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Abstract

Despite numerous security technologies crafted to resist buffer overflow vulnerabilities, buffer overflows continue to
be the dominant form of software security vulnerability. This is because most buffer overflow defenses provide only
partial  coverage, and the attacks have adapted to exploit problems that are not well-defended, such as heap over-
flows. This paper presents PointGuard, a compiler technique to defend against most kinds of buffer overflows by en-
crypting pointers when stored in memory, and decrypting them only when loaded into CPU registers. We describe the
PointGuard implementation, show that PointGuard’s overhead is low when protecting real security-sensitive applica-
tions such as OpenSSL, and show that PointGuard is effective in defending against buffer overflow vulnerabilities
that are not blocked by previous defenses.

1  Introduction

Despite numerous technologies designed to prevent
buffer overflow vulnerabilities, the problem persists,
and buffer overflows remain the dominant form of soft-
ware security vulnerability. Attackers have moved from
stack smashes [25] to heap overflows [5], printf for-
mat vulnerabilities [6], multiple free errors [1, 13] etc.
which bypass existing buffer overflow defenses such as
non-executable memory segments [14, 12], StackGuard
[9] and libsafe [2].

All of these classes of attack work to corrupt pointers :
Sometimes code pointers (function pointers and
longjmp buffers) and sometimes data pointers [4]. In
principle, an attacker can use overflows to corrupt arbi-
trary program objects, but in practice corrupting point-
ers is by far the most desirable attacker target. The
reason is that the attacker is seeking total control of the
victim process, i.e. they want the process to execute
payload  code [25] so they can get to a root privileged
shell.

Thus we sought an effective defense for pointers.
PointGuard  defends against pointer corruption by
encrypting pointer values while they are in memory, and
decrypt them only immediately before dereferencing,
i.e. just as they are loaded into registers. Attackers

attempting to corrupt pointers in memory in any way
can destroy  a pointer value, but cannot produce a pre-
dictable pointer value in memory because they do not
have the decryption key. We modify a C compiler
(GCC) to emit code that encrypts pointers for storage in
memory and decrypts them for dereferencing.

The rest of this paper is organized as follows.Section
2 elaborates on pointer corruption vulnerabilities. Sec-
tion 3 presents the PointGuard design and implementa-
tion. Section 4 presents our compatibility testing,
showing that PointGuard imposes minimal compatibil-
ity issues on commonly used software. Section 5 pre-
sents our security testing against known pointer
corruption vulnerabilities in actively used software. Sec-
tion 6 presents our performance testing, showing that
the performance costs of PointGuard protection are min-
imal. Section 7 describes related work in defending
against pointer corruption. Section 8 presents our con-
clusions.

2  Pointer Corruption Vulnerabilities

An attacker’s goal in attacking a vulnerable program is
to obtain that program’s privileges. While the attacker
could manipulate the program into directly performing
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some action, it is much more convenient for the attacker
to get a shell prompt with the program’s privileges. For
these reasons, the attacker most desires to get the victim
program to execute arbitrary code , colloquially referred
to as “shell code” because the common code performs
the semantic equivalent of exec(/bin/sh).

To get the program to execute shell code, the attacker
wants to modify a code pointer  (a pointer that the pro-
gram expects to point to legitimate code) such that the
code pointer points to code the attacker would like exe-
cuted. Once the code pointer has been thus modified, at
some later point in execution the program dereferences
the corrupted code pointer, and instead of jumping to the
intended code, the program jumps to the attacker’s shell
code.

The classic form of buffer overflow attack is the
“stack smash” described by Aleph One [25]. In this
attack, buffers (character arrays) that are allocated on
the stack (automatic  variables [21] declared within the
body of a C function) are overflowed with the goal of
corrupting the function’s return address within the acti-
vation record, as shown in Figure 1. In previous work,

we provided the StackGuard defense [9] against stack
smashing attacks, which detect corrupted return address
values in activation records by ornamenting the activa-
tion record with a canary word, as shown in Figure 2.
When a stack smash occurs, the overflow necessarily
corrupts the canary word.

The general case of buffer overflows is to overflow
buffers allocated anywhere  (stack, heap, or static data
area) corrupting whatever important state is adjacent to
the overflowable buffer. Figure 3 shows a simple pro-
gram subject to a static buffer overflow, where excess
input intended for statbuf corrupts the statptr
pointer. Figure 4 shows a similar program subject to
heap overflows. In addition to threatening the adjacent
buffer, this overflow also has the potential to corrupt the
malloc data structures.

In principle, this would allow the attacker to induce
arbitrary behavior in the victim program. In practice, the
state adjacent to overflowable buffers are determined by
the vagaries of data layout within the program, and
depending on circumstances, may have limited seman-
tics of use to the attacker. Thus attackers are most inter-
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ested in corrupting pointers , because they give the most
leverage.

Conover et al [5] describe a variety of methods to use
buffer overflows against buffers located in heap and
static data areas to corrupt adjacent pointers. In some
cases, they directly corrupt code pointers  (function
pointers and lonjmp buffers) to directly seize control
of the victim program. In other cases, they indirectly  use
overflows to corrupt data pointers  to point to unin-
tended locations, and from there use those data pointers
to corrupt code pointers. Thus the PointGuard defense is
designed to protect all pointers from corruption.

3  PointGuard Defense Against Pointer Cor-
ruption

The PointGuard defense against pointer corruption con-
sists of encrypting pointer values in memory and only
decrypting the pointers when they are loaded into CPU
registers. Section 3.1 describes basic PointGuard opera-
tions. Section 3.2 describes PointGuard encryption. Sec-
tion 3.3describes our implementation of the Pointguard
defense. Section 3.4 elaborates on special implementa-
tion issues that Pointguard imposes on the compiler and
on developers.

3.1 PointGuard Operation

Pointers are vulnerable in memory, where they can be
corrupted using various buffer overflow and printf for-
mat string attacks. Encryption protects pointers, because
the attacker cannot corrupt pointers such that they will
decrypt  to a predictable value. Conversely, pointers are
safe in registers, because registers are not addressable
via computed addresses, and thus not subject to over-
flow attacks.

This scheme critically depends on pointers always being
loaded into registers prior to being dereferenced. Older
CPU instruction sets support various forms of memory
indirection  [23] where a pointer could be dereferenced
without using a register. More recent RISC instruction
set architectures dispensed with memory indirection as
being too slow, adopting instead a load/store architec-
ture  [28] in which all values are loaded into registers
before operating on them. Even legacy CISC instruction
set architectures [17] found load/store instruction
sequences to be most efficient, and compilers for these
CPUs were subsequently changed to prefer load/store
instruction sequences. PointGuard critically depends on
a load/store instruction discipline.

Figure6 through Figure8 illustrate how PointGuard
works to defend pointers. Figure 5 shows a normal
pointer dereference. Figure 6 shows a normal pointer
dereference under attack, where the attacker used a
buffer overflow or related means to corrupt a pointer to
point to a different location. Figure 7 shows a Point-
Guard dereference, decrypting the pointer value as it is
loaded into the CPU register. Figure 8 shows a Point-
Guard dereference under attack. The attack fails because
the attacker’s corrupted value is passed through the
PointGuard decryption process, producing a random
address reference, and for reasonably sparse address
spaces, probably causing the program to crash Crashing
is the objective: to cause the victim program to fail-stop ,
rather than hand control over to the attacker.

Notably critical to this scheme is that the attacker
cannot know or predict the encryption key. This key is a
relatively easy secret to keep, because it is never shared.
The key is generated at the time the process starts, using
some suitable source of entropy such as reading a value
from /dev/random. This key is then never shared
with any entity outside the process’s address space. To
obtain the key, the attacker would either have to already
have permission to manipulate the process with debug-

myfunc() {
char *buf1 = (char *)malloc(BUFSIZE);
char *buf2 = (char *)malloc(BUFSIZE);

gets(buf1);
gets(buf2);

}

Figure 4  Vulnerable to Heap Overflow
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ging tools (e.g. ptrace) or would have to have already
successfully perpetrated a buffer overflow attack against
the process.

The key is available to processes that share memory,
but such processes are already effectively sharing
enough to be fully vulnerable to each other. In fact, the
PointGuard key is significantly less sensitive than some
other, more durable objects that processes may share

across a shared-memory boundary, such as file descrip-
tors.

3.2 PointGuard Encryption

PointGuard takes the odd position of using encryption to
provide integrity. PointGuard seeks to provide integrity
for pointers, so that pointers cannot be modified in ways
the programmer did not intend. Encryption  provides for
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confidentiality, but is cryptographically weak providing
integrity, and so PointGuard would seem to be crypto-
graphically weak.

However, PointGuard never gives the attacker a look
at the ciphertext. The key is chosen anew at process
exec() time, and in the absence of already  having some
way to bypass PointGuard, attackers have no way of
determining what that key is, or of reading any sample
encrypted pointer values. Thus the cryptographic weak-
ness of using encryption for integrity is irrelevant, and it
suffices to make it merely improbable to be able to
spoof integrity in pointer values on the first try . Point-
Guard makes pointers brittle  with respect to corruption:
attackers cannot use pointer corruption to read or write
any particular  data structure.

Conversely, because PointGuard sits between the
CPU level 1 cache and registers, it is very important that
PointGuard be fast. There is often a few cycles of load
delay slots between loading a pointer into a register
value and dereferencing the pointer value, so if decryp-
tion can be done in a few cycles, it can be nearly free.
Therefore, it is appropriate to use very fast and simple
“encryption” techniques, which we elaborate on in Sec-
tion 3.3.2.

3.3 PointGuard Implementation

PointGuard is implemented as a C compiler enhance-
ment. PointGuard defense mechanisms are integrated
into the binary programs that compiler emits. The com-
piler mist consistently  perform encryption and decryp-
tion of pointers be consistent , i.e. that pointers are con-
sistently encrypted at such places that they are always
decrypted before use, and that only encrypted pointers
are decrypted.

It is important to the security value of PointGuard that
pointers are encrypted when stored in memory, i.e. stor-
age that is addressable, and thus vulnerable to attack due
to un-typed memory access. CPU registers are notably
not  addressable, and thus the ideal method is to store
pointers in the clear in registers, and encrypted in mem-
ory. There are several potential  PointGuard implemen-
tation strategies, described in Section 3.3.1. Section
3.3.2 describes our actual PointGuard implementation.

3.3.1 Potential Implementation Strategies
There are many possible places in the compiler to put
the encryption/decryption of pointers. These options
must all satisfy the “consistency” requirement, and trade
off the security value against ease of implementation.

In the Preprocessor: It is possible to use a preprocessor
(possibly C’s conventional CPP preprocessor) to do
a source->source translation of programs, so that all
pointer expressions are transformed to include the
encryption upon setting pointer values, and decryp-
tion on reading pointer values. The advantage of this
approach is ease of implementation. The disadvan-
tage is that C macro expansion has a propensity to
evaluate terms in an expression multiple times,
which could cause problems if it results in pointer
values being decrypted twice . There is also a sub-
stantial risk that transient subexpressions performing
the PointGuard encryption/decryption might result
in temporary values containing clear text pointers
being left in memory.

In the Intermediate Representation: Most compilers
first transform the source code into an intermediate
representation (commonly known as an abstract syn-
tax tree) to perform architecture-independent manip-
ulations on the intermediate representation, and then
emit architecture-dependent instructions from the
modified intermediate representation. One of the
manipulations performed on the intermediate repre-
sentation can be to insert code to encrypt and de-
crypt pointer values when they are set and read,
respectively. The advantage to this method vs. the
preprocessor is that it avoids the duplicate expres-
sion problem, and can be more efficient. The disad-
vantage to this method is that it may leave decrypted
pointer values in the form of temporary terms in
main memory.

In the Architecture-Dependent Representation: As
above, maximal security protection is provided if
pointer values are only decrypted while in the CPU’s
registers. However, the CPU’s registers are only vis-
ible to the compiler in the architecture-dependent
representation. Compilers are capable of manipulat-
ing architecture-dependent representations (e.g. for
“peephole optimization”) but at the cost of having to
do the compiler work over again for each CPU ar-
chitecture to be targeted (as in GCC, which seeks to
target many CPUs, including the Intel x86, the
IBM/Motorola PPC, and the Sun SPARC proces-
sors). This particular transformation would trans-
form instructions to load pointer values from
memory into registers to add the decryption, and
would transform the saving of pointer values from
registers to memory to add encryption.
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3.3.2 Actual PointGuard Implementation

Among the three implementation alternatives, we chose
to implement PointGuard in the intermediate representa-
tion (AST in GCC) as shown in Figure 9. We wanted to
implement as late as possible in the compiler, to maxi-
mize confidence that the PointGuard defenses are not
optimized away. AST is the last stage in the GCC com-
piler where type information is clearly visible, making it
possible to distinguish between pointers and other data.

One might be tempted at this point to consider Point-
Guard-style encryption on all loads and stores between
memory and CPU registers. However, this defeats the
purpose of PointGuard: both legitimate loads and stores
and buffer overflows alike would be passed through the
PointGuard encryption/decryption, and the buffer over-
flow attacks would start working again. It is similar to
running rot13 encryption twice.

The PointGuard encryption method is very basic. The
key is a machine-word size (e.g. 32 bits on x86) word,
initialized from a suitable source of random keys (in our
Linux implementation, /dev/urandom) one per pro-
cess address space. Pointers are encrypted by XOR’ing
against the key, and decrypted by XOR’ing again
against the same key. This method is simple & efficient;
in many cases the single cycle XOR operation will fit
neatly into a memory load delay slot (whether implicit
or explicit).

This method is cryptographically secure, because
cracking it requires guessing the random 32-bit value.
Brute force guessing is impractical, because wrong
guesses force the victim process to exit, and the new
process will have a different key. Massive numbers of
processes dying and re-starting is sufficiently “noisy”
that conventional intrusion detection methods can detect
the attempt at brute force.

Nor can the key be extracted by looking at ciphertext,
because the ciphertext is never actually shared with any-
one. To obtain a sample of ciphertext, the attacker
would have to coerce the victim program into exposing
internal pointer values to the attacker. Attackers seeking
the privileges of the victim process normally do not
have read access to the processes address space. Pro-
grams do not normally dump data structures containing
pointers outside of their address space, because such
pointers lose any meaning outside of the address space. 

Thus we cannot identify any feasible means by which
the attacker can obtain the PointGuard key.

3.4 PointGuard Special Issues

Apart from the basic problem of building a compiler
that correctly emits code implementing the PointGuard
defense, Pointguard raises the following special issues.
Statically initialized data is described in Section 3.4.1.
Protecting the PointGuard key is described in Section
3.4.2. Preventing leaks of clear text pointers is described
in Section 3.4.3. Mixed mode code requires programmer
intervention, described in Section 3.4.4

3.4.1 Statically Initialized Data

The C language includes support for static initialization
of data, including pointers. Normally, these static values
are computed at compile time and initialized as the pro-
gram loads. However, because PointGuard chooses the
encryption key at exec time, statically initialized point-
ers cannot be properly initialized until after the program
has begun running.

The solution to this is straightforward: we modify the
initialization code emitted by the compiler (stuff that
runs before main()) to re-initialize statically initial-
ized pointers with values encrypted with the current pro-
cess’s key.

Pre-
Processor

Parser Code
Generator

Architecture-specific
optimizer

C source
code

C source
code AST RTL

Machine
Code

PointGuard
insertion point

Figure 9  PointGuard in GCC
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3.4.2 Securely Initializing and Protecting 
the PointGuard Key

Section 3.3.2 described how the attacker cannot feasibly
obtain the PointGuard key. But it is also necessary that
the attacker not be able to set the PointGuard key to a
chosen value.

To defend against such an attack, the PointGuard key
is stored on its own page when initialized. That page is
then made read-only (using mprotect) so that the
attacker cannot subsequently use a buffer overflow to
change the key value. To make the key page writable
again, the attacker would have to execute malicious
code, which requires them to bypass PointGuard protec-
tion.

3.4.3 Preventing Clear Text Leaks

PointGuard being implemented at the AST level (see
Section 3.3.1) the actual CPU registers are not visible.
Thus it is possible for the compiler to emit register spill
instructions that store register contents to the stack in
clear text form to make registers available for other pur-
poses. Such register spills are a security threat to Point-
Guard, because an attacker could potentially use a
buffer overflow to corrupt a pointer value stored in clear
text form from a register spill, which is subsequently
dereferenced by the program when the register values
are restored.

To defend against this, a future implementation of
PointGuard will flag the AST expressions containing
PointGuard-relevant expressions such that the flag
marks are passed through to the RTL layer. The RTL
layer can then notices that PointGuard values are about
to be spilled to memory, and insert PointGuard encryp-
tion/decryption instructions along with the register spill
& restore instructions.

3.4.4 Mixed-mode Code

Because pointers are encrypted, mixed mode code
(some PointGuard code, some not) are not compatible
unless there is an interface that is aware of the differ-
ence, and performs appropriate encryption and decryp-
tion. Ideally, this situation should be minimized by com-
piling all code with PointGuard, as is possible when
building an all open source Linux distribution, or in em-
bedded systems.

But in practice, binary-only applications and libraries
are sometimes necessary, and so this issue must be han-
dled. There are two cases that need to be handled: PG
code calling non-PG code, and non-PG code calling PG

code. Both cases are handled with enhancements to
function declarations.

To handle PG code calling non-PG code, we specially
mark all external function prototype declarations for
non-PG code. This is made convenient by the compiler
directives __std_ptr_mode_on__ and
__std_ptr_mode_off__. Functions declared
between these directives are marked as needing special
marshalling to decrypt arguments before the functions
are called. Thus the “hello world” program shown in
Figure 10 that is calling out to a non-PG stdio library
can make its call to the printf library function.

These declarations can be used at finer granularity as
storage classes, which is useful for declaring arguments
being passed in from non-PG code to PG code. For
instance, declaring “char *
__std_ptr_mode_on__ x” says that x is a non-
encrypted  pointer, and PointGuard will then omit the
decryption code when reading this argument. A short-
hand notation for this is “ char @x”.

Because the conversion will be handled by the func-
tion itself, it does not matter what kind of function pro-
totype the calling code presumed. So for instance, the
printenv program shown in Figure 11 declares that
its second argument is of type “ char @@” rather than
of type “ char **”. The @ in place of * denotes a
pointer that is not  encrypted, and thus needs to be han-
dled specially.

It should be further noted that the @ type declarations
need to be carried deeper into the PG code, to the extent
that the data structure being passed in has depth.
Abstractly, if the non-PG code passes in a pointer to
pointer to integer, and the PG code wants to dereference
the first pointer and then pass pointer to integer to a sec-
ond internal PG function, then the internal function
needs to also understand that the argument is not
encrypted. Concretely, the example shown in Figure 11
handles the envp argument, which is of type pointer to
pointer to character array, which passes the envp to an
internal function print_env() expecting a similar

__std_ptr_mode_on__
#include <stdio.h>
__std_ptr_mode_off__

main() {
printf(“Hello, world\n”);

}

Figure 10  hello.c calling non-
PointGuard library functions
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pointer to pointer to a character array, which then has to
expect an argument of type char @*. to accommodate
the fact that main() has decrypted the outer pointer,
but not the inner pointer.

There are also directives
__hashed_ptr_mode_on__ and
__hashed_ptr_mode_off__. These directives
nest within the __std_ptr_mode_on__ and
__std_ptr_mode_off__ directives (and vice
versa) so that, for instance, within a large header file
declared standard, selected data structures can be
declared to be hashed.

Our current implementation supports this syntax, but
specially exempts varargs pointer arguments and
does not encrypt them. Future implementations will
encrypt varargs pointer arguments as well, by carry-
ing the pointer’s mode (encrypted or not) as part of the
function’s type signature within the compiler.

Finally, it should be reiterated that the PointGuard
specific syntax is necessary only to support mixed mode
code. Where all code is to be compiled with Point-
Guard, no syntax changes should be required.

4  Compatibility Testing

PointGuard is basically functional, and can compile &
run fairly elaborate applications. Unfortunately, for the
reasons explained in Section 3.4.4, code needs to be
modified to support interoperation with non-PointGuard
code. There are two ways to approach this:

Modify the Application: One could modify the appli-
cation to use __std_ptr_mode_on__ when ever
it makes a call to a library function or kernel system
call. This would be a lot of work, and have to be re-
peated for each application.

Modify the System Libraries: A more cost-effective
approach is to modify the system libraries. Libraries
are the middleware for applications to interact with
the kernel. As such, they are the natural place to in-
sert PointGuard wrappers to encrypt and decrypt
pointer data.

Unfortunately, thorough wrapping of system libraries is
a lot of work, and we are not yet done. Similar problems
with StackGuard compiling system libraries resulted in
approximately 6 months delay between a compiler that
could compile applications [9] and a compiler that could
compile entire systems [7].

5  Security Testing

Our first security test is against the straw man program
shown in Figure12. For illustration, this program places
a function pointer (funcptr) directly adjacent to an
overflowable buffer (buf) and then accepts user input
that can overflow the buffer and corrupt the function
pointer. Exploits for this program without PointGuard
are trivial to construct [5].

When the same exploits are tested against a version
protected with PointGuard, the victim program crashes
with a segmentation fault when it tries to call

__std_ptr_mode_on__
#include <stdio.h>
__std_ptr_mode_off__

void
print_env (char @*envp)
{
  int i;

  for (i = 0; envp[i] != NULL; i++)
  printf ("%s\n", envp[i]);

}

int main (int argc, char @@ argv, char @@ env)
{
  print_env (env);
  return 0;
}

Figure 11  printenv.c being called by non-PointGuard code
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funcptr. To ensure that the crash is not due to simple
variation in program layout, we constructed a special
version of PointGuard that uses a value of 0 for the
encryption key (which has no encryption effect under
XOR) and created exploits that actually work against
the null-key PointGuard program. These same exploits
again produce repeated segmentation faults against the
victim program protected with PointGuard.

There are ample live examples of heap and static data
overflows that PointGuard is intended to block, such as
telnetd [26], WU-FTPd [27], CVS [15], and sudo [20].
Unfortunately, these exploits almost all attack malloc
data structures, which are part of glibc. Until we have
a PointGuard version of glibc, effective security test-
ing of these programs against live exploits is problem-
atic.

That PointGuard might stop real exploits from pene-
trating real vulnerabilities in real programs would be
comforting, but does not assure that PointGuard is non-

bypassable. This is important, because simple obscurity
tricks are sufficient to cause many exploits to fail, but
these exploits would soon succeed if simply re-tuned to
bypass the obscurity defenses.

Unfortunately, it is not possible to use testing and
experimentation to show non-bypassability: testing can
only show bypassability. Non-bypassability must be
established by inspection. Our argument is that:

1. Bypassing PointGuard is defined as hijacking a pro-
gram by corrupting one or more pointers.

2. Usefully corrupting a pointer requires pointing it at a
specific  location.

3. Under PointGuard protection, a pointer cannot be cor-
rupted to point to a specific location without knowing
the secret key.

4. Learning the secret key requires either obtaining the
secret key directly, or cryptanalysis against a sample
pointer value.

__std_ptr_mode_on__
   #include <stdio.h>
   #include <stdlib.h>
   #include <unistd.h>
   #include <string.h>
__std_ptr_mode_off__

   #define ERROR -1
   #define BUFSIZE 64

   int goodfunc(const char *str); /* funcptr starts out as this */

   int main(int argc, char @@argv)
   {
      static char buf[BUFSIZE];
      static int (*funcptr)(const char *str);

      if (argc <= 2)
      {
         fprintf(stderr, "Usage: %s <buf> <goodfunc arg>\n", argv[0]);
         exit(ERROR);
      }

      setuid(0);
      funcptr = (int (*)(const char *str))goodfunc;
      memset(buf, 0, sizeof(buf));
      strncpy(buf, argv[1], strlen(argv[1]));
      (void)(*funcptr)(argv[2]);
      return 0;
   }

Figure 12  Straw man vulnerability overflowing an adjacent function pointer
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5. Obtaining the secret key directly would require cor-
rupting a pointer precisely, which begs the question
(see Section 3.4.2).

6. Obtaining a sample of ciphertext (an encrypted
pointer) would require either corrupting a pointer pre-
cisely (which begs the question) or a program that
leaks pointer values (which is highly unusual).

Thus it should be difficult to bypass PointGuard and
control a program by corrupting a pointer. However, it
is possible for attackers to “bypass” PointGuard by at-
tacking non-pointer objects, such as overflowing one
character array to change the string value of an adjacent
character array. Such an attack could, e.g. cause a pro-
gram to change which program the victim program is
about to exec(). This form of attack is out of scope for
PointGuard’s protection.

6  Performance Testing

We measure the overhead imposed by PointGuard using
microbenchmarks described in Section 6.1 and mac-
robenchmarks described in Section 6.2. All benchmarks
were run on a 1.6 GHz P4-M with 512 KB of L2 cache
and 512 MB of DRAM, with the compiler set to sched-
ule for i686:

6.1 Microbenchmarks

The microbenchmarks comprised three tests:

Read: exercise reading pointers by following a linked
list.

Write: stores values into an array of pointers.

Read/Write: copies values from one array of pointers
to another array of pointers.

Tests were also partitioned into cachable and large. The
cachable tests fit in the L2 cache, while the large tests
did not. The rationale being that the cachable case pre-
sents smaller/fewer load delay slots (the load delay slot
being where PointGuard decryption happens) and thus
should expose greater PointGuard overhead.

The cachable microbenchmark results are shown in
Table 1, and non-cachable in Table 2. Counter-intu-
itively, PointGuard imposed less overhead on the cach-
able case than on the non-cachable case, and in fact
PointGuard provided substantial performance improve-
ments  vs. the standard GCC in many cases.

We believe these performance improvements to be
the result of PointGuard imposing heavier use of regis-

ters for dereferencing pointers. We do not claim that
PointGuard itself is actually enhancing performance, but
rather that the PointGuard implementation has exposed
the possibility that GCC could provide greater perfor-
mance if it made more aggressive use of registers.

6.2 Macrobenchmarks

Our first macrobenchmark is the SciMark benchmark
suite [29], a compute-intensive benchmark for scientific
computing. Again, this benchmark was partitioned into
cachable and non-cachable data sets.

Our cachable SciMark results are shown in Table 3,
and non-cachable results in Table 4. Results are similar
to the microbenchmarks, but the performance gains if
any are smaller, and performance losses are higher.

Table 1: Microbenchmark Results for Cachable 

Non-
Optimized

-O2
-O3, -fomit-
frame-ptrs

Read -1.47% 0.94% -0.79%

Write 2.78% -11.45% -11%

RW -1.01% -9.93% -9.83%

Table 2: Microbenchmark Results for Non-
cachable 

Non-
Optimized

-O2
-O3, -fomit-
frame-ptrs

Read -0.34% -0.14% -0.08%

Write 4.02% 3.46% 2.44%

RW -0.85% -1.45% -0.75%

Table 3: SciMark Results for Cachable 

Non-Optimized Optimized

FFT -2.12% -6.09%

SOR 0.20% -0.21%

Monte 0.63% 0.33%

Sparse 0.26% -0.16%

LU -2.95% -0.76%

Composite -0.95% -1.13%
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Our second macrobenchmark is the OpenSSL Speed,

a part of the OpenSSL package [11]. This is a bench-
mark included with the SSL package to measure

throughput on various ciphers, in terms of how many

units of work can be done in a 10 second period.

Our results for OpenSSL Speed are shown in Table 5.

As in the microbenchmarks, performance varies from a

nominal speedup of 3.5% to a slowdown of 21%. The

variation is due to instruction scheduling and register

usage: PointGuard increases register pressure, and con-

sumes load delay slots in CPU scheduling. Increasing

register pressure improves performance where registers

are available, and decreases performance if registers

were already fully occupied. Increased use of delay slots
is free if there were empty delay slots, and induces over-

head if delay slots were already full.

7  Related Work

Previously we surveyed buffer overflow attacks and de-
fenses [10]. Attacks were classified according to how
the malicious code was injected, and how the victim
program is coerced to jump to the malicious code. Cor-
respondingly, defenses were classified according to how
they stopped these effects.

The related work presented here is somewhat
updated, including results produced since our previous
survey. A summary is shown in Table 6. “Class” indi-
cates which of the families of technologies a defense
can be grouped with. “Coverage” indicates the classes
of threats that the technology addresses. “Bypassable”
indicates whether the attacker can, with some effort,
craft an attack that will bypass the defense and exploit a
vulnerability anyway. “Cost” indicates the cost in either
performance or software developer effort.

Note that many of these technologies have distinct
areas of coverage, and can be combined to achieve
greater coverage. Section 7.1 describes Bounds Check-
ing. Section 7.2 describes various non-executable buff-
ers. Section 7.3 describes address space randomization.
Section 7.4 describes pointer protection.

7.1 Bounds Checking

Bounds checking provides “perfect” protection against
buffer overflows, but at a substantial cost in compatibil-
ity, performance, or both.

Jones & Kelly [19] and Brugge [31] provide full
bounds checking for C code while maintaining
sizeof(void *) == sizeof(int), which is
important for preserving code compatibility with legacy
systems. This compiler does so by using associative
lookup on each pointer reference to an array descriptor
that stores base and bounds. Performance penalties are
high, approximately 10X to 30X slowdown.

The Bounded Pointers project [22] also provides full
bounds checking, but changes pointers from a single
word into a tuple that incorporates base and bounds.
This improves performance by eliminating the associa-
tive lookup in Jones&Kelly, but costs compatibility
because pointers no longer fit in a single word. Perfor-
mance penalties are still high at approximately 5X slow-
down.

More general than bounds checking, type safety sub-
sumes bounds checking and protects against all manner
of data type chicanery, not just buffer overflows. Classi-
cally, strongly typed languages such as Java and ML
provide strong static type safety, built in to the program-

Table 4: SciMark Results for Non-cachable 

Non-Optimized Optimized

FFT 5.43% 4.16%

SOR -0.06% 0.06%

Monte 0.28% 0.06%

Sparse 0.00% -0.07%

LU -0.22% -0.63%

Composite 0.08% -0.05%

Table 5: OpenSSL Speed Throughput

Cipher Normal PG
% 

Overhead

MD5 8KB 86,794 88,989 -2.5%

SHA1 8KB 56,180 58,119 -3.5%

DES CBC 8KB 10,619 9336 12%

DES EDE3 
8KB

3902 3639 6.7%

Blowfish CBC 
8KB

49,987 39,316 21%

RSA 1Kbits 1094 892 18%

DSA 2Kbits 23 19 17%
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ming language semantics. Because the programming
languages were designed for type safety, efficiency is
high, and compatibility is not an issue.

More recently, hybrid languages designed to be safer
versions of the C programming language such as
CCured [24] and Cyclone [18] have appeared. These are
dialects  of C, removing some unsafe constructs, and
adding others. This provides a safe programming envi-
ronment with good performance, with stronger security
than PointGuard, but also imposes a different order of
magnitude on the developer to achieve that safety. A
developer can port an application to these safer dialects
in a few hours or days, where as PointGuard was
designed to allow a developer to compile & protect mil-
lions of lines of code in a few hours or day.

7.2 Non-Executable Buffers

Making various pieces of memory non-executable re-
stricts where attack payload can be injected. This is
good because it is fast, transparent, and works on bi-
nary-only applications. The main limitation is that this
defense can be bypassed, because suitable attack pay-
load code (effectively “exec(sh)”)) is almost always

resident in victim program address spaces, and so
pointer corruption is all that is necessary for the deter-
mined attacker to succeed.

Non-executable stack segments [12, 14] was one of
the first general purpose defenses against buffer over-
flows. Zero performance cost and near-zero compatibil-
ity cost, but can be bypassed.

The PAX project provides non-executable heap, mak-
ing it more difficult to bypass, but still can be bypassed.
Performance cost is substantial at 10% overall.

7.3 Address Space Randomization

PAX also incorporates ASLR (Address Space Layout
Randomization) which can be viewed as the dual of
PointGuard: rather than randomizing pointers, ASLR
randomizes the location of key memory objects. Bene-
fits are similar to PointGuard, but because objects that
are randomly located are coarser, there is residual risk of
attackers exploiting adjacency and approximate memory
location.

Sekar et al [3] have a new implementation of this con-
cept that randomizes more elements of the address space

Table 6: Buffer Overflow Defenses

Class Technology Coverage Bypassable Cost

Bounds Checking Jones&Kelly complete no 10X to 30X

Bounded Pointers complete no 3-5X

Safe Languages complete no complete 
rewrite

Safer C Dialects complete no port software

Non-executable 
Buffers

Non-executable 
stack

stack buffers yes 0

Non-executable 
heap

heap buffers yes 10-30%

Address Space 
Randomization

PAX/ASLR buffer overflows that don’t depend 
on adjacency

probably ~0

Sekar et al buffer overflows that don’t depend 
on adjacency

maybe 0-18%

Pointer Protection StackGuard activation records no ~0

Libsafe library string functions attacking 
activation records

yes ~0

PointGuard pointers maybe 0-20%
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layout, which may make it harder to bypass than
PAX/ASLR.

7.4 Pointer Protection

Libsafe [2] provides plausibility checks on the argu-
ments to the “big 7” string manipulation functions in the
standard C library. Libsafe imposes low overhead, and
compatibility is excellent, providing protection to bi-
nary-only applications. Protection, however, is limited
only to vulnerabilities involving the protected 7 func-
tions.

Snarskii [30] introduced pointer integrity checking
with a libc library for FreeBSD that checked the
integrity of activation records created within the library.
StackGuard generalized this technique from a single
protected library into a compiler, at first using the Ran-
dom and Terminator Canaries [8]. In 1999 we intro-
duced the XOR canary to address Emsi’s Attack [4].
The XOR canary helped improve the PointGuard design
by changing PointGuard from using adjacent canaries to
directly encrypting pointers. StackGhost [16] provides a
similar degree of protection to StackGuard, using the
SPARC CPU’s register spill detection hardware.

8  Conclusions

PointGuard provides protection against all vulnerabili-
ties related to pointer corruption, which includes most
current and anticipated buffer overflow, as well as re-
lated attacks such as printf format bugs and multiple
free errors. PointGuard imposes minimal performance
overhead, compatibility and performance overhead.

9  Availability

When PointGuard is complete, it will be released under
the terms of the GPL from http://immunix.com/
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