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Designing a storage area network (SAN) fabric requires
devising a set of hubs, switches and links to connecthosts .

to their storage devices. The network must be capable
of simultaneously meeting specified data flow require-
ments between multiple host-device pairs, and it must
do so cost-effectively, since large-scale SAN fabrics can
cost millions of dollars. Given that the number of data Figure 1: A simple, single-layer SAN fabric. Hosts appear in
flows can easily number in the hundreds, simple overihe top row, devices in the bottom row, and switches and hubs
provisioned manual designs are often not attractive: theyn between.

can cost significantly more than they need to, may not

meet the performance needs, may expend valuable re-

sources in the wrong places, and are subject to the usug|, e devices, better utilization of storage resources,

sources of human error. centralized administration and management, increased
Producing SAN fabric designs automatically can ad-scalability, and improved performance. In spite of these
dress these difficulties, but it is a non-trivial problem: it advantages, the adoption of SANs has been relatively
extends the NP-hard minimum-cost fixed-charge multi-slow. Some of this is due to interoperability difficul-
commaodity network flow problem to include degree con-ties between vendors, but as these are being resolved,
straints, node capacities, node costs, unsplittable flowghe next barrier appears to be the complexities associ-
and other requirements. Nonetheless, we present hested with designing the SANs, because this involves all
two efficient algorithms for automatic SAN design. We of the problems of network design — in an environment
show that these produce cost-effective SAN designs iwith essentially no automatic flow control, and zero tol-
very reasonable running times, and explore how the twaerance for packet loss, due to the low-level nature of the
algorithms behave over a range of design problems.  SCSI protocol.

"
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) As a result, designing even small SANs requires con-
1 Introduction siderable time and effort from IT experts. Their man-
ual methods often result in expensive, overprovisioned

A SAN (storage area network) connects a group Ofdesigns—and this becomes more of a problem as the de-

servers (or hosts) to their shared storage devices (such @%ns get larger and more complex. This matters: itis not

disks, disk arrays and tape drives) through an INtercoNgitticy it to spend 10-20% of the total storage system cost

nection fabric consisting of hubs, switches and links. Weon the SAN fabric elements, and SAN designs of a scale

present results for designs using today's dominant SANhat require an investment of millions of dollars in the

fabric for the SCSI block-level protocol, FibreChannel SAN fabric alone are becoming more common. We have

[13.]' The storage industry is in _the process of add'ngwitnessed a factor of three difference in the cost of a SAN
switched Ethernet as an alternative block-level networkbetween a manual design ($4m) that took several days

transport. We believe that our work applies equally ©and an automatically-generated one ($1.4m) that took a
both, and could also usefully be applied to file-basedfeW minutes

storage systems, and even general-purpose local-area _
networks (LANS). Design mistakes can be subtle and therefore easy to over-

look, yet potentially very costly; poor performance is

commonplace, and downtime in failure situations can re-
SANs offer many advantages over direct-connected losult if the fault-tolerance aspects are mis-designed. As
cal storage, including superior connectivity of servers toSANs grow to include hundreds or even thousands of

An example FibreChannel SAN is shown in Figure 1.



storage devices, it becomes increasingly difficult, everoptimally. Moreover, these designs are found in a few
for SAN experts, to manually design cost-effective andminutes or less for SANs with 50 hosts and 100 devices,
reliable SANs. a size typical of the largest current installations. Because
é)f their complementary strengths, both algorithms are in-

We believe that the most effective approach to thes ) .
cluded in Appia.

problems is to automate the design of SANs. Such de
signs must takg into account the performance demandflz Structure of the paper

(to avoid queuing or packet loss), and they should try

to minimize system cost, because SAN components arghe remainder of this paper is organized as follows. Sec-
quite expensive. The result would enable the wider detion 2 presents a statement of the SAN fabric design
ployment of SANSs, as well as increase the likelihood thafproblem, including notation and related work. Section
the systems deployed would meet real needs. 3 presents an overview of tfidowMergealgorithm for
This paper presents just such a solution: a tool to definding cost-effective SAN fabric designs. Ti@uick-
sign SANs automatically. We call it Appia, after the Ap- Builder algorithm is presented if4. In §5 we present
pian Way, one of the network of roads leading to ancienomputational results comparing the effectiveness of the

Rome. two algorithms. Furthermore, for small problems we
compare the cost of designs producedrlywMergeand
1.1 Automated design of storage systems QuickBuilderwith the cost of optimal designs. Future

work and conclusions are presentedénands7.
Appia was developed to operate in concert with a set of
tools that select and design the storage-device portions cé The SAN design problem
a complete storage system [2, 4]. These tools use work-

load and device performance information to select andl’he SAN design problem can be stated quite simply: we

configure storage devices, and then determine appropr‘ii-re given a set of hosts, a set of storage devices, and a set

ate .data placements on those devices. Their gqal IS 10t requirements in the form of data flows between host-
design a system that meets performance goals with hig evice pairs. Each flow has a desired bandwidth. The

rellqblllltydat IC.M; COSt'tA S'dg ef{et(r:lt 'S thelltlthztgols’gut- goal is to build a minimum-cost SAN to support all of
putinciudes information about the workioad dala-llowsy, o e requirements simultaneously. To do so, one must

from egch hogt to each storagg device: premsgly the Nselect a set of fabric nodes (switches and hubs), a set of
formation that is needed 1o design the SAN fabric to COMjinks connecting pairs of nodes (hosts, devices and fabric
nect the hosts to their storage. nodes), a topology with which to join these together, and
Such tools significantly reduce the human interventiona single path through the network for each flow. (The
required to design storage systems: people can expresgigle-path restriction arises from SCSI request-ordering
their needs at a relatively high level, and the tools carconstraints.)

design a storage system to meet their needs, taking int?he resulting fabric design must beasible- that is, it

account all the low-level details, such as predicting thernust satisfy constraints that ensure it is buildable, and

complex performance effects thaF result from mixing it must support the connection and performance require-
workloads on shared storage devices. Better yet, suc ents. These constraints are: (1) the number of links

tools can be used in an.automatic control loop, aIIOVVingconnected to a host, device or fabric node must not ex-
Fhellstorsgejys:gm d?i'?n t(;) ev(cj)lve complr(]ately aummr?{:'eed the number of ports available there (these restric-
ically when dealing with load and system changes, With+j, s are calledlegree constrainjand (2) the flow rout-

outthe need for human intervention. ing must honor the bandwidth limitations of links and
We wanted to achieve the same benefits for SAN defabric nodes. Because packets travel differently through
sign. The results presented here are the first outcomleubs and switches, their bandwidth constraints differ.
of that goal. In particular, we present two algorithms for Packets routed into a switch are forwarded directly to
cost-effective SAN fabric design. These two approacheshe next destination in their path. In contrast, packets
which we call FlowMerge and QuickBuilder demon-  routed into a hub are transmitted through all connected
strate complementary strength§lowMerge which is  hubs and all links attached to these hubs; they are seized
more computationally intensive, tends to find lower-costby their next destination. Thus, the total flow into an in-
designs for SANs with sparse connectivity requirementsterconnected set of hubs is limited by the minimum of the
whereaQuickBuilderexcels when connectivity require- bandwidth of each individual hub, the bandwidth of each
ments are dense. We found that the better of two designsonnected link, and the bandwidth of each port used by
is, on average, within 33% of the optimal design cost forthese links. The bandwidth of switches is therefore more
empirical test problems that are small enough to solveefficiently utilized than hub bandwidth.



Data about the flows is readily available from solutions64-port FibreChannel “storage director” (a high-end fab-
to the storage-system and data-placement design probic switch) costs close to half a million dollars, while in-
lems [2, 4], but it may also be obtained from the tried dividual fibre links for use within a data center are priced
and true techniques of measurement of an existing sysaround $100-$500. As a result, much of the existing re-
tem or estimation. Obviously, no design tool is bettersearch in network design proved less applicable than we
than the inputs it is given — but the comparison pointhad hoped.

here |s,manual deS|gr), not'complete knowledgg Of. th‘?n particular, the SAN fabric design problem generalizes
syste.ms future behavior. It is easy enough to bUI|d'II"l 83nd extends several NP-hard problems in network de-
certain amount of “slack”, to allow for errors, or antici-

i o sign. For example, it generalizes the nonbifurcated net-
pated future growth. Indeed, we believe that it is better, g P g

h he slack ifiod up f fth IWork loading problem [21, 6, 3, 16, 17]. In this problem,
to have the slack specified up front as part of the goaly, oo 516 several commodities, each with an origin and

so that Fhe design system San take it int? account, rath€festination node in the network, and a required amount
than trying to build |n.slack after the fact” by adding ex- of the commodity that must travel through the network
cess SAN elements in places where they may not do thBetween these nodes. One must choose a minimum cost
most good. set of capacitated links connecting a known set of nodes
The design algorithms we describe run fast enough thaib satisfy these flow requirements simultaneously. The
they can be used in interactive “what if” scenario explo-term “nonbifurcated” refers to the requirement that a sin-
ration, in conjunction with manual input from a SAN gle route for each commodity must be selected; i.e., flows
design expert. The low-cost designs the tools produceannot be split across multiple paths. Each link has an
may not always “look pretty”; some people prefer greaterassociated fixed cost, and multiple links between a given
symmetry in their solutions, even at the expense ofpair of nodes may be selected. This problem contains
greater cost. As such, we believe it is important to usethe Steiner tree problem, known to be NP-complete, in
this kind of tool — at least at first — in a context where which one must find the minimum cost set of links to
there is a chance for experts to modify the output it pro-connect a given subset of the nodes in a network. (See
duces. Nonetheless, it is our aim to develop tools that caf23] for a survey of work on the Steiner tree problem.)
be placed into a completely automatic design-deploy-The nonbifurcated network loading problem is NP-hard
monitor-redesign loop. even when all commaodities share a single source [21].

21 Related work If we relax the constraint that flows cannot be split, the

SAN design problem generalizes the multicommodity
SAN design is currently done manually by IT experts, network design problem [20, 8, 7, 19, 22, 10, 5]. This
who use error-prone ad-hoc methods or canned topold?roblem is known to be NP-hard even in the single com-
gies that often result in grossly overprovisioned designsmodity case [15]. Like the nonbifurcated network load-
While overprovisioning can be advantageous, itis imporing problem, it involves choosing a set of capacitated,
tant that it is done strategically to provide high perfor- fixed-cost links to connect a set of nodes to satisfy multi-
mance, scalability, reliability, and robustness to change§ommodity flow requirements. Any number of links be-
in requirements. Some canned designs currently in uséween a pair of nodes can be selected. In this case, how-
such as the Brocade Core-Edge architecture [9], posse&¥er, flows can be split. Even so, multicommodity net-
these characteristics. They are used when the SAN dévork design problems are notoriously difficult to solve in
signers have no systematic way to predict the connecPractice. This is true because their integer programming
tiVity and data flow requirements in their SANS, and Soformulations’ LP relaxations do not provide tlght lower
opt for full connectivity between hosts and devices. ButPounds. Even finding feasible solutions is often difficult.
this flexibility comes at a very high price: many fabric Surveys of work in this area are given in [18, 1, 24].

elements are needed to provide this connectivity, €spem the NP-hard problems mentioned above, one must find
cially at high bandwidths. In general, when any infor- 3 minimum cost set of links to route the flows, when the
mation is available about SAN requirements, far morepgdes in the network are known. The SAN fabric design
cost-effective designs can be found. problem generalizes these problems, in that the nodes in
As part of our search for algorithms to apply to this prob- the network are not knowa priori. One must choose a
lem, we turned to the literature on network design_ Un-set of hubs and switches with which to build the intercon-
fortunately, most traditional network design approachegection fabric between hosts and devices. Several differ-
only address link costs, because switches are cheap€pt types of hubs and switches may be available, differ-
than trenching in wide area telephone networks, whiching in attributes such as cost, bandwidth, and number of
are the target of most of this work. In the SAN case, theavailable ports; an arbitrary number of instances of each
reverse is usually the case: in mid-2001, a fully loadedype may be used in the SAN. It is possible, however, to



construct a candidate fabric node set containing the opmay differ in cost. Finally, fabric node typec A has

timal set. Few authors have considered network designostc,, and maximum aggregate bandwidth The SAN

problems in which the topology is unknown. The Steinerfabric design problem defined by given sets of hosts, de-

tree problem is a special case of the capacitated netwonkices, flows and nodes is denoted By

design problem in which some nodes may optionally be

excluded from the network. The integer programming i

formulation of network design problems grows in dimen- 3 The FlowMergealgorithm

sion exponentially with the size of the set of nodes con-

sidered, and thus it is essential to find a small candidat&he first of our algorithms is calleBlowMerge which

node set. Unfortunately in the SAN design context it mayearns its name from the way it pulls together separate

be difficult to determine such a candidate set of reasonflows into sets of flows that share fabric nodes. It was

able size due to the number of different node types coninspired by this simple fact: when two flows with a com-

sidered. mon host or device are routed together through a link,

SAN design also generalizes other network design probt-hey conserve a port.on that hQSt or dewEéanerge

lems by associating capacity and cost with nodes. [17 ftempts to use fabric ners in a way that gllewates a
shortage of host and device ports, by selecting subsets

includes node costs, and [27, 14] consider node capac ) :
ties. A node’s cost and capacity can be handled withinOf flows with common hosts or devices to route together

the context of standard network design problems at théhrough links.

expense of an additional node and arc: each capacitatdelowMergeis a recursive algorithm that creates a SAN

or cost-inducing node can be replaced by two uncapacidesign by introducing, at each recursive application, a
tated and costless nodes with an arc between them poset of fabric nodes and links, with no links between fab-
sessing the original node’s cost and capacity attributegic nodes in the set. When the algorithm terminates, the
(This assumes unidirectional links, which will not always fabric design consists of one or more “layers” of nodes,
be the case in future SAN design problems.) where there are links between but not within layers. An

Another confounding feature of the SAN design problemex"’mplfa of.a layered fabric produced BlowMergeis

is the presence of degree constraints on nodes. Degré own n Flgure 2. The top and bottom rows of com-
constraints appear only in special cases of the networl?onemf5 contain hosts and deV|'ces, respectively, and the
design problem such as the degree-constrained minimuAfMaining components are fabric nodes.

spanning tree problem [12, 11, 25], known to be NP-hard

[15]. (HE(BE[E[EIE BMEIE I[[BIH

The many features of the SAN design problem have been
addressed individually or in small subsets in the work
mentioned above. The first to address all of its features
in a common framework was [26], in which an algorithm
calledMergewas presentedVergefound cost-effective
designs for small problems but failed to find feasible de-
signs for larger problems. The algorithms presented here
are proven to find feasible designs under a reasonable se
of conditions, and their designs are generally more cost-
effective.

2.2 Notation

Figure 2: A sample SAN fabric produced ylowMerge

Some notation will be useful in describing our ap- The basic building block of d&lowMerge fabric is a
proaches. Le# andD represent the sets of hosts and single-layer fabric This is a fabric that has no links
devices, respectively. Denote the set of flowsfyLet  between fabric nodes, so that each flow requirement is
N be the set of all types of switches and hubs availablerouted either along a direct link between its host and de-
Each componerite #UD UN has a maximum number vice, or along a two-link path that passes through a single
of portsp;, each with costr;. Although a SAN could fabric node. Figure 1 depicts an example of a single-
be built from several different types of links differing in layer fabric. In§3.1 we describe the procedure that in-
bandwidth and cost, we restrict attention in this papeitroduces a single layer of nodes, which we &iligle-

to the case when there is one available link type whosé&ayer FlowMerge In §3.2 we outline the recursive pro-
bandwidth is3 and cost isy. To simplify exposition, we cedure that creates a multi-layered fabric through succes-
also assume that all ports have bandwisitthough ports  sive calls toSingle-Layer FlowMerge



3.1 Single-Layer FlowMerge B [E

The input toSingle-Layer FlowMerges a setH of hosts,
a setD of devices, and flow requiremenfs between
them. Single-Layer FlowMergeroduces a series of

Bee @ad
single-layer fabric designs to support the flow require-
ments. Each design in the series is feasible with respect <:I
to all except, possibly, the degree constraints on hosts <::
and devices. The initial design consists of a direct host-

device link for each flow. This design is typically infeasi-

ble bgca}use one or more .hosts or devices has fewer por,t_.'i;gure 3: Example application oBingle-Layer FlowMerge
th"?m I-nCIdent links. The.dlfference betwegn the number%’he problem has 3 hosts and 3 devices, each with 2 ports, and
ofincidentlinks and available ports on a given host or de-4 single type of switch available with 8 ports. The eight flows
vice is called itsport violation Each subsequent design in the problem each have bandwidth 33 MB/s. Links and ports
in the series has a smaller total port violation than thehave bandwidth 100 MB/s. Six successive designs are shown,
previous design, or a lower cost than the previous desigheginning with the one that assigns each flow to its own link. In
if both designs are feasible. each design, hosts and devices with the highest port violation

. . . . . . are circled. For example, in the first design, the highest port
To §ee hO\_N this series of 9'63'9”3 '$ obtalned, conS|der. Aflolation is one: there are two hosts and two devices each with
arbitrary single-layer fabric. Associated with each fabricihree incident links and only two ports. Each design in the

node in the design is a subset of flow requirements routegeries reduces the port violation on one host or device from
via that node. Similarly, associated with each direct hostthe previous design by merging two flowsets together. After
device link in the fabric is a subset of flows routed alongfour mergers, all port violations are eliminated. The last merge
that link. In general, the flow requirements are partioneckliminates one fabric node and thereby reduces the cost of the
into disjoint subsets, such that each flow requirement igabric.

in exactly one subset. Each subset in the partition has an

associated fabric node or direct host-device link through

which all flows in the subset are routed. We call these o F s the partition of the set of flows into flowsets

subsetdlowsets (more explicitly,F is a collection{.J : J C F} with
Single-Layer FlowMergéegins with the finest partition the property thatljegJ = F andK N J = () for all
of the flow requirements: each flow is in its own flowset. J,K €F, J#K),

At each iteration, a new, coarser, partition is obtained
by merging two flowsets together. When merging two
flowsets, we must select a fabric node type among avail-
able types with which to route the flows in the merged
flowset, and the links connecting hosts and devicestothe ¢ M C {(J,K,n): J,K € F,J # K,n ¢ N U{l}}
node along which we route the flows. The node type is  is a set of triples consisting of two flowsets and one
selected based on the number of ports available on the  node type or link;

node and the cost of using the node (including the cost

of required ports and links). We select the flowsets to ® score,, is a function defined on elements.®.

merge to alleviate port violations, favoring reductions on

the hosts and devices with the most severe violationsWe refer to elements 081 asmergershecause they rep-
Cost is a tie-breaker criterion. Once two flowsets areresent the combinations of flowset pairs and node types
merged, they are never spliSingle-Layer FlowMerge that are candidates for merging.

continues merging flowsets until either no two flowsets, | the Single-Layer FlowMergesuedocode, each appli-

can ge r‘r:jerged, or all pog violations have .be.enle“m"cation of the outer loop results in a merger. We start an
nated and no merger produces a cost savirgagle- application of this loop by initializing the set of candi-

Layer FlowMergeerminates, because after a finite num- ;.. mergers to be all possible flowset pair-node com-

ber' of mergers (one [ess than the number of flows) Or‘%inations, and then eliminating infeasible combinations.
a single flowset remains, so no further mergers are POSS{ext we compute the port violations on hosts and de-

ble. Figure 3 demonstrates h@ingle-Layer FlowMerge vices. If there are candidate mergers left to consider, we

works on a small example. refine this set in the inner “Else while” loop. This loop
Pseudocode for th8ingle-Layer FlowMergalgorithm  considers port violation degree ranging from the current
is shown in Figure 4. We use the following notation: worst, v, down to 1. For each such degree, it “scores”

e N is the set of available fabric node types;

[ is the single available link type;



each merger inV1 by counting the number of hosts and
devices with that degree port violation on which it con-

serves ports. After scores are computed, mergers that do
not achieve the highest score for this degree are removed

from consideration. If multiple candidate mergers still
remain, it eliminates all but those with the lowest cost.

After the inner loop is finished, a single merger from the

candidate set is then implemented. Since we are indiffer-Single-Layer FlowMerge

ent between all candidate mergers at this stage, we cou

put: a SAN fabric design problem p.
utput:

a set of flowsets F and a fabric

introduce randomization into the algorithm in the selec node for each flowset.

tion of the merger from the final set of candidates.

Scores computed in the inner loop can be largely reused
in successive applications of the outer loop. In ourimple
mentation, they are updated for flowset pairs containing
hosts or devices whose port violation was reduced in th
prior merger.

%

3.2 Multi-Layer FlowMerge

WhenSingle-Layer FlowMergées applied to a SAN fab-
ric design problem, it will reduce at least one host’s or
device’s port violation by at least one. (We omit the de-
tails of this proof in the interest of brevity.) However,
Single-Layer FlowMergenay not successfully eliminate
all port violations on hosts and devices. In this case, it
is reapplied recursively to generate cascading layers d@
fabric nodes. Pseudocode for this recursive applicatior,
which we callMulti-Layer FlowMerge is shown in Fig-
ure 5.

=

The central idea behind the recursion is as follows. We
first applySingle-Layer FlowMergé a SAN fabric de-
sign problemP. If all host and device port violations are
eliminated fromP, we have found a feasible SAN fab-
ric design. At this point, we can stop, sinengle-Layer
FlowMergefound no cost-saving mergers and introduc-
ing new fabric nodes would only increase costs.

If instead there are remaining host and/or device port vi-
olations, the current set of fabric nodes is insufficient.
We address the host port violations first, independently
of the device port violations, by recasting the problem ag
a new SAN fabric design problei®; that has only host
port violations and no device port violations. The hosts
of P become hosts aPy. Subsets of flows in proble®i

are aggregated together to become flows for prokitgm
according to their assignment to links in the one-layer sot

Let F={{f}:feF}
While (true)  {
Let M={(J,K,n):J,KeF,JAK,necN U{l}}.
Remove from M all elements that
represent infeasible mergers.
Compute the port violation on each
source and terminal with respect to
the current set of flowsets and their
associated nodes and link. Let
the highest port violation among them.
If M =0, break.
Else while ( v >0) and ( [M|>1) {
For each meM {
Let scorem, =0.
For each source and terminal c
with port violation v
If merger m reduces the port
violation on c
Let scoren, = scoren +1.
Remove elements of M which did
not achieve the highest score.

v be

Let v=v—1.
}
For each me M
Compute the cost of merger m.

Remove mergers in M which did not
achieve the lowest cost.

}

Return a random = (J,K,7n) € M.
If the merger m reduces the port
violation on at least one source

or terminal with a positive port
violation, or if the merger has a
negative cost, perform the merger:
delete J and K from F, discarding
their respective nodes, and replace
with a new flowset J U K with a node of
type n.

Otherwise, break.

}

Return flowsets in
fabric nodes.

F and their associated

lution to P. More specifically, for each flowset and each
link into the flowset’s fabric node, a new flow is created
in Py whose bandwidth is the aggregate bandwidth of
flows assigned to that link. The new flow’s deviceRy

is the fabric node itself. If instead its flowset has no fab-
ric node (and thus has a single direct link between a host
and device), all flows routed along that link are aggre-
gated into a single flow iy . For this flow we create a
“dummy” device in Py with a single port that costs the

Figure 4: Single-Layer FlowMerge




Multi-Layer FlowMerge(P, L)

Input: a SAN fabric design problem
layer number L.

Output: a feasible SAN fabric design
consisting of one or more layers of fabric
nodes, with no links between nodes in a given
layer.

P and a

Apply  Single-Layer FlowMerge to P.

If there are remaining host port

violations in current solution to P {
Recast problem as new  Multi-Layer
FlowMerge problem Pp.
Apply  Multi-Layer FlowMerge (Pg,L—1).

Add fabric for Py to fabric for P.
}
If there are remaining device port
violations in current solution to P {
Recast problem as new  Multi-Layer
FlowMerge problem Pp.
Apply  Multi-Layer FlowMerge (Pp,L+1).

Add fabric Pp to fabric for P.
}
If there are no remaining port violations
in P

Return fabric for P.

Figure 5: Multi-Layer FlowMerge

two conditions hold:

For each host and device, there exists an as-
signment of its flows to its ports such that the

. . . (1)
total bandwidth of flows assigned to a port is
at most the port’'s bandwidtiB].

There is a switch type available having at 5
least three ports and bandwidth at le@ist (2)
Assumption (1) is clearly a necessary condition for the
existence of a feasible fabric design. Assumption (2) is
not necessary, in general, since a small SAN may require
no fabric nodes at all. However, it is not at all restric-
tive; all real switches possess at least 8 ports and typi-
cally many more, and have bandwidth many times that
of a link. The two assumptions together are sufficient to
ensure thaFlowMergefinds a feasible fabric design.

While we have no analytical optimality bounds on
FlowMergedesigns, we do have empirical results com-
paring its designs to those produced QuickBuilder
and, for small problems, optimal designs.

Our results indicate thd&lowMergeis very effective at
building one-layer fabrics, which are typically sufficient
for problems that either have few hosts and devices and

same as its original device’s ports. Thus, the set of dehave sparse connectivity requirements between hosts and

vices inPg consists of fabric nodes fro and dummy
devices corresponding to devices fr@mnone of these
have port violations.

We then applyMulti-Layer FlowMergeto the Py and

devices. But for SANs that are so large or whose connec-
tivity requirements are so dense that they require multi-
ple fabric layers, it is less effective th@uickBuilder
There are several explanations for these results.

create a multi-layered fabric for that problem. The nextFirst, the class of fabrics-lowMerge generates is

step is to incorporate the fabric fét; into the solution
we are building up fol?. Pg’s fabric layers are inserted
into the fabric ofP.

Similarly, if device port violations remain irP after
the application ofSingle-Layer FlowMergethen a new
problemPyp is created in a way that mirrors the creation
of Pg. It has all devices fronP as its devices, aggre-
gated flows fromP as its flows, and hosts consisting of

more restrictive than those built byuickBuilder
FlowMergés layered fabric structure, where each layer
is built myopically, may exclude more cost-effective fab-
ric designs. In each layer it tries to resolve as many port
violations as possible before introducing the next layer. It
never considers changing a fabric layer that was created
in an earlier application ddingle-Layer FlowMerge

Second, becausElowMerge only considers pairwise

fabric nodes and dummy hosts corresponding to hosts if"€rgers, it can get stuck in locally optimal solutions. To

P. Pp is solved and its fabric is incorporated inids
solution.

In this brief overview ofMulti-Layer FlowMerge we

see why, suppose it has found a feasible partition for a
layer and is seeking only cost-improving mergers. It will
quit if no merger is profitable. In many examples, we
have seen that a better solution could have been obtained

h,"’“lle omitted manykdetallﬁ.. Eor exampLe, thﬁre are SP&t mergers of more than two flowsets were considered;
cial precautions taken which ensure that there are Ng,iq occyrs frequently in the multilayered solutions.

links between hubs in the fabric. While this is not strictly

necessary, it is the most efficient way to ensure that hullowing  backtracking,

capacity constraints are honored.
3.3 Correctness and Effectiveness

Although the proof will be omitted hereflowMerge
finds a feasible SAN fabric design when the following

or permitting non-cost-
improving mergers with some small probability (in
the spirit of simulated annealing) are techniques that are
likely to improveFlowMergées performance, particularly

on problems requiring multiple layers of fabric. Results
from our current implementation éflowMergewill be
presented in more detail §b.



4 The QuickBuilder Algorithm ported by two switches connected to each other§3n
we compare th@uickBuilderand FlowMergesolutions

In this section we outline a second, two-phased approacti more detail.

to SAN fabric design, calleQuickBuilder It is based on

the observation that since flows cannot be split across (B (B [H (B [E[E B [E [E H

multiple paths in the network, each flow must be as- o

signed to a single port on its host and device.This mat- \\ A//|

ters because the way in which flows are assigned to ports

has a large impact on the remainder of the SAN design. ‘

A clever assignment creates a partition of the host and e

device ports into disjoint subsets of ports calleart N / "\\ N
: _ s

groups The port group of porp is a set of ports that ’ "‘_\\\

includesp; if ¢ is a port in the port group and a flow 10 @/
assigned tq is also assigned to port thenr is in the = &=
port group. In short, the port group of parincludesp, _ ) . . :

all portsp must communicate with, all ports they com- E:gzi Els) A sample SAN fabric produced tuickBuilder(cf.
municate with, etc. In the language of graph theory, port
groups are the connected components of a graph in which

the nodes are ports, and links connect port pairs with [ [B [E [H [B [B [H [E [B [H

common flows assigned to them. The critical insight was e

that each port group can be treated as an independent e
smaller design problem. In general, the fewer ports in a ) oo
port group, the less fabric is required to support its flows. \! A /

OB EddEE - e

Thus, the finer the decomposition, the less costly the fab- &0
ric. QuickBuilderseeks an assignment that results in a

3
il
fine decomposition. QA‘l\\
uickBuilderfirst assigns each flow requirement to a sin- S
y " N 7 /E—:\?’ol
(+)

gle portonits hostand a single port on its device (tbe A ool ocBocRcRo
assignmenphase); the flow will later be routed through OO ONONONCRORRORO

these ports in the second phase. The assignment obtainegigUIre 7: A secondQuickBuilderSAN fabric (cf. Figure 2)
in the first phase implies a partition into port groups. Fab-

ric can be built for each port group separately. Lo .
. , 4.1 Finding port assignments
The second phase of the algorithm considers each port

group created in the port assignment phase separatelyp find an assignment of flows to host and device ports,
and finds a fabric to support the flows assigned to itsQuickBuilder considers flows one at a time, looking
ports. The fabric associated with a port group is an interat each possible combination of host and device ports
connected set of fabric nodes and links called@dule  for each flow's assignment. It chooses the assignment
from which we obtain the nammodule-buildingphase among these that, when added to previous assignments,
for this part of the algorithm. The two phases are de-has the lowest estimated cosQuickBuildercontinues
scribed in more detail i§4.1 and§4.2. making the lowest estimated cost assignment for each
flow until all flows have been assigned ports. Although
the flows can be assigned in any order, we have found
that considering them in order of decreasing bandwidth
leads to cost-effective designs.

Two examples oQuickBuilderdesigns are shown below.
The fabric in Figure 7 was developed RQuickBuilder
with the same inputs tha@lowMergeused to find the
fabric in Figure 2. For this problenQuickBuildeis as-
signment of flows to ports led to two port groups, oneWhen estimating the cost of a flow being assigned to par-
of which is very large, containing all but two ports. The ticular host and device ports, we account for the previous
fabric contains one direct host-device link, and one veryassignments of flows to these ports. If making this new
large module with three interconnected switches. Fig-assignment would cause the total bandwidth of flow to
ure 6 is a solution to the SAN design problem for which exceed the bandwidth available on either port, then the
FlowMergedesigned the fabric in Figure 1. In this fabric, assignment is infeasible. Furthermore, this port assign-
QuickBuilders port assignment created five port groups.ment must not preclude the possibility of assigning all of
Two port groups are supported by direct links, two largerthe host's (or device’s) unassigned flows to its ports. To
port groups are supported by hubs, and the largest is supletermine whether the unassigned flows can be assigned,



we apply an exhaustive bin packing algorithm, where the

ports are bins, a port’s capacity is the bandwidth unused
by previously assigned flows, and the unassigned flows
are the items to be packed. If there is no solution, this as-
signment is infeasible. Infeasible assignments have cost
0.

If a port assignment is feasibluickBuilderestimates
the cost of supporting the port groups before and after the

port assignment is made. The cost of the assignment is ®

the difference between the “after” and “before” cost esti-
mates. The module cost estimation is similar to module
construction; we describe both togethegh?2.

4.2 Building modules

The port assignment determined in the first phase of
QuickBuilderuniquely determines the port groups. In
this section, we describe ho@uickBuildercreates a
module to route the flows assigned to ports in a given
port group. We also explain how, in the port assign-
ment phaseQuickBuilderestimates the module cost for

a given port group. For most port groups, the two pro-
cesses involve the same computations.

When building a module or estimating the cost of a mod-
ule for a port group, we assume for simplicity a single
type of hubh and a single type of switch to use in

the module. Recall that bandwidth, number of ports, and
cost of a typen fabric node aré,,, p, andc,, respec-
tively. The module-building phase of the algorithm re-
lies upon the assumption that there is a hierarchy among
fabric elements, namely, > b;, andc, > ¢;,. The build-

ing and estimation processes depend on properties of the
port group. In particular, three cases are considered:

e Case 1: Using a direct link. If the port group has
only two ports, then a module consisting of a single
direct link between the two ports is sufficient. The
cost of such a module is simply the castf a link
plus the costs of the host and device ports. The es-
timate of the module building cost is exact in this
case.

e Case 2: Using a (multi-)hub.If the total flow band-
width through the ports in the port group is less than
by, then we use a hub orraulti-huh which is a se-
ries of hubs, each connected to the next by a single
link. The number of ports available on a hulpjs a
multi-hub consisting of > 1 hubs hasg(p;, —2) +2
available ports. If the number of ports in a port
group isk then H = [(k—2)/(pr—2)] hubs are
required. The module cost is the sum of the cost of
the hubsH ¢y, the cost(H — 1)(2m, + cr) of con-
necting the hubs via links and hub ports, the cost
k(mn + c) of connecting the host and device ports

to the hubs including link and port costs, and the
cost of the host and device ports in the port group.
In this case, thQuickBuildermodule cost estimate
is also identical to the true cost of a module that
would be built for this port group.

Case 3: Using a switch module. If neither of
the above conditions holds, then the module must
contain at least one switch. We refer to a module
that contains one or more switches asswitch
module To estimate the cost of a switch module,
QuickBuilder estimates the number of switches
that are needed to support the flows in the port
group. In the interest of efficiency, we estimate this
number of required switches without determining
their exact connectivity in the module and how
flows would be routed through them. To do so,
we first make the simplifying assumption that all
flows in the port group are routed through a single
switch of infinite bandwidth. This helps us ignore
the effects of flows traveling between multiple
switches. QuickBuilder calculates the minimum
number of ports that would be required to route the
port group’s flows through this infinite bandwidth
switch, and then finds the minimum number of real
switches that are required to provide that number
of ports. Because there may, in fact, be multiple
fabric nodes in the module and flows may travel
between them, some of each node’s bandwidth will
be effectively “wasted” by this inter-node travel.

To reduce the adverse effect of the infinite-
switch assumption upon the estimafajickBuilder
scales up the flows when making this calculation.
For each port in the port group, it (temporarily)
increases the bandwidth of each flow on that port
uniformly by a fixed percentage (typically 10%) or
until the capacity of the port is reached. Then, in
order of decreasing total assigned flow bandwidth,
ports in the port group are “connected” to the first
switch port with enough remaining bandwidth to
carry that port's flow. If multiple ports in the port
group are connected to the same switch port, these
ports are instead connected to the smallest required
multi-hub which then is connected to the switch
port. If k& is the number of switch ports used, then
S = [k/ps] is the minimum number of switches
of type s needed to providé ports. The estimated
module cost is then the sum of the cost of the
switchesSc,, and the cost of links, hubs and ports
used to connect the host and device ports to switch
ports.



4.3 Building a switch module routed through multiple switches in the module.

When we are actually building a switch module for a port
group, a more elaborate procedure than th§dd is re-

quired to determine the exact connectivity of fabric nodesris section summarizes the results we obtained in ap-

within the switch module. This procedure is outlined plying integer programmingFlowMerge and Quick-
here. Switch module construction is a recursive proceg,jiiderto several SAN fabric design problems.

dure that introduces a series of switches in succession un- . .

til all flows in the port group can be supported. Its input 1€ true test of our algorithms will happen only when
is a set obxternal portseach with a set of flows entering their designs are implemented in a real business contgxt
the port (calledn-flows and exiting the port (calledut- ~ @nd compared to those created manually by experts in
flows. In the initial call, the external ports are host ports the field. This comparison should include several met-
with only out-flows and device ports with only in-flows. "CS: including cost, performance, availability, scalability
On subsequent calls to the procedure, some of the extefNd even aesthetics. So far, we have only had a few op-
nal ports are ports on switch@iickBuilderhas already ~Portunities to compare our designs to manual ones. Ap-

added to the switch module. Such ports may have botfpia found much cheaper designs in these cases. In one
in- and out-flows. notable example, a consultant worked for several days

. ) . ) ) to produce a $4 million design on a problem that Appia
When building a switch modul®uickBuilderfirst adds  go|yed for $1.4 million in a few minutes. (The consul-
a new switch and connects external ports to this switchy;nt ysed several expensive, 64-port switches, and a com-
selecting the best port to connect according to & merihjately symmetrical solution; AppiaBlowMergefound
functlon. When it connects an e_xterngl portto the swnch,Ways to achieve the same goals using much cheaper 16-
it routes all out-flows (respectively, in-flows) from the 5t switches.) Nonetheless, we are loath to make strong

port into (out of) the switch. Doing so createanging  ¢jaims about the benefits of our approach until we have
flows. These are flows that enter (respectively, exit) thep 54 more opportunities to evaluate it on a wider range of
switch via the connection of an external port to a switch o5 1.world problems.

port, but have not been assigned to a port by which to exit ) ) ]
(enter) the switch. After an external port is connected to d\Onetheless, our need to design and test Appia required
switch port, any resultant hanging flows must be assigne$fS to generate a W_lde range of “realistic” test cases where
to open switch portsQuickBuildercontinues connecting We attempted to introduce elements of the real-world
external ports to the switch until the switchsaturateg ~ Problems we had seen. We sought input from SAN de-
i.e., its bandwidth or port supply has been exhaustedsigners in choosing our suite of test problems.

When this occursQuickBuilderresets the set of exter- To that end, we generated 240 test problems in 24 cat-
nal ports to be the current open external ports and switckgories, each with 10 test problems. The problem cate-
ports that now contain in-flows and/or out-flows. It then gories differed in size (defined by number of hosts and
invokes the switch-module-building procedure again ondevices), a property we callgubrt saturation and char-

5 Evaluation of the algorithms

the new external ports. acteristics of a problem feature called flav incidence
] matrix. Since SANs are currently being designed on
4.4 Correctness and effectiveness many scales, ranging from a handful to a few hundred

servers and storage devices, we selected four size cat-
egories in this range. A host’s or device’s port satura-
tion is defined to be its total bandwidth of associated
flow requirements divided by the total bandwidth of its
As with FlowMerge we have no analytical bounds on ports. The flow incidence matrix is a matrix whose rows
the cost-effectiveness d@uickBuilderdesigns. How- correspond to hosts and whose columns correspond to
ever, empirical results indicate th@uickBuilderexcels  devices. An entry in the matrix equalsif its corre-

at solving large SAN design problems and those withsponding host and device ha¥eflows between them.
dense flow requirements. In such problems, the flow as¥e say a problem isparseif its flow incidence matrix
signment often results in one port group containing moshas relatively few positive entries scattered more or less
or all of the ports. Thus, such problems require a largeuniformly throughout the rows and columns. Similarly,
fabric through which almost all host and device ports aredense problems correspond to relatively dense and uni-
interconnectedQuickBuilderinvokes its switch-module form matrices. Aclusteryflow incidence matrix is less
building routine to find this fabric. This routine generally uniform, corresponding to the situation when the hosts
makes very cost-effective use of switches for large porand devices can be partitioned into “clusters” that con-
groups by minimizing the bandwidth “wasted” by flows tain most of the flow requirements.

Like FlowMerge QuickBuilderfinds a feasible SAN fab-
ric design when conditions (1) and (2) hold. The details
of the proof are omitted here.



5- l EffeCtiveneSS QuickBuilder vs FlowMerge Solution Cost

Table 1 summarizes the computational results for test S :

problems in each category for each of four methods. The
first of these methods is the integer program (IP). This
approach can solve only the smallest problems, but it
does so optimally. A SAN fabric design problem with
10 hosts and 10 devices has over forty thousand binary
variables and seventy five thousand constraints, a size fal

beyond the capabilities of today’s commercial IP solvers. :;gj
The LP (linear programming) relaxation of the IP can 10610 206100 50by100

be solved for somewhat larger problems; its results are num hosts X num devices

also presented in the chart. The LP relaxation is created

by relaxing integrality constraints in the IP. It does not Figure 8: The percentage by whichlowMergedesign costs
produce usable designs, but it provides a lower boun@xceedQuickBuilderdesign costs, averaged over twenty tests
on the optimal design cost because it solves a less coni each of nine categories. The categories are the combinations
strained problem. It can therefore be a useful benchmarRf the three largest problem sizes (number of hosts and devices
for heuristics when the optimal cost is not known. We ea(_:h greatertha}n five) an(_j the t_hree flow incidence matrix prop-
found, however, that the LP bound is quite weak — |essert|es. The horizontal axis indicates the number of hosts and

than 35% of the optimal cost — for problems with high "UMPer of devices in the problem category. The bar shade and
. z-axis position indicate whether the flow requirements matrix
port saturation.

is sparse, clustery or dense for that category.
Statistics for running times of the respective approaches
are also given for each category. Notice that in some of

the categories, the IP.and LP runs were terminated afteHOW it would affect future layers, and subsequent lay-
24 hours, before solutions had been found. ers were built independently of the others. Moreover, it
Results in Table 1 indicate that, on averaglewMerge  overlooked cost-saving multi-flowset mergers in the out-
produces lower cost designs th&uickBuilder for  ermost layers.

sm_aller problems, whereas for large probler@sl,ick- Contrastingly, FlowMerges relative strengths for less
Builder finds dramatically cheaper designs. The otherdense problems are apparent when comparing the fab-
problem characteristics do not conclusively predictriCS in Figure 1 and Figure 6 for the same problem

whiph algorithm is preferable..Figur.e 8 makgs this Com'FIowMergés $63,720 fabric uses only one switch and
parison ofEIowMerge and QuickBuilder design costs three hubs, wherea3uickBuilderproduced a more ex-
more explicit for all but the smallest problems. pensive $97,120 fabric. This might be explained by
The relative advantages QfuickBuildercan be seen by QuickBuildeis quite myopic port assignment method,

a direct comparison of the fabrics in Figure 2 and Figurewhich ignores the flows that have yet to be assigned
7, found byFlowMergeand QuickBuilder respectively, while making its current assignment. The port assign-
for the same problem. ThelowMergefabric uses five ment determines the decomposition of ports into port
switches (the darker fabric nodes) and fifteen hubs, androups, and thereby a decomposition of flows into dis-
costs $265,080QuickBuilderproduced a $133,440 fab- joint subsets that can be routed through independent fab-
ric using only three switches. This problem has a veryric elements. In this particular examplelowMerges
dense requirements matrix and high port saturation. Idabric has four distinct port groups, the largest containing
very dense problems, often every possible assignment afixteen portsQuickBuildercreated five port groups with
flows to ports results in one port group containing all ortwenty-four ports in the largest group. Large port groups
most of the host and device ports (to borrow terminologytypically lead to more fabricFlowMergeexcels at find-
from QuickBuilder) Thus, such problems require a large ing finer decompositions in less dense problems. Thus,
fabric through which almost all host and device ports areFlowMerges strength is assigning flows to ports in such
interconnected. away to yield smaller port groups, where&gsickBuilder
FlowMergeusually needs multiple fabric layers to con- is better at b“”F“”g modl,!les for large port groups when
nect all ports in a large port group. Its myopia in build- they are unavqldable. Thls_ supports an obV|o_us strategy:
ing independent layers and in performing only pairwiserun both algorithms, and pick the better solution.
mergers impairs its effectiveness in such problems, a&igure 9 and Figure 10 focus more closely on the small-
discussed ir§3.3. For example, in Figure 2, the mid- est problems, with five hosts and five devices, because
dle layer of fabric was introduced first without regard for these problems can be solved optimally by the IP. The
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Problem characteristics Average (in $1000) and standard deviation of fabric ¢p#tverage (in seconds) and standard deviation of solution fime
avg flow ort optimal FlowMerge i i optimal . FlowMerge i i

# hos_ts X # matrix Satu— F::ost iLPtgodst cost ’ QUIEI(()Etu”de gme Lp grze time ’ Qw;:il:nBewIder
# devices| flows| property | ration || (& std dev) (& std dev) (& std dev)| (L std dev) (+ std dev) (& std dev) (& std dev)| (+ std dev)
5x5 |[14.3] sparse | high 27+ 13 9+1 31+ 13 33+12 9,080+ 13,200 1.4+ 1.26 | 0.1+ 0.00 | 0.1+ 0.00
5x5 |14.0 sparse| low 11+ 2 8+0 13+ 3 15+ 3 1+1 0.0+0.02| 0.1+0.04 | 0.1+ 0.00
5x5 |[21.8] clustery| high 40+ 2 10+ 1 41+2 42+3 19,800+ 42,500 5.2+ 1.39 | 0.3+ 0.04| 0.1+ 0.00
5x5 | 21.5]| clustery| low 12+ 2 8+0 17+7 18+ 9 3+3 0.1+0.02| 0.3+ 0.05| 0.1+ 0.00
5x5 [24.2] dense | high 43+1 11+1 45+ 1 46+ 2 3,760+ 2,370 | 9.9+ 2.20 | 0.4+ 0.05| 0.1+ 0.00
5x5 |24.2] dense | low 16+ 2 9+0 38+ 0 46+ 2 1,690+ 1,690 | 6.24+0.97 | 0.4+ 0.05| 0.1+ 0.00
10x 10 | 28.1| sparse | high unavail 1941 66 1 13 774+ 13 > 24h 68.6+ 61.1| 0.1+ 0.00 | 0.2+ 0.00
10x 10 | 28.5| sparse | low unavail 17+ 0 29+3 32+3 > 24h 1.3+0.83] 0.1+0.00 | 0.2+ 0.00
10 x 10 | 40.9]| clustery | high unavail 21+1 88+ 20 94+ 17 > 24h 569+ 576 | 0.1+ 0.05| 0.3+ 0.03
10 x 10 | 39.7]| clustery| low unavail 17+ 1 45+ 11 55+ 19 > 24h 36.14+33.5| 0.1+ 0.04 | 0.3+ 0.03
10x 10 | 94.1| dense | high unavail unavail 264+ 16 138+ 12 > 24h >24h 1.7+ 0.15| 0.6+ 0.05
10x 10 | 90.5| dense | low unavail unavail 89+9 99+ 10 > 24h >24h 1.3+0.14| 0.5+ 0.00
20x100| 180 | sparse | high unavail unavail 467+ 34 478+ 39 > 24h > 24 h 754+095] 2.3+0.17
20x100| 161 | sparse | low unavail unavail 342+ 44 261+ 29 > 24h > 24 h 6.24+0.95| 2.1+ 0.36
20 x100| 226 | clustery | high unavail unavail 503+ 36 512+ 61 > 24h >24h |[15.1+1.67| 29+ 0.15
20x 100 | 217 | clustery | low unavail unavail 375+ 34 BP2EEI5T] > 24h >24h |12.7+1.67| 2.9+ 0.32
20x100| 214 | dense | high unavail unavail 455+ 58 441+ 33 > 24h >24h [12.2+1.22| 2.74+0.15
20x 100| 204 | dense | low unavail unavail 246+ 35 278+ 42 > 24h >24h 954+ 1.22| 254+ 0.16
50x 100 | 448 | sparse | high unavail unavail | 1640+ 231| 1030+ 20 > 24h >24h 258+ 7.44| 14.4+0.16
50 x 100 | 402 | sparse | low unavail unavail 1150+ 59 7184+ 40 > 24h >24h 248+ 6.51| 21.9+ 1.46
50 x 100 | 607 | clustery | high unavail unavail 15604+ 54 | 10104+ 22 > 24h > 24 h 497+ 29.4| 19.6+ 0.85
50 x 100 | 599 | clustery | low unavail unavail 1010+ 34 703+ 32 > 24h > 24h 487+ 29.4| 29.7+ 2.90
50x100| 539 | dense | high unavail unavail 19004+ 47 | 10804+ 29 > 24h > 24 h 469+ 20.7 | 18.3+ 0.79
50x 100 | 514 | dense | low unavail unavail | 1530+ 45 805+ 65 > 24h >24h | 4574+ 20.7|33.2+2.70

Table 1: Summary of computational results for four Appia design methods.

The results in each row are averaged across ten randomly-generated problems of the type shown under “problem characteristics.”
The first column indicates one of the four problem sizes used: 5 hosts, 5 devices; 10 hosts, 10 devices; 20 hosts, 100 devices; and 50
hosts, 100 devices. The second column reports the average number of flow requirements among problems in the category. The third
column indicates qualititative properties of the flow incidence matrix. The fourth column describes the degree of port saturation on
hosts and devices. For the “high” port saturation tests, 90% of port bandwidth of the hosts and devices is used, whereas for “low”
saturation, only 40% of the port bandwidth is used.

The next four columns provide the average and standard deviation over the category tests of the cost of fabrics found by the four
methods. The labels “optimal,” and “LP,” correspond respectively to the integer program and its LP relaxation. The term “unavail”
means that we were unable to compute a result in less that 24 hours for tests in that category.

The last four columns contain the average and standard deviation of the solution times in each category, measured on an HP 9000
model with a PA8600 processor and 4GB of memory, running HP-UX 11.0. Numbers have been rounded to three significant digits.

former shows the relationship between the optimal deThe optimal fabrics use only inexpensive hubs, whereas
sign cost and the cost of the designs produced by thboth heuristics use a $24,000 switch, and many expen-
two heuristics. It indicates that for small problems, sive switch ports, for each of these problems.
FlowMergeandQuickBuilderfind solutions that are, on

average 38% and 55% over the optimal fabric cost, re5.2 Efficiency

spectively. The fourth bar contains the cost produced o ] .

by the linear programming (LP) relaxation of the inte- 1€ graphs in Figure 11 show the algorithms’ running
ger program, a lower bound on the optimal cost. In thesdimes for all 240 test problems as a function of the num-

small problems, the lower cost bound is, on average, hafper of flows in the problem. We chose number of flows
of the optimal cost. as the independent variable because it is the most signif-

. , o icant factor in the running times of the two algorithms.
Figure 10 contrasts the fabric costs for individual smaIIFOr the largest tests, with 50 hosts, 100 devices and 600
tests for each of the four methods. In all of these smallﬂows, FlowMergefinds a design in less than 10 minutes,

tests except for those that have both dense flow inCidencz?ndQuickBuiIderfinds one in less than 40 seconds. This
matrices and low-saturated porspwMergeandQuick- e that adding @uickBuilderrun to aFlowMerge

Builder find designs that average within 13% and 25%,,, is very cheap. Given the target use, it may make

of the optimal design cost, respectively. The heuristicsenge to usguickBuilderinteractively, and then invoke
perform less well in the dense and low-saturation CasesizlowMergein batch mode for final review.
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device tests. “Integer program” (IP) produces optimal solu-

tions; FlowMergeandQuickBuilderare heuristics that produce
feasible solutions; LP relaxation produces a guaranteed lowe
bound, but (in general) infeasible solutions.
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We are actively pursuing several directions of future &
work: g 21
e Extending the design tools to accommodate high "1 E ﬂ% E”E”E ’E E
availability requirements. A trivial solution often o JE NG HIE RIE RIE 1Y NI HIG RIE DI IE) UG Ry Kl 01 NI RIE DIE
used for simple SANs is to replicate a single SAN A N R

fabric design, but this can become prohibitively ex-

pensive when port-count restrictions occur. Comparison to Optimal (Dense 5 x 5)

60 1

e Developing refinements that allow Appia to mod-
ify an existing design, rather than design one from &
scratch. This has obvious practical applications
where an existing SAN is being extended; it also in-
troduces some interesting tensions between the de
sire to produce a high-quality solution, and the de-
sire to minimize the amount of rewiring required on
the existing system while trying to use as many of b
its components as possible. 0 E E E E E E E

40 4

30 +

20 +
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e Exploring the design of solutions that provide

| m Optimal O FlowMerge B QuickQuilder @ LP Bound |
“slack,” to allow graceful growth.

e Exploring topology-constrained solutions, such as_. : .
b g fopology Figure 10: The graphs illustrate SAN solution costs for the

Brocades_ Core-Edge architecture, as _one approac%ur different Appia design algorithms across 20 different prob-
to producing designs that may be easier for peopl@

) o - " fems of the indicated type. For each graph, test instances 1-10
to modify by hand at a later date. This is a trivial ¢orespond to tests with high port saturation, and tests 11-20
problem for Appia compared to designing the topol- have low-saturated ports. The problem scale was restricted to
ogy itself — but its existing infrastructure makes it five hosts and five devices, to allow the optimal (integer pro-
easy to supply this solution for people who prefer gramming) algorithm to complete in a reasonable time.
it.

e Packaging the tools so that they can be made more
widely available, including integrating them more



FlowMerge is helpful for Appia’s SAN designs to be as cost effective

running time vs. number of flows as possible, it is probably even more important that they
600 can be shown to be correct — the chance of human error
N has been greatly reduced. The value of this is extremely
%07 i high in the complex, mission- and business-critical envi-
400 | ronments for which SAN design is done.
300 In summary, we feel that Appia and its algorithms solve

a key, hard problem in storage systems — and one that
is only going to grow in importance as the number,
1001 scale, and complexity of the SAN-based storage solu-
0 e ‘ ‘ tions grows.
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