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Using Service Grammar to Diagnose
BGP Configuration Errors

Xiaohu Qie – Princeton University
Sanjai Narain – Telcordia Technologies

ABSTRACT

Often network components work correctly, yet end-to-end services don’t. This can happen
when configuration parameters of components are set to incorrect values. Configuration is a
fundamental operation for logically integrating components to set up end-to-end services.

Configuration errors frequently arise because transforming end-to-end service requirements
into component configurations is inherently difficult. Such transformations are largely performed
in a manual and localized fashion, resulting in high cost of network operations.

The Service Grammar technique has been developed to solve the configuration error diagnosis
problem and, more generally, to formalize the process of building complex systems via configuration.

At its core is a Requirements Language that contains global, high-level constraints upon
configuration parameters. These are derived from identifying the notion of ‘‘correct
configuration’’ associated with different protocols. These notions are composed to create system-
wide requirements on architecture and policies. A Diagnosis Engine checks if constraints in the
Requirements Language are true given definite component configurations and recursively checks
composite requirements.

This paper describes an application of Service Grammar to diagnosing BGP configuration
errors. As BGP architecture and policies differ widely from one network to another, it is not
possible using previous techniques to check if router configurations implement the intended
requirements. Our tools enable administrators to specify system-wide, network-specific
requirements and check if they are correctly implemented by component configurations.

Introduction

Traditional network management systems diag-
nose hard, localized errors such as fiber cuts or hard-
ware/software component failures. It is quite possible,
however, that network components work correctly yet
end-to-end services don’t. This happens if there are
configuration errors, i.e., configuration parameters of
components are set to incorrect values. Configuration
is a fundamental operation for integrating components
to implement end-to-end services. Configuration
errors arise frequently because transforming end-to-
end service requirements into configurations is inher-
ently difficult: in realistic networks there are many
components, configuration parameters, values, proto-
cols and requirements. Yet, such transformation is
largely performed manually. The resulting high cost of
network operations as well as the potential for security
breaches is well documented [1, 2].

The Service Grammar [3, 4, 5, 6] technique has
been developed to solve the configuration error diagno-
sis problem, and more generally, to formalize the pro-
cess of building complex systems via configuration. At
its core is a Requirements Language that contains
global, high-level abstractions that are set up in the pro-
cess of setting up end-to-end services. A good heuristic
for deriving this language is to ask the question ‘‘what

does it mean for a group of agents executing a protocol
to be correctly configured.’’ This language is created
for all of the protocols in a domain of interest. End-to-
end service requirements can be naturally defined as
logical conjunctions of requirements in the language at
and across different protocol layers.

This is done by rules of the form A:-B1,
. . . , Bk, k ≥ 0, where each A and Bi is a requirement. A
Diagnosis Engine checks if a language requirement is
true given definite system configuration. By recursive use
of this operation, complex algorithms for diagnosis can
be developed. Service Grammar captures the intuition to
regard a system not as a set of components but as a set of
services that, in general, span multiple components.

The information flow of the diagnosis system is
illustrated in Figure 1. The diagnosis engine takes
input from two sources: (1) service requirements
expressed in the requirements language, and (2)
vendor-neutral component configurations stored at a
centralized database, e.g., an LDAP directory. Raw
component configuration is parsed into vendor-inde-
pendent data structures by vendor-specific adaptors.
The diagnosis engine queries the component configu-
ration database and verifies if the configurations are
consistent with service requirements. If not, it notifies
the administrator where the diagnosis process had
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failed. The administrator can then modify the configu-
ration settings and rerun the diagnosis process.

Vendor-Specific

Adaptor

Diagnosis

Engine

Raw Device
Configuration

Service
Requirements

Vendor-independent
Component

Configurations

Diagnosis Report

Figure 1: Diagnosis system.

Service Grammars have been built and used for
adaptive Virtual Private Networks and mobile security
[3, 4, 5, 6]. This paper describes an application of Ser-
vice Grammar to diagnosing configuration errors in
BGP [7]. Previous solutions to diagnosing configura-
tion errors have been network invariant [8] in that they
contain a fixed set of constraints that must be satisfied
by every BGP network. However, BGP requirements
such as logical architecture and policies differ widely
from one network to another. It is not possible in pre-
vious techniques to check if component configurations
implement the intended requirements. Our tools
enable administrators to specify network-specific
requirements and check if they are correctly imple-
mented by component configurations.

BGP Background

BGP is the Internet’s inter-domain routing proto-
col run between autonomous systems (ASes). Routers
in different ASes use BGP to exchange information on
how to reach destinations throughout the Internet.
BGP is path-vector based. A BGP route consists of a
network prefix N and an AS_PATH of the form
{ASk, . . . , AS0}, which is the ordered list of ASes to
traverse to reach N. The AS path is constructed by
successively propagating reachability information:
each AS prepending its own AS number to the path
(one or more times) before sending it to neighbors.
Figure 2 illustrates how routing information about net-
work 200.12.0.0/16 is propagated between ASes. For
instance, AS160 knows its traffic will traverse AS172,
AS180 and AS200 before reaching the destination.

BGP is capable of enforcing policies based on var-
ious preferences and constraints. BGP policies affect the
route selection and export process, thereby controlling
how traffic enters and leaves an AS. Each AS can define

BGP policies according to its own criteria. BGP chooses
the best route based on a number of metrics, such as the
AS path length. In Figure 2 AS172 chooses {180, 200}
over {190, 200, 200} as the best route to N because its
policy favors a shorter AS path.

AS 200

N = 200.12.0.0/16

AS 180 AS 190

AS 172

AS 160

N, {200, 200}N, {200}

N, {180, 200} N, {190, 200, 200}

N, {172, 180, 200}

Figure 2: BGP network example.

Policy can be also applied to the route propaga-
tion process. An AS decides what to tell its neighbors.
If an AS is unwilling to carry certain traffic for a
neighbor, its policy will disallow routing advertise-
ments about particular destinations being sent to the
neighbor. For instance, AS180 and AS190 chose not
to export routes to N to each other. As a result, the hor-
izontal link between the two ASes will not be used to
carry traffic to N. In a less restrictive case, AS200 tells
AS190 about N, but prepends its AS number twice to
make the path longer, indicating the route is consid-
ered a less attractive one. The policy eventually affects
AS172’s route selection process: it chose AS180
instead of AS190 as the next hop AS to reach N.

Challenges of Setting Up BGP

To set up BGP, network administrators configure
individual routers in the AS using a configuration lan-
guage. The following is a sample configuration in
Cisco CLI format [9] for a router in AS160. The con-
figuration involves originating routes, establishing
peer relationship with neighbors, and applying policy
filters. In this example, the router announces network
172.1.1.0/24 and peers with a remote BGP router in
AS172. The policy filter allows only routes with an
empty AS path (i.e., locally originated routers) to be
advertised to AS172:
router bgp 160

172.1.1.0 mask 2525.255.255.0
network 172.16.24.1 remote-as 172
172.16.24.1 filter-list 1 out

!
ip as-path access-list 1 permit ˆ$
!
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As BGP is a complex protocol, manually configur-
ing individual routers is a time-consuming and error
prone task. This is especially challenging in a large net-
work with hundreds to thousands of routers. To maintain

BGP Requirements Language
Requirement Meaning

ibgp_session
(RouterA, RouterB, LocalAS)

Both RouterA and RouterB are BGP speakers of the local AS. A BGP
session can be successfully established between them.

ebgp_session
(LocalRouter, LocalAS, RemoteRouter,
RemoteAS)

A BGP session can be successfully established between the local BGP
speaker and the remote BGP speaker.

reflector_client_session
(ReflectorRouter, ClientRouter, LocalAS)

In addition to ibgp_session requirements, the reflector is set up to forward
routing updates from other IBGP peers to the client.

cluster
(Reflectors, Clients, LocalAS)

Reflectors and clients form a cluster, i.e., reflectors are fully meshed and all
clients are peered with all reflectors.

as_full_mesh
(Clusters, Non-clients, LocalAS)

Clusters and non-clients form an AS, i.e., all reflectors and non-clients are
fully-meshed. No client peers with a non-client.

route_originate
(Subnets, LocalAS)

The LocalAS originates routes represented by subnets.

link_to_provider
(LocalRouter, RemoteRouter)

The session represents a link to the local AS’s provider. On this session, the
local AS should accept everything, but only announce its own routes.

link_to_customer
(LocalRouter, RemoteRouter)

The session represents a link to the local AS’s customer. On this session, the
local AS should announce everything, but only accept the customer’s routes.

link_to_peer
(LocalRouter, RemoteRouter)

The session represents a link to the local AS’s peer. On this session, the local
AS should only announce its customers’ routes, and only accept the peer’s
customers’ routes.

provider_as
(LocalAS, RemoteAS)

RemoteAS is a provider of LocalAS.

customer_as
(LocalAS, RemoteAS)

RemoteAS is a customer of LocalAS.

peer_as
(LocalAS, RemoteAS)

RemoteAS is a peer of LocalAS.

preferred_outgoing_link
(LocalRouter, RemoteRouter,
RemoteDestination)

The session is the preferred outgoing link to reach a remote destination,
expressed in either subsets or ASPath.

preferred_incoming_link
(LocalRouter, RemoteRouter,
LocalDestination)

The session is the preferred incoming link to reach a local destination,
expressed in either subsets or ASPath.

preferred_neighbor_entry
(LocalRouter, RemoteRouter,
LocalDestination)

The session is the preferred entry from the neighbor AS to reach a local
destination, expressed in either subsets or ASPath.

Ta b l e 1: Service grammar for BGP.

a consistent view of routing inside an AS, all BGP
routers must be correctly configured to form a full-mesh
or some well-structured internal hierarchy, such as route
reflector clusters. At a lower-level, two BGP speakers
must be able to talk to each other in order to exchange
routing information. This seemingly obvious require-
ment has certain intricacies due to the fact that BGP
relies on pre-existing connectivity provided by Interior
Gateway Protocols (IGP) or static routes. For example,
the remote peer address specified by a BGP router must
match the outgoing interface of the IGP route used by
the remote peer. Otherwise the connection will not be
established, unless the remote peer explicitly specifies

the matching interface. This type of implicit requirement
can be easily overlooked by administrators, or violated
due to change of the network.

Policy routing is an important functionality of
BGP, but also provides numerous opportunities for con-
figuration errors. In face of this type of errors, BGP may
continue to operate, but does not enforce the intended
policy. Policy violation could lead to connectivity, secu-
rity and economic problems. A well-know problem is
address space hijacking, in which one AS accidentally
announces networks ‘‘owned’’ by other ASes, forming a
‘‘ b l a c k h o l e ’’ within the Internet. Other policy problems
are commonly related to the commercial relationships
an AS participates in. A multi-homed AS, for instance,
shouldn’t provide transit service to non-local traffic. The
causes of errors are diverse, ranging from typos to poor
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understanding of configuration semantics. An excellent
empirical study of BGP policy configuration errors is
presented in Reference [10].

Service Grammar for BGP

Correct BGP configuration means all routers in
an AS achieve the joint goal of exchange routing
information, maintaining a consistent view of routing
and enforcing intended policies. However, there is
quite a large conceptual gap between this global
requirement and individual router configurations.
Configuration errors arise because manual compilation
of these high-level requirements into low-level
‘‘machine language’’ is difficult. If for some reason
the global requirements are not satisfied there are no
systematic tools to automatically diagnose configura-
tion errors. Network administrators today manually
perform these tasks.

Diagnosing why routers don’t work together
requires global reasoning about the logical structure of
the network as well as dependencies between services.
The BGP Service Grammar captures these global abstrac-
tions that are set up in the process of constructing routing
services. By making these definitions explicit, network
administrators can formally state high-level network-spe-
cific requirements and policies using these definitions.

A subset of the requirement language is shown in
Ta b l e 1 followed by detailed explanations. The require-
ments fall into two categories: connectivity and policy.

Connectivity Requirements
The language provides two basic primitives –

ibgp_session and ebgp_session – for describing BGP
neighbor relationships. We outline the diagnosis pro-
cedure for ibgp_session in Figure 3.

Regarding establishing BGP neighbor relationship,
the types of configuration errors that can arise include:

• Incorrect AS number or neighbor address at
two session end points, peer values are not mir-
ror images of each other (usually typos).

• The neighbor’s address is not reachable via
IGP. This can happen when a loop-back inter-
face is used but that interface does not partici-
pate in any IGP.

• A router tries to connect to a reachable inter-
face of a remote neighbor, but the neighbor
uses a different outgoing interface in the
reverse IGP route. This happens when the
neighbor has multiple reachable interfaces.

Any of the above errors can lead to connectivity
problems preventing the BGP session from being
established. This example demonstrates that even a
very basic BGP requirement implies a number of
assumptions and global relationships that the admin-
istrator must keep in mind and configure correctly on
every router. There are many places for errors. The
diagnosis engine systematically validates these
assumptions and global relationships, catching all

potential errors and providing useful information for
the debugging process.

ibgp_session(RouterA, RouterB, LocalAS)
• Meaning: Both RouterA and RouterB are BGP

speakers of the local AS. A BGP session can be
successfully established between them so they can
exchange routing information.

• Diagnosis procedure:
1. RouterA.as_num == LocalAS

RouterB.as_num == LocalAS
2. $ Ia, Ib, Na, Nb, s.t

• Ia ö RouterA.interfaces
• Ib ö RouterB.interfaces
• Na ö RouterA.neighbors
• Nb ö RouterB.neighbors
• Ia.ip_addr == Nb.peer_address
• Ib.ip_addr == Na.peer_address
• Na.remote_as == LocalAS ==

Nb.remote_as
• RouterA has an IGP route Ir_a to reach Ib
• RouterB has an IGP route Ir_b to reach Ia
• If Ia is a loopback interface then

Na.update_source == Ia, else Ia is the
outgoing interface of Ir_a

• If Ib is a loopback interface then
Nb.update_source == Ib, else Ib is the
outgoing interface of Ir_b

Figure 3: IBGP session diagnosis procedure.

cluster(Reflectors, Clients, LocalAS)
• Meaning: Reflectors and clients form a cluster, i.e.,

reflectors are fully meshed and all clients are peered
with all reflectors.

• Diagnosis procedure:
1. " A ö Reflectors, " B ö Clients, reflec-

tor_client_session(A, B, LocalAS) is TRUE
2. " X, " Y (X ≠Y) ö Reflectors ibgp_session(X,

Y, LocalAS) is TRUE
3. All reflectors have the same cluster_id
4. " C ö Clients

" N ö C.neighbors
If (N.remote_as == LocalAS) &&

(N /ö Reflectors ∪ Clients)
return FALSE;

/* Clients shouldn’t have IBGP
sessions to non-clients */

Figure 4: Cluster diagnosis procedure.

Notice these basic primitives are already higher-
level than raw router configurations. They can be used
to compose other higher-level requirements that specify
an AS’ logical structure, such as reflector_client_session
and cluster.

Figure 4 illustrates how to validate if a group of
routers form a cluster. The algorithm verifies three
global properties: all reflectors are fully meshed, all
clients can receive updates from all reflectors, and
every client only has BGP sessions with routers in the
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same cluster. IBGP session test is embedded as part of
the procedure.
Policy Requirements

Routing policies are configured via policy filters.
A filter consists of a match criteria and a set of actions.
Nearly all attributes of a routing update can be used to
specify the match criteria, with AS path and network
prefix being the most common ones. When a routing
update satisfies the conditions set in the match criteria,
associated actions (permit, deny, or modify) are invoked
to control the propagation of the update. A filter can be
applied to route origination, import and export process.
It serves as the low-level building block for composing
arbitrary routing policies. Our BGP Service Grammar
supports the direct use of low-level filters to specify pol-
icy requirements. What we highlight in this section is
the grammar that describes global AS-level properties,
rather than that of an individual filter. These abstractions
give network administrators a set of templates for defin-
ing common AS routing policies at high-level. Low-
level filters can then be used for further refinement. We
believe such a design would largely reduce the need for
administrators to go into the low-level configuration
details of each filter.

link_to_provider(LocalRouter, RemoteRouter)
• Meaning: The session between LocalRouter L and

RemoteRouter R is a link to the provider of LocalAS.
• Diagnosis procedure:

Let P = Get_provider_AS(L.as_num) ∪
Get_peer_AS(L.as_num)

Let N ö L.neighbors corresponding to R
" p ö P

Construct a route update r,
let r.as_path="_p_"

if (Routemap_Eval(N.map_out, r)
≠ DENY)

return FALSE;
/* LocalAS shouldn’t leak routes learned

from providers back to providers */
Figure 5: Link to provider diagnosis procedure.:

Ty p i c a l commercial relationships between two
neighboring ASes can be characterized as customer,
provider, or peer, as defined in [11]. To test if a remote
AS is a customer (provider, or peer) of the local AS, we
need to verify that the relationship holds on all sessions
between the two ASes. Figure 5 outlines the diagnosis
procedure for link_to_provider. When exporting routers to
a provider, an AS exports its own and its customer
routers, but usually does not export routes learned from
providers or peers. A properly configured export filter
on this session should block those routes. For each
provider and peer AS, the diagnosis procedure con-
structs an AS path containing the AS number, and feeds
it to the export filter. Any of these paths passing the fil-
ter is a violation of the policy. In that case, the diagno-
sis procedure fails. This procedure uses several utilities
functions. Get_Provider_AS returns the set of ASes that
are marked as a provider of the local AS. Routemap_Eval
mimic the processing of a policy filter on a route update.

When multiple routes to a remote destination
(network or AS) exist, one link is usually designated
as the primary route and others serve as backup. Such
a policy can be expressed with preferred_outgoing_link.
Its diagnosis procedure (Figure 6) examines the import
filter on all EBGP sessions. For each session, the pro-
cedure calculates the local-preference that a route
update to the remote destination would get if it arrives
on this session. To pass the test, the import filter on
the preferred session must be the one that generates
the highest local-preference.

preferred_outgoing_link(LocalRouter, RemoteRouter,
RemoteDestination)

• Meaning: The session between LocalRouter L and
RemoteRouter R is the preferred link for outgoing
traffic to RemoteDestination D.

• Diagnosis procedure:
Let S = Get_EBGP_Sessions(L.as_num)
Construct a route update r, let r.NLRI = D
Let N ö L.neighbors corresponding to R
Let H = Routemap_Eval(N.map_in, r).local_pref
" s ö S, s /ö {L, R}
if (Routemap_Eval(s.local.map_in, r).local_pref > H)
return FALSE;
/* Another session is more preferable to this one */

Figure 6: Preferred outgoing link diagnosis proce-
dure.

Both preferred_incoming_link and preferred_neigh-
bor_entry are used to control incoming traffic by desig-
nating a primary route to a local destination. The dif-
ference is that the latter only concerns two neighbor-
ing ASes. The diagnosis procedures are similar. Both
procedures examine export filters, except that the for-
mer looks for the filter that generates the shortest AS
path, while the latter looks for the one that generates
the lowest multi-exit-discriminator (med).

Sample Network Study

We have designed an experimental BGP network
consisting of nine CISCO routers in five ASes, shown
in Figure 7. The goal is to demonstrate different BGP
architecture, peering relationship and routing policies.

Under this setup:
• AS172 represents a large service provider with

four routers, three of which are BGP speakers.
The three BGP speakers form a cluster with
PR3 being the reflector. Therefore IBGP peer-
ing between CR3 and CR4 is not required.
Inside the AS OSPF is running as IGP.

• AS160 represents a small customer ISP. It con-
nects to the Internet solely via AS172, and thus
it is a stub.

• AS180 and AS190 represent two intermediate
level service providers. They subscribe service
from AS172 and provide connectivity for AS 200.
They also enter a bilateral peering agreement.
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• AS200 represents a multi-homed customer ISP
with 2 BGP speakers. It has multiple links to
AS180 and AS190.

BGP1 BGP2

E1/0: 200.12.3.1

E1/0: 200.12.3.2

BGP3 BGP4

CR3 CR4

PR4 PR3

AR3

E1/1: 180.200.1.1

E1/1: 180.200.1.2

E1/2: 180.200.2.2

E1/2: 180.200.2.1
E1/1: 190.200.2.1

E1/1: 190.200.2.2

E0/0: 172.18.48.48

E0: 172.18.48.1

E0/0: 172.18.46.46

E0: 172.18.46.1

S0: 172.16.32.2

S0: 172.16.32.1

S2: 172.16.34.2

S3: 172.16.34.1

E0: 172.16.4.2

E0: 172.16.4.1

S0: 172.16.24.1

S1: 172.16.24.2

LoopBack0: 200.12.1.1/24 LoopBack0: 200.12.2.1/24

LoopBack0: 190.1.1.1/24LoopBack0: 180.1.1.1/24

LoopBack0: 172.1.1.1/24

AS 200

AS 180

AS 172 (OSPF)

AS 190

AS 160BGP Speaker

Non-BGP Speaker

E1/0: 180.190.1.1

E1/0: 180.190.1.2

Figure 7: Experimental setup.

Suppose AS200’s network administrator wants to
enforce the following policies:

1. AS200 announces two networks: 200.12.1.0/24
and 200.12.2.0/24

2. AS200 is a multi-homed AS. AS180 and
AS190 are its providers.

3. AS190 is the preferred AS for outgoing traffic
to AS172.

4. BGP1 is the preferred Border Router for outgo-
ing traffic to AS180.

5. BGP1 is the preferred ingress Border Router for
traffic to network 200.12.1.0/24 from AS180.

6. BGP2 is the preferred ingress Border Router for
traffic to network 200.12.2.0/24 from AS180.

7. AS180 is the preferred AS for all incoming
traffic.

To realize these policies, network administrators
first need to analyze the underlying requirements that
support them. Typically, Policy 1 requires the two net-
works be originated by the two BGP speakers. Policy
2 requires outbound filters on every EBGP session
that only allows locally originated routes to be adver-
tised. Policy 3 and 4 require inbound filters to set up
the local-preference attribute correctly. More pre-
cisely, routes to AS172 learned from AS190 should be
given a higher local-preference, as should routes to
AS180 learned via BGP1.
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!
hostname BGP1
!
router bgp 200

no synchronization
network 200.12.1.0
neighbor 180.200.1.2 remote-as 180
neighbor 180.200.1.2 route-map SETLOCALIN in
neighbor 180.200.1.2 route-map SETMEDOUT out
neighbor 180.200.1.2 filter-list 1 out
neighbor 200.12.2.1 remote-as 200
neighbor 200.12.2.1 update-source Loopback0

!
ip as-path access-list 1 permit ˆ$
ip as-path access-list 2 permit 180$
!
access-list 1 permit 200.12.1.0 0.0.0.255
route-map SETLOCALIN permit 10

match as-path 2
set local-preference 400

!
route-map SETLOCALIN permit 20

set local-preference 100
!
route-map SETMEDOUT permit 10

match ip address 1
set metric 10

!
route-map SETMEDOUT permit 20

set metric 20
!
ip route 200.12.2.0 255.255.255.0 200.12.3.2
!

Figure 8: BGP1 configuration.

Policy 5 and 6 requires manipulation of the med
path attribute. Both BGP1 and BGP2 advertise network
200.12.1.0/24 and 200.12.2.0/24 to BGP3. BGP1
should give a more favorable med value to network
200.12.1.0/24 than to 200.12.2.0/24, and BGP2 should
do the opposite. BGP3 then is able to decide which
router is the best to reach these networks based on the
metric. The med value should be set by outbound fil-
ters of BGP1 and BGP2.

For Policy 7, a common practice is for AS200 to
prepend its own AS number to all updates sending to
AS190. This would discourage incoming traffic from
going through AS190 because everything else being equal
BGP will select the route with the shortest AS Path.

Based on these requirements, administrators then
choose the appropriate configuration commands and
parameter values for each router to satisfy them. Fig-
ure 8 and Figure 9 give a snapshot of the working con-
figuration of BGP1 and BGP2.

The configuration errors that can arise include
(in fact, we inadvertently made most of them in setting
up our network):

1. Forget to configure the static route to the loop-
back interface of BGP1 and BGP2. Neighbor
address becomes unreachable. BGP session
could not be established.

2. Forget to specify the update-source in the neigh-
bor command. TCP connection is rejected and
BGP session could not be established.

3. Forget the AS path access list. AS200 becomes
a transit AS of AS180 and AS190.

4. Incorrect route maps and filters due to misun-
derstanding of the syntax of regular expression
and meaning of path attributes. For example, a
lower med value is considered better, which is
in contrast to a higher local-preference is
favored in the route selection process.

5. For Policies 5 and 6, BGP1 and BGP2 should
give, respectively, more and less favorable val-
ues to med. It is entirely possible that both give
equally favorable values.

6. For Policy 7, AS200 should prepend its own
AS number in all updates to AS190, and this
rule should be enforced both at BGP1 and
BGP2. If it is forgotten at one router, Policy 7
will not be implemented.

!
hostname BGP2
!
router bgp 200

no synchronization
network 200.12.2.0
neighbor 180.200.2.2 remote-as 180
neighbor 180.200.2.2 route-map SETMEDOUT out
neighbor 180.200.2.2 filter-list 1 out
neighbor 190.200.2.2 remote-as 190
neighbor 190.200.2.2 route-map SETLOCALIN in
neighbor 190.200.2.2 route-map SETASPATH out
neighbor 190.200.2.2 filter-list 1 out
neighbor 200.12.1.1 remote-as 200
neighbor 200.12.1.1 Update-source Loopback0

!
ip as-path access-list 1 permit ˆ$
ip as-path access-list 2 permit 172$
!
access-list 1 permit 200.12.2.0 0.0.0.255
route-map SETLOCALIN permit 10

match as-path 2
set local-preference 300

!
route-map SETLOCALIN permit 20

set local-preference 100
!
route-map SETMEDOUT permit 10

match ip address 1
set metric 10

!
route-map SETMEDOUT permit 20

set metric 30
!
route-map SETASPATH permit 10

set as-path prepend 200 200
!
ip route 200.12.1.0 255.255.255.0 200.12.3.1
!

Figure 9: BGP2 configuration.

This example shows that manual compilation of
high-level requirements into low-level configuration is
a rather demanding and error-prone process. Even for
a small network, the resulting configuration is already
complex. It is not so obvious how each individual
commands relate to intended policies. A large network
has many more routers to manage and much more
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complicated policies in place. The service requirement
also changes more frequently. It will be even harder
for the administrator to keep the mental map of how
each policy is effected on each individual routers, and
make sure adding or modifying devices and services
does not violate existing requirements.

bgpAS200 :-
AS200basicConnectivity, AS200policies.

AS200basicConnectivity :-
ibgp_session(BGP1, BGP2, AS200),
ebgp_session(BGP1, AS200, BGP3, AS180),
ebgp_session(BGP2, AS200, BGP3, AS180),
ebgp_session(BGP2, AS200, BGP4, AS190),
as_full_mesh({}, {BGP1, BGP2}, AS200).

AS200policies :-
policy1, policy2, policy3, policy4, policy5, policy6, policy7.

policy1 :-
route_originate({200.12.1.0/24, 200.12.2.0/24}, AS200).

policy2 :-
provider_AS(AS200,AS180),

link_to_provider(BGP1, BGP3),
link_to_provider(BGP2, BGP3),

provider_AS(AS200,AS190),
link_to_provider([BGP2, BGP4).

policy3 :-
preferred_outgoing_link(BGP2, BGP4, AS172).

policy4 :-
preferred_outgoing_link(BGP1, BGP3, AS180).

policy5 :-
preferred_neighbor_entry(BGP1, BGP3, 200.12.1.0/24).

policy6 :-
preferred_neighbor_entry(BGP2, BGP3, 200.12.2.0/24).

policy7 :-
preferred_incoming_link(BGP1, BGP3, ALL), preferred_incoming_link(BGP2, BGP3, ALL).
preferred_incoming_link(BGP2, BGP3, ALL), preferred_incoming_link(BGP2, BGP3, ALL).

Table 2: AS200 service grammar.

Using Service Grammar, the global requirements
of AS200 can be described as shown in Table 2.

The description is concise and hides most low-
level details. More importantly, it highlights the con-
straints spanning multiple routers that have to be
enforced. Keeping track of such global constraints in
low-level configuration language would be much
harder. The diagnosis engine can effectively identify
the configuration errors listed above. For instance, the
first two errors will result in ibgp_session_test to fail.
Missing AS path access list can be detected by
link_to_provider. Similarly, misconfigured route-maps
are caught by policy grammar rules.

Related Work

Our system provides a language to express the log-
ical structure of an AS and its BGP policies. It and can
automatically check expressions in this language against
router configurations and thereby provide a useful diag-
nosis service, which has not been available to date. The
main difference between this approach and previous
diagnosis systems is that we can describe the BGP

architecture of an AS in a high level language and check
that it has been correctly configured. If someone changes
a router configuration, he can just run the diagnosis
again to ensure that the logical structure and policies
have not been violated. In Netsys [8], there is no way to
describe the administrator’s intention, i.e., network-spe-
cific policies and structure. It just runs a collection of
network-invariant tests.

Routing Policy Specification Language (RPSL)
[12] allows a network operator to specify routing poli-
cies in a high-level language. Given sufficient details,
low-level router configurations can be generated from
the description. RPSL shares some common views with
our approach. We feel Service Grammar is better suited
for diagnosing configuration errors because of its
expressive power. In the short run, we believe diagnosis
is even more important than provisioning because it
gives administrators the desirable level of control and
predictability, and can be used immediately.

It is natural to extend our system for provision-
ing. Given a comprehensive service specification, it
can be compiled into vendor-neutral component con-
figurations. Vendor-specific adaptors can then be
applied to generate low-level router configuration
commands. Reference [4] demonstrates a system that
implements Service Grammar rules in Prolog. Because
of the relational nature of Prolog, service specification
simultaneously serves provisioning purposes. Another
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system that performs a set of specialized provisioning
tasks is described in [13].

Reference [14] studies IBGP routing anomalies
and proposes sufficient conditions that guarantee cor-
rectness. These conditions can be incorporated into
our Service Grammar as policy templates. Reference
[10] presents an empirical study of BGP misconfigura-
tions. Several classes of errors, such as reliance on
upstream filtering, forgotten filter, incorrect summary,
bad route map, etc., are caused by simple high-level
policies that are not obvious for operators to express at
the CLI level. Our system would reduce these types of
errors given the high-level, system-wide requirements.

Summary

Our Service Grammar system enables a new way
of configuration error diagnosis in a distributed envi-
ronment. Network administrators can express the
global requirements in a high-level language. The
diagnosis engine then systematically verifies if the
expressions in this language are satisfied by device
configurations in a top-down fashion. Our system
highlights global reasoning – i.e., why a group of
components fail to jointly compose the intended ser-
vice – rather than why a single component fails.

We demonstrate how to use such a system to
diagnose BGP configuration errors in an AS. Previous
solutions to diagnosing configuration errors have been
network invariant in that they contain a fixed set of
constraints that must be satisfied by every BGP net-
work. However, BGP requirements such as logical
architecture and policies differ widely from one net-
work to another. It is not possible in previous tech-
niques to check if component configurations imple-
ment the network-specific requirements. Our language
consists of a small set of abstractions that can be com-
posed to describe most BGP features.

One limitation of this approach is that Service
Grammars and diagnosis procedures must be devel-
oped for each protocol of interest. We have prototyped
Service Grammars for RIP, OSPF, BGP, BGP/MPLS,
PIM, GRE, IPSEC, DiffServ and the Spread group
communication protocol [15]. The difference between
grammars tends to be significant because they are very
protocol-specific. Based on our experience, the
amount of effort required to develop the Service
Grammar for a protocol is not terribly large. The
notion of correct configuration is already implicit in
the definition of protocols since their intended use is a
part of the definition. The job of the Service Grammar
designer is essentially to make this ‘‘configuration
logic’’ explicit by analyzing these definitions.

The challenge for end users is that they need to
go through another learning curve, and may still write
incorrect specifications in this language. However, we
believe the chances of errors should be lowered in this
high-level language as oppose to low-level configura-
tion commands.
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