LifeBoat — An Autonomic
Backup and Restore Solution

Ted Bonkenburg, Dejan Diklic, Benjamin Reed, Mark Smith — IBM Almaden Research Center

Michael Vanover — IBM PCD
Steve Welch, Roger Williams — IBM Almaden Research Center

ABSTRACT

We present an innovative backup and restore solution, called LifeBoat, for Windows
machines. Our solution provides for local and remote backups and “bare metal” restores. Classic
backup systems do a file system backup and require the machine to be installed before the system
can be restored or they do a block for block backup of the system image which allows for a “bare
metal” restore, but makes it hard to access individual files in the backup. Our solution does a file
system backup while still allowing the system to be completely restored onto a new hard drive.

Windows presents some particularly difficult problems during both backup and restore. We
describe the information we store during backup to enable the ‘““bare metal” restore. We also
describe some of the problems we ran into and how we overcame them. Not only do we provide a
way to restore a machine, but we also describe the rescue environment which allows machine
diagnostics and recovery of files that were not backed up. This paper presents an autonomic
workgroup backup solution called LifeBoat that increases the “Built-In Value” of the PC without
adding hardware, administrative cost, or complexity. LifeBoat applies autonomic principles to the

age old problem of data backup and recovery.

Introduction

Supporting PC clients currently represents
roughly 50% of overall IT cost (IGS 2001). This num-
ber is larger than both server (30%) and network
related costs (20%). This provides the motivation for
an autonomic approach to reducing the cost of PC
clients. So far, thin clients have repeatedly failed in the
marketplace. IT attempts to “lock down” PC clients
have not been accepted. In addition, attempts to con-
trol the client from the server have failed due to the
fact that clients sometimes get disconnected. Fat
clients, however, continue to prosper and increase in
complexity which drives the maintenance cost up. We
believe autonomic clients are critical components of
an overall autonomic computing infrastructure. They
will help lower the overall cost of ownership and
reduce the client down time for corporations.

The secure autonomic workgroup backup and
recovery system, LifeBoat, provides data recovery and
reliability to a workgroup while reducing administra-
tive costs for Windows 2000/XP machines. LifeBoat
provides a comprehensive backup solution including
backing up data across the peer workstations of a
workgroup, centralized server backup, and local
backup for disconnected operation. In addition, it pro-
vides a complete rescue and recovery environment
which allows end users to easily and conveniently
restore downed machines. The LifeBoat project
increases the Built-in Value of the PC without adding
hardware, administrative, or complexity costs. By
leveraging several autonomic technologies, the LifeBoat

2004 LISA XVIII — November 14-19, 2004 — Atlanta, GA

project increases utility while reducing administrative
cost.

In this paper we first describe the backup portion
of LifeBoat. This is split into two sections, the first of
which focuses on network backup. LifeBoat leverages
a research technology called StorageNet to seamlessly
spread backup data across the workstations of a work-
group in a peer-to-peer fashion. We then create a scal-
able road map from workgroup peer-to-peer to a cen-
trally managed IT solution. The second backup section
focuses on backing up to locally attached devices
which is a requirement for disconnected operation. We
then describe the complete rescue and recovery
process which simplifies recovery of files and directo-
ries as well as providing disaster recovery from total
disk failure. Next we describe a centralized manage-
ment approach for LifeBoat and how LifeBoat can fit
within a corporate environment. We conclude with
performance measurements of some example backup
and restore operations.

Backup

LifeBoat supports a number of backup targets
such as network peers, a dedicated network server, and
locally attached storage devices. The Autonomic
Backup Program is responsible for creating a backup
copy of a user’s file system in such a way as to be able
to completely restore the system to its original operat-
ing state. This means that the backup must include file
data as well as file metadata such as file times, ACL
information, ownership, and attributes. Our backups

159

LifeBoat — An Autonomic Backup and Restore Solution

are performed file-wise to enable users to restore or
recover individual files without requiring the restora-
tion of the entire machine such as with a block based
solution. Finally, the backups are compressed on the
fly in order to save space.

The Autonomic Backup Program performs a
backup by doing a depth first traversal of the user’s
file system. As it comes to each file or directory, it
creates a corresponding file in the backup and saves
metadata information for the file in a separate file
called attributes.ntfs which maintains the attributes for
all files backed up.

There is special processing required for open
files locked by the OS. The backup client employs a
kernel driver to obtain file handles for reading these
locked files. This driver stays resident only for the
duration of the backup. When a backup is completed,
the client generates a metadata file to describe the file
systems which have been backed up. This “usage”
file contains partition, file system, drive lettering, and
disk space information. The existence of the usage file
indicates that the backup was successful.

The output of the backup and format of the
backup data depends on the target. For a network
backup, the data is stored using a distributed file sys-
tem known as StorageNet. StorageNet has some
unique features which make it especially suited for our
peer-to-peer and client-server backup solutions. For a
backup to locally attached storage, the backup is
stored in a Zip64 archive.

StorageNet Overview

The storage building block of our distributed file
system, StorageNet, is an object storage device called
SCARED [2] that organizes local storage into a flat
namespace of objects identified by a 128-bit object id.
A workstation becomes an object storage device when
it runs the daemon to share some of its local storage
with its peers. While the object disks we describe here
are similar to other object based storage devices [2, 3,
4, 8], our model has much richer semantics to allow it
to run in a peer-to-peer environment.

Clients request the creation of objects on
SCARED devices. When an object is created, the
device chooses an object id to identify the newly cre-
ated object, marks the object as owned by the peer
requesting creation, allocates space for it, and returns
the object id to the client. Clients then use the object
id as a handle to request operations to query, modify,
and delete the object.

An object consists of data, an access control list
(ACL), and an info block. ACLs are enforced by the
server so that only authorized clients access the
objects. The info block is a variable sized attribute
associated with each object that is atomically updated
and read and written by the client. The info block is
not interpreted by the storage device.

160

Bonkenburg, et al.

One special kind of object creation useful in
backup applications is the linked creation of an object.
We implement hard links by passing the object id of
an existing object when requesting creation. A hard
link shares the data and ACL of the linked object, but
has its own info block. These linked objects allow us
to not only create hard links to files, but also to direc-
tories. Hard linked objects are not deleted until the last
hard link to the object is deleted.

There are two kinds of objects stored on
SCARED devices. File objects have semantics similar
to local files. They are a stream of bytes that can be
read, written, and truncated.

Directory objects are the other kind of object;
they are an array of variable sized entries. Entries are
identified by a unique 128-bit number, the etag, set by
the daemon as well as a unique 128-bit number, the
Itag, set by the client. The client chooses an Itag by
hashing the name of the file or directory represented
by an entry. The entry also has variable sized data
associated with it that can be read and set atomically.

Later we will describe how these objects are
used to build a distributed file system, but here we
need to point out that the storage devices only manage
the allocation and access to the objects they store.
They do not interpret the data in those objects, and
thus, do not know the relationships between objects or
know how the objects are positioned in the file system
hierarchy. Because the data stored on the storage
devices is not interpreted, the data can be encrypted at
the client and stored encrypted on the storage devices.

SCARED devices also track the allocations of
objects for a given peer to enforce quotas. Later we will
explain why quota support is needed, but for now it is
important to note this requirement on the storage devices.

Along with object management, storage devices
also authenticate clients that access them. All commu-
nication is done using a protocol that provides mutual
authentication and allows identification of the client
and enforcement of quotas and access control. Note
that communication only occurs between the client
and storage device; storage devices are never required
to communicate with each other.

Clients use data stored on the object storage
devices to create a distributed file system. The clients
use meta-data attached to each object and directory
objects to construct the file system. The directory
entries are used to construct the file system hierarchy
and the info blocks are used to verify integrity.

Figure 1 shows the layout of the directory entries
as interpreted by the client. The first three fields are
maintained by the storage device. The other fields are
stored in the entry data and thus stored opaquely by
the storage device. The client needs to store the file-
name in the entry data since the ltag is the hash of the
filename, which is useful for directory lookups, but

2004 LISA XVIII — November 14-19, 2004 — Atlanta, GA

Bonkenburg, et al.

the actual filename is needed when doing directory
listings. The other important piece of information is
the location of the object represented by the entry or, if
the entry is a symbolic link, the string representing the
symbolic link which is stored in the entry data.

Entry | Looku i Locati OID| Hostname
ta y ta P \ersion |Filename P Oc: ron
9 g P Symlink

Figure 1: Layout of the directory entry.

Figure 2 shows a fragment of the distributed file
system constructed using the structures outlined above.
The first device contains two objects. The first object is
a directory with two entries. The first entry represents a
directory stored on the second device. The second direc-
tory entry is a file that is stored on the same device.

Peer-to-Peer Network Backup

In the peer-to-peer case, our system backs up
workstation data onto other workstations in the work-
group. This is accomplished by defining a hidden par-
tition on each workstation that can be used as a target
of the backup. The architecture of the software compo-
nents in the system is completely symmetric. Each
workstation runs a copy of the client and the Stora-
geNet server. In this way each station serves as both a
backup source and target. In addition, each station runs
a copy of the Lifeboat agent process. This always runs,
provides, and serves the web user interface that consti-
tutes the policy tool to allow the user to make changes
to backup targets, select files for backup, and set
scheduling times. At the appointed time, this process
will invoke the backup client program as well. The
hidden partition is created during the installation
process and is completely managed by the StorageNet
server on each station. The customer uses the client
software to specify what data to backup and on what
schedule. The target of the backup is determined by the
system and can be changed by the customer on request.

In the case of an incremental backup, our Stora-
geNet distributed file system offers some very strong

LifeBoat — An Autonomic Backup and Restore Solution

advantages over traditional network file systems. For
example, one feature which we use a great deal is the
ability to create directory hard links. In this way, if an
entire subtree of the file system remains unchanged
between a base and an incremental backup, we can
simply hard link the entire subtree to the correspond-
ing subtree in the base backup. When individual files
remain unchanged, but their siblings do not, we can
hard link to the individual files, and create new
backup files in the directory. This unique directory and
file hard linking ability allows each backup in our file
system, both base backup and incremental backups, to
look like an entire mirror image of the file system on
the machine being backed up. Each incremental
backup only takes up the same amount of space as
what has changed between backups.

In the local case, incremental backups look like a
subset of the file system. Pieces of the file system that
did not change are simply not copied into the zip. In
order to distinguish between files that are unchanged
and files that have been deleted, we keep a list of files
which have been deleted in ““DeletedFiles.log.” This
is used during the restore to know which files not to
copy out of the base.

For example, consider backing up the file hel-
loworld.txt. In the remote scenario, this file is copied
to our StorageNet distributed file system. The file-
name, file data, file times, and file size are all set in
the StorageNet file system.

File dates and sizes are not stored redundantly in
this case because the cost of looking them up later dur-
ing an incremental is free. This is because during a
remote incremental, we are also doing a depth first tra-
versal on the base backup. File ACL, attributes, and
ownership information is placed into attributes.ntfs
file for use during restore. The short- name data is
stored in the directory entry for this file. Although
StorageNet has no 8.3 limitations, it makes provision
for this information to maintain full compatibility with
Windows file systems.

0

N

t] Info Block

Entry data

| [Entrydata |

\

Ny
=] Info Block &

{

TN
(

E Info Block B

| [Entrydata - b4
Entry data

NS

Figure 2: An example file system fragment stored on directory objects on two storage devices.

2004 LISA XVIII — November 14-19, 2004 — Atlanta, GA

161

LifeBoat — An Autonomic Backup and Restore Solution

Why We Need Quotas

Since all the peers store their data remotely, if
any peer fails it can recover from its remote backup. It
is tempting to randomly spread a given peers backup
across all of its peers. Spreading this way gives us
some parallelism when doing backups and should
speed our backup. However, if we do spread a given
machine’s backup uniformly across its peers, we can-
not tolerate two failures since the second failure will
certainly lose backup data that cannot be recovered.

Instead of spreading the data across peer
machines, we try to minimize the number of peers
used by a given machine for a backup. Thus, if all
machines have the same size disks, when a second
failure happens there will only be a $1 over (n™-"1)$
chance that backup data is lost for a given machine.

Unfortunately, we cannot assume that all peers
have the same sized disks. Thus some peers may store
the backup data of multiple clients, and other peers
may use multiple peers to store their backup. If the
disk sizes are such that a peer’s backup must be stored
on multiple peers and those peers in turn store backups
from multiple peers, the backups can easily degenerate
into a uniform backup across all peers unless some
form of quotas are used.

Peer Backup Scenarios

The number of scenarios that are supported by
this solution is virtually innumerable. However, there
are some attributes that constitute simple scenarios.
For example, we can consider the most simple sce-
nario in the peer-to-peer case to be the completely
symmetric homogeneous case where all stations pro-
vide a hidden partition that is equal in size to their
own data partition, and each stations data is backed up
to a neighboring station. Figure 3 shows an example
for three workstations.

Figure 3: Three workstation peer-to-peer case.

In this case every machine backs up its data in
the hidden partition of its neighbor.

Figure 4: Non-homogenous/non-symmetric example.

162

Bonkenburg, et al.

Figure 4 shows a more complicated scenario. In
this case, the following statements hold true for the
backup group:

® B holds all of A’s data and portions of the data
of C

* A holds all of B’s data and portions of the data
of Cand D

® C holds all of E’s data and portions of the data
of D

® D could be a laptop and stores parts of its data
on A and C

¢ E holds all of F’s data

¢ F (as well as possibly other stations) has avail-
able target space for a new entrant in the group

Either of these scenarios could have resulted
from:
¢ autonomic system decisions based on the sizes
and allocations of a heterogeneous group of
workstations
¢ user-selection specifies the target of the backup

Obviously these two scenarios are not exhaustive.
Configurations of arbitrary complexity are supported.
We intend to develop heuristics and user interface meth-
ods to reduce possible complexity and allow the cus-
tomer to efficiently manage the backup configuration.

Dedicated Server Network Backup

One of the big advantages of using dedicated
servers as opposed to peers is the availability of ser-
vice. Because peers are general purpose user
machines, they may be turned off, rebooted, or discon-
nected with a higher probability than with dedicated
servers. In a large enterprise environment using a ded-
icated server approach can guarantee backup availabil-
ity. Machine stability is important when trying to do
backups. Dedicated servers are also easier to manage
because of their fixed function. Machines are also eas-
ier to update and modify by an admin staff if they
belong to the IT department rather than users.

The dedicated server solution uses StorageNet in
a similar fashion as the peer-to-peer approach. The
dedicated server acts as the target StorageNet device
for the backup clients and backup data is stored in the
same fashion as the peer approach. Indeed, the archi-
tecture makes no distinction between dedicated servers
and peers. In this way, the dedicated server solution is
only a special case peer-to-peer usage scenario.

Local Backup

For mobile users the ability to perform regular
backups to local media is critical. There are several
configurations that we must deal with in order to pro-
vide local backup. The simplest one is for a system
with one internal hard drive which contains the data
we wish to back up and one additional hard drive
where the backup is stored. The hard drive containing
the backup can be either an external USB/Firewire
drive or internal hard drive. The user is also allowed to
perform backup locally to the source hard drive. In

2004 LISA XVIII — November 14-19, 2004 — Atlanta, GA

Bonkenburg, et al.

this case we use a file system filter driver to protect
the backup files. While this form of backup wont pro-
tect the user from hard drive failures, it will allow
recovery from viral attacks or software error.

The format of the backup is rather simple. We
use a simple directory structure. The main directory is
called LifeBoat Local and for every machine backed
up to the drive we add another sub directory. This sub
directory, for example test, will contain multiple direc-
tories and files. The most important file contains the
UUID of the machine that is backed up and is called
the machine file. It contains the serial number of the
machine and UUID as returned by DMI [1]. We use
this file during the restore procedure to automatically
detect backups. A sample machine file is in Figure 5.

2658N5U AKVAA2W
00F7D68B-0AA0-D611-88F2-EDDCAE30B833

Figure 5: Typical machine file.

The first time a local backup is run, we create a direc-
tory called base and place it in LifeBoat Localest.
Additional backups are placed in directories called
Incremental 1, Incremental 2, etc. The number of
incremental backups is user configurable, with the
default value set at five. The full directory structure
can be seen in Figure 6. Each of the directories such as
base and Incremental 1 contain the following files:
usage, attributes.ntfs, backup.lst, and some zip files. In
the case of a filesystem that is less than 4 GB com-
pressed, a single zip file, backup.zip suffices. Other-
wise, the Zip64 spanning standard is used.

= | LifeBoat_Local

= |} test

) base
) Incremental 1

) Incremental 2

Figure 6: Typical directory structure.

The first line of the usage file lists descriptions
of columns inside the usage file: drive letter, file sys-
tem type, size of the partition, amount of used space
and amount of backed up data. In the next line is an
OS descriptor which is important for post processing
after restore. Possible descriptors are WinXp, Win200,
WinNT4.0, WinNT3.5, Win98, Win95 and WinME.
Lines that follow give information about each partition
in the system. They are used during restore process.

The attributes.ntfs file is of importance only
when backing up/restoring NTFS partitions and is not
used if the partitions are not NTFS. The attributes.ntfs
file contains all file attributes as well as ACL, SACL,
OSID and GSID data. We write the data during
backup and restore it during the restore post process-
ing step. Backup.zip contains the actual backup of all

2004 LISA XVIII — November 14-19, 2004 — Atlanta, GA

LifeBoat — An Autonomic Backup and Restore Solution

files. Through extending ZIP functionality to use the
current Zip64 specification, we are able to create ZIP
files that are very large, dwarfing the original 2 GB
limit. If the backup is greater then 4 GB zipped we can
create multiple backup files (backup.zip, backup.001,
etc.) using the Zip64 spanning standard. We chose 4
GB as our spanning limit in order to allow these files
to be read by FAT32 files systems.

For example, let’s imagine we are doing a base
backup and come to the file ““helloworld.txt”” which
contains data as well as some ACL information. This
file would be added to the backup.zip file and com-
pressed, taking care of the filename, file data, modifi-
cation date, and file size. The file dates and size are
also placed in a metadata file, backup.lst, to be used
later when creating incremental backups to determine
whether the file has changed and needs to be backed
up again. File ACL, attributes, and ownership infor-
mation is placed into the attributes.ntfs file for use
during restore. Finally, the short name for this file, for
example “hellow™l.txt”, is stored in the comments
section of the zip file. Preserving shortnames across
backup and restore turns out to be very important even
in later Windows versions. Some Windows applica-
tions still expect the short names for files to not
change unless the long filename changes as well.

A special case of local backup is the backup to
yourself case. In this case we have only one hard drive
and we want to backup the data to the same drive we
are backing up. In the simple case we have multiple
partitions on the hard drive, for example we backup
drive C to drive D. In a more complex case where we
have to deal with a single partition we backup C to C.
As far as backup is concerned this is not problematic,
however during restore we have to deal with some
very specific problems related to NTFS partitions and
the lack of write support under Linux.

Rescue and Recovery

A significant portion of the LifeBoat project
focuses on client rescue and recovery. This includes
several Ul features for Windows as well as a bootable
Linux image. The rescue operations allow a user to per-
form diagnostics and attempt to repair problems. Recov-
ery enables the user to restore individual files or even
perform a full restore in the case of massive disk failure.

Single File Restore

When the system is bootable, it is possible to
restore a single file or a group of files from within Win-
dows [6]. In keeping with the autonomic goal of the
system, the user interfaces for this system are minimal.
From Windows, the restore process uses a simple
browser interface to StorageNet using the browser pro-
tocol istp://. A screenshot of the istp protocol is below
in Figure 7. We have also written a namespace exten-
sion for StorageNet which behaves like the ftp names-
pace extension which ships with Windows. An example

163

LifeBoat — An Autonomic Backup and Restore Solution

screen looks almost identical to that for ftp:// and uses
the analogous Copy-Paste commands (see Figure 8).

Z} Index of C/ - Microsoft el o] |
_| File Edit Mew Favorites Tools Help i
| daBack - = - @@ [2] &3 | @5earch 2
| address |&] istp://BRAVEGLV0x00000000,0x00 7 | @ 6o
=i
Index of C/
Name 1]
o
AFPPLGINY
archives/
ATUTOEXEC BAT
BOOT RAE
boot.im
BOOTSECT.DOS =
@ I_l_lﬂ Inkernet 4
Figure 7: The istp:// protocol.
_lolx
_| File Edit Y“iew Favorites Tools Regiskr ”|ﬁ
| Back - = - [i] | Qcearch [YFolders
| Address | (] BRAVEGUY | Peo
e | Size | Tvpe o
3] AFPPLGIN vault Folder
(@] archives Yaulk Folder
%8 AUTOEXEC. BAT 1KE ‘wault File
@BOOT.BHK 1KE ‘wault File b
(8] baat,ini 1KE Yault File
BOOTSECT.DOS 1KE “aulk File
[#brpentnt. GID 1KE Wault File
] cebizk, exe 1KE vault File
(&) cmdcans Yaulk Folder
(&l cmidr 1KE Wault File
[#3] Config. Msi Yault Folder
@CONFIG.SVS 1 KB ‘“ault File -
4 | | »
|Registr';.f: -

Figure 8: StorageNet namespace extension.

Rescue

The LifeBoat Linux boot CD provides various
software services that can be used for systems mainte-
nance, rescue, and recovery. The distribution works in
almost any PC and can be booted from a number of

164

Bonkenburg, et al.

devices such as a CD-ROM drive, USB keyfob, local
hard drive, or even over the network. The CD includes
over 101 MB of software including a 2.4.22 kernel,
Xfree86 4.1, full network services for both PCI and
PCMCIA cards and wireless connectivity.

An important part in the design of the bootable
Linux CD was rescue functionality. We wanted to pro-
vide the user with at least a rudimentary set of func-
tions which would enable him to diagnose, report, and
fix the problem if at all possible. As part of the CD we
included the following set of rescue functions:
PCDoctor based diagnostics which lets us run an all
encompassing array of hardware tests, AIM as way of
quickly communicating with help available online,
and the Mozilla web browser. We also developed an
application which finds all bookmarks on the local
drive, in the local backup, and in the remote backup
and makes them available for use in Mozilla. This pro-
vides the user with the list of bookmarks that he is
used to. At the same time we add a selection of book-
marks which can be custom tailored for a specific
company to include their own links to local help desk
sites and other useful resources.

Even in the face of disaster, an important issue to
keep in mind is that a damaged hard disk may still con-
tain some usable data. In the case of a viral attack, boot
sectors and system files could be compromised but the
user data could be left intact. Performing a full system
restore would overwrite any changes made since the
last backup. For this case we created an application
that browses through all documents that were recently
accessed and allows the user to copy them to a safe
medium such as a USB keyfob or hard drive.

Recovery

Full machine recovery is a vital part of any
backup solution. The Lifeboat solution uses its
bootable Linux CD for full machine restore. This is
necessary when the machine cannot be booted to run
the Windows based restore utilities. In order to use the
CD for system recovery we added a Linux virtual file
system (VFS) implementation for StorageNet. Located
on the CD is our Rapid Restore Ultra application
which is used to restore both local and remote back-
ups. Rapid Restore Ultra is written in C and uses QT
for the UI elements [9]. The application comes in two
flavors. The first one is intended for a novice user that
has no deep knowledge of systems management issues
and just wishes to restore the data. The second version
is intended for knowledgeable system administrators
or advanced users that have deep knowledge of inter-
nal systems functioning. The novice user just restores
the latest backup and the application determines how
the backup is to be restored. Advanced users can
select any backup on the discoverable network or local
devices, as well as forcing the discovery of backups
on a non local networks by entering the IP address or
name of a potential server. The user can then manually
repartition the drives, and assign drive letters and data.

2004 LISA XVIII — November 14-19, 2004 — Atlanta, GA

Bonkenburg, et al.

Drive partitions can even be set to different sizes than
were originally backed up. This way the user has full
control of the restore process.

Performing a Full Restore

The first step towards machine recovery is cre-
ation of new partitions. To do that we can either use
the description of partitions from the usage file in the
last backup or let the user decide the partition sizes
and types. The usage file is used for both local and
remote restores and gives all the information about the
old partition table. In order to determine new partition
sizes we use a simple algorithm that takes into account
old partition size, new partition size, the number of
partitions, and the percentage of usage.

Before we write the partition table we have to
make sure we have a valid Master Boot Record
(MBR). To be sure we dump our MBR onto the first
32 sectors of the drive. It is important to keep in mind
that the MBR that is written at this moment has no
partition information. If there were any partition info
at this step in the MBR, we couldn’t be sure that the
disk geometry we are using is correct.

After writing the MBR, we write the partition ta-
ble. After the partition table is successfully written we
have to format all partitions. One of the issues is the
need to support all of the current Windows file sys-
tems such as FAT, FAT 16, FAT 32 and if possible,
NTEFS. Linux can format all of the FAT file systems,
but can’t create bootable FAT file systems. In order for
a file system to be able to boot, the master boot record
must point to a valid boot sector. Support for NT,
WIN2k and XP is provided through the use of our
application. We pieced together information about
Windows boot sectors and after long debugging found
a way to create valid boot sectors on our own. The
reason why we are unable to use the original boot sec-
tors from a previously backed up machine is simple.
Boot sectors are dependent on partition sizes and
geometry, thereby requiring us to create them every
time we repartition. Another reason for not restoring
the boot sector from a backup is that boot sectors are a
favorite hiding place for viruses.

After the disk is formatted and the boot sectors
are written, we start the client application to restore
the data. If we are performing remote restore, the
client connects to the server and upon successful
authorization the files, including the operating system,
are copied to the local partition. This process is
repeated for as many partitions as necessary. After all
the files are transferred the machine is rebooted and
available for work. Here is a summary of the steps
performed in this process:

* Write general MBR

® Write new partition table

® Format partitions

® Mount boot partition

e Start Sysl6 (for FAT16) or Sys32 (for FAT32)
to create valid boot sector

2004 LISA XVIII — November 14-19, 2004 — Atlanta, GA

LifeBoat — An Autonomic Backup and Restore Solution

¢ Transfer system files
® Copy remaining files
¢ Unmount partition

If we are performing a local restore there are
multiple issues we have to face. The first problem is
related to having the backup located on the same drive
we are trying to restore to. If this is the case, we are
unable to reformat the partitions and also we cant
change partition sizes. Another issue is related to
NTEFS support in Linux. Lets say we are backing up to
the C drive and it is formatted NTFS. When the
restore starts it will find the backup on the first parti-
tion and notice that the partition type is NTFS. While
Linux has very good support for reading NTFS file
systems it has minimal support for writing NTFS. The
solution to this, which is detailed in the next section, is
a technique for formatting an existing NTFS partition
as FAT32 while preserving the backup files.

Once all the preparatory steps are successfully
completed, we start unzipping data to the desired par-
tition. If we have only a base backup, the restore
process ends when unzipping of the base backup.zip
file is completed. In case of incremental backups the
restore process is more complicated. Suppose we have
three incremental backups and the base backup. If we
wish to restore the third incremental backup, we start
by unzipping the backup.zip located in the Incremen-
tal 3 directory. Then we unzip the backup.zip located
in the Incremental 2 directory and so on. We do this
until we have finished the backup.zip in the base
directory. Each time we have to make sure that no files
get overwritten.

Once unzip finishes we have to create post pro-
cessing scripts that will run immediately following
Windows boot. We have to take care of two problems:
proper assignment of drive letters and NTFS conver-
sion. In case of a backup with more than three parti-
tions we cant be sure that once Windows comes up it
will assign correct drive letters to their respective parti-
tions. It is also possible that we didnt use C, D, or E as
drive letter in Windows but for example C, G, and V.
While performing backup we add a file called drivelet-
ter.sys to each drive on the hard disk. This file only
contains the drive letter. The first thing after restore we
need to do when windows comes up is change drive
letter names. This is done easily by changing registry
entries to values we read from driveletter.sys and
doesnt even require a reboot. A second problem is
related to NTFS partitions. When we restore we create
our partitions to be FAT32 and format them accord-
ingly. Once restore is completed and drive letter
assignment has run its course, we have to convert those
partitions back to NTFS. This is accomplished using
the convert.exe utility that is supplied in Windows.

Upon completing conversion of the drives to
NTFS we have to set attributes and ACLs for all files
on that drive. We wrote a simple application that reads

165

LifeBoat — An Autonomic Backup and Restore Solution

the content of the attributes.ntfs file and sets ACL,
System ACL, Owner SID, and Group SID as well as
file creation/modification times. This application lets
us set all file attributes. Upon completion it deletes the
attributes.ntfs file and exits. That is also the last step
in post processing.

Same Partition NTFS Backup

In order to overcome the lack of write support in
the Linux NTFS driver we developed a technique
whereby an NTFS partition can be formatted as FAT32
while preserving the backup files. This is in essence
converting an NTFS partition to FAT32.

The conversion process consists of a number of
steps. First a meta file which contains data about the
file to be preserved is created. Next the set of parame-
ters for formatting the partition as FAT32 is carefully
determined. The next step is running through all of the
files to be preserved and relocating on disk only those
portions that need to be moved in order to survive the
format. The partition is formatted and the files are res-
urrected in the newly created FAT32 partition. Finally,
directories are recreated and the files are renamed and
moved to their original paths.

The set of files that need to be preserved must be
known a priori. In the case of the LifeBoat project,
this consists of a directory and a small set of poten-
tially large files. The first step is to create the meta file
which contains enough information to do a format
while preserving these files. The meta file may be cre-
ated immediately after a backup from within Windows
or, if the NTFS partition is readable, it is created in a
RAM disk from within the Linux restore environment.

GO Cl G2 s

NTFS

FAT Co C1 a2

FAT32

Figure 9: The top partition shows the first four clus-
ters of an NTFS partition, each with two sectors
per cluster. Below is a FAT32 partition with a FAT
size of three sectors followed by the first three
data clusters. This illustrates how a FAT32 parti-
tion with the same cluster size can be created yet
the data is no longer cluster aligned.

In the case of Windows, the file locations are
available through standard API’s, and the meta file
contains itself as the first entry. In the case of Linux
the NTFS driver does not provide a way to find out the
clusters of a file. An ioctl was added to the driver for
this purpose. A typical meta file is well under 8K in
size so excessive memory use is not a concern.

166

Bonkenburg, et al.

Creating a meta file is not the only preparation
required for formatting the NTFS partition as FAT32.
The data files all reside on cluster boundaries. Unfor-
tunately, NTFS numbers its clusters starting with zero
at the first sector of the drive, while FAT32 begins its
clusters at the sector immediately after the file alloca-
tion tables. Formatting with the same cluster size does
not necessarily mean that the clusters will be aligned
properly (see Figure 9).

A solution to the cluster alignment problem
would be to always format the FAT32 partition with a
cluster size of 512 bytes (one sector) and cluster
downsizing the extent data by splitting it into 512 byte
clusters. In practice this leads to an extremely large file
allocation table when partitions run into the gigabytes.

The cluster size of the FAT32 file system is
determined by constraining the size of the resulting
file allocation table to be a configurable maximum
size (default 32 MB). The simplest way to determine
this is to loop over an increasing number of sectors per
cluster in valid increments until the resulting calcula-
tion of the fat size exceeds the maximum. In order to
align the clusters, we manipulate the number of
reserved sectors until the newly created FAT32 parti-
tion and the former NTFS partition are cluster aligned.

At this point the layout of the FAT32 file system
and the potentially larger cluster size is determined.
Before formatting can occur, the extents of all the data
files must be preprocessed to relocate any extent that
is either located before the start of the FAT32 data area
or does not start on a cluster boundary. In the best
case, the cluster size has not changed, so only the first
set of relocations must occur. Otherwise relocating an
extent requires allocating free space on the disk at a
cluster boundary and possibly stealing from the file’s
next extent if its length is not an integral number of
clusters. Moving an extent’s data is time consuming so
it is avoided whenever possible. Free space on the disk
is found using a sliding bitmap approach. Any cluster
that is not in use by an entry in the meta file is consid-
ered free. A bitmap is used to mark which clusters are
free and which are in use. The relocation process
requires that enough free space is available to success-
fully relocate necessary portions of the files to be pre-
served. When restoring to the same partition this will
always be the case.

Formatting is the simplest step. The mkdosfs
program performs a semi-destructive format in that it
only overwrites the reserved and file allocation table
sectors. The ‘-f” switch is used to limit the number of
file allocation tables to one.

Once the file system is formatted as FAT32,
entries for the files to be preserved must be created.
This is done via a user space FAT32 library written for
this purpose. The user space library can mount a FAT32
partition and create directory entries in the root direc-
tory. It uses the data from the meta file to resurrect each

2004 LISA XVIII — November 14-19, 2004 — Atlanta, GA

Bonkenburg, et al.

meta file entry by creating a directory entry and writ-
ing the extents to the file allocation table.

Once all of the files have been resurrected, it is
safe to use the Linux FAT32 driver to write to the par-
tition. The meta file is traversed once again to create
the full paths and rename all of the files to their proper
names. Finally, resident files are extracted from the
meta file and written. At this point the partition has
been converted from NTFS to FAT32 while preserving
all of the files necessary to perform a restore.

Centralized Management

In the case of multiple work groups, management
issues become highly important. If a system admin-
istrator is supposed to deal with multiple groups with
ten or more PCs he will need some sort of an auto-
nomic system to simplify the management of storage.

We based our system on IBMDirector which is
widely available and boasts a high acceptance rate
throughout the industry. To enable IBMDirector for
our purposes we extend it in several ways. We devel-
oped extensions for the server, console and clients.
Below we quickly detail the nature of those extensions.

Client side extensions are written in C++. The
extensions provide all backup/restore functions as
described elsewhere in this document. An important
extension is related to communication between the
client and server. The communication module relays
all the requests and results between the two machines.
The client also starts a simple web server which upon
authorization provides information about the given
client. This feature was implemented for the case
where no IBMDirector server is available or when the
server is not functioning properly. The information
exported on the web page is the same as what can be
obtained through the IBMDirector console. The infor-
mation exported is shown below:

® workgroup name

® back-up targets

e date of last successful backup

 contact info

¢ Number of drives

* Size of drives

® Free space on each drive

¢ File system on each drive

® OS used

e Current status (performing back up, restoring,
idle)

¢ User name and user info

® Location of the backup

Server and console side extensions are written in
C++ and java. They are rather simple since all we
need to add on the server are basic GUI elements that
allow us to interface with the client and to receive data
sent from the clients. The most complex extension is
related to extending associations so that all StorageNet
devices in the same work group appear in treelike

2004 LISA XVIII — November 14-19, 2004 — Atlanta, GA

LifeBoat — An Autonomic Backup and Restore Solution

form. The goal of this part of the project is to make a
system that will be usable with or without the IBMDi-
rector server.

The Corporate Environment

Our primary target environment in developing
this system is a workgroup satellite office. If this is
used in a corporate environment, there is the need for
administrator level handling for setup, control and
migration. Similar to the workgroup setting, the
requirements of the workstation user are limited to:

® knowing my data is backed up (having confi-
dence)

® knowing that my data is backed up to an area
that will facilitate easy restoration

In contrast, the administrator in the corporate
environment has requirements for additional control
and data, including:

e wants different user’s data to be distributed
evenly (or specifically) across several servers

® wants reports specifying where a user’s data is
backed up and the usage per server

¢ during initial rollout, wants a way to seed the
backup server destination to achieve the first
goal

® during server migration, needs a way for the
user’s data to go to another server.

The general processing flow is described below.

The asset collection process on the user’s
machine sends the UUID (machine serial number) to
an administrative web server. A long running process
on the server discovers available backup targets. The
administrator reviews a web page containing unas-
signed backup clients and discovered servers, and
assigns these clients to a server. This information is
recorded and used by the client backup process (usu-
ally scheduled) to keep the user’s data. This assign-
ment information is also used by the file and image
restoration processes. Described graphically, we have:

ackup
y

Al T
b

/

.

/
< AN

Admin
Server

Figure 10: General flow with dashed lines representing
meta-data and solid lines representing backup data.

167

LifeBoat — An Autonomic Backup and Restore Solution

The detailed processing flow is:

. The asset collection process extracts the machine

serial number, type, and location and uses HTTP
POST to save this in a web server. If the asset
collection process is disabled for this client, the
user can surf to a well-known web page where
the same executable from the asset collection
process can be downloaded and run.

. In parallel to this process, a long-running

process resident on the server is busy discover-
ing backup targets. These targets are Stora-
geNet servers. The discovery protocol is lim-
ited to the subnet where discovery is issued.
Because of this, there is a web service located
at a well known address in each subnet that is
used by the server-resident process to discover
servers in other subnets. The list of available
backup targets is maintained and updated in the
administrative server.

. The administrator surfs to a web page contain-

ing a list of unassigned clients and available
servers. The processing behind this page auto-
matically pre-selects target servers correlating
to clients within their respective subnets. For
those not pre-selected, or in which an override
is requested, the administrator picks a server
and one or more clients to back up to the
selected server. This causes the machine file
mentioned previously to be stored in that
backup server. This is used for discovery by the
restoration process.

. The backup process on the client machine will

normally be invoked as a result of a scheduled
alarm “popping.” When this occurs, the
backup process will check for a machine file
(containing its UUID) on all the servers on its
subnet. If it finds this, it initiates the backup to
that target.

. If it does not find it, the backup process looks

on the administrative server to determine which
target it should backup to. If no assigned target
is found an error is generated, otherwise the
backup process spools the user’s data out to the
assigned target.

. When a file-based restore is requested, a process

starts going through similar processing to the
backup client to locate the user’s data. Then a
network share using the StorageNet Windows
file system driver (FSD) is created pointing to
the target backup server. This FSD allows the
use of normal Windows-resident tools to access
the backup data as described above.

Bonkenburg, et al.

7. When an image-based restore is requested, a
process starts going through similar processing
to the backup client to locate the user’s data.
Then a network share using the StorageNet
Linux file system driver is created pointing to
the target backup server. This file system driver
allows the use of normal Linux-resident tools to
access the backup data as described above.

[EX LifeBoat on backupServer 10l x|

File Edit ‘iew Favorites Tools Help |-
daBack - = - (1] | @search ||:E3Folders o S
Address |’ﬁ V\backupServeriLifeBoat L‘ G0

Folders x | j

:__ﬂ Deskkop
E!@ My Documents relishz?

i I_ﬂ My Pictures
E @ My Computer
=-EF My Network Places
: E?.} Entire Metwork
: l+].,.ld' Microsoft Windows Metwork
EI.,I* Skoragehet Mebwork

=] ﬁ Skoragenet

I'_—'IQ backupserver

: - R
. Mgk Computers Near Me
'}d Recycle Bin
@ Tnternet Explorer

Local inkranet i

Figure 11: Image of the FSD accessing a StorageNet
server.

|1 objeck(s) |D bytes

Performance

During the extensive testing we gathered several
interesting numbers that reflect the speed and effi-
ciency of the backup and restore process [5]. Figure
12 shows the time in seconds for backing up and
restoring 2.3 GB of data for a number of different tar-
get locations [7]. The restore process is measured from
clicking on the restore button to the finish (reboot of a
machine). Our main test machine is a ThinkPad R32
with 256 MB RAM and IBM 20 GB hard drive.

A separate series of tests were performed using a
1.6 GHz Pentium M IBM ThinkPad T-40. A 1.7 GB
image requires three minutes (156 sec) to backup. The
restore from local HDD requires 15.5 minutes from
selecting the restore button of which ten minutes is file
system preparation and data transfer and seven min-
utes is rebooting and converting.

168

Backup and Restore Times (seconds)

Local HD | Local USB1.1 | Local USB2.0 | Remote 100 MB
Backup 2.3 GB NTFS 808s 4254s 575s 1274s
Restore 2.3 GB 1100s 4440s 1001s 1200s

Figure 12: Backup and restore times in seconds.

2004 LISA XVIII — November 14-19, 2004 — Atlanta, GA

Bonkenburg, et al.

The final stage requires two minutes to complete
the attribute restore into the NTFS file system. This
makes the total time 17.5 minutes. We have tested this
repeatedly for at least 20 times on four systems with min-
imal variation. The main variations seem to be related to
the file system preparation step which takes a minute or
two longer after a base backup is re-established.

When compared to Xpoints software:

1. Backup is approximately 3X in performance.

2. Compression is typically 2X better.

3. Our version works without dominating the PC
while Xpoint’s version of RRPC does not.

4. The restore performance for a base only is simi-
lar.

5. Restore of an incremental plus base is dramati-
cally improved in ours since it is essentially the
same as a base only while Xpoint’s takes about
twice as long.

Conclusion

LifeBoat provides a way to backup system such
that the backup files are accessible for single file
restore as well as a full image restore. Our work also
shows how Linux can be effectively used to restore a
Windows(tm) system while also providing a rescue
environment in which a customer can salvage recent
files and preform basic diagnostics and productivity
work. Most importantly this system allows for a
machine to be completely restored from scratch when
the boot disk is rendered unbootable.

The local backup version of this work shipped as
part of IBM’s Think

In this paper we presented a description of the
latest research project in autonomic computing at IBM
Almaden Research Center. We described a fully auto-
nomic system for workgroup based workstation
backup and recovery with options for both everyday
restore of a limited number of files and directories as
well as full catastrophe recovery.

This project is work in progress and is funded
partially by the IBM Personal Systems Institute.

References

[1] Distributed Management Task Force, System
Management BIOS (SMBIOS) Reference Specifi-
cation, Version 2.3.4, December 2003.

[2] Reed, Benjamin C., Edward G. Chron, Randal C.
Burns, and Darrell D. E. Long, ““Authenticating
Network-Attached Storage,” [EEE Micro, Jan
2000.

[3] Gibson, Garth A., David F. Bagle, Khalil Amiri,
Fay W. Chang, Eugene M. Einberg, Howard
Gobioff, Chen Lee, Berend Ozceri, Erik Riedel,
David Rochberg, and Jim Zelenka, “File Server
Scaling with Network-Attached Secure Disks,”
Proceedings of the ACM International Confer-
ence on Measurement and Modeling of Com-
puter Systems (Sigmetrics), June 1997.

2004 LISA XVIII - November 14-19, 2004 — Atlanta, GA

LifeBoat — An Autonomic Backup and Restore Solution

[4] Miller, Ethan L., William E. Freeman, Darrell D.
E. Long, and Benjamin C. Reed, “Strong Secu-
rity for Network-Attached Storage,” FAST 02.

[5] Zwicky, E. D., “Torture Testing Backup and Ar-
chive Programs,” Selected Papers in Network
and System Administration, USENIX.

[6] McMains, J. R., Windows NT Backup and Recov-
ery, McGraw Hill, 1999.

[7] Stringfellow, S. and M. Klivansky, Backup and
Restore Practices for Enterprise, Prentice Hall,
2000.

[8] Azagury, A., V. Dreizin, M. Factor, E. Henis, D.
Naor, N. Rinetzky, O. Rodeh, J. Satran, A.
Tavory, and L. Yerushalmi, “Towards an Object
Store,” 20th IEEE Symposium on Mass Storage
Systems (MSST), 2003.

[9] http://www.trolltech.com/products/qt/ .

169

170 2004 LISA XVIII — November 14-19, 2004 — Atlanta, GA

