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Scheduling Partially Ordered Events In A
Randomized Framework — Empirical
Results And Implications For Automatic
Configuration Management

Frode Eika Sandnes — Oslo University College

ABSTRACT

Automatic configuration management involves maintaining a set of shared and distributed
resources in such a way that they serve a community of users fairly, promptly and reliably. In this
context, this paper discusses experiments that measure the effect of adding randomized scheduling
of partially ordered events to configuration management tools. Three characteristics of randomized
scheduling are investigated: efficiency, robustness and security. A configuration management
process is efficient if it minimizes the use of resources. It is robust if it is not vulnerable to
malicious acts or inadvertent human errors. It is secure if its management model is hidden from
observers. Several experiments suggest that randomized scheduling of partially ordered events has
advantages over commonly used deterministic strategies, on average producing more efficient
schedules. Further, randomized scheduling greatly degrades the accuracy of observer predictions
of future behavior. In addition, randomized scheduling obscures the management model such that
an observer will have to make a large number of observations in order to obtain the complete
management model. The results of the study support the use of randomization in automatic

configuration management tools.

Introduction

Several protocols have been designed with dis-
tributed system administration in mind. For instance
the Simple Network Management Protocol (SNMP)
[14, 24], as well as higher level, abstract languages for
policy based management [2, 4, 9, 11]. These lan-
guages allow the administrator to define what actions
to be taken in certain situations. There are also a sev-
eral tools providing automatic and distributed configu-
ration management such as cfengine [4] or IBM’s
Tivoli [3, 10, 18, 20]. Typical actions include the cre-
ation, copying, modification and deletion of files, set-
ting ownership and permissions and process control.

These tools in some sense understand the con-
cepts of events and responses. An event can for exam-
ple be a particular time of day or the absence or pres-
ence of some entity such as a file or a process. Usu-
ally, an event triggers a set of responses from the con-
figuration management tool. Such responses are them-
selves events and are usually related by a partial order-
ing that can be represented by a directed acyclic
graph. These responses must be performed in a
sequence satisfying the partial ordering, via a process
called scheduling. Current tools such as cfengine ver-
sion 1 employ very simple scheduling algorithms
where events are scheduled in a deterministic fixed
order. However, it has recently been suggested that the
use of randomization can greatly improve the effi-
ciency and security of a configuration management
system [7]. This work supports some of the claims in
[7] through a set of three experiments.
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The first set of experiments measure the effect of
randomized scheduling strategy upon the efficiency of
the configuration management process. It is an estab-
lished fact in the parallel computing literature that
scheduling of tasks greatly affects the resource utiliza-
tion in a distributed system. However, to the best of
our knowledge, this has not previously been studied
from a completely randomized viewpoint. Most work
on scheduling focusses upon specialized scheduling
algorithms designed to find optimal schedules,
exhibiting maximum efficiency. These algorithms
solve single objective optimization problems. How-
ever, our problem of configuration management can
be viewed as a multi-objective optimization problem,
where the objective is to achieve good efficiency, but
also sufficient security, fairness and availability of ser-
vice.

The second set of experiments measure the
extent to which randomization can contribute to the
security of the configuration process. As discussed in
[7], the configuration management process can be
viewed as a competition between forces: destructive
forces that attempt to disorder the system, and con-
structive forces that try to re-order the system. In such
systems, the destructive forces may want to predict the
next move triggered by the constructive force in order
to sabotage the system.

It is trivial for an observer to predict the order of
configuration steps if the observer knows the configu-
ration management model a priori. By replacing a
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deterministic model with one based on randomness it
becomes more difficult for an observer to make accu-
rate predictions. A second set of experiments were set
up to quantify, in terms of probabilities, how difficult
it is for an observer to predict the configuration man-
agement actions under a randomized regime. Obscu-
rity is studied as part of a dynamic and reactive secu-
rity policy for maintaining resource availability in the
presence of resource abuse.

The third set of experiments was designed to
quantify the extent to which an observer may monitor
configuration management actions and use these
observations to reconstruct the management model.
The impact of randomization on hiding the model
from the observer is studied. In real life, an observer
usually does not know the management model before-
hand. But the observer may learn the management
model by continuously observing the system over time
and identifying trends. A deterministic fixed-order
model is trivial to capture — but what about a random
model? The algorithm used in this experiment falls
into the same category as algorithms described in a
totally independent study by Couch and Daniels [8]
where the precedence hierarchy of troubleshooting
procedures are uncovered over time through a series
of observations.

The three experiments are presented sequentially
in self-contained sections with background material, a
description of the experimental method, results and
discussion. Finally, a discussion on how the results
can be used to improve the design of automatic con-
figuration management tools is provided.

However, before examining the details of the
experiments, scheduling is discussed in the context of
distributed configuration management.

Management, Resource Allocation, and Scheduling

Scheduling takes many forms, such as job-shop
scheduling, production scheduling, silicon chip
design, multiprocessor scheduling and so on. It can
take place within any extent of time, space or other
dimension. Scheduling algorithms are usually dynamic
or static.

Dynamic scheduling involves continuously allo-
cating a set of resources to a time-variant problem.
Modern operating system kernels provide good exam-
ples of dynamic scheduling in the way processes are
scheduled and the processor resource is time-sliced.
The set of resources — total processing power, primary
and secondary storage units, network bandwidth, etc.
— remain fixed. The scheduling problem is time-vari-
ant as processes are continuously started, stopped,
resumed and killed by the users of the system, either
explicitly or implicitly. The scheduling objective is to
maximize the use of available resources in any given
situation.

Static scheduling involves assigning a set of
fixed resources to a fixed and constant problem. For
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example, scheduling timetables in schools and univer-
sities involves static scheduling, as different classes of
students have to be assigned classrooms and lecture
theaters, and students and teachers must not have
overlapping timeslots. The classes, the courses and the
lecture rooms are known a priori. In general, static
scheduling problems are NP hard. Static scheduling
involves assigning the vertices (tasks) of an acyclic,
directed graph onto a set of resources, such that the
total time to process all the tasks are minimized. The
actual time it takes to process all the tasks is usually
referred to as the makespan. An additional objective is
often to achieve a short makespan while minimizing
the use of resources.

Such multi-objective optimization problems
involve complex trade-offs and compromises, and
good scheduling strategies are based on a detailed and
deep understanding of the specific problem domains.
Most approaches belong to the family of priority-list
scheduling algorithms, differentiated by the way in
which task priorities are assigned to the set of
resources. Traditionally, heuristics have been
employed in the search for high-quality solutions [13].
Over the last decade heuristics have been combined
with modern search techniques such as simulated
annealing and genetic algorithms [1].

Scheduling Objectives and Configuration Manage-
ment

The scheduling problem occurs naturally in dis-
tributed configuration management. Within a single
configuration rule there is often a set of classes or trig-
gers that are interrelated by precedence relations.
These relations constrain the order in which configura-
tion actions can be applied; these graphs can be
described formally.

A set of precedence relations can be represented
by a directed graph, G = (V, E), containing a finite,
nonempty set of vertices, ¥, and a finite set of directed
edges, E, connecting the vertices. The collection of
vertices, V'={v; v, ..., v,}, represents the set of n
configuration actions to be applied and the directed
edges, E = e;, define the precedence relations that
exists between these configuration actions (e; denotes
a directed edge from configuration action v; to v;).

This graph can be cyclic or acyclic. Cyclic
graphs consist of inter-cycle and intra-cycle edges,
where the inter-cycle edges are dependencies within a
cycle and intra-cycle edges represent dependencies
across cycles. Management models in system adminis-
tration are typically cyclic and the cycles have to be
broken prior to scheduling. However, this discussion
is limited to acyclic graphs. Literature addressing
cyclic graphs include [6, 15, 17, 21, 23]. The reader is
also referred to [19] for information on graph algo-
rithms and [22] for general graph theory.

Configuration management is a mixture of
dynamic and static scheduling. It is dynamic in the
sense that it is an ongoing real-time process where
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configuration actions are triggered as a result of the
environment. It is static in the sense that all configura-
tion actions are known a priori. Configuration actions
can be added, changed and removed arbitrarily and
dynamically. However, this does not violate the static
model because such changes would typically be made
during a time-interval in which the configuration tool
were idle or offline. The hierarchal configuration man-
agement model remains static, in the reference frame
of each configuration, but may change dynamically
between successive frames of configuration. See [7]
for an in-depth discussion of dynamic and static
scheduling in configuration management.

Few studies have been conducted into random-
ized scheduling as the scheduling objectives usually
are to find the most efficient schedules with the short-
est makespan. However, in this work efficiency is just
one of several goals, and the main emphasis is on
improving security and obscuring the information that
can be gained by observers by watching the configura-
tion process as it occurs.

Security and Randomization

All scheduling problems are resolved by travers-
ing the graph using fopological sorting. In simple
terms, a topological sort of a directed graph is a list of
the vertices of the graph in an order that preserves the
precedences in the graph. If the vertices represent
tasks, a topological sort of the tasks is an order in
which they can be accomplished while satisfying the
precedences between them.

Most topological sorting algorithms are based on
the concept of a freelist. One starts by filling the freel-
ist with the entry nodes, i.e., nodes with no parents. At
any time one can freely select, or schedule, any ele-
ment in the freelist. Once all the parents of a node
have been scheduled, the node can be added to the
freelist. Scheduling strategies differ in the way ele-
ments are selected from the freelist. Most scheduling
algorithms attempt to select freelist elements so that
the schedule can be completed in the shortest possible
time.

A popular heuristic for achieving a short sched-
ule is the Critical Path/Most Immediate Successor
First (CP/MISF) [13]. Tasks are scheduled with
respect to their levels in the graph. Whenever there is
a tie between tasks (when tasks are on the same level)
the tasks with the largest number of successors are
given the highest priority. The critical path is defined
as the longest path from an entry node to an exit node.

In configuration management, the selection of
nodes from the freelist is often viewed as a trivial
problem, and the freelist may, for instance, be pro-
cessed from left to right, then updated, in an iterative
manner. If instead one employs a strategy such as the
CP/MISF, one can make modifications to a system
more efficiently in a shorter time than by trivial strat-

cgy.
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A system can be prone to attacks when it is man-
aged deterministically. By introducing randomness
into the system, it becomes significantly harder to exe-
cute repetitive attacks on the system. One can there-
fore use a random configuration action implementa-
tion when selecting elements from the freelist. A ran-
domized scheduling algorithm adhering to the above
description is outlined later in this article. In the next
section the effect of randomized scheduling on effi-
ciency is investigated quantitatively through a series
of experiments.

Part I: Efficiency

Configuration management includes activities
such as process monitoring and control and the man-
agement of files and file-structures, involving opera-
tions such as copying, moving, deleting and modifica-
tion of files. Operations on files are typically amongst
the most time-consuming and resource-demanding
since they require mechanical movement. There are
two fundamental classes of management operations —
local and remote. Local interactions involve opera-
tions on files residing on the disk-drives attached to
the local machine. Remote operations include file
accesses on remote machines accessible via a com-
puter network.

Common to all computer hardware manufactured
during the last decades are disk drives and networking
peripherals equipped with the well known Direct
Memory Access (DMA) controllers. A DMA con-
troller allows content to be transferred asynchronously
between the system memory and a peripheral device —
such as a disk drive or a network card — without wast-
ing processor cycles. Thus, in true parallel fashion
most computers can, for example, copy huge files and
do number crunching simultaneously. In this article
asynchronous operations refer to those that can be ini-
tiated and performed in parallel without intervention
from the processor. Synchronous operations refer to
operations that cannot be performed in the back-
ground, or parallel, resulting in a processor in a busy
state until the completion of the operation. The notion
of time-sharing and multitasking is not included in this
discussion as it represents pseudo-parallelism that
does not lead to any efficiency gains.

Further, most remote operations can be executed
asynchronously on a remote machine. First the local
machine issues some form of remote procedure call
(RPC). The remote procedure call is sent, received,
and its parameters un-marshalled at the remote
machine, and the remote procedure initiated by the
remote processor. While the remote procedure call is
in progress at the remote machine the local processor
can either wait for the remote procedure call to com-
plete, or perform some other task simultaneously. In
this case, the local machine must at some later point in
time check that the remote procedure call completed
successfully or obtain this information via an inter-
rupt, callback or a signal.
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Thus computer systems embody two forms of
true parallelism, parallelism within a machine due to
parallel peripheral devices and parallelism achieved
by the “delegation” of tasks to independent process-
ing nodes on the same network. In a system that pro-
vides these forms of parallelism, the sequence in
which events are scheduled affects efficiency. This
fact is supported by the vast body of literature on par-
allel processing and task scheduling.

For example, suppose we one is given a hard-
ware configuration consisting of a central computer
with two disk drives 4 and B, and a remote computer
with a disk drive C. Suppose the configuration man-
agement tasks to be performed include copying a con-
figuration file from disk A4 to disk B on the local com-
puter and the same file to disk C on the remote com-
puter. Then, the file is to be modified by replacing an
identifier string occurring in the file with the hostname
of the machine to which the file has been copied. This
problem can be broken down into four logical opera-
tions:

1. Copy the file from 4 to B.

2. Modify the newly copied file on B.

3. Copy the file from 4 to C.

4. Modify the newly copied file on C.
Clearly, there is a partial ordering on the four tasks.
Task 1 must precede task 2 and task 3 must precede
task 4, while the pairs of tasks (1, 2) and (3, 4) are
independent. Further, assume that there is a processing
delay associated with each task equalling one, and that
there is a delay of 0.1 associated with setting up a
local asynchronous operation and a delay of 0.2 asso-
ciated with setting up a remote asynchronous opera-
tion over the network. This simple example yields six
valid processing sequences given in Table 1.

The schedules resulting from these sequences are
given in Figure 1. Clearly, the makespans vary from
2.5 to 4.5 — the worst makespan being nearly twice as
long as the shortest or the optimal makespan. Clearly,
the sequences 1342 and 3142 are both optimal and
symmetric to each other. In the sequence 1342, Task 1
is initiated asynchronously, followed by the remote
initiation of the asynchronous task 3. Upon comple-
tion of task 3, task 4 is initiated asynchronously fol-
lowed by synchronous initiation of task 2. This
sequence leads to a good exploitation of the available
hardware with the least idle time. On the other hand
the sequence 1234 (and 3412) yields a poor result
since the second task cannot be started before the first
task 1 has completed, although task 1 is asynchronous.
The second task 2 is synchronous and the third task
cannot be started before the processor is available
after processing task 2. Further, the final task 4
depends on the completion of task 3.

Why Is Randomness Better?

Assuming that the scheduling order can affect
the makespan of the schedule, how can a random
order be better than a fixed order? In the traditional
scheduling context there are few differences between a
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fixed order and a random order, because a fixed order
is simply one of the random orders. With a fixed order,
however, there is a probability of picking a good,
medium or poor schedule. With some luck it is a good
schedule, but it could equally well be a poor schedule.
In any case, since it is a fixed order, and the process is
repeated, the scheduling algorithm is locked into this
configuration. Thus, the effect of a poor selection is
multiplied over time.

Sequence  makespan
1234 4.5
1324 3.5
1342 2.5
3412 4.5
3124 3.5
3142 2.5
Table 1: Valid processing sequences and their
makespans.
1234 1324 1342

3 ! 3

1

E
2| 4

3124 3142

mENns

2 ‘2 4
4

L R L R

Figure 1: Schedules generated for the six sequences.
L denotes Local, R denotes Remote and the verti-
cal axis time.

Conversely, with the random strategy, a different
order is selected each time — sampling the entire spec-
trum of makespans. Thus over all executions the
schedules will yield average makespans.

Method
The Graph Test Suite

The suite of random directed acyclic graphs
(DAGs) used in the experiments was generated by

defining a n X n square triangular adjacency matrix as
follows:

0 P12 P13 " Pin-1 Pin
0 0 pos © Pan-1 Pan
A=1|: : : : )
0 0 0 0 Pn—1n
0 O o -- 0 0
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where p; ; is a random integer holding 1 with probabil-
ity p and 0 with probability 1 — p for the element at
row i and column j. The triangular nature of the matrix
ensures that the graph is directed and acyclic. A non-
zero element at row i and column j indicates that event
j depends on event i. Vertex i is the parent of vertex j,
and vertex j is the child of vertex i.

Two sets totalling 19 graphs were generated,
where graph size and density were varied. The size n
of the graphs was varied from 10 to 100 vertices in
steps of 10, and the graph density was varied in nine
steps by adjusting the probability p from 0.1 to 0.9 in
steps of 0.1.

A graph with an element probability of 1 has all
the upper triangular elements set to 1, and represents a
fully connected graph. When all the transitive edges
are removed the resulting graph is a linear chain or a
completely ordered sequence of events. On the other
hand, if the probability is O then there are no depen-
dencies between the events and all the events are inde-
pendent. Thus, there is no ordering. Probabilities in
the range of 0.1 to 0.9 yield graphs with varying
degrees of partial ordering from the completely
ordered linear chain of events to the unordered inde-
pendent set of events. For an interesting discussion on
graph structures see [12].

One may argue that authentic dependence graphs
are more realistic than artificial graphs. Authentic
graphs fall into one of the classes of commonly occur-
ring graph topologies (trees, meshes etc.). Random
graphs allow graph characteristics to be varied
enabling crucial relationships to be identified. Such
relationships might not be revealed by using a biased
set of graphs.

2500

‘transitive eddes
no transitive edges -

2000

1500

edges

1000

500

0 b -
10 20 30 40 50 60 70 80 90 100

nodes
Figure 2: The number of edges in the graph is plotted
against the number of vertices in the graph.

Figures 2 and 3 show the number of non-transi-
tive and transitive edges in the suite of random graphs,
where the number of edges are plotted against graph
size and graph density respectively. Note that the num-
ber of transitive edges increases quadratically with
graph size while the number of non-transitive edges
increases linearly. Also note the interesting fact that
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although an increase in the adjacency matrix probabil-
ity leads to an increase in the number of transitive
edges, it also leads to a decrease in the number of non
transitive edges.

4500

=

‘transitive edg‘;es/,
4000 no transitive edges - ]

3500

3000

2500

edges

2000

1500
1000

500 -

_

0
01 02 03 04 05 06 07 08 09 1

probability p
Figure 3: The number of edges in the graph is plotted
against the probability p for the elements in the
triangular adjacency matrix.

Graph Pre-processing

Random graphs were pre-processed by removing
all the transitive dependencies. A transitive depen-
dency can be defined as follows; If vertex y depends
on x and vertex z depends on y, then z also depends on
x. Therefore, a transitive relation such as z depends on
x can be removed from the graph since it is transi-
tively implied by the two relationships z depends on y
and y depends on x.

The purpose of removing the ‘“unnecessary”
transitive dependencies is to simplify and purify the
graphs. Graphs with no transitive edges are more effi-
cient to process and two graphs are easier to compare
if they contain no transitive edges. A graph with tran-
sitive edges and a graph with no transitive edges may
express the same partial ordering of the vertices, how-
ever they have different topological structures. The
precedence relations are conserved when the transitive
edges are removed.

Transitive edges were removed using the follow-
ing strategy:
For each node in graph
For each parent of the node
If parent is in any of the
ancestors of the other parents
of the node
Then remove the edge from
the node to the parent as
it is transitive.

Figure 4 shows an example of a graph with (left) and
without transitive dependencies (right). Clearly, D and
E are transitively dependent on A4, since D depends on
B which again depends on 4 and E depends on C
which also depends on A. Further node F is transi-
tively dependent on both 4, B and C, since it depends
on D and E.
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Position Spread
Q nodes min max mean var  %var
10 8 8 8.0 0.0 0.0
20 16 19 16.9 1.9 15.7
Q g 30 29 38 326 67 236
40 25 36 26.8 8.0 30.5
50 46 55 49.0 54 16.3
60 51 63 53.9 8.6 19.0
Q e 70 57 65 60.3 4.0 12.3
80 84 91 86.4 5.4 7.6
90 65 85 73.2 21.6 23.5
G 100 81 98 89.5 10.7 17.3
Table 2: Makespan characteristics with varying graph
Figure 4: Removing transitive dependencies from a sizes.
graph.
Scheduling Strategy ) i Position Spre(;ad
In the first experiment the graphs were scheduled density min max mean var % var
using a randomized scheduling algorithm that can be 0.0108 183 183 183.0 0.0 0.0
outlined as follows: 0.0116 158 158 158.0 0.0 0.0
freelist := all ent des: 0.0122 130 133 131.1 2.1 2.2
uizihicsluléd o fi ;ZEZZ hess 0.0134 107 114 109.2 4.0 6.1
while (not unscheduled. empty ()) 0.0139 83 94 88.6 6.3 1.7
begin 0.0159 77 99 84.4 15.6 22.2
node := freelist[random]: 0.0228 50 68 59.2 16.1 26.4
process (node) ; 0.0237 36 57 442 20.2 36.8
scheduled.add (node) ; 0.0244 37 53 43.8 16.6 30.1
freelist.remove(node) ; . . .
for all nodes in unscheduled whose Table 3: Makespan characteristics with varying graph
parents are all scheduled densities.
begin . )
freelist.add (nodes) ; Discussion

unscheduled.remove(nodes) ;
end
end

Notice that elements were selected randomly
from the freelist. Events were scheduled onto the first
available timeslot on the resource or later depending
on the completion times of parent tasks, as all parent
tasks of a task must have completed before the task
can commence. Resource allocations where fixed.
Four resources were used and tasks were allocated to a
resource with an index matching the modulo 4 of the
task index. Each task was given unity execution and
communication/setup delays. The resources repre-
sented individual DMA controllers managing individ-
ual devices such as local disk drives and network
cards allowing connectivity to remote disk drives.
However, any number of resources greater than one
could be employed to demonstrate the differences in
efficiency.

Results

The results of the scheduling experiment are
shown in Tables 2 and 3. Table 2 lists the number of
nodes in the graph, the smallest makespan, the largest
makespan, the mean makespan, its variance, and the
variation in makespan as a percentage of the longest
makespan. Table 3 lists the same data where the first
column describes the graph density.

52

Table 2 shows that the makespan generally
increases with an increase in the number of nodes.
This is logical, as if one is increasing the workload
without adding resources it will take longer to service
the jobs. Also, the variance in makespans do not
change significantly with the graph size. Thus, there is
room for improvement, regardless of the graph size.

Table 3 is even more interesting. When the graph
size is fixed and the graph density is increased there is
a seemingly linear reduction in makespan. This is
because a more connected graph in general provides
more parallelism than a less connected graph, and this
parallelism is thus exploited during scheduling. Fur-
ther, the variance of the graph increases with the den-
sity. Thus, a dense graph is both more efficiently
scheduled but also provides more variance in its
makespan. The presence of variance in makespan
proves that the order in which the tasks are scheduled
have an significant effect on the makespan, and, thus
the efficiency of carrying out the configuration man-
agement task. From this one can conclude that a dense
graph provides more room for improvement than a
sparse graph. As it also results in shorter makespans, a
management topology should be designed with a max-
imum number of non-transitive dependencies with the
view to improve the performance of the configuration
management task.
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Finally, this experiment confirm that the process-
ing order of the elements has an impact on perfor-
mance and that the random strategy can produce better
results than a fixed-order strategy.

Part II: Malicious Intervention

In this part of the experiment three assumptions
are made. First, an observer has complete knowledge
of the configuration management structure (prece-
dence relations). Second, an observer is able to moni-
tor transactions. Third, the observer is capable of, and
has the desire to, intervene. The scenario can be
viewed as a game between two parties; see Burgess
[5] for a discussion on game theory applied to config-
uration management. The system administrator, or
operator, is responsible for maintaining the operation
of his or her computer system, ensuring a high quality
of service to its users or subscribers. The observer
possesses the ill-intended desire of sabotaging the
operation of the computer system. The operator issues
an action and the observer tries to pre-empt the action
by a guess or a prediction. If the operator follows a
predictable pattern, the observer will know the next
move of the operator. However, if the operator
employs a non-deterministic pattern then it is difficult
for the observer to predict the next move, and the pre-
diction becomes a gamble.

600

"10 nodes
20 nodes ————
500 30 nodes -]
400
5 \
c
$ 300 -
o IS
e .
200 -+
100
0

1 2 3 4 5 6 7 8 9 10
freelist size
Figure 5: The distribution of freelist sizes over 1000
iterations. Varying graph sizes (10, 20 and 30 ver-
tices).

This can be illustrated with a practical example.
Imagine that a computer system consist of two tempo-
rary storage areas: /tmp and /audio/tmp, each cleared
at regular times. Suppose that the operator has config-
ured a configuration action where the /tmp directory is
cleared every night at 2 am, and /audio/tmp is cleared
every day at 6 am. Further, there is an inconsiderate
user that wants to store huge amounts of data exceed-
ing the allowed quota. A well-known trick is to use a
shared temporary areas. Such areas usually have large
capacities. The result is that one user hogs the tempo-
rary space of other users, preventing them from carry-
ing out their work. Further, if this ill-intended user
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knows the cleanup configuration action, it is quite
easy to sustain this antisocial state by moving the files
around to prevent the files from being deleted. The
files are moved from /tmp to /audio/tmp sometime in
the interval between 6 am and 2 am the following
night, and in the interval between 2 am to 6 am the
files are moved back from /audio/tmp to /tmp. Thus
accurate predictions of the management activities can
be exploited by the observer. The result is that the user
gets away with unfair exploitation of resources. How-
ever, if a random strategy is applied to scheduling
these two maintenance events, then it becomes impos-
sible for the observer to predict the next move accu-
rately. The observer is not able to know whether, or
when, the /tmp or /audio/tmp directory are cleared.
The probability of the malicious user losing his or her
data in this situation is 0.5, and at the next iteration the
probability is 0.5 and so forth. And the total probabil-
ity of keeping the data is therefore 0. 5" where i are the
number of iterations. In general,
limp' =0 2)
1—>00

Thus, the random strategy has a measurable rein-

forcing effect on the sturdiness of the system.

The objective of this experiment was to evaluate
what is gained by introducing randomness into the
scheduling of the configuration management actions
and how much randomness that will typically be avail-
able.

If an operator is given a choice of & actions and
one is chosen randomly, then the observer is able to
guess or predict the next move with probability
p = l/k. Clearly, it is desirable to operate with a small
probability p as possible. Thus the scheduling frame-
work should ideally be designed to maximize .

Method

For each of the randomly generated graphs in the
test suite, 1000 valid random sequences were gener-
ated through random scheduling. For each iteration of
the scheduling algorithm, the size of the freelist was
recorded, where the freelist contains the list of possi-
ble alternatives. The data obtained for each graph were
used to generate a set of histograms, illustrating freel-
ist size distributions for the different graph configura-
tions.

Results

Figures 5, 6, 7, and 8 depict the distribution of
freelist sizes obtained over 1000 iterations. The differ-
ent plots represents graphs with a varying number of
vertices.

Figures 9, 10 and 11 demonstrate the distribution
of freelist sizes obtained over 1000 iterations. The dif-
ferent plots represents graphs with a varying graph
density.

Tables 4 and 5 summarize the results for the size
experiment and the density experiments respectively.
The first column describes the experiment parameter
(size and density). The second column shows the
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tions of the peak in the distributions. Column five final column shows the widths of the distributions.

54 2001 LISA XV — December 2-7, 2001 — San Diego, CA



Sandnes

Discussion

The results indicate that the distributions of freel-
ist sizes for smaller graphs are narrow with most freel-
ist vectors of size 2 (59.3%) and some freelists with
size 1 and 3 elements (about 20% each). As the num-
ber of nodes in the graphs is increased the distribution
is smeared outwards spanning a larger sized freelist.
The distribution peaks are still at 2, but the peaks are
smaller at approximately 30%. For example, the graph
with 100 nodes contains around 27% occurrences of
freelists of size 3, 15% of lists with size 4, and 5% of
freelists with size 5. However, as the number of ver-
tices is increased, there is no significant difference in
the distributions, thus size is not a crucial factor.

% % peak  peak

size p=1 p<l pos % width
10 14.7 85.3 2 59.3 6
20 14.1 85.9 2 30.8 8
30 302 69.8 1 30.2 10
40 9.5 90.5 4 213 15
50 232 76.8 2 36.5 8
60 219 78.1 2 273 9
70 22.1 77.9 2 33.7 10
80  29.8 70.2 2 36.2 10
90 13.5 86.5 2 30.8 9

100 213 78.7 2 29.5 8

Table 4: Characteristics of freelist distributions when
varying graph size.

% % peak  peak
size p=1 p<l1 pos % width
0.0108 83.5 16.5 1 83.5 3
0.0116 68.3 31.7 1 68.3 4
0.0122 464 53.6 1 46.4 8
0.0134 282 71.8 2 31.3 11
0.0139 232 76.8 2 36.5 8
0.0159 10.1 89.9 3 27.7 10
0.0228 5.9 94.1 2 14.7 22
0.0237 0.7 99.3 6 9.4 29
0.0244 0.4 99.6 12 5.4 70

Figure 5: Characteristics of freelist distributions
when varying graph density.

One implication of this data is that even the most
trivial of graphs can benefit from a randomized strat-
egy, as only a fraction of the freelists (approximately
20%) has a size of one and is completely determinis-
tic. A freelist with a size of two adds a sufficient level
of uncertainty (p = 0.5) in making a prediction, for an
observer. As the graphs are increased in size the pro-
portion of predictable scenarios (having a freelist size
of one) does not change significantly. However, the
proportion of freelists with a size greater than two
increases, reducing the probability of successful pre-
dictions significantly. For example, a size of 3 yields a
probability of 0.33 for a successful prediction, a size
of 4 yields a probability of 0.25 and so forth.
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For the graphs where the graph density was var-
ied, the distributions are strongly affected by the den-
sity parameters. Again, the peaks decrease and the dis-
tributions become more smeared as the densities are
increased. For graphs with a density of 0.0108 the
largest freelist has a size of 3, while by increasing the
graph density to 0.0244 one obtain freelists with as
many as 70 elements. The smearing effect is espe-
cially strong as the graph densities approach 1.0
(which generates fully connected graphs). Peaks start
at 1 for graphs with a density of 0.0108, 0.0116 and
0.0122. The peak moves to 2 for graphs with a density
0of 0.0134 and 0.0139, and to 3 for a graph with a den-
sity of 0.0159. For the graphs with densities of 0.0228,
0.0237 and 0.0244 distributions peak at 2, 6 and 12
respectively. Further, the proportion of situations
where the freelist has a size of one decreases from
83.5% to 4% as the graph density is increased.

Clearly, the density of a graph has a strong effect
on the freelist size distributions and thus the random
scheduling of these graphs. The more dense a graph,
the more random its scheduling can become and thus
the more difficult it is for an observer to perform accu-
rate predictions. For large graph densities the probabil-
ities of correct predictions become diminishingly
small.

Since the nature of the graph affects the random
scheduling, the structure of the precedence relations
should be taken into consideration when designing the
configuration management topology. The results of
this section lead to the following design guidelines.

1. Size is not important — the size of the configu-
ration management structure does not signifi-
cantly affect the effectiveness of the random
scheduling strategy, unless the graph is very
small, i.e., less than 20 nodes.

2. Connectivity is good — graph structures that are
strongly connected with many dependencies
decrease the probability of making accurate
predictions. By increasing the graph density,
i.e., the number of edges in the graph, the dis-
tribution is smeared outwards. The density of a
graph affects the width of the distribution and
the size and magnitude of the peak. A high den-
sity gives a wide distribution with a low peak
situated further away from one.

At first sight these results might seem surprising,
especially as the vertices of a graph with zero density
(with totally independent nodes) can be scheduled
arbitrarily, and a graph with a density of 1 has a fixed
scheduling order. However, a graph with a density of
0.0108 is easier to predict than one with a density of
0.0244. The mistake is to assume that a graph with a
density of 0.0108 consists of more independent nodes
than one with a density of 0.0244. Either the nodes are
independent or they are not. If we investigate a ten-
node graph with density 0.1, the probability of 0.1
ensures that nearly every row of its adjacency matrix
would contain a 1, or an edge. The corresponding
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graph would therefore be some loosely connected
structure with perhaps one or two independent satellite
nodes. In fact, one does not need many 1’s in the adja-
cency matrix to connect the nodes. The result is a nar-
row and long chain-like structure. A similar argument
can be applied when comparing the graphs with densi-
ties 0of 0.9 and 1.

Part I1I: Malicious Surveillance

In the previous experiment the focus was on the
prediction of events and how well one can prevent
prediction by scrambling events randomly. The goal of
this experiment is to identify how an observer can
monitor a system and identify the management struc-
ture and configuration patterns. In particular, what is
the impact of employing a randomized scheduling
strategy on the ability of an observer to identify and
reconstruct an accurate model of the configuration
management task topology?

In this experiment, it is assumed that the
observer is able to monitor the actions of the system
administrator, either explicitly or implicitly through
observing the results of actions. We also assume that
the observer is able to uniquely identify each action.

The example given in the previous experiment
can be extended to illustrate this. Assume a user is
interested in storing huge files on the system but is
aware that there are cleanup configuration actions in
place. The user also knows that there are two indepen-
dent storage areas on the computer system, namely
/tmp and /audio/tmp. By writing a simple script that
lists the content of these two directories to a file every
hour, the user will after one day collect fairly good
evidence that /tmp is deleted around 2 am and
/audio/tmp around 6 am. Repeating this exercise for
several consecutive days confirms the findings. The
user has identified the sequence of these two events.
This is a trivial example. However, when observing
larger number of tasks it is still trivial to identify the
patterns as long as the system administrator employs a
deterministic strategy that often results in the same
repeated sequence of effects. When the same sequence
is repeated, the events belonging to the sequence can
be modelled using a graph with a linear chain struc-
ture, or a total order.

However, if the system administrator employs a
random strategy on a graph with a complex topology,
the observer can reveal the structure as shown in the
following example: A user observes five events over a
period of 10 days. Even if the user does not know that
there are five events, the user can identify this by
observing the recurrence of events. Through the occur-
rence of the events the user realizes that each event
occurs once every day and can therefore deduce that
the five events occur in one-day cycles. Each day a
sequence of events is observed, for example:

01 : 21345

02 : 12345
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03
04
05
06
07
08
09 :
10 : 2 345

By analyzing these sequences’ it is possible to deduce
the partial ordering of the five tasks. Obviously, tasks
1 and 2 are entry nodes as they are the only tasks
occurring in the first position, and task 5 is the only
exit task since it is always in the last position. Further,
task 3 depends on task 2 since it always occur some-
where after task 2, and task 4 depends on task 3 since
it always occur somewhere after task 3. Task five
depends on all the other tasks. After, all the transitive
dependencies have been removed, one obtains the
graph G represented by the adjacency matrix:
0001
1 01
G L1 3)

1

A formal procedure for deducing partial order-
ings from sequences is provided later in this article.

DN N NN
W W W W
e Sl S S S
(G, BN, INC, NG, IC, IC, BT, |

H W WwE = WwNdN

In this small example, the complete structure was
uncovered in only a few iterations. However, real
world graphs would contain a larger number of ver-
tices. It is possible to make some general statements
regarding the time it takes to discover the structure of
a graph. If the graph is a linear chain, or a total order,
then one observation suffices. However, if the graph
consists of N independent vertices, i.e., no ordering,
then N! (distinct) observations are necessary in order
to establish the fact that all the nodes are independent.
As mentioned earlier, the graph usually represents a
partial ordering. The number of observations needed
to capture the entire structure for large graphs is huge.
The few first observations provide a rough indication
of the graph topology, and the estimate is refined as
further observations are made. However, a large num-
ber of observations are needed to uncover all the
details.

This discussion is based on the assumption that
the reference graph remains constant. However, in real
life the management structures are modified on a daily
basis to reflect the dynamic needs of the users. Conse-
quently, the graph can be viewed as a time-varying
entity. One implication of this is that it is even more
difficult for an observer to identify the management
structure. However, time varying management struc-
tures are beyond the scope of this article.

This experiment sets out to answer how many
iterations are necessary in order to identify a configu-
ration management model?

The sequences should be read from left to right.
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Method

The experiment was carried out by setting up a
sequence generator and a sequence observer. The
generator produced 300 valid random partial orders
from each of the graphs in the test suite. The observer
observed each of the generated sequences without any
knowledge of the graph topology. For each iteration
the information embedded in the sequence was accu-
mulated in a process known as training. For evalua-
tion and graphing purposes a graph was generated
from the accumulated information, all the transitive
dependencies were removed and the resulting graph
was compared to the reference graph providing the
sequences. Each of these steps will be described in the
following paragraphs.

A data structure was built up while observing the
sequences. The data structure consisted of a list of two
sets — a pair of sets for each element, or vertex, in the
graph. One of the sets consisted of elements succeed-
ing the current element in the sequence — the succes-
sors, and the other set of elements preceding the cur-
rent element in the sequence — the predecessors. These
sets grew as the observer was introduced to new
sequences. This procedure is captured in the following

algorithm:
for i:=1 to sizeof(S) do
begin
suc[i] := union(suc[i], head(S,i-1));
pro[i] := union(prol[il, tail(S,it+1));
end

S is an array containing the sequence of events. Sizeof’
is a function that returns the size of the sequence, suc
and pre are arrays of sets containing the set of succes-
sors and predecessors, union is a function returning
the union of two sets and head and tail return sets con-
sisting of the head and the tail of the array respec-
tively.

Equipped with this data structure it is possible to
reconstruct the reference graph, either fully or par-
tially, depending on the number of observations made.
The graph building algorithm used is based on the fol-
lowing observations:

1. If an element occurs before and after the cur-
rent element, then the current element and the
given element are independent. No relationship
exist between the two vertices.

2. If an element only occurs before the current
element, then the current element depends on
that element. The element is a parent of the cur-
rent element.

3. If an element occur only after the current ele-
ment, then the element depends on the current
element. The element is a child of the current
element.

4. All elements that are independent of all the
nodes that may precede them are entry nodes.
Such elements have no parents.

5. All elements that are independent of all the
nodes that succeed them are exit nodes. Exit
nodes have no children.
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The algorithm for extracting the graph is outlined
as follows:
for i:=1 to n do
begin
P[i] := suc[i] - disct(suc[i].,preli]):

end
P is an array of sets containing the parents of the
nodes of the graph, suc and pre are arrays of sets con-
taining the set of successors and predecessors, and isct
is a function returning the intersection of two sets. The
minus (-) operator removes the elements in the right
hand set from the elements of the left hand set.

Transitive dependencies were removed. Graphs
free of transitive dependencies were a prerequisite for
performing graph comparisons. The reference graph
and the predicted graphs were compared as follows:
The parents of each vertex in the reference graph was
compared to the parents of the corresponding vertex in
the predicted graph. The number of common parents
where counted and divided by the total number of par-
ents for that vertex (in the reference graph). These
ratios were then summed. This procedure be described
formally using the following expression:

&, P(G) () P(Mi(1)

S(GMH)=D —————— 4

(G, M(2)) ; PG “4)
where S is the similarity function in the range of 0 to
1. A 0 indicates two completely dissimilar graphs and
a 1 indicate two completely identical graphs. Further,
G is the reference graph, M(7) is the time-variant esti-
mated graph, P() is a function returning the set of par-
ents of a node and G; and M,(¥) refer to node i in the
respective graphs. It also follows that

lim S(G;, Mi(1)) = 1. )

provided the sequences are generated using a uni-
formly distributed random variable.

Results

Figures 12, 13, 14 and 15 depict the similarity
between the reference graph and the reconstructed
graph plotted against time, where time is measured in
iterations. The different graphs represent structures
with a varying number of vertices.

! I '10-nodes.
i = 20 nodes -
0.9 [ 30 nodes ,
08 ff H
2
g 07
=
(2]
0.6
0.5
0.4
0 50 100 150 200 250 300

time (iterations)
Figure 12: The similarity of the reference graph (10,
20 and 30 vertices) and the predicted graph plot-
ted against time (iterations).
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Figure 15: The similarity of the reference graph (100 time (iterations)
vertices) and the predicted graph plotted against Figure 18: The similarity of the reference graph (den-
time (iterations). sities of 0.0228, 0.0237 and 0.0244) and the pre-
dicted graph plotted against time (iterations).
Figures 16, 17 and 18 depict the similarity
between the reference graph and the reconstructed Figures 19 and 20 show graphs of the number of
graph plotted against time, where time is measured in iterations required to reach a similarity levels of 70%,
iterations. The different graphs represent structures 80%, 90% and 95% for graphs of different sizes and
with a varying graph density. densities respectively.
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Figure 19: The number of iterations to reach different
similarity levels plotted against graph size.
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Figure 20: The number of iterations to reach different
similarity levels plotted against graph density.

Figure 21: A graph with a similarity factor of 0.67.

Figures 21, 22, 23 and 24 depict graphs at various
stages of recognition, namely graphs with similarity
levels of 0.67, 0.77, 0.82 and 1.0 respectively. Only,
graphs with relatively high similarity factors could be
included in this article, as graphs with lower similarity
factors had a large depth unsuitable for printed
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material. These graphs indicate that the depth of the
graphs decrease as they become more similar to the
reference graph. Similarly the width of the graphs
increases as the predicted graphs more similar to the
reference graphs. The VCG (Visualizing Compiler
Graph) tool was used to generate the graphs [16]. Note
that the “minimize depth” option was selected to fit
the graphs into these proceedings, as a more natural
level by level layout would yield long and narrow
graphs.

Figure 23: A graph with a similarity factor of 0.82.

Discussion

A common attribute of all the graphs where the
similarity level is plotted against time (Figures 12, 13,
14 and 15) is that they appear asymptotic — converging
towards 1 or some positive value less than 1. Further,
results show that graph size has a moderate effect on
obscuring the graph topologies. A larger graph is
harder to identify than a smaller graph; more observa-
tions are necessary in order to fully identify a large
than a small reference graph. This phenomenon is
more evident in Figure 19 which plots the number of
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observations required to obtain a given similarity level
against size. The graphs with 50 nodes, or more,
appear to converge onto similarity levels of less than
1, after 300 iterations. This data supports the claim
that a randomized strategy obscures the topology of
the management structure making it more difficult for
an observer to identify it.

Figure 24: The reference graph.

Graph density appears to have a dramatic and
noticeable effect on obscuring graph topologies. For
low densities such as 0.0108, 0.0116 and 0.0122 (Fig-
ure 16) the observer is able to identify the complete
structure or a very similar structure simply after a few
iterations. For graphs with medium density, such as
0.0134, 0.0139 and 0.0159 (Figure 17), the similarity
graphs converge at significantly lower levels. Finally,
the graphs with densities 0.0228, 0.0237 and 0.0244
(Figure 18) are just about starting to converge at the
300th iteration and are still at noticeably low levels of
similarity — 0.9, 0.7 and 0.5 respectively. Figure 20
shows the number of iterations to reach the similarity
levels of 80%, 90% and 95% are plotted against the
graph density, and strongly indicates that the density
of a graph has an exponential effect on obscuring the
management topology, i.e., with a linear increase in
graph density, one achieves an exponential increase in
the time required for an observer to reconstruct the
structure from the observations.

The visualization of graphs at various stages of
recognition (Figures 21, 22, 23 and 24) show that less
similar graphs tend to have a larger depth and smaller
width than more similar graphs, and that the reference
graph itself is the widest and most shallow. This is
because initially all nodes are assumed independent,
then a few edges are detected, connecting the nodes
together in a sparse and deep structure. As more edges
are discovered the vertices of the graph are tied more
strongly together such that each level becomes wider
and the depth becomes more shallow.

60

Sandnes

Clearly, the experiments indicate that manage-
ment structures with many nodes are preferable to
those with fewer nodes. Further, management topolo-
gies with a strong connectivity are drastically less pre-
dictable than sparse structures. These observations
should be taken into consideration when designing
management structures to obscure the management
structure to an onlooker.

An Optimal Topology

When given the freedom to design a structure,
what topologies yield the strongest connectivity? If
one assumes that a graph with N vertices is acyclic
and contains no transitive dependencies, then it is
obvious that the graph must have a layered structure
with L levels, where the d; nodes of level iEL are
dependent on all the nodes in the previous level i — 1
(all other dependencies would be transitive or cyclic).
If we assume, for simplicity, that each level contains
an equivalent number of elements, i.e., d; = d; where
i,j €L, such that dL = N, then the total number of
edges E in the graph is given by

E=d*(L—1) (6)

Such a graph has a rectangular shaped structure
when drawn in a layered manner. Further, £ is maxi-
mized by maximizing d, i.e, L =2 and d = N/2. The
resulting graph is a wide structure with two fully con-
nected levels, £ = N2/4 edges, and a connectivity of
p=N/2(N—1). (Note that the transitive edges are
not counted).

Conclusions

This paper addresses randomized scheduling of
events in a distributed configuration management con-
text. Three, aspects of the impact of randomized
scheduling were investigated — namely, efficiency of
resource utilization during configuration management,
predictability and exploitability by malicious
observers, and the extent to which observers are capa-
ble of monitoring and identifying the configuration
management topology. The experiments show that
randomized scheduling has advantages over fixed
order strategies — on average resulting in more effi-
cient schedules. Further, most graphs yield sufficiently
large freelists that makes the job of predicting man-
agement action difficult. Finally, randomized schedul-
ing makes it more difficult for an observer to identify
the complete management topology, and if the man-
agement topology is viewed as a time-variant entity
this difficulty increase even further. When it is diffi-
cult to identify the model, then it is also difficult to
make accurate predictions. The conclusion to draw
from this is that randomized scheduling, in the context
of distributed configuration management, can be
advantageous compared to a trivial strategy, providing
a good compromise between efficiency and security.
As random scheduling is an extremely simple strategy
to understand and implement it is recommended that it
is incorporated into automatic distributed configuration
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management tools, such as cfengine. The experiments
confirm claims by Burgess [5] that it is advisable to
introduce changes into the management model, and
continuously change its structure, to increase robust-
ness. Also, as pointed out in [7], randomness can also
be introduced in other aspects of the management pro-
cess such as the timing of the events to improve the
robustness.
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