
Scalable Centralized Bayesian Spam
Mitigation with Bogofilter
Jeremy Blosser and David Josephsen – VHA, Inc.

ABSTRACT

Bayesian content filters gained popular acclaim when they were put forward in 2002 by Paul
Graham as a potential long-term solution for the spam problem. They have since fallen from the
limelight, however, due to perceived attack vulnerabilities inherent to all content-based filters as
well as real and imagined vulnerabilities specific to Bayesian filters. It has also been assumed that
Bayesian filters would be problematic to implement in centralized or large environments due to
wordlist management issues. This paper revisits the effectiveness of Bayesian filters as a
sustainable singular spam solution for mid- to large-sized environments through a real-world study
of the deployment and operation of the Bogofilter Robinson-Fisher Bayesian classification utility
in a production mail environment servicing thousands of accounts. Our implementation strategy
and methodology as well as our results are described in detail so that they can be evaluated and
replicated if desired. Other filtering methodologies which were previously implemented in this
environment are also discussed for comparison purposes, though they have since been removed
from production due primarily to lack of need. Bayesian classification has been able to solve the
spam problem for this user population for the present and observable future, with a single wordlist,
and with no secondary spam filtering techniques employed. Significantly, only two business-
related legitimate messages have been reported as blocked due to filter misclassification since
Bogofilter was deployed.

Introduction

Unsolicited bulk and commercial email, popu-
larly known as spam, is one of the most critical issues
facing systems, mail, and network administrators
today. More and more human and system resources
are being dedicated both to dealing with the day-to-
day filtering of mail and to determining any possible
long-term solutions to the problem, be they technical,
social, or legislative. Whatever solutions are applied,
however, are inevitably subverted or defeated by
spammers within a short time of implementation,
causing many to characterize the situation as an arms
race. Fixed string content filters are avoided by man-
gling commonly blocked words. MTA blacklists cause
spammers simply to change their mail routes and ser-
vice providers and cause excessive collateral damage
[JAC]. Challenge-response systems have led to spam-
mers adding mail route harvesting to their existing
address harvesting practices and cause similar collateral
damage [SEL]. Message repositories and checksum-
ming databases are brute force solutions with high false
negative rates [MER]; in our experience they also
require persistent high maintenance and ever-increasing
resource utilization. The most recent attempts to add
authentication into the mail delivery process through
extending or replacing SMTP seem likely to be the
most costly yet in terms of collateral damage and infra-
structure costs [KNO], yet spammers are already
observably capable of bypassing these measures using
hijacked end-user machines to send messages using the
local mail submission system and routing through

authenticated channels, in the same way that email
worms currently propagate [JdeBP]. This is not to say
that these technical methods are entirely without merit
or usefulness, as they are all effective in at least block-
ing some percentage of spam. However, the cost of
these incremental cures is escalating to the point they
may become as bad as the disease itself.

Legislative methods are in their infancy but are
already being undermined by political pressures and
seem likely primarily to force spammers to move even
more of their operations to countries with friendlier
laws, something they have demonstrated extreme will-
ingness to do. Diligence on the part of prosecutors
may yet produce results here, but they are likely to be
a long time coming. The problem is here today, and its
current severity can not be overstated. End users who
are the worst affected are reporting hours spent per
week deleting and attempting to block unwanted mail
that is increasingly offensive in nature, and more and
more are determining the effort of keeping their email
usable is not worth it and are instead returning to other
forms of communication.

When Paul Graham published his 2002 paper ‘‘A
Plan for Spam’’ [GRA], which proposed applying
Bayesian statistical modeling as a method of content
filtering and provided very promising early results from
Graham’s own tests, many in the anti-spam and end-
user communities lauded the approach as a possible
permanent solution. Bayesian filtering claimed all the
advantages of content filtering, while adding learning
algorithms to defeat message character changes over

2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA 1

Scalable Centralized Bayesian Spam Mitigation with Bogofilter Blosser and Josephsen

time and token-mangling attacks. It also promised an
extremely minimal percentage of legitimate mail incor-
rectly classified as spam (false positives), and added a
level of personalization in block lists that was unprece-
dented. Multiple Bayesian filter implementations
appeared virtually overnight from both hobbyist and
commercial sources, ranging from open source projects
such as Bayespam and Bogofilter to implementations in
Mozilla Thunderbird, Microsoft Outlook, and Apple’s
Mail program. Bayesian filtering fell from the limelight
nearly as quickly, however, due to predicted difficulties
in large-scale or centralized implementations, some
success by spammers in defeating early Bayesian
implementations using poisoning attacks, assumptions
of vulnerabilities common among other content filters,
and other issues both real and imagined. Academics
and pundits continue to discuss the value and potentials
of Bayesian methods, and Bayesian classifiers are still
deployed alongside other filtering systems, but a popu-
lar opinion among administrators and the public seems
to be that Bayesian filters are no better at providing a
long-term solution to the problem than other methods
[BAA, ALL, EMM, PAG, WAR, JdeBP2, BOW].

These dismissals are demonstrably premature,
however. We implemented Bogofilter in a centralized
capacity using common wordlists for an environment
with thousands of accounts in April of 2003. Despite
the best efforts of spammers to defeat it, Bogofilter has
continually exceeded all expectations as a filter and has
effectively solved the spam problem in our environ-
ment, allowing us to remove all other spam-specific fil-
ters from our architecture. Though we initially only set
out to bring the problem under control and not necessar-
ily to eliminate all spam from our environment, our esti-
mates indicate we are currently able to accurately block
98-99% of the spam sent to us. The filter blocks an
average of 1,100 incoming spam messages per hour
(700,000 to 1 million spam messages per month), or
60-75% of our incoming mail volume. This amounts to
roughly 40 spams per user per work day. We have
vastly exceeded management’s goals as well as our
own, and our users are able to conduct business without
constant solicitations appearing in their inboxes. Per-
haps most importantly, only two business-related legiti-
mate messages have been reported as blocked by this
filter since it was implemented more than a year ago.
While no solution is likely to last forever, our results
indicate it is possible that properly configured and
deployed Bayesian filters are capable of sustaining a
high enough success rate that administrators may finally
be able to stop spending all their time refining filters
and instead focus on securing end-user machines, thus
finally moving to take the offensive in the spam war.

Environment and Goals

Company and Environment
Our company, VHA Inc., is an alliance of not-

for- profit hospitals, health systems and their affiliates.

Member organizations range from single 50-bed facili-
ties to large, integrated health care systems made up of
multiple hospitals, physician clinics, and support care
sites. Notable member organizations include Baylor
Health Care System, Cedar-Sinai Health System, Mayo
Foundation, and Yale-New Haven Health Services Corp.

The mail environment in question provides mail
services for more than 2,000 accounts distributed
between our corporate headquarters and approxi-
mately 30 regional offices nationwide. Monthly mail
volume over the past year averaged 1.85 million mes-
sages per month, 70% incoming and 30% outgoing.
Based on filter logs and user feedback, we estimate
today that on average 65-70% of the incoming mail
(nearly 50% of the total mail volume) is spam. The
content of our mail is typical of any company our size;
the one exception is that since we operate in the health
care industry and specifically the medical supply pur-
chasing industry, we see quite a lot of legitimate mail
having to do with pharmaceutical contracts and sup-
plies, i.e., messages mentioning Viagra and other
drugs can and do show up in our legitimate mail flow.
Architecture

All mail entering or leaving the environment
passes through a centralized pair of load-balanced
mail exchangers running the qmail MTA. The first
exchanger currently has dual 1 GHz Pentium III’s, the
second has dual 700 MHz PIII’s. Both have 1 GB
RAM. Incoming mail is handed off to a Microsoft
Exchange system which also handles all internal mail
(Figure 1). Outgoing mail originating at the Exchange
system is handed to the mail exchangers directly,
while mail originating from internal applications uses
a separate internal qmail server for relaying to the out-
side. All of our spam filtering efforts have been tar-
geted at the qmail environment due to resource utiliza-
tion issues and end-user interaction concerns.

Figure 1: Mail environment architecture before
Bogofilter.

The current Bogofilter implementation added
one additional server to our environment. This server
is responsible for caching mail as required for filtering
purposes, receiving end-user filtering corrections, pro-
viding the environment that administrators use for pro-
cessing corrections and ongoing training of Bogofilter,
and holding the master copy of the wordlists (Figure
2). This server currently has dual 2 GHz Xeons and 2

2 2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA

Blosser and Josephsen Scalable Centralized Bayesian Spam Mitigation with Bogofilter

GB RAM, but rarely has a CPU load average higher
than 0.1. More information about this server is pro-
vided in the ‘‘Design’’ section below.

Figure 2: Mail environment architecture after
Bogofilter.

Goals
Our goal was not to eliminate spam completely

from our environment, but to bring the problem under
control so that normal work could go on unaffected.
The initial target was to block 75% of our spam, which
we initially estimated would be 30% of our incoming
mail volume. We also needed to guarantee that we
would not block any legitimate business mail in the
process of blocking spam. Given our mail volume, any-
thing we implemented needed to be fast and efficient
enough not to make excessive demands on our existing
infrastructure. As a final goal, we wanted to keep the
blocking centrally managed at the server level, rather
than something that the users would have to deal with.

Initial Filtering Attempts

Basic Filters
Basic initial attempts at blocking via fixed-string

matches against the sender address, reverse DNS
lookups, and even a short-lived block of mail from all
non-US domains met with predictable results. We
quickly learned that the spammers we were dealing
with were not just sending indiscriminately to global
email lists, but were specifically monitoring the deliv-
ery status of spam entering our environment and were
willing and able to change their messages to avoid our
filters. We were not willing to spend hours each day
creating new filters which would be made obsolete
within a week, so we began to look in earnest for a
more viable long-term solution.

Due to the nature of the spam arms race and our
goal of efficiency we decided to target our efforts at
automated content-based filtering. Blacklists were not
considered an option due to the requirement to avoid
blocking any form of legitimate mail. Challenge-
response systems placed unacceptable burdens on our
business contacts while simultaneously being consid-
ered too easy to spoof. More dramatic efforts aimed at
user and mail route authentication seemed unlikely to

provide any long-term relief, since we assumed they
would primarily force spammers to continue their
recent attacks on user computers themselves, using
zombies and the local user’s own credentials to send
spam through valid mail routes. Spam is not spam
without the content, however, and content-based filter-
ing appeared to offer the most desirable combination
of accuracy and tunability. Scalability was the most
likely point of failure, but we hoped that a sufficiently
automated system could handle the load.

Vipul’s Razor
Vipul’s Razor, commercially distributed through

Cloudmark, was selected for a pilot. This is a check-
summing content filter; each incoming mail is com-
pared over the network in real time to a database of
known spam messages. This database is fed by user
submissions and spamtrap addresses maintained by
Cloudmark. The advantages of this type of system are
that it has a negligible false positive rate and is rela-
tively difficult to attack directly. The primary working
attack is to find a way to pollute the spam database or
otherwise disrupt the checksum sharing process. The
disadvantages include scalability and ongoing mainte-
nance; someone, somewhere, must receive each new
spam before it can be stored for future comparison.

While the implementation was effective in block-
ing 30% of our incoming mail volume as spam, it
introduced significant system overhead and proved
ultimately unscalable. This was primarily due to the
extra network traffic required to contact the check-
summing database and, even more significantly, the
Perl instantiation required per message on the mail
exchangers for the Razor client. Our environment
experienced more service delays and outages than it
ever had previously, due to both intermittent network
errors in reaching the database servers and excessive
CPU load produced by the clients.

Most important, however, was the fact that our
end users reported no noticeable change in the volume
of spam they were dealing with, despite the 30%
reduction in overall mail volume. Complaints of offen-
sive spam during this period actually increased. This
was our first indication that our initial estimate of the
size of our problem was off by a wide margin. We
considered moving to a local checksum-based solution
such as DCC, but eventually concluded that this
method was too high maintenance to be viable in our
environment. We began researching other alternatives,
with even more attention paid to the real world system
requirements imposed by prospective solutions.

Bogofilter Implementation

Bayesian Classification and Filtering
Although there was work being done on

Bayesian classification of spam as early as 1996, Paul
Graham’s paper [GRA] is generally credited as being
the first description of a solid implementation with

2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA 3

Scalable Centralized Bayesian Spam Mitigation with Bogofilter Blosser and Josephsen

promising results. Gary Robinson later improved on
Graham’s work, suggesting algorithm modifications to
make Graham’s technique mathematically consistent
with Bayesian statistics [ROB]. Robinson’s probabil-
ity-combination improvements make use of the
inverse chi-square function first described by Ronald
Fisher and are therefore sometimes referred to as the
Robinson-Fisher algorithm.

Probability theory holds that the probability of a
given event can be plausibly estimated by observing
how often it has occurred in the past under similar cir-
cumstances. Bayesian probability begins by creating a
‘‘ p r i o r probability distribution,’’ or ‘‘prior,’’ which esti-
mates the probability of given events. The prior can be
used to calculate the likely outcome of new events.
Then experiments are run and the outcomes recorded.
The prior can then be updated to reflect the outcome of
the experiments. Bayesian algorithms are self-correct-
ing in this respect: they learn from their mistakes.

Token Scores

If an email is viewed as a collection of discrete
words, or ‘‘tokens,’’ a score can be assigned to each
token. These scores are roughly comparable to proba-
bilities in that they directly correspond to a token’s
‘‘spamminess’’ or ‘‘non-spamminess.’’ Each token’s
score represents how likely that token is to appear in
an email composed of tokens that are uniformly dis-
tributed and statistically independent. The more
‘‘spammy’’ or ‘‘not spammy’’ a token is, the less
likely it would be to appear in such an archetypal
email. That is, the presence of these ‘‘interesting’’
tokens in an email violates statistically neutral linguis-
tic behavior in measurable ways.

These scores are easy to calculate given a rela-
tively even number of manually sorted spam and non-
spam emails; the math is described in detail by Robin-
son in his paper ‘‘Spam Detection’’ [ROB]. The tokens
themselves, plus the frequency with which they
occurred in the text of spam and non-spam messages
previously used to train the filter, are used to create a
prior probability distribution in database form. Most
Bayesian spam implementations are ‘‘objective’’ in that
they put a lot of thought into assigning the prior, espe-
cially for tokens that do not currently exist as part of the
prior. Bogofilter is no exception. When it encounters a
new token, it assigns it the value of the variable robx
(‘‘Robinson’s x’’) . robx is calculated as the average of
the scores of all the other known tokens. The variable
robs (‘‘Robinson’s s’’) is used in situations where
Bogofilter has only seen the token a few times (low
data situations). robs acts as a user-defined metric of
trust and limits robx’s eff e c t in low data situations.

Combined Scores

Once the prior is used to calculate a score for
each word in an email, these token scores must be
combined into a single score, which is representative
of whether or not the given email is spam. Bogofilter

uses the Robinson-Fisher algorithm for probability
combination by default. There are three important
aspects to the inverse chi-square driven algorithm
Robinson has provided. First, it removes assumptions
that were not relevant in the context of spam filtering,
such as assuming the probability of a given token’s
prediction being correct is the same whether its out-
come is spam or non-spam. Second, it is more sensi-
tive to token scores that indicate if a message has an
underlying tendency toward spam or not spam. Third,
it uses a user-defined variable to decide how many
‘‘interesting tokens’’ to combine, which more consis-
tently handles both large and small emails. For
Bogofilter this variable is named min_dev.
min_dev is the minimum deviation from the neutral
score of 0.5 a token must have to be considered
‘‘interesting’’ and therefore be included in the classifi-
cation of the message as a whole.

The other user-defined variables exist in the form
of cutoff values to which the combined score of the
email is compared. In binary classification, emails
with scores over a singular threshold are considered to
be spam. Those under it are not. Bogofilter optionally
allows for three-factor classification. Two cutoffs are
provided, spam_cutoff (for spam) and ham_
cutoff (for non-spam). Anything in between is
labeled ‘‘unsure.’’ In practice, ‘‘unsure’’ mails provide
interesting fodder for training, so this is the classifica-
tion method we use.

Selection of Bogofilter
Graham’s paper had been published for some

time at this point, and like the rest of the industry, we
were intrigued by his reported success. The concept of
a Bayesian approach appealed to us, given our experi-
ence with shifting spam patterns and our desire to
stick with content-based filters. The nature of the fil-
tering, however, predicted the best results when each
user maintained individual wordlists to most accu-
rately reflect the unique nature of individual mail
spools.1 Our goals of scalability and minimal user
intervention were at odds with this, but we decided to
do some initial testing to see if it could work with a
single set of wordlists for an entire organization.

We began monitoring the field of filters claiming
a Bayesian implementation, and quickly settled on
Bogofilter. Although other implementations had fea-
tures Bogofilter at the time lacked, it was an obvious
choice to us for its small overhead and its attempt to
work within the Unix philosophy of ‘‘do one thing and
do it well.’’ Bogofilter is written in C and expects to
operate on standard I/O streams, adding a custom
header to messages it operates on and/or indicating
message status with an exit code. This fit our environ-
ment perfectly. There are other Bayesian filtering

1Ironically, a primary impetus for the original creation of
Bogofilter was to create a filter which implemented Gra-
ham’s proposals but could be quickly deployed by individu-
als [ESR].

4 2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA

Blosser and Josephsen Scalable Centralized Bayesian Spam Mitigation with Bogofilter

systems which tend to worry less about efficiency than
dealing with cutting edge theory; these are ideal for
experimental approaches and furthering the state of
the art but are less useful in a high-volume production
environment. This is not to say that Bogofilter’s
implementation is not correct, however; the Bogofilter
development group expends a good deal of effort
ensuring that their implementation of Bayesian algo-
rithms is correct, as well as tracking changes and
advances in Bayesian filtering theory and providing
their own measurements and contributions to the field.
Bogofilter strives to provide the best of both efficiency
and accuracy and was therefore a good choice for our
environment. Selection of this tool has no doubt con-
tributed heavily to our filtering success.

Training
Another likely source of our success is our train-

ing process, both for initial wordlist seeding and subse-
quent training and corrections. Bayesian filtering is
unfortunately not a turnkey-style solution; while it is
possible to implement a Bayesian spam filter (including
Bogofilter) by simply following the steps in a HOWTO
and running some scripts, best results require that the
administrators have some understanding of the theory
and how best to apply it to their environment. This is
primarily relevant in the initial and ongoing training
process. We spent a fair amount of time gaining an
understanding of the theory and the work being done to
apply it to spam filtering and Bogofilter’s specific
implementation before moving to implement, and we
designed our training process accordingly.

Sorting
Proper training requires a large pre-sorted collec-

tion of spam and non-spam messages. It is nearly
impossible to create an effective Bayesian classifier
using only a handful of mails. The filter needs to be
trained on at least several thousand messages each of
spam and non-spam from the start, preferably in
nearly equal amounts [LOU].

To seed the initial wordlists we therefore col-
lected several days’ worth of incoming and outgoing
mail at the mail exchangers. This provided us with
more than 220,000 messages, which we then classified
manually into groups of spam and non-spam. Approx-
imately half of these were discarded as mailer daemon
traffic such as bounces, delivery overhead, and virus
quarantine messages. All outgoing mail was automati-
cally classified as non-spam but was kept to provide a
large body of known good mail so that if the filter
established any biasing error it would be in favor of
keeping legitimate mail. The remaining mail was clas-
sified in successive phases. Mails were manually
sorted by one administrator while another looked for
patterns in the already classified mail to allow for
batch classifications to speed up the process. These
batch filters were similar to the ones employed by
other anti-spam software; while not long-term options
for our environment, they worked in the short term

due to the static nature of the mail snapshot we were
operating against and the lower efficiency require-
ments. Anything faster than a human was a benefit
here. Further, this processing was done in a develop-
ment environment away from the regular mail exchang-
ers, so regular mail load was not affected. We also took
some time to develop interactive shell scripts to aid the
manual classification process, both to speed it up and to
preserve as much privacy as possible. The scripts pro-
vided only the headers of messages, color-coded to
highlight suspicious patterns. The full messages were
available at operator request, but were rarely needed in
the initial classification stages.

After approximately 30,000 messages had been
sorted, we began to incorporate Bogofilter itself as a
sorting tool. We tested its effectiveness by running it
against 20,000 pre-sorted messages, 10,000 each ran-
domly taken from the sorted collections of spam and
non-spam. Bogofilter without any established
wordlists was presented with random individual mes-
sages from these collections and asked to determine if
they were spam or non-spam. If its classification
agreed with the human classification, no action was
taken. If its classification disagreed with the human
classification or Bogofilter was unsure of how to clas-
sify the message, it was corrected based on the human
classification (this process is known as ‘‘train on
error ’’). The output of the classification versus the
human classification was presented in real time during
the test run to an administrator (Figure 3). At the end
of the run, messages Bogofilter had consistently got-
ten wrong were further investigated.

Results at this early stage were simply shocking.
At the start of the run Bogofilter would tend to get a
few messages wrong until it had a handful of each
type of message in its wordlists, at which point it
would immediately begin to get the vast majority of
classifications correct, increasing dramatically and
observably until it had seen several thousand mes-
sages, at which point it would generally stabilize at
around 95% accuracy. Inaccuracies were either false
negatives or ‘‘unsures’’ in all but a handful of cases.
More often than not messages which Bogofilter persis-
tently had trouble classifying were re-evaluated to find
that the human administrator had gotten them wrong
in the first place and Bogofilter was correcting us.

Once we had performed several of these test runs
we were confident Bogofilter could be utilized as a
sorting tool. We created wordlists based on all the
messages sorted so far and then ran Bogofilter against
the remaining unsorted lists, allowing it to sort them
into provisional groups. These groups were then fur-
ther evaluated manually by an administrator to verify
the accuracy of their sorting before they were added to
the global collections.

Eventually, nearly 20,000 messages were
removed due to excessive ambiguity about their nature.

2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA 5

Scalable Centralized Bayesian Spam Mitigation with Bogofilter Blosser and Josephsen

These included news updates, potentially legitimate
commercial mailings, religious and inspirational mes-
sages, joke-of-the-day lists, and others. We decided it
would be better to move forward with these messages
unclassified and allow users to give more feedback
during the pilot phase of the process.

Figure 3: Screenshot of the beginning and end of a preliminary Bogofilter classification run of our sample mail corpora.

This sorting process took both administrators the
better part of a week to complete, and we became inti-
mately familiar with the character of the spam we
were receiving. This was very tedious work, but there
is no doubt taking the time to do this was a key to the
current success of our implementation.

Configuration and Tuning

Once the initial message sorting is complete, the
filter must be configured and tuned for its environment.
There are several variables to consider, along with their

interaction, and we attempted to use appropriate values
for each during each stage of the training process. On
some occasions we did test runs using various combina-
tions of settings to see which provided the best results.
The theories involved were still being formed and
actively debated, so we were experimenting pragmati-
cally to find the best settings, but in most cases the theo-
retical and empirical work that has been published since
agrees with our results. On a related note, even though
Bogofilter at the time shipped with tools to perform all
of this training and tuning, these proved too nascent and
incomplete to meet our needs, so we developed our own.
Current versions of Bogofilter ship with complete train-
ing tools which provide even more rigorous tuning func-
tionality than what is described here. We are also deeply
indebted to Greg Louis for his excellent tuning docu-
mentation [LOU].

6 2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA

Blosser and Josephsen Scalable Centralized Bayesian Spam Mitigation with Bogofilter

As noted above, Bogofilter’s primary configura-
tion variables in tri-state classification mode are
robs, robx, min_dev, spam_cutoff, and ham_
cutoff. spam_cutoff and ham_cutoff default
to 0.95 and 0.10, respectively. For the sorting process
above we reduced ham_cutoff to 0.05 to require a
higher level of certainty from Bogofilter before it was
allowed to flag a message for the legitimate corpus.
For the training process we also used 0.05 to inflate
the number of legitimate mails that would be classi-
fied as ‘‘unsure’’ and therefore used for training dur-
ing the ‘‘train on error’’ process. These were more
safeguards to ensure any biases introduced during
training would be on the side of blocking too little
mail instead of too much.

robs/spam_cutoff round fpos fneg uspam unotspam err percent
===
0.001/0.95 1 3 5 104 64 176 1.76%

2 3 5 107 63 178 1.78%
3 0 0 14 10 24 0.24%
4 0 0 10 5 15 0.15%

0.010/0.95 1 3 7 87 47 144 1.44%
2 3 8 83 48 142 1.42%
3 0 0 15 11 26 0.26%
4 0 0 10 4 14 0.14%

0.001/0.90 1 3 5 88 65 161 1.61%
2 3 5 90 63 161 1.61%
3 0 0 11 11 22 0.22%
4 0 0 10 6 16 0.16%

0.010/0.90 1 3 8 72 46 129 1.29%
2 3 8 70 47 128 1.28%
3 0 0 11 11 22 0.22%
4 0 0 10 5 15 0.15%

fpos : false positives
fneg : false negatives
uspam : unsure (spam)
unotspam: unsure (not spam)
err : total errors
percent : percent error

Figure 4: Results of varying the value of robsand spam_cutoff.

To determine appropriate values for spam_
cutoff and robs, we ran several iterations of a
training script using a methodology similar to recom-
mendations published by Greg Louis [LOU2, LOU3].
We divided our pre-sorted message collections into
three randomized groupings. Group A had 20,000
messages (10,000 each of spam and non-spam). Group
B had 10,000 messages (5,000 each of spam and non-
spam). Group C had all remaining messages (approxi-
mately 45,000). Bogofilter was fully trained on each
message in Group A, then trained on error for each
message in Group C. Group B was then used as a test
corpus, with no training done and errors tabulated. The
train-on-error and test runs were repeated once. Follow-
ing this, Group B was used to further train on error,
then again used to test; this process was also repeated
once. In this fashion Bogofilter was either fully trained
or twice trained on error for every message in our cor-
pora. See Appendix A for more detail.

We needed to determine if we should use the
default spam_cutoff of 0.95 or if we could safely
use a more aggressive value of 0.90. We also needed
to determine if we should use a robs value of 0.01 or
a more conservative 0.001 .2 We therefore ran the
above test suite for each of the four permutations of
these two values. While each of the four gave nearly
identical results by the final two test rounds, the 0.01
and 0.90 combination had the highest accuracy during
the initial rounds and was therefore selected (Figure
4). It was a pleasant surprise that using a lower
spam_cutoff actually improved accuracy; appar-
ently a statistically significant amount of our spam
scored between 0.90 and 0.95, and using the lower
cutoff meant more of these were classified correctly
on the first pass.

For robx, we again cleared our wordlists and
ran several iterations of a similar training script,
beginning with fully training on 10,000 each of spam
and non-spam, then training on error for the rest of the
messages. At the end of each iteration we took the
final robx value and used it as the initial robx value
for the next iteration. We did this several times, until
the robx value stabilized at 0.477112.

The final value is min_dev. We left this at the
default of 0.1 throughout training and into production.
The Bogofilter tuning documentation recommends
moving this to somewhere between 0.3 and 0.46 to
take into account fewer words per message, but testing

2At the time there was some debate about whether overly
conservative robs values might cause unpredictable results.
Louis has since conclusively determined that values lower
than 0.01 do cause problems if a token occurs a few times in
one wordlist but not at all in the other [LOU4].

2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA 7

Scalable Centralized Bayesian Spam Mitigation with Bogofilter Blosser and Josephsen

on our part showed that this reduced accuracy, and
recent experiments with raising the value to 0.3
resulted in an immediate and dramatic increase in the
amount of spam that made it through the filter. How-
ever, we will likely need to revisit this as wordlist
attacks become more focused.

At this point the tuning was considered com-
plete. Apart from raising the ham_cutoff back to
0.10 (to avoid an excessive number of ‘‘unsure’’ clas-
sifications), these were the wordlists and configuration
we took to production (there are other options such as
how the lexer should tokenize HTML tags and IP
information; we have left these at the defaults).
Throughout the tuning process we remained amazed at
the speed with which Bogofilter gained accuracy dur-
ing the training runs, and concerns that using a single
set of wordlists for an organization of this size would
lead to significant misclassifications appeared
unfounded. Although we tried to keep in mind that our
results were preliminary, saying that we had signifi-
cant remaining doubts by the end of the training itera-
tions would be a mischaracterization.

Design
As noted above, our border mail architecture

consists of a pair of mail exchangers running qmail.
Prior filtering attempts ran as mirrored installs on both
of these servers. Bogofilter, however, required some
method of maintaining the same word list on both
servers and any future servers added for expansion
purposes. We also needed a central location to receive
end-user misclassification notices so that an admin-
istrator could process them and train Bogofilter on fil-
tering errors. We knew this central host would likely
need to be able to perform extensive training and other
processing operations which we would not want to
impact our general mail load. None of this processing,
however, needed to happen in real time for the mail to
be properly filtered. We therefore added a new server
to provide for general spam processing. When filter
corrections are necessary, the end user forwards the
misclassified message to this server, where an admin-
istrator verifies the request and trains Bogofilter, updat-
ing the central copy of the wordlists which are stored
on this server. These wordlists are updated on the mail
exchangers nightly. Since the mail exchangers have
their own copies of the wordlists, there is no effect to
mail flow if this server is down or otherwise unreach-
able. Finally, the spam server maintains data on all the
training operations that have occurred so that the
wordlists can be recreated from scratch as required.

The actual filtering happens at the mail exchang-
ers during the SMTP exchange. We use the qmail-qfil-
ter wrapper around qmail-queue to provide real-time
message filtering options. Our qfilter invocation first
notes the mail in the filtering logs, then pipes the mes-
sage through Bogofilter, then copies the mail to the
spam server cache, then checks the Bogofilter-gener-
ated spamicity header to determine whether or not the

message is spam (Bogofilter is also able to indicate
message status with an exit code, but passthrough
mode and header-based filtering proved more compat-
ible with the qfilter and spam caching server imple-
mentation). If the message is spam, qfilter exits 31,
which causes qmail to refuse to accept the message
from the originating server. See Appendix B.

The solution of refusing to accept spam mail dur-
ing the SMTP exchange has become somewhat popu-
lar because it dodges the problems of network conges-
tion and server load created by attempting to send
bounce messages to senders that do not exist. We also
chose it because in the case of false positives it lets the
legitimate sender know immediately that their mes-
sage was refused, allowing them to follow up quickly
with their intended recipient. External relay servers
may in theory still create unnecessary bounces or
cause delays in receipt of legitimate bounces, but this
was determined the best fit for our environment. How-
ever, if spammers begin to train ‘‘evil’’ Bayesian fil-
ters to attack ‘‘good’’ Bayesian filters (as John Gra-
ham-Cumming has suggested [JGC]), we will need to
reconsider any implementation aspects such as this
one which indicate to spammers the real delivery sta-
tus of their messages.

To create our ongoing training framework we
augmented the scripts we had written for the initial
wordlist creation. Mails users submit for correction are
viewed on the spam server by the administrators either
interactively in Mutt or using a custom script that iter-
ates across the entire queue. In either case, the admin-
istrator is presented with the mail headers and informa-
tion on how Bogofilter classified the message initially
and how it is currently classified (Figure 5). In some
cases Bogofilter will have changed the way it classifies
a given mail based on prior corrections, and the mes-
sage can be skipped. If Bogofilter still misclassifies the
message, the administrator can view the message head-
ers and body and provide correction as required. The
training has been deliberately kept as a manual process
to prevent user error from corrupting the wordlists. We
also do not use Bogofilter’s auto-update (-u) switch, as
this is likely to introduce a significant amount of error
in a high-volume environment.

While testing this configuration, the primary
issue that had to be resolved related to the fact that the
users were forwarding messages for correction after
Exchange had delivered them. Exchange modifies the
message headers (and in some cases the body) signifi-
cantly, which means that the messages users forward
us are not the same messages Bogofilter originally
classified and are useless for training. The best solu-
tion to this seemed to be to cache the mails as Bogofil-
ter originally saw them and look them up as required.
The mail exchangers therefore forward a copy of all
incoming messages to the spam server, where they are
cached for a period of two weeks. The training lookup

8 2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA

Blosser and Josephsen Scalable Centralized Bayesian Spam Mitigation with Bogofilter

scripts take the mails users forward, extract several
pieces of header data, attempt to reconstruct the origi-
nal headers, and look up the original message in the
cache using these headers. Message headers are
cached parallel to the full bodies to speed up lookups.
This is quite frankly the least elegant piece of this
entire filtering system, but no other option has been
discovered for easily dealing with Exchange’s header-
mangling problem.

See also Greg Louis’ article ‘‘Is Bogofilter Scal-
able?’’ [LOU5], which was written at approximately
the same time as we were developing this implementa-
tion, and discusses many of the same issues. While
Louis ends with uncertainty that the implementation
he describes would scale enough to be able to handle
an environment 10 or 50 times the one he describes
(3,500 or 17,500 spam messages per day, respec-
tively), our implementation demonstrates that a similar
setup can scale to at least 75 times the spam volume
he describes. We are not verifying all of our classifica-
tions as rigorously as he suggests, but so far this has
not created a problem.

Figure 5: Screenshot of a spam message being displayed in our training tool.

Implementation
The Bogofilter roll out to production was to

occur in four phases. Phase 0 was a two-week trial by
the CIO for his mail only, primarily so that he could
verify no mail would actually be blocked until further

testing had been done. Phase 1 was a one-month user-
interactive pilot with the entire MIS department
(approximately 80 users) participating. Phase 2 was a
three-month user-interactive period with the entire
company asked to participate. Phase 3 implemented
Bogofilter in a decision-making capacity such that it
began actively preventing the delivery of messages it
classified as spam.

For Phases 0, 1, and 2, Bogofilter was imple-
mented in passthrough mode alongside the existing
Vipul’s Razor deployment. Any mails that Vipul’s did
not block were filtered through Bogofilter, and a
header was added with a classification for the ‘‘spam-
icity’’ of the message in numeric form. Outlook rules
were created and distributed to the pilot groups to sort
mails classified as spam and unsure into their own
folders. Users were asked to review the contents of
those folders on a periodic basis. Any legitimate mails
found in the spam or unsure folders were to be for-
warded to one address, and any spam messages found
in the inbox or unsure folders were to be forwarded to
another address. Administrators monitored those
addresses and corrected Bogofilter on mails that had
been classified incorrectly as described in the
‘‘Design’’ section above.

Some small training complications resulted from
our attempt to maintain a single, company-wide set of

2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA 9

Scalable Centralized Bayesian Spam Mitigation with Bogofilter Blosser and Josephsen

wordlists. In reality, there is a large grey area between
‘‘spam’’ and ‘‘non-spam’’ with a user population of
this size. ‘‘Joke of the day’’ lists, airline/hotel advertis-
ing, and religious messages are some examples.
Worse, end-user collisions were initially frequent,
where two users found the same piece of bulk mail in
their unsure folders and one would report it as spam
while the other reported it as non-spam. In an extreme
case one user reported mail from the same home-
improvement list as either spam or not spam, based on
the home-improvement advice in question (roofing
advice was spam, gardening advice was not). These
were generally resolved by the administrators on a
case-by-case basis, usually by either letting mob-rule
prevail or allowing Bogofilter to decide based on the
content of the mail in question. In the case of the
home-improvement list, the administrators did as the
user instructed, and Bogofilter adjusted accordingly.

Figure 6: Percentage of inbound mail/Percentage of inbound mail blocked as spam, October 2002-October 2003.
Bogofilter was installed in late April 2003. As we refused delivery of spam, we bounced less mail. As we
bounced less mail, the outbound percentage dropped, and inbound percentages increased accordingly.

Despite these minor complications, the pilot
phases were an unqualified success. All but a handful
of users reported all the spam gone from their inbox
into either the spam or unsure folders. Though an

implementation goal was to avoid user interaction and
the final production system primarily does that, users
seemed to appreciate the brief opportunity to do some-
thing about the spam that was reaching their inboxes.
Most importantly, users were able to observe the filter
in action and confirm first-hand that legitimate mail was
not being misclassified; even during the pilot phases, no
legitimate business-related mail was reported as mis-
classified by the filter. Finally, the administrators were
confident at the conclusion of the pilot period that the
maintenance and ongoing training framework was scal-
able and practical for the task at hand.

Once all parties were satisfied with the accuracy
of the solution, the mail exchangers were reconfigured
to use Bogofilter’s spam classifications to block mail.

Results and Observations
Since its deployment in a blocking capacity,

Bogofilter has continued to provide unprecedented
accuracy and efficiency in mail filtering. Since the
beginning of our spam mitigation effort, incoming
email volume has risen from 900,000 to 1.4 million
messages per month. Bogofilter has consistently

10 2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA

Blosser and Josephsen Scalable Centralized Bayesian Spam Mitigation with Bogofilter

blocked 60-75% of this incoming mail as spam, or
between 700,000 and 1 million messages on average
per month. The filter averages 1,100 blocked mails per
hour at the exchangers; when the average number of
recipients per blocked mail is factored in, this is
roughly 40 spams per user per work day. While it has
been difficult to quantify exactly how much spam still
enters our environment, based on end-user reports,
mail logs, and manual inspection we believe the filter
is 98-99% effective. This performance has persisted
without fail for more than a year (Figures 6 and 7).

Figure 7: Overall mail traffic, August 2003-April 2004. Spam is multiplied by negative 1, to make the graph more
readable. Data gaps are caused by log rotations.

Further, in that time there have been only five
blocks reported as false positives, only two of which
were legitimate filter misclassifications and business
related. One of these false positives involved a user
mistakenly reporting legitimate mail as spam, then
having similar followup messages blocked as spam.
Another involved a group of users reporting a group of
related mails as spam, then having a new user attempt
to receive mail from that same source and having it
blocked. A third was a user who had personal mail
regarding a PayPal transaction blocked; as personal
PayPal mails are not a common occurrence at our
company, most of Bogofilter’s opinion of PayPal
tokens had been derived from spam categorization of
PayPal phishing scam mails. All of these were
resolved through either correcting the previous mis-
classifications or training on the blocked mail.

The two remaining misclassified messages were
real false positives. The first was sent from a vendor
providing an employee reward program. Though this
was a legitimate business mail, its content was virtu-
ally indistinguishable from spam (e.g., ‘‘someone has
sent you $xx.xx, click here to redeem it’’). The other
false positive was a bulk employee satisfaction survey
sent from an external source. Some recipients received
this mail fine, while others had it blocked. Inspection
revealed that for some reason some of the mails had
been sent with both Spanish and English language
parts, while the rest were English only. The English
mails got through, while the Spanish mails were
blocked because those tokens had previously been
encountered primarily in spam messages.

Since going to production we have not experi-
enced any of the predicted downsides of using a single
set of wordlists with centralized administration. It is
possible that our user population’s legitimate mail is
more homogeneous than that of an average organiza-
tion, but this seems unlikely. Rather, expectations that
the filter’s accuracy would ‘‘fall apart’’ when the same
wordlists were used for many users seem simply not to
have been borne out in practice. While even a success
rate of 99% is an order of magnitude lower than the
99.9% and higher rates individual users of Bayesian
filters have achieved, this does not necessarily indicate
an inherent loss of discrimination ability due to shared

2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA 11

Scalable Centralized Bayesian Spam Mitigation with Bogofilter Blosser and Josephsen

wordlists. It could instead be the result of only training
on the filtering errors users report instead of on all
errors. In any case, blocking 99% of our spam is more
than sufficient to meet the needs of an organization such
as ours, and much better than any other solution we
have evaluated or considered. The other minor wordlist-
sharing issues encountered during the pilot of some
users reporting mail as spam and other users reporting
the same mail as non-spam seem to have resolved them-
selves; most likely those mails are accurately classified
as spam, and the users who reportedly wanted to receive
them are not actually noticing when they are blocked.

% ls -s -h random_words.txt
12M random_words.txt

% < random_words.txt rl | head -c 10240 > words_10K.txt
% < random_words.txt rl | head -c 102400 > words_100K.txt
% < random_words.txt rl | head -c 1024000 > words_1000K.txt
% < random_words.txt rl | head -c 10240000 > words_10000K.txt

% /usr/bin/time sh -c ’< words_10K.txt bogofilter’
0.06user 0.03system 0:00.08elapsed 101%CPU (0avgtext+0avgdata 0maxresident)k
0inputs+0outputs (496major+291minor)pagefaults 0swaps

% /usr/bin/time sh -c ’< words_100K.txt bogofilter’
0.36user 0.03system 0:00.38elapsed 101%CPU (0avgtext+0avgdata 0maxresident)k
0inputs+0outputs (498major+440minor)pagefaults 0swaps

% /usr/bin/time sh -c ’< words_1000K.txt bogofilter’
1.51user 0.10system 0:02.52elapsed 63%CPU (0avgtext+0avgdata 0maxresident)k
0inputs+0outputs (497major+978minor)pagefaults 0swaps

% /usr/bin/time sh -c ’< words_10000K.txt bogofilter’
5.74user 0.14system 0:05.88elapsed 99%CPU (0avgtext+0avgdata 0maxresident)k
0inputs+0outputs (499major+1033minor)pagefaults 0swaps

Figure 8: Run times of Bogofilter for various message sizes, using our production wordlists. These times are rela-
tive to a dual-CPU 700MHz PIII, the least-powered server in this architecture.

The effect of our blocking success on the end-
user population has been dramatic and overwhelm-
ingly positive, and the spam problem is solved from
their perspective. Business has been able to continue
without significant interruption. The only user com-
plaints involved the minor number of misclassified
mails referenced above. One of the more obvious
signs of our success is that many of our users once
again consider it odd to see more than a few spams a
week in their inboxes, and will even call the support
desk to complain when this happens. They continue to
appreciate their ability to take some control of the
problem when spams do reach them, and many speak
of the filter in terms that make it obvious they are able
to observe – and have even come to expect – nearly
immediate results when they report new spams that
have started getting into their inboxes and Bogofilter
is trained on them. Periodically we are even contacted
by other companies who have received word-of-mouth
reports of our success and are interested in the details
of our implementation; our users are apparently satis-
fied enough to mention our success when their con-
tacts complain about spam.

Our ongoing training framework has also worked
much better than we anticipated. In theory we should

be monitoring all mails that are classified as ‘‘unsure’’
and using these to train Bogofilter. This would be a
significant amount of effort, however, so we have
instead limited our ongoing training to spam messages
users report. Usually several users will report the same
message as spam. Training on one message will gener-
ally be sufficient to update Bogofilter’s opinion of
duplicate or similar messages, so the training scripts
re-examine each message before it is presented to the
administrator. If Bogofilter correctly classifies the
message on re-examination it is automatically skipped.
On average we only need to train on 15-20 unique
messages per day before Bogofilter has ‘‘caught up’’
and the rest of the training queue can be skipped.
Using this methodology one administrator is able to
process all the incoming requests in four hours per
week. The continued success of the filter indicates that
at least for the time being this training is sufficient.

So far this solution has also proved entirely scal-
able, with no obvious ceiling in sight. Mail exchangers
can easily be added to support growing mail volume,
with each only needing a Bogofilter installation, a
copy of the configuration files, and the ability to pull
the most recent copy of the wordlists from the spam
server once per day. The system meets the goal of
being efficient enough to operate in real time without
affecting our mail-flow capacity; real-time Bogofilter
evaluation of each message costs almost nothing and
has not noticeably affected the system load or message
processing time (Figure 8). The initial wordlists were
31 MB combined; that has only grown to 40 MB. The
spam server is a potential bottleneck both in the need
to receive a copy of every incoming message and the
ability to lookup cached messages for training in real
time, but the single server in place today maintains a
CPU load average of 0.1, so this is not any kind of
immediate concern. If message lookups become a

12 2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA

Blosser and Josephsen Scalable Centralized Bayesian Spam Mitigation with Bogofilter

bottleneck we can easily convert the header lookup to
a faster database format or something similar. Extremely
large organizations may find keeping up with the
ongoing training is difficult, as four hours for this
environment is potentially a full-time position for an
organization with 10 times our mail volume. This can
be further automated, however, using methods similar
to those we describe in ‘‘Future Work’’ below.

As with any other filtering solution, we have
observed spammers attempting to adjust their tech-
niques to get around this filter. However, we have not
seen them succeed, as evidenced by our ability to sus-
tain a 98-99% block rate for more than a year. Initial
attempts based on weaknesses and bugs in particular
early implementations of Bayesian filters ceased to be
effective long ago. Wordlist poisoning, token obfusca-
tion, token dilution, and microspam attacks abound,
but have had no significant effect on our ability to
detect spam messages. This is despite a popular belief
that they collectively represent an Achilles’ heel of
Bayesian filters [EMM, JdeBP2]. As Graham origi-
nally predicted, and he and others have since repeated
[GRA2, JGC2], the attackers either completely fail to
understand the nature of the system they are attacking,
or the Bayesian filters simply adapt. Where wordlist
attacks have had any success at all it is probable that
Effective Size Factor and Bayesian Noise Reduction
techniques will be effective in mitigating their value,
as has already been demonstrated elsewhere [ROB2,
ZDZ]. Microspams, which contain only a URL and a
handful of words, show the most current potential for
giving the filter trouble; however, each variant works
at most once, since the URLs and the unique message
headers immediately become high spam indicators,
and the lack of other information provides no opportu-
nity for non-spam tokens which could lower the spam-
icity of the message. In any case this is at best a tem-
porary advantage for spammers, as there are filter
enhancements to deal with these as well; some of
these are discussed in the next section.

Future Work
Although this implementation is functioning well

beyond expectations and has shown no degradation of
performance in the time it has been running, there is
room for improvement, both to increase filtering effi-
ciency and to stay ahead in the arms race. The point of
adaptive filters of course is that they will automatically
keep up as spam changes, but there are process efficien-
cies and theory improvements to incorporate. There are
also possible side-channel attacks we need to be wary of.

First, we are planning an upgrade to a more
recent version of Bogofilter. We implemented on ver-
sion 0.13.0. While this has proved stable and reliable
in our configuration, it is rather out of date. Newer
versions promise increased functionality and configu-
ration options. In addition there are lexer changes to
support continuing work in the field of applying
Bayesian filtering to spam, such as the way HTML

messages are handled. Most importantly, new versions
of Bogofilter contain support for Effective Size Factor
(ESF), which is designed to account for loss of filter
discrimination introduced by naturally occurring
volatility in the data as a result of token redundancy.3

In addition to upgrading Bogofilter, we would
like to track the shifting nature of our spam more rig-
orously by being more proactive in training on mes-
sages which are misclassified or classified as
‘‘unsure.’’ As noted above, we currently primarily rely
on end users to forward us misclassifications; while
this currently works, at the moment it is only obvious
to end users when mails that should have been blocked
arrive in their inboxes. It is not obvious to them when
legitimate mails on certain topics are flagged as
‘‘unsure.’’ As the wordlists are populated with more
and more tokens that are only spam, we run the risk of
introducing false positives.

One proposed method of addressing this issue is to
make it visually obvious to end users when messages
are classified as ‘‘unsure’’ so that they can forward them
to the appropriate training address as they see fit. We do
not want to inconvenience them by asking them to
install rules to filter mails into separate folders again, so
we are investigating ways to modify the way the mes-
sage displays in Outlook. One option is to use the ‘‘X-
Message-Flag’’ header to provide a message indicating
the mail is suspected to be spam; Outlook will present
this to the user as an alert header above the message
body. If users cooperate, this would allow us to train on
a higher percentage of unsure mails (especially those

3Spammy tokens tend to appear in groups. For example, an
email containing the token ‘‘mortgage’’ is more likely to
contain the token ‘‘mortgage’’ again, or other related spam-
my tokens such as ‘‘refinance.’’ This token redundancy can
have a negative impact on filter discrimination by artificially
magnifying the combined probability disproportionately be-
tween large and small emails. The good news is that prob-
lems with token redundancy can be dealt with mathematical-
ly; Gary Robinson has evidence to suggest that applying an
Effective Size Factor (ESF) improves filter discrimination
significantly by reducing the impact of this redundancy
[ROB2]. Greg Louis’ work confirms this [LOU6].

Note that token redundancy should not be confused
with basic statistical independence, though the issues may
appear similar. Confusion about this distinction has led to
much ado about the violation of statistical independence in
the context of Bayesian mail filtering because current ap-
proaches assume statistical independence of the input data
where it does not actually exist. For example, training on er-
ror violates statistical independence by selecting messages
for training based on prior examination, while the algorithms
assume that training is done using a truly random sample of
messages. Some have claimed this lack of actual indepen-
dence represents a weakness in the use of Bayesian classi-
fiers that is somehow ‘‘exploitable’’ [ALL]. Violations of as-
sumptions of statistical independence are not news to proba-
bility theorists, however, since these assumptions are nearly
always violated in practice [ROB3]. In addition, there is
work to suggest that even the existence of the assumption of
statistical independence has been overstated in the context of
Bayesian classifiers [DOM].

2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA 13

Scalable Centralized Bayesian Spam Mitigation with Bogofilter Blosser and Josephsen

which are non-spam) without requiring administrators
to do the sorting manually.

However, we would prefer to rely on end-user
interaction as little as possible. We intend to imple-
ment tools that will allow us to test Bogofilter auto-
matically on incoming mails when we can make rea-
sonable guesses on the status of those messages inde-
pendently. Probable spam or non-spam messages
which Bogofilter apparently misclassifies can be
flagged for administrator review, and the filter can be
corrected if necessary. Any spam-blocking methods
which provide useful categorization of some spam but
are either too resource-intensive or have an unaccept-
ably high false-negative rate for use in our production
environment are good candidates for this kind of sec-
ondary screening. One simple option we will likely
implement is to create and advertise a low-priority
mail exchanger tarpit; these take advantage of the fact
that a fair amount of spam software attempts to target
low-priority mail exchangers with the assumption they
are less heavily guarded than primary exchangers.
Mail sent to this tarpit would be flagged for review,
with the assumption that it is all spam. Any mails
which Bogofilter was unsure about would be good
candidates for training. Another option is to reimple-
ment tools like Vipul’s Razor on secondary hardware
to scan a random sample of cached incoming mail. For
legitimate mails, we will likely begin randomly sam-
pling outgoing mail and flagging any messages which
Bogofilter classifies as unsure or spam. Note that none
of these tools would be added as active filtering mech-
anisms, but they could be useful outside of the mail
flow in automating the process of keeping Bogofilter’s
wordlists up to date with the shifting nature of spam.

We will also continue to tweak the filter options
as appropriate, and may make some of them dynamic.
Possible options here include automatically modifying
the Bogofilter configurations on the mail exchangers
based on time of day to filter mail more aggressively
during high spam periods such as weekends and late
night, or at least to flag unsure messages during these
times for scanning. Similarly, if the frequency of
microspams increases and these become a problem we
may lower min_dev to catch more of them on the
first pass; another option is to make min_dev (or
other parameters) dynamic based on message size,
e.g., set min_dev to 0 for messages less than one
kilobyte in size. It is entirely possible, however, that
the filter will simply adapt; in this scenario things like
normal local SMTP headers would become high
enough spam indicators that microspams would
always be blocked, while both short and long legiti-
mate messages would get through due to their legiti-
mate tokens. In any case, both of these types of
dynamic configuration would probably only be neces-
sary temporarily; eventually Bayesian mail classifiers
will likely reach the point of using meta data – such as
message size, arrival time, number and type of attach-
ments, etc. – as spam/non-spam tokens.

In addition, we have done some investigation to
see if we could use a lower base spam_cutoff and
let even less spam through. Examining the classifica-
tion of both the spams and legitimate mails that are
being classified as ‘‘unsure,’’ it looks like we would
be safe dropping this value to 0.85 or even lower.
However, we will need to do much more rigorous test-
ing before we make such a fundamental change. We
will also preferably have the above spot-checking of
active mail and other measures in place to track any
increase in the ongoing probability of false positives
using this cutoff.

We would like to improve the caching system or,
preferably, remove the need for it altogether. Storing
emails for this kind of retrieval is not ideal. Recreating
headers that Exchange has removed is inefficient at
best and does not always work. At the least we would
like to move to a system where each message can be
flagged in a way that Exchange will not modify so that
a simplified lookup will work, but this is not likely to
be possible without adding something to the message
body or requiring users to forward messages in a spe-
cific format. Both of these options are at odds with
business standards. Other Bayesian classifiers such as
DSPAM have experimented with keeping a record in
the database of which tokens were present in a given
message, but it is questionable whether this would
scale to an environment such as ours.

Finally, we will need to reconsider rejecting
spams during the SMTP exchange instead of silently
dropping them. This gives spammers information about
the delivery status of their messages which allows for
the possibility of training an ‘‘evil’’ Bayesian filter on
what messages our filter rejects or accepts. Given
enough messages, this would allow spammers to craft
messages specifically designed to pass through our fil-
ter. John Graham-Cumming has discussed this attack in
detail [JGC]. However, this technique is easily defeated
by simply not returning any information to spammers
on the delivery status of their messages. This is non-
ideal; it means that in that in the case of false positives
the legitimate sender would not get an error to indicate
their message was not received. However, the low
false-positive rate demonstrated by this type of filtering
likely justifies this inconvenience.

Related Work

At this time several other medium to large envi-
ronments are known to be having success monitoring
their mail flow with Bogofilter using single, central-
ized wordlists:

• Yo r k University in Toronto recently deployed
Bogofilter as a classifier for their environment of
60,000 user accounts. Incoming mail volume is
on the order of hundreds of thousands of mes-
sages per day. At the time of writing, this imple-
mentation was too new to have reliable numbers
available, but early results are promising. In this
implementation messages pass through Bogofilter

14 2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA

Blosser and Josephsen Scalable Centralized Bayesian Spam Mitigation with Bogofilter

after DCC has already scanned them and
rejected spams it can detect; approximately
30-40% of this remaining incoming mail is ini-
tially being flagged as spam by Bogofilter. This
is an order of magnitude higher than the block
rate of the SpamAssassin implementation that
Bogofilter replaced, with a dramatically lower
rate of false positives reported.

• A large ISP in Australia is using a modified ver-
sion of Bogofilter with a single wordlist to
watch 150,000 mailboxes. Over 1 million mes-
sages are processed per day. Bogofilter is
believed to be around 95% effective in this envi-
ronment, with no false positives reported in six
months of operation. The wordlist management
is completely centralized, with no user input
whatsoever. Administrators keep Bogofilter’s
training current by manually scanning and train-
ing on random samplings of 100-300 ‘‘unsure’’
emails per week.

Both of these deployments have followed implementa-
tion and maintenance methodologies similar to the
ones described in this paper.

Conclusion

Spammers have shown extreme willingness to
adapt using any means at their disposal to spread their
messages. Assumptions that they will be unwilling or
unable to expend considerable resources or break the
law to attack their targets are at best unfounded.
Blocking techniques aimed at the mail routes and pro-
tocols are not directed at immutable properties of
spam and therefore seem unlikely to succeed and are
likely instead to drive spammers to more and more
illicit methods and increasing collateral damage. Paul
Graham was correct in noting that the content of spam
is the one thing which cannot be changed arbitrarily; it
can be altered and obfuscated, but at some point the
content still must be there, or there is no potential for
any return on the spammers’ investment. Content-
based filtering is therefore the best currently available
approach to the problem, and our results show that
Bayesian filters can be viable for the long term as
adaptive content filters.

Our results demonstrate that, far from being just
another failed attempt at producing a comprehensive
and sustainable solution to the spam problem,
Bayesian filters can be sufficient without aid from sec-
ondary methods. This is true even in large environ-
ments with central control, provided these filters are
implemented carefully and with a solid understanding
of the theory supporting them. There is a tremendous
difference throughout the IT field between systems
which truly can not stand the test of time and those
which are simply difficult or tedious to implement cor-
rectly, and it is irresponsible to dismiss something
with the latter property as though it had the former.
We would all prefer it if we could block spam using

easily implemented and foolproof methods, but if
complicated solutions are required to win this fight,
doing our homework seems the least we can do given
the severity of the problem. Bayesian methods deserve
further development, testing, and careful consideration
before they are dismissed due to false assumptions or
incomplete understandings of their value and effec-
tiveness. Organizations and individuals are encour-
aged to implement similar solutions to the one detailed
here and attempt to duplicate and verify our results.

Do we think Bayesian filters are a permanent
solution to all spam? No. If nothing else, Moore’s
Law dictates that brute force attacks will eventually be
viable. There is no reason to believe, however, that
spammers will bother waiting that long just to imple-
ment high-cost attacks. Based on their previous pat-
terns they are much more likely to attempt to sidestep
the issue entirely and move to less direct methods: the
spam equivalent of side-channel attacks. We are
already seeing signs of these, as spammers are using
browser malware to inject ads directly into web site
content and are increasingly relying on worms to create
zombie machines to send their spam for them. At the
paranoid extreme, a fairly obvious convergence of these
practices would be worms which inject ads directly into
outgoing user emails, turning every legitimate mail into
spam at the same time. The current malware epidemic
demonstrates that such a methodology would be a
much more cost-effective practice for spammers than
escalating the filter war indefinitely. No filtering tech-
nology that only aims to block spam messages would
be useful in stopping this type of spam, since any mail
blocked would by definition be a false positive. SMTP
replacements and authentication schemes would be
similarly useless, since these messages would be sent
through valid mail routes using appropriate credentials
just as many worms are today. If and when we reach
this point, however, we will no longer even be dealing
with unsolicited commercial and bulk email. We will be
dealing with something else. Filtering may be the most
effective method for dealing with spam that is simply
commercial email messages, but malware is something
completely different.

Regardless of the possible future of spam, the
most value offered by effective Bayesian filters is to
be gained today while spammers are still unable to cir-
cumvent them and have not yet determined their next
method of attack. The war against spam will no doubt
continue to be fought with a range of methods across
various platforms. No single technology will likely
emerge which is capable of dealing with all attacks
equally well. If the next phase does center around mal-
ware, it will only be won if we can get ahead of the
spammers now and get a handle on the current virus
epidemic. If Bayesian filters are at least robust enough
to win the filtering battle for the foreseeable future
they will be invaluable in buying administrators des-
perately needed time to move beyond filter mainte-
nance to the much more serious problems of end-user

2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA 15

Scalable Centralized Bayesian Spam Mitigation with Bogofilter Blosser and Josephsen

computer security. Instead of carelessly dismissing
these filters as already beaten and wasting time pursu-
ing weaker solutions, administrators should take advan-
tage of the opportunities they provide to go on the
offensive and finally gain an advantage over spammers
before it is too late.

Availability

Vipul’s Razor is available at http://razor.source-
forge.net/ .

Bogofilter is available at http://bogofilter.source-
forge.net/ .

qmail-qfilter is available at http://untrou-
bled.org/qmail-qfilter/ .

Acknowledgements

We thank Paul Graham, Gary Robinson, and oth-
ers for their pioneering work in this area. We espe-
cially thank Greg Louis and David Relson of the
Bogofilter project for their responsiveness, feedback,
and tuning suggestions throughout our initial training
and implementation phases.

Author Information

Jeremy Blosser graduated from Indiana Wes-
leyan University in 1998 with a BS in political sci-
ence, history, and philosophy. He moved to Texas to
get a real job and has been a Web engineer and occa-
sional system administrator for VHA, Inc. since 2000.
He prefers playing with his three kids to sorting spam
and can be reached at jblosser@vha.com or jblosser@
firinn.org .

Raised by wolves, Dave Josephsen dedicated his
life to feeding the naked and clothing the hungry.
After a six-year stint in the United States Marine
Corps, he became a tech support guru to the stars and
eventually found his way to systems administration.
He can be found in a server room near you, or con-
tacted via email at djosephs@vha.com or dave@
homer.cymry.org .

References

[ALL] Allman, Eric, The State of Spam, https://db.
usenix.org/events/usenix04/audio/allman.mp3,
June 2004.

[BAA] Baard, Mark, Going Upstream to Fight Spam,
http://www.wired.com/news/print/0,1294,61971,
00.html, January 2004.

[BOW] Bowers, Jeremy, Spam Filtering’s Last Stand,
http://www.jerf.org/iri/2002/11/18.html, Novem-
ber 2002.

[DOM] Domingos, Pedro and Michael Pazzani,
Beyond Independence: Conditions for the Opti-
mality of the Simple Bayesian Classifier, http://
www.cs.washington.edu/homes/pedrod/papers/
mlc96.pdf, 1996.

[EMM] Dreyfus, Emmanuel, Mail-Filtering Techniques,
http://www.onlamp.com/pub/a/onlamp/2004/05/
20/mail_filtering.html, May 2004.

[ESR] Raymond, Eric S., 2003 MIT Spam Conference:
Lessons from Bogofilter, http://www.usenix.org/
publications/login/2003-06/openpdfs/spam.pdf,
January, 2003. In this talk Raymond explained
his rationale for developing Bogofilter; he was
primarily interested in putting a tool in the hands
of end users since it was believed that Bayesian
methods would not work in a centralized fashion.
This point was summarized by Chris Devers in
the June, 2003 issue of ;login magazine as fol-
lows: ‘‘As good as Graham’s Bayesian algorithm
is, ESR felt – as did many of the other speakers –
that the nature of your spam/ham corpus is much
more significant than the relative difference
among any handful of reasonably good algo-
rithms. (Back to the oft-repeated point about how
corpus effectiveness falls apart when used for a
group of users, as opposed to individuals.)’’

[GRA] Graham, Paul, A Plan For Spam, http://
www.paulgraham.com/spam.html, August 2002.

[GRA2] Graham, Paul, So Far, So Good, http://
www.paulgraham.com/sofar.html, August 2003.

[JAC] Jacob, Philip, The Spam Problem: Moving
Beyond RBLs, http://theory.whirlycott.com/˜phil/
antispam/rbl-bad/rbl-bad.html, January 2003.

[JdeBP] Pollard, Jonathan de Boyne, SPF is harmful.
Adopt it., http://homepages.tesco.net/˜J.deBoyne
Pollard/FGA/smtp-spf-is-harmful.html, 2004.

[JdeBP2] Pollard, Jonathan de Boyne, No anti-UBM
measure for SMTP-based Internet mail works,
http://homepages.tesco.net/˜J.deBoynePollard/
FGA/smtp-anti-ubm-dont-work.html#Bayesian,
2004.

[JGC] Graham-Cumming, John, 2004 MIT Spam Con-
ference: How to beat an adaptive spam filter,
http://www. jgc.org/SpamConference011604.pps,
January 2004.

[JGC2] Graham-Cumming, John, Fooling and poison-
ing adaptive spam filters, http://www.sophos.
com/sophos/docs/eng/papers/WP_PMFool_US.
pdf, November 2003.

[KNO] Knowles, Brad, Considered Harmful: SPF . . . ,
http://bradknowles.typepad.com/considered_
harmful/2004/05/spf.html, May 2004.

[LOU] Louis, Greg, Tuning Bogofilter’s Robinson-
Fisher Method – a HOWTO, http://www.bgl.nu/
bogofilter/tuning.html, April 2003.

[LOU2] Louis, Greg, Bogofilter Training: Comparing
Full Training with Training-on-error, http://
www.bgl.nu/bogofilter/training.html, April 2003.

[LOU3] Louis, Greg, Bogofilter Training: Comparing
Full Training with Training-on-error, part 2 http://
www.bgl.nu/bogofilter/training2.html, April 2003.

[LOU4] Louis, Greg, Bogofilter Parameters: Effect of
varying s and mindev, continued: Comparison of

16 2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA

Blosser and Josephsen Scalable Centralized Bayesian Spam Mitigation with Bogofilter

results from different email sources, http://www.
bgl.nu/bogofilter/smindev3.html, April 2003.

[LOU5] Louis, Greg, Is Bogofilter Scalable? http://
www.bgl.nu/bogofilter/scale.html, November 2002.

[LOU6] Louis, Greg, To k e n Redundancy and the
Effective Size Factor, http://www.bgl.nu/bogofilter/
esf.html, May 2004.

[MER] Mertz, David, Spam Filtering Techniques:
Comparing a Half-Dozen Approaches to Elimi-
nating Unwanted Email, http://gnosis.cx/publish/
programming/filtering-spam.html, August 2002.

[PAG] Paganini, Marco, ASK: Active Spam Killer http://
www.usenix.org/events/usenix03/tech/freenix03/
full_papers/paganini/paganini_html/node2.html#
SECTION00022000000000000000, April 2003.

[ROB] Robinson, Gary, Spam Detection, http://radio.
weblogs.com/0101454/stories/2002/09/16/spam
Detection.html, September 2002.

[ROB2] Robinson, Gary, Handling Redundancy in
Email Token Probabilities, http://garyrob.blogs.
com/handlingtokenredundancy94.pdf, May 2004.

[ROB3] Robinson, Gary, Spam Filtering: Training to
Exhaustion, http://www.garyrobinson.net/2004/02/
spam_filtering_.html, February 2004.

[SEL] Self, Karsten M., Challenge-Response Anti-
Spam Systems Considered Harmful, http://linux
mafia.com/faq/Mail/challenge-response.html,
December 2003.

[WAR] Ward, Mark, How to Make Spam Unstoppable,
http://news.bbc.co.uk/1/hi/technology/3458457.
stm, February 2004. This article references John
Graham-Cumming’s work in defeating Bayesian
filters using other Bayesian filters. While Gra-
ham-Cumming found this method can work, his
conclusion was that it is very costly and quickly
blocked. Nevertheless, many administrators and
weblogs continue to point to this experiment (and
specifically this article) as ‘‘proof ’’ that Bayesian
filters can be easily defeated.

[ZDZ] Zdziarski, Jonathan A., Bayesian Noise Reduc-
tion: Progressive Noise Logic for Statistical Lan-
guage Analysis, http://www.nuclearelephant.com/
projects/dspam/bnr.html, February 2004.

Appendix A

The scripts below are what we used to create our initial wordlists and tune Bogofilter. This functionality can
now be found in the scripts that ship with Bogofilter, but these are provided for illustration purposes and in the hope
that they may be useful.
#!/bin/sh

retrain.sh: Test various bogofilter.cf values. Create randomized message
lists, fully train on 10k each spam and non-spam, train on error for other
messages, test on 5k each spam and non-spam. Repeat until all messages are
trained on error twice, then output stats for each test. Log everything.

syntax: retrain.sh <logfiletag>

cd /usr/share/bogofilter/retrain/

echo "removing old wordlists..."
rm -f data/{good,spam}list.db

if [! -f list]; then
echo "making lists..."
./makelists.sh 1>&2

fi

echo "doing 10k spam..."
while read
do

echo "${REPLY}" 1>&2
< "${REPLY}" ./bogofilter -C -c ./bogofilter.cf -s

done < 10k_spam_list.random

echo "doing 10k notspam..."
while read
do

echo "${REPLY}" 1>&2
< "${REPLY}" ./bogofilter -C -c ./bogofilter.cf -n

done < 10k_notspam_list.random

echo "doing rt round 1..."
./rt.sh rest_list.random | tee ./rt."${1}"-1.log | sed -f ./rt.sed 1>&2

echo "doing tt round 1..."
./tt.sh 5k_spam_list.random | tee ./tt."${1}"-1.log | sed -f ./rt.sed 1>&2

2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA 17

Scalable Centralized Bayesian Spam Mitigation with Bogofilter Blosser and Josephsen

./tt.sh 5k_notspam_list.random | tee -a ./tt."${1}"-1.log | sed -f ./rt.sed 1>&2

echo "doing rt round 2..."
./rt.sh rest_list.random | tee ./rt."${1}"-2.log | sed -f ./rt.sed 1>&2

echo "doing tt round 2..."
./tt.sh 5k_spam_list.random | tee ./tt."${1}"-2.log | sed -f ./rt.sed 1>&2
./tt.sh 5k_notspam_list.random | tee -a ./tt."${1}"-2.log | sed -f ./rt.sed 1>&2

echo "adding tt messages round 1..."
./rt.sh 5k_list.random | tee ./rt."${1}"-3.log | sed -f ./rt.sed 1>&2

echo "doing tt round 3..."
./tt.sh 5k_spam_list.random | tee ./tt."${1}"-3.log | sed -f ./rt.sed 1>&2
./tt.sh 5k_notspam_list.random | tee -a ./tt."${1}"-3.log | sed -f ./rt.sed 1>&2

echo "adding tt messages round 2..."
./rt.sh 5k_list.random | tee ./rt."${1}"-4.log | sed -f ./rt.sed 1>&2

echo "doing tt round 4..."
./tt.sh 5k_spam_list.random | tee ./tt."${1}"-4.log | sed -f ./rt.sed 1>&2
./tt.sh 5k_notspam_list.random | tee -a ./tt."${1}"-4.log | sed -f ./rt.sed 1>&2

echo "doing stats..."
echo "1st run:"
./getstats.sh ./tt."${1}"-1.log
echo "2nd run:"
./getstats.sh ./tt."${1}"-2.log
echo "3rd run:"
./getstats.sh ./tt."${1}"-3.log
echo "4th run:"
./getstats.sh ./tt."${1}"-4.log

===

#!/bin/sh

makelists.sh: Generate randomized message lists needed by retrain.sh.

This script requires rl, found here:
http://tiefighter.et.tudelft.nl/˜arthur/rl/

find /var/spam/corpii/{NOTSPAM,SPAM} -type f > list
< list rl > list.random
< list.random grep -i ’/corpii/spam’ | head -10000 > 10k_spam_list.random
< list.random grep -i ’/corpii/notspam’ | head -10000 > 10k_notspam_list.random
cat 10k_spam_list.random 10k_notspam_list.random | rl > 10k_list.random
< list.random grep -i ’/corpii/spam’ | tail -5000 > 5k_spam_list.random
< list.random grep -i ’/corpii/notspam’ | tail -5000 > 5k_notspam_list.random
cat 5k_spam_list.random 5k_notspam_list.random | rl > 5k_list.random
sort 10k_list.random 5k_list.random | grep -v -F -f - list.random | \

rl > rest_list.random

===

18 2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA

Blosser and Josephsen Scalable Centralized Bayesian Spam Mitigation with Bogofilter

#!/bin/zsh

rt.sh/tt.sh: Process messages specified in provided file through Bogofilter.
As tt.sh, output Bogofilter’s classification. As rt.sh, output
classification and train Bogofilter on error.

BOGOFILTER="/usr/share/bogofilter/retrain/bogofilter"
BOGOFILTERCF="/usr/share/bogofilter/retrain/bogofilter.cf"

< "${1}" | while read
do

printf "%41s: " ‘echo "${REPLY}" | sed -e ’s%/var/spam/corpii/%%’‘
REAL=‘echo "${REPLY}" | sed -e ’s%/var/spam/corpii/\([ˆ/]\+\)/.*%\1%’‘
printf "%7s: " "${REAL}"
BOGO=‘< "${REPLY}" "${BOGOFILTER}" -C -c "${BOGOFILTERCF}" -v‘
GUESS=‘echo "${BOGO}" | sed -e ’s/.*\(Spam\|Legit\|Unsure\).*/\1/’‘
SPAMICITY=‘echo "${BOGO}" | sed -e ’s/.*\(spamicity=[ˆ]\+\),.*/\1/’‘
printf "%6s: " "${GUESS}"
printf "%20s\n" "${SPAMICITY}"
if [["‘basename ${0}‘" == "rt"]]; then

case "${GUESS}" in
"Spam")

if [["${REAL}" == "NOTSPAM"]]; then
< "${REPLY}" "${BOGOFILTER}" -C -c "${BOGOFILTERCF}" -n

fi
;;
"Legit")

if [["${REAL}" == "SPAM"]]; then
< "${REPLY}" "${BOGOFILTER}" -C -c "${BOGOFILTERCF}" -s

fi
;;
"Unsure")

if [["${REAL}" == "NOTSPAM"]]; then
< "${REPLY}" "${BOGOFILTER}" -C -c "${BOGOFILTERCF}" -n

else
< "${REPLY}" "${BOGOFILTER}" -C -c "${BOGOFILTERCF}" -s

fi
;;

esac
fi

done

===

rt.sed: Colorize output of rt.sh.

s/\(SPAM\):/ˆ[[1;31m\1ˆ[[0m:/
s/\(NOTSPAM\):/ˆ[[32m\1ˆ[[0m:/
s/\(Spam\)/ˆ[[1;31m\1ˆ[[0m/g
s/\(Legit\)/ˆ[[32m\1ˆ[[0m/g
s/\(Unsure\)/ˆ[[7;34m\1ˆ[[0m/g

===

#!/bin/sh

getstats.sh: Output summary of results from retrain.sh-generated logs.

echo "false positives: ‘grep ’NOTSPAM: Spam:’ ${1} | wc -l‘"
echo "false negatives: ‘grep ’ SPAM: Legit:’ ${1} | wc -l‘"
echo "unsure spams : ‘grep ’ SPAM: Unsure:’ ${1} | wc -l‘"
echo "unsure notspams: ‘grep ’NOTSPAM: Unsure:’ ${1} | wc -l‘"

2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA 19

Scalable Centralized Bayesian Spam Mitigation with Bogofilter Blosser and Josephsen

Appendix B

The scripts below are used for filtering our messages during the SMTP exchange.

#!/bin/sh

qq-qfilter: log the mail, then add and fix* the Bogofilter header, then
forward the mail to the caching server, then check if it’s spam and refuse it
if it is.

A full description of qmail-qfilter’s operation is beyond the scope of this
paper, but in summary, it takes a mail message on stdin and pipes it through
a "--" delimited list of filters. Each filter’s stdout becomes stdin for the
next filter. Exit codes are checked and manipulated to provide the calling
qmail daemon what it expects.

*"Fixing" the Bogofilter header means making sure it is the first line in the
header. The version of Bogofilter we use does not place this header
consistently; this has reportedly been fixed in current versions.

exec /usr/bin/qmail-qfilter /usr/local/bin/qfilter-logger -- \
/usr/bin/bogofilter -l -e -p -- \
/bin/sed -e ’1,/ˆX-Bogosity:/{;’ -e ’/ˆX-Bogosity:/!{; H; d; };’ \

’/ˆX-Bogosity:/{; p; g; D; }; }’ -- \
/usr/local/bin/qfilter-cache -- /usr/local/bin/qfilter-spamcheck

===

#!/bin/sh

qfilter-spamcheck: read the first line of stdin as an X-Bogosity header; if
the message is spam, exit 31 to refuse delivery, otherwise pass the message
through unaltered.

This script requires rewind, which of part of DJB’s serialmail package and
can be found here:
http://cr.yp.to/serialmail.html

if head -n 1 | grep -q ’ˆX-Bogosity: Spam,’; then
exit 31

fi

/usr/local/bin/rewind

cat -

20 2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA

