
USENIX Association

Proceedings of
LISA 2002:

16th Systems Administration
Conference

Philadelphia, Pennsylvania, USA
November 3–8, 2002

© 2002 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.



Embracing and Extending Windows 2000

Pp. 65-74 of the Proceedings of LISA ’02: Sixteenth Systems Administration Conference
(Berkeley, CA: USENIX Association, 2002).

Jon Finke – Rensselaer Polytechnic Institute

ABSTRACT

We were recently presented with the challenge of deploying a large scale Windows 2000
environment, initially for the Administration Division, but eventually including academic and
other users. Rather than try to eventually re-integrate independently administered domains, we
took this as an opportunity to develop the tools and resources to provide a campus-wide Windows
2000 environment that is well integrated with the existing enterprise information and computing
systems, much like we integrated our Unix systems. This would automate many of the mundane
administrative functions, yet provide appropriate delegation of control to departmental admin-
istrators as needed. This paper describes the systems we developed to make this happen.

Introduction

Rensselaer recently embarked on a major build-
ing initiative: a BioTech research center, an electronic
media and performing arts center, a new central boiler
and chiller plant, a parking garage, and a new campus
entrance, and with this new construction come some
new requirements for information sharing and archiv-
ing. The Administration division decided to handle
this with a Windows 2000 Exchange email system.
The good news is that they came to the Chief Informa-
tion Officer to ask for help. The bad news is that the
CIO agreed to help.

With this new initiative, we thought that it was
very important to get this new system deployment
right ‘‘the first time,’’ as attempting to go back later
and fix things would be very difficult. We also wanted
to look beyond the requirements of this specific pro-
ject, and deploy a campus-wide solution to integrate
support of academic programs as well as other admin-
istrative units. Our existing Windows administrators
were spread over a number of administrative units, as
well as a few academic departments. It was important
to come up with a system that they would be comfort-
able with, and one where they would be willing to
‘‘turn over control’’ to the central computing center.
This was quite a change in approach for our Windows
administrators.1

At Rensselaer, we have a long history of
automating our Unix systems administration tasks (via
an Oracle database) and striving to get information
from an authoritative source. Figure 1 gives a high
level view of the flow of people-related information at
Rensselaer. Human Resources and student record data
flows from the administrative system running
SCT/Banner into the Simon system’s [4, 5] Oracle
database. One of the things this is used for, is to auto-
matically create and expire Unix/email user accounts.
From Simon, the relevant information is sent to each
of the various client information and authentication
1During some training on MS Exchange, we learned that

Microsoft invented Kerberos.

systems, including the central telephone directory
(LDAP, ph and web based), the ID card system, AFS
and Kerberos, and the new Windows 2000 domain and
Exchange email system.

In addition, we have developed many tools and
techniques that allow us to delegate responsibility with
a great deal of fine-grained control. For example, our
telephone directory system [6] allows a person from
each department to maintain directory information for
their staff. Our eventual proposal was actually built on
top of several existing systems, with some enhance-
ments and extensions.

Figure 1: Information flow at Rensselaer.

One of our existing projects was to provide a
comprehensive LDAP [9] directory service, and make
this the directory service of choice for information con-
sumers. To this end, the data needs to be both accurate
as well as timely. Since it appeared that our LDAP ser-
vice would be driving our Active Directory service, this
project gained a key role in our Windows 2000 project.

Another existing project was single signon, or at
least some form of password synchronization between
systems. While we may have a bunch of different sys-
tems behind the scenes, our users think that they have
a single account and password and we provide the
magic to make it all work. To this end, we wrote a

2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA 65



Embracing and Extending Windows 2000 Finke

web-based password changing tool. Unlike the one
developed at Auburn University [10], we use public
key encryption to protect and store the passwords; and
we use a relational database to manage and store both
the public keys and the encrypted passwords, as well
as to drive the actual password changing process on
Windows, Oracle and Kerberos.

In our original Windows 2000 proposal, the
organization hierarchy would be based on the Univer-
sity structure, as defined in the telephone directory.
However, after meeting with some of the Windows
administrators, we saw that we needed a way to allow
these folks to create their own structure, yet keep them
from interfering with other administrators. Fortu-
nately, our existing telephone directory model pro-
vided a good fit in both respects, and we decided to
extend it to handle the Windows domain.

The Institutional Layer
While there are many technical challenges to

implementing a system like this, institutional politics
add a number of other ‘‘opportunities to excel.’’ In our
case, we were fortunate that we had addressed many of
these in the past, having long established the practice of
feeding data from Human Resources and the Registrar
into the Simon system to automatically create Unix and
email accounts for everyone on campus. This same sys-
tem was grown to manage the campus telephone direc-
tory and feed the campus ID card system. With these
projects in place, we had established our credibility in
delivering campus-wide information services.

One thing that helped us a great deal was always
insisting on going to the authoritative source for all
data elements. All student information comes from the
Registrar, employee information from Human
Resources, and so on. If we have changes to that data,
we pass it back to those systems. Because we are not
trying to maintain our own ‘‘student database’’ or
‘‘employee database,’’ we can insist that the ‘‘owners’’
of the data share it with us. We have been able to
sweeten the pot in many cases by providing some ser-
vices to them based on their data.

As information systems evolve, we sometimes
move away from this ideal because user demands may
outpace the ability of support organizations to react to
changes. As a result, we have discovered that several
important data elements that should have been main-
tained centrally had moved into the Simon system.2

We now have an ongoing task force monitoring the
relationship between Simon and the rest of the admin-
istrative information systems.

Care and Feeding of LDAP

We begin by describing the development of our
existing LDAP-related information flow, which provides
2If you are publishing the enterprise phone directory, you

WILL get good data feeds, and the rest of your projects can
benefit.

the base upon which the Windows implementation is
built. We needed a way to detect changes to data in our
enterprise information systems and propagate just those
changed records to LDAP. Since we wanted these
changes to be as close to ‘‘real time’’ as possible, the
process needed to be very lightweight. By making the
load on the enterprise database3 very small, we can
make frequent checks for changes without annoying the
DBAs or impacting performance on that system.

To make things more interesting, we had to do
this in such a way to make a minimal impact on the
keepers of the enterprise database. These MIS folks
have a great many demands on their time, and are often
not available to take a large role in the deployment of
new services. This necessitated that our approach
require very little involvement of the DBAs and devel-
opers in the MIS department.4

Figure 2: Information change flow architecture.

In our initial LDAP deployment, we were popu-
lating a general ‘‘people’’ directory following the
‘‘ e d u P e r s o n ’’5 [3] to replace our PH white pages direc-
tory server. A second LDAP project was to provide a
‘‘ P O S I X ’’ account space to provide /etc/passwd to our
Unix hosts. We did this by generating LDIF files using
a PL/SQL package [13]6 and some interface code to
generate these into files [7]. While generating LDIF
files to test the LDAP servers was okay, this was not
going to handle the ongoing updates that we needed.
Tr i g g e r s and Change Queues

A powerful feature of Oracle and other high end
databases is the ability to define triggers [1] that will
3We run SCT/Banner for our student records, finance, and

payroll.
4While this is a local condition, I suspect over-booked MIS

shops are a fact of life at many other sites.
5This is an effort by EDUCAUSE to come up with a set of

standard attributes for a directory entries at educational sites.
6PL/SQL Packages are a collection of functions, procedures,

cursors, and variables. These can be both public and private.
Access to the public procedures can be granted to Oracle
users or roles. Once accessed in a session, a package main-
tains state between calls.

66 2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA



Finke Embracing and Extending Windows 2000

automatically execute when a particular table is
changed in some way. This gives us a way to insert our
own business rules in the general operation of the
database. For example, our code will get executed when
a person is added to the people table. What we did is
record key information about the change into a queue
table that would be processed later. Our intention here
was to place some of these triggers into our main
administrative database, SCT/Banner. In this way, we
would not need to change the vendor code, which
should make handling new releases much easier. For
applications we write ourselves, we have the option of
using triggers or putting these calls directly in the appli-
cations themselves.

Name Type Size Description
Tname Varchar2 32 Identifies the table that was changed
Subtype Varchar2 32 Optional subtype to allow specialized processing based on

which fields in a table were changed.
Rrowid Rowid The Rowid (Oracle record identifier) of the row that was

changed. This allows for direct access to the desired row
with no searching needed.

Change_Type varchar2 1 A flag indicating Insert, Modify or Delete of the record.
PIDM Number Person identifier for our administrative system (SCT/Banner)
Person_Id Number Person identifier for the Simon system.
Pkey_String Varchar2 32 A table specific character string to identify the record in

question (such as a Unix account name).
Pkey_Number Number A table specific numeric value to identify the record in ques-

tion (such as a Unix UID).

Table 1: Meta_Change_Log Table – Identification.

Name Type Size Description
Entry_Date Date The time and date when the record was entered.
Entry_Number Number An ever increasing sequence number.
LDAP_Proc_Date Date The date when the LDAP SyncLing processed this record.
LDAP_Proc Varchar2 1 A flag set to ‘‘Y’’ when this record is awaiting processing by

LDAP.
ADSI_Proc_Date Date The date when the ADSI synch program processed this record.
ADSI_Proc Varchar2 1 A flag set to ‘‘Y’’ when this record is awaiting processing by

ADSI.
IDCARD_Proc_Date Date The date when the IDCARD synch program processed this

record.
IDCARD_Proc Varchar2 1 A flag set to ‘‘Y’’ when this record is awaiting processing by

IDCARD.

Table 2: Meta_Change_Log Table – Queue processing.

In Figure 2, we have triggers ‘‘watching’’ for
changes to the Logins and the People tables. When a
change in a table is detected, we write a record into
the Meta_Change_Log table (see Table 1). We include a
number of identifying fields. The first three – Tname,
Subtype and Change_Type – identify which table, and
in some cases, which part of the table was changed
and how it was changed. We also have a number of
fields to identify which entry was changed. Since
many of the changes we are interested in involve peo-
ple, we include the primary keys used by each of our
two main information systems. However, we may be
looking for changes to something other than people

(department names, group membership, etc.) so we
have a generic character and numeric key available for
tables dealing with non ‘‘people’’ information. The
exact set of identifiers used depends on the table.

The second half of the Meta_Change_Log (see
Table 2) deals with how we process these records and
manage the queue. Each entry has an entry date and a
sequence number to assist with ordering. We are feed-
ing several systems with changes: our LDAP directory
server, our Windows 2000 Active Directory Server
and our Photo ID Card system. We need to be able to
process each of these queues independently, since they
may be operating with different schedules for backup,
maintenance, etc. All of these queues has a ‘‘Process
Needed’’ flag and a process date. When a record is
inserted into the queue, the appropriate ‘‘Process
Needed’’ flags are set to ‘‘Y’’.

Each of the _Proc flags has an index on it. When
a record is processed, this flag is set to Null. Oracle do
not index Null values, so that only the active (change
pending) records are included in the index. This means
that, in normal operation, these indexes are very small
and can be accessed and updated very quickly. This
keeps the load on the database to a minimum and
allows us to make frequent checks to look for changed
records.

2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA 67



Embracing and Extending Windows 2000 Finke

SyncLings
Now that we had a list of changes that needed

processing, we also needed a way to get them into
LDAP. To this end, we wrote an Oracle package called
LDAP_Sync. This package references the Meta_Change_
Log table and provides two procedures, Get_Changes
and Ack_Change. The LDAP_SYNC package is called by
a Java program called a ‘‘SyncLing.’’ It calls the
Get_Changes routine to get the next change, processes
it, and then marks that change as done with the
Ack_Change routine.

Name Type Description
RType Varchar2 In/Out On call, specifies the type of records desired, and on

return, indicates the type of record being returned.
Rec_Id Varchar2 Out Returns a record id used for the Ack_Changes routine.
LDIF_Record Varchar2 Out An LDIF formatted record with the information for

the next person to be processed.

Table 3: Get_Changes procedure parameters.

The Get_Changes routine (see Table 3) is called,
and the next LDIF record [8]7 is returned. This is then
compared to the existing record in the LDAP server by
the SyncLing, and the appropriate action is taken. As
each record is processed, the Ack_Change routine is
called with the Rec_Id. This will mark the record as
processed (clearing the LDAP_Proc flag in the table).
This process is repeated until Get_Changes returns a
null record. At this point, the SyncLing pauses for a
few seconds, and then resume asking.

As part of the process of the initial data load of
the LDAP server, we had already written a package to
generate LDIF records for each person at Rensselaer
from the directory database, so it was a trivial matter
to call this routine from the Get_Changes routine.

We are actually populating several ‘‘trees’’ in our
LDAP database: a general people tree, and a POSIX
account tree (in part, to replace our /etc/passwd file and
some group files). There are corresponding routines to
generate flat LDIF files that we can call for each of
these cases. The type field identifies the type of LDIF
record being returned, so that the processing program
knows what to do. It can also ask for just records of a
given type, or it can ask for all types of records.

This system works very well for our Unix sys-
tems for which it is deployed. In the next section, we
discuss how we extended it to service our Windows
2000 systems.

Feeding of Active Directory

Our initial plan was to use our LDAP server to
feed the Active Directory8 server. However, this ran
into a few problems. Although we were feeding both a
7One method of loading data into an LDAP server is using

a format known as the ‘‘LDAP Data Interchange Format’’ or
LDIF.
8Active Directory is the database server used by Windows

2000 to hold user information and passwords.

POSIX user id base and the general person/directory
information into LDAP in essentially real time, the
data did not match well with the requirements of
Active Directory and our Exchange server. Although
we were able to load people into Active Directory via
LDAP, we ran into limitations due to our focus on the
‘‘eduPerson’’; fields we needed in Active Directory
were not available.

The second problem is that we needed to propa-
gate password changes from our general system into
the Windows 2000 world. Our password changing
scheme (see section below) relies on public key
encryption to secure the passwords while in transit;
implementing this via LDAP was not practical.

We had recognized early in the project that
LDAP was not going to be able to handle the pass-
word changing, so we had started a second project to
manage the passwords. At that time, Microsoft was
moving to the use of JAVA in some aspects of their
systems, so we started development of a JAVA pro-
gram that would talk to the database; get the password
changes, and then apply them to Active Directory.
When it became clear that our LDAP approach was
not going to handle our needs, we expanded the role of
the password propagation to a more general Active
Directory update system.

The database side of the LDAP solution described
above was exactly what we needed, so we simply
cloned it. In fact used the same table, and simply added
an ADSI (Active Directory Service Interface) [11]
propagation flag to duplicate the LDAP propagation
flag, and duplicated the PL/SQL package to provide
ADSI with its own interface to the database. This
allows for ADSI and LDAP to run in parallel.

The ADSI_Sync package starts out much like the
LDAP_Sync package with a Get_Changes and Ack_
Change routine, and they operate in the same way as
described above. However, rather than returning an
LDIF record, we just return the username. We have also
added two more routines, Get_Dirinfo (see Table 4) and
Get_Dirinfo2 (see Table 5). The rollout of this service
was under some pretty tight time pressure, which is
why these are two separate routines, rather than just
one.

As the Windows 2000 service was being rolled
out, and more administrative users were being added
to our exchange server, some other issues were dis-
covered. We were already using the Windows 2000
user base and password for students to access our

68 2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA



Finke Embracing and Extending Windows 2000

public workstation labs, so the password changing
system was being well exercised, but as administrative
users were moving their email from our Unix-based
pop mail service to the Exchange server, we needed to
feed more information into Active Directory.

Name Type Description
Uname Varchar2 In Target username – provided by Get_Changes or other routines.
Pref_Email Varchar2 Out Preferred email address.
Camp_Phone Varchar2 Out Campus telephone number.
Camp_Fax Varchar2 Out Campus fax number.
Camp_Address Varchar2 Out Campus address.
Department Varchar2 Out Department Name.
Division Varchar2 Out Division Name.
Web_Page Varchar2 Out URL of person’s web page, if available.
Title Varchar2 Out Title of person (employees only – not students.)

Table 4: Get_Dirinfo procedure parameters.

Name Type Description
Uname Varchar2 In Target username – provided by Get_Changes or other

routines.
Last_Name Varchar2 Out Person’s last name.
First_Names Varchar2 Out Person’s first and middle names.
Preferred_First_Name Varchar2 Out Alternate first name preferred by the person. Used in

the directory.

Table 5: Get_Dirinfo2 procedure parameters.

One of the other objectives of this project was to
provide Exchange based mailing lists for all the peo-
ple in a given department or division. Our first pass at
this was to provide a pair of routines, Get_Divisions and
Username_By_Division; the first would return a list of
all of the divisions, and the second would return a list
of everyone in the specified division. In the same way,
we also provided Get_Departments and User-
name_By_Department routines. These would be used to
maintain the desired membership lists. However, we
quickly ran into a problem with the names being used;
different aspects of the Active Directory service took
exception to some of the special characters we were
using such as ampersand, dash, and a few others. To
handle this, we added a CLEAN flag to the Get_D. . .
procedures and a Get_Username_By_Clean_D. . . call.

Once our users had tasted the wonders of auto-
matically maintained mailing lists, they were hungry
for more. As part of a different project, we had put
together some special mailing lists for our ListProc
machine such as ‘‘Deans, Directors and Department
Heads’’ and ‘‘Building Coordinators.’’ These lists
were being dumped as flat files using our Generate_File
program. A little bit of creative coding, and these lists
became available to ADSI via the Get_Specials and
Get_Username_By_Special.
To be Sharp, You Must C Sharp

When we first started working on a JAVA pro-
gram to change passwords, it appeared that Microsoft
would provide (JAVA) Class libraries which exposed

their ADSI routines. As it turns out, they ended up
abandoning their JAVA efforts, and we were forced to
provide our own JAVA callable ADSI routines by
using JNI (Java Native Interface) to wrap a Windows
DLL written in C. Although it worked, it was very dif-
ficult to change, and our development staff dreaded
new requirements from the Windows team. Every new
function would take 30 minutes to write, and then four
days to debug and tweak so it would actually work.

Microsoft’s new direction was a programming
language called C# [12], part of their Visual Studio pack-
age. With C#, Microsoft has provided the ADSI class
libraries we need, allowing us to eliminate the need for
a custom DLL. This has proven much easier to work
with, and we have resumed adding new fields and
streams into Active Directory from our central
database. This shows up as the C# ADSI box in Figure 2.

Making Changes to Passwords; Here, There and
Everywhere

When we first rolled out our campus-wide Unix
service, built on top of an AFS filestore, we wrote a
replacement for the general Unix passwd program that
would update the Kerberos password and save a copy
of the Unix PASSWORD crypt in our central
database. This enabled us to build conventional
/etc/passwd files for a few legacy systems that did not
use Kerberos (this was 10 years ago).

As our systems evolved, many of our users
moved away from the Unix workstations for their
computing, but continued to use their Kerberos pass-
words for email, printing, dial-up and other services.
Instructing people to connect to a Unix machine
(using ssh, not telnet!) sign on, and invoke the passwd
program to change their password resulted in a lot of
frustration for both our users and our help desk staff.

2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA 69



Embracing and Extending Windows 2000 Finke

A web based password changing system was an obvi-
ous solution.

Although we had long ago stopped collecting a
Unix crypt, we still liked the idea of collecting pass-
words for use on other systems, such as a trouble tick-
eting system (Oracle based), our academic Oracle
servers, and our Kerberos 5 server. We were not com-
fortable with the idea of storing, or even transmitting,
clear text passwords. While we could protect the web
session with SSL, we still had the traffic from the web
server to the database server. So we decided to use
public key encryption, encrypt the plain text password
with a public key on the web server, and transmit the
encrypted text to the database for processing and stor-
age. Since we were already connecting to the database
for other reasons, this was a logical spot to store the
public keys. As part of this process, the password
change web page also signals (via Oracle signals) [2]
the back end password processing.

Name Type Size Description
Principal_Name Varchar2 32 The user name
Encrypted_Key Varchar2 1024 The encrypted user password.
Key_Num Number The key number used to encrypt the password.
Entry_Date Date The time and date of the change request.
Simon_Prop_Pending Varchar2 1 A flag indicating that this password needs to go to Simon.
Simon_Prop_Date Date The time and date when this change was given to Simon.
Simon_Err_Code Number A numeric error code from this operation.
Applix_Prop_Pending Varchar2 1 A flag indicating that this password needs to go to Applix.
Applix_Prop_Date Date The time and date when this change was given to Applix.
Applix_Err_Code Number A numeric error code from this operation.
Kerb5_Prop_Pending Varchar2 1 A flag indicating that this password needs to go to Kerberos

version 5 server.
Kerb5_Prop_Date Date The time and date when this change was given to the Ker-

beros version 5 server
Kerb5_Err_Code Number A numeric error code from this operation.
Windows_Prop_Pending Varchar2 1 A flag indicating that this password needs to go to Windows
Windows_Prop_Date Date The time and date when this change was given to Windows.
Windows_Err_Code Number A numeric error code from this operation.

Table 6: Encrypted_Passwd_Cache table.

Using Oracle to broker the password changes
makes it much easier to add new authentication ser-
vices. The web page used by the users does not need
to change, nor does it need to understand every new
type of authentication system. To add a new authenti-
cation system, we just need to write a new back end
that understands that world, along with some public
key encryption and database access. It also allows for
people to request password changes when some
authentication services are not available; the change is
held until the service is restored.

In Figure 3, we have data flow for a password
change. We start with a web page, connecting to our
secure web server via an SSL connection (step 1). The
secure web server does some password strength
checks, and, if things are okay, makes an immediate
password change to our AFS Kerberos server (step K).

There is also an option to simply test a new password
to ensure that it will pass the strength tests.

Once the password change is checked out, the
web server calls an packaged routine in the database,
Get_Public_Key (step 2). This public key is used to
encrypt the clear text of the user’s new password, and
then that encrypted text is stored back in the database
(step 3) via the Store_Pw procedure. This stores the
encrypted text, the user name, and the key number in
the Encrypted_Passwd_Cache table (Table 6).

Figure 3: Password change flow.

Using the same sort of propagation polling that
we used for the ADSI_Sync process, we have Windows
Password Changer program running on our Windows
2000 Password Master machine. It looks for entries in
the Encrypted_Passwd_Cache table (step 4) that have
Windows_Prop_Pending set to ‘‘Y.’’ Along with the
principal name, and the encrypted password, it also
gets a key number. It then consults it’s own list of pri-
vate keys (step 5) and uses that to decrypt the

70 2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA



Finke Embracing and Extending Windows 2000

password and make the change on the Windows 2000
domain controller (step 6). Once that has been done, it
then updates the Windows_Prop_Pending flag (step 7),
as well as the Windows_Prop_Date field. It continues
getting more rows to process until there are no more to
be done. At that point, it will ‘‘sleep’’ for 30 seconds,
and then check again. While this seems pretty quick,
there is some delay in propagating the password
changes between the Windows Domain Controllers, so
it can take up to 15 minutes for the changes to get
passed among the Windows servers. We have not
found any ways in which to improve this.

Key Generation
There are a number of options and approaches to

managing the public/private key pairs. For our Win-
dows 2000 world, we have a key generator program
that we run on the Windows 2000 Password Master
machine which generates a key pair. The private key is
stored in a secure location on the Password Master
machine (and yes, we really need to keep this machine
secure), and the public key is stored on the Oracle
database server. This makes it available to the Secure
Web Server when needed. The public keys are stored
in the Passwd_Key_List table (Table 7).

Name Type Size Description
Key_Num Number The key number.
PK_N Varchar2 2048 Part of the public key.
PK_E Varchar2 32 The other part of the public key.
Active Varchar2 4 A flag indicating that this key is the active key for

this type.
Start_Date Date When a key goes into service.
End_Date Date When a key is removed from service.
Create_Date Date When a key was created.
Key_Type Varchar2 4 What ‘‘TYPE’’ of key this – used to identify who has

the private key that matches this key.

Table 7: Passwd_Key_List table.

We have not spent a lot of time working on our
key management procedures, but we periodically gen-
erate new key pairs and remove the old private keys
from service. The use of key numbers and types help
keep things in order for us. However, since all of the
applications (the secure web server and the back end
processors) all rely on the Oracle procedures for key
management, we can change those routines and the
external code will do the right thing without any
changes.

Multiple Streams
In the case discussed above, we are keeping two

passwords in sync: our AFS Kerberos password and the
one for our Windows 2000 server. In actuality, we are
also keeping the Oracle password on the Simon server,
as well as the Oracle password on our trouble ticketing
system (Applix). We are maintaining our Kerberos ver-
sion 5 server passwords via this approach.

When the secure web server encrypts a pass-
word, it actually does it twice, once with a key used

for the Windows Password Changer, and a second
time using a different key pair used by the Simon sys-
tem. So, each password change results in two entries
being made in the Encrypted_Passwd_Cache table.
When the Windows key is used, the Windows_Prop_
Pending flag is set, and when the Simon key is used,
the Simon_Prop_Pending, Applix_Prop_Pending and
Kerb5_ Prop_Pending flags are set. Since these three
queues are all processed on the Simon server machine,
they are able to share the same public and private
keys.

At present, our Kerberos 5 server is not yet in
production. By using its own propagation flag,
changes to other servers can still go through when the
Kerberos 5 server is not available. When service is
restored, it can catch up on the changes. We also have
the ability to re-encrypt the clear text to feed to other
systems. This allows us to keep most of the processing
on the back end server, rather than making additional
encryption runs on the secure web server.

Timing Issues

Although we would like all of this to take place
instantly, the back end program is doing decryption
and re-encryption, as well as accessing the database.
In addition, the program is actually run by another job
scheduling system that is sometimes busy with other
functions (creating accounts, changing quotas, etc.).
We also have the problem that the system we are try-
ing to update is sometimes down or unreachable, so
the password change is stuck waiting in the queue.
This was starting to result in some operational prob-
lems where a person would change their password,
and then immediately try to access a service and get
an authentication failure.

To assist our help desk (and advanced users), we
wrote another web page which can display the exact
date and time of a person’s last password change, and
when it was applied to each authentication base. It will
also display if there is a change pending. This also lets
us generate some statistics on the time it takes for
password changes to propagate. The page will first
report on any pending changes, and then report on the
most recent set of completed changes. It produces a
report like Table 8.

2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA 71



Embracing and Extending Windows 2000 Finke

There are a couple of oddball entries. For exam-
ple, the Kerb 4 change always has an elapsed time of 0
seconds: if it fails, none of the Oracle processing will
take place, and no logs will be written for display. Of
course, the user will get a very clear error message on
the web page when this happens. The other odd case is
the AdminReq. This is a case where the user lost their
password and went to the help desk and asked that
their password be reset. This system uses a similar
mechanism to the ones discussed here, and sometimes
it is subject to delays.

Name Requested At Done At Elapsed Time
AdminReq 09:47:07 Jun-10-2002 09:42:13 Jun-10-2002 00:00:06
Applix 10:43:34 Apr-23-2002 10:44:42 Apr-23-2002 00:01:08
Kerb 4 10:43:34 Apr-23-2002 10:43:34 Apr-23-2002 00:00:00
Kerb 5 10:43:34 Apr-23-2002 10:45:18 Apr-23-2002 00:01:44
Simon 10:43:34 Apr-23-2002 10:43:59 Apr-23-2002 00:00:25
Win2000 10:43:34 Apr-23-2002 10:43:53 Apr-23-2002 00:00:19

Table 8: Password status sample.

Other password issues
For long term storage of ‘‘clear-text’’ passwords,

in order to let us populate services yet to be deployed,
we have the option of storing the appropriate private
keys on secure storage (such as a floppy disk locked
up in safe), and when we need to load the initial popu-
lation of a new service, we get the floppy, restore the
private keys, and load the new system.

Systems Administration as a White Pages problem

At LISA X, I presented a paper [6] showing how
managing the University white pages (phone direc-
tory) was really a Systems Administration problem.
Things have now come full circle, and we are apply-
ing our telephone directory tools and techniques to
managing our Windows 2000 domains.

For our telephone directory, we take a data feed
from Human Resources, decide (based on status and
department) if they are included in the directory, or if
they need to be moved to another part of the directory
tree.9 We also have facilities available to manually
move someone to a different department, have some-
one appear in a second or any number of departments.
What is more, our tools allow us to delegate control of
any department or subtree to folks outside of the com-
puter center.

This is the same problem we wanted to solve
with Windows 2000 user accounts. We wanted them to
be created and expired automatically, we wanted new
accounts to be put in the appropriate domains by
default, and we wanted to allow our Windows 2000
administrators to have some ability to shuffle folks
around, but not give every admin the ability to move
9Our baseline organization structure is based on our finan-

cial accounting system. We modify it slightly to reflect the
actual organizational structure.

every account. The tools used for our telephone direc-
tory could be used for this with almost no changes.

Futures

Having the common Windows/Unix/Kerberos
account and password base is very nice, in that it allows
us to deploy new services requiring authentication and
have some options with how we do it. Since all of the
IDs and passwords are the same, the users do not know
or even care how it is done. At present, we require the
users to change their password in order to access Win-
dows 2000 and some other services. We like this from a
security perspective, as the initial password is stored in
clear text and may have been printed. On the other
hand, this creates an extra step for new users. However,
it appears that user convenience has won out over secu-
rity, and we will soon be removing the requirement to
change the initial password.

We do have a web based account pickup system
in place that does put new users right on the password
change web page once they get their initial password.
Many of the new users take that opportunity to change
their passwords. Of the 1596 new users who used the
web pickup tool, 1467 (92%) changed their passwords.

We will continue to add new fields into Active
Directory from our enterprise information systems.
Now that the tools are in place and understood, it is
much easier add new things.

Problems and Lessons
One problem is our general job queuing mecha-

nism, so we will be investigating adding a special
password change thread or simply multiple threads to
keep password changes from getting stuck behind
other jobs. A priority setting for jobs might be enough,
since, in general, any given job is pretty quick. The
problem comes when a password change gets stuck
behind 1200 user account creation requests the prob-
lems arise.

Working with public key encryption can be very
tricky and we have run into problems with how keys
are generated and stored. We have two different ways
of generating key pairs, and although both store the
public keys in Oracle, and we can successfully encrypt
with either key, the private keys were not interchange-
able. For example, if I generated a private key under
AIX, it would not work in Windows. We have subse-
quently learned why this was, and have fixed this. We

72 2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA



Finke Embracing and Extending Windows 2000

have also hit problems with packages working under
one version of AIX on a particular type of processor,
and, when recompiled on a different machine, not
working at all. Some of the packages we are using
appear to have some buffer overruns and other mem-
ory layout issues.

A Big Hammer
The requirement for a high end database server

and some of the other infrastructure may make this solu-
tion ‘‘too big’’ for some small site to contemplate. How-
ever, I feel that part of this is a matter of perception.
When we first embarked on the Simon project, using
Oracle added a big expense for software and hardware,
and a lot of development effort. On the other hand, the
challenge of trying to deliver an enterprise wide com-
puting environment was simply too big to accomplish
without using commercial support. This project will not
help a small operation; it is simply too big a hammer.
But if you are working with tens of thousands of user
accounts, and a large turnover in population, you have
no other choice but to go for the big tools.

While the Simon system is involved in many
facets of our information systems, one of the most
important roles it plays is as an interface layer
between different vendor applications. It gives a place
to apply our business rules and needs to the areas
where the vendor products fall short. Part of the cost
of doing this is having a development staff who can
make these systems work together.

While it is certainly nice to think that we can do
everything with free software, I do not feel that that is
realistic approach to a large scale system. At our site,
we spend close to one million dollars a year in soft-
ware licensing and support contracts. Software license
costs are simply a cost of doing business. We don’t
seem to have a problem obtaining four servers for our
LDAP directories, so a database server shouldn’t be
any different.

References and Availability

All source code for the Simon system is avail-
able on the web. See http://www.rpi.edu/campus/
rpi/simon/README.simon for details. In addition, all
of the Oracle table definitions as well as PL/SQL
package source are available at http://www.rpi.edu/
campus/rpi/simon/misc/Tables/simon.Index.html . We
can make the ADSI (C#) routines available as well. It
seems unlikely that we can distribute the public key
encryption routines used in the password management,
but presumably you can find them elsewhere.

Acknowledgments

I would like to thank AEleen Frisch for her shep-
herding of this paper, as well as Deb Wentorf of Com-
munications and Collaboration Technologies at Rens-
selaer for her proofreading and editing. I also want to
thank Rob Kolstad for his excellent (as usual) job of

typesetting this paper. Thanks also to Mike Douglass
<douglm@rpi.edu> who wrote the LDAP part of the
project, and Alan Powell <powela@rpi.edu> who did
the ADSI part of the project.

Author Biography

Jon Finke graduated from Rensselaer in 1983,
where he had provided microcomputer support and
communications programming, with a BS-ECSE. He
continued as a full time staff member in the computer
center. From PC communications, he moved into
mainframe communications and networking, and then
on to Unix support, including a stint in the Nysernet
Network Information Center. A charter member of the
Workstation Support Group he took over printing
development and support and later inherited the Simon
project, which has been his primary focus for the past
11 years. He is currently a Senior Systems Programmer
in the Networking and Telecommunications department
at Rensselaer, where he continues integrating Simon
with the rest of the Institute information systems. When
not playing with computers, you can often find him
building or renovating houses for Habitat for Humanity,
as well as his own home. Reach him via USMail at RPI;
VCC 319; 110 8th St; Troy, NY 12180-3590. Reach
him electronically at <finkej@rpi.edu> . Find out more
via http://www.rpi.edu/˜finkej .

References

[1] Armstrong, Eric, Steve Bobrowski, John Frazz-
ini, Brian Linden, and Maria Pratt, Oracle 7
Server Application Developer’s Guide, Chapter
8, pp. 1-29, Oracle Corporation, Dec 1992.

[2] Armstrong, Eric, Steve Bobrowski, John Frazz-
ini, Brian Linden, and Maria Pratt, Oracle 7
Server Application Developer’s Guide, Appendix
A, pp. A15-A20, Oracle Corporation, Dec 1992.

[3] eduPerson Working Group, eduperson object
class, Technical report, EDUCAUSE, http://
www.educause.edu/eduperson/, 2001.

[4] Finke, Jon, ‘‘Automated Userid Management,’’
In Proceedings of Community Workshop 1992,
Rensselear Polytechnic Institute, pp. 3-5, Troy,
NY, June 1992.

[5] Finke, Jon, ‘‘Relational database + automated
sysadmin = simon,’’ Invited Talk, Sun Users
Group, East Conference, Boston, MA, July 1993.

[6] Finke, Jon, ‘‘Institute White Pages as a System
Administration Problem,’’ The Tenth Systems
Administration Conference (LISA 96) Proceed-
ings, pp. 233-240, USENIX, October 1996.

[7] Finke, Jon, ‘‘An Improved Approach to Generat-
ing Configuration Files from a Database,’’ The
Fourteenth Systems Administration Conference
(LISA 2000), pp. 29-38, USENIX, December
2000.

[8] Good, Gordon, RFC 2849: Ldap Data Inter-
change Format, June 2000.

2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA 73



Embracing and Extending Windows 2000 Finke

[9] Howe, Timothy A., The Lightweight Directory
Access Protocol: X.500 Lite, Technical Report
CITI TR 95-8, University of Michigan, July
1995.

[10] Hughes, Doug, ‘‘User-Centric Account Manage-
ment with Heterogeneous Password Changing,’’
The Fourteenth Systems Administration Confer-
ence (LISA 2000), pp. 67-76, USENIX, Decem-
ber 2000.

[11] Microsoft, ‘‘Active directory service interfaces
overview,’’ http://www.microsoft.com/windows2000/
techinfo/howitworks/activedirectory/adsilinks.asp.

[12] Microsoft, ‘‘Visual C#.net,’’ http://msdn.microsoft.
com/vcsharp, 2001.

[13] Portfolio, Tom, PL/SQL Release 8 User’s Guide
and Reference, Oracle Corporation, Part No.
A58236-01, December 1997.

74 2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA


