
USENIX Association

Proceedings of the 17th Large Installation
Systems Administration Conference

San Diego, CA, USA
October 26–31, 2003

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2003 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

DryDock: A Document Firewall
Deepak Giridharagopal – The University of Texas at Austin

ABSTRACT

Auditing a web site’s content is an arduous task. For any given page on a web server, system
administrators are often ill-equipped to determine who created the document, why it’s being
served, how long it’s been publicly viewable, and how it’s changed over time.

To police our web site, we created a secure web publishing application, DryDock, that
governs the replication of content from an internal, developmental web server to a stripped-down,
external, production web server. DryDock codifies a formal approval process that forces
management to approve all web site changes before they are pushed out to the external machine.
Users never interact directly with the production machine; DryDock updates the production server
on their behalf. This allows administrators to operate their production web server in a more secure
and regimented network environment than normally feasible.

DryDock audits documents, tracks revisions, and notifies users of changes via email.
Managers can approve files for publication at their leisure without the risk of inappropriate content
ever being publicly visible. Web authors can develop pages without intimate knowledge of
security policies. And administrators can instantly know the complete history of any file that has
ever been published.

Introduction

Information is valuable. While nearly all organi-
zations go to great expense to protect their networks, a
much smaller percentage have formal safeguards
against the accidental dissemination of sensitive infor-
mation. In a web server environment where many
users can update different parts of a web site at once,
auditing the server for inappropriate content becomes
an increasingly difficult system administration task.
Most system administrators can’t easily determine
why a particular file exists on a web server, or who in
management authorized its publication. How can
administrators be expected to safeguard information if
they can’t tell which documents are fit for the public
and which ones aren’t?

This was the situation in our organization,
Applied Research Laboratories, The University of
Texas at Austin (ARL:UT).

Motivation
Since 1994, ARL:UT has had a publicly accessible

web server. Initially, we served simple, static pages.
There was relatively little web server traffic, and, like
many organizations at the time, we didn’t concentrate on
the security of our network or our information. Our web
server resided on our internal network with full access to
our file server and other intranet resources, and employ-
ees were trusted to only serve documents that were
appropriate for public viewing.

By 2001, our web presence had grown in both
traffic and size by several orders of magnitude. Our
site’s much larger scale made it impossible for admin-
istrators to effectively police its content. Our formal
publishing policy and guidelines were conceived for

paper documents, not web pages. Their checks and
balances were inadequate when applied to our web
architecture, which allowed users to publish pages
without even a cursory review. Many staff members
were unaware that web pages even fell under these
guidelines. We found ourselves unable to track who
published specific files and who had deemed those
files fit for the public. Since much of ARL:UT’s
research is sensitive and proprietary, we needed to
strictly regulate the flow of information from inside
our organization onto our public web server.

To ensure that only material suitable for public
viewing appeared on our web site, we needed to force
documents to undergo an approval process – only files
that successfully complete the process will move to
the web server. Furthermore, for any publicly view-
able file, we needed a way to determine who autho-
rized its publication, when the file was published, and
for what reason. Not only did we need this informa-
tion available for currently published files, but for any
previous versions as well. A web publishing system
that provided us with these features would enforce our
information security policies by ensuring publicly
viewable content is acceptable and well accounted for.

Due Diligence
In late 2001, we searched for tools that would

put our new web publishing plan into service. Of the
countless managed web publishing solutions on the
market at the time, we found none that, out-of-the-
box:

• implemented a role-based approval process appro-
priate for our organization’s managerial structure

• gave us the thorough revisioning and auditing
capabilities we needed

2003 LISA XVII – October 26-31, 2003 – San Diego, CA 41

DryDock: A Document Firewall Giridharagopal

• didn’t mix approved and unapproved content
on our public web server

• had a friendly, web-based user interface that
managers could understand

• were minimally intrusive for both our system
administrators and our web developers

• used technologies we were already familiar with

Figure 1: Web publishing with DryDock.

Sweeping, monolithic content management sys-
tems such as Vignette StoryServer [17] were inappro-
priate for our environment. ARL:UT is comprised of
many autonomous groups that have their own web
development methods and practices. While the need for
a formal information security process was universally
recognized, a sweeping content management system
was both politically infeasible and far too expensive.

Portal and weblog systems such as PostNuke [7],
Tiki [20], or Plone [8] focus on creating highly
dynamic, interactive web sites. Thus, they frequently
offer collaborative features such as article syndication,
Wiki1 systems, forums, and user commentary. At

1‘‘Wiki Wiki Web is a set of pages of information that are
open and free for anyone to edit as they wish, through a web
interface. The system creates cross-reference hyperlinks be-
tween pages automatically. Anyone can change, delete, or
add to anything they see.’’ [10]

ARL:UT, however, we needed a strict web presence
that was decidedly static and non-collaborative – this
obviated many of these systems’ features. All we
wanted was software that would allow approved docu-
ments through to the web server, while blocking all
other unauthorized updates. All of these packages
required so much customization that it was easier for
us to build our own solution, tailored specifically to
our environment.

Having resigned ourselves to writing a custom
tool, we began looking at platforms upon which we
could base our application. We were particularly inter-
ested in the Zope [16] application server. Written in
Python, Zope has been used to build many complex
and dynamic web sites. Its features include user man-
agement, web-based administration, searching, clus-
tering, and syndication. Like the aforementioned pack-
ages, however, a great deal of Zope’s dynamic compo-
nentry was of no use to us, and much of Zope’s func-
tionality fell far outside the scope of simple publica-
tion oversight. Though these issues weren’t
intractable, when combined with Zope’s steep learning
curve, they led us to look at other less complex and
less ambitious platforms.

We settled on WebKit, the Webware for Python
[22] application server. WebKit uses a design pattern

42 2003 LISA XVII – October 26-31, 2003 – San Diego, CA

Giridharagopal DryDock: A Document Firewall

fashioned after Sun’s Java Servlet [15] architecture (a
paradigm we were familiar with), and includes little
extraneous, dynamic componentry we’d have to work
around. We could implement all of the heavy-lifting
functionality in plain Python and use a small number of
servlets to expose a web interface – we found such an
architecture much more workable via WebKit than Zope.

Figure 2: The DryDock directory listing screen.

Using WebKit, we devised an application that
would give us the security and auditing features we
required. Several months later, we put DryDock into
production. DryDock has been managing our web
publishing for over a year and a half now.

What Is DryDock?

DryDock tackles our information security prob-
lem in two main ways: by implementing a dual web

server setup, and by forcing a separation between cre-
ating content and approving its publication.

Figure 1 details the process of web publishing
using DryDock. DryDock’s dual web server setup is
comprised of a production machine and a staging
machine, both of which have identical web server con-
figurations. The production server holds content suit-
able for the public and resides in a publicly accessible
DMZ2 [14], while the staging server resides behind the
firewall as part of the internal network.

The staging server houses a web tree containing
files under development (the development tree) and a
separate tree containing files authorized for publica-
tion (the export tree). The development tree is

2Demilitarized Zone: a ‘‘neutral zone’’ between a compa-
ny’s private network and the outside public network.

2003 LISA XVII – October 26-31, 2003 – San Diego, CA 43

DryDock: A Document Firewall Giridharagopal

accessible to web authors on the internal network,
while the export tree is solely managed by DryDock.

Managers (content approvers) use DryDock’s
web interface (Figure 2) to browse the staging server.
The web interface presents an integrated and easily
discernible view of the development tree and the
export tree which shows them:

• which files from the development tree are
authorized for publication

• which files still await approval
• the differences between development and

export versions of the same file
• any file’s approval history

After looking over an unapproved file and find-
ing it fit for public viewing, a content approver signs
the file, instructing DryDock to mark the file as autho-
rized for publication. For added security, DryDock can
be configured to require additional information to
complete the signing process, such as the name of the
document author or a note explaining why the file is
being signed.

Once the file is signed, DryDock automatically
copies it from the development tree to the export tree.
Finally, DryDock synchronizes the staging server’s
export tree to the production server over SSH, replac-
ing the external web site with an updated copy con-
taining newly signed files.

Since the staging server’s export tree is separate
from the development tree, deleting a file from one will
not delete it from the other. To remove a file from the
export tree, a content approver uses DryDock’s web
interface to mark that file as re v o k e d. This removes the
file from the set of files copied to the external web server
during the next synchronization.

While signing authority is given to a limited
number of users, a larger number can be given review
authority, or the ability to soft-sign files. Reviewing
files follows the same process as signing files, save for
two important differences: approval information is
optional and can be incomplete, and reviewed files
still require an authorized signature for publication. At
ARL:UT, review is employed by users to partially fill
in approval information for a file so that when a signer
moves to authorize that file for publication, much of
the data required is already present. Review provides
much of the same functionality as signing a file, but
without a signature’s consequences.

Though DryDock’s approval process works well
for most documents, rapidly changing documents must
be continually re-signed by content approvers for each
change to appear on the external web site. To ease
dealing with these types of files, a user can sign them
as pre-approved; files marked as such will be copied
to the production server during synchronization even
if their contents have changed since they were signed.
Since file pre-approval circumvents DryDock’s typical
workflow process, we advise our users to apply the

option sparingly; users must be vigilant about pre-
approved files’ content.

Web Developer Migration

Migrating web developers to DryDock’s web
publishing process should be painless. Instead of plac-
ing content directly onto the production server, web
developers now place documents onto the staging
server. At ARL:UT, we configured our staging server
to support the same access methods our web develop-
ers have always used: FTP, Samba, and NFS. Since
nearly all off-the-shelf web development tools can use
at least one these methods to edit pages, we simply
instructed our web authors to re-configure their tools
to point to the appropriate directory on the staging
server.

In most cases, web developers shouldn’t have to
change their pages for DryDock. In a proper DryDock
setup, the staging server’s web server environment
mimics that of the production server, so properly func-
tioning pages on the staging server will still work
when exported to the production machine.

The lone caveat is the avoidance of absolute
links: since the production server (not the staging
server) will be serving up content to the public, any
links in a web page explicitly mentioning the staging
server will not work. Relative links solve this problem
by not mentioning the server name in the link address;
the web server assumes the document is local.

However, there is one situation in which use of a
relative link is impossible. If page authors need to
refer to a secure page from an insecure page, they
need to refer to the host using https:// instead of http://.
Since it isn’t possible to specify a protocol in a relative
link, an absolute link is required. The solution we
employed at ARL:UT was to use a simple server-side-
include variable that contains the host name of the
machine from which the page is served. Page authors
then construct an absolute link, using the variable in
place of the host name, and the correct server name is
inserted dynamically.

Benefits to Administrators

Improved Information Security
DryDock safeguards against the dissemination of

inappropriate web content by codifying a formal docu-
ment approval process. It ensures that all updates to
web content are inspected for propriety before they
ever escape the shelter of the internal network. Dry-
Dock makes users accountable for the documents they
approve; if content is found to be inappropriate,
administrators can easily determine who let that con-
tent through.

DryDock acts as a document firewall. Just as a
traditional firewall regulates the flow of packets to a
private network, DryDock regulates the flow of docu-
ments to the production web server; they are both

44 2003 LISA XVII – October 26-31, 2003 – San Diego, CA

Giridharagopal DryDock: A Document Firewall

access control mechanisms. Through signing, pre-
approving, and revoking files, DryDock users create
rule sets that manage the movement of documents into
and out of its export tree.

Figure 3: Auditing console.

Content Auditing

DryDock goes to great lengths to log all user and
system activity and keep administrators abreast of all
changes in web content. DryDock provides adminis-
trators with an auditing console that lets them browse
DryDock’s records. Administrators can inspect the
most recent events, all events pertaining to a user, or
any events within a specified date range, or they can
perform a free-text search to tailor the results to their
liking. For greater detail, administrators can peruse
DryDock’s extensive log files. To immediately notify
administrators of changes in content, DryDock can be
configured to send out email whenever activity occurs.

With these tools, administrators can easily diag-
nose problems with content. If a document is approved
that is later found to be unsuitable for the public,
administrators can refer to the email DryDock sent
when the file was signed; the email indicates the

parties responsible for approving the file and the file’s
full path. Administrators can revoke the document’s
publication or, if necessary, manually restore a previ-
ous version of the file using DryDock’s revisioning
system. They then can use the auditing console to find
any other files upon which the responsible parties
have recently operated (Figure 3), and handle them as
needed.

Improved Web Server Security

DryDock’s dual web server setup makes the pro-
duction server easy to harden. Users never interact
directly with the production machine; DryDock inter-
acts with it on their behalf. This allows administrators
to operate the production server in a more secure and
regimented network environment than normally feasi-
ble. Because normal users never access the web server,
system administrators can restrict its logins to a single
administrative account. As DryDock updates the
server ’s content over SSH, traditional file access ser-
vices such as Samba, NFS, or FTP can also be disabled.

If the web site is comprised of mostly static
pages and simple scripts, backups are much less

2003 LISA XVII – October 26-31, 2003 – San Diego, CA 45

DryDock: A Document Firewall Giridharagopal

complicated. Since DryDock rebuilds the entire web
tree during each synchronization, there’s no need to
maintain backups of the production web server beyond
a base image of the machine’s initial configuration.
DryDock simply treats a production web server as a
drone – all web content is housed safely inside the
firewall on the staging server, and it’s pushed out to
the external machine when necessary.

Figure 4: Role-based permissions model.

Finally, DryDock’s repeated rebuilding of the
production web tree impedes a naïve intruder from
simply defacing web pages. The corrupted documents
will simply be reconstituted during the next synchro-
nization.

DryDock Composition

DryDock is written in Python and uses WebKit
for request handling and session management. The
user interface is written in HTML using Cheetah [2], a
Python templating library. DryDock’s back-end is
comprised of four main components: a relational
database that stores auditing information, a role-based
permissions system, a revisioning system that tracks
changes in approved documents, and a synchroniza-
tion daemon that updates the production web server.

The Database
Since DryDock needs to query its data on a per-

file, per-directory, and per-user basis, storing the infor-
mation in a relational database was a natural fit. Dry-
Dock uses MySQL [9] to store authorization informa-
tion for files, permission definitions for users, review
information, and user activity logs.

Each time a file is signed, reviewed, or revoked,
DryDock records the operation’s details in its tables.
DryDock remembers the user, the time, the file’s cur-
rent MD5 fingerprint, users’ notes, and any additional
information DryDock has been configured to accept.
DryDock uses this data to display a file’s transaction
history and to determine if a file’s contents have
changed since it was last signed or reviewed.

Permissions
DryDock features a role-based permissions

model. Users and groups from the underlying UNIX
system can be assigned a role of admin, sign, review,
view, or none per path on the staging web tree. A role
circumscribes all of the actions a user can perform;
any capabilities not specifically permitted are prohib-
ited for that directory and all paths underneath. Figure
4 describes the different roles and shows how they are
cumulative in design; for example, a user with sign
authority for a path also has review authority.

Permissions for a user resolve in a bottom-up
manner. If no role is defined for the user on a path,
DryDock searches for one defined for the user on the
path’s parent directory. The process continues until a
role is found or the root directory is reached. If no role
is found for the user, then DryDock performs the same
recursive check for each group the user is in. If there
is still no matching role, DryDock assumes the user
has no privileges for the initial path.

The Revisioning System
To let administrators see a document’s evolution,

DryDock relies on the freely available Concurrent

46 2003 LISA XVII – October 26-31, 2003 – San Diego, CA

Giridharagopal DryDock: A Document Firewall

Versions System [1] (CVS) to track changes in
approved files. CVS provides stable, production qual-
ity, multi-file version control. DryDock interacts with
CVS by coordinating files among three directories
during versioning operations: the staging tree, a CVS
repository (‘‘a complete copy of all the files and direc-
tories which are under version control’’ [6]), and a
CVS working directory (a working copy of the reposi-
tory used to commit changes to the repository).

Figure 5: Synchronization flow.

When a file is signed, DryDock copies the file to
the CVS working directory and then commits it to the
repository. Similarly, when a file is revoked, DryDock
deletes the file from the CVS working directory and
then notifies the repository that the file has been
removed. Through use of these mechanisms, the CVS
working directory always contains the current version
of each approved file.

While CVS adequately handled most of our revi-
sioning needs, its file-based design couldn’t handle
changes in the repository’s directory structure.
‘‘ B e c a u s e it uses the RCS storage system under the
hood, CVS can only track file contents, not tree struc-
tures’’ [3]. CVS provides no way to remove a directory
from the repository without losing all of its versioning
information. So, if you delete all the files within a
directory and still want to access those files’ revision
histories, the directory must remain in the repository.
This lingering directory prohibits adding a new file
with the same name to the repository because UNIX
file systems won’t allow two identically named items in
a directory. If a file cannot be added to the repository,
then DryDock users cannot approve that file.

To remedy this, we distort directories’ names
when they are added to the working directory. When-
ever DryDock creates a directory in the CVS working
directory, it prepends a predetermined sequence of
characters to the directory’s name; this mangled name
is used when the directory is added to the repository.
Concurrently, we prohibit users from creating files
beginning with the same reserved characters. This

allows us to have directories and files with the same
name under version control simultaneously.
Synchronization

With DryDock, users never make updates
directly to the production web server. Synchronization
(sync), DryDock’s process of pushing documents out
to the production machine’s web tree, is the sole way
to update the external web site. Periodically, DryDock
copies approved versions of all documents to the
external machine, reconstructing the production web
site.

Since synchronizations are the only way changes
propagate to the production machine, we needed to
schedule them frequently. Instructing DryDock to
immediately sync whenever a user signed or revoked a
file would work well in periods of light use, but the
staging server would be overwhelmed if users signed
and revoked pages en masse.

Our solution was to employ delayed syncs.
Instead of immediately syncing when a user signs or
revokes a file, DryDock schedules a sync to occur five
minutes later. If users sign or revoke additional files
inside this five-minute window, DryDock reschedules
the sync for five minutes from the time of the most
recent approval operation. This process continues until
there is no activity for the duration of the window, at
which time the sync occurs. Since heavy usage would
keep pushing the sync back by five minutes, perhaps
indefinitely, we instituted a one-hour failsafe between
syncs. If a sync hasn’t occurred in the last 60 minutes,
one is forced. Grouping updates in this way gave us a
reasonable compromise between update frequency and
server load. For situations requiring finer control,
however, we allow DryDock administrators to force a
sync on demand.

Figure 5 details the sync process. Sync is split
into two parts: handling pre-approved files and export-
ing signed files to the production machine.

Pre-approved files require special handling dur-
ing sync to ensure their changes are monitored by

2003 LISA XVII – October 26-31, 2003 – San Diego, CA 47

DryDock: A Document Firewall Giridharagopal

DryDock’s revisioning system. Ordinarily, DryDock
only adds files to its revisioning system when they are
signed or revoked. Since users aren’t required to sign
pre-approved files each time their contents change,
DryDock would normally be unable to track changes
in pre-approved documents over time. To remedy this,
DryDock adds the current state of every pre-approved
file to its revisioning system at the start of each sync.

Before DryDock exports approved files to the
external web server, it must construct an image of the
production web tree. Originally, we used CVS’s export
ability. A CVS export would copy the most recent ver-
sions of all active files to a temporary directory. Since
the CVS repository contains the current versions of all
approved documents, this temporary directory would,
by definition, contain an image of the production web
tree. We then normalized any ‘‘mangled’’ directory
names, converted the directory to a tar archive, and
copied the file to the external machine.

Action Time % of Total
Copy pre-approved files 1s 1.0%
Add pre-appr’d files to CVS 22s 21.7%
CVS export 53s 52.5%
Normalize directory names 2s 2.0%
Tar archival 7s 6.9%
Update the production server 16s 15.8%
Total 101s

Figure 6: Performance of CVS-export-based synchron-
ization at ARL:UT.

Though this worked correctly, synchronizations
performed poorly. After investigation, we discovered
that our use of CVS’s export facility was a sizable per-
formance bottleneck; the synchronization process
spent over half its time waiting for the export to com-
plete (Figure 6).

Our answer was to continually maintain an
image of the production web tree in a directory along-
side the CVS repository; this is the export directory.
Whenever a user signs a file DryDock copies it to the
export directory, and whenever a file is revoked Dry-
Dock deletes it from the export directory.

By continually maintaining this mirror of the
production web site, we no longer need to perform a
CVS export or normalize any directory names. Instead
of creating this mirror at sync time, we can spread the
work out over time, updating the mirror as changes
occur. Table 6 shows that, by skipping these steps, we
cut the sync time by 54.5% from 101 seconds to only
46 seconds.

DryDock can use a variety of user-defined
scripts to transmit the tar-archived export directory to
the external web server. At ARL:UT, we use SSH. The
production server is configured to automatically
decompress the archive and replace its current web

root with the new content. To make the process more
secure, we use a pair of public and private crypto-
graphic keys to establish the connection instead of a
traditional user name and password combination, and
the key is associated exclusively with the specific
script that updates the machine’s web root.

Evaluation

All told, DryDock has moved us away from our
largely unsecured and unrestricted web publishing
process to one that affords us much better information
security. It has made it possible for a large number of
web authors to safely publish content to a web server
that remains almost completely isolated from our
internal network. By removing direct user interaction
with the external web server, DryDock has allowed us
to secure our web server to a degree not before possi-
ble [11]. And by enforcing a formal approval process,
DryDock has given our management and administra-
tors total publication oversight.

DryDock has been governing our web presence
for over one and a half years, and has proven itself to
be stable and dependable. This notwithstanding, there
are still several areas that could be improved.

User Interface Issues

While DryDock scales well vis-a-vis directories
containing thousands of files, its performance is over-
shadowed by slow web page rendering and the prob-
lems users have when operating on such large sets of
data. DryDock uses HTML tables to display informa-
tion about each file, and table rendering is notoriously
taxing on web browsers. Consequently, as directories
grow massive, a web browser cannot display much of
DryDock’s user interface quickly.

Furthermore, DryDock’s web interface isn’t truly
designed to operate on large amounts of data. Though
users can simultaneously sign, review, or revoke mul-
tiple files in the same directory, the usability of a
point-and-click, forms-based web interface doesn’t
scale well when dealing extremely large numbers of
inputs.

In spite of these structural issues, we’ve had few
performance-related complaints. Most web developers
simply don’t work with thousands of files in a single
directory – it’s far too cumbersome. DryDock, opti-
mized for interactive performance with modest data
sets, suits the usage patterns and scale at ARL:UT.

Moving Away From CVS

While we were able to work around many of
CVS’s directory management problems through name
mangling, overcoming its lack of a truly programmable
interface is more problematic. To interact with CVS,
DryDock is limited to invoking CVS’s command-line
tools and parsing their output. This output is designed to
be easily readable by humans, not easily parsed by soft-
ware [19]. This hinders DryDock’s integration with

48 2003 LISA XVII – October 26-31, 2003 – San Diego, CA

Giridharagopal DryDock: A Document Firewall

CVS, and tight integration with a revisioning system is a
prerequisite for DryDock to provide repository manage-
ment and inspection features.

CVS’s directory management issues and its com-
mand-line interface are structural problems not likely
to be remedied. We will migrate from CVS and
towards a revisioning system that better meets our
requirements.

Ostensibly, the next-generation version control
system that will best suit our needs is Subversion [4,
18]. Subversion tracks changes in directory structure,
obviating our name mangling. More importantly, how-
ever, Subversion has a well-defined C programming
interface and a nascent Python interface (DryDock’s
native tongue). Subversion is currently in development
and we await its first stable release.
File Pass-through

Since DryDock tracks changes in all approved
documents, the size of DryDock’s CVS repository
increases as time goes on. Pre-approved files exacer-
bate the problem since their changes are committed to
CVS at each sync; as syncs occur at least once per
hour, pre-approved files are committed to CVS at least
24 times daily.

One solution to this problem is to allow users to
flag signed files as pass-through: files marked as such
will not be added to DryDock’s revisioning system. A
signer marks a file as pass-through if tracking its
changes over time isn’t important. Marking pre-
approved files as pass-through can slow the reposi-
tory’s growth, though at the expense of thoroughness.
Incremental syncs

To reduce sync time, DryDock could transmit
updates to the production machine during each syn-
chronization instead of transmitting the entire web
tree. During a sync, DryDock could query the
database to determine which files have been signed or
revoked since the last sync. It could use this informa-
tion to construct an archive containing any recently
signed files, all pre-approved files, and a text file list-
ing which files need to be deleted from the production
server. This archive could then be transmitted to an
update script on the external machine that will place
the updated files in the correct locations and delete
any files specified in the deletion list.

For added safety, these incremental syncs can be
intermingled with full syncs. For added performance
with truly large web sites, DryDock could even
employ a binary differences algorithm such as XDelta
[21] to transfer only the parts of individual files that
have changed.

Initially, it would seem appropriate to use rsync3

[12] to reconcile and transmit the differences between
3An incremental file transfer tool. ‘‘rsync uses the rsync al-

gorithm [21] which provides a very fast method for bringing
remote files into sync. It does this by sending just the differ-
ences in the files across the link, without requiring that both
sets of files are present at one of the ends of the link before-
hand.’’ [13]

the export directory and the production server’s web
tree. However, rsync is designed to operate over high-
latency, low bandwidth links; at ARL:UT, we have a
switched 100-megabit connection between the staging
and production servers. Furthermore, unlike rsync,
DryDock is omniscient; it knows before opening a
connection to the production server which files require
updating. Instead of spending connection time deter-
mining which file chunks need to be sent over, Dry-
Dock can simply transfer data.

Availability

DryDock is currently available at http://www.
arlut.utexas.edu/DryDock, and we plan on having
placed DryDock under the GNU Public License by the
time of the conference.

DryDock requires Python, Webware, CVS, SSH,
and MySQL. DryDock has been designed and tested
on Linux and Solaris, and it is expected to run on any
modern UNIX platform that supports the aforemen-
tioned tools.

Acknowledgments

Many people have contributed to DryDock’s
development. Jonathan Abbey greatly assisted in Dry-
Dock’s design and made important contributions to
DryDock’s permissions handling and synchronization
routines. Dan Scott lent administrative support to the
project and helped lay out many of DryDock’s initial
requirements, and Nanette Lemma provided invalu-
able user feedback.

I’d like to thank Jonathan Abbey (again) and Chad
Duffy for tirelessly reading and commenting on the
many iterations of this paper. I’d also like to thank
Michael Gilfix, this paper’s steward, for his refinements.

Lastly, I’d like to thank the authors of Webware
for their wonderful work, the developers of Python for
a great programming language, and Applied Research
Laboratories for supporting my software development
efforts, both large and small.

What’s in a Name?

The name ‘‘DryDock’’ is derived from nautical
terminology. A drydock is ‘‘a specialized dock where
boats are pulled out of the water to be repaired,
painted, or inspected’’ [5]. We found the analogy
appropriate.

Author Information

Deepak Giridharagopal is the primary developer
of DryDock. He holds a B.S. in computer science
from The University of Texas at Austin. After working
for Reactivity, Inc. doing Enterprise Java develop-
ment, he now works at Applied Research Laboratories
writing software for their Computer Science Division.
Besides all things computer-related, he is thoroughly

2003 LISA XVII – October 26-31, 2003 – San Diego, CA 49

DryDock: A Document Firewall Giridharagopal

entertained by automobiles, The Smiths, giant trans-
forming robots, and breakdancing. He can be reached
by email at deepak@arlut.utexas.edu.

References

[1] Berliner, Brian, ‘‘CVS II: Parallelizing Software
Development,’’ Proceedings of the USENIX Win-
ter 1990 Technical Conference, USENIX, pp.
341-352, 1990.

[2] Cheetah – the python powered template engine,
http://www.cheetahtemplate.org , 2003.

[3] Collins-Sussman, Ben, ‘‘The Subversion Project:
Building a Better CVS,’’ Linux Journal, Num.
94, 2002.

[4] Collins-Sussman, Ben, Brian Fitzpatrick, and C.
Michael Pilato, Subversion: The Definitive Guide,
http://svnbook.red-bean.com/html-chunk/, 2003.

[5] sitesalive Glossary, http://www.sitesalive.com/
admin/glossary/sectD.html , July, 2003.

[6] Fogel, Karl Franz, Open Source Development
with CVS, The Coriolis Group, 1999.

[7] Haakenson, Vanessa, What is postnuke?,
http://noc.postnuke.com/docman/view.php/5/12/
whatispostnuke.htm, June, 2003.

[8] McKay, Andy and Amr Malik, The Plone Book,
http://www.plone.org/documentation/book , June,
2003.

[9] Mysql: An Open Source Relational Database,
http://www.mysql.org , 2003,

[10] O’Reilly network: Wiki Wiki Web, http://www.
oreillynet.com/pub/d/282 , 2003,

[11] Rhodes, Charles, ‘‘The Internal Threat to Secu-
rity or Users Can Really Mess Things Up,’’
GSEC Practical, http://www.sans.org/rr/papers/8/
856.pdf, 2003.

[12] Rsync, http://rsync.samba.org , June, 2003.
[13] Rsync Readme, http://rsync.samba.org/README.

html , 2003.
[14] Runnels, G. Michael, ‘‘Implementing Defense in

Depth at the University Level,’’ GSEC Practical,
Num. 1.4, http://www.sans.org/rr/paper.php?id=
596 , 2002.

[15] Java Servlet Technology, http://java.sun.com/
products/servlet/ , July, 2003,

[16] Spicklemire, Steve, Kevin Friedly, Jerry Spick-
lemire, and Kim Brand, ‘‘Zope: Web Application
Development and Content Management,’’ Que,
2001.

[17] Vignette – Content Management and Portal Solu-
tions, http://www.vignette.com , July, 2003

[18] Subversion: A Compelling Replacement for CVS
http://subversion.tigris.org , June, 2003.

[19] Taler, Alexander, libCVS, http://libcvs.cvshome.
org/servlets/ProjectHome , June, 2003.

[20] Tikiwiki, http://tikiwiki.sourceforge.net , 2003.

[21] Tridgell, Andrew and Paul Mackerras, ‘‘The
rsync Algorithm,’’ Tech. Report TR-CS-96-05,
Australian National University, June, 1996.

[22] Webware for python, http://webware.sourceforge.
net , 2003.

50 2003 LISA XVII – October 26-31, 2003 – San Diego, CA

