
Meta Change Queue: Tracking Changes
to People, Places and Things

Jon Finke – Rensselaer Polytechnic Institute

ABSTRACT

Managing information flow between different parts of the enterprise information
infrastructure can be a daunting task. We have grown too large to send the complete lists around
anymore, instead we need to send just the changes of interest to the systems that want them. In
addition, we wanted to eliminate ‘‘sneaker net’’ and have the systems communicate directly
without human intervention. Some of our applications required real time updates, and for all cases,
we needed to respect the ‘‘business rules’’ of the destination systems when entering information.
This paper describes a general method for propagating changes of information while respecting the
needs of the target systems.

Introduction

At LISA 2002, I presented a paper Embracing
and Extending Windows 2000 [4] that described how
we kept our Windows 2000 environment, as well as
our LDAP directory services synchronised with our
Unix account space. These feeds quickly grew to carry
more than just Unix account information to include
directory and other status information. Well, we were
a victim of our own success. Other systems needed
access to the same or similar change feeds, and other
data streams were becoming available, and a more
general architecture was needed. In addition, we found
that we had to interface with vendor supplied systems
and it became important to provide a clear demarca-
tion between our systems and the vendor’s systems
and provide a clear place to implement their business
rules with our data.

At LISA 96 in Chicago, I gave an invited talk
Manage People, not Userids that demonstrated the
importance of managing the more general information
about people, and from that, managing their computer
accounts. In addition, in a paper at the same confer-
ence, (White Pages as a Problem in Systems Adminis-
tration [3]), I again showed how tools for systems
administration could benefit other areas and that many
areas for code and tool re-use exist. As our friends in
the JAVA community (and other object oriented lan-
guages) are fond of telling us, solve the problem once,
and re-use the solution to solve other problems. Thus,
we wanted a general mechanism to move different
types of changes to different systems.

At our site, many of our systems1 are vendor sup-
plied packages running on an Oracle or other relational
database. In addition, we were also feeding information
to non relational database systems such as our LDAP
directory servers and the Windows 2000 domain con-
trollers. To further complicate matters, we have many

1Student Records, Human Resources, ID Card, Dining Ser-
vices, Space Management, Telephone Billing, Help Desk, etc.

different data elements available, and not all systems
wanted all data elements, we needed ways to pick and
choose which data elements went to which system. We
also needed to be able to accommodate different operat-
ing schedules and data latency requirements. Some data
elements change very slowly (such as adding a new
building) where a daily update feed is more than ade-
quate, while other data elements need to move much
faster (such as a password change, or email forward-
ing.) We wanted to retain the low processing costs we
achieved in earlier implementations, while making it
easier to add new ‘‘listeners’’ to a feed. Lastly, although
we wanted changes to propagate quickly, we needed to
avoid blocking an operation on one system because a
downstream system was not reachable.

Interfaces and Business Rules

The first aspect of this project, is the interface
model we use to actually get the changes into the des-
tination system. While many applications have proce-
dures to import a CSV file, these require manual activ-
ity and our objective is to fully automate the process.
Some applications and systems provide an API that
we can call to insert and update records; this is our
preferred method. But other systems don’t provide that
and for at least database based systems, we need to
muck about directly in the vendor database tables. We
wanted a clear demarkation between our systems, and
the interface code that needs to understand how the
target system works. For the systems without an API,
our approach is to insert the changed records into a
import table and have that trigger the appropriate pro-
cessing. We have used this model as well as the API
model successfully.

Assuming that we have some sort of interface, we
still need to face the classic system admin issue of
pushing in changes from the central server, versus
pulling in changes from the client. The answer here is
‘‘ i t depends.’’ In general, I have taken a very pragmatic

2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA 231

Meta Change Queue: Tracking Changes to People, Places and Things Finke

approach. For destination systems that do not have
‘‘ a g g r e s s i v e administration,’’2 I prefer the push model
from the central server. This allows me to monitor the
connections and updates and become aware of prob-
lems (and hopefully resolve them) before the end
users. This also allows me to adjust the schedule and
timing of updates as needed. For systems with aggres-
sive administration, we can negotiate the ‘‘best’’
approach (more efficient, least work, etc.).

Field Type Description
Tname varchar2(32) The name of the table that had the change.
Change_Type varchar2(8) One of ‘‘Insert,’’ ‘‘Delete,’’ or ‘‘Update.’’
rrowid rowid Oracle row identifier of base table record.
proc_name varchar2(32) The processor (or queue) name.
subtype varchar2(32) More detailed information about what specifically changed about the target

object.
person_id number The internal person identifier if the object is defined in the ‘‘people’’ table.
Pkey_String varchar2(32) The primary key (identifier) of the object (if not a person) as a character string.
pkey_number number The primary key of the object when that is a numeric value (not a character

string).
aux_string varchar2(255) An optional extra character field to identify the change. Often used for

membership changes where two keys are needed.
entry_date date The time and date this change was made.

Table 1: Change record definition.

Procedural API

At the heart of the Meta Change Queue package is
the Get_Changes routine (Figure 1) which provides all
of the changes for the specified listener in order. This is
called with the processor (queue) name, and an optional
table name within that queue. This will return a record
with a number of fields of interest (Table 1). When the
record has been processed, the Ack_Change routine is
called. This cycle is repeated until the Change_Type
field in the record is null. This indicates that there are
no more changes that need to be processed.

Function Get_Changes(
Proc_Name in varchar2,
tname in varchar2)

return rec;

procedure Ack_Change(R in Rec);

Figure 1: Get_Changes definition.

When an application is processing a change, it
examines the change record, and based on the Tname
and subtype (and other fields), determines what record
had changed and gets the current value of that record
from the database. This is a very important issue to
understand, we do not record what the change was,
only that something had changed. We need to be able
to move the final state for a record, without having to
step through intermediate steps. If I change my phone
number twice, the only thing that matters is the final
number. Other aspects of our systems may maintain

2An administrative team who is constantly monitoring the
system and is able and willing to set up cron jobs or the
equivalent.

history and change logs, but not this one. Here we
only indicate that something changed. The application
must be able to apply the same change twice without
harm, i.e., ‘‘set quota to 100’’ is ok to repeat,
‘‘increase quota by 50’’ is not.

There is another set of routines that given a
change record, will return the desired information
(directory, status, etc.) to applications that can then
update the target system. This model has worked well
with our interfaces to LDAP and Active Directory
where we have written a program in Java or C#, that
gets the queued changes and updates the target. These
applications apply all the changes in the queue,
acknowledging them as they go. Once it reaches the
end of the queue, it sleeps for a short time and looks
for changes again. These programs will retry if they
loose the network connection and will eventually
catch up once they can reconnect. This automatic
restart has proven very handy and reliable.

The Get_Changes interface also provides a handy
hook for our process monitoring system [5]. The
applications that are polling via the Get_Changes rou-
tine often just sleep for a short time; maybe a second.
Unlike the calls to Get_Changes which puts a very
small load on the database, calls to the Mark_Process
routine results in a write (or update) to the database,
and frequent calls will impact performance and trans-
action logs. So we typically wrap the call to
Mark_Process in code that skips the actual call until at
least five minutes has elapsed since the last call. This
will still give us good notification when one of these
processes dies. We usually catch one that has died
every three or four months.

Import Table

Our second interface method is by using an
import table to receive records. When a record in
inserted into the import table, a database trigger3 fires
which will then process whatever business rules that

3A database trigger is a stored procedure in the database
that will be executed whenever there is an insert, update or
delete on a row in a database table [1].

232 2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA

Finke Meta Change Queue: Tracking Changes to People, Places and Things

Figure 2: Interface and business rules.

CREATE OR REPLACE TRIGGER T_SIMON_PERSON_IMPORT
BEFORE INSERT ON SIMON_PERSON_IMPORT FOR EACH ROW
declare

Cursor Get_rec (pn number) is
Select person_number,person_last_name,person_first_name,

person_text1, person_location, person_memo, rowid
from SA_Person where person_number = pn;

R Get_Rec%RowType;
new_status varchar2(48);

begin
Open Get_Rec(:new.spriden_id);
Fetch Get_Rec into R;
if Get_Rec%NotFound -- No existing record, insert a new one
then

new_status := nvl(:new.status,’No Status’);
INSERT INTO SA_PERSON

(PERSON_ID, ENTERED_DATE, ENTERED_BY, PERSON_NUMBER, PERSON_LAST_NAME,
PERSON_FIRST_NAME, PERSON_TEXT1, PERSON_LOCATION, PERSON_MEMO)

VALUES
(PERSON_ID_SEQ.NEXTVAL, SYSDATE, USER, :new.spriden_id, :new.lastname,
:new.firstname, orgn, substr(new_status,1,24), :new.title);

else
if :new.status is null -- If no current status, save what they were
then

if substr(R.person_location,1,7) = ’Former-’
then new_status := r.person_location;
else new_status := ’Former-’ || R.Person_Location;
end if;

else
new_status := :new.status;

end if;
Update SA_Person

set Updated_Date = sysdate, Updated_By = user,
Person_Last_Name = :new.lastname, Person_First_Name = :new.firstname,
Person_Location = substr(new_status,1,24),
person_text1 = orgn, person_memo = :new.title

where rowid = r.rowid;
end if;

end;

Figure 3: Insite Trigger.

are required. This appears as the bottom row of ele-
ments in Figure 2. We have used this successfully with
several different vendor applications.4 In cooperation
with the vendor engineers, we define an import table,
and then the vendor engineer writes a database trigger
that processes each insertion as it happens and makes
the appropriate changes in their own tables. This
allows us to feed in the changes in a controlled

4BEST – ID Card and Access Control, FAMIS – Physical
plant trouble ticketing, INSITE – Space Management

manner and isolates our code from vendor changes.
The vendor does need to update their triggers when
they make a change. We had originally intended to
queue the records in the import table, and then the
vendor would have a process that looks for pending
records (much like how we did the Meta Change
Queue project), but we found it easier to just write the
trigger and avoid writing the polling application.

One example of this is seen in Figure 3 which is
a database trigger written by a vendor engineer. In this
case, for each new entry in the Simon_Person_Import ta-
ble, it first checks to see if the entry has already been
made in the vendor table SA_PERSON, and if not, it
inserts the person. If the person is already in the table,
it checks to see if the person has a status.5 If they don’t
have a status, see if they did, and if so, change it to
‘‘Former-’’ whatever and then update the person’s
record. The vendor application did not a have a field
for the ‘‘Status’’ of a person, and although we could

5Maintaining ‘‘status’’ values for every person is a topic for
another paper.

2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA 233

Meta Change Queue: Tracking Changes to People, Places and Things Finke

have added one to their table (like we did with the Per-
son_Number, we did not want to change all of the dis-
play screens, so we took over the Person_Location
field, and store and display the status there.

procedure Push_Queue(stopcount in number)
is

R Meta_Change_Access.Rec;
begin

loop
R := Meta_Change_Access.Get_Changes(’Insite’, Null);
exit when R.Tname is null;
Push_Person(R.Person_Id);
Meta_Change_Access.Ack_Change(R);

end loop;
Process_Monitor_Record.Mark_Proc(’Insite-Push_People’);

end Push_Queue;

Figure 4: Push_Queue procedure.

declare
Cursor Lrec is Select Username,Source, owner, unixuid, rowid
from logins where admit_cohort=’TR200209’;

begin
for L in lrec
loop

Meta_Change_Rtn.Log_Update(’LOGINS’,l.rowid, person_id => l.owner,
pkey_string => l.username, pkey_number => l.unixuid);

end loop;
end;

Figure 5: Manual refresh via queue.

We don’t actually care about the contents of the
Simon_Person_Import table. Once the trigger fires and
completes, all of the work is done. We periodically
flush the import table. If there is a problem with the
trigger, perhaps some integrity constraint (unique user-
names, etc.) is violated, the trigger throws an excep-
tion and the insert fails. This exception propagates
back to the system attempting the insert and appropri-
ate error handling can take place there.

This approach has the additional advantage of
allowing us real time updates for applications that
needed it. For example, we have a secure web page
that is used by our Human Resources department to
mark when a new employee has signed their I9 form
(and is now allowed to start work). This web form
updates the person’s status, and immediately pushes
that change to the ID card system. By the time the new
employee has made it to the ID desk, they have
already been loaded in and can have their ID card
photo taken right away. This has made both the HR
staff and the ID desk staff happy (HR is happy
because they can now control when someone is issued
a staff ID card, and the ID Desk staff is happy because
they don’t need to call HR to verify each new hire.)

Not all changes need to happen in real time.
Many changes happen as the result of other automated
processes and batch jobs. We have a simple PL/SQL
program that uses the Get_Changes routine to find out
what has changed for a given queue, and then loads
the appropriate records into the import table. If the

target system is down, the changes will wait in the
queue until the next run. Since we are using the
process monitor to ensure that this happens, we know
when the scheduled jobs does not complete success-
fully. In the new employee case, we have already
loaded the employee via the HR web page, but the
repeat load in the next batch run doesn’t hurt anything.

We can combine the use of the queuing support
described in the previous section, with the insert trig-
ger based code, to come up with a catch up routine
like the one in Figure 4. This simply looks for changes
for the ’Insite’ queue, and passes them to the Insite sys-
tem via the Push_Person routine we described earlier.
Once we get to the end of the list, we record the fact
we finished and terminate. This process is called once
a day by a cron job.

Manual Entries

When we bring a new system on line, it is gener-
ally empty of our data. Rather than loading it via CSV
files or other bulk import tools, we use the Meta
Change Queue interface to load them up. In the cases
where there is a program calling the Get_Changes rou-
tine directly, we simply manually insert records in the
queue for that service, and watch what happens. If we
like what we see, we write a simple script to load all
objects of interest into the queue. From that point on,
things run automatically, and the interface has been
well tested, as the entire system load has been pro-
cessed via the new interface. This also makes it easy
to reload if we decided to flush and start over.

In Figure 5, we have an example of a PL/SQL
script that will select all transfer students from the Fall
of 2002, and ‘‘refresh’’ their entries in any listener that

234 2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA

Finke Meta Change Queue: Tracking Changes to People, Places and Things

is interested in changes to the LOGINS table.6 You will
note that several of the parameters specified in the call
to LOG_UPDATE correspond with fields in the change
record (Table 1).

In the cases where we use the import (trigger) ta-
ble, we generally have written a routine like
Insite_Interface.Push_Person (Figure 6) that will look up
the appropriate information and do the appropriate
insert (via SQL*NET). This routine can be called by
hand for testing, and later on via scripts to bulk load
the entire population. In Figure 7, we have an example
of PL/SQL script that will load all current employees
and faculty into the INSITE (space management) sys-
tem via the Insite_Interface.Push_Person routine. This
routine calls routines in the Meta_Change_Data pack-
age to get the data elements that are needed, and then
inserts that into the import table Simon_Person_Import
on the Insite machine using sql*net.

Meta_Change_Data.Person(Person_Id, Lname, Fname, Mname,
PFN, Rin, Iso, DOB, Gender, Ssn, Pidm);

Meta_Change_Data.Person_Department(Person_Id, Department, Division,
Portfolio, Insite_Name, Orgn_Code;

Meta_Change_Data.Person_Status(Person_Id, Category, ID_Card,);
Meta_Change_Data.Person_Directory(Person_Id, Title, Camp_Add,

Camp_Phone, Camp_Fax, Mailstop);

Insert into OPS$INSITESYS.SIMON_PERSON_IMPORT@insite
(Spriden_Id, Lastname, Firstname, Orgn_Code, Status, Title)

Values (Rin, upper(substr(lname,1,24)),upper(substr(nvl(pfn,fname),1,16)),
Orgn_Code, upper(ID_Card), upper(Title));

Figure 6: Insite_Interface.Push_Person .

declare
Cursor Emp_List is
Select person_id,spriden_id,lastname
from people
where id_card_status in (’Employee’,’Faculty’);

begin
for R in Emp_List loop

Insite_Interface.Push_Person(R.person_Id);
end loop;

end;

Figure 7: Direct refresh (trigger table).

Tables and Listeners

The second aspect of the project, is how we
detect changes, queue them, and finally deliver those
changes in a timely manner.
Defining Tables

The original concept was to track changes in a
particular database table, but in the actual implementa-
tion, this proved to be limiting. Instead of looking at
the details of the source systems tables, we looked at
the data requirements of the destination system. For
example, one system might just want general informa-
tion on a person such as name and status, while
another system would want that as well as directory
information. Since the transfer model was to give

6The query has been edited for space, but the concept is
still valid.

them a complete record of all desired information
about a person, a facility to pick and choose what
information about a person, was desired. Instead, we
defined the table to be the source of the primary key,
and added a sub type to indicate what about the base
object changed. For example, a telephone number
change would be marked as the PEOPLE table and the
Telephone sub type. We currently have 16 table and
sub type combinations defined (Table 2).

To detect these changes, we set up a database
trigger (Figure 8) which records whenever a telephone
number is changed. There are similar triggers to handle
new telephone numbers (inserts) and deleted telephone
numbers. Since this was done with a database trigger,
we did not have to change any of the applications that
had been previously developed to make changes. It
also ensures that we don’t miss any changes.

Figure 9: Detecting changes with triggers.

While database triggers can be very handy for
integrating existing applications, they can sometimes
get complicated. We often have changes to a table that
are ‘‘housekeeping’’ in nature. Something in the table
changed, but that change is not of interest to any
downstream systems. You can with a trigger be more
selective about what columns you look for changes in,
but that makes the trigger more complex. Triggers are
also challenging from a maintenance prospective, as
they are sort of split conceptually between the table

2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA 235

Meta Change Queue: Tracking Changes to People, Places and Things Finke

definition (DDL) which is usually set at the start of the
project and the interface code (PL/SQL Packages).
New projects allow for closer integration of the
change queue requirements with the interface code.

We recently installed a unified messaging sys-
tem.7 Although this system was supposed to use our
existing Exchange server (the one discussed in
Embracing and Extending Windows 2000 [4]), our
initial deployment required a second Exchange server,
and in fact, its own Windows 2000 domain. An obvi-
ous step was to set up another listener in parallel to the
one used for our primary Windows 2000 domain.
However, along with the LOGINS information needed,
we also needed voice mail specific information.

Table sub type Description Count
BUILDINGS Buildings (from INSITE Space Management) 258
DEPARTMENT Departments from the phone directory 3442
GROUPS Unix Groups 12
GROUP_MEM Members of Unix Groups 871
INSITE_FLOOR Floors within buildings (from Insite) 46
INSITE_SITE Campuses (from Insite) 1
LOCATIONS Rooms within Buildings (from Insite) 11890
LOGINS Computer accounts (email) 61632
PERSON Address Address information 209016
PERSON Dir_Orgn Departmenal affiliation from directory 406
PERSON Merge Database cleanup – really ugly 224
PERSON PEOPLE Basic person information, Name, DOB, ID Numbers 160850
PERSON Status Current status for a person (Student, Employee, etc.) 95468
PERSON Telephone Telephone number (home, campus, etc.) 78960
PERSON UDI User Directory Information: Class Year, web page, email address 5725
UNITY_VMAIL Command for Unity Voice Messaging System. 6072

Table 2: Tables and sub type.

Create or Replace Trigger Directory_Telephone_Trig_Upd
after update on Directory_Telephone for each row
begin

Meta_Change_Rtn.Log_Update(tname => ’PERSON’,
subtype => ’Telephone’, rrowid => :new.rowid,
person_id => :new.Person_Id, Aux_String => :new.tele_type);

end Directory_Telephone_Trig_Upd;

Figure 8: Telephone change trigger.

Since this was a new project, we were able to
design the system so that all access to the ‘‘voice
mail’’ tables was via single interface package. This
allowed us to call the Meta_Change_Rtn.Log_XXX rou-
tines directly as needed. This gave us much greater
flexibility in what we send to the Unity system for
processing. For example, we have two ‘‘owners’’ for
many objects. We have the ‘‘Unity Owner’’ which
controls some access on the Unity system itself, and
‘‘System owner,’’ which controls administrative
access on the central database. For operational rea-
sons, these often different entities. A voice mail tree
will be administratively owned by a department, while
on the Unity system, it will be ‘‘owned’’ by a group of

7Cisco Unity – voice messages and email are co-mingled
on an Exchange server, with access to both via both the tele-
phone and Outlook or other email agents

administrators. We often need to change the adminis-
trative owner, but there is no need to send any changes
to Unity. By having the single interface, this can be
handled properly in the interface package.

In order to manage what tables are available to
the listeners, we defined another database table,
Meta_Change_Tables (Table 3) to hold that information.
The primary purpose of this table is to document what
is available. Most of this information is set when the
table is defined, but one aspect is collected automati-
cally. The first time a change record is logged for a
specific Tname − SubType pair, the PL/SQL call stack is
saved to this table. This is a traceback of what proce-
dures and packages called the logging routine. This
can be very handy when tracing odd entries. This
value will get refreshed if the Stack_Date value is
cleared. This table also provides a handy selection list
of possible tables when setting up listeners.
Defining Listeners

It generally doesn’t do any good to talk, if no one
is listening. There are three parts to each listener, an
entry in the Meta_Change_Listeners table (Table 4), a
listener specific interface package (such as the
Insite_Interface package mentioned previously) and the
actually interface application, be it an import table or a
custom application. Like the Meta_Change_Tables, we
also record the call stack of whoever calls for this lis-
tener. Although we have some concept of role based
access control built in for each queue, in all of our
deployments so far, we have written a specific interface
package which provides the access control we need.

236 2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA

Finke Meta Change Queue: Tracking Changes to People, Places and Things

We currently have seven listeners defined (Table
5). Of those, three are ‘‘real time,’’ polling for changes
frequently, and the others get once a day updates. In
addition, both BEST and CMMS have interactive tools
available to push through individual records on demand.

Field Type Description
TNAME varchar2(32) Primary Key(1) – The table we are monitoring. Matches

Meta_Change_Queue.Tname.
SUBTYPE varchar2(32) Primary Key(2) – An optional subtype of the table.
COMMENTS varchar2(255) A short description of what we are logging. Intended to help

developers.
CALL_STACK varchar2(2000) The formatted ‘‘call stack’’ that made the a log entry. This is set when

Stack_Date is null.
STACK_DATE date The date when the latest call stack was recorded. This will trigger

refresh of the call stack data.
PERSON_ID varchar2(65) The source (if any) of the person_id value.
PKEY_STRING varchar2(255) The source of the pkey_string. This may be a composite value.
PKEY_NUMBER varchar2(255) The source, if any for the pkey_number. These values are generally not

person_id values.
AUX_STRING varchar2(255) The source of the aux_string. This may be a composite value.

Table 3: Meta_Change_Tables definition.

Field Type Description
PROC_NAME varchar2(8) Primary Key(1) – The name of the valid listener. Used in the

Get_Changes function call.
COMMENTS varchar2(1024) A description of what this listener is.
ROLE varchar2(32) An optional Oracle role needed to access this queue.
OWNER number The simon.people.id of who ‘‘owns’’ this queue.
CALL_STACK varchar2(2000) The formatted ‘‘call stack’’ that made the a log entry. This is set when

Stack_Date is null.
STACK_DATE date The date when the latest call stack was recorded. This will trigger

refresh of the call stack data.

Table 4: Meta_Change_Listeners definition.

Listener Count Frequency Description
ADSI 25566 5 Sec Active Directory – our primary windows 2000 domain.
Applix 148401 Daily The trouble ticketing system for the computer center.
BEST 52633 Daily ID card and physical access control system
CMMS 162520 Daily Physical plant trouble ticket and payroll system.
Insite 52407 Daily Space Management system (OFMS)
LDAP 176774 5 Sec Directory service
Unity 16573 3 Min Unified voice and email messaging system

Table 5: Current listeners.

Field Type Description
PROC_NAME varchar2(8) The name of the listener.
TNAME varchar2(32) The table that the listener (Proc_Name) is interested in.
Subtype Varchar(32) The subtype if applicable.
COMMENTS varchar2(1024) Maybe a reason WHY it is interested.

Table 6: Meta_Change_Interests definition.

Linking Listeners with Tables

The last part of the puzzle is the Meta_Change_
Interests table (Table 6) which defines which table and
subtype pairs any given listener is interested in. This

mapping is maintained with a web based tool, making it
very easy to maintain these relationships. This tool also
allows you to display pending and processed change
counts, flush pending records (handy during develop-
ment), as well as the call stacks for tables and listeners.

When a call is made to one of the
Meta_Change_Rtn.Log_XXX routines, it takes the Tname
and Subtype parameters, looks for listeners in the
Meta_Change_Interests table (Table 6) that are interested,

2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA 237

Meta Change Queue: Tracking Changes to People, Places and Things Finke

and for each one, makes an entry in the Meta_
Change_Queue table (Table 7). The name of the listener
is set in both the Queue_Name and Proc_Name fields.
When a record is processed, the Queue_Name column
will be set to null. By putting an index on this field,
and clearing it when it has been processed, the calls to
Get_Changes can be done very quickly and efficiently.

Field Type Description
TNAME varchar2(32) The name of the table (real or conceptual) that has been changed.
SUBTYPE varchar2(32) The subtype of this table – if any.
RROWID rowid The rowid of the record that was changed. This may be useful in

speeding processing.
CHANGE_TYPE varchar2(1) The type of change; ‘‘I’’ – Insert, ‘‘C’’ – Change, ‘‘D’’ – Deletion.

Some indication of what happened to the record.
PERSON_ID number The Simon.People.Id (if any). This is often a primary key for Simon

tables.
PKEY_STRING varchar2(32) A varchar2 primary key value, for tables that do not use Person_Id as

their key. This is optional.
PKEY_NUMBER number A numeric primary key value, similar to Pkey_String, only numeric

rather than varchar2.
AUX_STRING varchar2(255) An optional extra value that might be useful the receiving system. This

might be the old name.
ENTRY_DATE date The sysdate value when this change entry was made.
ENTRY_NUMBER number An ever increasing sequence number. This can be used to order

changes.
PROC_DATE date The date when this record was processed and could be cleared.
HOLD_UNTIL date The time and date when this record should again be made available for

processing. This can be used by other systems that can’t process an
event now, but want to get it eventually. Some other process will need
to requeue these entries.

QUEUE_NAME varchar2(8) The name of the listener who is waiting for this record. This is the
trigger value for pending entries. This column is indexed, and once a
record is processed, this should be set to null. This will keep the index
small and fast, allowing for low overhead and frequent polls.

PROC_NAME varchar2(8) The name of the listener. Initially, it is the same as the Queue_Name,
but Queue_Name will be cleared after processing, this helps us track
which listener got this record.

RETRY_COUNT number The number of times that this record was ‘‘put back’’ by the listener.
This can help identify problem records and allow for back off options
using the hold_until feature.

Table 7: Meta_Change_Queue definition.

Conclusions

At present, we have seven distinct ‘‘listeners’’
waiting for changes in one or more of 16 defined tables
and sub types. To date, this system has processed over
a half million changes. The three ‘‘real time’’ polling
processes do not appear to put any noticeable load on
the database, and in fact we have several other similar
polling processors handling password changes, and
they also do not noticeably load our database server.
The approach of using an index on a key column that is
cleared when the record has been processed works
very effectively, and we will continue to use that here
and with other processes, such as our password syn-
chronization for our ‘‘single signon.’’ We recently
modified our password processing (described in [4]) to

re-encrypt a password change for additional authenti-
cation realms (LDAP, Kerberos version 5, and our sec-
ond Active Directory domain for the Unity Voice mail
system.)

The import table/trigger approach has been very
handy in providing interactive response to some of our
processes and will likely be our interface method of
choice when dealing with new Oracle based vendor
applications, as well as internally developed applica-
tions where we want to maintain that clear demarca-
tion between systems.

Futures

This Meta Change Queue system is fully opera-
tional and well integrated with our environment. I don’t
currently plan any major changes to it, but we will be
making minor changes as new systems come along.

XML Output

Currently, each new listener required a listener
specific interface package to be written. One area that
may be worth exploring is a generic listener that gen-
erates XML. This will most likely happen when we

238 2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA

Finke Meta Change Queue: Tracking Changes to People, Places and Things

get a new system that can accept an update stream in a
format like that. Given the existing examples and sup-
port code, development of these interface packages
has not been a problem. They are generally pretty sim-
ple and straightforward.
Status Reporting

We now have listeners automatically tied into to
our process monitoring system, which will report on
overall system problems. However, we have not done
much with record level feedback and error reporting. In
general, problem records don’t get processed and cycle
around for a while until someone notices them and takes
appropriate action. This hasn’t been much of a problem,
but is something we need to look at more closely.

One of the objectives of my division, is to pro-
vide metrics for our activities. We are currently log-
ging some periodic summaries of changes, and more
formal analysis and reporting would be desirable.
Other Listeners

New listeners are generally prompted by the
arrival of new systems, and as these systems are gen-
erally from other divisions, is not easy to predict what
and when. We do have some existing systems that
could benefit from the Meta Change Queue approach,
and we will be exploring these areas. Some of them
include:

• DNS configuration – providing end user tools
for DNS changes, with immediate changes
going via the MCQ.

• DHCP configuration – this has proven to be a
‘‘ g r o w t h area’’ as we need to implement ways of
rapidly change DHCP configuration as the result
of virus scans, abuse investigations and so on.

Bulk Priority Queue
I will be adding a low priority queue, that will

allow bulk entries to flow when ‘‘real time’’ requests
are not pending. This has become an issue when mass
create jobs ‘‘lock up’’ a listener for a long time and
interactive users are trying to work. This change will be
done entirely within the Get_Changes routine and none
of the listeners will need to be changed.

References and Availability

Some of the examples in this paper have been
edited for publication, frequently, some of the error
handling code has been removed. While this should
not impact your understanding of how this works, if
you are going to implement something like this, I
would suggest looking at the actual source code to see
some of the special cases that we had to deal with.
Some are very site specific, but will give you some
idea of some of the details we had to handle.

This project is part of (but not dependent on) the
Simon system, an Oracle based system used to assist
in the management of our computer accounts [4],
enterprise white pages [3], printing configuration [2],
All source code for the Simon system, is available on

the web. See http://www.rpi.edu/campus/rpi/simon/README.
simon for details. In addition, all of the Oracle table
definitions as well as PL/SQL package source are
available at http://www.rpi.edu/campus/rpi/simon/misc/
Tables/simon.Index.html .
Acknowledgements

I would like to thank Andy Mondore for review-
ing this paper. Special thanks also go to Alan Powell,
Mike Douglass, Rich Bogart and Chet Burzynski all of
RPI and also Lance Holloway of BEST Access Sys-
tems and Megan Whyman of OFMS for their contribu-
tions to this project. I also want to thank Rob Kolstad
for his excellent (as usual) job of typesetting this paper.
Author Biography

Jon Finke graduated from Rensselaer in 1983
with a BS-ECSE. After stints doing communications
programming for PCs and later general networking
development on the mainframe, he then inherited the
Simon project, which has been his primary focus for
the past 13 years. He is currently a Senior Systems
Programmer in the Networking and Telecommunica-
tions department at Rensselaer, where he continues
integrating Simon with the rest of the Institute infor-
mation systems. More recently, Jon has taken on sup-
port of the Telecommunications billing system,8 and
providing data and interfaces for Unity Voice Messag-
ing and some Voice over IP projects. When not play-
ing with computers, you can often find him merging a
pair of adjacent row houses into one, or inventing new
methods of double entry accounting as treasurer for
Habitat for Humanity of Rensselaer County. Reach
him via USMail at RPI; VCC 319; 110 8th St; Troy,
NY 12180-3590. Reach him electronically at finkej@
rpi.edu. Find out more via http://www.rpi.edu/˜finkej.

References

[1] Armstrong, Eric, Steve Bobrowski, John Frazz-
ini, Brian Linden, and Maria Pratt, Oracle 7
Server Application Developer’s Guide, Chapter
8, Oracle Corporation, pp. 1-29, December,
1992.

[2] Finke, Jon, ‘‘Automating Printing Configura-
tion,’’ USENIX Systems Administration (LISA
VIII) Conference Proceedings, USENIX, pp.
175-184, September, 1994.

[3] Finke, Jon, ‘‘Institute White Pages as a System
Administration Problem,’’ The Tenth Systems
Administration Conference (LISA 96) Proceed-
ings, pp. 233-240, USENIX, October, 1996.

[4] Finke, Jon, ‘‘Embracing and Extending Windows
2000,’’ The Sixteenth Systems Administration
Conference (LISA 2002), USENIX, November,
2002.

[5] Finke, Jon, ‘‘Process Monitor: Detecting Events
That Didn’t Happen,’’ The Sixteenth Systems
Administration Conference (LISA 2002), pp.
145-153, USENIX, November, 2002.

8AXIS – Pinnacle CMS by Paetec

2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA 239

Meta Change Queue: Tracking Changes to People, Places and Things Finke

240 2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA

