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Abstract

Over the last several years, our research team built
a commercially-offered secure coprocessor that, be-
sides other features, offers high-speed DES: over 20
megabytes/second. However, it obtains these speeds
only on operations with large data lengths. For DES
operations on short data (e.g., 8-80 bytes), our com-
mercial offering was benchmarked at less than 2 kilo-
bytes/second. The programmability of our device en-
abled us to investigate this issue, identify and address
a series of bottlenecks that were not initially apparent,
and ultimately bring our short-DES performance close
to 3 megabytes/second. This paper reports the results
of this real-world systems exercise in hardware crypto-
graphic acceleration—and demonstrates the importance
of, when designing specialty hardware, not overlooking
the software aspects governing how a device can be used.

1 Introduction

What is “fast DES?” The challenge of meaningfully
quantifying cryptographic performance has been a long-
standing issue.

Over the past several years, our team has worked on pro-
ducing, as a commercial offering, a cryptographic em-
bedded system: a high-performance, programmable se-
cure coprocessor platform [9], which could take on dif-
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ferent personalities depending on the application pro-
gram installed. This device featured hardware crypto
support for modular math and DES in the original ver-
sion, with outer-CBC TDES and SHA-1 added in the
Model 2. Our initial commercial target was an applica-
tion program [1] that turned the platform into a secure
cryptographic accelerator.

Besides the physical and logical security of the de-
vice, our team prided itself on the fast DES (and, in
the Model 2, outer-CBC TDES) that our device pro-
vided. Measured from an application program on the
host (in order to give a more accurate figure), our initial
device performed DES at about 20 megabytes/second;
the follow-on does outer-CBC TDES at close to this
rate. We note, however, that we were focused on se-
cure coprocessing, and wanted fast DES in contexts
where the keys and decisions were under the control of
the trusted third party inside the box, not the less se-
cure host. Two potential examples of such scenarios
include re-encryption of a hardware-protected Kerberos
database [3], and information servers that ensure privacy
even against root [8].

However, these figures were for bulk performance: op-
erations consisting of CBC encryption or decryption of
input data that is itself megabytes long. For operations
on short data, our device was several orders of magni-
tude slower. When an external colleague—who required
large numbers of DES operations on inputs each 8-80
bytes—benchmarked our commercial offering, he only
measured about 1.5 kilobytes/second. [5]

The programmability of our device enabled us to in-
vestigate this issue, and we assumed that our intimate
knowledge of the internals would enable us to immedi-



ately identify and rectify the bottleneck. This assump-
tion turned out to be incorrect. In this paper, we report
the lengthy sequence of experiments that followed. We
finally improved short-DES performance by three or-
ders of magnitude over the initial benchmark, but have
been continually surprised at where the bottlenecks re-
ally were.

We offer this contribution as a real-world systems
exercise in cryptographic acceleration. It demon-
strates the value of programmability in a cryptographic
accelerator—because without this flexibility, we would
not have achieved the three orders of magnitude speed-
up. More importantly, it demonstrates the importance
of considering how a system will actually be used, and
how the control data will be routed, when designing
specialty cryptographic hardware. Far too often, the
hardware design process leaves these issues for post-
facto software experimenters (like ourselves) to dis-
cover. Consequently, our work also offers some poten-
tial lessons for future design of hardware intended to ac-
celerate high-latency operations on small data lengths,
as well as for the future design process.

2 System Background

Our device is a multi-chip embedded module, packaged
in a PCI card. In addition to cryptographic hardware,
and circuitry for tamper detection and response, we have
a general-purpose computing environment: a 486-class
CPU, executing software loaded from internal ROM and
FLASH. Two generations of the device exist commer-
cially; the older Model 1 and the newer Model 2. We
did our experiments on the Model 2 (since that is all we
had); discussions of principles that apply to both models
do not specify a model number.

2.1 Software

The multiple-layer software architecture consists of
foundational security control (Layer 0 and Layer 1),
supervisor-level system software (Layer 2), and user-
level application software (Layer 3). (See Figure 1.)

Our Layer 2 component [2] was designed to support ap-
plication development. Within Layer 2, a kernel pro-
vides standard OS abstractions of multiple tasks and
multiple address spaces; these abstractions support in-
dependent managers: components within Layer 2 which
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Figure 1 The software architecture of the
coprocessor. The host software on the left runs

on the host system; the card software on the
right runs on the 486 inside the coprocessor.

handle cryptographic hardware and other I/O on the bot-
tom, and provide higher-level APIs to the Layer 3 appli-
cation on top.

Typically, this Layer 3 application provides the abstrac-
tion of its own API to host-side application. Figure 2
through Figure 4 shows the interaction of software com-
ponents during applications such as standard DES accel-
eration:

(Figure 2) When it wants to use a service provided by the
card-side application, the host-side application issues a
call to the host-side device driver. The device driver then
opens an sccRequest to the Layer 2 system software
on the device. Layer 2 then informs the Layer 3 ap-
plication resident on the device of the existence of this
request, and some of the parameters the host sent along
with it.

(Figure 3) The Layer 3 application then handles the host
application’s request for service; in this example, it di-
rects Layer 2 to transfer data and perform the necessary
crypto operations.

(Figure 4) The Layer 3 application then directs Layer 2
to close out the sccRequest and send the results back
to the host.

2.2 Hardware

One of the many goals of our device was fast cryptogra-
phy. As part of this goal, we included a FIFO/state ma-
chine structure that can transport data quickly into and
out of an algorithm engine. Figure 5 shows how this pro-
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Figure 2 The host application opens an
sccRequest to the application layer in the

card.
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Figure 3 For standard external-external
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perform the operation; Layer 2 then directs the
the data transfer.
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Figure 4 The application layer closes out the
sccRequest, and sends the output back to

the host application.

prietary FIFO structure works with the DES/TDES en-
gine. (In our Model 2 hardware, this FIFO structure also
supports fast SHA-1; in principle, this structure could be
applied to any algorithm engine.)

For both input and output, we have two pairs of FIFOs—
a PCI FIFO and an internal FIFO, for fast external and
internal data transfer, respectively. We also have a DMA
controller, for CPU-free transfer into and out of inter-
nal DRAM. These components enable the device CPU
to arrange to do fast data transfer through the various
on-board devices, without the active involvement of the
CPU after the initial configuration. For example, to sup-
port fast bulk DES when the source and destination are
both outside the device, the internal CPU can config-
ure these components to support an external-to-external
data path (PCI Input FIFO to Internal Input FIFO to
DES, then back through the output FIFOs), load the rel-
evant operational parameters (e.g., key, IV, mode) into
the DES engine, and then let the the hardware move data
through on its own.

Besides external-to-external DES, other common con-
figuration paths include internal-to-internal bulk DES
(Output DMA to Internal Input FIFO to DES, then
back), and DMA transfer (e.g., PCI Input FIFO to
Internal Input FIFO to Input DMA and vice versa).
(Additionally, the DES hardware can be configured in
bypass mode, but the commercial Layer 2 software does
not use it.)

As an artifact of the hardware design, we have one prin-
cipal constraint: both internal FIFO-DES paths must be
selected (bulk mode), or neither must be selected (non-
bulk mode).

However, changing between these modes resets the
Internal FIFOs, and during non-bulk mode, the CPU has
no way to restrain the Internal Input FIFO from filling to
capacity.

Examples Figure 6 through Figure 10 show some ex-
amples of how the FIFO hardware supports card appli-
cations.

• (Figure 6) When the host application opens up an
sccRequest to the card application, the card typ-
ically brings the input data into a DRAM buffer via
DMA.
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internal CPU can configure the FIFOs to bring

data into the card via DMA.

• (Figure 7) For a DES request, the card may then
transfer the operational parameters from DRAM
into the DES chip.

• (Figure 8) If the DES request is for external-
external DES, the card will then configure the
FIFOs to bring the data in from the host, through
the DES chip (operating with the parameters we
just loaded), then back to the host.

• (Figure 9) If the DES request is for internal-internal
DES (but is too short to justify DMA), the card may
just manually push the bytes through.

• (Figure 10) When the sccRequest is complete,
the card may send the results back out to the host
via DMA.
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3 The Experiment Sequence

This unfunded “skunkworks” project had several goals:
to try to see why the huge gap existed between what a
colleague (using slower Model 1 hardware) measured
for short-DES and what we measured for longer bulk
DES; to try to improve the performance, if possible;
and to explore migration of these changes (if the perfor-
mance improves significantly) back into our commercial
Layer 2 software (e.g., via some new “short-DES” API
it provides to Layer 3).

But as a side-effect, we had a constraint: due to funding
limitations (that is, zero funding) and the long-term goal
of product improvement, we had to minimize the num-
ber of components we modified. For example, modify-
ing the host device driver, even just to enable accurate
latency measurements, was not feasible; and any solu-
tion we considered needed to be a small enough delta
that a reasonable chance existed of moving it into the
real product.

Since the colleague’s database application (as well as the
general nature of the problems to which we apply our

secure coprocessing technology) required no exposure
of key material, we did not measure host-only DES.

3.1 The Gauntlet is Thrown

Our colleague prompted this work when he demon-
strated just how poorly our device performed for his ap-
plication. Thus, to start our investigation, we needed to
nail down the nature of the “DES” performance that he
benchmarked at approximately 1.5 kilobytes/second.

This figure was measured from the host-side application
program (recall Figure 1), using commercial Model 1
hardware with the IBM Common Cryptographic
Architecture (CCA) application in Layer 3. (CCA also
inserts a middle layer between the host application and
the host device driver).

The DES operations were CBC-encrypt and CBC-
decrypt, with data sizes distributed uniformly at random
between 8 and 80 bytes. The IVs and keys changed with
each operation; the keys were TDES-encrypted with a
master key stored inside the device. Encrypted keys,
IVs, and other operational parameters were sent in with
each operation, but were not counted as part of the data
throughput. Although the keys may change with each
operation, the total number of keys (in our colleague’s
application, and in others we surveyed) was still fairly
small, relative to the number of requests.

Experiment 1: Establishing a Baseline

Idea. We first needed to establish a baseline imple-
mentation that reproduced our colleague’s set-up, but in
a setting that we could instrument and modify. Our col-
league used commercial Model 1 hardware and CCA; in
our lab, we had neither, but we did have Model 2 pro-
totypes. So, we did our best to simulate our colleague’s
configuration.

Experiment. We built a host application that gener-
ated sequences of short-DES requests (cipherkey, IV,
data); we built a card-side application that: caught each
request; unpacked the key; sent the data, key, and IV
down to the DES engine; then sent the results back to
the host. Figure 11 shows this operation.



Results. With this faster hardware (and lighter-weight
software) than our colleague’s set-up, we measured 9-12
kilobytes/second (with the speed decreasing, oddly, as
the number of operations increased).

We chose keys randomly over a small set of cipherkeys.
However, caching keys inside the card (to reduce the ex-
tra TDES key-decryption step) did not make a significant
performance improvement in this test.

Experiment 2: Reducing Host-Card Interaction

Idea. Within our group, well-established folklore
taught that each host-card interaction took a huge
amount of time. Consequently, we first hypothesized
that the reason short DES was so much slower than
longer DES was because of the much greater number
of host-card interactions (one set per each 44 bytes of
data, on average) that our short-DES implementation re-
quired.

Experiment. We re-wrote the host-side application to
batch a large sequence of short-DES requests into one
sccRequest, and then re-wrote the card-side applica-
tion to: receive this sequence in one step; process each
request; and send the concatenated output back to the
host in one step. Figure 12 shows this operation.

Results. We tried a several data formats here. Speeds
ranged from 18 to 23 kilobytes/second (and now up to
40 kilobytes/second with key caching). This approach
was an improvement, but still far below the apparent
potential—host-card interaction was not the killer bot-
tleneck.

Experiment 3: Batching into One Chip
Operation

Idea. Another piece of well-established folklore
taught that resetting the DES chip (to begin an opera-
tion) was expensive, but the operation itself was cheap.
Until now, we had been resetting the chip for each oper-
ation (again, once per 44 bytes, on average).

Our next step was to see how fast things would go if we
eliminated these resets.

Experiment. For purposes of this experiment, we gen-
erated a sequence of short-DES operation requests that
all used one key, one direction (“decrypt” or “encrypt”),
and IVs of zero (although the IVs could have been arbi-
trary). Our card-side application now received the oper-
ation sequence and sent it all down to the Layer 2 soft-
ware. In Layer 2, we rewrote the DES Manager (the
component controlling the DES hardware) to set up the
chip with the key and an IV of zero, and to start pumping
the data through the chip. However, at the end of each
operation, our modified Manager did the proper XOR to
break the chaining. (E.g., for encryption, the software
manually XOR’d the last block of ciphertext from the
previous operation with the first block of plaintext for
the next operation, in order to cancel out the XOR that
the chip would do.)

Results. Much to our surprise, we now measured as
high as 360 kilobytes/second. Was DES-chip reset the
killer bottleneck?

Distrusting folklore, we modified the experiment to reset
the DES chip forh each operation anyway, and the top-
end speed dropped slightly, to 320 kilobytes/second. So,
it wasn’t the elimination of chip resets that was saving
time here.

Experiment 4: Batching into Multiple Chip
Operations

Idea. How many Layer 3-Layer-2 context switches
are necessary to handle the host’s batched operation re-
quest?

Besides reducing the number of chip resets, the one-reset
experiment of Experiment 3 also reduced the context
switches from O(n) to O(1) (where n is the number of
operations in the batch). The good performance of the
multi-reset variant suggested that perhaps these context
switches were a significant bottleneck.

Experiment. We went back to the multi-key, non-
zero-IV set-up of Experiment 2, except now the card-
side application sends the batched requests down to a
modified DES manager, which then processes each one
(with a chip reset and new key and IV each time).
Figure 13 shows this operation.
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Figure 11 Experiment 1: the application handles each operation as a separate sccRequest, with PIO DES.

Results. Speeds ranged from 30 - 290 kilo-
bytes/second.

However, something was still amiss. Each short DES
operation requires a minimum number of I/O operations:
to set up the DES chip, to get and set up the IV, to get and
set up the keys, and then to either drive the data through
the chip, or let the FIFO state machine pump it through.

Extrapolating from this back-of-the-envelope sketch to
an estimated speed is tricky, due to the complex nature
of contemporary CPUs. However, the sketch suggested
that multi-megabyte speeds should be possible.

Experiment 5: Reducing Data Transfers

Idea. From our above analysis of what’s “minimally
necessary” for short-DES, we realized that we were
wasting a lot of time with parameter and data transport.
In practice, each byte of cipherkey, IV, and data was be-
ing handled many times. The bytes came in via FIFOs
and DMA into DRAM with the initial sccRequest
buffer transfer; the CPU was then taking the bytes out
of DRAM and putting them into the DES chip; the CPU

then took the data out of the DES chip and put it back
into DRAM; the CPU then sent the data back to the host
through the FIFOs.

However, in theory, each parameter (key, IV, and direc-
tion) should require only one transfer: the CPU reads it
from the FIFO, then acts. If we let the FIFO state ma-
chine pump the data bytes through DES in bulk mode,
then the CPU never need handle the data bytes at all.

Experiment. Our next sequence of experiments fo-
cused on trying to reduce the number of transfers down
to this minimal level.

To simplify things (and since we were starting to try
to converge to a “fast short-DES” API), we decided to
eliminate key unpacking as a built-in part of the API—
since each application has their own way of doing un-
packing anyway, and the cost impact was small (for
operation sequences distributed over a small number
of keys, as we had assumed). Instead, we assumed
that, within each application, some “initialization” step
would conclude with a plaintext key-table resident in de-
vice DRAM. We also decided to standardize operation
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Figure 12 Exp 2: we reduced host-card interaction by batching all the operations into a single sccRequest.

lengths to 40 bytes (which, in theory, should mean that
the speeds our colleague would see will be 10% higher
than our measurements).

We rewrote our host application to generate sequences of
requests that each include an index into the internal key-
table, instead of a cipherkey. Our card-side application
now calls the modified DES Manager (and makes the
key table available to it), rather than immediately bring-
ing the request sequence from the PCI Input FIFO into
DRAM. For each operation, the modified DES Manager
then: resets the DES chip; reads the IV and loads it into
the chip; reads (and sanity checks) the key index, looks
up the key, and loads it into the chip; reads the data
length for this operation; then sets up the state machine
to crank that number of bytes through the input FIFOs
into the DES chip then back out the output FIFOs.

Figure 14 shows this operation.

Results. Speeds now ranged up to 1400 kilo-
bytes/second.

Experiment 6: Using Memory Mapped I/O

The approach of Experiment 5 showed a major improve-
ment, but performance was still lagging behind what we
projected as possible.

Idea. Upon further investigation, we discovered that,
in our device, I/O operation speed is not limited by the
CPU speed but by the internal ISA bus (effective transfer
speed of 8 megabytes/second) When we calculated the
number of fetch-and-store transfers necessary for each
operation (irrespective of the data length), the slow ISA
speed was the bottleneck.

Consequent discussions with the hardware engineers re-
vealed that every I/O register we needed to access—
except for the PCI FIFOs—was available from a location
that was also memory-mapped—and memory-mapped
I/O operations should not be subject to the ISA speed
limitations.
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Experiment. First, we proved the ISA-bottleneck hy-
pothesis by doubling the number of ISA I/O instructions
and observing an appropriate halving of the throughput.

Then, we re-worked the modified DES manager of
Experiment 5 to use memory-mapped I/O instead of
ISA I/O wherever possible. As an unexpected conse-
quence, we discovered a hardware bug—certain state
machine polling intermittently caused spurious FIFO
reads. (Again, Figure 14 shows this operation.)

Results. Modifying our software again to work around
this bug, we measured speeds up to 2500 kilo-
bytes/second.

Experiment 7: Batching Operation Parameters

Idea. The approach of Experiment 6 still requires
reading the the per-operation parameters via slow ISA
I/O from the PCI Input FIFO. (Reading them via
memory-mapped I/O from the Internal Input FIFO is not
possible, since we would lose flow control in non-bulk
mode.)

However, if we batched the parameters together, we
could read them via memory-mapped operations, then
change the FIFO configuration, and process the data.

Experiment. In our most recent experiment, we
rewrote the host application to batch all the per-
operation parameters into one group, prepended to the
input data. The modified DES manager then: sets up
the Internal FIFOs and the state-machine to read the
batched parameters, by-passing the DES chip; reads
the batched parameters via memory-mapped operations
from the Internal Output FIFO into DRAM; reconfig-
ures the FIFOs; using the buffered parameters, sets up
the state-machine and the DES chip to pump each op-
eration’s data from the input FIFOs, through DES, then
back out the output FIFOs. Figure 15 shows this opera-
tion.

Results. With this final approach, we measured speeds
approaching 5000 kilobytes/second.

(As a control, we tried this batched-parameters approach
using DMA and a separate request buffer, but obtained
speeds slightly slower than Experiment 6.)

Experiment 8: Checking the Results

Idea. The results of Experiment 7 pleased us.
However, colleagues disrupted this pleasure by pointing
out that a recent errata sheet for our DES chip noted that
using memory-mapped access for the IV and data length
registers may cause incorrect results.

We were tempted to dismiss this news, since the exter-
nal colleague had merely asked for fast cryptography;
he said nothing about correctness. But we investigated
nonetheless.

Experiment. First, we did a known-answer DES test
on the implementation of Experiment 7—and it failed.
So, we revised that implementation to ensure that the IV
and data length registers were access via the slower ISA
method. (Again, Figure 15 shows this operation.)

Results. With this final approach, we measured speeds
approaching 3000 kilobytes/second.
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4 Analysis

4.1 Performance

Figure 16 summarizes the results of our experiment se-
quence.

On a coarse level, the short-DES speed can be modelled
by:

C1 · Bats + C2 · Bats · Ops + C3 · Bats · Ops · DLen
Bats · Ops · DLen



where Bats is the number of host-card batches, Ops is
the number of operations per batch, DLen is the average
data length per operation, and C1, C2, C3 are unknown
constants, representing the per-batch, per-operation, and
per-byte overhead (respectively).

4.1.1 Improving Per-Batch Overhead

The curve of the top traces in Figure 16 suggests that,
for fewer than 1000 operations, our speed is still being
dominated by the per-batch overhead C1. To reduce this
cost, we are planning another round of hand-tuning the
code.

In theory, we could eliminate the per-batch overhead C1

entirely by modifying the host device driver-Layer 2 in-
teraction to enable indefinite sccRequests, with some
additional polling or signalling to indicate when more
data is ready for transfer. However, our experiments
were constrained by the limited resources of our own
time, and the constraint that (should the results prove
commercially viable) it would be possible to migrate our
changes into the commercial offering with a minimum
number of component changes. Both of these constraints
have prevented us from exploring changes to the device
driver protocol at this time.

4.1.2 Improving Per-Operation Overhead

The limitation of short DES puts an upper bound on
DLen, which suggests a minimum C2/DLen component
that we can never overcome.

API Approaches. For future work, we have been con-
sidering various ways to reduce the per-operation over-
head C2 by minimizing the number of per-operation pa-
rameter transfers. For example:

• The host application might, within a batch of op-
erations, interleave “parameter blocks” that assert
things like “the next N operations all use this key.”
This eliminates bringing in (and reading) the key
index each time.

• The host application itself might process the IVs
before or after transmitting the data to the card, as
appropriate. (This is not a security issue if the host
application already is trusted to provide the IVs.)
This eliminates bringing in the IVs, and (since the

DES chip has a default IV of zeros after reset) elim-
inates loading the IVs as well.

However, these approaches have two significant draw-
backs. One is the fact that the “short-DES API” (that
might eventually emerge in production code) would look
less and less like standard DES. Another is that these
variations make it much more complicated to benchmark
performance meaningfully. How much work should the
host application be expected to do? (Remember that the
host CPU is probably capable of much greater compu-
tational power than the coprocessor CPU.) How do we
quantify the “typical request sequences” for which these
approaches are tuned, in a manner that enables a poten-
tial end user to make meaningful performance predic-
tions?

Hardware Approaches. Another avenue (albeit a
long-term one) for reducing per-operation overhead
would be to re-design the FIFOs and the state machine.

In hindsight, we can now see that the current hard-
ware has the potential for a fundamental improvement.
Currently, the acceleration hardware provides a way to
move the data very quickly through the engine, but not
the operational parameters. If the DES engine (or what-
ever other algorithm engine is being driven this way) ex-
pected its data-input to include parameters (e.g., “do the
next 40 bytes with key #7 and this IV”) interleaved with
data, then the per-operation overhead C2 could approach
the per-byte overhead C3.

The state machine (or whatever system is driving the
data through the engine) would need to handle the fact
that the number of output bytes may be less than the
number of input bytes (since those include the param-
eters). We also need a way for the CPU to control or
restrict the class of engine operations over which the
parameters, possibly chosen externally, are allowed to
range. For example:

• The external entity may be allowed only to choose
certain types of encryption operations (restriction
on type).

• The CPU may wish to insert indirection on the pa-
rameters the external entity chooses and the param-
eters the engine sees (e.g., the external entity pro-
vides an index into an internal table, as we did with
keys in the experiments).

The issues of Section 4.2 also apply here.



4.1.3 Improving Per-Byte Overhead

Well-established folklore teaches that the per-byte over-
head C3 is small. Consequently, we doubt C3 can be
improved much, nor that it is significant.

4.2 API Design Issues

Cryptographic APIs, once defined, may appear obvious.
But as noted earlier, an implicit goal of this work was,
if we were able to substantially improve short-DES per-
formance, to produce a prototype of a new feature that
could be migrated into the current commercial offering.

How to design a short-DES API that could provide this
superior performance, be usable by a wide range of ap-
plications, and be reasonably easy to implement and
maintain, raises a number of interesting challenges, in-
cluding:

• Key Unpacking. What is the most general way
to handle, in a Layer 2 API, the loading of keys
from outside? Each application has its own method
(and we haven’t even discussed the implications of
things such as FIPS 140-1 [6]).

• Operation Restrictions. One of the benefits of se-
cure crypto coprocessors is increased security for
sensitive operations and data, as well as crypto-
graphic acceleration (which is not necessarily as-
sociated with secure coprocessors). Many applica-
tions that could use high-speed short DES might
want to greatly restrict the modes or keys or IVs or
other such parameters that an untrusted host-side
entity could choose. How do we handle this in an
API?

• Algorithm Mix. These techniques could also
speed up TDES, SHA-1, DES-MAC, and other al-
gorithms. Which would application programmers
require? Would they require operations for differ-
ent algorithms within the same batch? If so, how
do we handle items such as key tables for differ-
ent algorithms? (For example, allowing the user to
choose single-DES operations using parts of TDES
keys is risky.) What about variations such as de-
cryption with one key and re-encryption with an-
other, without the plaintext ever leaving the secure
boundary? (This last option could speed Kerberos
server implementations. [3])

• Operation Sequences. As speculated earlier, hav-
ing the host sort operations in various ways could

help speed performance—for some approaches.
What’s a reasonable balance between full flexibility
and manageable implementation?

• Source/Destination. These experiments all dealt
with operations whose parameters and input were
coming from the outside, and whose output was
going back to the outside. However, each of
these three elements (parameters, input, and out-
put) could also come from inside—and if we start
thinking about various types of parameters, the op-
tion space grows considerably beyond even this 23.
What’s reasonable?

• IVs. Our colleague wanted to choose his own
IVs. Some applications would require random IVs
(which our device could generate itself); for other
applications, the plaintext key (a sensitive item) is
re-used for the IV. How do we handle this?

• Dependent Operations. Plausible scenarios can
constructed for having later operations in a batch
use data that resulted from earlier operations—for
example, key-unwrapping operations could them-
selves be included in the same batch as the opera-
tions which use these keys. How do we handle this?

As we explore the design space, we are faced with an-
other conundrum. If optimizing performance requires
coding a tight CPU loop, then either

• our tight loop will be slowed by n tests (for the n
options), or

• or we must implement 2n different loops—one for
each possible set of option choices.

(We briefly considered even having the DES Manager
write the loop each time through.) This conundrum
faded, however, when it became apparent that CPU
speed was not the primary bottleneck.

5 Conclusions

From this experience, we learned many things.

• Meaningful benchmarks of symmetric crypto per-
formance should include data lengths.



• Neglecting to consider how operational parame-
ters can be efficiently sent into a cryptographic sys-
tem can greatly hinder performance—and reduce
the benefits of engineering a high-speed data path.

• Neglecting to consider how software can actually
use new cryptographic hardware designs can re-
duce the benefits of these new designs.

• Complex accelerator architectures can hide bottle-
necks that are not initially apparent.

• But with a programmable device, software experi-
ments can identify these bottlenecks and overcome
many of them.

In the hindsight, an appropriately specified goal (“fast
short DES”) could have led to an appropriate software
and hardware model (e.g., based on standard principles
of performance analysis [7]), and thus enabled examina-
tion of these issues before the hardware design had even
begun. However, one of the contributions of our work is
providing this hindsight: in the pressure of product de-
velopment, hardware tends to be frozen early; and our
field tends to introduce a separation between software
design and hardware design that prevents a full exami-
nation of the interactions.

In future work, we plan to finalize a proposed short-
DES API and and attempt to migrate it into the com-
mercial offering (where it can then actually speed real
customer applications); we also hope to examine other
cryptographic services our device offers, to see if simi-
lar techniques will improve performance there. It also
would be interesting to explore performance tradeoffs
between host-only and coprocessor-enhanced DES for
short operations, and then re-examine the security trade-
offs in light of this information.

Furthermore, we hope to use some of our expe-
rience in accelerating DES variants to build high-
performance prototypes of alternative cryptographic co-
processor applications (such as root-secure private infor-
mation servers [8], noted earlier, and authenticated en-
cryption [4]).

Availability

Contact Ron Perez (ronpz@us.ibm.com) at IBM T.J.
Watson Research Center for current information on the
external availability of the experimental code discussed
in this paper.
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