
USENIX Association

Proceedings of the
LISA 2001 15th Systems

Administration Conference

San Diego, California, USA
December 2–7, 2001

© 2001 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Global Impact Analysis of
Dynamic Library Dependencies

Yizhan Sun and Dr. Alva L. Couch – Tufts University

ABSTRACT

Sowhat is an administrative tool that performs global impact analysis of dynamic library
dependencies for Solaris systems. Sowhat runs in two phases. It first builds a database of
dependencies offline in the background, and then answers user queries and generates reports in
real time based upon stored knowledge. Using sowhat, one can find problems with library bindings
in large program repositories before these problems annoy potential users.

‘‘I can stands what I can stands, but I can’t
stands no more!’’ – Popeye

Introduction

We manage a large Solaris network containing
several large shared program repositories, each con-
taining up to 1000 programs apiece. Several times in
the last two years we have inadvertently and unpre-
dictably broken user programs and network services
during routine upgrades of dynamic libraries. Library
dependencies that load libraries from NFS-mounted
partitions have also been responsible for random boot-
time failures of daemons, because a daemon cannot
access its libraries when it needs to load them. Lastly,
we can never be sure that a dynamic library is not in
use by any program, so we can never delete a dynamic
library safely.

In this paper we describe a very simple technique
for avoiding such anomalies through ‘‘in vivo’’ global
analysis of library dependencies. A Perl script con-
structs a library dependency database from a user’s-
eye-view of a system and generates an ‘inverted’
report, for each dynamic library, of all of the programs
that will attempt to load it. Using this report, one can
easily spot problems such as those mentioned above.

Related work

Our program is related to many other tools that
almost – but not quite – entirely fail in detecting
library dependencies in a heterogeneous and open
computing environment. Package managers such as
RPM [1] and Depot [2, 8, 9, 11] allow point-of-instal-
lation dependency analysis based upon a ‘‘closed-
world’’ assumption. As long as either has complete
control of the environment, dependencies will likely
be satisfied correctly. Combine these with other soft-
ware installation techniques such as direct compila-
tion, however, and they will fail to spot possible prob-
lems in the resulting stew. Neither RPM nor Depot has
full knowledge of the user environment in which the
software that they install will be utilized.

Change detectors such as tripwire [14] and aide
[7] can detect changes to a filesystem but cannot

analyze the potential effects. We need to know not
only the names of files that changed, but also which
programs could be affected by libraries that have
changed, and even perhaps which programs might be
broken by a particular ‘make install’.

Pre-existing tools most applicable to our problem
act to control the user’s environment carefully so that
conflicts should not occur. The Soft [5] environment
control system manages library bindings by careful
control of the user’s environment variables. Soft was
preceded by much other work on creating software
modules that can be invoked by users on demand [4,
6]. These inspired our own software module mecha-
nism that sowhat understands and analyses.

Others have faced the same problems with
libraries and opted to control the dynamic linking
environment carefully in order to avoid the need for
approaches like sowhat. Vendor-supplied software has
been hampered in Linux by the large number of differ-
ing distributions of what is essentially the same core
operating system. Differences in distributions can
often break software, so that a product that works
properly in one distribution may not work in another.

The Linux Standard Base (LSB) project [13]
seeks to provide a dynamic linking environment
within Linux in which vendor-provided software is
guaranteed to execute properly. The goal of LSB is to
identify a set of core standards that must be shared
among distributions in order to guarantee that a prod-
uct that works properly in one of them will work in all
compliant distributions. These standards include
requirements for the content of dynamic libraries, as
well as standards for locations of system files used by
library functions.

With these standards in hand, the LSB provides
tools with which one can certify both environments
and programs to be compliant with the standard. Linux
distributions can be examined by an automatic certifi-
cation utility that checks link order, versions of
libraries, and locations of relevant system files. A dis-
tribution may have more libraries than the standard
specifies, but the libraries specified in the standard
must be first to be scanned during linking and must

2001 LISA XV – December 2-7, 2001 – San Diego, CA 145

Global Impact Analysis of Dynamic Library Dependencies Sun and Couch

contain the appropriate versions of library subroutines.
Another certification utility checks that the binary
code for linux applications only calls library functions
protected by the standard. Since the LSB tools solely
analyze the contents of binary files, they can check
closed-source executables for compliance.

The LSB’s library version probing is a much
deeper library analysis than our tool performs, though
not beyond the scope of future work. For example,
sowhat relies upon the names of libraries to indicate
versions, while LSB scans them for embedded version
strings, so that it can accurately determine the content
and versions of renamed or even misnamed libraries.

Dynamic Libraries and Global Analysis

The cause of our problems is that in a modern
UNIX environment, the file containing an executable
program is seldom the only component required in
order to execute the program. Each executable binary
file contains references to one or more dynamic
libraries that are linked into the program after it is
invoked and before it begins execution (through the
dynamic linker ld.so). The typical reason for this way
of segmenting programs is to share runtime memory;
one in-memory copy of a library may be shared
among several executables running at the same time.
But if the libraries needed at runtime by a specific pro-
gram are changed or deleted, the referring program
may change in behavior or fail to run at all.

While it is possible (through the command ldd) to
examine which libraries are loaded by any specific
program, no general mechanism except sowhat exists
for examining which programs load a specific library.
This is because while the former question involves
examining one executable, the latter involves examin-
ing all possible executables that could load the library.
The former question is local in scope, while the latter
is global. In practice, this means that without a tool
such as sowhat, one can never safely delete any library
in the system without the risk of breaking an unknown
program. If user uptime is more important than disk
space, this means one can never delete or upgrade any
library at all because the impact of such a change is
unknown. One can only add libraries. This leads to
‘library rot’ much like ‘filesystem rot’ [3], in which
libraries gradually fill up with useless files that one
cannot delete with any assurance of lack of impact.

Analyzing Dependencies

The basic function of sowhat is very straightfor-
ward. One runs it as a normal user. Sowhat parses the
user ’s PATH environment variable to create a list of
programs to scan. For each program, it parses the out-
put of the Solaris utility ‘ldd’ [12] to generate an index
of the libraries the program will load. It inverts this
index so that it can list programs that call each library
and stores the inverted index in a database from which
it can generate reports. One can easily limit the report

to specific libraries of interest by listing them on the
command line.

How sowhatWorks

Sowhat is currently written to analyze a Solaris
2.x environment. In this environment, the dynamic
linker ld.so utilizes hard-coded library paths encoded
into the executable program, as well as search requests
that tell ld.so to scan a library path for a library match-
ing a given name pattern and version. This scan
checks all directories listed in the environment vari-
able LD_LIBRARY_PATH. The function of ld.so is mim-
icked by the diagnostic program ldd, which reports the
full pathnames of libraries that will satisfy each search
request when ld.so is invoked prior to program execu-
tion.

To function properly, sowhat has to intimately
understand the possible responses of the ldd command.
The command ldd lists dynamic dependencies of exe-
cutable files or shared objects. For example, for the
executable file /local/bin/g++, ldd lists the path names
of all shared objects that will be loaded whenever
/local/bin/g++ is loaded, e.g.:
libc.so.1 => /usr/lib/libc.so.1
libdl.so.1 => /usr/lib/libdl.so.1

These records are relative; g++ asks for the first ver-
sion of the library in the current library path matching
the pattern libdl.so.1. This matches /usr/lib/libdl.so.1 .

The output of ldd can look quite different for
vendor-supplied software. Consider the output of ldd
for the tnshut command supplied with Sun’s TotalNet
software:
libdl.so.1 => /usr/lib/libdl.so.1
libsocket.so.1 =>/usr/lib/libsocket.so.1
libnsl.so.1 => /usr/lib/libnsl.so.1
libintl.so.1 => /usr/lib/libintl.so.1
libc.so.1 => /usr/lib/libc.so.1
libmp.so.2 => /usr/lib/libmp.so.2
/usr/platform/SUNW,

Ultra-250/lib/libc_psr.so.1

The last library has an absolute binding. It must exist
in exactly that place in the filesystem or the program
will not function. In this case there is a good reason
for the absolute binding as the existence of the library
in question is dependent upon the sub-architecture of
the particular machine. If it is not present, the system
in question has the wrong architecture to run the soft-
ware!

In order to find failures, sowhat must also under-
stand the meaning of the various and sundry error
messages provided by ldd. These include:

1. No match to library pattern:
libucb.so.1 => (file not found)

2. Correct version not found:
libm.so.1 (SUNW_1.1) =>

(version not found)

In both cases, sowhat will record the actual library
name as NotHere. If you then ask sowhat to list the

146 2001 LISA XV – December 2-7, 2001 – San Diego, CA

Sun and Couch Global Impact Analysis of Dynamic Library Dependencies

programs that use the library NotHere, it will list all
programs that cannot run due to missing libraries.
Environmental Awareness

Alas, any such script must be cognizant of the
detailed structure of the user’s environment – a matter
of local operating policy. In particular, sowhat must be
able to reconstruct any environment available to a user
in order to test for problems within each one.

At Tufts EECS, we utilize a simple derivative of
software module management [4, 5, 6] to allow users
to dynamically add modules to their environment,
modifying both their PATH and LD_LIBRARY_PATH as
needed. Users need only type the shell command:
use packname

(where packname is the name of the package) in order
to modify their environments for a specific package.
We use this mechanism to allow users access to a vari-
ety of software that is not accessible except by specific
request, such as vendor software for computer-aided
design.

The ‘use’ command above invokes a package-
specific startup script to modify the user’s environ-
ment appropriately so that the desired package will
work properly. For example, use new executes
/local/env/new.cshrc:
set path = ($path[1-3] \
/local/new/bin $path[4-])

setenv MANPATH \
/local/new/man:${MANPATH}

setenv LD_LIBRARY_PATH \
/local/new/lib:${LD_LIBRARY_PATH}

which has the effect of including the beta software
testing tree /local/new in the user’s PATH, MANPATH,
and LD_LIBRARY_PATH.

The way the use command works is quite
straightforward. The tcsh alias:
alias use \
’set packages = (\!*) ; \
source /local/lib/use’

sources the script /local/lib/use with $packages
set to the appropriate package name:
#! /usr/bin/tcsh
if ($?packages) then
foreach pkg ($packages)
if (-f /local/env/$pkg.cshrc) then

echo Using package $pkg : \
setting up your environment

source /local/env/$pkg.cshrc
else
echo There is no package $pkg : \
please check your spelling.

endif
end

endif
unset packages

This script in turn sources a setup script from
/local/env (starting with the package name) that sets
PATH and LD_LIBRARY_PATH appropriately for the new
module.

Analyzing Customizations
Using packages of this kind provides not only a

way to avoid user confusion about commands most
users do not need; it also provides a marvelous hiding
place for library binding errors. To find library prob-
lems, one must analyze each package environment
that the user can construct. Starting from each user’s
default environment, Sowhat constructs each custom
environment available to users, one by one, and then
analyzes effects of any additional libraries or executa-
bles. It does not test the effect of executing more than
one ‘use’ at a time, though this would be helpful if not
ridiculously time-consuming.

Results

Analyzing all packages available in a large sys-
tem is a very time-consuming process. It takes
between 10 and 20 minutes to analyze the configura-
tion of a typical user on a Sun Enterprise-250 server,
depending upon system load. Typically we invoke
sowhat for data collection in background or overnight
runs and store the results for later perusal and compar-
ison. Runs of sowhat can be incremental or restarted
from a previous failure. Sowhat is also capable of run-
ning in a differential mode in which it compares its
recorded data against the system to detect potentially
damaging changes.

Sowhat has educated us about our practices and
the state of our program repositories in a way we
could never have seen without it. It provides a previ-
ously unavailable window into our systems that
informs us not only of potential problems, but also
gives us a general overview of the health of our pro-
gram repositories and the impact of our management
practices.

Observed Problems
It was remarkable to us just how many things

were wrong with our repositories. Using sowhat we
detected the following kinds of problems:

1. Binary program invalid.
a. Wrong subarchitecture.
b. Wrong exec format.

2. Missing library.
a. Nonexistent library.

i. Due to absolute library pathname.
ii. In all library path members.

b. Incompatible library version.
i. Due to absolute library pathname.

ii. In all library path members.
c. Incompatible library subarchitecture.

i. Due to absolute library pathname.
ii. In all library path members.

Rarely, the program we analyzed was not a
Solaris program at all. Unbelievably, we found several
Linux x86 programs installed in our Solaris reposi-
tory!

A more subtle and serious error was that several
programs in the correct exec format were compiled for

2001 LISA XV – December 2-7, 2001 – San Diego, CA 147

Global Impact Analysis of Dynamic Library Dependencies Sun and Couch

a different hardware subarchitecture, e.g., 64-bit code
on a 32-bit machine. These crept into our repository
due to addition of 64-bit servers, while no one noticed
that they could not be used on most of the worksta-
tions.

The remaining errors we found are the ones we
were looking for. Several programs had outlasted their
libraries by several years; we deleted libraries because
we were completely unaware of the program’s need
for them. Other programs were compiled to hard-
coded library locations, and these locations had been
moved by operating system updates. Still others
needed an older or newer version of the library than
was available. Finally, some programs were made
available on a machine having an inappropriate subar-
chitecture, which showed up in sowhat as an incompat-
ible library subarchitecture.

Avoiding errors

Sowhat is very useful for analyzing the results of
messy repository maintenance, but is equally useful in
preventing the messes before they happen. Perhaps the
nicest thing about sowhat is that one can ask it about
the future impact of any change upon the user environ-
ment.

If one wishes to change or delete a library, sowhat
can tell which programs will change in function or
break based upon this change. One can then test these
programs after the change to insure that they still work
appropriately. If there are no such programs then the
library may be deleted with no impact upon users.

If one wishes to delete a program, sowhat will
suggest libraries that can be deleted along with it.
These are the libraries that only the doomed program
uses. So libraries never need to be kept around ‘just in
case’ some program uses them. This greatly simplifies
maintenance of repositories because they no longer
need fill up with libraries that no program uses, just
because it is unsafe to delete them without knowing
which programs do.

Sowhat’s differential mode not only notifies one
of the effects of intentional library replacement, but
also the effects of unintended or malicious changes.
Unlike Tripwire [14] and Aide [7] it can detect not
only a malicious change, but also identify its potential
sphere of effect.

After operating system upgrades, sowhat can tell
you which library bindings changed for which pro-
grams. This allows you to test those programs for pos-
sible problems created by the upgrade. One can also
run it in ‘differential mode’ to compare the user envi-
ronments on two hosts sharing the same command
repository.

When we first ran sowhat, on one of our
machines named andante, out of 9780 executables, we
found 12 programs with missing libraries. Out of 61
packages, eight packages did not work for a variety of
reasons. Some of the numbers generated by sowhat are

a bit staggering: if we change /usr/lib/libc.so.1, 2237
executables will be affected!

By running sowhat on several different machines,
we can determine the differences and inconsistencies
in their user environments. For example, we discov-
ered that libm.so.1(SUNW_1.1) is missing on andante,
but present on other machines. On some machines we
observed ‘‘execution failed’’ or ‘‘Exec format error’’
messages that were not seen on others. This is due to
sub-architecture differences between the machines.

Lessons Learned

The main lesson that we learned from sowhat is
that one cannot judge the impact of changing a
dynamic library without some form of global analysis.
Our tool does this analysis sufficiently well that one
can rather accurately predict the sphere of possible
effects of any potential change. Before we started
using sowhat, we had already experienced several ser-
vice failures due to library replacements, notably
libz.so, which is used by a surprising variety of open
source tools. This kind of potential effect was invisible
to us before we wrote sowhat.

Alas, sowhat has several limitations. The first is
that to analyze the user environment, sowhat must also
know how that environment can change based upon
user needs. This is a site-specific system property. In
turn, to perform a complete analysis on a given site,
sowhat must be updated to understand the mutations
that can occur in the user environment at that site.

By far, the largest blind spot in sowhat is that it
does not detect conflicts between user-invoked pack-
ages. It is quite possible that, by a specific sequence of
environmental modifications, a user can produce a
broken environment. The environment-modifying
scripts can in principle do anything. There is no guar-
antee that one will not undo the good of another, and it
is impractical to check all sequences of executions of
these scripts. This is not a limit of sowhat, but one
imposed by our environment and operating policy.

Future Work

Sowhat is a fairly closed-ended tool with a spe-
cific function that it performs quite well. We are
unlikely to expand upon its basic functionality. How-
ever, we have already been begged to port this utility
to Linux and this port is likely to become available in
the near future. Other architectures are less likely as
porting targets.

Several open questions may be attacked by
future tools with differing scopes. It would be nice,
e.g., to automate the process of comparing user envi-
ronments and checking for homogeneity between vari-
ous machines. This would be especially useful if it
operated also in a heterogeneous environment, e.g.,
comparing commands and versions available to
Solaris and Linux users.

148 2001 LISA XV – December 2-7, 2001 – San Diego, CA

Sun and Couch Global Impact Analysis of Dynamic Library Dependencies

Availability

Sowhat is freely available from http://www.eecs.
tufts.edu/˜couch/sowhat . It is a Perl script that
requires access to a MySql database through the DBI
and DBD::Mysql interfaces in order to record its results.

Acknowledgements

Many people contributed to the ideas in this pro-
ject. The original idea came from a conversation with
Steve Moshier about the difficulty of uninstalling soft-
ware in a UNIX environment. Andy Davidoff and
Michael Gilfix helped to define the problem, offered
valuable insights, and provided valuable comments on
the paper as it was being written.

Author Biographies

Alva L. Couch was born in Winston-Salem,
North Carolina where he attended the North Carolina
School of the Arts as a high school major in bassoon
and contrabassoon performance. He received an S.B.
in Architecture from M. I. T. in 1978, after which he
worked for four years as a systems analyst and admin-
istrator at Harvard Medical School. Returning to
school, he received an M.S. in Mathematics from
Tufts in 1987, and a Ph.D. in Mathematics from Tufts
in 1988. He became a member of the faculty of Tufts
Department of Computer Science in the fall of 1988,
and is currently an Associate Professor of Electrical
Engineering and Computer Science at Tufts. Prof.
Couch is the author of several software systems for
visualization and system administration, including
Seecube (1987), Seeplex (1990), Slink (1996) Distr
(1997), and Babble (2000). In 1996 he also received
the Leibner Award for excellence in teaching and
advising from Tufts. He has assisted in maintaining
the Tufts computer systems for Computer Science
teaching and research since 1985, when he was a
Ph.D. student. He can be reached by surface mail at
the Department of Electrical Engineering and Com-
puter Science, 161 College Avenue, Tufts University,
Medford, MA 02155. He can be reached via electronic
mail as couch@eecs.tufts.edu . His work phone is
(617)627-3674.

Yizhan Sun is a Masters student at Tufts Univer-
sity who expects to graduate in December of 2001.
She also holds an MS in Physics from Boston College.
Aside from being a teaching assistant at Tufts, she was
a system administrator in the Center for Connected
Learning at Tufts from May 2000 to Aug 2000. In her
spare time, she enjoys reading and swimming. She can
be reached by email to ysun@eecs.tufts.edu, or by
postal mail to 455 Boston TPKE Apt 4, Shrewsbury,
MA, 01545.

References

[1] Bailey, E., Maximum RPM, Red Hat Press, 1997.
[2] Colyer, Wallace, and Walter Wong, ‘‘Depot: a

Tool for Managing Software Environments,’’
Proc. LISA-VI, Usenix Assoc., 1992.

[3] Couch, A., ‘‘SLINK: Simple, Effective Filesys-
tem Maintenance Abstractions for Community-
Based Administration,’’ Proc. Lisa-X, Usenix
Assoc, 1996.

[4] Elling, R., and M. Long, ‘‘Usersetup: A System
for Custom Configuration of User Environments,
or Helping Users Help Themselves,’’ Proc.
LISA-VI, Usenix Assoc., 1992.

[5] Evard, R. and R. Leslie, ‘‘Soft: A Software Envi-
ronment Abstraction Mechanism’’ Proc. LISA-
VIII, Usenix Assoc., 1994.

[6] Furlani, J. L., ‘‘Modules: Providing a Flexible
User Environment,’’ Proc. LISA-VI, Usenix
Assoc., 1992.

[7] Lehti, Rama, ‘‘AIDE – Advanced Intrusion
Detection Environment,’’ http://www.cs.tut.fi/
˜rammer/aide.html .

[8] Manheimer, Kenneth, Barry Warsaw, Stephen
Clark, and Walter Rowe, ‘‘The Depot: A Frame-
work for Sharing Software Installation Across
Organizational and UNIX Platform Boundaries,’’
Proc. LISA-IV, Usenix Assoc., 1990.

[9] Rouillard, John P., and Richard B. Martin,
‘‘Depot-Lite: A Mechanism for Managing Soft-
ware,’’ Proc. LISA-VIII, Usenix Assoc., 1994.

[10] Sellens, John, ‘‘Software Maintenance in a Cam-
pus Environment: The Xhier Approach,’’ Proc.
LISA-V, Usenix Assoc., 1991.

[11] Wong, Walter C., ‘‘Local Disk Depot – Cus-
tomizing the Software Environment,’’ Proc.
LISA-VII, Usenix Assoc., 1993.

[12] LDD man page, ‘‘man ldd,’’ Sun Microsystems
Inc.

[13] The Linux Standard Base Project, ‘‘The Linux
Standard Base,’’ http://www.linuxbase.org .

[14] Tripwire, Inc, ‘‘The Tripwire Security Scanner,’’
http://www.tripwire.com .

2001 LISA XV – December 2-7, 2001 – San Diego, CA 149

150 2001 LISA XV – December 2-7, 2001 – San Diego, CA

