
USENIX Association

Proceedings of the
FAST 2002 Conference on

File and Storage Technologies

Monterey, California, USA
January 28-30, 2002

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2002 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Track-aligned Extents:
Matching Access Patterns to Disk Drive Characteristics

Jiri Schindler, John Linwood Griffin, Christopher R. Lumb, Gregory R. Ganger
Carnegie Mellon University

Abstract

Track-aligned extents (traxtents) utilize disk-specific
knowledge to match access patterns to the strengths of
modern disks. By allocating and accessing related data
on disk track boundaries, a system can avoid most ro-
tational latency and track crossing overheads. Avoiding
these overheads can increase disk access efficiency by up
to 50% for mid-sized requests (100–500 KB). This paper
describes traxtents, algorithms for detecting track bound-
aries, and some uses of traxtents in file systems and video
servers. For large-file workloads, a version of FreeBSD’s
FFS implementation that exploits traxtents reduces appli-
cation run times by up to 20% compared to the original
version. A video server using traxtent-based requests can
support 56% more concurrent streams at the same startup
latency and buffer space. For LFS, 44% lower overall
write cost for track-sized segments can be achieved.

1 Introduction

Rotating media has come full circle, so to speak. The
first uses of disks in the 1950s ignored the effects of ge-
ometry in the interest of achieving a working system.
Later, algorithms were developed that paid attention to
disk geometry in order to improve disk efficiency. These
algorithms were often hard-coded and hardware-specific,
making them fragile across generations of hardware. To
address this, a layer of abstraction was standardized be-
tween operating systems and disks, virtualizing disk stor-
age as a flat array of fixed-sized blocks. Unfortunately,
this abstraction hides too much information, making the
OS’s task of maximizing disk efficiency more difficult
than necessary.

File systems and databases attempt to mitigate the ever-
present disk performance problem by aggressively clus-
tering on-disk data and by issuing fewer, larger disk re-
quests. This is usually done with only a vague under-
standing of disk characteristics, focusing on the notion
that bigger requests are better because they amortize per-
request positioning delays over larger data transfers. Al-
though this notion is generally correct, there are perfor-
mance and complexity costs associated with making re-
quests larger and larger. For video servers, ever-larger

Quantum Atlas 10K II Efficiency vs. I/O Size

0

0.2

0.4

0.6

0.8

1.0

0 256 512 768 1024 1280 1536 1792 2048
I/O size [KB]

D
is

k
ef

fic
ie

nc
y

Track-aligned I/O

A

B

Unaligned I/O

maximum streaming efficiency

Figure 1: Measured advantage of track-aligned access over
unaligned access. Disk efficiency is the fraction of total ac-
cess time spent moving data to or from the media. The max-
imum streaming efficiency is less than 1.0, because no data is
transferred when switching from one track to the next. The
track-aligned and unaligned lines show disk efficiency for ran-
dom, constant-sized reads within a Quantum Atlas 10K II’s first
zone (264 KB per track). Point A highlights the higher effi-
ciency of track-aligned access (0.73, or 82% of the maximum)
over unaligned access for a track-sized request. Point B shows
where unaligned I/O efficiency catches up to the track-aligned
efficiency at Point A. The peaks in the track-aligned curve cor-
respond to multiples of the track size.

requests increase both buffer space requirements and
stream initiation latency [6, 7, 22]. Log-structured file
systems (LFS) incur higher cleaning overheads as seg-
ment size increases [5, 24, 33]. Even for general file sys-
tem operation, allocation of very large sequential regions
competes with space management robustness [25], and
very large accesses may put deep prefetching ahead of
foreground requests. Also, large requests can be used for
small files by grouping their contents [14, 15, 17, 32, 33],
but larger requests require grouping more files with
weaker inter-relationships. These examples all indicate
that achieving higher disk efficiency with smaller request
sizes would be valuable.

This paper describes and analyzes track-aligned extents
(traxtents), extents that are aligned and sized so as to

match the corresponding disk track size. By exploiting
a small amount of disk-specific knowledge in this way,
a system can significantly increase the efficiency of mid-
to-large requests (100 KB and up). Traxtent-aware ac-
cess yields up to 50% higher disk efficiency, quantified
as the the fraction of total access time spent moving data
to or from the media.

The efficiency improvement stems from two main
sources. First, track-aligned access minimizes the num-
ber of track switches, whose times have not decreased
much over the years and are now significant (0.6–1.1 ms)
relative to other delays. Second, full-track access elim-
inates rotational latency (3 ms per request on average at
10,000 RPM) for disk drives whose firmware supports
zero-latency access. Point A of Figure 1 shows random
track-aligned accesses yielding an efficiency within 82%
of the maximum possible, whereas unaligned accesses
only achieve 56% of the best-case for the same request
size.

The key challenge with exploiting disk-specific knowl-
edge is clean, robust integration: complexity must be
minimized, systems must not become tied to specific de-
vices, and system management must not be made harder.
These concerns can be addressed by minimizing the disk-
specific details needed, determining them automatically
for any disk, and incorporating them in a generic fash-
ion. This paper promotes the use of track boundaries, de-
scribes algorithms for detecting them automatically, and
describes how they can be cleanly integrated into exist-
ing systems. In particular, simply changing a file sys-
tem to support variable-sized extents is sufficient — the
file system code need not depend on any particular disk’s
track boundaries. Further, variable-sized extents allow a
file system to accomodate other boundary-related goals,
such as matching writes to stripe boundaries in order to
avoid RAID 5 read-modify-write operations [9].

This paper extensively explores track-based access. De-
tailed disk measurements show increased disk efficiency
and reduced access time variance. They also identify
system requirements that must be satisfied to achieve
the highest efficiency. A prototype implementation of
a traxtent-aware FFS file system in FreeBSD 4.0 illus-
trates the minimal changes needed and the resulting ben-
efits. For example, when accessing two large files con-
currently, the traxtent-aware FFS yields 20% higher per-
formance compared to current defaults. For streaming
media workloads, a video server can support either 56%
more concurrent streams at the same startup latency or
a 5� reduction in startup latency and buffer space at
the maximum number of concurrent streams. Finally,
we compute 44% lower overall write cost for track-sized
segments in LFS.

Although track boundary knowledge was used for allo-
cation and access decisions in some pre-SCSI systems,
no current or recent system that we are aware of does so.
This paper makes several enabling contributions:

1. It identifies and quantifies the benefits of track-
based access on modern disks, showing up to 50%
increases in efficiency. This is a compelling perfor-
mance boost.

2. It introduces new algorithms for automatically de-
tecting track boundaries. This task is more difficult
than might be expected, because of zoned recording
and media defect management.

3. It describes a minimal set of changes needed to
use track boundary knowledge in an existing file
system. This experience supports our contention
that exploiting disk-specific knowledge appropri-
ately need not introduce hardware dependences.

4. It shows that the disk efficiency benefits translate
into application performance increases in some real
cases, including streaming media services and large
file manipulations.

The remainder of this paper is organized as follows. Sec-
tion 2 motivates track-based access by describing the
technology trends and expected benefits in more detail.
Section 3 describes system changes required for trax-
tents. Section 4 describes our implementation of trax-
tents in FreeBSD. Section 5 evaluates traxtents under
a variety of circumstances. Section 6 discusses related
work. Section 7 summarizes this paper’s contributions.

2 Track-based Disk Access
In determining what data to read and write when, sys-
tem software attempts to maximize overall performance
in the face of two competing pressures. On the one hand,
the underlying disk technology pushes for larger request
sizes in order to maximize disk efficiency. Specifically,
time-consuming mechanical delays can be amortized by
transferring large amounts of data between each repo-
sitioning of the disk head. For example, Point B of Fig-
ure 1 shows that reading or writing 1 MB at a time results
in a 75% disk efficiency for normal (track-unaligned) ac-
cess. On the other hand, resource limitations and imper-
fect information about future accesses impose costs on
the use of very large requests.

This section discusses the system-level issues that push
for smaller request sizes, the disk characteristics that
make track-based accesses particularly efficient, and the
types of applications that will benefit most from track-
based disk access.

2.1 Limitations on request size

Four system-level factors oppose the use of ever-larger
requests: (1) responsiveness, (2) limited buffer space,
(3) irregular access patterns, and (4) storage space man-
agement.

Responsiveness. Although larger requests increase disk
efficiency, they do so at the expense of higher latency.
This trade-off between efficiency and responsiveness is
a recurring theme in computer systems, and it is partic-
ularly steep for disk systems. The latency increase can
manifest itself in several ways. At the local level, the
non-preemptive nature of disk requests combined with
the long access times of large requests (35–50 ms for
1 MB requests) can result in substantial I/O wait times
for small, synchronous requests. This problem has been
noted for both FFS and LFS [5, 37]. At the global level,
grouping substantial quantities of data into large disk
writes usually requires heavy use of write-back caching.
Although application performance is usually decoupled
from the eventual write-back, application changes are
not persistent until the disk writes complete. Making
matters worse, the amount of data that must be delayed
and buffered to achieve large enough writes continues
to grow. As another example, many video servers fetch
video segments in carefully-scheduled rounds of disk re-
quests. Using larger disk requests increases the time for
each round, which increases the time required to start
streaming a new video. Section 5.4 quantifies the start-
up latency required for modern disks.

Buffer space. Although memory sizes continue to grow,
they remain finite. Larger disk requests stress memory
resources in two ways. For reads, larger disk requests
are usually created by fetching more data farther in ad-
vance of the actual need for it; this prefetched data must
be buffered until it is needed. For writes, larger disk
requests are usually created by holding more data in a
write-back cache until enough contiguous data is dirty;
this dirty data must be buffered until it is written to
disk. The persistence problem discussed above can be
addressed with non-volatile RAM, but the buffer space
issue will remain.

Irregular access patterns. Large disk requests are most
easily generated when applications use regular access
patterns and large files. Although sequential full-file
access is relatively common [1, 29, 45], most data ob-
jects are much smaller than the disk request sizes needed
to achieve good disk efficiency. For example, most
files are well below 32 KB in size in UNIX-like sys-
tems [15, 40] and below 64 KB in Microsoft Windows
systems [12, 45]. Directories and file attribute structures
are almost always much smaller. To achieve sufficiently
large disk requests in such environments, access patterns

199 200 MAX0

(a) System’s view of storage.

ro
ta

tio
n

560
0

5
8

0
X

X

581

2
0

21

22

2
0

0
39

9
19

559
199

561
1

739
380

738
379

740
381

57
9

75
8

(b) Mapping of LBNs onto physical sectors.

Figure 2: Standard system view of disk storage and its map-
ping onto physical disk sectors. (a) illustrates the linear se-
quence of logical blocks, often 512 bytes, that the standard disk
protocols expose. (b) shows one example mapping of those log-
ical block numbers (LBNs) onto the disk media. The depicted
disk drive has 200 sectors per track, two media surfaces, and
track skew of 20 sectors. Logical blocks are assigned to the
outer track of the first surface, the outer track of the second sur-
face, the second track of the first surface, and so on. The track
skew accounts for the head switch delay to maximize streaming
bandwidth. The picture also shows a defect between the sectors
with LBNs 580 and 581, depicted as XX, which has been han-
dled by slipping. Therefore, the first LBN on the following
track is 599 instead of 600.

across data objects must be predicted at on-disk layout
time. Although approaches to grouping small data ob-
jects have been explored [14, 15, 17, 32, 33], all are based
on imperfect heuristics, and thus they rarely group things
perfectly. Even though disk efficiency is higher, mis-
grouped data objects result in wasted disk bandwidth and
buffer memory, since some fetched objects will go un-
used. As the target request size grows, identifying suffi-
ciently strong inter-relationships becomes more difficult.

Storage space management. Large disk requests are
only possible when closely related data is collocated
on the disk. Achieving this collocation requires that
on-disk placement algorithms be able to find large re-
gions of free space when needed. Also, when group-
ing multiple data objects, growth of individual data ob-
jects must be accommodated. All of these needs must
be met with little or no information about future stor-
age allocation and deallocation operations. Collectively,

Head Avg. 512B Sectors Number
Disk Year RPM Switch Seek per Track of Tracks Capacity

HP C2247 1992 5400 1 ms 10 ms 96–56 25649 1 GB
Quantum Viking 1997 7200 1 ms 8.0 ms 216–126 49152 4.5 GB
IBM Ultrastar 18 ES 1998 7200 1.1 ms 7.6 ms 390–247 57090 9 GB
IBM Ultrastar 18LZX 1999 10000 0.8 ms 5.9 ms 382–195 116340 18 GB
Quantum Atlas 10K 1999 10000 0.8 ms 5.0 ms 334–224 60126 9 GB
Seagate Cheetah X15 2000 15000 0.8 ms 3.9 ms 386–286 103750 18 GB
Quantum Atlas 10K II 2000 10000 0.6 ms 4.7 ms 528–353 52014 9 GB

Table 1: Representative disk characteristics. Note the small change in head switch time relative to other characteristics.

these facts create a complex storage management prob-
lem. Systems can address this problem with combina-
tions of pre-allocation heuristics [4, 18], on-line real-
location actions [23, 33, 41], and idle-time reorganiza-
tion [2, 24]. There is no straightforward solution and the
difficulty grows with the target disk request size, because
more related data must be clustered.

2.2 Disk characteristics

Modern storage protocols, such as SCSI and IDE/ATA,
expose storage capacity as a linear array of fixed-sized
blocks (Figure 2(a)). By building atop this abstrac-
tion, OS software need not concern itself with complex
device-specific details, and code can be reused across the
large set of storage devices that use these interfaces (e.g.,
disk drives and disk arrays). Likewise, by exposing only
this abstract interface, storage device vendors are free to
modify and enhance their internal implementations. Be-
hind this interface, the storage device must translate the
logical block numbers (LBNs) to physical storage loca-
tions. Figure 2(b) illustrates this translation for a disk
drive, wherein LBNs are assigned sequentially on each
track before moving to the next. Disk drive advances
over the past decade have conspired to make the track a
sweet-spot for disk efficiency, yielding the 50% increase
at Point A of Figure 1.

Head switch. A head switch occurs when a single re-
quest accesses a sequence of LBNs whose on-disk loca-
tions span two tracks. This head switch consists of turn-
ing on the electronics for the appropriate read/write head
and adjusting its position to account for inter-surface
alignment imperfections. The latter step requires the
disk to read servo information to determine the head’s
location and then to shift the head towards the center of
the second track. In the example of Figure 2(b), head
switches occur between LBNs 199 and 200, 399 and 400,
and 598 and 599.

Even compared to other disk characteristics, head switch
time has improved little in the past decade. While disk
rotation speeds have improved by 3� and average seek

times by 2.5�, head switch times have decreased by only
20–40% (see Table 1). At 0.6–1.1 ms, a head switch
now takes about 1/5 of a revolution for a 15,000 RPM
disk. This trend has increased the significance of head
switches. Further, this trend is expected to continue, be-
cause rapid decreases in inter-track spacing require in-
creasingly precise head positioning.

Naturally, not all requests span track boundaries. The
probability of a head switch, Phs, depends on workload
and disk characteristics. For a request of N sectors and a
track size of SPT sectors, Phs = (N�1)=SPT , assuming
that the requested locations are uncorrelated with track
boundaries. For example, with 64 KB requests (N = 128)
and an average track size of 192 KB (SPT = 384), a head
switch occurs for every third access, on average. With
N approaching SPT , almost every request will involve
a head switch, which is why we refer to conventional
systems as “track-unaligned” even though they are only
“track-unaware”. In this situation, track-aligned access
improves the response time of most requests by the 0.6–
1.1 ms head switch time.

Zero-latency access. A second disk feature that pushes
for track-based access is zero-latency access, also known
as immediate access or access-on-arrival. When disk
firmware wants to read N contiguous sectors, the sim-
plest approach is to position the head (by a combination
of seek and rotational latency) to the first sector and read
the N sectors in ascending LBN order. With zero-latency
access support, disk firmware can read the N sectors from
the media into its buffers in any order. In the best case of
reading exactly one track, the head can start reading data
as soon as the seek is completed; no rotational latency is
involved because all sectors on the track are needed. The
N sectors are read into an intermediate buffer, assembled
in ascending LBN order, and sent to the host. The same
concept applies to writes, except that data must be moved
from host memory to the disk’s buffers before it can be
written onto the media.
As an example of zero-latency access on the disk from
Figure 2(b), consider a read request for LBNs 200–399.

Average Rotational Latency for a 10K RPM disk

0

1

2

3

4

5

6

0% 25% 50% 75% 100%
I/O size [% of track size]

R
ot

at
io

na
ll

at
en

cy
[m

s]
Zero-latency Disk
Ordinary Disk

Figure 3: Average rotational latency for ordinary and zero-
latency disks as a function of track-aligned request size.
The request size is expressed as a percentage of the track size.

First, the head is moved to the track containing these
blocks. Suppose that, after the seek, the disk head is po-
sitioned above the sector containing LBN 380. A zero-
latency disk can immediately read LBNs 380–399. It
then reads the sectors with LBNs 200–379. In this way,
the entire track can be read in only one rotation even
though the head arrived in the “middle” of the track.

The expected rotational latency for a zero-latency disk
decreases as the request size increases, as shown in
Figure 3. Therefore, a request to the zero-latency ac-
cess disk for all SPT sectors on a track requires only
one revolution after the seek. An ordinary disk, on
the other hand, has an expected rotational latency of
(SPT � 1)=(2 � SPT), or approximately 1/2 revolution,
regardless of the request size and thus a request requires
anywhere from one to two (average of 1.5) revolutions.

2.3 Putting it all together

For requests around the track size (100–500 KB), the
potential benefit of track-based access is substantial. A
track-unaligned access for SPT sectors involves four de-
lays: seek, rotational latency, SPT sectors worth of me-
dia transfer, and head switch. An SPT -sector track-
aligned access eliminates the rotational latency and head
switch delays. This reduces access times for modern
disks by 3–4 ms out of 9–12 ms, resulting in a 50% in-
crease in efficiency.

Of course, the real benefit provided by track-based ac-
cess depends on the workload. For example, a work-
load of random small requests, as characterizes trans-
action processing, will see minimal improvement be-
cause request sizes are too small. At the other end of
the spectrum, a system that sequentially reads a single
large file will also see little benefit, because position-
ing costs can be amortized over megabyte sized transfers

and the disk’s prefetching logic will ensure that this oc-
curs. Track-based access provides the highest benefit to
applications with medium-sized I/Os. One set of exam-
ples is streaming media services, such as video servers,
MP3 servers, and CDN caches. Another includes storage
components (e.g., Network Appliance’s filers [19], HP’s
AutoRAID [47], or EMC’s Symmetrix) that map data to
disk locations in mid-sized chunks. Section 5 explores
several concrete examples of such applications.

3 Traxtent-aware System Design

Track-based disk access is a design option for any sys-
tem component that allocates disk locations and gener-
ates disk requests. In some systems, like the one used in
our experiments, these decisions are made in the system
software (e.g., file system) of a workstation, file server,
or content-caching appliance. In others, the system soft-
ware decisions are overridden by a logical disk [11] or a
high-end disk array controller [42, 47], using some sort
of mapping table to translate requested LBNs to inter-
nal disk locations. Track-based disk access is appro-
priate within any of these systems, and it requires rela-
tively minor changes to existing systems. This section
discusses practical design considerations involved with
these changes.

3.1 Extracting track boundaries

In order to use track boundary information, a system
must first obtain it. Specifically, a system must know the
range of LBNs that map onto each track. Under ideal cir-
cumstances, the disk would provide this information di-
rectly. However, since current SCSI and IDE/ATA disks
do not, the track boundaries must be determined experi-
mentally.

Extracting track boundaries is made difficult by the in-
ternal space management algorithms employed by disk
firmware. In particular, three aspects complicate the
basic LBN-to-physical mapping pattern. First, because
outer tracks have greater circumference than inner tracks,
modern disks record more sectors on the outer tracks.
Typically, the set of tracks is partitioned into 8–20 sub-
sets (referred to as zones or bands), each with a differ-
ent number of sectors per track. Second, because some
amount of defective media is expected, some fraction of
the disk’s sectors are set aside as spare space for defect
management. This spare space disrupts the pattern even
when there are no defects. Worse, there are a wide ar-
ray of spare space schemes (e.g., spare sectors per track,
spare sectors per cylinder, spare tracks per zone, spare
space at the end of the disk, etc.); we have observed
over 10 distinct schemes in different disk makes and
models. Third, when defects exist, the default LBN-to-
physical mapping is modified to avoid the defective re-

gions. Defect avoidance is handled in one of two ways:
slipping, wherein the LBN-to-physical mapping is mod-
ified to simply skip the defective sector, and remapping,
wherein the LBN that would be located in a defective
sector is instead located in a spare sector. Slipping is
more efficient and more common, but it affects the map-
pings of subsequent LBNs.

Although track detection can be difficult, it need be per-
formed only once. Track boundaries only change in use
if new defects “grow” on the disk, which is rare after the
first 48 hours of operation [30].

3.2 Allocation and access

To utilize track boundary information, the algorithms for
on-disk placement and request generation must support
variable-sized extents. Extent-based file systems, such as
NTFS [28] and XFS [43], allocate disk space to files by
specifying ranges of LBNs (extents) associated with each
file. Such systems lend themselves naturally to track-
based alignment of data: during allocation, extent ranges
can be chosen to fit track boundaries. Block-based file
systems, such as Ext2 [4] and FFS [25], group LBNs
into fixed-size allocation units (blocks), typically 4 KB
or 8 KB in size.

Block-based systems can approximate track-sized ex-
tents by placing sequential runs of blocks such that they
never span track boundaries. This approach wastes some
space when track sizes are not evenly divisible by the
block size. However, this space is usually less than 5%
of total storage space and could be reclaimed by the
system for storing inodes, superblocks, or fragmented
blocks. Alternately, this space can be reclaimed if the
cache manager can be modified to handle partially-valid
and partially-dirty blocks.

Like any clustering storage system, a traxtent-based
system must address aging and fragmentation and the
standard techniques apply: pre-allocation [4, 18], on-
line reallocation [23, 33, 41], and off-line reorganiza-
tion [2, 24]. For example, when a system determines that
a large file is being written, it may be useful to reserve
(preallocate) entire traxtents even when writing less than
a traxtent worth of data. The same holds when grouping
small files [15, 32]. When the file system becomes aged
and fragmented, on-line or off-line reorganization can be
used to re-optimize the on-disk layout. Such reorgani-
zation can also be used for retrofitting pre-existing disk
partitions or adapting to a replacement disk. The point
of this paper is that traxtents are a good target layout for
these techniques.

After allocation routines are modified to situate data on
track boundaries, system software must also be extended
to generate traxtent requests whenever possible. Usu-

ally, this will involve extending or clipping prefetch and
write-back requests based on track boundaries.

Our experimentation uncovered an additional design
consideration: current systems only realize the full ben-
efit of track-based requests when using command queue-
ing at the disk. Although zero-latency disks can ac-
cess LBNs on the media in any order, current SCSI and
IDE/ATA controllers only allow for in-order delivery to
or from the host. As a result, bus transfer overheads
hide some of the benefit of zero-latency access. By hav-
ing multiple requests outstanding at the disk, the next
request’s seek can be overlapped with the current re-
quest’s bus transfer, yielding the full disk efficiency ben-
efits shown in Figure 1. Fortunately, most modern disks
and most current operating systems support command
queueing at the disk.

4 Implementation

We have developed a prototype implementation of a
traxtent-aware file system in FreeBSD. This imple-
mentation identifies track boundaries and modifies the
FreeBSD FFS implementation to take advantage of this
information. This section describes our algorithms for
detecting track boundaries and details our modifications
to FFS.

4.1 Detecting track boundaries

We have implemented two approaches to detecting track
boundaries: a general approach applicable to any disk
interface supporting a read command and a specialized
approach for SCSI disks.

4.1.1 General approach

The general extraction algorithm locates track bound-
aries by identifying discontinuities in access efficiency.
Recall from Figure 1 that disk efficiency for track-
aligned requests increases linearly with the number
of sectors being transferred until a track boundary is
crossed. Starting with sector 0 of the disk (S = 0), the
algorithm issues successive requests of increasing size,
each starting at sector S (i.e., read 1 sector starting at S,
read 2 sectors starting at S, etc.). The extractor avoids
rotational latency variance by synchronizing with the ro-
tation speed, issuing each request at (nearly) the same
offset in the rotational period; rotational latency could
also be addressed by averaging many observations, but
at a substantial cost in extraction time. Eventually, an N-
sector read returns in more time than a linear model sug-
gests (i.e., N = SPT + 1), which identifies sector S+N
as the start of a new track. The algorithm then repeats
with S = S+N�1.

The method described above is clearly suboptimal; our
actual implementation uses a binary search algorithm to
find when N = SPT +1. In addition, once SPT is deter-
mined for a track, the common case of each subsequent
track being the same size is quickly verified. This veri-
fication checks for a discontinuity between S+ SPT � 1
and S+ SPT . If so, it sets S = S+ SPT � 1 and moves
on. Otherwise, it sets N = 1 and uses the base method;
this occurs mainly on the first track of each zone and on
tracks containing defects. With these enhancements, the
algorithm extracts the track boundaries of a 9 GB disk (a
Quantum Atlas 10K) in four hours. Talagala et al. [44]
describe a much quicker algorithm that extracts approxi-
mate geometry information using just the read command;
however, for our purposes, the exact track boundaries
must be identified.

One difficulty with using read requests to detect track
boundaries is the caching performed by disk firmware.
To obviate the effects of firmware caching, the algo-
rithm interleaves 100 parallel extraction operations to
widespread disk locations, such that the cache is flushed
each time we return to block S. An alternative approach
would be to use write requests; however, this is unde-
sirable because of the destructive nature of writes and
because some disks employ write-back caching.

4.1.2 SCSI-specific approach

The SCSI command set supports query operations that
can simplify track boundary detection. Worthington et
al. [48] describe how these operations can be used to de-
termine LBN-to-physical mappings. Building upon their
basic mechanisms, we have implemented an automated
disk drive characterization tool called DIXtrac [35]. This
tool includes a five-step algorithm that exploits the reg-
ularity of disk geometry and layout characteristics to ef-
ficiently and automatically extract the complete LBN-to-
physical mappings in less than one minute (fewer than
30,000 LBN translations), largely independent of disk
capacity:

1. Use the READ CAPACITY command to deter-
mine the highest LBN, and determine the num-
ber of cylinders and surfaces by mapping random
and targeted LBNs to physical locations using the
SEND/RECEIVE DIAGNOSTIC command.

2. Use the READ DEFECT LIST command to obtain a
list of all media defect locations.

3. Determine where spare sectors are located on each
track and cylinder, and detect any other space re-
served by the firmware. This is done by an expert-
system-like process of combining the results of sev-
eral queries, including whether or not (a) each track
in a cylinder has the same number of LBN-holding

sectors; (b) one cylinder within a set has fewer sec-
tors than can be explained by the defect list; and
(c) the last cylinder in a zone has too few sectors.

4. Determine zone boundaries and the number of sec-
tors per track in each zone by counting the sectors
on a defect-free, spare-free track in each zone.

5. Identify the remapping mechanism used for each
defective sector. This is determined by back-
translating the LBNs returned in step 2.

DIXtrac has been successfully used on dozens of disks,
spanning 11 different disk models from 4 different man-
ufacturers. Still, it does not always work. In our expe-
rience, step #3 has failed several times when we tried
a new disk with a previously unknown (to us) mapping
scheme — most are now part of DIXtrac’s expertise, but
future advances may again baffle it. When this hap-
pens, a system can fall back on the general approach
or, better yet, a SCSI-specific version of it. That is,
the general algorithm can be specialized to use SCSI’s
SEND/RECEIVE DIAGNOSTIC command instead of re-
quest timings. Such expertise-free, SCSI-specific extrac-
tion of track boundaries requires approximately 2.0–2.3
translations per track for most disks; it requires approxi-
mately 5 minutes for the 9GB Atlas 10K.

4.2 Traxtent support in FreeBSD

This section reviews the basic operation of FreeBSD
FFS [25] and describes our changes to implement
traxtent-aware allocation and access in FreeBSD.

4.2.1 FreeBSD FFS overview

FreeBSD assigns three identifying block numbers to
buffered disk data (Figure 4). The lblkno represents the
offset within a file; that is, the buffer containing the first
byte of file data is identified by lblkno 0. Each lblkno

is associated with one blkno (physical block number),
which is an abstract representation of disk addresses used
by the OS to simplify space management. Each blkno

directly maps to a range of contiguous disk sector num-
bers (LBNs), which are the actual addresses presented
to the device driver during an access. (Device drivers
adjust sector numbers to partition boundaries.) In our
experiments, the file system block size is 8 KB (sixteen
contiguous LBNs). In this section, “block” refers to a
physical block.

FFS partitions the set of physical blocks into fixed-size
block groups (“cylinder groups”). Each block group con-
tains a small amount of summary information—inodes,
free block map, etc.—followed by a large contiguous ar-
ray of data blocks. Block group size, block allocation,
and media access characteristics were once based on the

10 11 12

101 102 103 104 105

16421626 1658 1674 1690 1706

file offset

physical blocks

disk sectors
LBN

blkno

lblkno

track boundary

Figure 4: Mapping system-level blocks to disk sectors. Phys-
ical block 101 maps directly to disk sectors 1626–1641. Block
103 is an excluded block (see Section 4.2.2) because it spans
the disk track boundary between LBNs 1669–1670.

underlying disk’s physical geometry. Although this ge-
ometry dependence is no longer real, block groups are
still used in their original form because they localize
related data (e.g., files in the same directory) and their
inodes, resulting in more efficient disk access. The block
groups created for our experiments are 32 MB in size.

FreeBSD’s FFS implementation uses the clustered al-
location and access algorithms described by McVoy &
Kleiman [26]. When newly created data are commit-
ted to disk, blocks are allocated to a file by selecting
the closest “cluster” of free blocks (relative to the last
block committed) large enough to store all N blocks of
buffered data. Usually, the cluster selected consists of
the N blocks immediately following the last block com-
mitted. To assist in fair local allocation among multiple
files, FFS allows only half of the blocks in a block group
to be allocated to a single file before switching to a new
block group.

FFS implements a history-based read-ahead (a.k.a.
prefetching) algorithm when reading large files sequen-
tially. The system maintains a “sequential count” of the
last run of sequentially accessed blocks (if the last four
accesses were for blocks 17, 20, 21, and 22, the sequen-
tial count is 3). When the number of cached read-ahead
blocks drops below 32, FFS issues a new read-ahead of
length l beginning with the first noncached block, where
l is the lowest of (a) the sequential count, (b) the number
of contiguously allocated blocks remaining in the current
cluster, or (c) 32 blocks1.

4.2.2 FreeBSD FFS modifications

This section describes the few, small changes required to
integrate traxtent-awareness into FreeBSD FFS.

132 blocks is a representative default value. It may be smaller on
systems with limited resources or larger on systems with custom ker-
nels.

Excluded blocks and traxtent allocation. We intro-
duce the concept of the excluded block, highlighted in
Figure 4. Blocks that span track boundaries are excluded
from allocation decisions by marking them as used in the
free-block map. Whenever the preferred block (the next
sequential block) is excluded, we instead allocate the first
block of the closest available traxtent. When possible,
mid-size files are allocated such that they fit within a sin-
gle traxtent. On average, one out of every twenty blocks
of the Quantum Atlas 10K is excluded under our modi-
fied FFS. As per-track capacity grows, the frequency of
excluded blocks decreases—for the Atlas 10K II, one in
thirty is excluded.

Traxtent-sized access. No fundamental changes are
necessary in the FFS clustered read-ahead algorithm.
FFS properly identifies runs of blocks between excluded
blocks as clusters and accesses them with a single disk
request. Until non-sequential access is detected, we ig-
nore the “sequential count” to prevent multiple partial
accesses to a single traxtent; for non-sequential file ses-
sions, the default mechanism is used. We handle the spe-
cial case where there is no excluded block between trax-
tents by ensuring that no read-ahead request goes beyond
a track boundary. At a low level, unmodified FreeBSD
already supports command queuing at the device and at-
tempts to have at least one outstanding request for each
active data stream.

Traxtent data structures. When the file system is cre-
ated, track boundaries are identified, adjusted to the file
system’s partition, and stored on disk. At mount time,
they are read into an extended FreeBSD mount structure.
We chose the mount structure because it is available ev-
erywhere traxtent information is needed.

5 Evaluating Traxtents

This section examines the performance benefits of track-
based access at two levels. First, it evaluates the disk
in isolation, finding a 50% improvement in disk effi-
ciency and a reduction in response time variance. Sec-
ond, it quantifies system-level performance gains, show-
ing a 20% reduction in run time for large file operations,
a 56% increase in the number of concurrent streams ser-
viceable on a video server, and a 44% lower write cost
for a log-structured file system.

5.1 Experimental setup

Most experiments described in this section were per-
formed on two disks that support zero-latency access
(Quantum Atlas 10K and Quantum Atlas 10K II) and
two disks that do not (Seagate Cheetah X15 and IBM
Ultrastar 18 ES). The disks were attached to a 550 MHz
Pentium III-based PC. The Atlas 10K II was attached via

mxferseekmxferseek

 end
T

2
 endT
1

head time

onereq

 issue
T

2
 issue
T

1
 start

T
2

 start
T

1 = =

mxferseek

bxfer

bxfer

mxferseek

bxfer

bxfer

 end
T

2
 endT
1

head time

tworeq

 issue
T

2
 issue
T

3
 start

T
2

 start
T

3
 start

T
1

bxfer

idle idle

time

Figure 5: Expressing head time. The head time of a onereq
request is T end

2 � T issue
2 . For tworeq, the head time is T end

2 �

T end
1 . T issue is the time when the request is issued to the disk,

T start is when the disk starts servicing the request, and T end

is when completion is reported. Notice that for tworeq, T issue

does not equal T start because of queueing at the disk.

an Adaptec Ultra160 Wide SCSI adapter, the Atlas 10K
and Ultrastar were attached via an 80 MB/s Ultra2 Wide
SCSI adapter, and the Cheetah via a Qlogic FibreChannel
adapter. We also examined workloads with the DiskSim
disk simulator [16] configured to model the respective
disks. Examining these disks in simulation enables us
to quantify the individual components of the overall re-
sponse time, such as seek and bus transfer time.

5.2 Disk performance

Two workloads, onereq and tworeq, are used to evaluate
basic track-aligned performance. Each workload con-
sists of 5000 random requests within the first zone of the
disk. The difference is that onereq keeps only one out-
standing request at the disk, whereas tworeq ensures one
request is always queued at the disk in addition to the one
being serviced.

We compare the efficiency of both workloads by measur-
ing the average per-request head time. A request’s head
time is the amount of time that the disk head is dedicated
to that request. The average head time is the reciprocal
of request throughput (i.e., I/Os per second). Therefore,
higher disk efficiency will result in a shorter average head
time, all else being equal. We introduce head time as a
metric because it allows us to identify component delays
more easily.

Atlas10K II Disk Drive

0

3

6

9

12

15

0% 20% 40% 60% 80% 100%
I/O size [% of track size]

H
ea

d
tim

e
[m

s]

onereq Unaligned I/O

onereq Track-aligned I/O

tworeq Unaligned I/O

tworeq Track-aligned I/O

zero bus transfer, simulation

Figure 6: Average head time for track-aligned and un-
aligned reads for Quantum Atlas 10K II. The dashed and
solid lines show the average of measured times for 5000 ran-
dom track-aligned and unaligned reads to the disk’s first zone
for the onereq and tworeq workloads. Multiple runs for a sub-
set of the points reveal little variation (<0.4%) between aver-
age head times for distinct sets of 5000 random requests. The
thin dotted line represents the onereq workload replayed on a
simulator configured with zero bus transfer time; note that it
approximates tworeq without having to ensure queued requests
at the disk.

For onereq requests, head time equals disk response time
as observed by the device driver, because the next request
is not issued until the current one is complete. As usual,
disk response time is the elapsed time from when a re-
quest is sent to the disk to when completion is reported.
For onereq requests, the read/write head is idle for part
of this time, because the only outstanding request is wait-
ing for a bus transfer to complete. For tworeq requests,
the head time includes only media access delays, since
bus activity for any one request is overlapped with posi-
tioning and media access for another. The components
of head times for the onereq and tworeq workloads are
shown graphically in Figure 5.

Read performance. Figure 6 shows the improvement
given by track-aligned accesses on the Atlas 10K II.
For track-sized requests, head times for track-aligned ac-
cesses in onereq and tworeq decrease by 18% and 32%
respectively, which correspond to increases of 22% and
47% in efficiency. The tworeq efficiency increase ex-
ceeds that of onereq because tworeq overlaps the previ-
ous request’s bus transfer with the current request’s me-
dia transfer.

Because bus and media transfers are overlapped, the head
time for a track-aligned, track-sized request in the tworeq
workload is 8.3 ms (calculated as shown in Figure 5).
Subtracting 2.2 ms average seek time from the head time
yields 6.1 ms. This observed value is very close to the

media transfer

42 6 8 12 1410

time [ms]

2.2 ms

6 ms

2 msseek Normal
access

Track-aligned
access

Track-aligned access
out-of-order delivery

r. lat. & h. switch & mxfer

bxfer

seek

media transferseek

9.2 ms

bxfer

bxfer

Figure 7: Breakdown of measured response time for a zero-
latency disk. “Normal access” represents track-unaligned ac-
cess, including seek, rotational latency (r.lat.), head switch, me-
dia transfer (mxfer), and bus transfer (bxfer). For track-aligned
access, the in-order bus transfer does not overlap the media
transfer. With out-of-order bus delivery, overlap of bus and
media transfers is possible.

rotation time of 6 ms, confirming that track-aligned ac-
cesses to zero-latency disks can fetch a full track in one
revolution with no rotational latency.

The command queueing of tworeq is needed in current
systems to address the in-order bus delivery requirement.
That is, even though zero-latency disks can read data out
of order, they only send data over the bus in ascending
LBN order. This results in only a 3% overlap, on aver-
age, between the media transfer and bus transfer for the
track-aligned access bar in Figure 7. The overlap would
be nearly complete if out-of-order bus delivery were used
instead, as shown by the bottom bar. Out-of-order bus
delivery would improve the efficiency of onereq to nearly
that of tworeq while relaxing the queueing requirement
(shown as the “zero bus transfer” curve in Figure 6).
Although the SCSI specification allows out-of-order bus
delivery using the MODIFY DATA POINTER command,
we are not aware of any disks that support this operation.

Write performance. Track-alignment also makes writes
more efficient. For the onereq workload on the Atlas
10K II, the head time of track-sized writes is 10.0 ms for
track-aligned access and 13.9 ms for unaligned access,
which is a reduction of 28%. For tworeq, the reduction
in head time is 26% (from 13.8 ms to 10.2 ms). These
reductions correspond to efficiency increases of 39% and
35%, respectively.

The larger onereq improvement, relative to reads, occurs
because the seek and bus transfer are overlapped. The
disk can initiate the seek as soon as the write command
arrives. While the seek is in progress, the data is trans-

Atlas 10K II Disk - Std. Deviation

0

3

6

9

12

15

0% 20% 40% 60% 80% 100%
I/O size [% of track size]

R
es

po
ns

e
tim

e
[m

s]

Track-aligned I/O
Unaligned I/O

Figure 8: Response time and its standard deviation for
track-aligned and unaligned disk access. The thin lines with
markers represent the average response time, and the enve-
lope of thick lines is the response time � one standard devi-
ation. The data shown in the graph was obtained by running
the onereq workload on a simulated disk configured with an in-
finitely fast bus to eliminate the response time variance due to
in-order bus delivery.

ferred to the disk and buffered. Since the average seek for
the onereq workload is 2.2 ms and the data transfer takes
about 2 ms, the data usually arrives at the disk before the
seek is complete and the zero-latency write begins.

Importance of zero-latency access. The head time re-
ductions for the other zero-latency disk (the Atlas 10K)
are 16% and 32% for track-sized reads in the onereq
and tworeq workloads, corresponding to 19% and 47%
higher efficiencies. These reductions are smaller due to
the Atlas 10K’s longer average seek time of 2.4 ms.

Head time does not drop as significantly for track-aligned
reads on disks that do not support zero-latency access:
6% for the IBM Ultrastar 18ES and 8% for the Sea-
gate Cheetah X15. For these disks, aligning accesses
on track boundaries only eliminates the 0.8–1.1ms head
switch time—the rotational latencies of 4 ms (Ultrastar)
and 2 ms (Cheetah) are still incurred.

Response time variance. Track-aligned access can sig-
nificantly lower the standard deviation, σ, of response
time as seen in Figure 8. As the request size increases
from one sector to the track size, σaligned decreases from
1.8 ms to 0.4 ms, whereas σunaligned decreases from
2.0 ms to 1.5 ms. The standard deviation of the seeks in
this workload is 0.4 ms, indicating that the response time
variance for aligned access is due entirely to the seeks.
Lower variance makes response times more predictable,
allowing soft real-time applications to use tighter bounds
in scheduling and thereby achieve higher utilization.

Track-based requests also have lower worst-case access
times, since rotational latency and head switch time are
avoided.

5.3 FFS experiments

Building on the disk-level results, this section com-
pares our prototype traxtent-aware FFS to unmodified
FFS. We also include results for a modified FFS, here
called fast start FFS, that aggressively prefetches con-
tiguous blocks. The unmodified FFS slowly ramps up its
prefetching as it observes sequential access to a file. The
fast start FFS, on the other hand, prefetches up to 32 con-
tiguous blocks on the first access to a file, thus approx-
imating the behavior of the traxtent-aware FFS (albeit
with larger requests and no knowledge of track bound-
aries).

Each test is performed on a freshly-booted system with
a clean partition on a Quantum Atlas 10K. The tests ver-
ify the expected performance effects: small penalty for
single sequential scan, substantial benefit for interleaved
scans, and no effect on small file activity. We also iden-
tify and measure the worst-case scenario. The results are
summarized in Table 2.

Single large file. The first experiment is an I/O-bound
linear scan through a 4 GB file. As expected, traxtent-
FFS runs 5% slower than unmodified FFS or fast start
FFS (199.8 s vs. 189.6 s and 188.9 s respectively). This
is because FFS is optimized for large sequential single-
file access and reads at the maximum disk streaming
rate, whereas traxtent-FFS inserts an excluded block one
out of every twenty blocks (5%). This penalty could
be eliminated by changing the file system cache to sup-
port buffering of partial blocks (much like IP fragments)
instead of using excluded blocks in large files; this ap-
proach would give the block-based system extent-like
flexibility.

Multiple large files. The second experiment consists
of the diff application comparing two large files. Be-
cause diff interleaves fetches from the two files, we ex-
pect to see a speedup from improved disk efficiency. For
512 MB files, traxtent-FFS completes 19% faster than
unmodified FFS or fast start FFS. A more detailed anal-
ysis shows that traxtent-FFS performs 6724 I/Os (aver-
age size of 160 KB) in 56.6 s while unmodified FFS
performs only 4108 I/Os (mostly 256 KB) but requires
69.7 s. The fast start FFS performs 4094 I/Os (all but
one at 256 KB) and requires 70.0 s. Subtracting media
transfer time, unmodified FFS incurs 6.9 ms of overhead
(seek + rotational latency + track switch time) per re-
quest, and traxtent-FFS incurs only 2.2 ms of overhead
per request. In fact, the 19% improvement in overall
completion time corresponds to an improvement in disk
efficiency of 23%, exactly matching the predicted dif-

ference between single-track accesses and 256 KB un-
aligned accesses on an Atlas 10K disk.

The third experiment verifies write performance by copy-
ing a 1 GB file to another file in the same directory. FFS
commits dirty buffers as soon as a complete cluster is cre-
ated, which results in two interleaved request streams to
the disk. This test shows a 20% reduction in run time for
traxtent-FFS over unmodified FFS (124.9 s vs. 156.9 s).
The fast start FFS finished in 155.3 s.

Small Files. Two application benchmarks are used to
verify that the traxtent modifications do not penalize
small file workloads. Postmark [21] simulates the small-
file activity of busy Internet servers. Our experiments use
Postmark v1.11 and its default parameters: 5–10KB files
and 1:1 read-to-write and create-to-delete ratios. SSH-
build [38] represents software development activity, re-
placing the Andrew benchmark. Its three phases unpack
the compressed tar archive of SSH v1.2.27, generate the
header files and Makefiles, and build the program exe-
cutable.

As expected, we observe little difference. The SSH-build
results differ by less than 0.2%, because the file system
activity is dominated by small synchronous writes and
cache hits. The fast start FFS performs exactly like the
traxtent FFS having an edge of 0.2% over the unmodified
FFS. Postmark is 4% faster with traxtents (55 transac-
tions/second versus 53 for both unmodified and fast start
FFS), because the few track switches are avoided. Fast
start is not important for Postmark, because the files con-
sist of only 1–3 blocks.

One might view these results as a negative indication of
traxtents’ value, but they are not. Recall that FreeBSD
FFS does not explicitly group small files into large disk
requests. Such grouping has been shown to yield 2–8�
throughput increases for static web servers [20], web
proxy caches [39], and software development activi-
ties [15]. Based on our measurements, we expect that
the additional 50% increase in throughput from traxtents
would be realized given such grouping.

Worst case scenario. As expected, we observe no
penalty to small file I/O and a minimal (5%) penalty
to the unoptimized single stream case. For random file
I/O, FFS’s “sequential count” prefetch control replaces
the traxtent-based fetch mechanism, preventing useless
full-track reads. The one remaining worst-case scenario
would be single-block reads to the beginnings of many
large files; in this case, the original FFS will fetch the first
8KB block and prefetch the second, whereas the modi-
fied FFS will fetch the entire first traxtent (� 160 KB).
To evaluate this scenario, we ran an experiment, called
head *, that reads the first byte of 1000 200 KB files.
The results show a 45% penalty for traxtents (3.6 s vs.

4GB scan 512MB diff 1GB copy Postmark SSH-build head *

unmodified 189.6 s 69.7 s 156.9 s 53 tr/s 72.0 s 4.6 s
fast start 188.9 s 70.0 s 155.3 s 53 tr/s 71.5 s 5.5 s
traxtents 199.8 s 56.6 s 124.9 s 55 tr/s 71.5 s 5.2 s

Table 2: FreeBSD FFS results. All but the head * values are an average of three runs. The individual run times deviate from their
average by less than 1%. The head * value is an average of five runs and the individual runs deviate by less than 3.5%. Postmark
reported the same number of transactions per second in all three runs for the respective FFS, except for one run of the unmodified
FFS that reported 54 transactions per second.

5.2 s), closely matching the predicted per-request service
time difference (5.6 ms vs. 8.0 ms). Fortunately, this
scenario is not often expected to arise in practice. Not
surprisingly, the fast start FFS performs even worse than
the traxtent FFS with an average runtime of 5.5 s as it
prefetches even more unnecessary data.

5.4 Video servers

A video server is designed to serve large numbers of
video streams to clients at guaranteed rates. To accom-
plish this, the server first fetches one time interval of
video (e.g., 0.5 s) for each stream. This set of fetches
is called a round. Then, while the data are transferred to
clients from the server’s buffers, the server schedules the
next round of requests. Since the per-interval disk access
time is less than the round time, many concurrent streams
can be supported by a single disk. Further, by spreading
video streams across D disks, D times as many concur-
rent streams can be supported.

The per-interval disk request size, IOsize, represents a
trade-off between throughput (the number of concur-
rent streams) and other considerations (buffer space and
start-up latency). IOsize must be large enough so that
achieved disk bandwidth (disk efficiency times peak
bandwidth) exceeds V times the video bit rate, where V
is the number of concurrent video streams supported. As
IOsize increases, both disk efficiency and TimeperIO in-
crease, increasing both the number of video streams that
can be supported and the round time, which is defined as
V times TimeperIO.

Round time determines the startup latency of a newly ad-
mitted stream. Assuming the video server spreads data
across D disks, the worst-case startup latency is round
time times (D+ 1) [34]. The buffer space required at
the server is 2� IOsizedisk�V. In practice, IOsize is
chosen to meet system goals given a trade-off between
startup latency and the maximum number of supportable
streams. Since track-aligned access increases disk effi-
ciency, it enables more concurrent streams to be serviced
at a given IOsize.

5.4.1 Soft real-time

Most video server projects, such as Tiger [3] and
RIO [34], provide soft real-time guarantees. These sys-
tems guarantee that, with a certain probability, a request
will not miss its deadline. This allows a relaxation on
the assumed worst-case seek and rotational latency and
results in higher bandwidth utilization for both track-
aligned and unaligned access.

We evaluate two video servers (one traxtent-aware and
one not), each containing 10 Quantum Atlas 10K II
disks, using the same approach as the RIO video
server [34]. First, we measured the time to complete a
given number of simultaneous, random track-sized re-
quests. This measurement was repeated 10,000 times for
each number of simultaneous requests from 10 to 80. (80
is the maximum number of simultaneous 4 Mb/s streams
that can be supported by each disk’s 40 MB/s streaming
bandwidth.)

From the PDF of the measured response times, we ob-
tained the round time that would meet 99.99% of the
deadlines for the 4 Mb/s rate. Given a 0.5 s round time
(which translates to a worst-case startup latency of 5.5 s
for the 10-disk array), the track-aligned system can sup-
port up to 70 streams per disk. In contrast, the unaligned
system is only able to support 45 streams per disk. Thus,
the track-aligned system can support 56% more streams
at this minimal startup latency.

To support more than 70 and 45 streams per disk for the
track-aligned and unaligned systems, the I/O size must
increase. This increase in I/O size causes an increase in
the round time, which in turn increases the startup la-
tency as shown in Figure 9. At 70 streams per disk, the
startup latency for the track-aligned system is 4� smaller
than for the track-unaligned system.

5.4.2 Hard real-time

Although many video servers implement soft real-time
requirements, there are applications that require hard
real-time guarantees. In their admission control algo-
rithms, these systems must assume the worst-case re-
sponse time to ensure that no deadline is missed. In

10-disk Video Server Performance

0

20

40

60

80

100

0 100 200 300 400 500 600 700 800

Number of Concurent Streams

S
ta

rt
up

La
te

nc
y

[s
]

Track-aligned I/O

Unaligned I/O

Figure 9: Worst-case startup latency of a video stream for
track-aligned and unaligned accesses. The startup latency
is shown for a 10-disk array of Quantum Atlas 10K II disks,
which can support up to 800 concurrent streams.

computing the worst-case response time, one assumes
the worst-case seek, transfer time, and rotational latency.
Both the track-aligned and unaligned systems have the
same values for the worst-case seek2. However, the
worst-case rotational latency for unaligned access is one
revolution, whereas track-based access suffers no rota-
tional latency. The worst-case transfer time will be simi-
lar except that the unaligned system must assume at least
one head switch will occur for each request. With a
4 Mb/s bit rate and an I/O size of 264 KB, the track-
unaligned system supports 36 streams per disk whereas
the track-based system supports up to 67 streams. This
translates into 45% and 83% disk efficiency, respectively.
With an I/O size of 528 KB, unaligned access yields 52
streams vs. 75 for track-based access. Unaligned I/O size
must exceed 2.5 MB, with a maximum startup latency of
60.5 seconds, to achieve the same efficiency as the track-
aligned system.

5.5 Log-structured File System

The log-structured file system (LFS) [33] was designed
to reduce the cost of disk writes. Towards this end, it
remaps all new versions of data into large, contiguous
regions called segments. Each segment is written to disk
with a single I/O operation, amortizing the positioning
cost over one large write. A significant challenge for LFS
is ensuring that empty segments are always available for
new data. LFS answers this challenge with an internal

2The worst-case time for V seeks is much smaller than V times a
full strobe seek (seek from one edge of the disk to the other), decreasing
with increasing number (V) of concurrent streams [31]. This is because
the disk scheduler can sort the requests in each round to minimize total
seek distance. The worst-case seek time charged to a stream is equal to
the worst-case scheduled seek route that serves all streams divided by
the number of streams.

defragmentation operation called cleaning. Cleaning of a
previously written segment involves identifying the sub-
set of “live” blocks, reading them into memory, and writ-
ing them into a new segment. Live blocks are those that
have not been overwritten or deleted by later operations.

There is a performance trade-off between write effi-
ciency and the cost of cleaning. Larger segments of-
fer higher write efficiency but incur larger cleaning cost
since more data has to be transferred for cleaning [24,
37]. Additionally, the transfer of large segments hurts the
performance of small synchronous reads [5, 24]. Given
these conflicting pressures, the choice of segment size
must balance write efficiency, cleaning cost, and small
synchronous I/O performance. Matching segments to
track boundaries can yield higher write efficiency with
smaller segments and thus lower cleaning costs.

To evaluate the benefit of using track-based access for
LFS segments, we use the overall write cost (OWC) met-
ric described by Matthews et al. [24], which is a refine-
ment of the write cost metric defined for the Sprite imple-
mentation of LFS [33]. It expresses the cost of writes in
the file system, assuming that all data reads are serviced
from the system cache. The OWC metric is defined as
the product of write cost and disk transfer inefficiency:

OWC = WriteCost�TransferInefficiency

=
Nnew

written +Nclean
read +Nclean

written

Ndata
written

�

T actual
xfer

T ideal
xfer

where N is the number of segments written due to new
data or read and written due to segment cleaning, and
T is the time for one segment transfer. WriteCost de-
pends on the workload (i.e., how much new data is writ-
ten and how much old data is cleaned) but is indepen-
dent of disk characteristics. TransferInefficiency, on the
other hand, depends only on disk characteristics. There-
fore, we can use the WriteCost values given by Matthews
et al. for their Auspex server trace [24] and measured
TransferInefficiency values like those in Figure 1.

Figure 10 shows that OWC is lower with track-aligned
disk access and that the cost is minimized when the
segment size matches the track size. Unlike our use
of empirical data for determining TransferInefficiency,
Matthews et al. estimate its value as

TransferInefficiency = Tpos�
BWdisk

Ssegment
+1

where Ssegment is the segment size (in bytes) and Tpos is
the average positioning time (i.e., seek and rotational la-
tency). To verify that our results are in agreement with
their findings, we computed OWC for the Atlas 10K II
based on its specifications and plotted it in Figure 10 (la-
beled “5.2 ms*40 MB/s”) with the OWC values for the

LFS Overall Write Cost (Auspex Workload)

1

2

3

32 64 128 256 512 1024 2048 4MB
segment size [KB]

O
ve

ra
ll

W
rit

e
C

os
t[

ra
tio

]

Atlas 10K II track-aligned I/O
Atlas 10K II unaligned I/O
5.2ms*40MB/s (Atlas 10K II)

Figure 10: LFS overall write cost for the Auspex trace as a
function of segment size. The line labeled “5.2 ms*40 MB/s”
is the overall write cost predicted by the transfer inefficiency
model described by Matthews et al. [24].

track-aligned and unaligned I/O. Because the empirical
values are for the disk’s first zone, the model values are
too: 2.2 ms average seek, 3 ms average rotational latency,
and peak bandwidth of 40 MB/s. As expected, the model
is a good match for the unaligned case.

5.5.1 Variable segment size

As shown in Figure 10, the lowest write cost is achieved
when the size of a segment matches the size of a track.
However, different tracks may hold different numbers of
LBNs. Therefore, an LFS must allow for variable seg-
ment sizes in order to match segment boundaries to track
boundaries. Fortunately, doing so is straightforward.

In an LFS, the segment usage table records informa-
tion about each segment. In the SpriteLFS implementa-
tion [33], this table is kept as an in-memory kernel struc-
ture and is stored in the checkpoint region of the file sys-
tem. The BSD-LFS implementation [36] stores this table
in a special file called the IFILE. Because of its frequent
use, this file is almost always in the file system’s cache.

Variable-sized segments can be supported by augmenting
the per-segment information in the segment usage table
with a starting location (the LBN) and length. During the
initialization, each segment’s starting location and length
are set according to the corresponding track boundary in-
formation. When a new segment is allocated in memory,
its size is looked up in the segment usage table. When the
segment becomes full, it is written to the disk at the start-
ing location given in the segment usage table. The proce-
dures for reading segments and for cleaning are similar.

6 Additional Related Work
Much related work has been discussed throughout this
paper. Some other notable related work has promoted
zone-based allocation and detailed disk-specific request
generation for small requests.

The Tiger video server [3] allocated primary copies of
videos to the outer portions of disks’ LBN space in or-
der to exploit the higher bandwidth of outer zones. Sec-
ondary copies were allocated to the lower bandwidth
zones. Van Meter [27] suggested that there was general
benefit in changing file systems to understand that differ-
ent regions of the disk provide different bandwidths.

By utilizing even more detailed disk information, several
researchers have shown substantial decreases in small
request response times [8, 10, 13, 46, 49]. For small
writes, these systems detect the position of the head and
re-map data to the nearest free block in order to minimize
the positioning costs [10, 46]. For small reads, the SR-
Array [49] determines the head position when the read
request is to be serviced and reads the closest of several
replicas.

7 Summary
This paper presents a case for track-aligned extents. It
demonstrates feasibility with a working prototype, and
it demonstrates value with direct measurements. At the
low level, traxtent accesses are shown to increase disk
efficiency by approximately 50% compared to track-
unaligned accesses of the same size. At the system
level, traxtents are shown to increase application effi-
ciency by 25–56% for large file workloads, video servers,
and write-bound log-structured file systems.

Acknowledgements
Bill Nace contributed to our initial investigation into
track-aligned extents. We thank our shepherd John
Wilkes and the anonymous reviewers for helping us re-
fine this paper. We thank the members and companies of
the Parallel Data Consortium (including EMC, Hewlett-
Packard, Hitachi, IBM, Intel, LSI Logic, Lucent, Net-
work Appliances, Panasas, Platys, Seagate, Snap, Sun,
and Veritas) for their interest, insights, feedback, and
support. We thank IBM and Intel for hardware grants
supporting our research effots. John Griffin is funded in
part by a National Science Foundation Graduate Fellow-
ship.

References
[1] Mary G. Baker, John H. Hartman, Michael D. Kupfer,

Ken W. Shirriff, and John K. Ousterhout. Measurements
of a distributed file system. ACM Symposium on Oper-
ating System Principles (Asilomar, Pacific Grove, CA).

Published as Operating Systems Review, 25(5):198–212,
13–16 October 1991.

[2] Trevor Blackwell, Jeffrey Harris, and Margo Seltzer.
Heuristic cleaning algorithms in log-structured file sys-
tems. Annual USENIX Technical Conference (New
Orleans, LA, 16–20 January 1995), pages 277–288.
USENIX Association, 1995.

[3] William J. Bolosky, Joseph S. Barrera, Richard P. Draves,
Robert P. Fitzgerald, Garth A. Gibson, Michael B. Jones,
Steven P. Levi, Nathan P. Myhrvold, and Richard F.
Rashid. The Tiger video fileserver. Technical Report
MSR–TR–96–09. Microsoft Corporation, April 1996.

[4] Daniel P. Bovet and Marco Cesati. Understanding the
Linux kernel. O’Reilly & Associates, 2001.

[5] Scott Carson and Sanjeev Setia. Optimal write batch size
in log-structured file systems. USENIX Workshop on File
Systems (Ann Arbor, MI), pages 79–91, 21–22 May 1992.

[6] Edward Chang and Hector Garcia-Molina. Reducing ini-
tial latency in a multimedia storage system. International
Workshop on Multi-Media Database Management Sys-
tems (Blue Mountain Lake, NY), pages 2–11, 14–16 Au-
gust 1996.

[7] Edward Chang and Hector Garcia-Molina. Effective
memory use in a media server. VLDB (Athens, Greece.),
pages 496–505, 26–29 August 1997.

[8] Chia Chao, Robert English, David Jacobson, Alexander
Stepanov, and John Wilkes. Mime: high performance
parallel storage device with strong recovery guarantees.
Technical report HPL-92-9. 18 March 1992.

[9] Peter M. Chen, Edward K. Lee, Garth A. Gibson,
Randy H. Katz, and David A. Patterson. RAID: high-
performance, reliable secondary storage. ACM Comput-
ing Surveys, 26(2):145–185, June 1994.

[10] Tzi-Cker Chiueh and Lan Huang. Trail: track-based log-
ging in Stony Brook Linux. Technical report ECSL TR-68.
SUNY Stony Brook, December 1999.

[11] Wiebren de Jonge, M. Frans Kaashoek, and Wilson C.
Hsieh. The Logical Disk: a new approach to improv-
ing file systems. ACM Symposium on Operating System
Principles (Asheville, NC), pages 15–28, 5–8 December
1993.

[12] John R. Douceur and William J. Bolosky. A large-scale
study of file-system contents. ACM SIGMETRICS Con-
ference on Measurement and Modeling of Computer Sys-
tems (Alanta, Georgia), pages 59–70, 1–4 May 1999.

[13] Robert M. English and Alexander A. Stepanov. Loge: a
self-organizing storage device. Winter USENIX Technical
Conference (San Francisco, CA), pages 237–251. Usenix,
20–24 January 1992.

[14] Eran Gabber and Elizabeth Shriver. Lets put NetApp and
CacheFlow out of business. SIGOPS European Workshop
(Kolding, Denmark), pages 85–90, 17–20 Sept. 2000.

[15] Gregory R. Ganger and M. Frans Kaashoek. Embedded
inodes and explicit grouping: exploiting disk bandwidth
for small files. Annual USENIX Technical Conference
(Anaheim, CA), pages 1–17, January 1997.

[16] Gregory R. Ganger, Bruce L. Worthington, and Yale N.
Patt. The DiskSim simulation environment version 1.0 ref-
erence manual, Technical report CSE–TR–358–98. De-
partment of Computer Science and Engineering, Univer-
sity of Michigan, February 1998.

[17] Sanjay Ghemawat. The modified object buffer: a stor-
age management technique for object-oriented databases.
PhD thesis. Massachusetts Institute of Technology, Cam-
bridge, MA, 7 September 1995.

[18] Dominic Giampaolo. Practical file system design with the
Be file system. Morgan Kaufmann, 1998.

[19] David Hitz, James Lau, and Michael Malcolm. File sys-
tem design for an NFS file server appliance. Winter
USENIX Technical Conference (San Francisco, CA, 17–
21 January 1994), pages 235–246. USENIX Association,
1994.

[20] M. Frans Kaashoek, Dawson R. Engler, Gregory R.
Ganger, and Deborah A. Wallach. Server operating sys-
tems. ACM SIGOPS. European workshop: Systems sup-
port for worldwide applications (Connemara, Ireland,
September 1996), pages 141–148. ACM, 1996.

[21] Jeffrey Katcher. PostMark: a new file system benchmark.
Technical report TR3022. Network Appliance, October
1997.

[22] Kimberly Keeton and Randy H. Katz. The evaluations
of video layout strategies on a high-bandwidth file server.
4th International Workshop on Network and Operating
System Support for Digital Audio and Video (Lancaster,
England, UK.), pages 228–229, 3–5 November 1993.

[23] Christopher R. Lumb, Jiri Schindler, Gregory R. Ganger,
David F. Nagle, and Erik Riedel. Towards higher disk
head utilization: extracting free bandwidth from busy
disk drives. Symposium on Operating Systems Design and
Implementation (San Diego, CA, 23–25 October 2000),
pages 87–102. USENIX Association, 2000.

[24] Jeanna Neefe Matthews, Drew Roselli, Adam M.
Costello, Randolph Y. Wang, and Thomas E. Ander-
son. Improving the performance of log-structured file
systems with adaptive methods. ACM Symposium on Op-
erating System Principles (Saint-Malo, France, 5–8 Oc-
tober 1997). Published as Operating Systems Review,
31(5):238–252. ACM, 1997.

[25] Marshall K. McKusick, William N. Joy, Samuel J. Lef-
fler, and Robert S. Fabry. A fast file system for UNIX.
ACM Transactions on Computer Systems, 2(3):181–197,
August 1984.

[26] L. W. McVoy and S. R. Kleiman. Extent-like performance
from a UNIX file system. Winter USENIX Technical Con-
ference (Dallas, TX), pages 33–43, 21–25 January 1991.

[27] Rodney Van Meter. Observing the effects of multi-zone
disks. Annual USENIX Technical Conference (Anaheim,
CA), pages 19–30, 6–10 January 1997.

[28] Rajeev Nagar. Windows NT File System Internals: A De-
veloper’s Guide. O’Reilly & Associates, 1997.

[29] John K. Ousterhout, Hervé Da Costa, David Harrison,
John A. Kunze, Mike Kupfer, and James G. Thompson.

A trace-driven analysis of the UNIX 4.2 BSD file sys-
tem. ACM Symposium on Operating System Principles
(Orcas Island, WA). Published as Operating Systems Re-
view, 19(5):15–24, December 1985.

[30] Quantum Corporation. Quantum Atlas 10K 9.1/18.2/36.4
GB SCSI product manual, Document number 81-119313-
05, August 1999.

[31] A. L. Narasimha Reddy and Jim Wyllie. Disk scheduling
in a multimedia I/O system. International Multimedia
Conference (Anaheim, CA, 01–06 August 1993), pages
225–234. ACM Press, 1993.

[32] ReiserFS. http://www.namesys.com/.

[33] Mendel Rosenblum and John K. Ousterhout. The design
and implementation of a log-structured file system. ACM
Transactions on Computer Systems, 10(1):26–52, Febru-
ary 1992.

[34] Jose Renato Santos, Richard R. Muntz, and Berthier
Ribeiro-Neto. Comparing random data allocation and
data striping in multimedia servers. ACM SIGMETRICS
2000 (Santa Clara, CA). Published as Performance Eval-
uation Review, 28(1):44–55, 17–21 June 2000.

[35] Jiri Schindler and Gregory R. Ganger. Automated disk
drive characterization. Technical report CMU–CS–99–
176. Carnegie-Mellon University, Pittsburgh, PA, De-
cember 1999.

[36] Margo Seltzer, Keith Bostic, Marshall Kirk McKusick,
and Carl Staelin. An implementation of a log-structured
file system for UNIX. Winter USENIX Technical Confer-
ence (San Diego, CA, 25–29 January 1993), pages 307–
326, January 1993.

[37] Margo Seltzer, Keith A. Smith, Hari Balakrishnan,
Jacqueline Chang, Sara McMains, and Venkata Padman-
abhan. File system logging versus clustering: a perfor-
mance comparison. Annual USENIX Technical Confer-
ence (New Orleans), pages 249–264. Usenix Association,
16–20 January 1995.

[38] Margo I. Seltzer, Gregory R. Ganger, M. Kirk McKusick,
Keith A. Smith, Craig A. N. Soules, and Christopher A.
Stein. Journaling versus Soft Updates: Asynchronous
Meta-data Protection in File Systems. USENIX Annual
Technical Conference (San Diego, CA), 18–23 June 2000.

[39] Elizabeth Shriver, Eran Gabber, Lan Huang, and Christo-
pher A. Stein. Storage management for web proxies. An-
nual USENIX Technical Conference (Boston, MA, 25–30
June 2001), pages 203–216, 2001.

[40] Tracy F. Sienknecht, Rich J. Friedrich, Joe J. Martinka,
and Peter M. Friedenbach. The implications of distributed
data in a commercial environment on the design of hier-
archical storage management. Performance Evaluation,
20(1–3):3–25, May 1994.

[41] Keith A. Smith and Margo Seltzer. A comparison of FFS
disk allocation policies. USENIX.96 (San Diego, CA.,
22–26 January 1996), pages 15–25. USENIX Assoc.,
1996.

[42] Iceberg 9200 disk array subsystem. Storage Technol-
ogy Corporation, 2270 South 88th Street, Louisville, CO

80028-4358, 9 June 1995.

[43] Adam Sweeney. Scalability in the XFS file system.
USENIX. (San Diego, California), pages 1–14, 22–26
January 1996.

[44] Nisha Talagala, Remzi H. Dusseau, and David Patterson.
Microbenchmark-based extraction of local and global
disk characteristics. Technical report CSD–99–1063.
University of California at Berkeley, 13 June 2000.

[45] Werner Vogels. File system usage in Windows NT 4.0.
ACM Symposium on Operating System Principles (Ki-
awah Island Resort, Charleston, South Carolina, 12–15
December 1999). Published as Operating System Review,
33(5):93–109. ACM, December 1999.

[46] Randolph Y. Wang, David A. Patterson, and Thomas E.
Anderson. Virtual log based file systems for a pro-
grammable disk. Symposium on Operating Systems
Design and Implementation (New Orleans, LA, 22–25
February 1999), pages 29–43. ACM, 1999.

[47] John Wilkes, Richard Golding, Carl Staelin, and Tim Sul-
livan. The HP AutoRAID hierarchical storage system.
ACM Transactions on Computer Systems, 14(1):108–136,
February 1996.

[48] Bruce L. Worthington, Gregory R. Ganger, Yale N. Patt,
and John Wilkes. On-line extraction of SCSI disk drive
parameters. ACM SIGMETRICS Conference on Mea-
surement and Modeling of Computer Systems (Ottawa,
Canada), pages 146–156, May 1995.

[49] Xiang Yu, Benjamin Gum, Yuqun Chen, Randolph Y.
Wang, Kai Li, Arvind Krishnamurthy, and Thomas E. An-
derson. Trading capacity for performance in a disk array.
Symposium on Operating Systems Design and Implemen-
tation (San Diego, CA, 23–25 October 2000), pages 243–
258. USENIX Association, 2000.

