USENIX Association

Proceedings of the 17" Large Installation
Systems Administration Conference

San Diego, CA, USA
October 26-31, 2003

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2003 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rightsto individua papers remain with the author or the author's employer.
Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Designing, Developing, and
Implementing a Document Repository

Joshua Simon — Consultant
Liza Weissler — METI

ABSTRACT

Our company had grown large enough and complex enough to require a centralized
repository for its documentation. Various internal groups produced all sorts of documentation;
regions and districts produced documentation for and about clients, including proposals for work
and the results of work performed. Often the documentation produced did not take advantage of
previously-produced work.

The Repository project intended to centralize all documentation in a single ““one-stop shop”
for creating, updating, storing, and searching documents, to provide various information about
every document so documentation authors and information gatherers could search for and use or
reuse existing similar documentation as appropriate. It also was intended to be minimally intrusive
for both the authors and the users of the documentation. This allowed the company to enforce a
common look-and-feel for all documents within a certain type and for consistency in content as
well. Other goals included the ability to update content in exactly one location and have that
change propagated throughout all relevant documentation.

The user interface had to be simple enough for nontechnical people (managers, sales staff,
administrative assistants, and so on) to be able to use it to add, edit, and search for documents
meeting their variable criteria, and yet complex enough to be meaningful in terms of the results.
Because of the high costs of solving this problem correctly, we decided to take a low-key internal

approach to the project instead.

Introduction

Problem

While working as consultants, our former com-
pany had grown large enough and complex enough to
require a centralized repository for its documentation.
Various internal groups, such as Finance, Information
Technology, Legal, Marketing, Recruiting, and Sales,
produced documentation. Regions and districts pro-
duced documentation for and about clients, including
proposals for work and the results of work performed.
Often the documentation produced did not take advan-
tage of previously-produced work. The Repository
project intended to centralize all documentation in a
single ““one-stop shop” and provide various informa-
tion about every document so documentation authors
and information gatherers could search for and use or
reuse existing similar documentation as appropriate.

There’s an old adage about the shoemaker’s chil-
dren never having good shoes. Similarly, even though
we were a company of system administrators, we often
needed to design our own tools. Most everyone in the
company recognized the need for such a repository but
nobody had the cycles to design or implement one. Josh
was moved into a corporate-side role to work on this
project, given his extensive history of documentation
and project management work, as well as the demon-
strated ability to translate between technical and

2003 LISA XVII — October 26-31, 2003 — San Diego, CA

nontechnical staff. Josh asked Liza for her assistance on
the database and Perl side, since she was a member of
the tool development team and already familiar with the
internal IT department policies and because she has a
background in library sciences.

Because of the nature of the business and her
own responsibilities, Liza could only work on the pro-
ject during her off-hours. Similarly, we were con-
strained from spending any real money on hardware or
software; even though most technical people and
many nontechnical people wanted a repository, noth-
ing was budgeted to pay for it.

Another constraint was the term documentation
repository having different meanings for different peo-
ple. The term could mean an electronic library like the
physical one at Alexandria, or a vault containing
copies of the physical documentation we’d produced.
But defining documentation was itself a hard problem.
Certainly any physical document we’d deliver to a
customer counted — such as summaries, analyses, rec-
ommendations, project plans, and so on. Similarly, the
pre-project work, such as statements of work, service
level agreements, and other contracts count as docu-
mentation. But what about the online question-and-
answer database? What about marketing materials and
sales literature? What about the HR-specific forms
(such as the IRS 1-9 and W-4, and the annual reviews
of your employees and management)? As we looked

31

Designing, Developing, and Implementing a Document Repository

further into the back office within the company we
found that more and more document types could and
did exist. Our repository had to allow for those docu-
ment types. This led to our categorizing system.

While we could have just added disk space onto
a centrally-located file server, we had many different
people creating and editing documentation, many of
whom used different operating systems and different
tools for producing or updating the documentation.
Furthermore, different people use different naming
conventions and different organization or classifica-
tion schemes, so finding something without a search
engine of some kind would be exceedingly difficult.

Goals

The major goals of the project were to provide a
single place on the company network for all documen-
tation to be created, updated, stored, and searched,
while being minimally intrusive for both the authors
and the users of the documentation. This should have
allowed the company to enforce a common look-and-
feel for all documents within a certain type and for
consistency in content as well. Minor goals included
the ability to update content in exactly one location
and have that change propagated throughout all rele-
vant documentation.

Requirements

We spent a substantial amount of time identify-
ing the requirements for such a documentation man-
agement package. These included:

e the ability for anyone to add documents to the
repository
the ability for document owners to edit the doc-
uments
access control for who could read or make
changes to documents; for example, only the
specific employee, management, and Human
Resources should have access to financial
information
strict restrictions on deleting documents from
the repository; in general, we were going to for-
bid the delete function to all except specific
“librarians” whose role included database con-
tent management
keyword-based searching
storing meta-data and a URL instead of the
entire document
no constraints on how people create, edit, or
maintain the documents themselves; revision
control is a solved problem we didn’t want to
deal with

We then began researching the vendors in the
space and the costs involved. Because of the high
costs of solving this problem correctly, we decided to
take a low-key internal approach to the project instead.

The interface itself had to be simple enough for non-
technical people (managers, sales staff, administrative

32

Simon & Weissler

assistants, and so on) to be able to use it to add, edit, and
search for documents meeting their variable criteria,
and yet complex enough to be meaningful in terms of
the results.

Being system and database administrators really
made this project possible. As system administrators
we’d had previous experience with talking intelli-
gently to vendors’ sales personnel. We’re skilled at
converting what business (usually nontechnical) peo-
ple want into and out of technical terminology. It’s
typical, in our experience, for system administrators to
fill programming needs when there are no other “offi-
cial” programmer resources available for urgent pro-
ject work. Having a database-savvy member of the
team saved us a lot of unnecessary work as well.

Design & Development

Based on the requirements analysis and the
reduced necessary functionality, we decided to track
the following information:

Author: The authors of the document; we found
that being able to search for documents by
author was useful since people would remem-
ber ““Alan or Betty wrote...”

Title: The document title

Description: A short description about the docu-
ment, which would show up on search results

Revision: The revision number or string, such as
“1.0” or “First Edition,” to allow for tracking
multiple copies of a document over time

Date: The date the document was published or released
(which could theoretically be in the future)

URL: to the document, including the protocol speci-
fication

Permissions: The permissions and state informa-
tion: whether the document has been approved
for release or was a draft, whether changes can
be made to the document, whether the author
has checked it out for revisions, and whether
public (meaning unauthenticated) users could
access the document

Search flags: Company-internal codes for what
major and “Networking” and ““Security”

Class: The document class, one of client/technical,
internal documentation, marketing/sales litera-
ture, recruiting, or other; these five categories
were a direct result of our analysis of defining a
document

Subclass: The document subclass, a well-under-
stood company-internal code to further classify
the document, different for each class

Keywords: A list of keywords to be used in
searches; for cross-application consistency we
used the same keywords for the repository as
we did for the question-and-answer database

A sample record, using this paper for content,
would be the following:

2003 LISA XVII — October 26-31, 2003 — San Diego, CA

Simon & Weissler

Author: Simon, Joshua; Weissler, Liza

Title: Designing, Developing, and
Implementing a Documentation
Repository

Description: A LISA 2003 paper on how we
designed, developed, and
implemented a general-purpose
documentation repository

Revision: 1.0

Date: October 26, 2003

URL: http://www.usenix.org/publications/
library/proceedings/lisa03/tech/
simon.html

Permissions: Approved, Public [structure of bits:

approved 1, can-change 0,
checkedout 0, public 1]
Search flags: null

Class: I (internal)
Subclass: D (documentation)
Keywords: doc, repo

We had certain design elements determined from
a recent documentation styles analysis project that
defined fonts, relative sizes of headers and text, use of
color, and so on, which made some elements of the
user interface design fairly straight-forward.

The top-level or home page contains a list of the
nine major topics:
* Document-specific:
O Adding a new document record to the

Repository

O Editing an existing document record in the
Repository

O Uploading a new document to the
Repository

* Searching:
O Browse the entire Repository for document
records
O Searching for a document
O Jump to the Templates page for the latest
document templates
® Repository documentation:
O User’s Guide and Administrator’s Guide
O On-line Help
O Get statistics on documents in the Repository

Each subsidiary page would contain navigation
links in the header (including a link back to the
Repository home page, a link back to the intranet
home page, and links to related functionality in other
applications on the web), the page content (such as
data entry form, results, or error message), the
application revision number, and the standard
company footer. The standard footer provided contact
email, a link to the company’s internal bug reporting
application, and the copyright statement.

Development of the application took place over a
two-month period (February 7 through April 5). The
application was written in Perl (5.005) using the DBI

2003 LISA XVII — October 26-31, 2003 — San Diego, CA

Designing, Developing, and Implementing a Document Repository

and DBD::Oracle modules, with Oracle 8.1.6 for the
back-end database. Development and quality assurance
testing were on systems running Red Hat Linux 6.2,
while the production system was running Solaris 2.6.

Staffing of the development effort was basically
one person in her spare time, so it may be said that the
development budget was essentially zero (which
yields quite a good return on investment). Our
company had a long history of infrastructure building
as volunteer effort on the part of employees; this
helped the company keep costs down, and gave
employees the sense of having more of a stake in the
company. Of course, it also had some influence on the
distribution of yearly bonuses. More critical
applications were the “day job” of a team of virtual
developers, but as this application fell a little lower on
the priority list, it remained a volunteer effort.

We don’t have hard and fast data on the number
of person-hours spent on this project. As noted in the
“Acknowledgements” section, 58 members of the
company worked on this project either directly
(design, development, and testing) or indirectly
(related development, development of modules we
could adapt, etc.). Josh spent probably four months
working on this project, including the detailed
requirements analysis, and Liza spent about one
month on it.

The application itself was fairly quick to code
due to a number of existing Perl modules in use at the
company to standardize database access,
authentication, error reporting, and so forth. The
programmer herself was one of the company’s
“virtual developers” and thus was ramped up on the
company’s application design philosophy and
structure. (Had this effort been a real job and not a
volunteer effort, it likely could have been developed in
well under half the time.)

The documentation that goes along with the code
— both a User’s Guide for the general user (extensive
online help) and an Administrator’s Guide for the
librarians — was written alongside the application.
Having a standardized cascading stylesheet for both
the application and its documentation helped maintain
the common look-and-feel across both. The
documentation development time is included in the
6-months of application design and development time.

Concurrent with the application and database
development, we collected bibliographic data on
existing company-wide web-based documentation so
we could force-load the Repository with valid data.
This was an interesting process in itself, as the data
could be almost anywhere. A simple conversion script
parsed the bibliographic data, performing error
checking and loading the data into the database.

Our system administration skills were essential
to the success of this project. We analyzed the
problem, which (as with many projects in technology)

33

Designing, Developing, and Implementing a Document Repository

seemed to get bigger and more complicated the more
we looked at it. We identified our requirements so we
could determine what we wanted as well as what we
didn’t want. We used organizational skills to figure out
how best to allocate our volunteer resources to best
effect. We documented the application, both in the
code and in standalone User’s and Administrator’s
Guides. Our familiarity with database schema design,
library sciences, scripting, and best practices in
software development and testing as part of the release
cycle was absolutely essential in producing a usable,
functional application.

Testing

The testing process took place in three major
steps: alpha testing, quality assurance testing, and beta
testing. Our rationale for this was four-fold. First, we
wanted the people who would become the content
consistency police, or the librarians as they were
called, to be intimately familiar with the processes
involved. Second, we wanted to make sure, before
releasing the application to the whole company
(including both technical and nontechnical staff), that
both technical and nontechnical people could use it.
Third, the IT department had a dedicated test group
(off-hours volunteers) who would do our QA testing
for us. And fourth and finally, it’s good software
development practice to do three-stage testing (alpha,
QA, and beta).

The company had three full-time technical
writing staff. We used them as our alpha test team,
gave them full access to the database, and asked them
to test everything: adding, editing, and deleting
documents. Since they were using a test database
(which would be purged and reloaded with real data
before production), we let them know deleting records
was okay for the alpha test, though we asked them not
to do so with “real” documents once we’d gone live.
During the two-week alpha process we answered four
email questions and reported a total of 26 bugs or
feature requests, most of which were fixed before the
QA test period began.

Immediately after the alpha period we went to a
Quality Assurance (QA) period. QA was handled
internally by a team of volunteers called “Bugzappers.”
The process required members of the team to say
whether they’ll participate in a release, and if so, to
review the application specifications and documentation,
test features, report bugs, make feature requests, confirm
whether bugs and feature requests purported to have
been handled actually were, and finally, give a yea or
nay as to whether the application can be released. We
had the participation of about half a dozen Bugzappers
who picked nits with the application during the QA
period. During the QA period our test team identified 13
new bugs, all of which were fixed before beta. At the
end of the QA period, only six bugs or feature requests
remained open.

34

Simon & Weissler

To perform a wider test we released a beta
version of the application and database to the
documentation-focused experts within the company.
This included the alpha and QA test teams, as well as
the Publications committee, who oversaw and
mentored all technical writing within the company; the
Methodologies Development team, who designed,
developed, and documented detailed methodologies;
and the Repository group, who were responsible for
any and all thoughts on documentation and tool
repositories company-wide. During the week-long
beta test the team identified 21 new bugs or feature
requests, most of which were fixed before production.
At the end of the beta test period, only 17 bugs and
feature requests remained open.

Table 1 shows the bugs, feature enhancement
requests, and user training issues during the testing
process.

During During Entire
Type Dev & QA| Beta Process
Bugs 30 6 36
Enhancement
requests 7 7 14
User training
issues 6 3 9
Total 43 16 59

Table 1: Bug status.

Production Implementation

Once the beta testing was complete, we put the
application into production. Doing so was as simple as
announcing to the company as a whole that the
application existed and putting a link to it on the main
intranet home page.

Within the first month in production, users
identified some 15 additional bugs and feature
enhancement requests, all of which were later
implemented, such as tying the documentation more
closely to the application; cleaning up the user
interface; and providing automated email notifications
to the librarians when records were added, edited, or
deleted to ensure sanity in the database.

A month after the initial release (called 2.0 for
historical reasons) we released a patched version (2.1)
that fixed four of these issues. Additional patch and
incremental hot-fix releases over the next four months
fixed or implemented an additional four of 13 bugs or
requests. Table 2 shows the time line of the testing and
release cycles.

Measuring Success

It is difficult to measure the success of this
project in a quantitative manner. Other than the
number of documents, the number of users, and the

2003 LISA XVII — October 26-31, 2003 — San Diego, CA

Simon & Weissler

number of searches, there is no real quantitative
measurement of success. These measurements are
discussed, along with qualitative measurements, in the
following sections.

Version Date Description
x2.0.0.1 Apr 5 Alpha test
x2.0.0.2 Apr 13 | Quality Assurance
x2.0.0.3 Apr23 | Beta test
x2.0.0.4 Apr27 | Beta test, continued
v2.0 May 7 Initial production release
v2.1a Jun 9 Rearranged top-level page,
added Upload and
Templates links, added
version to footer
v2.1b Sep 7 Corrected typos and
formatting
v2.1c Oct 4 Cosmetic style changes for
application &
documentation
v2.1d Oct 15 | Bug fix
v2.le Oct 19 | Bug fix

Table 2: Incremental release time line.

Number of documents

The number of documents — or in reality, the
number of unique document URLs — in the database
grew over time. The initial bibliography collection
phase, in fact, allowed us to begin production with
nearly 800 documents. Table 3 and Figure 1 show the
number of documents over time.

The continued growth of documents in the

Repository after going into production, not all of which
were added by the librarians as an extension of the

Designing, Developing, and Implementing a Document Repository

bibliography collection process, showed us that the
Repository was indeed useful. This met our expectations.

Date Event Documents
Feb 24 | Original coding 3
collection phase 1
Bibliography
Mar 15 collection phase 2 >67
Bibliography
Apr 135 collection phase 3 752
May 7 Initial release 794
Jul 17 Revisions announced 897
Oct 23 One author left the 1101
company
Dec 4 Other author left the 1128
company
Insider source
Dec 18 reported statistics 1130

Table 3: Documents over time.

Number of Users

The number of users also grew over time. This
met our expectations, as we continually grew the
number of possible users, as shown in Table 4.

Phase Users
Development 2
Alpha test 5
Quality Assurance 11
Beta test 34
Production > 250

Table 4: Number of users over time.

1200

/—‘

1000

. /

600 /
400

24-Feh
10-Mar 4
24-Mar
T-hpr
21-Apr
5-May |
19-May
2-Jun
16-Jun
30-Jdun

14-Jul

28-Jul 4
11-Aug
Z5-fug
G-Sep
22-Sep
&-0ct
20-0ct
3-Nov
17-Hov
1-Dec
15-Dec

Figure 1: Documents in respository over time.

2003 LISA XVII - October 26-31, 2003 — San Diego, CA

35

Designing, Developing, and Implementing a Document Repository

Between the start of the beta and the start of
production, the company experienced several rounds
of layoffs, reducing the maximum possible audience
from over 400 to around 250. That maximum number
continued to decrease during the production period
down towards 150-200. This curtailed the growth
pattern in usage and also reduced our ability to
research and analyze the data further.

Number of Searches

We do not have data on the number of searches
performed, as the httpd access_log files have not been
made available. Both of the authors of this paper left
the company through layoffs, and the company has not
produced the old logs for this paper.

However, even were this information be made
available it would be difficult if not impossible to
draw any meaningful conclusions from it. Searches
during the development and testing phases are
meaningless, since they are intended to test both
successful and unsuccessful searches. Searches made
during production might be meaningful if we tracked
success (defined as the search resulting in either at
least one document or the document(s) the user
wanted or needed), but we did not do so early enough
to collect the data. Finally, even if we knew how many
searches were performed (regardless of success), the
large reduction in the user base makes most of the
numbers meaningless.

Qualitative Measurements

It is also difficult to measure success quali-
tatively. Without access to the log files, and without a
survey as to whether the users were satisfied with their
use of the Repository, there is no real qualitative
measurement that was performed. Feedback was
generally positive, with bugs and enhancement
requests submitted by several users; several members
of the company, in various roles (such as technical,
sales, marketing, and executive management), mailed
to thank the development team for their efforts and
praising the Repository.

Related Work

There were several intranet document
management systems when we first started looking at
vendors (over two years ago as of the date of first
publication of this paper). Based in part on a
document management seminar one of the technical
writers attended, there were 37 software packages on
our “long” list, including XML development
packages. We realized before we could narrow down
to a “short™ list that we could not afford any of the
packages, though the most likely candidates included
Documentum, Enigma’s DynaText, IntraNet
Solutions’ Intra.doc!, QUIQ’s Knowledge Network,
and Vignette’s content management system.

We also briefly considered using wikis for this
project. A wiki is a composition system-meets-

36

Simon & Weissler

discussion medium tool used for collaboration. While
wikis are great for groupware or collaborative work on
documentation development, we weren’t developing
documentation in this project. We were developing a
repository to store and track documentation explicitly
developed elsewhere. A wiki was the wrong tool for
what we wanted.

Future Work

Future work includes fixing bugs identified during
the continuing use of the Repository software as well as
adding the additional features omitted from the current
release. In no particular order, these include:

¢ Separating the one big index.cgi script into
smaller, more-manageable chunks, say to have
a search.cgi instead of index.cgi?action=search.
The original intent was to have much of the
guts of what the various actions do are
collected into subroutines in a separate
application Perl module, keeping index.cgi
relatively lean and mean, but as the application
grows it makes sense to break it apart.
Re-think the company and non-company author
handling, or at least automate record updates
when an employee leaves the company.
Provide a record-level authorization permission
structure.
Provide and track type-dependent information
(e.g., publisher for books and magazines,
magazine title and issue/volume/number for
articles and columns, etc.)
Include command-line interfaces to create new
documents & templates, update existing documents
& templates, search for documents & templates,
administer the database, and convert a document
from one format to another.
Provide a file system-like interface for
browsing.
Provide tools to convert between a consistent
back-end format (such as XML) and the desired
front-end formats (HTML, PDF, RTF, TXT,
etc.); for example, xmI2html and xmI2pdf and
pdf2xml and htmI2xml.
Provide a tool to check out (and lock) a
document for revision.
Provide an interface to the public Internet web
site (so non-authenticated personnel can search
for PUBLIC documents).
Provide an interface for people to suggest
changes to documents they do not own.
Provide and track document-level security so
users cannot see document records (including
the URLs) for documents the web may not let
them access.
® Provide a way to “group” documents.
® Provide a way to “group” permissions.
¢ Provide a better mechanism for documents to
include or supersede each other. Updating data
in one place should update it everywhere.

2003 LISA XVII - October 26-31, 2003 — San Diego, CA

Simon & Weissler

e Update the document record automatically if
the content of a certain URL changes.

¢ Generate and track document numbers.

® Provide a means for a document to be broken off
from a reference so changes to that reference no
longer are applied to the document.

® Provide a custom query interface (build-your-
own SQL).

® Provide a way to save and load complex queries.

¢ Enforce documentation process flow (creation,
modification, deletion, permissions, change
control, state changes, and so on).

Conclusions

Our major goal of providing a single all-
inclusive starting point for searches and a repository
for uploading documents was met. It was
minimally-intrusive for both authors and users. Our
minor goal of updating content in one place and
propagating that change to other documents was not
implemented in this version of the software but
remains a possible enhancement.

What did we learn during this project? We
learned how important ease-of-use and a clean user
interface are for applications, both for document
authors (adding and editing records, uploading
documents) and searchers. We learned that different
people map information in different ways, and that
any knowledge mapping or searching system has to be
usable regardless of how we do so.

We learned how important our system
administration skills were. Requirement analysis,
organizational and project management skills,
discussions with vendors, being able to translate
between business and technical people, and best
practices in programming, software development,
and testing were all essential to successful
deployment of the repository. Documenting the
application for both technical and nontechnical users as
well as for the administrators helped the application gain
momentum within the company. Having a database-
savvy member of the team saved us a lot of unnecessary
work as well. We learned that having a project plan, with
specific milestones and goals, is essential. And we
learned that preventing project creep can be done,
provided that the project manager is firm and the
requirements are well-documented and well-understood.

We would strongly suggest to anyone interested
in implementing a repository that you identify what
you want and don’t want well in advance. Do not
allow yourself the luxury of adding “just one more
cool feature” unless it truly is something you need.
Consider both free and for-pay software that exists
before writing your own if at all possible. If you’re in
an environment which already uses some tracking or
coordinating system (like the Class and Subclass we
used here), implement it as part of your database. Talk

2003 LISA XVII - October 26-31, 2003 — San Diego, CA

Designing, Developing, and Implementing a Document Repository

to your users early and often; if you want them to use
the tool they need to understand what’s in it for them,
what benefits it can provide, and how easy it is to use.

Availability

The source code for the Repository script can be
made available upon request. The version deployed in
our former company uses many internal code stubs
which we are reworking to be generic. At present it still
makes several assumptions, including that there is an
Oracle database back-end and the appropriate CPAN
Perl modules are available. We want to make the script a
bit more robust and intelligent to allow for different
databases and authorization schemes before publishing
the software under some form of public license.

Acknowledgements

The authors would like to thank the following
people:

e Mike Stok for developing the original upload

script (version 1.0 of the Repository).

e Katherine Ross, Jeff Schouten, Jordan Schwartz,
and Emily Stemmerich for the initial
bibliographic data collection that let us preload
the Repository with nearly 800 data records.

Bill Huff and Tim Peoples for developing the
underlying Perl modules that normalized
database authentication and access.
Cliff Nadler and Ryan Skadberg for their
assistance, advice, and implementation ideas.
¢ Lee Amatangelo, Todd Chapman, Brian Clark,
Katrinka Dall, Mark Dawson, Doug Freyburger,
Marc Furon, Charles Gagnon, Jason Heiss,
Barbara Howard, Gerard Hynes, Brian Kirouac,
Ron O’Neill, Joe Royer, Tapan Trivedi, and Jeff
Tyler for confirming the integrity of the data
before we rolled the application into production.
® Angela Gatto, Brian Worrall, and Julie
Zacharias for their tremendous assistance in
drafting the initial requirements specification
and for their alpha-testing the Repository.
Alvin Gunkel, Barbara Ingram, Peter Pak,
Keith Patterson, Tom Whitley, and Michael
Wilson for their assistance in the quality
assurance process.
Ed Bailey, Chris Barnash, Bryon Beilman,
Dave Bianchi, Matt Coffey, Steve Cruz, Ralph
Dahm, Randy Dees, Ryan DiDomizio, Jim
Flanagan, Jeff Giuliano, Mark Jones, David
Leonard, Jim Niemira, Jason Powell, Michael
Rice, Rodney Rutherford, Joel Sadler, Andy
Silva, Ed Taylor, Rob Worman, and David
Young for their extensive beta-testing of the
Repository.

Furthermore, thanks to the dozens of people
within the company who wrote documentation,
uploaded it into the Repository, ensured the accuracy
of the Repository records, and collected bibliographic

37

Designing, Developing, and Implementing a Document Repository

details of others’ works to ensure completeness and
accuracy of the data in the Repository. Your help
brought us to over 1,100 valid document records in
under six months of production use.

Finally, thanks to Alva Couch, £leen Frisch, Tom
Limoncelli, and Adam Moskowitz for their assistance in
reviewing this paper. Your comments helped us tremen-
dously, even when we didn’t agree with them.

Biographies

Josh Simon has 12 years of experience in UNIX
system administration, project management, and
technical writing. He has a long history of
contributions to SAGE, including serving on the
SAGE Executive Committee, being the Desk Editor of
SAGEwire, chairing the SAGE Online Services
Committee, and serving on five LISA program
committees. He’s written and coordinated summary
writeups for several USENIX Annual Technical
Conferences and LISA conferences in the past for
publication in ,login:. His non-technical interests
include cooking, reading mysteries and science
fiction, and plotting to take over the world. Reach him
electronically at jss@clock.org .

Liza Weissler has 17 years of experience in UNIX
system administration, Oracle database administration,
and application development. She worked for the
RAND Corporation (Santa Monica, CA) and Collective
Technologies before giving up her Southern California
native status and moving to southeastern Arizona. She
is now happily ensconced in the foothills of the
Huachuca mountains, is employed by Management and
Engineering Technologies International Inc (METI;
www.meticorp. com), and works as a contractor to the
US Army’s Network Enterprise Technology Command
(NETCOM) at Fort Huachuca, Arizona in between
vacations. Contact her electronically at liza.weissler@
us.army.mil .

Appendix A: Database Schema

Overview

This is the sql used to create the “repo” database
in Oracle. Basically the tables are:

¢ documents — The main table

o states — Where the public/blessed/locked/frozen
bits are defined

e codes — Internal codes

e class, class_type — Define class/subclass

e authors — Table to store info on folks no longer
with the company

Of the others: long_data is used to store notes for
documents. auth_stat helps out with the author sorting
and unique author statistics. doc_history is the audit trail.

There are some foreign key constraints defined for
the documents table, namely that the state and class/
subclass must be defined in the states and class tables.

38

Simon & Weissler

There’s no constraint on codes since it can be null.

The initial sequence creation requires:

drop
drop
drop
drop
drop

drop
drop
drop
drop
drop
drop
drop
drop
drop

sequence
sequence
sequence
sequence

doc_id_seq;
cl id_seq;
1d_id_seq;
dh_id_seq;

synonym members;

table documents;
table states;
table codes;

table class;

table class_type;
table doc_history;
table long data;
table authors;
table auth_stat;

documents Table

create table documents (
doc_id

doc_in_auth

number not null,
varchar2(256),

doc_non_in_auth varchar2(256),

doc_sortkey

varchar?2 (60) ,

doc_title varchar2(256) not null,
doc_description varchar2(256),
doc_keywords varchar2(512),
doc_revision varchar2(10),
doc_published date,

doc_url varchar2(256),
doc_st_id number not null,
doc_public number (1),
doc_cd_id number,
doc_cl_id number not null,
doc_notes number,

doc_lastupdate date,

doc_updater

number,

primary key (doc_id)

)

states Table

create table states (
st_idid
st_desc
primary key (st_id)

)

codes Table

create table codes (
cd_4id
cd_code
cd_desc
primary key (cd_id)

)

number,
varchar2(20),

number,
char,
varchar2(30),

class Table
create table class (
cl_id number,
cl class char,
cl _subclass char,

cl_subname
primary key (cl_id)

)

varchar2 (30),

2003 LISA XVII - October 26-31, 2003 — San Diego, CA

Simon & Weissler

class_type Table

Designing, Developing, and Implementing a Document Repository

create table class_type (

ct_class
ct_name

char,
varchar?2 (30),

primary key (ct_class)

)
doc_history Table

create table doc_history (

dh_id
dh_doc_id
dh_st_id
dh_type
dh_timestamp

number not null,
number not null,
number,

char,

date not null,

primary key (dh_id)

)
long_data Table

create table long data (
1d_4id number not null,
1d_data long,
primary key (1d_id)

)

authors and auth_stat Tables

create table authors (
au_login varchar2(10) not null,
au_lname varchar2(30),
au_fname varchar2(30),
primary key (au_login)

)

create table auth stat (

as_name varchar2 (40) not null,
as_doc_in number not null,
as_isin number,

primary key (as_name)

)

Synonyms, Foreign Keys, and Sequences

create synonym members for resources.members;
alter table documents

add (foreign key (doc_st_id) references states(st_id) on delete cascade,
foreign key (doc_cl_id) references class(cl_id) on delete cascade,
foreign key (doc_notes) references long_data(ld_id) on delete cascade,
foreign key (doc_updater) references resources.members (mb_em_id)

)

alter table class

add (foreign key (cl_class) references class_type(ct_class) on delete cascade

)

create sequence
grant select on
create sequence
grant select on
create sequence
grant select on
create sequence
grant select on

Triggers

doc_id_seq;

doc_id_seq to repo_role;
cl id_seq;

cl_id_seq to repo_role;
1d_id_seq;

1d_id_seq to repo_role;
dh_id_seq;

dh_id _seq to repo_role;

CREATE or REPLACE trigger doc_history
BEFORE insert or update or delete on repo.documents

FOR EACH ROW
BEGIN

2003 LISA XVII - October 26-31, 2003 — San Diego, CA

39

Designing, Developing, and Implementing a Document Repository Simon & Weissler

IF DELETING THEN
INSERT INTO repo.doc_history (
dh_id, dh_doc_id, dh_st_id, dh_type, dh_timestamp
)
VALUES (
dh_id_seq.nextval, :o0ld.doc_id, :o0ld.doc_st_id, ’D’, SYSDATE
)
END IF;

IF UPDATING THEN
INSERT INTO repo.doc_history (
dh_id, dh_doc_did, dh_st id, dh_type, dh_timestamp
)
VALUES (
dh_id_seq.nextval, :new.doc_id, :new.doc_st_id, ’U’, SYSDATE
)
END IF;
IF INSERTING THEN
INSERT INTO repo.doc_history (
dh_id, dh_doc_id, dh_st_id, dh_type, dh_timestamp
)
VALUES (
dh_id_seq.nextval, :new.doc_id, :new.doc_st_id, ’I’, SYSDATE
)
END IF;

END doc_history;

40 2003 LISA XVII - October 26-31, 2003 — San Diego, CA

