
USENIX Association

Proceedings of the
9th USENIX Security Symposium

Denver, Colorado, USA
August 14 –17, 2000

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Detecting and Countering System Intrusions

Using Software Wrappers

Calvin Ko

Timothy Fraser

Lee Badger

Douglas Kilpatrick

NAI Labs, Network Associates, Inc.

fcalvin ko, tfraser, lee badger, douglas kilpatrickg@nai.com

Abstract

This paper introduces an approach that integrates
intrusion detection (ID) techniques with software
wrapping technology to enhance a system's ability to
defend against intrusions. In particular, we employ
the NAI Labs Generic Software Wrapper Toolkit to
implement all or part of an intrusion detection sys-
tem as ID wrappers. An ID wrapper is a software
layer dynamically inserted into the kernel that can
selectively intercept and analyze system calls per-
formed by processes as well as respond to intrusive
events. We have implemented several ID wrappers
that employ three di�erent major intrusion detection
techniques. Also, we have combined di�erent ID
techniques by composing ID wrappers at run-time.
We tested the individual and composed ID wrappers
using several existing attacks and measured their im-
pact on observed application performance. We con-
clude that intrusion detection algorithms can be eas-
ily encoded as wrappers that perform eÆciently in-
side the kernel. Also, kernel-resident ID wrappers
can be easily managed, allowing cooperation among
multiple combined techniques to enforce a coherent
global ID policy. In addition, intrusion detection
algorithms can bene�t from the extra data made ac-
cessible by wrappers.

1 Introduction

Intrusion detection is a retro�t approach to enhanc-
ing the security of computer systems. It utilizes
various audit data to identify activities that could

�This research was supported by the Defense Advanced

Research Projects Agency under contract F30602-96-C0333.

compromise the security of a system. Traditionally,
intrusion detection systems (IDS) are user-space ap-
plications that utilize audit data generated by audit
systems (e.g., Solaris Basic Security Module (BSM))
or network sni�ers to detect intrusive activities. The
capabilities of these user-space IDSs are restricted
by the quality of the audit data and the services pro-
vided by the operating systems. For instance, audit
systems do not provide all the data required by
IDSs, thus limiting the attacks that can be detected
by the IDSs. In addition, audit systems o�er rudi-
mentary methods for selecting data to be logged.
In particular, most audit systems do not support
selection of a particular program to audit. Also, as
the data is generated in the kernel, every time a
system action has to be logged or analyzed, the in-
formation has to be transferred from kernel space to
user space, causing a context switch, and increasing
the load imposed on the system by the IDS. Thus,
user-space IDSs su�er from high overheads and low
eÆciency, as well as long delay (in CPU cycles) in
detecting intrusions. Lastly, user-space IDSs are not
suÆciently protected by operating systems and can-
not completely protect themselves.

Our goal is to integrate ID functions into the kernel
to remedy some of the problems arise in user-space
intrusion detection. Speci�cally, we exploit the exe-
cution environment provided by Generic Software
Wrappers [4] to enhance the intrusion detection and
response capability of a system. An ID logic imple-
mented as an ID wrapper can 1) selectively examine
any parameters of system calls and the entire sys-
tem state, 2) analyze a system call before or imme-
diately after the call is executed, 3) analyze system
calls inside the kernel, thus avoiding the overhead
of transferring audit data from kernel space to user
space, and 4) protect itself by denying intrusive op-
erations.

We have implemented several intrusion detection
techniques, tested the ID wrappers using several ex-
isting attacks, and measured the performance of the
ID wrappers. Our conclusion is that intrusion detec-
tion algorithms can be easily encoded as wrappers
that perform eÆciently inside the kernel. Also, ID
wrappers can be con�gured and managed easily to
support a coherent global intrusion detection and
response policy. We envision that ID wrappers can
be used individually to protect a system or as com-
ponents of a large-scale intrusion detection system.

The rest of the paper is organized as follows. Sec-
tion 2 presents an overview of ID wrappers, focusing
on the capability of ID wrappers provided by the
Generic Software Wrapper Toolkit and our exten-
sions to the toolkit for supporting intrusion detec-
tion. In section 3, we present how we implement var-
ious ID techniques|speci�cation-based, signature-
based, and sequence-based techniques|using wrap-
pers. In section 4, we present our experiments for
testing ID wrappers with simulated attacks. We also
describe a composition experiment in which two ID
wrappers employing two di�erent techniques coop-
erate with another abstract wrapper that combines
the �ndings of the two ID wrappers. In addition, we
present the performance results of the ID wrappers,
showing that intrusion detection functions can be
executed, managed, and coordinated in the kernel
with a minimal observed application performance
penalty. Section 5 discusses related work. In sec-
tion 6, we discuss the pros and cons of the kernel-
resident intrusion detection approach as well as our
experience in realizing this approach using Generic
Software Wrappers. Section 7 provides the conclu-
sion and suggests future research.

2 Intrusion Detection Wrappers

This section presents the architecture of ID wrap-
pers. It describes the capability of ID wrappers
naturally provided by the Generic Software Wrap-
per Toolkit and our extensions to the toolkit for
supporting intrusion detection.

Figure 1 gives a high-level view of an ID wrapper.
An ID wrapper is a state machine that is bound
dynamically to a program in execution and that
gains control when system calls are invoked. Mul-
tiple ID wrappers may be bound concurrently to
a single program in order to combine multiple ID

techniques or to collaborate in the enforcement of a
single policy. An ID wrapper is speci�ed using the
Wrapper De�nition Language (WDL)[10], a super-
set of C language. WDL supports high-level speci-
�cation of the events to be intercepted and accesses
to parameters of the intercepted system call. WDL
also hides speci�c details of di�erent operating sys-
tems so that generic wrappers that run on multiple
platforms can be written. An ID wrapper speci-
�ed in WDL is compiled by the Wrapper Compiler
(WrapC) into native object code of the destination
platform for deployment. Currently, the wrapper
toolkit supports FreeBSD, Solaris, Linux, and Win-
dows NT1. ID wrapper capabilities, deriving from
WDL features, fall naturally into two groupings:

Event Interception Criteria: An ID wrapper
speci�es events that it intercepts. Such events
may be system calls or more \abstract" events
de�ned and generated by other wrappers. An
ID wrapper will listen to events that repre-
sent steps in attack speci�cations [5, 9], events
de�ning (or deviating from) behavioral pro�les
[3, 8], events that attempt to subvert the in-
trusion detection system, or events that access
system resources after a successful attack se-
quence. Events may contain parameters, and
an ID wrapper may condition the interception
of the events based on pre-established group-
ings (e.g., open, close, read, write are all \�le"
events), parameter value matching, global sys-
tem state, and event sequence relationships
(e.g., event e1 that occur before event e2 will
be \listened for").

Actions: When an event is intercepted, an ID
wrapper may take a variety of actions. In gen-
eral, these actions serve to deny, transform, or
augment the event, and perhaps also to gen-
erate new events that can be intercepted by
other active wrappers. For intrusion detec-
tion and response purposes, an action will of-
ten be to update an intrusion detection model
or fact base, to determine if any misuse rules
have completed or if the current behavior ex-
ceeded the de�ned bounds in the normal pro-
�le, and to take countermeasures if an intru-
sion is imminent. Such countermeasures at
least will protect the intrusion detection sys-
tem from tampering, but also can include a
variety of techniques that prevent damage, de-

1The NT prototype has a di�erent architecture from Unix

prototypes. It employs library hooking techniques to inter-

cept the Win32 API calls performed by processes.

Input Event
from System
or Wrapper

Action

Action

. . .

Deny
Transform
Augment
Generate Event

Output Event to more
Abstract Wrapper

Event Interception
 Criteria

IDW

Figure 1: Intrusion Detection Wrapper Structure

ceive the intruder, or collect additional infor-
mation for subsequent legal or military action.
At the implementation level, ID wrapper ca-
pabilities derive from WDL facilities that sup-
port convenient access to (and modi�cation of)
event parameters, access to local environment
variables and global system state, generation
of new events, and access to lightweight DBMS
services.

2.1 Management and Composition

ID wrappers need to be properly managed and con-
�gured to o�er the best protection to a system.
Depending on the overall ID policy, some ID wrap-
pers should wrap every process while other ID wrap-
per should wrap only certain critical processes. The
Wrapper Support Subsystem (WSS) provides sup-
port for con�guration and management of ID wrap-
pers. To use an ID wrapper, an administrator �rst
registers the wrapper with the WSS through a load-
ing process, which dynamically inserts the run-time
image of the wrapper into the kernel. Selection
of processes for wrapping is controlled by activa-
tion (or deactivation) criteria which specify when
a loaded wrapper should begin (or cease) to wrap
a process. The activation criteria language allows
speci�cations based on the invoker, the program
name, and attributes of the executable. The WSS
tracks running processes and evaluates the activate
criteria to activate wrappers to wrap processes that
satisfy the criteria. Therefore, ID wrappers can be
con�gured and administered easily in our framework
to enforce a coherent ID policy.

The whole problem of intrusion detection is beyond
the capability of any one intrusion detection sys-
tem or ID technique [6]. Therefore, cooperation of
di�erent ID techniques is required to enhance the
protection of a system. To combine multiple ID
techniques, it is often convenient to implement each
ID technique in a separate, independent ID wrap-
per and to run processes under the simultaneous
control of multiple ID wrappers. Additionally, it is
highly desirable to have ID wrappers that are aware
of one another to support hierarchies of increasingly
abstract wrappers. For example, one ID wrapper
can listen to system calls to generate abstract sys-
tem independent audit events to be consumed by
a more abstract ID wrapper that analyzes the ab-
stract audit events. Figure 2 shows the two funda-
mental forms of composition:

Layered Composition: Multiple ID wrappers in-
tercept an event (e.g., a system call) and per-
form some actions. In this case, the actions
of the wrappers will be executed in the or-
der in which the wrappers were installed on
the system. Figure 2a illustrates the ordering
for layered composition. In layered composi-
tion, the wrappers involved in the composition
might not be aware of the composition occur-
ring. This type of layering could be compared
to an onion, in which the user's request must
travel down through the \layers" of wrappers
to get to the system call; the return value must
travel back out through the \layers" to reach
the API again.

Active Composition: ID Wrappers generate
events intercepted by other ID wrappers (out-

(b) Active Composition

system call

API

system call

API

output event

wrapper A

wrapper B

wrapper B
wrapper A

wrapper C

(a) Layered Composition

Figure 2: Wrapper Composition

put events), shown in �gure 2b. Output events
represent active composition, in which the
wrappers generating the events are aware of
the possible communication/coordination with
other wrappers. In this instance, a ID wrapper
generates an output event to be intercepted by
another, usually more abstract, ID wrapper.
The more abstract wrapper will return to the
calling wrapper; control passes through the
calling wrapper to the system call.

The two forms of composition are not mutually ex-
clusive: a system event could be intercepted by lay-
ers of ID wrappers, some of which could generate
output events to be intercepted by other ID wrap-
pers. The composition facility is
exible enough
to allows ID wrappers to cooperate in the man-
ners (e.g., complement or reinforce each other's �nd-
ings) described by in Common Intrusion Detection
Framework [6].

2.2 Obtaining System State Informa-
tion

In addition to the parameters of the intercepted sys-
tem calls, ID wrappers may need to access system
state to acquire additional data for its analysis. For
example, the owner, group, and permission mode

of a �le being accessed may be required to deter-
mine whether this �le access deviates from a speci-
�ed valid behavior pro�le.

An ID support module has been added to the
Generic Software Wrappers toolkit to provide a set
of library functions for ID wrappers. Table 1 enu-
merates the library functions that have been imple-
mented. Additional functions can be implemented
and added to the system easily.

2.3 Dispatching Audit Data to User-
Space IDSs

In a large-scale IDS, an ID wrapper may be used as
a data-collection component that collects security-
relevant data for intrusion analysis engines running
in user space. Such scenario requires a very eÆcient
mechanism for transferring a large amount of data
from wrappers running in kernel space to user pro-
cesses in a secure fashion. In addition, such mecha-
nism should allow multiple intrusion detection sys-
tems to listen to the audit event data generated by
possibly di�erent ID wrappers.

An audit event handler providing support for dis-
patching audit data to user processes is incorpo-
rated into the basic wrapper toolkit. An intrusion
detection engine cooperating with an ID wrapper

Name Function
wr stat obtain status of the �le spec-

i�ed by a path
wr fstat obtain status of the �le spec-

i�ed by a �le descriptor
wr audit delivery audit data to the

audit event handler
wr audit printf same as wr audit, but with

the printf interface
wr get addr obtain the socket address of a

socket speci�ed by a �le de-
scriptor

wr getpeername get the name of the peer of a
connection

wr getsockname get the name of the local en-
tity of a connection

Table 1: Wrapper Library functions to support In-
trusion Detection

can register with the audit event handler for the
event queue to which it wants to listen. When the
cooperating ID wrapper collects relevant audit data
and sends it to the audit event queue, the audit
event handler dispatches the data to the registered
intrusion detection engine.

In this approach, the IDS thread calls a registered
system call to register for some number of audit
queues. The system call creates a pipe and returns
the read end of the pipe. The IDS thread performs
a select system call on the read end of the pipe,
e�ectively blocking the process. The event han-
dler writes the entire event structure for each audit
event to the write end of the pipe. This method can
promptly transfer events from the event handler to
the waiting thread in a thread-safe manner and with
little overhead.

3 Implementation

This section presents our experience in the imple-
mentation of various intrusion detection techniques
using ID wrappers.

3.1 Speci�cation-based Techniques

Speci�cation-based intrusion detection systems em-
ploy speci�cations that describe the valid behav-
ior of programs to detect intrusions. In particu-
lar, programs in execution are monitored for viola-
tions from the corresponding valid behavior speci�-
cations. One useful type of speci�cations is the set
of valid operations of a program [7]. We have en-
coded the speci�cations for several programs (e.g.,
imapd, �ngerd, lpr, lprm, ftpd, httpd, etc.) describ-
ing their valid operations as ID wrappers using
WDL. Each speci�cation-based ID wrapper is con-
�gured, using the activation criteria, to wrap the
execution of the program with which the speci�ca-
tion is concerned. We found that the WDL itself is
very suitable for expressing the set of valid opera-
tions of a program.

Figure 3 shows part of a speci�cation of the imapd
program, encoded in WDL, that is concerned with
the valid parameter values of open-read, chmod, fch-
mod, and execve operations.

The �rst clause speci�es that after a successful open
system call with the read-only
ag on (lines 1-2), the
action block (lines 3-7) will be executed. The action
block obtains the inode information of the opened
�le and checks whether 1) it is world-readable, 2)
owned by the invoker, or 3) created by the pro-
gram execution (checked by the local function cre-
ated()). It raises a violation if all conditions are
false. In short, the �rst clause detects any bad
open-read operation: on a �le that is neither pub-
licly readable, owned by the invoker, nor created by
the program execution itself. Similarly the second
and third clauses raise a violation if the program
performs a chmod/fchmod operation on a �le not
created by the program execution. The last clause
speci�es that the wrapper intercepts the execve sys-
tem call before it executes, issues a violation, and
prohibits the call by returning an error code to the
caller immediately (return WR D BADPERM).

The partial speci�cation illustrates that criteria for
event interception can be speci�ed very easily in
WDL. In addition, accesses to system call param-
eters can be accomplished easily through special
$ variables. For example, the $path variable on
line 10 denotes the path name of the �le in the
chmod system call. A reference or assignment to a
variable e�ectively reads/modi�es the correspond-
ing argument of the intercepted system call. WDL

1. bsd::op{open}

2. ($errno == 0 && $flags | O_RDONLY != 0) post {

3. struct wr_stat s;

4. wr_fstat($fdret, &s);

5. if (!WorldReadable(s) && Owner(s) != _uid && !created(s.nodeid))

6. violation();

7. };

8. bsd::op{chmod} pre {

9. struct wr_stat s;

10. wr_stat($path, &s);

11. if (!created(s.nodeid))

12. violation();

13. };

14. bsd::op{fchmod} pre {

15. struct wr_stat s;

16. wr_fstat($fd, &s);

17. if (!created(s.nodeid))

18. violation();

19. };

20. bsd::op{execve} pre {

21. violation();

22. return WR_D_BADPERM;

23. };

Figure 3: Partial imapd program behavior speci�cation in WDL

also handles the copying of argument data between
user space and kernel space automatically, allowing
wrapper developers to focus on the key aspects of a
wrapper instead of low-level programming details.

With ID wrappers, we can monitor programs for
improper modi�cations to objects that otherwise
cannot be accomplished using traditional audit
trails. In particular, ID wrappers can examine data
read/written to speci�c �les without a huge over-
head. Using this capability, we wrote an ID wrapper
that examines the passwd program to ensure that
when a user (say Joe) invokes the passwd program,
the program modi�es only the part of the password
�le associated with the password of Joe. If there is a
vulnerability in the passwd program that allows the
attack to control the program to arbitrarily mod-
ify the password �le (e.g., changing the user ID of
a user), this ID wrapper is able to detect such an
attack.

3.2 Signature-based Techniques

Signature-based ID systems detect intrusions by ob-
serving events and identifying patterns which match
the signatures of known attacks. An attack signa-
ture de�nes the essential events required to perform

the attack, and the order in which they must be
performed. Di�erent ID systems represent signa-
tures in di�erent ways. The State Transition Anal-
ysis Tool (STAT) [5], for example, represents signa-
tures with state transition diagrams. During run-
time, these diagrams direct the operation of �nite
state machines that represent possible intrusions in
progress. The STAT system advances these state
machines from state to state as it observes events
that match parts of attack signatures. If the STAT
system observes a sequence of events that ultimately
moves one of these �nite state machines to its �nal
state, the STAT system declares that it has detected
an intrusion.

We have implemented the Mailstatwrapper, an ex-
ample of STAT-like ID which attempts to detect a
well-known attack on a commonly-used UNIX mail
daemon. The signature of this mail daemon attack
is e�ectively hard-coded in the structure of the Mail-
stat wrapper. When deployed, the Mailstat wrap-
per wraps all processes on the system, and inter-
cepts and examines every system call that might
correspond to an event in the mail daemon attack
signature. It uses a database table to store the state
of the �nite state machines representing possible
attacks in progress. Whenever Mailstat observes
a system call that matches the �rst event in the

mail daemon attack signature, it creates a new �-
nite state machine by adding a new line to the table.
As it intercepts system calls and observes events, it
advances the state of the appropriate �nite state
machines according to the mail daemon attack sig-
nature's state transition diagram. When any �nite
state machine in the table reaches its �nal state,
the Mailstat wrapper indicates an intrusion and
reports the identities of the processes which caused
the events leading to its detection.

3.3 Sequence-based Techniques

The sequence-based intrusion detection approach by
Forrest [3] calculates an anomaly value for a pro-
gram execution based on the number of sequences
the program generates that are missed in a pre-
computed database of sequences. The technique has
been found to be e�ective under o�ine evaluation
using audit data collected from di�erent environ-
ments. It requires properly-constructed norma sen-
sitive to program versions and con�guration, and
can in some cases require signi�cant processing re-
sources to perform anomaly calculation in real time.
We have structured Seq id, our sequence-based ID
wrapper, to address these issues.

Seq id runs in two modes: record mode and detect
mode. In record mode, Seq id automatically gen-
erates a normative sequence database for each pro-
gram executed. Using Seq id, we have generated a
per-program database for every program executed
on our test machines. To increase eÆciency and
simplicity, we have slightly modi�ed the algorithm
described in [2] to merge some sequences, which
would remain unique in the original technique. Ini-
tial comparison tests between the two algorithms
indicate that the detection accuracy is similar. In
detect mode, Seq id decides if each observed system
call completes a sequence stored in the program's
database of normal behavior. Seq id measures the
magnitude of each deviation, and reports those of
suÆcient magnitude.

4 Experiments and Performance

Measurement

To evaluate the intrusion detection wrappers with
respect to their ability to detect attacks, we tested

the ID wrappers with several existing attacks.
These attacks exploit vulnerabilities in security-
critical programs that possess privileges to obtain
a shell running as root. We describe the programs
and the attacks below.

imapd Some versions of the Internet Mail Access
Protocol (IMAP) server contain a number of
bu�er-over
ow bugs that allow a remote user
to obtain a shell running as root (CERT Ad-
visory CA-97.09). We obtained an exploita-
tion script to one of the bugs from RootShell
(www.rootshell.com). The exploit script care-
fully crafts the input to imapd that exceeds the
size of a special stack bu�er and presents the
name to the IMAP server to overwrite the saved
instruction pointer and execute the planted ma-
chine code. The code then executes a shell run-
ning with root. We wrapped imapd using a
speci�cation-based ID wrapper Imapd id spe-
ci�c to imapd and a sequence-based ID wrapper
separately. Both wrappers were able to detect
the exploit script's attack.

lpr Due to insuÆcient bounds checking on argu-
ments which are supplied by users, it is pos-
sible to overwrite the internal stack space of
some versions of the lpr program while it is ex-
ecuting. This can allow an intruder to cause
lpr to execute arbitrary commands by sup-
plying a carefully designed argument to lpr
(AUSCERT Advisory AA-96.12). These com-
mands will be run with the privileges of the lpr
program. When lpr is setuid root it may al-
low intruders to run arbitrary commands with
root privileges. We simulated the attack using
a script from RootShell. We wrapped lpr using
a speci�cation-based wrapper tailored for lpr
and the wrapper was able to detect the attack.

lprm The program lprm is part of the printing
subsystem. The program is used to remove a
job in the printer queue. There is a bu�er-
over
ow vulnerability in some versions of this
program that allows a local user to execute
arbitrary commands with root privileges.
We obtained a script from Security Bugware
(http://161.53.42.3/~crv/security/bugs/list.html)
and tested a speci�cation-based wrapper writ-
ten for lprm with the script. The speci�cation-
based wrapper detected the attack when lprm
was tricked to execute the Bourne shell.

binmail The binmail program is the back-
end mailer that delivers mail messages to

Seq_id

Respond
Actions

Comb_id

Imapd_id

Figure 4: Composing Two ID techniques

users' mailboxes. It does so by append-
ing the messages to the mailbox �les di-
rectly. In some old versions, binmail changes
the ownership of a user's mailbox (usually
/var/spool/mail/<username>) back to the user
after it appends a message if the mailbox �le is
not owned by the user initially. In particular,
the binmail program (/bin/mail) in 4.2 BSD
Unix fails to reset the setuid bit of the mailbox
�le after it appends a message and changes the
owner of the �le [5]. An attacker, who creates
a mailbox �le with the setuid bit on for the
superuser, can trick binmail into making the
�le to be setuid root by invoking binmail to
send a mail message to root. We deployed the
Mailstatwrapper and tested the wrapper with
an exploitation script we created. The wrapper
detected the intrusion immediately.

4.1 Combining Multiple Techniques us-
ing Composition

Our wrapper frameworks allow multiple ID wrap-
pers to cooperate to enhance their performance.
The Common Intrusion Detection Framework [6]
discusses several ways ID components cooperate
with each other. We performed an experiment in
which two ID wrappers cooperates to reinforce each
others �ndings. Figure 4 depicts the con�gura-
tion. A sequence-based wrapper and a speci�cation-
based wrapper are used to wrap the imapd pro-
grams. Every system call performed by imapd will
be intercepted by both wrappers (The order will be
determined by the loading sequence). Each wrap-
per will analyze the operations of imapd individually
and generate an abstract warning event to the ab-
stract wrapper (Com id) when they �nd an attack.
The abstract wrapper judges the output from both

Seq id and Imapd id and accepts it when both ID
wrappers think the program is under an attack. In
this case it will kill the process.

We tested the composite ID wrappers using the
imapd attack described in the last subsection. An
interesting observation is that the two wrappers
detect the attack at di�erent system call. The
Imapd id detected the attack when the program
executes a Bourne shell (at the execve system call).
The Seq id detected the attack several system calls
after the execve system call. The abstract ID wrap-
per Com id killed the process after it receives warn-
ing from both wrappers. Potentially, such con�g-
uration could reduce the false positive rate as the
whole IDS will detect a false attack when both tech-
niques produce a false positive. However, it could
also cause some attacks to escape the detection if
only one technique detects the attack. Thus, fur-
ther research is needed to determine how to best
combine di�erent techniques.

4.2 Performance

We have studied the performance of the intrusion
detection wrappers. We measured the overhead
caused by the intrusion detection wrappers on the
running time of programs using a Kernel Build test,
in which the time taken to compile a Generic ver-
sion of the FreeBSD kernel was measured. Also,
we measured the overhead caused by ID wrappers
from a user's perspective, in terms of latency and
throughput, for a Web server and a FTP server.

Average Kernel Build Time Average HTTP Latency Average HTTP Throughput

time � penalty time � penalty t-put � penalty
(s) (s) (s) (s) (Mbits/s) (Mbits/s)

no WSS 583.43 0.53 0% 0.657 0.025 0% 7.455 0.21 0%

WSS only 604.38 0.46 3.47% 0.652 0.0023 -0.081% 7.456 0.08 0.01%

Seq id 624.62 1.23 6.59% 0.687 0.017 4.52% 7.038 0.164 5.61%

Http id - - - 0.705 0.0247 7.38% 6.928 0.157 7.08%

Http id & Seq id - - - 0.744 0.018 13.26% 6.607 0.127 11.39%

Table 2: FreeBSD Prototype Performance for Kernel Build and Web Server Benchmarks

Average FTP Latency Average FTP Throughput

time � penalty t-put � penalty
(s) (s) (Mbits/s) (Mbits/s)

no WSS 28.2418 0.9019 0% 8.776 0.093 0%

WSS only 28.3332 1.0773 0.32% 8.768 0.069 0.09%

Seq id 28.30125 1.0835 0.21% 8.743 0.076 0.38%

Ftpd id 28.3592 0.7954 0.42% 8.756 0.085 0.23%

Ftpd id & Seq id 27.9224 1.2007 -1.13% 8.573 0.012 2.31%

Table 3: FreeBSD Prototype Performance for FTP Server Benchmarks

Table 2 summarizes the results of the performance
tests for Kernel Build and for a Web server. The
�rst column shows the average time taken to com-
pile the FreeBSD kernel 1) under normal conditions,
2) with the WSS loaded into the kernel, and 3)
with the sequence-based intrusion detection wrap-
per Seq id wrapping the compilation process. The
second and third columns of the table contain re-
sults for a custom-made Web server benchmark.
The Average HTTP Latency column describes the
delay a Web client experiences between the moment
it makes a request and the moment it receives the
Web server reply. The Average HTTP Through-
put describes the rate at which the Web server re-
turns data to the Web clients. We measured the
latency and throughput of the Web server when the
Web server is wrapped by Seq id, Http id, and both
Seq id and Http id. The results were produced by a
custom-made Web server benchmark executed with
an Apache 1.3.0 Web server and the WebStone 2.0.1
benchmarking software. The Apache Web server
ran on a 166MHz Intel Pentium-based microcom-
puter with 32MB RAM running a Generic FreeBSD
2.2.2 kernel. Two Pentium 400MHz machines were
used to run 32 WebStone 2.0.1 Web clients through
a series of 10 15-minute trials using the standard
WebStone 2.0.1 �le set for each row in table 2.

Table 3 shows the results of the performance tests
using a custom-made FTP server benchmark. The
Average FTP Latency column describes the delay
a FTP client experiences between the moment it
makes a anonymous request and the moment it re-
ceives all the data from the server. The Average
FTP Throughput describes the rate at which the
FTP server returns data to the FTP clients. The
table denotes the latency and throughput of the
FTP server under controls to Seq id, Ftp id, and
both Seq id and Ftp id. Ftp id is a speci�cation-
based wrapper that restricts the operations that can
be performed by the FTP server. The FTP server
(ftpd) in the FreeBSD 2.2.2 distribution was used in
the tests. The Average FTP Latency and Average
FTP Throughput results were obtained in a smil-
iar manner to the HTTP results using a modi�ed
WebStone software that performs anonymous FTP
fetches instead of HTTP fetches.

The performance results show that WSS alone im-
poses 3-4% penalty on the compilation time of the
FreeBSD kernel. Seq id adds another 3-4% to the
compilation time of the FreeBSD kernel. Impact
caused by WSS on the latency and throughput of a
Web/FTP server is minimal, possibly because WSS
only intercept the fork, execve, and exit system calls,
which are used infrequently in a Web/FTP server.

The sequence-based wrapper and the speci�cation-
based wrappers impose approximately 5-7 % over-
head on the Web/FTP server, and their impacts
add up when they are used together. While we
have designed the wrapper toolkit and ID wrappers
with consideration for performance, we have not op-
timized the prototype; therefore, performance can
possibly be improved.

5 Related Work

Balasubramaniyan et. al. [1] have proposed the use
of autonomous agents for intrusion detection. They
have developed an architecture for the autonomous
ID agents. Our idea is similar to their agent idea in
that ID wrappers can be viewed as kernel-resident
ID agents. Their conjecture is that the performance
of the agents can be improved if they are imple-
mented inside the kernel. Our results support their
conjecture; in particular, kernel-resident agents can
be very eÆcient and impose very little performance
penalty on a system.

Sekar et. al. [11] have devised an eÆcient method
of implementing a form of speci�cation-based intru-
sion detection in the kernel. Some of the imple-
mentation strategies employed by Sekar's method
are similar to those we have employed in ID wrap-
pers. For example, both e�orts associate individual
kernel-resident state machines (\wrappers," in our
terminology) with each application process under
observation, using interposition techniques at the
operating system's system call interface to enable
these kernel-resident state machines to observe ap-
plication process behavior at a �ne-grained level of
detail. Sekar's e�ort concentrates on the eÆcient
implementation of a single form of speci�cation-
based intrusion detection, and has achieved a result
which allows the intrusion detection system to han-
dle multiple patterns with the same low overhead as
a single pattern. Our e�ort, in contrast, has sought
to produce a general framework for the implemen-
tation of multiple intrusion detection algorithms, as
well as a convenient means for managing their simul-
taneous deployment and composition. Both our ef-
fort and Sekar's have observed favorably low over-
heads in terms of observed application performance
degradation due to the use of kernel-resident intru-
sion detection. Sekar's technique resulted in over-
heads of no more than 1.5% in ftpd, telnetd, and
httpd benchmarks documented in [2].

6 Discussion

The idea of moving intrusion detection functions
into the kernel is not new and has been hinted at in
the literature. Balasubramaniyan et. al. discussed
the advantages and disadvantages of integrating in-
trusion detection agents inside the kernel [1].

In-kernel intrusion detection has several advantages.
First, overhead due to extra context switching is
avoided { a system call is analyzed by the ID logic
at the same kernel context at which the system
call executes. In addition, information is registered
and processed at or near the place where it is pro-
duced, reducing the time and resources for transfer-
ring the information to the analysis engine. Also,
this proximity allows prompt detection and reduces
the possibility of the information being modi�ed by
an attacker before it gets to the ID analysis engine.
Lastly, it is harder for an intruder to tamper with
the ID system as the attacker would have to modify
the kernel (e.g., by defeating the kernel's memory-
protection mechanism).

However, the kernel-resident implementation strat-
egy also has its disadvantages. First, kernel-resident
ID systems are not portable across platforms. Sec-
ond, a misbehaving ID system can do much more
damage if it is running in the kernel rather than in
user space because it has full access to the system.
Third, entities in the kernel can have a large impact
in the host behavior by slowing down fundamental
operations (e.g., kernel data structures, accesses to
memory, disk). Fourth, entities inside the kernel
are very diÆcult to manage and con�gure. Finally,
kernel programming is at a low level of abstraction,
where the resources available provide very limited
functionality when compared to the higher-level ab-
stractions available in user space.

Our work essentially illustrates that in-kernel intru-
sion detection is feasible and practical provided that
the kernel-resident ID system is designed and coded
carefully. With minimal adjustment, many intru-
sion detection techniques can be implemented to run
inside the kernel eÆciently without impacting the
host behavior. By using the Generic SoftwareWrap-
per Toolkit as the basis for implementing kernel-
resident intrusion detectors, our approach inherits
the advantages of in-kernel intrusion detection while
avoiding the problems of portability, manageabil-
ity, and the low-level nature of kernel programming.
We strongly believe that further investigation of in-

kernel intrusion detection is worthwhile and neces-
sary.

7 Conclusion and Future Work

We have described our e�ort to enhances IDS ca-
pability by exploiting the execution environment
o�ered by software wrappers. In order to take
advantage of the potential for increased function-
ality and performance in kernel-resident intrusion
detection systems, we have begun the development
of a Generic Software Wrapper-based ID support
framework, and have explored this framework's abil-
ity to ease the implementation, management and
simultaneous composed deployment of three major
intrusion-detection algorithms. We have described
our ID-support extensions to the basic Generic Soft-
ware Wrapper Toolkit, and how these extensions
eased the implementation of our prototype ID wrap-
pers. Based on our experience and the results of our
performance benchmarks, we predict that many ID
techniques can be eÆciently implemented as kernel-
resident wrappers. In all of our benchmarks, the
overall observed application performance penalty
associated with the use of our ID wrappers never
exceeded 7.4%.

In addition to increased eÆciency, ID wrappers de-
rive several other bene�ts from their kernel-resident
Generic Software Wrapper-based implementation.
First, the interposition capability of the wrappers
system provides ID wrappers with a greater range
of �ne-grained event data than is available to user-
space techniques which must rely upon log-based
audit data. All system calls and their parameters
are visible to ID wrappers. Second, this interpo-
sition capability and the generality of the C-based
wrapper implementation language allows wrappers
to respond to intrusive events as they occur, with a
broad range of response functionality. Finally, using
the wrapper framework, kernel-resident ID compo-
nents can be con�gured and managed easily to en-
force a global ID policy and possibly to interoperate
with large scale IDS running in user space.

Our most promising direction for future research
concerns the composition of multiple intrusion
detection wrappers at run-time. The ability to si-
multaneously apply multiple complimentary intru-
sion detection techniques to the same event stream
appears to present a potential means of providing

more accurate detection. Another promising di-
rection involves utilization of wrapper's ability to
examine data read/written to speci�c �les or con-
nection endpoints (e.g., sockets) to detect attacks
that cannot be spotted by just looking at parame-
ters of system calls. Other directions include coop-
eration with large-scale intrusion detection systems,
the development of distributed ID wrappers, and ef-
forts to improve the trust-worthiness and safety of
the kernel-resident ID module.

References

[1] J. Balasubramaniyan et al. An Architecture for In-
trusion Detection using Autonomous Agents. Tech-
nical Report TR-98-05, Department of Computer
Science, Purdue University, June 1998.

[2] T. Bowen, D. Chee, M. Segal, R. Sekar,
T. Shanbhag, and P. Uppuluri. Building surviv-
able systems: An integrated approach based on in-
trusion detection and damage containment. Pro-
ceedings of the DARPA Information Survivability
Conference and Exposition (DISCEX) 2000, 2:84{
99, 2000.

[3] S. Forrest et al. A sense of self for unix processes.
In Proceedings of the 1996 Symposium on Security
and Privacy, pages 120{128, Oakland, CA, May 6-8
1996.

[4] T. Fraser, L. Badger, and Feldman M. Hardening
COTS software with generic software wappers. In
Proceedings of the 1999 Symposium on Security and
Privacy, 1999.

[5] K. Ilgun, R. Kermmerer, and P. Porras. State tran-
sition analysis: A rule-based intrusion detection ap-
proach. IEEE Transactions on Software Engineer-
ing, 21(3):181{199, 1995.

[6] C. Kahn et al. A common intrusion detection
framework. Journal of Computer Security, 1998.

[7] C. Ko, G. Fink, and K. Levitt. Automated Detec-
tion of Vulnerabilities in Privileged Programs Us-
ing Execution Monitoring. In Proceedings of the
10th Computer Security Application Conference,
Orlando, FL, December 5-9, 1994.

[8] C. Ko, M. Ruschitzka, and K. Levitt. Exe-
cution Monitoring of Security-Critical Programs in
Distributed Systems: A Speci�cation-Based Ap-
proach. In Proceedings of the 1997 IEEE Sympo-
sium on Security and Privacy, Oakland, California,
1997.

[9] S. Kumar. Classi�cation and Detection of Com-
puter Intrusions. PhD thesis, Department of Com-
puter Science, Purdue University, August 1995.

[10] Karen Oostendorp, Christopher Vance, Kelly Dja-
handari, Benjamin Uecker, and Lee Badger. Pre-
liminary Wrapper De�nition Language Speci�ca-
tion. Technical Report #0684, Trusted Information
Systems, Inc., 1997.

[11] R. Sekar and P. Uppuluri. Synthesizing fast intru-
sion prevention/detection systems from high-level
speci�cations. Proceedings of the 8th USENIX Se-
curity Symposium, pages 63{78, 1999.

