
The following paper was originally published in the
Proceedings of the Conference on Domain-Specific Languages

Santa Barbara, California, October 1997

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

Modeling Interactive 3D and Multimedia Animation
with an Embedded Language

Conal Elliott
Microsoft Research

Modeling Interactive 3D and Multimedia Animation
with an Embedded Language

Conal Elliott
Microsoft Research

http://www.research.microsoft.com/~conal

Abstract

While interactive multimedia animation is a very
compelling medium, few people are able to express
themselves in it. There are too many low-level details
that have to do not with the desired content—e.g.,
shapes, appearance and behavior—but rather how to get
a computer to present the content. For instance,
behaviors like motion and growth are generally gradual,
continuous phenomena. Moreover, many such
behaviors go on simultaneously. Computers, on the
other hand, cannot directly accommodate either of these
basic properties, because they do their work in discrete
steps rather than continuously, and they only do one
thing at a time. Graphics programmers have to spend
much of their effort bridging the gap between what an
animation is and how to present it on a computer.

We propose that this situation can be improved by a
change of language, and present Fran, synthesized by
complementing an existing declarative host language,
Haskell, with an embedded domain-specific vocabulary
for modeled animation. As demonstrated in a
collection of examples, the resulting animation
descriptions are not only relatively easy to write, but
also highly composable.

1 Introduction

Any language makes some ideas easy to express and
other ideas difficult. As we will argue in this paper,
today’s mainstream programming languages are ill-
suited for expressing multimedia animation (3D, 2D
and sound), both in their basic paradigm and their
vocabulary. These languages support what we call
“presentation-oriented” programming, in which the
essential nature of an animation, i.e., what an animation
is, becomes lost in details of how to present it. We
consider the question of what kind of language is
suitable for capturing just the essence of an animation,
and present one such language, Fran, synthesized by

complementing an existing declarative “host language”,
Haskell, with an embedded domain-specific
vocabulary.

 We propose an alternative to “presentation-oriented”
programming, namely “modeling”, in which a model of
the animation is described, leaving presentation as a
separate task, to be done automatically. This idea of
modeling has been applied fruitfully in the area of non-
animated 3D graphics as discussed below, and is now
almost widely, though not universally, accepted. Our
contribution is to extend this idea in a uniform style to
encompass as well sound and 2D images, and across the
time dimension, in order to model animations over a
broad range of types. For brevity, this paper
concentrates on 3D animation, but it is really the
uniform integration of different types that gives rise to
great expressive power. (See Elliott and Hudak [1997]
for 2D examples.)

While imperative programming languages are suited to
presentation-oriented programming, the modeling
approach requires a different kind of language.
Unfortunately, bringing a useful new language into
being is quite a daunting task, requiring design of
semantics and syntax, implementation of compilers and
environment tools, and writing of educational material.
However, as Peter Landin taught us thirty years ago, we
can logically separate a language into (a) a domain-
specific vocabulary and (b) a domain-independent way
of composing more complex things from simpler ones.
In other words, a language is a combination of a “host
language” and a “domain-specific embedded language”
(DSEL). By reusing the same host language for several
different vocabularies, we can amortize the cost of its
creation over more uses. In fact, unlike thirty years
ago, we are now fortunate enough to have various
candidate languages from which to choose. In this
paper, we examine various features of a candidate host
language to see which are helpful and which are not
helpful for modeled animation. We find that Haskell is
a fairly good fit, requiring only a few compromises.

The rest of this paper is organized as follows. Section 2
starts with a few examples of modeled animations.
Section 3 introduces the notions of presentation and
modeling for non-animated 3D graphics, and looks at
some concrete benefits. Section 4 extends the idea and
benefits of modeling to a variety of types besides 3D
geometry, including sound and 2D images, and across
the time dimension. Section 5 considers the pragmatics
of creating a new domain specific language (DSL), and
motivates the DSEL approach. Section 6 examines the
usefulness of host language features in some detail.
The remainder of the paper looks at related work and
describes some directions for future work on modeled
animation.

2 Examples

In this section we present a handful of modeled
animations, in order to make later discussion more
concrete.

2.1 Static models

To start, we import a simple 3D model of a sphere from
“X file” format.

 sphere :: GeometryB
 sphere :: GeometryB
 sphere = importX "sphere1.x"

The type GeometryB represents 3D geometry
animations. (This “animation” happens to be a “static”,
i.e., not time-varying, one.) Similarly, we import a
teapot model. However, the teapot is in an awkward
orientation, so we adjust it after importing, rotating
around the X axis by an angle of -π/2:

 teapot :: GeometryB
 teapot =
 rotate3 xVector3 (-pi/2) **%
 importX "tpot2.x"

Note that in Haskell, function application binds more
tightly than all infix operators. Here are the types of the
modeling vocabulary we used:

 xVector3 :: Vector3B
 rotate3 :: Vector3B -> RealB
 -> Transform3B
 (**%) :: Transform3B -> GeometryB
 -> GeometryB

The constant xVector3 is the unit vector pointing in
the positive X direction. rotate3 takes an axis vector
and a number and yields a 3D transform. The operator
**% applies a 3D transform.

2.2 Spinning

Although types like GeometryB and Vector3B are
potentially animated, the example so far uses static
animations. Next we will color the teapot red and make
it spin around the Y axis.

 redSpinningPot =
 rotate3 yVector3 time **%
 withColorG red teapot

The new features are “time”, the unit Y vector and
application of a color to a geometric model:

 time :: RealB
 yVector3 :: Vector3B
 withColorG :: ColorB -> GeometryG
 -> GeometryG

The use of time here deserves special attention. It is a
primitive number-valued animation (hence the type
RealB) representing the flow of time. Note that time
is not a mutable real value, but a fixed animation.
Animations are essentially functions of time, with
time being the identity function, and operations like
rotate3, withColorG, being **% are combinators
that map functions of time to functions of time.

2.3 Generalizing

Next, generalize this simple spinning teapot, so that its
color and rotation angle are parameters.

 spinPot :: ColorB -> RealB -> GeometryB

 spinPot potColor potAngle =
 rotate3 yVector3 potAngle **%
 withColorG potColor teapot

We will make use of the potSpin function in a series
of three interactive 2D animations.

 spin1, spin2 :: User -> ImageB
 spin1 = withSpin potSpin1
 spin2 = withSpin potSpin2

When an animation is interactive, its type is a function
from the user supplying input. Hence the type above.
Yet to be defined are withSpin, potSpin1, and
potSpin2. First, we will give their types and an
informal description of their purpose.

 potSpin1, potSpin2 :: RealB -> User
 -> GeometryB

 withSpin :: (RealB -> User -> GeometryB)
 -> User -> ImageB

The two potSpin functions take as arguments an
animated number, which will be related to the rotation
angle passed to spinPot, and a user from which to

get input. In the simplest case, just ignore the user, use
red for the pot color, and pass on the angle argument
unchanged:

 potSpin1 angle u = spinPot red angle

The withSpin function takes one of these geometry
producers and renders it together with some textual
instructions.

 withSpin f u =
 growHowTo u ‘over‘
 renderGeometry (f (grow u) u)
 defaultCamera

The function grow will be defined below. Its job is to
turn user input into an animated angle, which gets
passed to the geometry producer. The produced
geometry is rendered with a default camera to produce
a 2D animation, which is combined with the instruction
text image. The function renderGeometry takes
geometry and camera (animated as always), and yields
a 2D animation:

 renderGeometry :: GeometryB
 -> Transform3B -> ImageB

2.4 A more interesting pot spinner

Before looking into the definition of grow, we will see
the second pot-spinning geometry producer, which adds
a few new features:

• A light source is added and, visualized as a white
sphere that orbits the spinning teapot. For
convenience, the translation vector is specified in
spherical coordinates.

• The teapot’s color is animated, and specified in
HSL coordinates.

• The “angle” argument generated by grow and
passed by withSpin is integrated, and so is
interpreted as the rate of change of the angle.

The definition:

 potSpin2 potAngleSpeed u =
 spinPot potColor potAngle ‘unionG‘
light
 where
 light = rotate3 yVector3 (pi/4) **%
 translate3 (vector3Spherical
 2 time 0) **%
 uscale3 0.1 **%
 withColorG white (
 sphere ‘unionG‘ pointLightG)
 potColor =
 colorHSL (sin time * 180) 0.5 0.5
 potAngle = integral potAngleSpeed u

Note the expression “sin time * 180” used in

defining the teapot’s color. The meaning of sin and
“*” are not the usual ones, operating on numbers, but
rather counterparts “lifted” to consume and produce
number-valued animations (of type RealB). Even the
numeric literal 180 is taken to mean an unchanging
number-valued animation (having type RealB).
Haskell’s overloading ability, based on type classes is
responsible for this great syntactic convenience. Several
dozen functions have been lifted in this way, so that, for
instance, sin and “*” not only have the usual types

 sin :: Float -> Float
 (*) :: Float -> Float -> Float

but also

 sin :: RealB -> RealB
 (*) :: RealB -> RealB -> RealB

2.5 Reactive growth

Now we turn to grow, which converts user input to a
time-varying angle (of type RealB). It is defined as
the integral of the value generated by bSign, defined
below, which produces an animated number that has
value zero when no mouse buttons are pressed, but
switches to negative one or positive one while the user
is holding down the left or right mouse button. The
angle value produced by grow is thus growing while
the right button is pressed, shrinking while the left is
pressed, and constant when neither button is pressed.

 grow :: User -> RealB

 grow u = integral (bSign u) u

 (The reason that even integral takes a user
argument is that integration is done numerically, and
must somehow know how hard to work on the
approximation.)

The bSign function is itself defined in terms of a more
general function selectLeftRight, which switches
between three values, depending on the left and right
button states.

 bSign :: User -> RealB
 bSign u = selectLeftRight 0 (-1) 1 u

 selectLeftRight :: a -> a -> a -> User
 -> Behavior a

 selectLeftRight none left right u =
 condB (leftButton u)
 (constantB left)
 (condB (rightButton u)
 (constantB right)
 (constantB none))

Some explanation: the use of a lower-case type name

(“a”) above means that selectLeftRight is
polymorphic, applying to any type of argument. The
function condB is a behavior-level conditional, taking
an animated boolean and two animated values, and
choosing between the two continuously. The Fran
primmitive constantB turns a regular “static” value
into a constant animated value (as required here by
condB). The leftButton and rightButton
functions tell whether the mouse buttons are pressed.

It is easy to define these two button state functions, in
terms of a toggling function that takes an initial value
and two events that tell when to switch to true and
when to false.

 leftButton, rightButton ::
 User -> BoolB
 leftButton u = toggle (lbp u) (lbr u)
 rightButton u = toggle (rbp u) (rbr u)

 toggle :: Event a -> Event b -> BoolB
 toggle go stop =
 stepper False (go -=> True
 .|. stop -=> False)

The functions lbp, lbr, rbp, and rbr, yield left and right
button press and release events.

 lbp, rbp, lbr, rbr :: User -> Event ()

The stepper function takes an initial value v and an
event e, and yields a piecewise-constant behavior that
starts out as v and switches to the values associated with
occurrences of e. In the definition of toggle, the
event is constructed from the go and stop argument
events, using the event handling operator “-=>” and
the event merging operator “.|.”. As a result, the
constructed event occurs with value True whenever go
occurs and with value False whenever False occurs.
(Note: the event operators are described in Elliott and
Hudak [1997], but their semantics have changed since
that publication, and now consist of a sequence of
occurrences, not just a single one. Also, the button
press events and mouse motion behavior are functions
of a User rather than a start time.)

2.6 Adding instructions

Finally, to produce instructions and user feedback, we
define growHowTo, which produces a rendered string,
colored yellow and moved down to be out of the way.
The text gives instructions when neither button is
pressed, says “left” while the left button is pressed, and
“right” while the right button is pressed. Its definition
involves 2D versions of vectors, transform formation
and application, and coloring, plus the polymorphic
function selectLeftRight, defined above.

 growHowTo :: User -> ImageB

 growHowTo u =
 moveXY 0 (-1) (
 withColor yellow (
 simpleTextImage messageB))
 where
 messageB =
 selectLeftRight
 "Use mouse buttons to \
 \control pot’s spin"
 "left" "right" u

Many more examples of functional animation may be
found in Elliott and Hudak [1997], Elliott [1997], and
Daniels [1997]. See also the user’s manual (Peterson
and Ling [1997]), which contains precise types and
informal meanings of the embedded animation
modeling vocabulary and still more examples.

With the given examples in mind, we step back from
our chosen approach to expressing interactive
animation, and consider the history, the benefits of
“modeling”, and of language embedding.

3 Presentation vs. modeling for 3D
geometry

The practice of 3D graphics programming has made
tremendous progress over the past three decades.
Originally, if you wanted your program to display some
graphics you had to work at the level of pixel
generation. You had to master scan-line conversion of
lines, polygons, and curved surfaces, hidden surface
elimination, and lighting and shading models—rather
complex tasks. A significant advancement was the
distillation of this expertise into rendering libraries (and
of course underlying hardware). With a rendering
library, such as GL by Silicon Graphics, you could
express yourself at the level of triangles and
transformation matrices. While an advancement, these
libraries presented a view of a somewhat complex state
machine containing registers such as the current
material properties and the current local or global
transformation matrices. You had to drive this state
machine, push register values onto a stack, change
them, instruct the library to display a collection of
triangles, and restore the registers at the right time.

The next major advancement was to further factor out
common chores of graphics presentation into libraries
that presented complex structured models, as
exemplified in such systems as PHIGS, SGI’s Inventor
and Performer, VRML, and Microsoft’s Direct3D RM
(retained mode). The paradigm shift from presentation

to modeling for geometry has had several practical
benefits:

• Ease of construction. Models are generally easier
for people to express and read than the
corresponding presentation programs. (In the case
of experienced programmers, there may be an
initial period of unlearning presentation-oriented
thinking habits, i.e., unconscious tendencies to
think in terms of how to display some geometry,
rather than simply what the geometry is.) In fact,
model specifications are often not programs at all,
but simply descriptions, such as “a red chair,
doubled in size”. Presentation specifications, on the
other hand, generally are programs.

• Authoring. Content creation systems naturally
construct models, because their end users think in
terms of models, and typically have neither the
expertise nor interest in programming model
presentation.

• Composability. Models tend to be more robustly
composable than presentation programs, thanks to
the absence of side effects, which could otherwise
interfere in subtle ways with the meaning of other
components. Composability is a crucial factor in
the scalability of any programming or modeling
system, as well as the key to enabling powerful
end-user features like cut-and-paste and drag-and-
drop. The keys to robust composability are that (a)
composition must construct the same kind of thing
as the composed components, so that the result can
be composed again, arbitrarily, and (b)
composition operations do not allow interference
among components. Note that there is an industry
that sells a variety of specialized geometric models,
but there is not one that sells specialized
presentation code snippets.

• Optimizability. Model-based systems contain a
presentation sub-system that contains code to
render any model that can be constructed with the
system. Because higher level information is
available to the presentation sub-system than with
presentation programs, there are many more
opportunities for optimization. Examples include
hierarchical culling, display-sensitive triangle
generation from curved surfaces, set-up for various
hidden surface removal algorithms when lacking
Z-buffered hardware, and vertex data conversion
from application representation to device
representation. SGI’s Performer and Microsoft’s
Direct3D RM products were largely motivated by
these opportunities for optimization. Imagine how
hard it would be to do these optimizations if the
application explicitly managed each step of

geometry presentation. It would be akin to reverse
engineering the model out of the imperative
presentation code.

• Economy of scale. Because the presentation sub-
system is used for many different applications, it is
worthwhile to invest considerably in optimization
and functionality. When an application does its
own presentation, such an investment is not as
likely to be warranted.

• Usefulness and longevity. Models have broader
usefulness and a longer lifetime than presentation
programs, because models are platform
independent. Presentation sub-systems can be
separately tuned or totally re-implemented to run
on a variety of radically different hardware
architectures, from no graphics hardware, to SMP
platforms, to SGI-like 3D hardware, and well
beyond. Models will not only be able to be
presented on these different architectures, but their
presentation can exploit the best features of each
architecture. Again, economy of scale makes this
tuning and re-implementation work worthwhile.

• Regulation. The presentation sub-system can
perform automatic level-of-detail management,
determining the sequence of low-level presentation
instructions executed dynamically, based on scene
complexity, machine speed and load, etc. In
contrast, a presentation-oriented application either
hardwires a level-of-detail, and so is appropriate
for only a narrow range of machines and
circumstances, or must make a considerable
investment in doing explicit, specialized regulation.

In spite of the benefits listed above, not everyone has
made the shift from presentation to modeling of
geometry. The primary source of resistance to this
paradigm shift has been that it entails a loss of low level
control of execution, and hence efficiency. As
mentioned above, handing over low level execution
control from the application to the presentation sub-
system actually benefits execution efficiency where
authors lack the significant resources and expertise
required implement, optimize, and port their programs
for all required platforms. In other cases, as in the case
of current state-of-the-art commercial video games, the
resources and expertise are available and well worth the
considerable investment. An example is Doom, which
would have been a failure at the time if implemented on
top of a general-purpose presentation library. On the
other hand, even Doom and its successors really adopt
the modeling paradigm, in that they consist of a
rendering engine paired with a modeling representation.
In addition to the loss of direct control of efficiency,

modeling tends to eliminate some flexibility in the form
of presentation-level tricks that do not correspond to
any expressible model. In our experience, these tricks
tend not to scale well and are not composable, and in
cases that do, are achievable through model
extensibility.

There have been many other similar paradigm shifts,
generally embodied in specialized languages sometimes
with corresponding tools that generate the language.
Examples include dialog box languages and editors;
grammar languages and parser generators; page layout
languages and desktop publishing programs; and high-
level programming languages and compilers.

4 Modeling vs. presentation for
animation

The conventional approach to constructing richly
interactive animated content much like the old days of
graphics rendering, as described briefly above, that is
one must write sequential, imperative programs. (Much
animation is in fact modeled rather than programmed,
because it comes from animation authoring tools, but
interaction is severely limited, for instance to hyper-
linking.) These programs must explicitly manage
common implementation chores that have nothing to do
with the content of animation itself, but rather its
presentation on a digital computer. These
implementation chores include:

• sampling in time for simulation and frame
generation, even though the animation is
conceptually continuous;

• capturing and handling of sequences of motion
input “events”, even though motion input is
conceptually continuous;

• time slicing to update each time-varying animation
parameter, even though these parameters
conceptually vary in parallel;

• management of network connections and remote
messaging for distributed applications such as
shared virtual spaces, multi-player games, and
collaborative design, even though the various users
and objects are conceptually in a single world;

The essence of modeled animation is to carry the
presentation/modeling paradigm shift beyond static
(non-time-varying) 3D geometry, and thus more
broadly reap the kind of benefits described in the
previous section. The extensions to static geometric
modeling embodied in modeled animation include the

following:

• Apply the modeling principle to richly model
sound and 2D imagery. These types are as complex
and important in their own right as geometry, and
so are supported on equal footing with 3D, rather
than as decorations on an essentially 3D
representation, such as VRML’s scene graphs. (In
fact, for today’s PC capabilities, sound and 2D
imagery are more important than 3D geometry.)
Going even further, treat the multitude of other
data types that arise from 3D, 2D, and sonic
modeling (transforms, points, colors, etc.) on an
equal footing as well.

• Go beyond modeling of static geometry, images,
etc., to behaviors and interaction—what one might
call temporal modeling.

• Recognize that for a modeling representation to be
sufficiently rich, it must inevitably be a quite
expressive language, though not necessarily an
imperative programming language. Even static
modeling representations like VRML (Pesce
[1995]) had to incorporate the essential
mechanisms of a language, which are composition
(through hierarchy and aggregation), naming, and
information passing (through attributes), though in
ad hoc, limited forms.

By extending modeling from static 3D to other types
and to animation, we also extend the modeling benefits
listed in the previous section. Most of these benefits
translate in straightforward ways, but some possible
non-obvious extensions are as follows:

• Composability. Temporal models compose into
new temporal models, to an arbitrary level of
complexity. There are no execution side-effects to
cause interference among the composed
components, nor are there any evaluation order
dependencies. For example, in the examples above,
consider the use of the relatively simple spinPot
to help define the more complex potSpin2, and
the use of selectLeftRight to define bSign
and growHowTo.

• Optimizability. Techniques such as culling via
spatial bounding volume hierarchies can be applied
infrequently to temporal models, rather than at
every frame on static models. Such analyzability is
especially important for intensive computations
like collision detection, which has been shown to
be amenable to temporal analysis techniques.
Moreover, because animation is modeled
explicitly, rather than being the result of side-
effects to a mutable static model carried out by

imperative code, the engine knows exactly what
values and relationships are fixed and which ones
vary dynamically. Note that it is exactly this
knowledge that has proved vital to the success of
programming language compilers. Most
programmers gave up the control afforded by
writing self-modifying code, and as a result,
compilers gained enough information about the
run-time behavior of a program to be able to
perform significant optimization. As a result, most
portions of even performance- and space-sensitive
code are now written in languages like C or C++,
rather than assembler. Many of the benefits of, and
the objections to, modeling vs. presentation listed
above directly apply to the issue of programming
in C vs. assembly language.

• Usefulness and longevity. Because model
definitions have no artificial sequentiality,
temporal models may be executed in parallel,
where parallel hardware is available. In contrast,
imperative programs are notoriously difficult to
parallelize and in practice must be rewritten.

• Regulation. The presentation of an interactive
animation involves a multitude of sampling rates,
including simulation parameter sampling, input
sampling, geometry generation, geometry
rendering, and image display. These many
sampling rates may all be varied automatically,
based on the computational and visual complexity
of a scene, machine speed and load, etc. Moreover,
computation of simulation parameters based on
kinematics or dynamics can choose and adaptively
vary numerical integration algorithms.

5 Language considerations

So far, we have used the term “modeling language”
loosely. In this section, we make a more precise
examination of the different possible notions of
“language” and some of their pros and cons for
practical use.

A language may be thought of as the combination of
two complementary aspects. One aspect is domain-
generic, and contains fundamental syntactic and
semantic notions like definition and use of names for
values and types, construction and application of
functions or procedures, control flow, and typing rules.
The other language aspect is a domain-specific
vocabulary, describing, e.g., math operations on
floating point numbers, string manipulation, lists and
trees, and in our context, geometry, imagery, sound and
animation.

Holding these two language aspects in mind, there are
two strategies we could adopt in making concrete the
idea of an animation modeling language, or any DSL,
which we will call “integrated” and “embedded”
respectively. In the integrated approach, the DSL
combines both language aspects. In the embedded
approach, the domain-specific vocabulary is introduced
into an existing “host” programming language. While
these two strategies may be similar in spirit, the
pragmatics of carrying them out differ considerably.

The chief advantage of integration is that one can have
a perfectly suited language, semantically and
syntactically, while the embedded approach requires
toleration of compromises made to accommodate a
broad range of domains. In return for this toleration, the
embedded DSL approach allows us to use already
existing language infrastructure.

To be useful in practice, not just a toy or a research
experiment, a complete DSL needs several components,
well designed and well executed:

• A language definition. Despite the best intentions
of their original designers, successful DSL’s (ones
with users) tend to grow, eventually incorporating
more and more general purpose language features.
When this growth is not anticipated, the results can
be ugly.

• A language implementation. Depending on the
domain, an interpreter may suffice, but for some
cases, including real-time animation, compilation is
important. A good compiler, such as the Glasgow
Haskell Compiler (Peyton Jones and Santos
[1996]), requires years to develop.

• Environment tools. Programmers need debuggers
and profilers to get their programs working
correctly and efficiently. Also, inherent in domain-
specificity, there needs to be a way to package up
components of functionality in such a way that it
can inter-operate with components implemented in
other languages, domain-specific or otherwise.

• Educational material. Users must be provided with
tutorials to get them started, and reference manuals
to fill in the details.

Given this list, we have ample incentive to try to make
the embedded DSL approach work, if we can find a
sufficiently suitable existing host language. We now
take a closer look at the question of what features
constitute suitability.

6 Choosing a host language for modeled
animation

We have found a variety of host language features to be
helpful for animation modeling, while others were
harmful. The helpful features include the following,
some of these features are obvious from a programming
language perspective, but are in fact missing or very
weakly present in popular model formats for geometry
and animation.

• Expressions. Models are specified primarily in
terms of other models, applying various kinds of
transformations, forming aggregates, transforming
some more, etc. Expressions, in the programming
language sense, are well suited for this
compositional style of specification, since they nest
conveniently and suggest manipulation of values
(models) rather than effects (presentations). One
kind of expression that is particularly useful is the
conditional, as in C’s often ignored: “cond ? exp1 :
exp2”.

• Definition. In order to use a model more than once,
or to separate the definition of a model from its
uses, there needs to be a mechanism for referring to
a single model any number of times in different
contexts. A simple and general such mechanism is
the definition of names for models denoted by
expressions, together with the use of names to
denote the corresponding models. Such definitions
should have controllable scope, such as introduced
by “where” in the some of the examples above.

• General parameterization. Values such as
numbers, strings and are not nearly as interesting a
set of reusable building blocks as are the functions
that create these values. Exactly the same is true
for values/models such as geometry, images,
sounds, transformations, and animations. The
really powerfully reusable building blocks tend to
be parameterized models, such as spinPot and
leftRightSelect above, and therefore a
modeling language needs a mechanism for
expressing functions from arguments of arbitrary
types to results of arbitrary types.

• Higher-order programming (first class functions).
Higher-order functions allow succinct expression
an encapsulation of useful domain-specific
programming patterns. Consequently, it is useful to
allow for parameterized models to accept other
parameterized models as arguments and/or produce
them as results. As a particular example, response
to user interaction events is often expressed in
terms of call-backs. In a higher-order language,
these call-backs may be specified succinctly, using

lambda-abstraction or locally-defined functions.
(Strong static typing eliminates the need for unsafe
type coercion or run-time checking.) In the
examples above, withSpin makes critical use of
higher-order programming.

• Strong, static typing. Models and their components
are of a variety of different types, such as
geometry, image, sound, 2D and 3D transform, 2D
and 3D point and vector, color, number and
Boolean, as well as animations over all of these
types, and events yielding information of all of
these types. A static type system guides authors
toward meaningful model descriptions, enabling
helpful error messages before execution. Static
typing also improves performance by eliminating
the need for run-time type checking, while
retaining execution safety. In order not to clutter a
model definition, it is helpful is types can be
inferred automatically, rather than always being
specified explicitly.

• Parametric polymorphism. Animation is a
polymorphic concept, applying to geometry,
images, sound, 2D and 3D points vectors, colors,
numbers etc. Similarly, reactive animation makes
essential use of the polymorphic notion of an event
occurrences of which carry with them not only a
time, but also a value of some type. Several of
Fran’s animation- and event-building operations,
such as “untilB”, “==>” and “.|.”, apply to an
infinite family of types. Note that non-
polymorphic languages generally have
polymorphic primitives, such as conditionals. To
serve as a host language for an embedded DSL,
however, the polymorphism must be available for
the embedded vocabulary, as in the function
selectLeftRight, which was applied to
numbers and to strings above.

• Notational flexibility. It is convenient to give new,
domain-specific, meanings to old names. In
particular, Fran overloads most of the names of the
standard math functions, e.g., “sin” and “+”, to
operate at the level of animations. We even
overload constants, e.g., “pi” and “1”, to denote
animations (though not very animated ones). We
also introduce new infix operators with suitable
associativity and binding strength. While “merely”
a notational convenience, this notational flexibility
is largely responsible for giving the “look and feel”
of a tailored domain specific language, and makes
the resulting programs much easier to read than
they would be if we had to introduce a whole new
collection of non-infix names.

• Automatic garbage collection. An animation

typically contains many components that contribute
for a short while, or in any case, less than the full
duration of the animation. Automatic garbage
collection makes for safe and efficient memory
use.

• Laziness. An interactive animation is a “big” value,
often infinitely big, containing repetition and
branching. It is important, even crucial, that parts
of an animation be available for consumption
before the rest of the animation has actually been
produced. The idea of laziness is to postpone
production of parts of a value until the last possible
moment, i.e., when those parts need to be
consumed for display. Often parts are completely
unused, and so should never actually be computed.
For example, in a computer game, many possible
branches are not taken and many simulated
characters are not seen during the play of a single
game. As a simpler example, the animations
produced by bSign and growHowTo can have an
infinite number of phase changes, according to user
input, but they available immediately for partial
consumption.

What are usually thought of as primitive control
structures, such as conditionals and iteration, are
often definable in lazy languages. As a
consequence, “domain-specific control structures”
are also definable. (Higher-order programming
with lambda abstraction makes it possible to define
domain-specific variable binding constructs as
well.) For instance, one could define animation
repetition operators in Fran.

Laziness also plays a role complementary to
garbage collection, for efficient use of memory.
Laziness delays consumption of memory until just
before an animation component is needed, while
garbage collection frees the memory when an
animation component is no longer needed.

• Modules. Like conventional programs, model
specifications can grow to be quite complex, and so
should be specifiable in parts by different authors
and in different files distributed throughout the
Internet. Moreover, it should be possible to
compile these modules into an executable form
such as Intel binary or Java byte-code, with formal
interfaces that state the names and types of values
and functions implemented in the module.

Imperative programming languages, such as C, C++,
Java and Visual Basic, have statements in addition to
expressions, and in fact, emphasize statements over
expressions. For example, in these languages, it is
possible to introduce a scoped variable in a statement,

but not in an expression. Also, if works on statements,
though C has its ternary ?: expression operator. While
expressions are primarily for denoting values,
statements are for denoting changes to an internal or
external state. State changes certainly occur during
presentation of a model, but are not appropriate in the
model itself, as they interfere with composability,
optimizability, and multithreaded, parallel and
distributed execution. Common language features that
are statement-oriented, and which thus do not useful for
modeled animation, include the following:

• Sequencing. Without statements, there is no role
for the usual notion of sequencing, which is
executing multiple statements in serial, and relies
on implicit communication of information from one
statement to the next through side effects.

• Conditional statements.

• Sequential iteration. Really just a compact way to
specify possibly infinite sequencing and
conditional execution.

Given the language requirements and non-requirements
above, we now return to the “integrated-vs-embedded”
question, keeping in mind that design and
implementation of a new programming language and
development tools, and creation of required educational
material are formidable tasks, not to be undertaken
unless genuinely necessary. Fortunately, there are well-
suited existing languages, the so-called “statically
typed, higher-order, purely functional” languages. Of
those languages, Haskell (Hudak et al [1992b], Hudak
and Fasel [1992a]) has the largest following, has an
international standard (Haskell 1.4) and is undergoing
considerable development. For these reasons, we have
chosen Haskell for our own implementation of the
ideals of modeled animation. Other languages can be
used as well, with varying tradeoffs. For example, Java
is more popular than Haskell, and while predominately
statement-oriented, it does support garbage collection.

While neither the current development tools and
educational material for Haskell programming, nor the
size of the Haskell programming community, is
impressive compared to those of mainstream languages,
we believe that both are sufficient to act as a seed, with
which to generate initial compelling applications. We
hope that these initial applications will inspire curiosity
and creativity of a somewhat larger set of programmers,
leading to better development tools and written
materials, yet more compelling applications, and so on,
in a positive feedback cycle.

Aside from issues of familiarity, there will always be an
important role for imperative computation in the
construction of complete applications, which is best
described using statement-oriented programming
languages. One then could throw such features into a
modeling language, or even try to force imperative
programming languages to also serve as modeling
languages. We prefer the approach of multi-lingual
integration, which is to support construction of
application modules in a variety of languages and then
combine the parts, generally in compiled form, with a
language neutral tool.

7 Related work

The idea of an “domain-specific embedded language”
is, we believe, the central message in Landin’s seminal
“700” paper:

Most programming languages are partly a way
of expressing things in terms of other things
and partly a basic set of given things. The
ISWIM (If you See What I Mean) system is a
byproduct of an attempt to disentangle these
two aspects in some current languages. [...]
ISWIM is an attempt at a general purpose
system for describing things in terms of other
things, that can be problem-oriented by
appropriate choice of “primitives.” So it is not
a language so much as a family of languages,
of which each member is the result of
choosing a set of primitives. (Landin [1966]).

Arya [1994] used a lazy functional language to model
non-interactive 2D animation as lazy lists of pictures,
constructed using list combinators. This work was the
original inspiration for our own; we have extended it to
interactivity, continuous time, and many other types
besides images.

TBAG modeled animations over various types as
functions over continuous time (Elliott et al [1994],
Schechter et al [1994]). It also used the idea of lifting
function on static values into functions on animations,
which we adopted for Fran. Unlike Fran, however,
reactivity was handled imperatively, through constraint
assertion and retraction, performed by an application
program. Like Fran, TBAG was an embedded language,
but it used C++ as its host language, in an attempt to
appeal to a wider audience. The C++ template facility
was adequate for parametric polymorphism. The
notation was in some ways even more malleable than in
Haskell, because C++ overloading is genuinely ad hoc.
On the other hand, unlike Haskell, C++ only admits a

small fixed set of infix operators. The greatest failings
of C++ (or Java) as a host language for a modeling
language are its lack of an expression-level “let”, and
the absence of higher-order functions. The latter may be
simulated with objects, but without a notational
equivalent to lambda expressions.

Obliq-3D is another 3D animation system embedded in
a more general purpose programming language (Najork
and Brown [1995]). However, its host language is
primarily imperative and object-oriented, rather than
functional. Accordingly, Obliq-3D’s models are
initially constructed, and then modified, by means of
side-effects. In this way it is reminiscent of Inventor
(Strauss [1993]).

Direct Animation is a library developed at Microsoft to
support interactive animation (Microsoft [1997]). It is
designed to be used from mainstream imperative
languages such as Java, and mixes the functional and
imperative approaches. Fran and Direct Animation both
grew out of an earlier design called ActiveVRML
(Elliott [1996]), which was an “integrated” DSL.

There are also several languages designed around a
synchronous data-flow notion of computation,
including Signal (Gautier et al [1987]) and Lustre
(Caspi et al [1987]), which were specifically designed
for control of real-time systems. In Signal, the most
fundamental idea is that of a signal, a time-ordered
sequence of values. Unlike Fran, however, time is not a
value, but rather is implicit in the ordering of values in
a signal. By its very nature time is thus discrete rather
than continuous, with emphasis on the relative ordering
of values in a data-flow-like framework. The designers
of Signal have also developed a clock calculus with
which one can reason about Signal programs. Lustre is
a language similar to Signal, rooted again in the notion
of a sequence, and owing much of its nature to Lucid
(Wadge and Ashcroft [1985]).

8 Conclusions

Traditionally the programming of interactive 3D and
multimedia animations has been a complex and tedious
task. We have argued that one source of difficulty is
that the languages used are suited to describe how to
present animations, and in such descriptions the
essential nature of an animation, i.e., what an animation
is, becomes lost in details of how to present it. Focusing
on the “what” of animation, i.e., modeling, rather than
the “how” of its presentation, yields a much simpler and
more composable programming style. The modeling

approach requires a new language, but this new
language can be synthesized by adding a domain-
dependent vocabulary to an existing domain-
independent host language. We have found Haskell
quite well-suited, as demonstrated in a collection of
sample animation definitions.

A running theme of this paper has been economy of
scale. We recommend making choices that amortize
effort required over several uses of the fruits of that
effort. The alternatives are poor quality or
impractically high cost. Specifically:

• “Modeling” vs “presentation”. Graphics modeling
allows reuse of a single graphics presentation
engine, and temporal modeling allows reuse of a
single temporal presentation engine.

• “Embedded” vs “integrated” language. Languages,
if they are to be genuinely useful, require a large
investment of effort. An embedded language
inherits design, compilers, environment tools, and
educational material from its host language.

• Composability. Because modeled, parameterized
animations are neatly composable, they may be
reused in a variety contexts, instead of being
repeatedly reinvented with slight variations for
each similar situation.

A notable exception to the necessity of modeling,
embedding and composability for high quality
interactive animation is in software that can sell in huge
quantity, which then exploits an end-user economy of
scale. The unfortunate consequence to this exception,
however, is a kind of mainstreaming of the content, as
in violent video games. Fortunately, however, even
these games are often implemented using the modeling
approach, and allow consumers to create new characters
and worlds for them.

There are ample opportunities for future work in
modeled animation, including the following.

• Multi-lingual integration. We believe that in order
for Haskell, or any other non-mainstream language
to make a serious contribution in the software
industry, it should be cast not as a language for
implementing entire applications, but rather
software components. This identity then implies
strong support for generating language-
independent calling interfaces. As a concrete goal,
one should be able to program animation modules
in Haskell, compile them into binaries with COM

interfaces, and then distribute them. A Java or
Visual Basic programmer should then be able to
wire together the Haskell-based animation
components without knowing in what language
they were implemented.

• Domain-specific optimization. In theory, it is
possible for a domain-generic compiler to do
domain-specific compilation, by using various
forms of partial evaluation. We intend to
investigate this approach, by using the Glasgow
Haskell compiler (Peyton Jones and Santos
[1996]), perhaps with some domain-generic
enhancements.

• Notational compromises. As mentioned above,
using Haskell required only a few compromises.
One has to do with overloading. We cannot, for
instance, use “+” for the addition of 2D or 3D
points and vectors (or even “.+^”, which now can
be used for 2D or 3D, but not both). Similarly, we
cannot use “==” for the lifted form of equality,
applying to two like-typed animations to yield a
boolean animation. Extending Haskell to allow
“multi-parameter type classes” might eliminate
some of these compromises.

9 Acknowledgements

My thoughts on “domain-specific embedded language”
have been greatly influenced by Paul Hudak. Philip
Wadler pointed out the connection to Landin's “700”
paper. Todd Knoblock and Jim Kajiya helped to
explore the basic ideas of modeled animation. Sigbjorn
Finne helped with the implementation during a summer
research internship. Alastair Reid made many
implementation improvements. Paul Hudak, Alastair
Reid, and John Peterson at Yale provided many helpful
discussions about functional animation, how to use
Haskell well, and lazy functional programming in
general. Gary Shu Ling helped get Fran running under
GHC. Byron Cook gave many helpful comments on an
earlier draft to improve readability.

10 Availability

Fran runs under Windows 95 and NT 4.0, and is freely
available at http://www.research.microsoft.com/~conal/
Fran/.

References

Kavi Arya [January 1994], “A Functional Animation
Starter-Kit”, Journal of Functional Programming,
4(1):1-18.

P. Caspi, N. Halbwachs, D. Pilaud, and J.A. Plaice
[January 1987], “Lustre: A Declarative Language for
Programming Synchronous Systems”, in 14th ACM
Symposium. on Principles of Programming Languages.

Anthony Daniels [1997], “Fran in Action!”, in
preparation, http://www.cs.nott.ac.uk/~acd/action.ps

Conal Elliott [February 1996], “A Brief Introduction to
ActiveVRML”, Technical Report MSR-TR-96-05,
Microsoft Research, ftp://ftp.research.microsoft.com/
pub/tr/tr-96-05.ps

Conal Elliott [1997], “Composing Reactive
Animations”, To appear in Dr. Dobb’s Journal,
http://www.research.microsoft.com/~conal/fran/tutorial.
htm .

Conal Elliott, Greg Schechter, Ricky Yeung and Salim
Abi-Ezzi [July 1994], “TBAG: a High Level
Framework for Interactive, Animated 3D Graphics
Applications”, in Andrew Glassner, editor, Proceedings
of SIGGRAPH ‘94 (Orlando, Florida), pages 421-434.
ACM Press, http://www.research.microsoft.com/
~conal/tbag/papers/siggraph94.ps

Conal Elliott and Paul Hudak [June 1997], “Functional
Reactive Animation”, in Proceedings of the 1997 ACM
SIGPLAN International Conference on Functional
Programming, http://www.research.microsoft.com/
~conal/papers/icfp97.ps

Thierry Gautier, Paul Le Guernic, and Loic Besnard
[1987], “Signal: A Declarative Language for
Synchronous Programming of Real-Time Systems”, in
Gilles Kahn, editor, Functional Programming
Languages and Computer Architecture, volume 274 of
Lecture Notes in Computer Science, edited by G. Goos
and J. Hartmanis, pages 257-277. Springer-Verlag,
1987.

Paul Hudak and Joseph H. Fasel [May 1992a], “A
Gentle Introduction to Haskell”. SIGPLAN Notices,
27(5). See http://haskell.org/tutorial/index.html for
latest version.

Paul Hudak and Simon L. Peyton Jones and Philip
Wadler (editors) [March 1992b], “Report on the
Programming Language Haskell, A Non-strict Purely
Functional Language (Version 1.2)”, SIGPLAN Notices.
See http://haskell.org/report/index.html for latest
version.

Peter. J. Landin [March 1966], “The Next 700
Programming Languages”, Communications of the
ACM, 9(3), pp. 157-164.

Microsoft [1997], DirectAnimation, in the Microsoft
DirectX web page, http://www.microsoft.com/directx.

Marc A. Najork and Marc H. Brown [June 1995],
“Obliq-3D: A High-Level, Fast-Turnaround 3D
Animation System”, IEEE Transaction on Visualization
and Computer Graphics, 1(2).

Mark Pesce [1995], VRML Browsing and Building
Cyberspace: the Definitive Resource for VRML
Technology, New Riders Publishing.

John Peterson and Gary Shu Ling [1997], “Fran User’s
Manual”, http://www.haskell.org/fran/fran.html

Simon Peyton Jones and Andre Santos [1996],
“Compiling Haskell by Program Transformation: a
Report from the Trenches”, ESOP '96: 6th European
Symposium on Programming, Linköping Sweden, April
22—24, 1996, Lecture Notes in Computer Science,
Vol. 1058, Springer-Verlag Inc. http://www.dcs.gla.
ac.uk/fp/authors/Simon_Peyton_Jones/comp-by-
trans.ps.gz

Greg Schechter, Conal Elliott, Ricky Yeung and Salim
Abi-Ezzi [1994], “Functional 3D Graphics in C++ -
with an Object-Oriented, Multiple Dispatching
Implementation”, in Proceedings of the 1994
Eurographics Object-Oriented Graphics Workshop.
Springer Verlag, http://www.research.microsoft.com/
~conal/papers/eoog94.ps

Paul S. Strauss [October 1993], “IRIS Inventor, A 3D
Graphics Toolkit”, in Proceedings of the OOPSLA ‘93
Conference on Object-oriented Programming Systems,
Languages and Applications, pp. 192-200.

W.W. Wadge and E.A. Ashcroft [1985], Lucid, the
Dataflow Programming Language. Academic Press
U.K..

