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Abstract

IPsec [KA98c] is a suite of standard protocols that
provides security services for Internet communica-
tions. It protects the entire IP datagram in an
“end-to-end” fashion; no intermediate network node
in the public Internet can access or modify any in-
formation above the IP layer in an IPsec-protected
packet. However, recent advances in internet tech-
nology introduce a rich new set of services and
applications, like traffic engineering, TCP perfor-
mance enhancements, or transparent proxying and
caching, all of which require intermediate network
nodes to access a certain part of an IP datagram,
usually the upper layer protocol information, to per-
form flow classification, constraint-based routing, or
other customized processing. This is in direct con-
flict with the IPsec mechanisms. In this research,
we propose a multi-layer security protection scheme
for IPsec, which uses a finer-grain access control to
allow trusted intermediate routers to read and write
selected portions of IP datagrams (usually the head-
ers) in a secure and controlled manner.

1 Introduction

The Internet community has developed a mecha-
nism called IPsec for providing secure communi-
cations over the public Internet. IPsec can pro-
vide data integrity, origin authentication, data con-
fidentiality, access control, partial sequence in-
tegrity, and limited traffic flow confidentiality ser-
vices for communications between any two networks
or hosts [KA98c]. By addressing the security issues
at the IP layer and rendering the security services
in a transparent manner, IPsec attempts to relieve
software developers from the need to implement se-
curity mechanisms at different layers or for different
Internet applications. Arguably, IPsec is the best
available mechanism for Virtual Private Networks
(VPN) and secure remote accesses.

1.1 The Protection Model in IPsec

The fundamental concept behind the IPsec technol-
ogy is as follows. The path between an IP data-
gram’s source and destination is divided into three
segments (see Figure 1) — the protected and trust-
worthy local network at the source (e.g., a com-
pany’s private LAN), the untrustworthy public In-
ternet segment, and the protected and trustworthy
local network at the destination. The IPsec archi-
tecture places a security gateway (here G; and Gs)
at each boundary between a trustworthy and an un-
trustworthy network. Initially, G; at the source es-
tablishes a security association with G2 on the des-
tination side, which is a security relationship that
involves negotiation of security services and shared
secrets. Before an IP datagram (from S to D) is sent
to the untrustworthy Internet, the security gateway
(G1) encrypts and/or signs the datagram using an
IPsec protocol. When it reaches the security gate-
way at the destination side (G3), the datagram is
decrypted and/or checked for authentication, be-
fore it is forwarded to the destination (D). In some
cases, the trustworthy local network on either side
can be omitted, and the source or destination host
can perform encryption, authentication and other
security-gateway functions itself.

Protected and trustworthy local networks

Figure 1: System Model

The IPsec architecture uses two protocols to
provide traffic security — AH (Authentication
Header) [KA98a] and ESP (Encapsulating Security
Payload) [KA98b]. AH provides integrity and au-
thentication without confidentiality; ESP provides



confidentiality, with optional integrity and authen-
tication. Each protocol supports two modes of use:
transport mode and tunnel mode. Transport mode
provides protection primarily for upper layer proto-
cols, while in tunnel mode the protection applies to
the entire IP datagram.

The granularity of security protection in the IPsec
architecture is at the datagram level. It treats ev-
erything in an IP datagram after the IP header as
one integral unit. Usually, an IP datagram has three
consecutive parts — the IP header (for routing pur-
poses only), the upper layer protocol headers (for
example, the TCP header), and the user data (for
example, the TCP data). In transport mode, an
IPsec protocol header (AH or ESP) is inserted in
after the IP header and before the upper layer pro-
tocol header to protect the upper layer protocols
and user data. In tunnel mode, the entire IP data-
gram is encapsulated in a new IPsec packet (a new
IP header followed by an AH or ESP header). In ei-
ther case, the upper layer protocol headers and data
in an IP datagram are protected as one indivisible
unit (see Figure 2).
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Figure 2: The Protocol Formats of IPsec-protected
IPv4 Packets (assuming TCP)

The keys used in encryption and authentication are
shared only by the sender-side and receiver-side se-
curity gateways. All other nodes in the public Inter-
net, whether they are legitimate routers or malicious
eavesdroppers, see only the IP header and will not
be able to decrypt the content, nor can they tamper
with it without being detected. Traditionally, the

intermediate routers do only one thing — forward
packets based on the IP header (mainly the desti-
nation address field); IPsec’s “end-to-end” model is
well-suited to this layering paradigm.

1.2 Limitations of End-to-End Security

However, this protection model and its strict lay-
ering principle are unsuitable for an emerging class
of new networking services and applications for the
next generation Internet. Unlike in the traditional
minimalist Internet, intermediate routers begin to
play more and more active roles. They often rely
on some information about the IP datagram pay-
load, such as certain upper layer protocol header
fields, to make sophisticated routing decisions. In
other words, routers can now participate in a layer
above the IP. Examples of such active networking
techniques are:

o Internet traffic engineering. The Internet is
moving towards active traffic engineering to
meet increasing demand for bandwidth and rich
services. Routers/switches will support per-
flow and class-based queueing to give fair band-
width access to all users. A QoS guarantee will
be provided to traffic flows generated by pay-
ing customers. Router-based congestion con-
trol mechanisms, such as Random Early De-
tection (RED) [FJ93] with penalty box [FF99],
also require intermediate nodes to discriminate
between traffic flows. Depending on the gran-
ularity used in defining a “flow,” certain nodes
in the middle of the network may need access to
information in the upper layer protocols, such
as TCP/UDP port numbers, to classify packets
into flows before applying discriminating oper-
ations.

e Transport-aware link layer mechanisms. The
global Internet has accommodated a very wide
range of link technologies, but certain transport
protocols like TCP have not achieved optimal
performance when operated over a path that in-
cludes lossy wireless links or long-delay satellite
links. For example, in a recent paper [BPSK97],
Balakrishnan proves that, to significantly im-
prove the TCP’s performance over a wireless
link, the base station at the lossy link must
be aware of the TCP state information in each
passing flow, and deliberately delay or drop cer-
tain types of TCP packets. Such link-layer



mechanisms for TCP performance improve-
ment (often referred to as TCP Performance
Enhancing Prozies or TCPPEP [BKGMO00]) re-
quire intermediate nodes to access and some-
times modify the upper layer protocol headers.

e Application-layer proxies/agents. Some Inter-
net routers can provide application-layer ser-
vices for performance gains. For example, an
intermediate router can become a transparent
web proxy when it snoops through the TCP and
HTTP header of a bypassing IP datagram to
determine the URL request, and serves it with
the web page from the local cache. It is trans-
parent to end-users but boosts the responsive-
ness because the delivery paths for web requests
and data between the intermediate router and
the web site server are eliminated.

e Active networks. Going one step further, the
active network architecture is a new network-
ing paradigm in which the routers perform
customized computation on the data flowing
through them. A number of experimental ac-
tive network systems have been developed and
they can be run over the Internet. In this archi-
tecture, a single IP datagram carries not only
upper-layer protocol headers and user data,
but also a “method” — a set of executable in-
structions to be interpreted by the intermediate
routers, for describing, provisioning, or tailor-
ing network resources and services in order to
achieve the delivery and management require-
ments. Obviously then, the “method” portion
of the IP datagram ought not to be encrypted
“end-to-end.”

o Traffic Analysis. Many network operators ac-
tively monitor the traffic for accounting or
for intrusion detection purposes.  Usually,
such monitoring requires logging of certain up-
per layer protocol information, like TCP/UDP
ports. Many firewalls that protect local net-
works also depend on such information to deny
unauthorized traffic.

All these mechanisms require intermediate network
nodes to access information encoded in the IP data-
gram payload, but the current IPsec technology ad-
vocates end-to-end security and prevents such ac-
cess. This fundamental conflict [NBB99] makes it a
very difficult problem to provide both security and
extensibility in one unified platform.

1.3 Problem Statement

The goal of this research is to develop a security
scheme that supports the above new network ser-
vices and applications under the IPsec framework.
The new scheme should grant trusted intermediate
routers a secure, controlled, and limited access to a
selected portion of certain IP datagram, while pre-
serving the end-to-end security protection to user
data.

2 Approaches

We have investigated three ways to solve the prob-
lem —replacing IPsec with a transport-layer security
mechanism, using a transport-friendly ESP format,
and developing a multi-layer protection model for
IPsec.

The first approach, replacing IPsec with a transport-
layer mechanism, circumvents the problem of in-
termediate nodes not being able to access the en-
crypted TCP headers, yet introduces certain other
difficulties. There are actually several transport-
layer security mechanisms available today, includ-
ing SSL (most notably used in Netscape and other
WWW applications) or TLS (a proposed IETF
standard [DA99]). Both SSL and TLS encrypt the
TCP data while leaving the TCP header in unen-
crypted and unauthenticated form so that interme-
diate nodes can make use of the TCP state informa-
tion encoded in the TCP header. However, letting
the entire TCP header appear in clear text exposes
several vulnerabilities of the TCP session to a va-
riety of TCP protocol attacks (in particular traffic
analysis), because the identity of sender and receiver
are now visible without confidentiality protection.

Alternatively, it is possible to tunnel one secu-
rity protocol within another, such as SSL/TLS
inside an IPsec ESP — letting SSL/TLS protect
the TCP data and ESP protect the TCP header.
However, there is a problem here too because
ESP encrypts both TCP header and TCP pay-
load (SSL/TLS-protected data) as a whole. Thus,
the encryption/authentication/decryption has to be
done twice on the TCP data part, an unnecessary
waste of resources. The intermediate router, for ex-
ample, must decrypt the entire packet to access just
the TCP header information.



The second approach is to develop a transport-
friendly ESP (TF-ESP) protocol format for IPsec.
Proposed by Steve Bellovin of AT&T Labs [Bel99],
TF-ESP modifies the original ESP protocol to in-
clude limited TCP state information, such as flow
identifications and sequence numbers, in a disclo-
sure header outside the encryption scope (but au-
thenticated). This approach will work well for some
TCP PEP mechanisms such as TCPPEP for wire-
less network (e.g., TCP snooping), but it may not
suite other mechanisms that need a write access,
such as TCPPEP for satellite networks [ZDRD97,
BKGMO00]. To support TCPPEP for satellite net-
works, the TCP state information also needs to be
placed outside the authentication scope. Without
proper integrity protection, this can be dangerous.
Further, the unencrypted TCP state information is
made available universally, including to untrustwor-
thy nodes, which creates vulnerability for possible
attacks. In addition, TF-ESP is not flexible enough
to support all upper-layer protocols.

Since the above two approaches both have limita-
tions, we thus propose a third approach — to de-
velop a multi-layer security protection scheme for
IPsec. The idea is to divide the IP datagram into
several parts and apply different forms of protection
to different parts. For example, the TCP payload
part can be protected between two end points while
the TCP /IP header part can be protected but acces-
sible to two end points plus certain routers in the
network. The rest of this paper will describe the
principle, the design and an implementation of this
approach.

3 The Principle of Multi-Layer Secu-
rity Protection

Our approach is called ML-IPsec (Multi-Layer
IPsec). It uses a multi-layer protection model to
replace the single end-to-end model. Unlike IPsec
where the scope of encryption and authentication
apply to the entire IP datagram payload (some-
times IP header as well), our scheme divides the
IP datagram into zones. It applies different pro-
tection schemes to different zones. Each zone has
its own sets of security associations, its own set of
private keys (secrets) that are not shared with other
zones, and its own sets of access control rules (defin-
ing which nodes in the network have access to the
zone).

When ML-IPsec protects a traffic stream from its
source to its destination, the first IPsec gateway (or
source) will re-arrange the IP datagram into zones
and apply cryptographic protections. When the
ML-IPsec protected datagram flows through an au-
thorized intermediate gateway, a certain part of the
datagram may be decrypted and/or modified and
re-encrypted, but the other parts will not be com-
promised. When the packet reaches the last IPsec
gateway (or destination), ML-IPsec will be able to
reconstruct the original datagram. ML-IPsec de-
fines a complex security relationship that involves
both the sender and the receiver of a security ser-
vice, but also selected intermediate nodes along the
traffic stream.

For example, a TCP flow that desires link-layer sup-
port from the network can divide the IP datagram
payload into two zones: TCP header and TCP data.
The TCP data part can use an end-to-end pro-
tection with keys shared only between the source
and the destination (hosts or security gateways).
The TCP header part can use a separate protec-
tion scheme with keys shared among the source, the
destination, and certain trusted intermediate node.
(See Figure 3.) This way, no one in the public In-
ternet other than the source, the destination and
the trusted intermediate nodes has access to TCP
header or TCP data, and no one other than source
and destination (not even the trusted intermediate
node) has access to TCP data.

sender -+ anynode --- TCPPEPnode -:- anynode - receiver
e ? 1

IP hdr IP hdr IP hdr

IP hdr IPSEC hdr IPSEC hdr IPSEC hdr IP hdr

(e
TCP hdr TCP hdr

f TCP hdr | —>

TCP data TCP data

e

Figure 3: Multi-Layer Protection Model for TCP

This scheme in effect provides a finer-grain access
control to the IP datagram. Since ML-IPsec allows
network operators and service providers to grant
intermediate nodes limited access to IP datagram
contents parts (such as TCP header), such access
must be granted in a secure and controllable way.
The identity of the intermediate nodes must be au-
thenticated (using an out-of-band mechanism such
as a public-key infrastructure) to prevent any man-
in-the-middle attack. After authentication, keys or



shared secrets corresponding to the authorized IP
datagram zones must be distributed to the interme-
diate nodes, also using out-of-band mechanisms like
IKE [HC98].

4 ML-IPsec Design Details

The architecture of ML-IPsec embraces the notion
of zones, a new type of security association, the
new AH and ESP header formats, and the in-
bound/outbound processing of ML-IPsec protocol
packets. It is designed to be fully compatible with
the original IPsec in both protocol formats and pro-
cessing software.

4.1 Zones

A zone is any portion of IP datagram under the
same security protection scheme. The granularity of
a zone is 1 octet. The entire IP datagram is covered
by zones, except for the IP header in the transport
modes, but zones cannot overlap. Using the same
TCP example, the portion of the IP datagram that
contains TCP header (21st to 40th octet) is Zone 1,
and the TCP data portion (41st and above octet)
is Zone 2 (assuming transport mode and no TCP
options).

A zone need not be a continuous block in an IP
datagram, but each continuous block is called a sub-
zone. A zone map is a mapping relationship from
octets of the IP datagram to the associated zones
for each octet. Figure 4 below shows a sample zone
map.

[ IP datagram S_S ]
Zonel
3 subzgrr:;) D D :]
Zone2
1 wb(z)crlﬁe) |:|
Zone3
2 wbzg::;) | | | ()_S |

The zonemap: [1111[22111[333333[11111[333333333333] {3333

Figure 4: A Sample Zone Map

The zone map is a constant in a security relation-
ship. That is, the zone boundaries in each IP data-
gram must remain fixed in the lifetime of the se-
curity association; otherwise, it will be extremely

difficult to do zone-by-zone decryption and authen-
tication. Since IP datagrams are variable in length,
the zone that covers the last part of the datagram,
usually the user data, should also be variable in size.
Zone 3 of the above is an example. It is also pos-
sible, theoretically, to define a phantom zone that
does not correspond to any byte in an IP datagram.

4.2 Security Association (SA)

4.2.1 Original SA for IPsec

Security Association (SA) is a key concept in the
IPsec technology [KA98c]. It is a one-way relation-
ship between a sender and a receiver that affords
security services. Each SA defines a set of parame-
ters including the sequence number and anti-replay
window for anti-replay service, the protocol mode
(transport or tunnel), the lifetime of the SA, the
path MTU and other implementation details. For
authentication services in AH or ESP, each SA also
defines the choice of cryptographic algorithm, the
crypto-keys, key lifetimes and related parameters.
For encryption services in ESP, each SA further de-
fines the choice of encryption algorithm, the encryp-
tion keys, the initial values, key lifetimes, etc. When
an outbound IP datagram passes the security gate-
way, the IPsec module first compares the values of
the appropriate fields in the IP datagram (the se-
lector fields) against a set of predefined policies,
called SA selectors, in the Security Policy Database
(SPD). It then determines the SA for this datagram
if any, and does the required security processing
(e.g., encryption). When an inbound IPsec data-
gram passes the security gateway, the IPsec module
uses the SPI (Security Parameter Index) field to de-
termine the SA for this datagram and performs se-
curity processing (e.g., decryption). Figure 5 gives a
simple illustration of how these pieces are connected
together in the IPsec architecture.

4.2.2 Composite SA for ML-IPsec

SA in the original IPsec defines a simple security
relationship from the sender to the receiver that af-
fords the protection service. ML-IPsec however re-
quires a much more complex security relationship
to include sender and receiver, as well as the se-
lected intermediate nodes. Since the security service
is zone-by-zone, conceptually we can use an indi-



HMAC-MD5 ~ HMAC-SHA-1 ~ HMAC-RIPEMD
crypto
modules

DES-CBC 3DES-CBC SKIPJACK-CBC

@

sequence #

protocol mode

outbound P datagram

lauthentication encryption
rypto algorithm{ |crypto algorithm)
keys
key lifetimes initial values
key lifetimes
A R4
lifetime of SA
pahMTU,
Security Policy Security Association®. vy
Database (SPD) Database (SAD)
4V ¥ A
KE out-of-band modules for
SHendiey e

Figure 5: IPsec System Architecture

vidual security relationship to cover each zone, and
then build a composite relationship to cover the en-
tire IP datagram. Mapping this idea to the basic
Security Association (SA) concept, ML-IPsec needs
a new type of SA called Composite SA (CSA). CSA
is a collection of SAs that collectively afford a multi-
layer security protection for the traffic stream.

A CSA has two elements. The first element is a zone
map. The zone map specifies the coverage of each
zone in an IP datagram. The zone map must be con-
sistent in all nodes involved in the same ML-IPsec
relationship. The second element in a CSA is a zone
list. A zone list is a list of SAs for all the zones. Each
and every such SA is stored in the Security Associ-
ation Database (SAD) [KA98c]. However, some of
the fields are used differently in ML-IPsec than as
defined in the original IPsec [KA98c]. The following
SAD fields, for example, are applicable only on the
corresponding zone of the SA.

e Lifetime of this Security Association
e AH Authentication algorithm, keys, etc.

e ESP Encryption algorithm, keys, IV mode, IV,
etc.

e ESP Authentication algorithm, keys, etc.

The other SAD fields have no meanings on the zone
level. With the exception of a designated SA in the
zone list, the following SAD fields are not used in
other zonal SAs, although they may be initialized
during the SA creation process.

e Sequence Number Counter

Sequence Counter Overflow

Anti-Replay Window

IPsec protocol mode

Path MTU

The designated SA however operates on these fields
as defined in the original IPsec. The designated SA
is a special SA in the zone list, usually the first SA in
the list. It is responsible for maintaining parameters
for the IP datagram layer and “represents” the CSA
in security processing.

The zone map and zone list can be stored with the
designated SA as additional fields in the SAD, or,
they can be stored in a separate CSA database. This
is an implementation choice and it allows flexibility
in adding ML-IPsec features to an existing IPsec
implementation.

On inbound processing, if the traffic stream is under
ML-IPsec protection, the destination IP address,
the IPsec protocol type, and the SPI identifies an
entry in the SAD, which points to the designated
SA of the CSA for this traffic stream. Or, under
alternative implementation, the triplet identifies an
entry in the CSA database. By traversing CSA’s
zone list, ML-IPsec can further identify the SA en-
tries for all the zones.

On outbound processing, the Security Policy
Database (SPD) [KA98c] will have a pointer to the
designated SA or an entry in the CSA database.
Just as in the original IPsec, the selectors will di-
rect the outbound traffic to the proper SPD entry.

4.2.3 Access Control in a CSA

A CSA involves the sender, receiver, and all the
authorized intermediate nodes that collectively pro-
vide a multi-layer security protection for a traffic
stream. Therefore, an instance of CSA must be cre-
ated in each of these nodes before the ML-IPsec
service can commence. It will have these features.
First, the zone map must be distributed and remain
the same for all nodes. Second, each CSA instance
must have a designated SA, and the choice of des-
ignated SA must be consistent across all the nodes.
Finally, because the designated SA is the one and
only SA responsible for the integrity of the IPsec



header (with fields like SPI and sequence number),
all these nodes must be able to process this SA.

However, the zone list need not be the same for all
nodes. In principle, each zonal SA independently
determines the access list for that zone and not all
nodes will have access to all zones. If some node
does not have access to a zone, the corresponding
zonal SA in the zone list will be null. For a partic-
ular zonal SA, an instance must be created in each
authorized node and stored in its SAD as a step in
CSA creation. By determining which zonal SA is
to be created in which node, CSA enforces a multi-
layer access control for an IP traffic stream.

Since the designated SA must be consistent across
all nodes involved in a CSA, they should all have
access to the corresponding zone. For convenience,
we call this zone for which the designated SA is cho-
sen the designated zone. The requirement that all
nodes must have access to one common zone is very
natural in most applications; the designated zone
is usually the first zone in the list, containing the
IP header plus certain upper protocol headers. In
rare cases where the zones accessible by intermedi-
ate nodes are disjoint, we must define a phantom
zone of zero size and make it the designated zone.
We can now make an SA for this zone and use it as
the designated zone. This however introduces extra
overhead because the protocol needs to accommo-
date one more SA.

4.2.4 A TCP Example

Here is an example to illustrate the concept of CSA.
It is a traffic flow from Sender (the ultimate source
or the outbound IPsec gateway) to Receiver (the ul-
timate destination or the inbound IPsec gateway),
passing through Gateway (an intermediate router
providing diffserv or TCPPEP service). Let’s as-
sume the desired security service is ESP transport
mode.

The corresponding CSA in Sender or Receiver will
have the following elements:

e zone map
— zone 1 = byte 1-20
— zone 2 = byte 21-EOP (end-of-packet)
e zone list
— SA1 (designated)
* sequence number counter

sequence counter overflow
anti-replay window

protocol mode = TRANSPORT
path mtu

lifetime

encryption algorithm = DES-CBC
encryption key = keyl

authentication algorithm = HMAC-MD5-32
authentication key = key2

* K K K K KK X X ¥ X

A2

|
wn

ii.fetime

.e.r-lcryption algorithm = 3DES-CBC
encryption key = key3

authentication algorithm = HMAC-MD5-96
authentication key = key4

* X X X X X ¥ ¥

The corresponding CSA in Gateway will have the
following elements:

e zone map
— zone 1 = byte 1-20
— zone 2 = byte 21-EOP
e zone list
— SA1 (designated)
sequence number counter
sequence counter overflow
anti-replay window
protocol mode = TRANSPORT

path mtu
lifetime

encryption key = keyl
authentication algorithm = HMAC-MD5-32
authentication key = key2

*
*
*
*
*
*
* encryption algorithm = DES-CBC
*
*
*
*

-S

A2 = NULL

Here HMAC-MD5-32 is a hypothetical keyed hash
algorithm that produces a smaller 4-octet signature.
Using smaller size authentication data on certain
zones (usually the protocol headers) has the advan-
tage of lower overhead. Otherwise, the standard
HMAC-MD5-96 can be used.

ML-IPsec has an unintended benefit in this case — it
is actually more secure than the original IPsec, be-
cause the chosen plaintext attacks [Bel96] become
more difficult now. Under the original IPsec, cho-
sen plaintext attacks can compromise user data car-
ried in an IPsec packet by exploiting the fact that



the values in many protocol header fields are pre-
dictable; that is, the encryption key can be discov-
ered by comparing the plaintext and ciphertext ver-
sions of these fields. However, even so this will not
compromise the user data under ML-IPsec, because
it uses a different key from the headers.

4.3 AH and ESP Headers

The same security protocol formats, AH and ESP,
are used in ML-IPsec. Both AH and ESP have
transport mode or tunnel mode, as indicated by the
“protocol mode” field of the designated SA. Fig-
ure 6 describes the format for both headers used in
ML-IPsec.

Next | Payload

Header Len RESERVED

Security Parameters Index (SPI)

Security Parameters Index (SPI) Sequence Number

Sequence Number Encrypted Payload Data for Zone 1

(variablé length)

Authentication Data for Zpne 1
(variablé length)

Padding (0-255 bytes) gF

Pad Next
Authentication Data for Zpne 2 Len | Header
(variable length)

Encrypted Paylodd Data for|Zone 2

? iR %ﬂ (variablé length)

AH Header Padding (0-255 bytes) Pad

Len

Authentication Data for Zpne 1
(variable length)

ESP Header % Authentication Data for Zone 2 %

(variablé length)

Figure 6: ML-IPsec Protocol Header Format

The protocol header format for AH in ML-IPsec is
almost identical to the original IPsec AH [KA98a],
except that the Authentication Data section in AH
is further subdivided into zones. The Authentica-
tion Data field is a variable-length field that con-
tains several Integrity Check Values (ICVs) for this
packet. The total length of this field is controlled
by Payload Len. The size of each ICV is determined
by the authentication algorithm used in each zonal
SA, but must be an integral multiple of 32 bits. The
boundaries of these zonal authentication data sec-
tions can be derived from the CSA.

ML-IPsec is perhaps more useful in ESP, where the
IP datagram can be encrypted using different keys
in different SAs. The ML-IPsec ESP header format
follows the principle in IPsec ESP. But unlike IPsec
ESP, the Payload Data field in ML-IPsec ESP is
broken into pieces, one for each zone. The Pay-
load Data for each zone, together with Padding,

Padding Length, and Next Header field (only in the
designated zone), are collectively referred to as the
ciphertext block for the zone. The size of each ci-
phertext block can be determined by the CSA, since
all zones except the last one are fixed in size.

Similar to ML-IPsec AH, the optional Authentica-
tion Data field in ESP is also variable in length and
contains several Integrity Check Values (ICVs) for
this packet. The size of each ICV is determined
by the authentication algorithm used in each zonal
SA, but must be an integral multiple of 32 bits. The
boundaries of these zonal authentication data sec-
tions can be derived from the CSA.

4.4 Inbound and Outbound Processing
in ML-IPsec

4.4.1 ICV Calculation and Verification

The AH ICV calculation in ML-IPsec is rather dif-
ferent from that in the original IPsec. For the des-
ignated zone, the ICV is computed over:

e IP header fields that are immutable in transit.

e The AH header, including Next Header, Pay-
load Len, Reserved, SPI, Sequence Number,
and the Authentication Data (which is set to
zero for this computation), and the optional ex-
plicit padding bytes if any.

e All octets in the designated zone.

For other non-designated zones, the ICV is com-
puted only over the octets of the zone.

The ICV verification during the inbound processing
of an ML-TPsec datagram is also done zone-by-zone.
A zone is authenticated only if the corresponding
zonal SA is non-null. The ICVs are calculated in
the same way as described above, and the values
are then matched against the ICVs stored in the
Authentication Data. In an intermediate node, a
packet will go through inbound processing and then
outbound processing. If changes are made to the
packet in an authorized zone, the ICV is recomputed
and stored in a proper place in the Authentication
Data field. The ICVs of the unchanged zones are
left untouched.



4.4.2 Zone-by-Zone Encryption

On outbound processing, the sender takes the fol-
lowing steps in packet encryption:

1. Zone-wise Encapsulation. For each zone,
all octets of all sub-zones are concatenated (in
the order they appear in a datagram) and then
encapsulated into the ESP Payload Data field
for the corresponding zone.

2. Padding. The sender adds any necessary
padding to each zone’s Payload Data field, to
meet the encryption algorithm’s block size re-
quirement if any, and to align it on a 4-byte
boundary according to the ML-IPsec ESP for-
mat.

3. Encryption. The sender then encrypts the re-
sulting plaintext (Payload Data, Padding, Pad
Length, and Next Header) using the key, the
encryption algorithm, and the algorithm mode
indicated by the zonal SA and cryptographic
synchronization data (if any).

4.4.3 Owutbound processing

The outbound processing of an IP datagram in an
IPsec gateway is illustrated in Figure 7 through a
2-zone example. The plaintext from each zone is
masked by the zone map, concatenated into a con-
tinuous block, and passed through the zone-by-zone
encryption as described above in Section 4.4.2. If
a zone is itself a continuous block before the mask-
ing, we must do optimization to avoid extra copy-
ing; the encryption should be operated directly at
the IP datagram buffer. For ESP, the ciphertexts
from all zones are concatenated and stored in the
ESP payload data field of an ML-IPsec ESP packet.
After packet encryption, for AH and ESP with an
authentication option, the sender computes the ICV
from the ciphertext of each zone according to Sec-
tion 4.4.1. The ICVs are then concatenated and
stored in the Authentication Data field of the final
outgoing ML-IPsec AH or ESP packet.

4.4.4 Inbound Processing

The inbound processing of an IPsec packet is almost
a simple reverse of the outbound processing (see the
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Figure 7: An Example of ML-IPsec Outbound Pro-
cessing

same 2-zone example in Figure 8). If the SA struc-
ture indicated by the SPI value is a CSA type, the
ML-IPsec processing mode is triggered. ML-IPsec
first performs ICV verification if the protocol is AH,
or if the protocol is ESP with an authentication op-
tion. The ICV check is done zone-by-zone according
to Section 4.4.1. If the ICV check fails for any one
zone, the entire datagram is discarded. The next
step is the zone-by-zone decryption if the protocol
is ESP. For a zone whose zonal SA is valid and non-
null, the receiver decrypts the ESP Payload Data,
Padding, Pad Length, and optional Next Header us-
ing the key, encryption algorithm, algorithm mode,
and cryptographic synchronization data (if any), in-
dicated by the zonal SA. After processing Padding,
the receiver then reconstructs the original IP data-
gram from the original IP header (transport mode)
or the tunnel IP header (tunnel mode), plus the
IP payload stored in all the Payload fields. In the
reverse procedure of encryption, the receiver takes
Payload Data of a zone and restores the bytes back
according to the zone map. If a zone has a null SA,
the bytes corresponding to the zone map will be left
Z€ero.

4.4.5 Partial Datagram Processing at Inter-
mediate Routers

In an intermediate node that is authorized to access
at least one zone, a bypassing ML-IPsec datagram
will go through inbound processing and then out-
bound processing if changes have been made (see
Figure 9). The processing requires extra care be-
cause it may not have all the SAs to process the
entire datagram. It must ignore zones for which
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Figure 8: An Example of ML-IPsec Inbound Pro-
cessing

keys are not granted. If the protocol is ESP, the de-
crypted plaintext may be incomplete for the original
datagram, but it is likely to have the zone it needs
(e.g., TCP header) for customized operations. If the
intermediate node modifies the plaintext (e.g., in
TCPPEP), it must redo authentication and/or en-
cryption for that zone, and replace the correspond-
ing ICV and/or Payload Data field in the bypassing
IPsec datagram, before forwarding to the next hop.
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Figure 9: An Example of Partial In-

bound/Outbound Processing

4.5 Bandwidth Overhead Analysis

The extra overhead introduced by the multi-layer
protection model includes IPsec datagram size and
processing load. The datagram size in a two-zone
ML-IPsec is likely to increase when we do authen-
tication or encryption as two separate plaintext
blocks instead of one trunk in the original IPsec. For
example, the concatenated ciphertext from two in-
dividually encrypted plaintexts might be larger than

the single ciphertext of the concatenated plaintext,
due to the synchronization data (such as an initial-
ization vector in some encryption algorithm) and
separate padding. The authentication data field is
also bigger. For example, if HMAC-MD5-96 is used,
the ICV is a fixed size of 12 bytes. If the CSA
has two zones, the new IPsec datagram will increase
by 12 bytes compared with the original IPsec one.
To understand the increase in packet size caused
by ML-IPsec, we conduct protocol analysis on TCP
applications.

The datagram used in the analysis is a TCP data-
gram, with 20-byte IP header, 20-byte TCP header,
no IP options, and no TCP options. For ML-
IPsec, we assume the TCP datagram is divided into
two zones, one for TCP/IP headers, and the other
for the TCP payload. We calculate the overhead
for both AH and ESP protocols (with authentica-
tion) and for both transport and tunnel mode. We
analyze both ML-IPsec and IPsec for comparison
purposes. In all the cases we assume use of the
HMAC-MD5-96 algorithm for authentication and
the 3DES-CBC algorithm for encryption.

We have analyzed the overhead for all eight cases
(AH vs. ESP, Transport mode vs. Tunnel mode,
and IPsec vs. ML-IPsec). Due to space limitations,
we will not enumerate the calculation in detail. We
only summarize the results in Tables 1 and 2. The
variable n denotes the length of the TCP payload
in the original IP datagram.

While the use of IPsec to protect IP datagrams adds
an overhead ranging from 24 to 57 bytes, the new
ML-IPsec scheme adds only an additional 12 bytes
to the AH protocol and a maximum 20 bytes to the
ESP protocol. Assuming an average IP datagram
of 536 bytes, that is only a 2-3% increase. One way
to further reduce the overhead increase is to use
a “weaker” authentication algorithm for the “less
important” field. For example, a 4-byte HMAC-
MD5-32 ICV may be sufficient for the TCP header
zone, instead of the 12-byte HMAC-MD5-96 ICV in
the original IPsec. This saves 8 bytes for each ML-
IPsec packet and brings the overhead down to the
1-2% range.



Table 1: Packet Length Comparison (bytes)

Original IP IPsec ML-IPsec
AH Transport mode 40+n 64+n 76 +n
AH Tunnel mode 40 +n 84 +n 96 +n
ESP Transport mode 40+n 64+ [(6+n)/8]1*8 | 92+ [(1+n)/8] 8
ESP Tunnel mode 40+n 88+ [(2+mn)/8] x8 | 116+ [(1 +n)/8] *8

Table 2: Packet Length Overhead (bytes)

IP — IPsec | IP — ML-IPsec | IPsec — ML-IPsec
AH Transport mode 24 36 12
AH Tunnel mode 44 56 12
ESP Transport mode [30,37) [46,53] 12 or 20
ESP Tunnel mode [50,57) [70,77) 20

5 Implementation

5.1 Platform

This implementation of ML-IPsec is done on Linux
FreeS/WAN version 1.1 on Linux kernel version
2.2.12. Linux FreeS/WAN (www.freeswan.org)
is an implementation of IPsec available free (un-
der GNU license term) to users and developers all
around the world. The FreeS/WAN system has the
following major parts.

e KLIPS. The Kernel IPsec Support part in-
cludes the necessary elements in the Linux ker-
nel for running IPsec protocols on the system.
Most of the changes required for implementing
ML-IPsec using FreeS/WAN are done in this
part.

e The Pluto Daemon. This part implements
the IKE protocol [HC98] — verifying identities,
choosing security policies and negotiating keys
for the KLIPS layer. Our current ML-IPsec
implementation does not change this part, as
we are using manual keying only. Our future
work will involve modifying the Pluto daemon
to facilitate automatic keying among all nodes
and specifying ML-IPsec policies.

e The ipsec Command. This is a user com-
mand for controlling IPsec activities, such as
setting up and tearing down IPsec tunnels, etc.

e Linux FreeS/WAN Configuration File.
This file (usually /etc/ipsec.conf) contains
configuration parameters for setting up IPsec

tunnels in the system. We have modified the
format of this file to accommodate ML-IPsec
functions. The modifications will be listed in a
later section.

5.2 Changes in Data Structure

The main changes that we have made are in the
data structures for SAs (Security Associations). In
original FreeS/WAN, the SAD (security associa-
tion database) was implemented as a hash table of
struct tdb nodes. OQur ML-IPsec implementation
does not change this storage organization, but it
modifies the tdb structure to store extra fields for
ML-IPsec specific data. In addition, we create new
structures for “zonemap” and “subzone” as illus-
trated in the design. The case of a “normal” SA
(relating to the the original IPsec) would be han-
dled as a special case of an ML-IPsec SA with one
zonemap extending from byte 1 to EOP (end-of-
packet). Figure 10 contains a verbatim copy of the
new data structure; our changes are annotated by
the C preprocessor macro ML_IPSEC. The storage
organization of these structures in the memory is
shown in Figure 12.

Although the AH and ESP header formats in ML-
IPsec are different from the original IPsec, the cor-
repsonding programming constructs do not need
modification because the fixed length fields remain
the same. The variable length fields and the pointer
targets are set up properly during the allocation
stage for the socket buffers.

The data structure of the control interface
(encap_msghdr) used for passing the requisite infor-



struct tdb /* tunnel descriptor block */
1{

#ifdef ML_IPSEC

struct zone *csa_zonemap; /* pointer to the zonemap for the CSA */

__u8 desig_sa_flag; /* boolean value - designated SA or not*/
#endif

struct tdb *tdb_hnext; /* next in hash chain */

struct tdb *tdb_onext; /* next in output */

struct tdb *tdb_inext; /* next in input (prev!) */

struct ifnet *tdb_rcvif; /* related rcv encap interface */

struct sa_id tdb_said; /* SA ID */

__u32 tdb_seq; /* seq num of msg that set this SA */

__u32 tdb_pid; /* PID of process that set this SA */

struct xformsw *tdb_xform; /* transformation to use (host order)*/

caddr_t tdb_xdata; /* transformation data (opaque) */

__u8 tdb_authalg; /* auth algorithm for this SA */

__u8 tdb_encalg; /* enc algorithm for this SA */

__u8 tdb_replaywin; /* replay window size */

__u8 tdb_state; /* state of SA x/

__u32 tdb_replaywin_lastseq; /* last pkt sequence num */

__ub4 tdb_replaywin_bitmap; /* bitmap of received pkts */

__u32 tdb_flags; /* generic xform flags */

__u32 tdb_lifetime_allocations_c; /* see rfc2367 */

__u32 tdb_lifetime_allocations_s;

__u32 tdb_lifetime_allocations_h;

__ub4 tdb_lifetime_bytes_c;

__ub4 tdb_lifetime_bytes_s;

__ub4 tdb_lifetime_bytes_h;

__ub4 tdb_lifetime_addtime_c;

__ub4 tdb_lifetime_addtime_s;

__ub4 tdb_lifetime_addtime_h;

__ub4 tdb_lifetime_usetime_c;

__ub4 tdb_lifetime_usetime_s;

__ub4 tdb_lifetime_usetime_h;

struct sockaddr *tdb_addr_s; /* src sockaddr */

struct sockaddr *tdb_addr_d; /* dst sockaddr %/

struct sockaddr *tdb_addr_p; /* proxy sockaddr */

__ulé tdb_addr_s_size;

__ulb tdb_addr_d_size;

__ulé tdb_addr_p_size;

__ul6 tdb_key_bits_a; /* size of authkey in bits */

__ul6 tdb_auth_bits; /* size of authenticator in bits */

__ul6 tdb_key_bits_e; /* size of enckey in bits */

__ul6 tdb_iv_bits; /* size of IV in bits */

__u8 tdb_iv_size;

__ulé tdb_key_a_size;

__ulé tdb_key_e_size;

caddr_t tdb_key_a; /* authentication key */

caddr_t tdb_key_e; /* encryption key */

caddr_t tdb_iv; /* Initialisation Vector %/

_-ul6 tdb_ident_type_s; /* src identity type */

_-ul6 tdb_ident_type_d; /* dst identity type */

__u64 tdb_ident_id_s; /* src identity id */

__u64 tdb_ident_id_d; /* dst identity id */

__u8 tdb_ident_len_s; /* src identity type */

__u8 tdb_ident_len_d; /% dst identity type */

caddr_t tdb_ident_data_s; /* src identity data */

caddr_t tdb_ident_data_d; /* dst identity data */
};

#ifdef ML_IPSEC
struct sub_zone

struct sub_zone *next; /* next subzone pointer for the zonex/
__ul6 left; /* left bound of the subzonex*/
__ul6 right; /* right bound of the subzonex/

H

struct zone

struct sub_zone *subzone; /* pointer to the first subzone for this zonex/
struct tdb *corres_sa; /* pointer to the corresponding SA for this zone */
struct zone *next; /* next zone pointer for the CSA*/
H

#endif

Figure 10: The New SA Data Structure in FreeS/WAN Code for ML-IPsec



mation read from the configuration file to the ker-
nel storage of SAs is also changed to accomodate
the zone boundaries in the Xfm sub-structure (see
Figure 11).

struct

{
struct sa_id Said; /% SA ID %/
int If; /* enc i/f for input */
int Alg; /* Algorithm to use */

#ifdef ML_IPSEC /* zone bytes specifications */
__ul6 sbyte[MAX_SUBZONES] ;
__ul6 ebyte[MAX_SUBZONES] ;

#endif
union { /* Data */
__u8 Dat[1];
__u64 Datq[1]; /* maximal alignment (?) */
} u;
} Xfm;

Figure 11: The New Xfm Structure

5.3 Changes in C Functions

A number of C functions in the FreeS/WAN sys-
tem source files need to be altered to take care
of the changes made to the tdb data structure.
Most of these files belong to the KLIPS part of the
FreeS/WAN system. Rest are the user level files
that interact with the KLIPS through the device
interface.

The functions like deltdb(), deltdbchain() and
ipsec_tdbcleanup(), which deal with deletion of
SAs from the SAD, require minor changes to
take care of extra pointers for zones and sub-
zones in the CSAs. Some other functions requir-
ing minor changes are ipsec_spi_get_info() and
ipsec_spigrp.get_info(), which are responsible
for printing information in the /proc directory.
Some extra information relating to CSAs (like zone
lengths and subzones) needs to be displayed in this
case.

The major changes are in the functions that deal
with user level process interaction with the ker-
nel in storing, extracting, and updating SAs in the
SAD. ipsec_callback() deals with the interaction
of the user level ipsec command with the ipsec de-
vice and takes care of adding, deleting, and updat-
ing SAs from the SAD in the kernel. It calls the
functions mentioned above and also functions like
tdb_init (), which facilitate updating the fields in
the kernel SA using the information received from
the user level process through the device interface.
A major change in this function is the formation

of the SAD structure as shown in Figure 12, which
now includes chaining between CSA and Zonal SAs
using zonemaps and subzones.

Subzones

,,,,,,,,, { Other | Zonal
T osa 1] sA H

SAD ! """""""
Hash | Other !
CSA |- > :
Table PoSA Subzone

Tunnel Zonal .| Other |

SA SA | sA

Figure 12: ML-IPsec storage structure in the SAD

The inbound and outbound processing of
FreeS/WAN also requires major changes for
ML-IPsec. The function ipsec_rcv() does the
inbound processing for an IPsec packet received
over the network. This function is responsible
for getting the packet from the socket buffers,
decapsulating it, extracting information from it to
locate the SA in the kernel, doing authentication
if necessary, doing decryption if necessary and
forming the original IP Packet. It then pushes the
packet up the stack to the IP layer for processing
and/or forwarding onto the internal network. This
function requires considerable changes to facilitate
the processing in accordance with the new tdb
structure and the new AH and ESP headers. The
case of partial authentication/decryption (new in
ML-IPsec, see Section 4.4.5) is also handled in this
function.

The function ipsec_tunnel start xmit() is re-
sponsible for the outbound IPsec processing of an IP
packet. The activities carried out by this function
include: receiving packets from the IP layer, finding
the corresponding SA and encapsulating route, tun-
neling the packet if necessary, and attaching the cor-
responding ESP and AH headers if necessary. The
changes made to this function include differential
calculation of the extra space required for putting
zonal headers and trailers, buffer management on
a per zone basis and authentication and encryption
on a per zone basis. Compared to IPsec, this func-
tion has a much more complicated task because, in-
stead of encapsulating and processing (encryption



and/or authentication) on the whole payload, it has
to take care of zone boundaries within the payload
and provide differential processing according to the
particular zonal SA. Futhermore, the encapsulation
has to be exactly the same as in the IPsec case.

Finally, a number of changes are made in the shell
scripts that interpret the configuration file and call
the ipsec command with appropriate arguments for
controlling the ML-IPsec functionality.

So far, we have omitted the PF_KEY inter-
face [MMP98] part, which also operate on the tdb
structures to facilitate communication between the
user level utilities and the kernel level processes.
The functions in this interface will ultimately need
appropriate changes as part of our future work to
add automatic keying support.

5.4 Changes in Configuration File

The ipsec.conf file specifies most configuration
and control information for the FreeS/WAN IPsec
subsystem. Its syntax needs to be modified for use
in ML-IPsec implementation. This includes adding
a new section called the ZONE section, and adding
specification for six new parameters. Further, some
parameters ought to be moved around from one sec-
tion to another to match new SA structure. Most
of these changes apply to the CONN section. The
CONFIG section needs no change. Here we explain
the modification in detail.

CONN Sections Two sets of new parameters
have been added to this section and seven param-
eters have been moved to the new ZONE section.
The semantics for the remaining parameters in this
section stays the same as in original FreeS/WAN.
The parameters that remain in this section are
type, auto, left, leftsubnet, leftnexthop,
leftfirewall, the corresponding “right” parame-
ters, and the manual keying parameters — spibase,
espreplay window, and ahreplay window. Other
parameters that correspond to the automatic keying
policy also remain unchanged, because the current
ML-IPsec implementation only deals with manual
keying.

The new parameters that we have added to this sec-
tion are:

e hop_number  This is an integer value which
represents the number of intermediate nodes
that will be doing ML-IPsec processing on the
packets. This number does not include the
source and the destination nodes.

e hop[x] This is the IP address of the inter-
mediate node that will be doing ML-IPsec pro-
cessing on the packet from left to right and vice-
versa. There can be multiple instances of this
parameter on separate lines in the file as long
as z satisfies the condition 1 < z < n (where n
is the value of the hop_number parameter) and
is not reused. The value of each hop[z] param-
eter is also not to be reused. Also if hop[z] is
present, then hop [z — 1] should also be present.
The syntax of this value is the same as a left
parameter value.

e zones This is a comma-separated list of ZONE
section names that belong to this connection.

ZONE Sections This new section is de-
signed to cohere with the ML-IPsec zone con-
cept. The parameters that are moved from the
CONN sections in original FreeS/WAN include esp,
espenckey, espauthkey, leftespspi, ah, ahkey
and leftahspi. The semantics and syntax of these
parameters remain the same as before. The new
parameters are:

e hosts This is a comma-separated list of the
string “hop[z]’ where z is as defined in the pre-
vious section. This defines the list of “hops”
that have access to this zone of the IP packet.
The IP addresses for the “hops” are defined in
the above CONN section, but the list of “hops”
that can access this zone are defined here. For
example,

hop|[2], hop[4], hop[5]
means that the nodes whose IP addresses are
defined by hop[2], hop[4] and hopl[5] in the conn
section have access to this zone of the packet.

e zonebytes This is a comma-separated list of
integer ranges. It specifies the bytes of an IP
packet that constitute a zone, like

1-14, 20-26, 42-EOP

(EOP denotes end-of-packet).

e desig This yes/no value signifies whether this
section specifies a designated zone or not.



6 Conclusion

The end-to-end network security mechanisms such
as IPsec and the rich network services such as those
described in this paper are two fundamentally con-
flicting mechanisms. On the one hand, end-to-end
security advocates the use of cryptography at the
network layer to protect the payload over an un-
trustworthy internet. On the other hand, certain
network services rely on intermediate nodes to per-
form “intelligent operations” based on the packet
data type — the information encoded in a higher
protocol layer. It is the need to find the right bal-
ance between the two mechanisms and to achieve
the goals of both, that makes for a difficult engi-
neering problem.

Our attempt to solve the problem is based on the
layering architecture for network security protocols.
The approach presented in this paper may already
have the right mix to provide both security and ex-
tensibility in one unified platform. Certainly, we
have shown that through protocol design and sys-
tem implementation ML-IPsec can easily be added
to an existing IPsec system and that its overhead
is low. ML-IPsec has achieved the goal of grant-
ing trusted intermediate routers a secure, controlled,
and limited access to selected portions of IP data-
grams, while preserving the end-to-end security pro-
tection to user data. A similar system, which is
based on the same layering principle described in
this paper, has been implemented independently
by University of Maryland [Kar99], although their
implementation was based on an older version of
FreeS/WAN and an older version of Linux kernel.

Our plan for future work includes an extension of
IKE to support ML-IPsec. IKE is the key distri-
bution protocol for IPsec, but we did not use it
here because our current implementation uses man-
ual keying only. It will be very important for ML-
IPsec to be able to utilize automatic keying because
it uses more keys, involves intermediate nodes, and
requires a more complicated configuration than the
original IPsec. The technical challenge will be find-
ing the efficient mechanism needed for multi-party
key distribution.

Web Site

The URL for the web site of this project is
http://www.wins.hrl.com/people/ygz/ml-ipsec

and it contains relevant documents, software re-
leases (when they are ready), performance measure
data for this implementation, and further develop-
ments for ML-IPsec.
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