
The following paper was originally published in the
Proceedings of the Eleventh Systems Administration Conference (LISA ’97)

San Diego, California, October 1997

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

Selectively Rejecting SPAM
Using Sendmail

Robert Harker – Harker Systems

ABSTRACT

With the growing popularity of the Internet, unsolicited electronic mail (spam) has become
a major concern. It fills up user’s mailboxes, clogs mail relays, wastes postmaster time, and
creates ill will for sites that have been used as a relay. Most sites want to filter spam before they
receive it but filtering spam is hard to do without filtering legitimate mail messages.

This paper discusses what characterizes spam and describes rulesets that can be added to a
sendmail version 8.8 [1] sendmail.cf file to selectively reject mail from specific addresses,
domains or IP addresses and to prevent spammers from relaying mail through a site. It discusses
the different issues facing corporate sites and the special issues facing Internet Service Providers
(ISP). The rulesets presented have been implemented as M4 template files so they can be easily
integrated into a sendmail 8.8 sendmail.cf file as a FEATURE using M4. These rulesets are
currently in use at Harker Systems and other sites, and are available via anonymous ftp.

Motivation

Unsolicited email, or spam, has become a
chronic problem on the Internet. It fills user’s mail-
boxes and clogs SMTP mail relays. It creates ill will
and wastes postmasters’ time. Filtering spam is a
ongoing challenge.

It is easy enough to filter out spam which has
valid addresses from a known spam site. Regrettably,
spammers are very creative in how they disguise their
messages. Also, one person’s spam is another per-
son’s interesting junk email. And, if a non-spam mes-
sage is sent from an address which is defined to be a
spam address, it will be rejected.

Because of these issues, filtering spam must be
handled with care. It is as much a policy and proce-
dure problem as it is a technical problem. Creating the
tools to filter spam is relatively easy. Creating the pol-
icy and procedure of what constitutes spam at your
site, and what to block, is much more problematic.

One of the important new features of sendmail
version 8.8, is a new set of four rulesets which are
used to reject mail messages. The check_,
*check_relay, check_mail, and check_rcpt set of rule-
sets allow rejection of a message during SMTP recep-
tion – before it is transferred to the destination or a
relay. This off-loads the processing and generation of
a bounce message by the mail host or SMTP relay.
An additional ruleset, check_compat, can used to
reject mail during sendmail’s delivery of a message
after it has been accepted.

Implementation of these rulesets is evolving with
versions developed by Eric Allman [2], Claus Ass-
mann [3]. The results presented in this paper represent
a next step in this evolution. My students’ questions
caused me to think about what characterized spam and
to add additional tests to the rulesets. The spammers

courteously provided copious quantities of sample
spam messages so I could test my assumptions.

What Is Spam?
The simple answer is that spam is any unso-

licited email that is sent to a large list of users without
their prior permission. When someone receives a piece
of spam, they recognize it as such and delete it.

Human recipients use their experience and the
context of the message to make a decision about
whether or not the message is spam. They use various
criteria for deciding that a message is spam such as:

• The sender’s address or domain name.
• The subject of the message.
• The text of the message.

Unfortunately, in sendmail, an SMTP relay has limited
access to the information in a message without signifi-
cantly modifying the sendmail source code itself.
During the reception of an SMTP message sendmail
has access to:

• The sender’s envelope return address passed in
the MAIL From: command.

• The recipient’s envelope address passed in the
RCPT To: command.

• The host name the SMTP client announces in
the HELO or EHLO command.

• The client’s IP address and port number from
the socket structure.

Information about the client derived from the above
information and DNS.

Once the message is accepted for delivery, send-
mail has access to additional information, but it is of
either limited use, or impossible to use without modi-
fying the sendmail source code. Because of this, using
sendmail to filter spam is best limited to the informa-
tion available during the reception of an SMTP mes-
sage.

1997 LISA XI – October 26-31, 1997 – San Diego, CA 205

Selectively Rejecting SPAM Using Sendmail Harker

A major problem with rejecting spam using arbi-
trary filtering criteria is that desirable messages may
be rejected along with the unwanted spam. This may
range from an inconvenience for a user, to the loss of
business due to rejecting a potential sales lead or busi-
ness opportunity, to an extreme of a legal lawsuit
charging violation of the spammer’s constitutional free
speech rights.

Criteria For Accepting Mail
The criteria used to accept local sender addresses

with the rulesets presented in this paper are:
• Local host names
• Local domain name or local virtual domain

names
Mail being sent either to or from this host or domain
should be accepted. For a standalone mail host this is
simple: Does the sender or recipient address contain
my host name? A corporate SMTP relay is also sim-
ple: Does the sender or the recipient address’s host
names end with our domain? For a company with
multiple domains or an ISP the test is slightly more
complex because there are multiple domains that
should be accepted as local. You must also make sure
the local addresses are truly local and not non-local
local addresses such as:

user%spam.dom@my.dom

Criteria For Rejecting Mail
The criteria that can be used to reject spam mail

are:
• Host and domain names of known spam sites
• Bogus sender or host domain
• Bogus sender address
• Bogus user address
• IP networks and addresses of known spam

hosts
• Invalid DNS host name
• Spam addresses hidden behind a local name

Some of these are good, but others run the risk of
bouncing valid messages.

Known Spam Sites
The most straight-forward criterion for rejecting

mail is to reject mail from known spam sites. This is
simple to do. Make a list of user addresses, host
names or domain names that you deem to be spam
only sites or addresses. When the sender address or
sending host is one of these spam addresses, it is
rejected. While straight-forward, this is the most easily
and frequently circumvented filter. Many spam sites
do not give valid sender addresses to avoid getting
bounce messages to bad recipient addresses, and to
avoid getting spam or flame mail in return.

Bogus Sender or Host Domain
The next obvious criterion to filter on is bogus

sender, host or domain name. When an invalid sender
address is given, the host or domain name are fre-
quently not in DNS. Rejecting mail from hosts and
domains that can not be looked up in DNS will get rid

of this class of mail. But simply looking up a host or
domain name in DNS may cause a site to reject valid
mail since many sites have incomplete DNS informa-
tion. If a sender ’s host name is not registered in DNS,
this criterion will cause mail from this sender to be
bounced. A site can choose that this is an acceptable
rejection.

A more careful approach is to search the host
name and check if the sub-domain or parent domain is
valid. If a domain match is found, the host name
should be treated as a valid host name.

Bogus User Address
A desirable criterion for rejecting mail is to filter

on bogus user address. However, testing for a bad
user address is much harder because, short of sending
a message to that user address, there is no reliable way
to check the validity of the address. A simplistic test
for a bad user address might be to connect to the
sender ’s SMTP server and use either the SMTP VRFY
or RCPT command to check the address. If the server
does local delivery of the message then this would
work well.

However, the reality is that most of the SMTP
servers are simply SMTP relays that forward the mes-
sage to an internal host. These hosts will usually
accept mail for any address that ends with the local
domain(s).

Next you might test the next host to which the
message would be relayed. Unfortunately, most
SMTP relays either do not return information about to
which host the mail will be forwarded, or do not allow
connections to that next host.

The other issue with using this criterion is that
sendmail does not have any built-in feature that would
allow the sender’s complete address to be tested.
Rejecting bad host or domain names only is an
accepted limitation of this paper.

IP Networks and Addresses of Known Spam Hosts
The next set of criteria are based on information

about the SMTP client that is connecting to the SMTP
server. When a client connects to sendmail, sendmail
receives information about the client:

• The host name given in the SMTP HELO or
EHLO command

• The IP address of the client from the socket
structure

• The TCP port number of the client from the
socket structure

The first test is to check the host name given in
the SMTP HELO or EHLO command as well as the
DNS name of the SMTP client against the list of
known spam sites. This is done by running the client
host name against the same set of tests that you used
for the sender’s envelope address.

The second test is to check the IP address to see
if it is a known spammer IP address or network. To do
this, a list of known spammer IP address and networks

206 1997 LISA XI – October 26-31, 1997 – San Diego, CA

Harker Selectively Rejecting SPAM Using Sendmail

is created. If the IP address matches one of these IP
addresses or is a host on one of the known spammer IP
network address ranges then the message is rejected.

Rejecting on specific IP addresses is reasonably
safe. If a spam site is sending mail from their host, all
mail from that host is probably spam. Rejecting mail
based on an IP network is more risky because the
spammer may be using an IP address allocated to an
independent ISP. If you reject mail based on the ISP’s
IP network number, then you will not only reject mail
from the spammer, but also all of the other valid users
of that ISP.

For example, if you rejected mail from aol.com’s
or netcom.com’s networks you would block a lot of
spam mail, but you would also block a lot more valid
email.

Three additional tests are based on the PTR
records for the client’s IP address. First do a reverse
lookup of the client’s IP address to check for a valid
PTR record. If no PTR record is found then reject it
as an invalid or unauthenticated IP address. Next test
if the PTR record matches the client host name given
on the SMTP HELO or EHLO command. Third, do a
double reverse lookup of the IP address to check that
the IP address used is actually the IP address for the
host name returned by the PTR record.

All of three of these tests risk bouncing more
valid messages than spam messages. For various rea-
sons a significant percentage of SMTP clients either
do not have PTR records or the PTR record does not
agree with the client SMTP host name or with the A
records for that host. This could be because of poor
DNS administration or because SMTP clients
announce themselves as the domain.

However, where these tests might make sense is
for messages from specific hosts or domains where
you either control the domain, or where your relation-
ship with the domain administrator would permit
incorrect DNS information to be corrected. For exam-
ple, if acme.com and abc.com have a business rela-
tionship, it might make sense to check that mail with a
sender address of acme.com actually has consistent
DNS information. If the SMTP client host name or IP
address do not agree for these networks then reject the
message. This test is more applicable to rejecting
forged email, not rejecting spam.

Invalid DNS Host Name
Test for invalid host names by canonicalizing the

address. A trailing dot is added to valid hostnames
when sendmail 8 looks it up in DNS with $[host-
name$] in the rulesets. Testing for this trailing dot
will reject invalid names. Unfortunately, not all host-
names are registered in DNS. By treating the domain
portion of the hostname as a search path, the host’s
sub-domain, or parent domain can be used to validate
the hostname.

Spam Addresses Hidden Behind a Local Name
One technique spammers use is to hide their

domain behind a local domain:

user%spam.dom@abc.com

These addresses can be rejected by borrowing the
rules in ruleset SO. These rules check that an address
truly is local. Extend them to test for local domains as
well as domains the relay treats as local, such as the
masquerade domains.

Protecting an SMTP Relay

Many sites that have implemented and paid for
robust SMTP relays with high bandwidth Internet con-
nections are being used as spam relays. A spam site
will open a single connection to the relay and send a
single copy of the message with a list of hundreds or
thousands of recipients. The SMTP relay then deliv-
ers the messages to the individual recipients.

This causes technical problems including con-
gestion of the SMTP relay queues, impacting the CPU
performance and throughput of the SMTP relay, satu-
ration of the Internet link, and generation of excessive
undeliverable bounce messages. It causes staff prob-
lems, including time spent by postmasters and post-
mistresses dealing with the bounce messages, and the
complaints sent to the owners of the SMTP relay from
the spam’s recipients. It damages the company’s repu-
tation and causes loss of good will when outside peo-
ple mistakenly assume that the company encourages
spam.

Criteria For Refusing To Relay SMTP Mail

Spam has many criteria that sendmail can use to
reject relay spam mail:

• Is the sender or recipient a user in the local
domain?

• If the sender is a user in the domain, is the
client a connection from an IP address inside
the domain?

• Are the recipients truly local addresses?
• Are the recipient addresses valid addresses?

Some of these criteria are good; others must be
rechecked to make sure they are valid messages.

The major criteria of whether a message is valid,
and should be relayed, or is spam mail that should be
rejected, is if the sender and/or the recipient are part of
the SMTP relay’s domain(s).

The simplest case is to check that the recipient
address is a local recipient. Mail going to a user
within the domain should be accepted because they
are part of the domain. The same criteria for accepting
a sender as a local address are applied to the recipient
address.

Checking the sender address as a local address to
decide if the message should be relayed must be done
carefully. If the sender address is a user inside the
domain, and the message is being relayed either to the

1997 LISA XI – October 26-31, 1997 – San Diego, CA 207

Selectively Rejecting SPAM Using Sendmail Harker

outside world, or to another user within the domain,
then the message should be forwarded. You should
not blindly trust the sender’s address because the
spammer can simply forge a local sender address.
Further checking is called for.

See if the client’s IP address originates within the
domain. If the client’s IP address is not part of the
domain, you can assume that the sender’s address has
been forged. (Restricting the sender address on the
basis of the sender’s IP address also has the side bene-
fit of reducing or eliminating forged email messages
from outside the domain.) Where this may not be true
is with traveling or remote users. These users may
send mail from outside the domain to the STMP relay.

There are two ways to deal with this, the permis-
sive case and the restrictive case. The permissive case
is where blocking on a range of IP addresses or IP net-
works might make sense. For example, if the domain
has an exclusive or preferred ISP and does not use
others then large ISPs such as compuserv.com,
aol.com and netcom.com could be blocked. If the
domain had a policy that employees would not send
business email from aol.com, then any mail with a
sender mail address with the local domain and a client
IP address originating from an aol.com domain could
be safely rejected. This would not block all spam mail
with a local sender address coming from the outside,
but it could block the most flagrant spam relay prob-
lems.

A more restrictive approach is to only allow spe-
cific ISP networks to send mail with a sender address
with the local domain. Acme.com only uses the gad-
get.net ISP. If the client IP address was part of gad-
get.net’s IP network then the message would be
accepted. All other local sender addresses with out-
side IP address would be rejected. This is the
approach taken in this paper.

Restricting Senders To Specific Recipient
Addresses

A final issue in dealing with spam is spammers
sending to internal aliases and mailing lists. A related
activity is mail bombing where a user is sent a large
number of messages slowing down the SMTP relay
and filling up the spool directory on the mail host. In
both of these cases the solution is to use both the
sender and the recipient address in deciding to accept
or reject the message. If the rulesets for restricting
relaying is general enough so that you can test the
relationship between the sender and the recipient
addresses, then these same rulesets can be used with
the protected addresses as special cases of relay
addresses.

It is simple to reject spam to internal aliases and
mailing lists by defining a list of internal addresses
which are strictly internal. If mail for one of these
addresses comes from outside the domain, it should be
rejected.

There are several ways to reject mail-bomb mail:
• Treat the mail-bomber as a spammer and reject

all mail from that sender.
• Define a class of protected users and reject mail

from selected senders to those protected users.
This is the approach that Eric Allman has
taken.

• Selectively match specific recipients with spe-
cific senders. This is the approach I take in this
paper.

Implementation Philosophy:

The initial set of check_* rulesets I wrote were
based on the simple examples given by Eric Allman.
As I explained these rulesets, and their uses in class,
student’s questions motivated me to add additional
tests.

The first improvement made was to expand the
use of databases in testing the address. By using for-
mat conventions used in other sendmail databases,
such as denoting user addresses with an @ sign, and
using domain names and dotted IP addresses in the
key, a single database can be used for a wide variety
of tests. This simplifies administration.

Other techniques were borrowed from other parts
of the sendmail.cf file:

• Using a lookup focus for database queries.
• Marking address to separate or identify

addresses.
• Recursively calling a ruleset to test all the

domains in a hostname.

Integration with the rest of the sendmail.cf file
was a consideration with a special focus on filtering
on a relay. This includes testing for the local domain
name(s) as well as other domains the relay may han-
dle, such as masquerade domains and virtual domains.

The last design goal was to implement these
rulesets as M4 templates so that they could integrate
with the M4 sendmail.cf file generation philosophy.
These rulesets are implemented as a series of FEA-
TURES for simple inclusion. User configurable
parameters such as database type and location are set
with define(‘confM4_MACRO’, ‘value’) statements.
Also specific rules are included based on whether or
not a specific sendmail FEATURE or M4 macro has
been set.

Databases Used By check_* Rulesets
Two databases are used by the check_* rulesets

presented in this paper:
• check_mail Sender addresses to be rejected
• check_fwd Sender $| recipient pairs to be

accepted or rejected
Both of these databases are simple key:value pairs
stored in a UNIX ndbm or Berkeley db hashed table
database.

208 1997 LISA XI – October 26-31, 1997 – San Diego, CA

Harker Selectively Rejecting SPAM Using Sendmail

Format Of The check_mail Database
The check_mail database allows the key to be

rejected to be a user address, host or domain name, or
IP network or address. The value returned as the text
of the message in the SMTP error message.

The format of the check_mail database is:
• The lookup key (the address)
• The value to return

Lookup Key

The key can be one of the following:
• A specific user address like user@
host.dom. Only this address is rejected, all
other addresses from host.dom are allowed. A
specific user address is any key that has an @
sign in it.

• A host or a domain name like host01.
spam.dom or spam.dom . All addresses
with this host or domain name following the @
sign are rejected. The mail is also rejected if
this is in the MAIL From: address, or it if is in
the hostname of the connecting SMTP client.

• A name like .domain_name.x . All host-
names that end with this domain name are
rejected. This rejects all mail below a domain,
but not the domain itself.

• An IP network number, either one, two or three
octets followed by trailing zeros, like
123.0.0.0, or 123.123.0.0, or 123.
123.123.0 . All SMTP clients whose IP
address starts with these IP network numbers
will be rejected. Note that there is no check for
correct class of the network entry so an entry
192.0.0.0 would reject all class C networks that
start with 192.

• A specific IP network address like 123.
123.123.123 . The specific SMTP client
whose IP address is 123.123.123.123 .

Key Function

user@host.dom Access denied for user@host.dom
host.spam.dom Access denied for host.spam.dom
spam.dom Access denied for dom spam.dom
123.0.0.0 Access denied for 123.0.0.0
123.123.0.0 Access denied for 123.123.0.0
123.123.123.0 Access denied for 123.123.123.0
123.123.123.123 Access denied for 123.123.123.123

Table 1: Database Example.

Value Returned

The value returned can be:
• The single word OK which will accept the

address and stop the ruleset.
• The single word REJECT which will return a

generic SMTP error message.
• A specific message for this address which will

be returned as the text of the SMTP error

message (This allows you to tailor your insults
to specific spam sites.)

Database Example

Table 1 shows a database example.

Updating The Database
The default name of the database is:

/etc/check_mail . The source file for the database can
have this name since the makemap or makedbm will
append the .db or .dir and .pag extensions on to this
file name. The database needs to be rebuilt each time
a change is made to the sourcefile.

Use the makemap command to rebuild a hashed
db database. The makemap command is a standalone
command to rebuild databases provided as source
code in the sendmail 8 release:

makemap hash /etc/check_mail \
< /etc/check_mail

To rebuild a hashed ndbm database use:

makemap dbm /etc/check_mail \
< /etc/check_mail

or

makedbm -l /etc/check_mail \
/etc/check_mail

Using the -l flag on makedbm converts all of the keys
to lower case.

Format Of The check_fwd Database
The check_fwd database is used to test if the

sender/recipient pair should be allowed or rejected for
SMTP relaying.

The database key is a sender and a recipient
address separated by the special token ‘$|.’ If the
sender and the recipient match, then the address can
be accepted or rejected. The sender and recipient
address can be any of the formats allowed in the
check_mail database except an IP address. The sender
and recipient address can also be the special key
ALL which will match all addresses with the other
half of the key.

Like the check_mail database, the value returned
can either be an error message to be returned or the
special key REJECT which will return a generic error
message. It can be the special key OK. If the key

1997 LISA XI – October 26-31, 1997 – San Diego, CA 209

Selectively Rejecting SPAM Using Sendmail Harker

returned is OK, then the sender and recipient are
accepted without applying additional tests.

LOCAL_RULESETS

Start the named ruleset check_mail
Scheck_mail

Put everything through ruleset S3 to focus
and canonicalize addresses
R$* $: $>3 $1

Strip source route and pass back to ruleset
S32
R<@$+>:$+ $: $>3 $2

Listing 1: Defining a check_mail ruleset.

Database Examples:

The lookup key:

user1@host.dom $| user2@x.abc.com

would block user1@host.dom from sending to the
specific user2@x.abc.com The lookup key:

user@host.dom $| x.abc.com

would block user@host.dom from sending to any user
at x.abc.com The lookup keys:

user@host.dom $| .abc.com
user@host.dom $| abc.com

would block user@host.dom from sending to any user
in the abc.com domain. The first key blocks mail to
all hosts in the domain; the second blocks mail to the
domain itself. The lookup key:

host.dom $| user@abc.com

would block any user at host.dom from sending to
user@abc.com. The lookup keys:

.abc.com $| alias@abc.com OK
abc.com $| alias@abc.com OK
ALL $| alias@abc.com REJECT

would limit senders who can send to an internal alias
to users in the abc.com domain.

The first two keys allow mail from any hosts in
the abc.com domain or the domain itself to the alias.
The third key blocks all mail from all other domains to
the alias with the generic SMTP error message
‘‘Access denied.’’

Benefits Of Using Databases
The benefit of the lookup keys flexibility is that a

single database can be used in several places. If the
key is a user address, it can be applied to a sender or
recipient. If the key is a host or domain, it can be
applied to the sender or recipient, but it can also be
applied to the client hostname or SMTP HELO or
EHLO name. If the key is an IP address or network,
then it is applied to the client’s IP address.

Another benefit of using a database to look up
the addresses is that, as changes are made to the
database, the updates are used immediately by the
sendmail daemon.

Overview of check_* Rulesets

The new set of four check_* rulesets1 allow
sendmail to reject mail messages before they are
delivered. The check_relay, check_mail, and
check_rcpt rulesets are applied by the SMTP server
during the SMTP protocol exchange with the SMTP
client. The check_compat ruleset is applied after
sendmail has accepted the message, but before the
message is passed to a delivery agent. The results of
these rulesets are used for an accept/reject decision.
They are not used to rewrite the address by sendmail.

These rulesets can do anything they want. If
they return a call to the $#error mailer, the message or
SMTP command is rejected with the message that fol-
lows the $: part of the result, otherwise their result is
ignored.

The rulesets to reject mail during the SMTP
reception of a message are an important new feature
because they allow mail to be rejected before it is
transferred via SMTP to the destination or a relay.
This off-loads the processing of the message and the
generation of a bounce message by the mail host or
SMTP relay.

The check_mail ruleset can be used to reject or
accept the SMTP MAIL command based on the
addresses given in the SMTP command as well as
information about the SMTP client.

The check_rcpt ruleset is used to reject or accept
a SMTP RCPT command based on the addresses
given in the SMTP command. It can be used to reject
mail for a specific recipient, host or domain. Since the

1For a short introduction on sendmail and the sendmail.cf
configuration file, and rules and rulesets visit: http:
//www.harker.com/sendmail/overview.sendmail.html . For a
short introduction on using M4 with sendmail to generate
the config file visit: http://www.harker.com/sendmail/
overview.M4.html .

210 1997 LISA XI – October 26-31, 1997 – San Diego, CA

Harker Selectively Rejecting SPAM Using Sendmail

sender ’s address, as well as information about the
SMTP client has already been determined, it can also
be used to reject spam relay mail.

Does it end with our domain, if so OK
R$+<@ match.pattern . > $@ OK
R$+<@ $+ . match.pattern . > $@ OK

Listing 2: Domain matching rules.

The check_relay ruleset is used to reject or
accept a SMTP session. It is applied before sendmail
accepts the TCP/IP SMTP connection. It is passed the
DNS hostname for the client’s IP address and the
client’s IP address itself separated by a ‘$|’ (shown
here folded for display purposes):

client.DNS.host.name $|
client.host.address

If the $#error mailer is called, sendmail returns a ‘550
Access denied error’ message for all subsequent
SMTP commands.

The check_compat ruleset is different that the
previous three rulesets because it is applied after the
message has been accepted by sendmail, but before
sendmail tries to deliver the message by calling the
delivery agent. Thus, it can be applied to mail
received from all sources, not just SMTP. This
includes UUCP, user agents, and SMTP front-ends
such as smap and smtpd. It is passed the processed
sender address and the processed recipient address
separated by a ‘$|’ (shown here folded for display
purposes):

sender@sendhost.dom $|
recipient@rcpthost.dom

If the $#error mailer is called, sendmail will bounce
the message as undeliverable. The drawback of this
ruleset is that the bounce message is generated by the
local sendmail process, not on the remote client trying
to submit a message to this host.

Useful Macros in the check_* Rulesets
Sendmail 8.8 defines several macros which are

useful for rejecting SMTP mail:2

• $&{client_name} Name of the SMTP client
• $&{client_addr} IP address of the SMTP client
• $&{client_port} Port number of the SMTP

client
In these macros the SMTP client is the host trying to
forward a message by connecting to this SMTP server.

Two additional existing macros are useful in the
check_* rulesets:

• $&s: The hostname passed in the HELO or
EHLO command.

• $&f: The resolved sender envelope address
passed in the MAIL command.

2Use the deferred evaluation form, $&m or
$&{macro_name}, to avoid having these expanded in the
rule when sendmail reads the configuration file.

Implementation of check_mail Ruleset to Reject
Incoming Spam

Here is the structure of check_mail ruleset:
• Focus addresses by passing to S3.
• Check non-local local with Strip_Local ruleset.
• Check local host and domain information.
• Check for valid DNS information.
• Check sender address for spam domain.
• Check macros for spam domain.

Focus Addresses by Passing To S3
The raw address is passed to the check rulesets;

the addresses are unformatted and have no focus.
Passing the address through ruleset S3 first put the
address into the sendmail standard format:

user <@domain>

or for RFC 822 source route address:

<@domain> : balance of source route

This is called the ‘focused address’ with the next host
in line for delivery inside the focus angle brackets,
< >. In this configuration it is assumed we are not
interested in the source route address, only in the final
destination, so RFC 822 source route addresses are
stripped.

Listing 1 shows how to define the check_mail
ruleset with these rules in a sendmail.cf file generated
with M4.

The M4 macro LOCAL_RULESETS includes
the text that follows it in the sendmail.cf file before
mailer definitions and is used for all ruleset additions
in this paper.

Testing for local host or domain information:
A simple performance benefit is to accept

addresses with local host or domain information. This
avoids any additional processing of these addresses
and eliminates their database lookups.

This local information is stored in the sendmail
macros and classes:

• $w: My hostname
• $=w: Other host I accept as local
• $m: My domain name
• $=M: Domains I masquerade

The matching of these macros and classes is done with
a repeated series of Domain Match Blocks (my termi-
nology)

Domain Match Block

Listing 2 shows the rules that perform domain
matching. On the Left Hand Side (LHS) of the rule,
the match.pattern inside the focus of the address can

1997 LISA XI – October 26-31, 1997 – San Diego, CA 211

Selectively Rejecting SPAM Using Sendmail Harker

be a macro, $m, class, $=w, or text, abc.com. The first
rule tests for the match.pattern itself. The second rule
tests for all hosts and sub-domains below the
match.pattern .

Does it end with another domain we are known as?
make sure it is local
R$- < @ $=M . > $: $(dequote $1 $) < @ $2 . >
R$* $=O $* < @ $=M . > $@ $>StripLocal $>3 $1 $2 $3
R$- < @ $+. $=M . > $: $(dequote $1 $) < @ $2 $3. >
R$* $=O $* < @ $+. $=M . > $@ $>StripLocal $>3 $1 $2 $3

Listing 3: Standard block of rules.

LOCAL_CONFIG
Kcheck_mail type -o -a.REJECT /etc/check_mail

Listing 4: Defining check_mail in sendmail.cf

Lookup user@host.dom
R $+<@$+.> $: $(check_mail $1@$2 $: $1<@$2.>$)

Listing 5: Looking up entire address in check_mail database.

$: Apply the rule once, do not recurse
$(check_mail Start of the lookup in the check_mail database
$1@$2 Key used in the lookup
$: $1<@$2.> Default rewrite if lookup fails
$) End the lookup

Listing 6: The RHS syntax.

If the address matches the LHS pattern, then the
RHS exits the ruleset and returns the symbolic name
OK. The OK returned by these rules are strictly for
human consumption. A ruleset returning OK shows
that the address was explicitly accepted by a rule. If
the address itself is returned by the ruleset, then the
address fell out the bottom of the ruleset. In both
cases since the $#error mailer is not returned by the
ruleset, the result is discarded by sendmail and the
address is accepted.

Rejecting Addresses Hidden Behind Our Domain
We want to avoid addresses hidden behind our

hostname or domain name:

spammer%spam.dom@my.dom

Since this check is something we will want to do in
several of the check_* rulesets, we create a custom
StripLocal ruleset to do it. After calling ruleset S3, we
pass all address to the StripLocal ruleset:3

Check that the address is

3About $>StripLocal $>3 RHS syntax: When two
rulesets are specified on the RHS, the first is called, and then
the second is immediately called before executing the first
rule of the first ruleset. This means that the second ruleset is
processed first and the output of the second ruleset is used as
the input to the first ruleset.

local, not user%host@my.dom
R$*<@$+> $:$>StripLocal $1<@$2>

The StripLocal ruleset tests for domains I do mas-
querading for, $=M, as well as domains looked up in
the genericfrom database, $=G, and other hostnames I
will treat as local, $=w.

Standard Block

Listing 3 shows the standard block of rules. The
first rule tests if a single token is followed by the
domain class:

< @ $=M . >

then the token passed to the dequote database, in case
the sender passed a quoted string. The dequote
database is a pseudo database built into sendmail
which removes quotes from a string and parses the
results into tokens.

The second rule tests if the focus is preceded by
a non-local separator, $=O4 and if the address ends
with the domain class. If this is true, the address is not
truly local so the domain is stripped and the user por-
tion of the address is passed back to the $>StripLocal
ruleset.

The third and fourth rules do the same thing
except that the domain class is tested with preceding
host or sub-domain names:

4The operators ‘!’, ‘%’, and ‘@’ are the token separators
contained in class O.

212 1997 LISA XI – October 26-31, 1997 – San Diego, CA

Harker Selectively Rejecting SPAM Using Sendmail

< @ $+. $=m . >

The StripLocal ruleset does not reject mail, it only
removes un-needed local information. The StripLocal
ruleset is applied before the preceding local checks.

Rejecting Addressees in the check_mail Database
With the address in a stripped focused format, it

can be checked against the check_mail database in
order to test if it should be rejected.

Before the database can be used, it must be
defined in the sendmail.cf file: Listing 4 would define
the check_mail database in the beginning of a send-
mail.cf file generated with M4. The K line defines the
database check_mail to be a database type (hash or
dbm) which is located in /etc/check_mail. The
-a.REJECT flag causes sendmail to append the pseudo
domain .REJECT to the value returned if the look-up
is successful. If the lookup fails, the look-up key is
returned unmodified unless a default rewrite is speci-
fied in the RHS of the look-up rule.

With the database defined, the rule in Listing 5
looks up the entire address in the check_mail database.
Listing 6 shows the RHS syntax.

Since the keys stored in the database do not have
focus, the lookup key used is the user@host.domain
address without focus or trailing dots. If the database
lookup is successful, then the associated value is
returned with the pseudo domain .REJECT appended,
which is used to reject the address. If the lookup fails,
a default rewrite is used to put the focus and trailing
dot back into the address.

Once the address has been looked up, the next
step is to test if the address should be rejected by test-
ing if the address now ends with .REJECT If it does,
use the string that precedes the .REJECT as the error
message returned by the error mailer:

if address ends with .REJECT
use value returned as the
error message
R$+.REJECT $#error $:$1

Two additional tests that are made are for the
fixed values OK.REJECT and reject.REJECT.5 A
return value in the database of reject.REJECT will
reject the address with a default error message. A
return value of OK.REJECT will accept the address
without any additional processing. The ruleset will
exit with the symbolic address OK.

These three rules create a block of rules which is
referred to as a Reject Block of Rules (my terminol-
ogy). The Reject Block is used after every database
lookup in the check_* rulesets:

if name is OK.REJECT,
exit ruleset with OK
ROK.REJECT $@ OK

5Remember, sendmail is case-insensitive in the rulesets.

if name is reject.REJECT
use default error message
(shown folded)
Rreject.REJECT

$#error $:Access denied

otherwise use value returned
as the error message
R$+.REJECT $#error $:$1

Checking Macros Against The check_mail
Database
In addition to the address itself, several macros

are available for checking against the check_mail
database. In particular:

$&{client_name} The client hostname from the
socket

$&s The hostname from the HELO
or EHLO Command

The separate look-up focus technique introduced in
sendmail 8 is used to test these macros.

sendmail 8 Double Focus

sendmail 8 uses a double focus technique which
allows a portion of an address to be checked against a
database without modifying the original address. This
is used in the mailertable, genericstable, and vir-
tusertable FEATUREs. The double focus is generated
by replicating the host or domain name in the focus in
an initial lookup focus

R$* <@$+> $* <$2> $1 <@$2> $3

The first focus is a lookup focus, with just the host or
domain name. The second focus is the original
domain focus with an @ sign followed by the host or
domain name (shown here folded):

<lookup focus>
stuff <domain focus> stuff

The lookup focus is used in a database lookup (also
folded):

R < $+ > $* <@$+> $*
<$(dbname $1 $)> $2 <@$3> $4

The result in the lookup focus can be checked for a
specific pattern. If it does not match, the host or
domain name in the lookup focus can be rewritten and
looked up in the database again.

If it still does not match the lookup focus can be
stripped to leave the original address

R<$+> $* <@$+>$* $2 <@$3> $4

Checking A Macro with a Lookup Focus

The current macro value is prepended in a look-
up focus in the address.6 As the macro is put into the

6Remember, the original address will not start with a focus
since all source route addresses have been previously
stripped.

1997 LISA XI – October 26-31, 1997 – San Diego, CA 213

Selectively Rejecting SPAM Using Sendmail Harker

look-up focus, it is passed to the dequote database to
break the macro into separate tokens for testing. This
value is then looked up in the database and the result
checked with a Reject Block of Rules. Finally, if the
pseudo domain .REJECT is not returned, the look-up
focus is stripped leaving the original address [FN.X];
see Listing 7.

Put the macro in a look-up focus
R$* $: <$(dequote "" $&{macro.name} $)> $1

look-up the macro in the check_mail database
R <$+> $+ $: $(check_mail $1 $: <$1> $2 $)

{A Reject Block of Rules}

strip the lookup focus if .REJECT was not found
R< $* > $* $: $2

Listing 7: Look-up focus followed by revert to original address.

SCheckMailDB
first lookup the name as a hostname
R <$+> $+ $: $(check_mail $1 $: <$1> $2 $)

{A Reject Block of Rules}

does the lookup name still have two or more tokens
separated by a dot?
Strip the first token and lookup .domain
R< $- . $+ > $+ $: $(check_mail .$2 $: <.$2> $3 $)

{A Reject Block of Rules}

If name start with a dot, strip the first dot and pass
remainder of the domain back to CheckMailDB ruleset
R< . $+ > $+ $@ $>CheckMailDB <$1> $2

Listing 8: Unwind domain name looking for rejects.

Walking a Fully Qualified Domain Name
The tests so far have tested the entire lookup key.

This will reject specific hosts or a specific domain, but
it will not reject all of the hosts from a rejected
domain. In order to do this the technique of walking
the domain name is borrowed from the mailertable
FEATURE of sendmail 8. A Fully Qualified Domain
Name (FQDN) is passed in a lookup focus to a sepa-
rate ruleset that recursively calls itself stripping the
first token of the FQDN until a match is found or until
only the final token remains of the FQDN.

The CheckMailDB ruleset is used to check the
host part of the address. Both a specific hostname and
hosts, and sub-domains below a domain can be
rejected by walking the hostname. This ruleset checks
the host/domain name in the lookup focus. A Reject
Block of Rules is used to check the result. If a match
is not found, then the first token is stripped and the
domain preceded by a dot is looked up. Again, a
Reject Block of Rules is used to check the result, and
if a match is still not found, the remaining domain

name without the preceding dot is passed back to the
top of the same CheckMailDB ruleset. This cycle of
stripping the first label of a domain name and calling
the same ruleset again continues until only a single
token remains. If the hostname makes it to the end of
this process, then neither the hostname or any of its
parent’s domains have been blocked, and the recursive
call to the ruleset unwinds as each ruleset call returns
to the previous ruleset call; see Listing 8.

The flow of the successive calls to the Check-
MailDB ruleset is as follows:

1st call CheckMailDB input:
<host.sub.dom> org_addr

Look-up host.sub.dom
Lookup .sub.dom
2nd call CheckMailDB input:

<sub.dom> org_addr
Look-up sub.dom

Lookup .dom
3rd call CheckMailDB input:

<dom> org_addr
Look-up dom
Only one token

3rd call CheckMailDB returns <dom>
2nd call CheckMailDB returns <dom>

1st call CheckMailDB returns <dom>

The CheckMailDB ruleset is invoked in the
check_mail ruleset by putting the hostname in a
lookup focus and calling the ruleset. If the address

214 1997 LISA XI – October 26-31, 1997 – San Diego, CA

Harker Selectively Rejecting SPAM Using Sendmail

still has a lookup focus when it is returned by the
CheckMailDB ruleset then it did not find a match in
the database and the lookup focus can be stripped; see
Listing 9.

Check the hostname and domain name against the
check_mail database putting the hostname
without the trailing dot in a lookup focus
R$* <@ $+. > $: $>CheckMailDB <$2> $1 <@$2.>

lookup focus no longer needed, strip it off
R< $* > $* $: $2

Listing 9: Checking host and domain names against database.

if the hostname in the focus does not end with a
dot, reject it.
R$* <@ $+ $˜. > $#error $:$2.$3 unknown to DNS

Listing 10: Checking against the ‘dot’ class.

SWalkDNS
Query DNS for domain in the lookup focus
R< $- . $+ > $* $: < $[$1 . $2 $] > $3

Was the domain in the lookup found in DNS and
now ends with a dot? If so, exit the ruleset
R< $+ . > $* $@ < $1 . > $2

Otherwise strip 1st token, and pass back to WalkDNS
R< $- . $+ > $* $@ $>WalkDNS <$2> $3

Figure 11: Query DNS for valid hostnames.

Pass non-canonicalized addresses to ruleset WalkDNS
We strip the first token since S3 (S96 really)
has already looked up the name.
R$* <@ $+ . $˜. > $: $>WalkDNS <$3> $1 <@$2 . $3>

Is the hostname not part of a valid domain name
i.e. does the name in the lookup focus still not
end with a trailing dot
R<$* $˜.> $+ <@$+> $#error $: Access denied, $4 unknown to DNS

The hostname was part of a valid domain name
Strip off the Qualified Domain Name in lookup focus
adding trailing dot to hostname so all hostnames end
with a dot
R< $* > $+ <@ $+> $: $2 <@$3.>

Figure 12: Calling WalkDNS and checking result.

In addition to walking the hostname in the
address, the SMTP client hostname, $&{client_
name}, and HELO or EHLO name, $&s, can also be
walked by passing them to the CheckMailDB ruleset.

Rejecting Bad DNS Names
A lot of spammers use invalid sender addresses

to avoid error messages and flames being sent back to
them. A simple test to reject this type of mail is to
check that the hostname or domain in the address is

valid. This can be done by passing the address
through ruleset S3 and then checking for a trailing dot.
Ruleset S3 adds a trailing dot to the end of all host-
names that are found in DNS. The test can be made
with the exclusive class match against class dot, $˜. ,
which contains a dot by itself; see Listing 10.

This simple test may be too heavy-handed; not
all hostnames are registered in DNS. Many sites limit
what internal hostnames are listed in their DNS
databases or have poor administration of their DNS
databases. A better test would be to walk the domain
looking to see if the hostname, its sub-domain, or par-
ent domain are valid hostnames. Since the lookup is

1997 LISA XI – October 26-31, 1997 – San Diego, CA 215

Selectively Rejecting SPAM Using Sendmail Harker

in the DNS database, not the check_mail database, a
separate WalkDNS ruleset is defined; see Listing 11.

The rules that call the WalkDNS ruleset and
check the result are shown in Listing 12.

Tack on client IP address in a lookup focus
Note: no addresses should start with focus since all
src routes have been stripped
R$* $: <$(dequote "" $&{client_addr} $)> $1

Reject specific IP addresses (all four octets)
R< $-.$-.$-.$- > $* $: < $(check_mail $1.$2.$3.$4 $) > $5

{A Reject Block of Rules}

Reject Class C networks (first three octets)
R< $-.$-.$-.$- > $* $: < $(check_mail $1.$2.$3.0 $: $1.$2.$3.$4 $) > $5

{A Reject Block of Rules}

Reject Class B networks (first two octets)
R< $-.$-.$-.$- > $* $: < $(check_mail $1.$2.0.0 $: $1.$2.$3.$4 $) > $5

{A Reject Block of Rules}

Reject Class A networks (first octet)
R< $-.$-.$-.$- > $* $: < $(check_mail $1.0.0.0 $: $1.$2.$3.$4 $) > $5

{A Reject Block of Rules}

Strip off IP address in lookup focus
R< $* > $* $: $2

Listing 13: IP address manipulation.

Rejecting Mail from Specific IP Addresses
IP addresses are used as keys in the check_mail

database. These keys can be an IP network number:

123.0.0.0
123.123.0.0
123.123.123.0

or a specific IP network address:

123.123.123.123

The client’s IP Address is taken from the socket and is
stored in ${client_addr}; see Listing 13.

Implementation Of check_rcpt Ruleset To Reject
Relay Mail

The structure of the check_rcpt ruleset follows
the structure of the check_mail ruleset. Much of the
checking for local user and host information is the
same, with the exception that the recipient address
passed in the SMTP RCPT command is being tested,
rather than the sender address. If the recipient ends
with one of the host or domains for which we are a
relay then the address is accepted. The check_rcpt
ruleset differs from the check_mail ruleset when the
address is not local. It accepts the address if the
SMTP client’s IP address is within the local domain.
The other main difference is that the sender address
from the SMTP mail command is prepended to the

address, separated by a $|, and the sender $| recipient
pair is checked against the check_fwd database for
accepting/rejecting. Structure of check_rcpt ruleset:

• Focus addresses by passing to S3
• Check non-local local with Strip_Local ruleset
• Check sender $| recipient pair for accept-

ing/rejecting
• Check local host and domain information
• Check for valid DNS information
• Check for local client IP addresses

Checking For Local Client IP Addresses
To check if the SMTP client is a host with a local

IP address, the client’s IP address is put into a lookup
focus and compared to local IP network numbers and
addresses. Since the test is for accepting a non-local
recipient from a client and most of the matching will
be for entire IP network numbers (which is typically
somewhat limited) a class match can be used. The
class match does not need a separate file if the domain
only has a few class B or C networks. If the domain
needs to accept mail for lots of IP addresses or net-
work numbers a file class definition can be used.

The only drawback of using a class is that the
sendmail daemon needs to be killed and restarted each
time a change is made. The IP address in the class
definition can either be a dotted quad,
123.123.123.123, in which case it matches the exact
IP address, or it can be one, two, or three octets with
out the trailing zeros, 123, 123.123, or 123.123.123, in
which case it matches all IP addresses that start with
the network number.

216 1997 LISA XI – October 26-31, 1997 – San Diego, CA

Harker Selectively Rejecting SPAM Using Sendmail

The class can be defined with:

Define a class of local IP
addresses and networks in the
sendmail.cf file itself
C{LocalIP}192.102.231

or

Define a class of local IP
addresses and networks from
a file
F{LocalIP}/etc/LocalIP

Reject from a specific user
We lookup the sender and the special key *sender* in
check_fwd db to see if sender has blocking
R<$+> $+ $: < $(check_fwd 1|*sender* $: $1 $) > $2

Listing 14: Rejecting mail from a specific user.

Once the class is defined it can be tested with:

Tack on client IP address in
a lookup focus. No addresses
should start with focus since
all src routes have been
stripped
R$* $: <$(dequote ""

$&{client_addr} $)> $1
(above line folded)

Accept our IP networks
R< $={LocalIP} .$+ > $* $@ OK
Accept specific IP addresses
R< $={LocalIP} > $* $@ OK

Strip off IP address in lookup
focus
R< $* > $* $: $2

The rule

R< $={LocalIP} .$+ > $* $@ OK

will match either the first, first.second, or first.sec-
ond.third octets of the IP address using sendmail’s rule
matching feature of starting with one token and
extending the number of tokens compared until a
match is found.

Checking sender $| recipient Pair for Accept-
ing/Rejecting

The main part of the check_relay ruleset is
checking the sender $| recipient pair to see if they
should be accepted or rejected. This follows checking
the check_mail database in the check_mail ruleset, but
it has an added twist in that there are two addresses, a
sender and a recipient, and both need to have their
domains walked. For each sender address, hostname,
or domain name, a special key, sender_addr $|
sender, is used to avoid excessive database queries.
This special key is checked to see if the sender has any
blocking. If the sender does not have this key, then no
further checking of the sender $| recipient pair is done.

If the sender does have the key, then the sender and
recipient addresses are checked.

The walking of both the sender and the recipient
address is done in two steps. The sender’s address is
walked and if the complete address, or the host or
domain portion of the address has blocking, then the
recipient address is then walked with the blocked
sender portion. The advantage of this approach is that
if a sender has no blocking, then the recipient portion
of the address is not checked against the database.

Walking the Sender Address
In order to walk the sender address, the macro

$&f is inserted before the recipient address in a lookup
focus.

prepend the sender’s name in
a lookup focus
R$* $: <$&f> $1

With the sender in a lookup focus, the sender and
the special key *sender* are checked in check_fwd db
to see if sender has blocking:

$(check_fwd $&f : *sender* ...

If this pair matches the value with .REJECT appended
is returned. Otherwise, the sender is kept in the
lookup focus so we can continue testing the sender in
the lookup focus using constructs like ‘$: $1 $)’
in contexts as shown in Listing 14. If the lookup was
successful, the returned address is:

<string.REJECT> user <@rcpt.dom>

If the returned value is OK.REJECT, then sender
explicitly is accepted

R<OK.REJECT> $+ $@ OK

If the lookup focus ends with .REJECT, the
sender has blocking and we look up the sender and the
recipient check_fwd db like this:

$(check_fwd $&f $| $2 @ $3 ...

If this pair matches, the value is returned with
.REJECT appended. Otherwise, we rewrite as

<sender $| rcpt hostname> rcpt addr

using a construct somewhat like this:
... $: < $&f $| $3 > $2 <@ $3 > $)

in a specific context as in Listing 15.

We do not reject the address immediately.
Instead we check if it is still as sender $| recipient pair.
If it is, the sender has blocking, but it is not for the
specific user@rcpthost.dom address. We walk the

1997 LISA XI – October 26-31, 1997 – San Diego, CA 217

Selectively Rejecting SPAM Using Sendmail Harker

recipient hostname to see if it is the specific
user@senderhost.dom address that has blocking; see
Listing 16. When the Walk_Rcpt ruleset returns if a
match was found, the value in the lookup focus will
end with .REJECT, otherwise it will be the sender’s
address by itself. We check it for a match with a reject
block of rules.

What we have done at this point is checked the
complete sender address against the recipient address,
hostname, and domain name. If a match is not found,
the lookup focus contains the full sender addresses.
The next step is to walk the sender’s hostname to see
if the sender’s host or domain has blocking.

If this pair matches, reject
Otherwise, put the sender and recipient
in the lookup focus
R<$+.REJECT> $+<@$+> $: $(check_fwd $&f$|$2@$3 $: <$&f$|$3> $2<@$3> $)

Listing 15: Checking senders and recipients after ‘REJECT’.

If lookup focus has a $| then sender still has blocking, walk the hostname
R<$+$|$+> $+ $: $>Walk_Rcpt <$1$|$2> $3

Listing 16: Walk recipient hostname to checking blocking.

SWalk_Rcpt

first lookup the name as a hostname
R <$+$|$+> $+ $: $(check_fwd 1|$2 $: <$1$|$2>$3 $)
If result ends with .REJECT, we found a match,
now exit Walk_Rcpt
R $+.REJECT $@ $1.REJECT

If lookup focus has a $| then sender still has blocking,
walk the hostname
R< $+ $| $-.$+ > $+ $@ $>Walk_Rcpt <$1 $| $3> $4

If we have do not have two or more tokens, strip recipient from LUF
R< $+ $| $+ > $+ <$1> $3

Listing 17: Recursively strip tokens for checking.

SWalk_Send

first lookup the sender name as a hostname with *sender* special key
R<$+> $+ $: $(check_fwd $1:*sender* $: $) <$1>$2

Listing 18: Checking for blocking.

Walk the sender’s hostname
looking for an accept/reject
Put the recipient addr back
into lookup focus
R<$+@ $+ > $+

$: $>Walk_Send < $2 > $3
(folded here)

Like the Walk_Rcpt ruleset, when the Walk_Send
ruleset returns, if a match was found, the value in the
lookup focus will end with .REJECT. We check it for

a match with a reject block of rules.

If a match is not found, then the sender did not
have blocking for this recipient and the lookup focus
is stripped.

The Walk_Rcpt Ruleset
The Walk_Rcpt ruleset is similar to the Check-

MailDB ruleset in that it recursively calls itself each
time stripping the first token and dot from the recipi-
ent hostname which follows the $| . in the lookup
focus. Listing 17 shows an example.

The Walk_Send Ruleset

The Walk_Send ruleset follows the same steps of
checking the full sender address except that the
address in the lookup focus is the sender’s host or
domain name, not a user@host.dom address.

Like checking the full sender, the first step is to
check if the sender’s host or domain name has block-
ing; see Listing 18.

If the lookup was successful, the returned
address is:

string.REJECT <send.host.dom>
user<@rcpt.dom>

218 1997 LISA XI – October 26-31, 1997 – San Diego, CA

Harker Selectively Rejecting SPAM Using Sendmail

Notice that the reject message is before the lookup
focus. This is to keep the sender’s host or domain
name intact so it can be passed to Walk_Rcpt.

If address starts with a lookup focus with 3
or more tokens, sender host not found,
walk the sender hostname
R<$-.$+> $+ $: $(check_fwd .$2:*sender* $: $) <.$2>$3

Listing 19: Strip the first token in the focus and try again.

Lookup sender and full recipient
R$+.REJECT <$+> $+<@$+> $: $(check_fwd $2:$3@$4 $: <$2:$4> $3<@$4> $)
sp 0.5
does the lookup name still have sender and recipient?
If so strip the first token and dot and pass remainder
of address back to Walk_Rcpt ruleset
R< $+ : $- . $+ > $+ $@ $>Walk_Rcpt <$1:$2.$3> $4

Listing 20: Sender has blocking; check recipient.

If the lookup fails, the sender host or domain
name did not have blocking and the returned address
is:

<send.dom> user<@rcpt.dom>

We strip the first token in the lookup focus and check
the .domain name against the check_fwd database; see
Listing 19. If this lookup fails, we strip the first dot
and call the Walk_Send ruleset again

If address starts with a
lookup focus with 3 or more
tokens, sender host not found,
walk the sender hostname
R<.$+> $+

$: $>Walk_Send < $2 > $3

If at any point the database query is successful in
the Walk_Send ruleset and lookup focus is preceded by
a string.REJECT then the sender host or domain name
had blocking and we need to check the recipient
address and the recipient’s host or domain name for
explicit blocking. See Listing 20.

Validating the check_* Rulesets

These ruleset can be checked with address test
mode, using sendmail -bt. Testing the sender in
the check_mail ruleset and the recipient in the
check_rcpt ruleset is as normal. You call the ruleset
with the address:

check_mail user@spammer.dom
check_rcpt user@abc.com

To check a macro value or the sender in the
check_rcpt ruleset, the macro must be set first with:

.D{client_addr}123.123.123.123

.Dfuser@spammer.dom

The ruleset is then run as normal.

Modified checksendmail
The perl script checksendmail is a program to

automate the exhaustive testing of a list of addresses.
It is a very useful debugging tool for sendmail. and
was originally written by Gene Kim, Rob Kolstad, &
Jeff Polk. I have modified it with two new flags:

• -cm: Check addresses against the check_mail
ruleset

• -cr Check addresses against the check_rcpt
ruleset

The address file has also been expanded to allow the
inclusion of sendmail debugging macro definitions
starting with .Dto allow a sequence of addresses to be
tested with specific macros set to specific values
before the address is passed to the ruleset. This is
very useful for doing regression testing against a
series of addresses.

This modified version of checksendmail is avail-
able from: http://www.harker.com/sendmail/checksend-
mail. html .

Effectiveness Of check_* Rulesets

The rulesets presented are currently in use at
Pacific Bell and Harker Systems. They are relatively
effective. On a technical basis, they are very effective
blocking all the addresses, host and domain names,
and IP addresses that are defined in the databases.
The anti-relaying rules are very effective blocking
spammers using a site as a spam mail exploder. On a
practical basis, the anti-spam rules are less than effec-
tive. For spammers who send spam from a consistent
host or domain, the ruleset is works well. Unfortu-
nately, much of the spam is sent from throw-away
accounts at large ISPs with liberal trial period policies.
By the time the site is aware of incoming spam from
one of these accounts, the spammer has already moved
on to a new ISP account.

If a spammer is targeting a lot of users at a site
and the spam can be detected quickly, then the rulesets
can be very effective in blocking subsequent spam
from that user.

1997 LISA XI – October 26-31, 1997 – San Diego, CA 219

Selectively Rejecting SPAM Using Sendmail Harker

Conclusion

The rulesets presented here are designed to filter
out unwanted email. Unfortunately, these techniques
have limited success because it is a reactive battle and
the spammers can keep one step ahead in the game.
Choosing what sites to block requires careful consid-
eration, so that valid email from a problem domain is
not accidently rejected. The selected blocked sites
need to be documented and agreed to by management.
These tools are useful, and as more sites implement
anti-spam and anti-spam relay rulesets, there will be
fewer sites that the spammers can abuse.

Availability

The most current version of this discussion and
rulesets will be found at: http://www.harker.com/
sendmail/anti-spam .

Acknowledgments:

Thanks to Eric Allman, one of the great unsung
heroes of the Internet. Email is THE ‘‘Killer Applica-
tion’’ on the Internet. Sendmail makes Email on the
Internet work, and Eric Allman wrote sendmail and
has been maintaining it all these years.

Author Information

Robert Harker is a Senior Consultant with
Harker Systems and responsible for teaching ‘‘Manag-
ing Internet Mail’’ (formerly ‘‘Sendmail Made Sim-
ple,’’ and ‘‘Advanced Sendmail and Electronic Mail
Domains’’) and consulting for a variety of clients.
Specializing in Internet electronic mail, he has over 14
years of UNIX and networking experience, and has
built and managed networks for technology and trans-
portation companies such as DHL, National Semicon-
ductor, and Motorola. Mr. Harker has over 7 years of
consulting and teaching experience, including a com-
prehensive series of TCP/IP networking classes given
through the University of California Extension Pro-
gram. His electronic mail address is harker@
harker.com His web page is www.harker.com Reach
him via U. S. Mail at:

Robert Harker
Harker Systems
1180 Hester Ave.
San Jose, CA 95126
harker@harker.com
408-295-6239

References

Eric Allman, ‘‘Installation and Operation Guide For
Sendmail Version 8.8,’’ Sendmail.ORG, 1997.

Eric Allman, ‘‘Anti-Spam Provisions in Sendmail
8.8,’’ Sendmail.ORG, 1997.

Claus Assmann, ‘‘Using a database in the check_*
rulesets,’’ Christian-Albrechts-University of
Kiel, 1997.

Robert Harker, ‘‘Managing Internet Mail: Setting Up
and Trouble-shooting sendmail and DNS,’’
Harker Systems, 1997.

220 1997 LISA XI – October 26-31, 1997 – San Diego, CA

