WHEN UNIX MET AIR TRAFFIC CONTROL

Jim Reid RTFM Ltd.

jim.reid@ukuug.org

#include <std_disclaimer.h>

EUROCONTROL

- the organisation
 - its role
- the systems and applications
 - change management
 - system admin procedures
 - system admin problems

THE INSTITUTION

- The European Organisation for the Safety of Air Navigation
- around 25 member states
- national aviation authorities
- premises in Benelux

HEADQUARTERS

- based in Brussels
 - Central Flow Management Unit CFMU
 - Central Route Charges Office CRCO
 - HQ: Admin, External Liaison and Integration
- Brettigny Experimental Centre
 - backup site for CFMU

OBJECTIVES

- standardisation and harmonisation
- ease congestion and reduce delays
 - smoothing ATC workload
 - lower airline operating costs

EUROPEAN ATC PROBLEMS

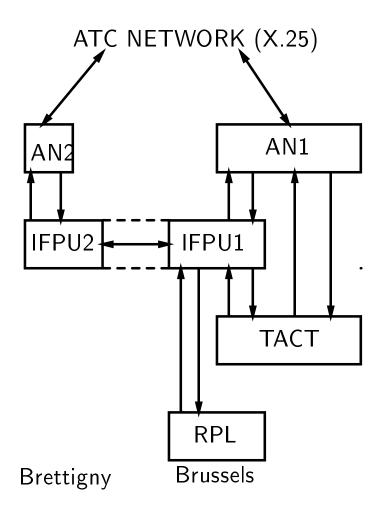
- protocol/systems Babel
 - autonomous national ATCs
 - EATCHIP initiative
- heavily congested routes
 - London, Paris, Amsterdam
- 30-60,000 flights/day
 - year on year growth

CMFU

- centralised flow management
 - regional & national FM
- no national bias
 - pan-European co-operation
- simplified administration
- assistance to national ATC
- in-house applications

CFMU OPERATIONAL SERVICE

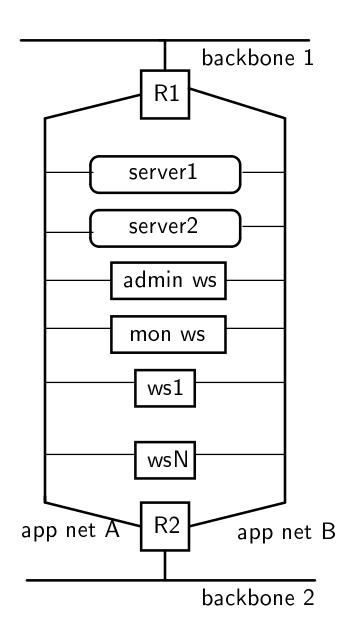
- centralised handling of flight plans
 - submission and distribution
 - IFPS
 - only way to submit flight plans
- real-time slot allocation
 - TACT
 - tactical system
- repeat flight plans:
 - RPL


USER COMMUNITY

- air traffic controllers
 - scheduling tool
 - supplement to "life and death" ATC systems
- airlines & airports
 - better management of resources
 - aircraft, fuel, gates, etc
 - takeoff and landing slots

OPERATING CRITERIA

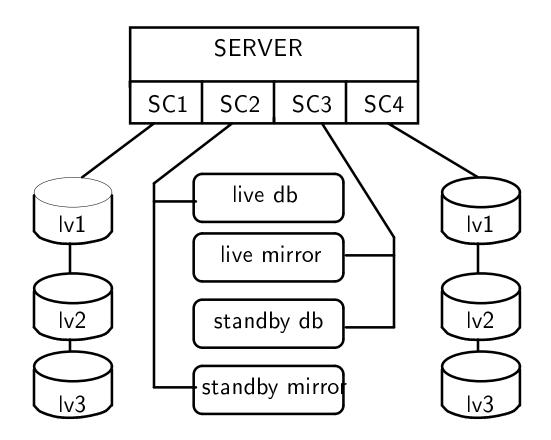
- "no downtime"
 - 1 hour maintenance window per month
 - systematic switchover &system updates
- no data loss
 - lost data means no flights!
- timeliness of TACT database
 - if it's >1 hour old, it's useless
 - => hot backups and standbys


THE BIG PICTURE

MULTIPLE REDUNDANCY

- defence in depth
- no single point of failure
 - 2 computer rooms 400km apart:
 - Brussels and Brettigny
 - 2 independent network links
 - UPS and diesel generators
- typical application cluster:
 - 2 servers, 2 networks
 - number of workstations

SLIDE OF APPLICATION CLUSTER


SWITCHOVER

- swap of operational and backup server
 - performed during maintenance window
 - also after system failure
- introduction of changes
 - software upgrades
 - patches
 - new configuration data

HARDWARE CONFIGURATION

- multiprocessor HP T90's
- 1GB+ of RAM
- Logical Volume Manager (LVM)
 - disk mirroring
 - no single point of failure
 - 4 shared hot-swappable disk arrays for database(s)
 - mirrorred live and standby databases
 - approx 50 Gb/disk per server

SERVER CONFIGURATION

SOFTWARE CONFIGURATION

- HP-UX 9
 - difficult migration to HP-UX 10
- Oracle databases
- minimal environment
 - KISS principle
 - no "dangerous" network services
 - NFS, NIS, DNS, rdist
 - clumsy password file handling

SUPPORT STAFF

- 4 UNIX system administrators
- 4 Oracle database administrators
- 4-5 networking/comms engineers
- 30 applications programmers
- 6 operators per shift TMT
- army of management

UNIX ENVIRONMENT

- development environment
 - anything goes
- pre-operational environment
 - testing and training
 - considered "operational"
 - fed live data
- operational environment
 - strict controls
 - rigorous CM

UNIX ENVIRONMENT - contd.

- development environment copies OPS and Pre-OPS server setups
 - obvious testing benefits
- minor hardware differences
- irritating differences in UNIX configuration
 - username and UID divergence
 - pathname changes
 - environment variables

CHANGE MANAGEMENT

- exhaustive CM procedures
- very conservative approach
 - all changes must be:
 - tested
 - documented
 - logged
- extensive audit trails
 - rarely examined

CHANGE METHODOLOGY

- programmers (where relevant)
- independent testing
 - quality assurance
- pre-ops installation
- ops installation
- no changes on live systems
 - use standby server
 - activate after a switchover

INCIDENTS AND CHANGE REQUESTS

- use Remedy
 - problem reporting and tracking
- 3 categories:
 - Type 1 incidents I1's
 - operational failures
 - Type 2 incidents I2's
 - operational errors
 - Change requests CRs
 - alterations eg new systems

INCIDENT DISPATCHING

- Type 1 incidents
 - TMT page on-call support staff
 - UNIX sysadmin inevitably gets paged
- I2's and CRs:
 - first sent to manager
 - sent to change control board
 - put under work
 - assigned to member of staff
 - originator closes I2 or CR on completion

CHANGE CONTROL BOARDS

- lots of them:
 - operations (OCCB)
 - software (SCCB)
 - TCCB development systems
 - documentation
 - mainframe

THE OCCB

- meets weekly
 - focus for all operational activity
 - discusses I2's and CR's
 - reject or approve new ones
 - close completed ones
 - analyses intervention requests
 - clearing house for information

THE OCCB - contd.

- representatives from every group:
 - UNIX sysadmins
 - Oracle sysadmins
 - network/comms group
 - air traffic controllers
 - programming teams
 - maintenance department
 - TMT management

INTERVENTION REQUESTS - IR's

- must be tied to an I2 or CR
- declarations of intent
 - do something to operational system
 - when it will be done
 - impact
- line manager approves
- then goes to OCCB for acceptance
- usually 1 request per system

A TYPICAL 12

- wrong permissions on /tmp
 - programmer raises I2
 - OCCB assigns to UNIX group
 - sysadmin allocated to I2
 - submits intervention requests
 - OCCB approves interventions
 - sysadmin does the task
 - I2 marked completed
 - finally closed by OCCB

EXTRA FACTORS

- ISO9000 certification
- missed IRs must be resubmitted
 - rules get bent
- intervention log
 - based on Remedy
 - filled in after each intervention
 - informs management of changes
- I2s and CRs can create further I2s and CRs

SYSADMIN PROCEDURES

- driven from CM procedures
 - must be an I1, I2 or CR
 - otherwise nothing gets done
- no editing of UNIX config files
 - files must always be present
 - create new one
 - copy old one, rename new one
- use management workstation

A FEW WORDS ABOUT LVM

- it's horrid!
 - too many similar commands
 - far from bulletproof:
 - use lvsync or vgsync?
 - LVM disk labels unreadable
 - can't readily check VGRAs and PVRAs
 - disk verification impossible
 - a major headache

MORE WORDS ON LVM

- commands are counter-intuitive:
 - args to lymerge are wrong way round!
 - vgscan is destructive!
- command line typos can be disastrous
 - real worry at 3 am
 - solution: pass the buck
 - take advice of HP support

PUBLIC DOMAIN SOFTWARE

- officially banned
 - sneaked in
 - TACT includes tcl/tk
 - gzip widespread
 - HP support for xntpd
 - unnecessary duplication
- issue is support, not cost
- should be common set of PD tools

SYSADMIN PROBLEMS

- switchover
 - influenced by HP product
 - simple yet over-elaborate task
 - politically hard to fix
 - tight time constraints
 - little room for manoeuvre
 - full TACT start-up takes over 45 minutes

MORE SYSADMIN PROBLEMS

- reactive rather than proactive
- conservative culture
 - don't fix what already "works"
 - keep operational service going
- management attitudes
 - solve short-term problems
 - avoid "radical" change
 - continuity of service

MORE SYSADMIN PROBLEMS

- lack of communication
 - don't know what other groups are doing
 - and vice versa
- vague interface between applications and UNIX
- vague interface between UNIX staff and DBA's procedures and actions
 - never sure what can go wrong
 - never sure of change's impact

AUTOMATIC ADMINISTRATION

- deployment of in-house tool
 - bad design
 - solved wrong problem
 - poorly documented
 - huge learning curve
 - myriad of config files and scripts
 - gratuitous changes to systems
 - all or nothing approach
 - encouraged diversity
 - cancerous impact

SIMPLE SYSTEM ADMINISTRATION

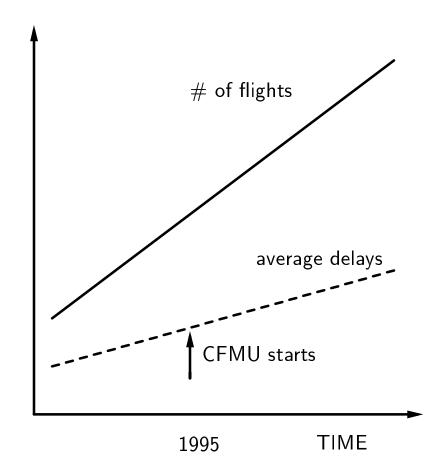
- return to maintenance by hand
- gradual elimination of differences
 - removal of tool files and scripts
 - long process
- simple version control
 - central repository of config files
 - checkin change after updating the system file
 - SCCS, diff and email

MANAGEMENT PROBLEMS

- staff compartmentalisation
 - poor group interaction
 - DBAs write shell scripts
 - configuration data compiled into applications
 - IP addresses
 - TCP port numbers
 - system names
 - printer locations

SYSADMIN ARCHITECTURE

- only now being done
 - UNIX system admin. team
- needless diversity
 - no global UID & user name space
 - historical and human reasons
 - platforms managed separately
 - extra unnecessary work


CONTINGENCY PLANS

- IFPS: no problem
 - used in anger
- TACT: none
 - service in Brettigny?
- disaster recovery is a worry
 - complex configurations
 - poor documentation
 - setup details dispersed
- a hard problem

CONCLUSIONS

- it works! (sort of)
 - no downtime to end users
- redundant hardware is vital
 - "fault tolerant" vanilla UNIX?
- CM is painful and slow
 - but brings discipline to work procedures
 - expensive in time and resources
- the customers and users seem happy

GRAPH

FUTURE DIRECTIONS

- new disk farms
- HP-UX10 migration
- 2-site TACT
- ATC developments
- statistical analysis
 - traffic patterns
 - AI techniques
 - predicting bottlenecks