitted through the TCP stream
without being compromised �changed� by the
attacker�

� Ack storm detection� Some statistics on the
TCP tra�c conducted on our local ethernet
segment outside the attack show that the aver�
age ratio of ACK without data packets per total
telnet packets is around �"� On a more loaded
transit ethernet the average is about ��" �C�f
Table ���

The total number of TCP packets as well as the
total number of ACK and telnet packets �uctu�
ate a lot on the local ethernet� The table shows
the limits� The percentage of ACK telnet pack�
ets is very stable� around �"� This can be
explained by the fact that the telnet session is
an interactive session and every character typed
by the user must be echoed and acknowledged�
The volume of exchanged data is very small
each packet usually contains one character or
one text line�

The data for the transit ethernet is very con�
sistent� Due to the high load on that segment
a few packets may have been dropped by the
collecting host�

When the attack is conducted some of these �g�
ures change� The next table shows the results
for two types of session� The data has been
collected on the local ethernet only�

Local Ethernet Transit Ethernet
Total TCP�s
����� �!��
�� � �� �

�

Total Ack ���
� ���� �� ��� ����
Total Telnet ����� ������� � � ����

Total Telnet Ack ���� � ����� � ����

Table �� Percentage of ACK packets without the attack�

In Table � the �Local connection	 is a session
with a host at a few IP hops from the client�
The Round Trip Delay �RTD� is approximately
�ms and the actual number of hops is � The
	Remote connection	 is a session with a RTD of
about �ms and � hops away� In the �rst case
the attack is clearly visible� Even if it	s very
�uctuant� the percentage of TCP ACK is near
���"� Almost all of the tra�c is acknowledge�
ment packets�

In the second case the detection of the attack is
less obvious� The data has to be compared with
the �rst column of Table � �local tra�c�� The
percentage of TCP ACK slightly increases but
not signi�cantly� One can explain this result
by the long RTD which decreases the rate of
ACK packets sent� The underlying network is
also used to experience between a �" and ��"
packet loss which helps in breaking the ACK
loop�

� Increase of the packet loss and retransmission
for that particular session� Though no data is
available to enlighten us on that behavior the
log produced during the attack shows an un�
usually high level of packet loss and so retrans�
mission� Therefore this implies a deterioration
of the response time for the user� The packet
loss increase is caused by�

� The extra load of the network due to the
ACK storms�

� The packet dropped by the sni�er of the
attacker� The drops tend to increase as
the load on the network increases�

� Some unexpected connection reset� The fol�
lowing behavior has not been fully investigated
since the attacker program developed was to try
the validity of the concept more than making
the attack transparent to the client and server�
These are likely to disappear with a more so�
phisticated attacker program� The user can ex�
perience a connection reset of its session at the

early stage of the connection if the protocol of
the attack is not correctly executed� A loss of
the attacker	s RST or SYN packets may leave
the server side of the connection in a unde�ned
state �usually CLOSED or SYN�RECEIVED�
and may make the client packets acceptable�
About ��" of the attacks performed were un�
successful� ending either by a connection close
�very visible� or a non�desynchronized connec�
tion �the attacker failed to redirect the stream��

Some side e�ects and notes about TCP and the
attack�

� TCP implementation� The desynchronization
process described here failed on certain TCP
implementations� According to �RFC
��� a
RST packet is not acknowledged and just de�
stroys the TCB� Some TCP implementations
do when in a certain state acknowledge the RST
packet by sending back a RST packet� When
the attacker sends the RST packet to the server
the RST is sent back to the client which closes
its connection and ends the session� Other
desynchronization mechanisms may be investi�
gated which do not reset the connection�

� The client and the attacker were always on the
same ethernet segment when performing the
test� This makes the attack more di�cult to
run because of a high load on that segment�
The collision rate increases and the attacker	s
sni�er bu�er are over�owed by the tra�c�

� One can think of just watching the session and
sending some data to the server� without car�
ing about creating the desynchronized state and
forwarding the TCP packets� Though it will
succeed in corrupting the host that approach is
likely to be detected early by the user� Indeed
the TCP session will not be able to exchange
data once the command sent�

Local connection Remote connection
Total Telnet
�� �� �!��
�� ��� � �������

Total Telnet Ack
�� �� ������� ����� �!��!��

Table �� Percentage of ACK packets during an attack�

� Prevention

The only ways known by the writer currently avail�
able to prevent such an attack on a telnet session are
the encrypted Kerberos scheme �application layer�
or the TCP crypt implementation �TCPcrypt� �TCP
layer�� Encryption of the data �ow prevents any in�
trusion or modi�cation of the content� Signature of
the data can also be used� �PGP� is an example of an
available way to secure electronic mail transmission�

� Morris	 Attack Reviewed

Morris	 attack as described in �Morris
�� assumes
that the attacker can predict the next initial sequence
number used by the server �noted SV R SEQ� in
this document� and that the identi�cation scheme
is based on trusted hosts �which means only certain
hosts are allowed to perform some commands on the
server without any other identi�cation process being
needed��

In this attack the cracker initiates the session by
sending a SYN packet to the server using the client
�trusted host� as the source address� The server ac�
knowledge the SYN with a SYN�ACK packet with
SEG SEQ � SV R SEQ�� The attacker then ac�
knowledges that packet in guessing SV R SEQ�� The
cracker does not need to sni� the client packets as
long as he can predict SV R SEQ� in order to ac�
knowledge it� This attack has two main �aws�

� The client whom the attacker masquerades will
receive the SYN�ACK packet from the server
and then could generate a RST packet to the
server since in the client	s view no session yet
exists� Morris supposes that one can stop the
RST generation by either performing the attack
when the client is down or by over�owing the
client	s TCP queue so the SYN�ACK packet
will be lost�

� The attacker cannot receive data from the
server� But he can send data which is some�
time enough to compromise a host�

The are four principal di�erences between Morris	
attack and the present one�

� Morris	s relies on the trusted hosts identi�cation
scheme whereas the present attack lets the user
conduct the identi�cation stage of the connec�
tion�

� The present attack is a full duplex TCP stream�
The attacker can send and receive data�

� The present attack uses the ether�
net sni�er to predict �or just get�
SV R SEQ��

� The present attack can be used against any kind
of host besides Unix hosts�

Morris	 attack can easily be extented in regard of the
present attack�

� The sni�er is used to get the server	s initial se�
quence number� Morris	 attack can then be per�
formed against the server� The attacker do not
need to wait for a client to connect�

� Considering that the client will not send RST
packets �for example it is down� the attacker
can establish a full duplex TCP connection with
the server� It can send data and receive data
on behalf of the client� Of course the cracker
still has to pass the identi�cation barrier� If
the identi�cation is based on trusted hosts �like
NFS or rlogin� the cracker has full access to the
host	s services�

Steven M� Bellovin in �Bellovin
�� also presents
how ICMP packets can be used to disable one side
of the connection� In this case the attacker gets full
control of the session �people have referred to 	TCP
session hijacking	�� but this is too easily detected by
the user�

 Conclusion

Although easy to detect when used on a local net�
work� the attack presented here is quite e�cient on
long distance� low bandwidth� high delay networks
�usually WAN�� It can be carried with the same re�
sources as for a passive sni�ng attack which have

occurred so frequently on the Internet� This attack
has also the dangerous advantage of being invisible to
the user� While cracking into a host on the Internet is
becoming more and more frequent� the stealthfulness
of the attack is now a very important parameter for
the success of the attack and makes it more di�cult
to detect�

When everybody	s attention in the Internet is fo�
cused on the emerging new IPv! protocol to replace
the current IPv � increasing attacks and the need for
secure systems press us to develop and use a secure
transport layer for the Internet community� Options
should be available to send signed and eventually en�
crypted data to provide privacy� And since the signa�
ture of the data implies reliability the signature can
be substituted to the current TCP checksum�

This paper does not attempt to explain all cases
of active attacks using a sni�er� It is more a warn�
ing for people using s�key or Kerberos against the
danger of someone sni�ng the ethernet� It provides
a few ideas and starting points which can be more
deeply studied� The method presented has been suc�
cessfully used during our test even with a very simple
attacker	s software�

References

�Bellovin
�� �Security Problems in the TCP�IP Pro�
tocol Suite�� Bellovin� S�� Computer Communica�
tions Review� April ��
��

�Kerberos� �Kerberos� An Authentication Service for
Open Network Systems�� Steiner� J�� Neuman� C��
Schiller� J�� USENIX Conference Proceeding� Dal�
las� Texas� February ��
��

�Morris
�� �A Weakness in the ���BSD UNIX
TCP�IP Software�� Morris� R�� Computing Science
Technical Report No ��
� AT#T Bell Laboratories�
Murray Hill� New Jersey� ��
��

�PGP� Pretty Good Privacy Version ��!��� Philip
Zimmermann� August ��� �

�RFC
��� Request For Comment
��� 	Transmis�
sion Control Protocol�� September ��
�� J� Postel�

�RFC
� � Request For Comment
� � 	Telnet Pro�
tocol Speci
cation�� May ��
�� J� Postel� J�
Reynolds

�SKEY� �The S�Key One�time Password System��
Haller� N�� Proceeding of the Symposium on Net�
work # Distributed Systems� Security� Internet So�
ciety� San Diego� CA� February ��� �

�TCPcrypt� �Public Key Encryption Support for
TCP�� Joncheray� L�� Work in progress� May �����

�TCPDUMP� tcpdump��� Version ������ Van Ja�
cobson� Craig Leres� Steven Berkeley� University
of California� Berkeley� CA�

