i

The following paper was originally published in the
Proceedings of the Conference on Domain-Specific Languages
Santa Barbara, California, October 1997

Experience with a Language for Writing Coherence Protocols

Satish Chandra, University of Wisconsin, Madison;
Michael Dahlin, University of Texas, Austin;
Bradley Richards, Vassar College;
Randolph Y. Wang and Thomas E. Anderson, University of California, Berkeley;
and James R. Larus, University of Wisconsin, Madison

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org

4. WWW URL: http://www.usenix.org



Experience with a Language for Writing Coherence Protocols

Satish Chandra Michael Dahlif, Bradley Richard§ Randolph Y. Warlt
Thomas E. Andersdrand James R. Larbis

lUniversity of Wisconsin, Madison
U niversity of Texas, Austin
3Vassar College
4University of California, Berkeley

Abstract. In this paper we describe our experience Wihpot][7], a domain-specific language for
writing cache coherence protocol€ache coherence is of concern when parallel and distributed
computing systems make local replicas of shared data to improve scalability and performance. In
both distributed shared memory systems and distributed file systemlse@nce protocainain-

tains agreement among the replicated copies as the underlying data are modified by programs run-
ning on the system.

Cache coherence protocols are notoriously difficult to implement, debug, and maintain. Unfortu-
nately, protocols are not off-the-shelf items, as their details depend on the requirements of the sys-
tem under consideration. This paper presents case studies detailing the successes and shortcomings
of using Teapot for writing coherence protocols in two systems. The first systemly coherent
memory(LCM) [16], implements a particular type of distributed shared memory suitable for data-
parallel programming. The second system X8 distributed file systef], implements a high-
performance, serverless file system.

Our overall experience with Teapot has been very positive. In particular, Teapot's language features
resulted in considerable simplifications in the protocol source code for both systems. Furthermore,
Teapot's close coupling between implementation and formal verification helped to achieve much
higher confidence in our protocol implementations than previously possible and reduced the time to
build the protocols. By using Teapot to solve real problems in complex systems, we also discovered
several shortcomings of the Teapot design. Most noticeably, we found Teapot lacking in support for
multithreaded environments, for expressing actions that transcend several cache blocks, and for
handling blocking system calls. We believe that domain-specific languages are valuable tools for
writing cache coherence protocols.

1 Introduction closely linked to its sharing semantics and performance
goals. For example, different distributed shared memory
Cache coherence engines are key components in seveggktems provide different memory consistency models
parallel and distributed computing systems. Coherenc[513]' which support different assumptions that applica-
is of concern whenever distributed systems make loca|gy, programs can make about the currency of cached
replicas of shared information for reasons of perforygyes. Moreover, systems with similar sharing seman-
mance or availability (or both), because systems musfcs can have vastly different protocols that use different

keep replicas current as they modify the shared informag;, o ithms to achieve the same task, albeit with different
tion. Thus, distributed shared memory systems [6’15]performance considerations. Thus, each system essen-

distributed file systems [9,20], and high—performance[iaIIy needs its own coherence protocol
client-server database systems [12] all implement cache '
coherence protocols. Coherence in web caching is alsosaecond, and perhaps more importantly, cache coherence

current research topic in the distributed systems commus; 6015 represent complex, distributed algorithms that

nity [19]. are difficult to reason about, and often contain subtle
Tools that facilitate the implementation of cache coherface conditions that are difficult to debug via system
ence protocols are important for two reasons. Firstiesting. Furthermore, to our knowledge, previous sys-
coherence protocols, while ubiquitous, show a great deaéms have not attempted a clear separation between the
of variety because the protocol for a particular system isache-coherence engine and other implementation



details of the system, such as fault management, lowsuperior to earlier efforts to implement the protocols
level 1/0O, threads, synchronization, and network com-using C without domain-specific tools. The paper makes
munication. It is not difficult to imagine the hazards ofseveral contributions. First, it highlights the aspects of
this approach. The implementor cannot reason about theeapot that proved successful across several protocols:

coherence protocol in isolation from other details, and Domain-specific language constructsuch as a
any modification she makes in the system can poten- giaie_centric control structure and continuations,

tially impact the protocol’'s correctness—a debugging simplified the protocol writing task.
nightmare. Experimentation with newer protocols is a

perilous proposition at best Automatic protocol verificationsing the Mu® sys-

tem improved system confidence and reduced testing
Teapot is a protocol writing environment that offers two  time.

significant improvements over writing ad-hoc C code.Perhaps more importantly, this paper also discusses
First, it is a domain-specific language specifically tar- '

shortcomings of the language that became apparent only

geted at writing coherence protocols. As such, it forces &hen we attempted to develop protocols that were more
protocol programmer to think about the logical structure

¢ tocol. ind dent of the oth tanal " complicated than the simple protocol examples on
of a protocol, independent ot tne other entanglements Qf;q, Teapot was originally tested. In particular, our

a system. The language features of Teapot easily eXpreé%perience indicates that improved support for multi-

the control structures commooly found in (T‘Ohen_anc%hreaded environments, for protocol actions that affect
protocols. Second, Teapot _faC|I|tates automatic Ve”f'cafnultiple blocks, for local protocol actions that might

tion of protocols because it not only translates Teap%lock, and for automated verification test strategies
protocols into_executable C cooe, bofc al_so generaleg, g further ease the job of a protocol designer.
input code for Mub, an automatic verification system Finally, the paper generalizes our experience to provide

fr_om _Stanforo [19]' Mmb_ can then be used to dete.c.tguidelines for future domain-specific languages for sys-
violations of invariants with a modest amount of Ve”f"tems software

cation time. For example, our system might report a

stylized trace of a sequence of events that would causel®e rest of the paper is organized as follows. Section 2
deadlock. A protocol can be run through a verificationProvides some basic background on cache coherence
system prior to actual execution, to detect possible errdirotocols and describes the implementation problems

caseswithouthaving to manually rewrite the protocol in generally faced by protocol programmers. Section 3
Murd's input language. introduces the language features in Teapot that address

the difficulties presented in Section 2. Section 4 presents
the case-study of LCM, and Section 5 presents the case-
tudy of xFS. Section 6 describes some related work.
Section 7 concludes the paper with implications for
Pmain-specific languages for systems software.

The Teapot work was originally undertaken to aid proto
col programmers for the Blizzard distributed share
memory system [25]. Blizzard exports a cache-coher
ence protocol programming interface to an applicatio
writer, so she can supply a coherence protocol that bes
suits the requirements of her application. Writing such
protocols in C, without domain-specific tools, turned outy coherence Protocols and Complications

to be a difficult task, fraught with problems of dead-

locks, livelocks, core dumps, and most annoyingly,n systems with caching, read operations on shared data
wrong answers. After a few initial protocols (all variantstypically cache the value after fetching it from remote
of conventional shared memory protocols) were suchodes, in the expectation that future read references will
cessfully developed using Teapot, the Blizzard team &hit” locally. Write operations on shared data must take
Wisconsin wrote several other, more complicated cohersteps—coherence actions—so readers with cached val-
ence protocols for their system. We report on one suches do not continue to see the old value indefinitely.
protocol here. Subsequently, the xFS team at UC Berkérhis section describes coherence protocols in more
ley adopted Teapot to write the coherence protocol fodetail in the context of distributed shared-memory sys-
their distributed file system. As expected, these teamtems, though the issues discussed apply equally well to
encountered several rough spots, because the originather contexts with appropriate changes in terminology.
Teapot design did not anticipate all of the requirement
of other protocols in the context of Blizzard, much les
those arising in a distributed file system context.

%hared-memory systems can be implemented using a
Spair of mechanisms: access control and communication.
Access control allows the system to declare which types
This paper describes our experiences with using Teapof accesses to particular regions of memory are permit-
to implement the coherence engines in two distinct sysed. These permissions typically include: no access
tems. In both systems, we found Teapot to be vastlfinvalid), reads only readonly, and both reads and



load (obtain readable copy)
ﬁ]validate msg (acknowledge) Readable

(@) (b)
Figure 1: Idealized protocol state machine for (a) the non-home side, and (b) the home side. Transitions are labeled with
causes and, in parentheses, actions.

writes (eadwritd. Performing an illegal access (for As an example, consider a (non-home) block that is ini-
example, writing areadonly region) causes aaccess tially in the Invalid state. A processor reading any
fault and invokes the coherence protocol. Communicaaddress within the block causes an access fault, at which
tion allows a system to exchange control informationtime the protocol is invoked. Its action is to send a
and data between processors. The coherence protogelquest to the home node for a readable copy and await a
comes into play at an access fault. It must obtain a copgsponse. Assuming no outstanding writable copy exists
of the referenced data with appropriate access permigthe Idle state in Figure 1), the home responds with a
sions and satisfy the access. Many protocols designater@adable copy and changes its statRé¢adSharedThe
home nodethat coordinates accesses to a particulaarrival of this message on the non-home side causes the
range of memory addresses. The faulting process@rotocol to copy the incoming data to memory and
sends a request to the home node for a copy of thehange the block’s state Readablgand access permis-
required data, which responds with the data after updasions are changed fromvalid to readonly).

ing its bookkeeping information. After receiving the
response, the faulting processor typically caches th
data so subsequent accesses will succeed without co
munication.

Unfortunately, specifying protocols is much more diffi-
Eult than the simple three-state diagrams in Figure 1
Would lead one to believe. The main difficulty is that,
although the transitions showappear to be atomic,
Jpany state changes in response to protocol events can-

A common technique for ensuring coherence allows b ; 4 atomicallv. Consider the t i
most a single writer or multiple readers for any block of'ot b€ performed atomically. L-onsiger the transition
m the Exclusive state to theReadSharedstate in

memory at a time. When the home receives a request fQr : .
igure 1. Conceptually, when a request arrives in the

a writable copy of the block, it asks processors currentl)é lusivestate f dabl t 2 block. th N
holding a readable copy to invalidate it, i.e. allow no fur- xclusivestate for a readable copy ot a block, the proto-
| must retrieve the exclusive copy from the previous

ther accesses. A writable copy can then be sent to e

requestor. A cache coherence protocol specifies th%wn(;ar an(_j pal_sds Lt along to ;[r:e trhequestor.t ;h € kp;]otl?jcol
actions taken by the home and caching processors nas an invaidation request fo the current block nolder,

&%j must await a response before proceeding. But, to
gvoid deadlock, protocol actions must run to completion
and terminate. This requires that an intermediate state,
cl-To-ReadShare(Excl-RSfor short), be introduced.
ter sending the invalidation request, the protocol
oves to thdexcl-RSstate and relinquishes the proces-
a%ﬁ' When the invalidation acknowledgment arrives in

actions are commonly captured by finite state machine
with transitions between protocskatesoccurring in

response to faults and messages. Figure 1 shows sam
state machines describing protocol actions for a cachin
processor and the corresponding home side. Both t
home and caching processors associate a state with e
memory block. At an access fault or upon a messag
arrival, the protocol engine consults the appropriat
block’s state to determine the correct action. Typica
protocol actions involve sending messages and updatir{
the state, access permissions, and contents of a memo
block. Home nodes also maintaind@&ectory, a per- Introducing intermediate states increases the number of
block data structure that usually keeps track of whictstates a programmer has to think about. Furthermore,
processors have a readable copy, or which processor hakile in an intermediate state, messages other than the
an exclusive copy. expected reply can arrive. For example, before the inval-

IS intermediate state, the processor sends a response to
e original requestor and completes the transition to
eadSharedA revised state diagram incorporating the
quired intermediate states is shown in Figure 2 (which
ystill far removed from a realistic protocol).



correct action. Without machine assistance, anticipating
all possible network reorderings is a very difficult task!

The traditional method of programming coherence state
machines usually resorts to ad-hoc techniques: unex-
pected messages may be queued, they may be negatively
acknowledged (nack’ed), or their presence may be
marked by a “flag” variable. Additional flag variables
are often used to track the out-of-order arrival of mes-
sages as well. These techniques invite protocol bugs.
Queuing can easily lead to deadlocks; similarly,
nack’ing can lead to livelocks or deadlocks. Flag vari-
ables are essentially extra protocol state—failing to
update or test a flag at all the right places again leads to
correctness problems. Moreover, protocols implemented
in this style are very difficult to understand and modify.

Figure 2: State machine (home side) with intermediate
states necessary to avoid synchronous communication.

idation response arrives in thexcl-RSstate, another . . .
. i .. The case studies presented in sections 4 and 5 show that
request for an exclusive copy could arrive from a differ- S ; . ) L
. L all these complications were serious issues in the initial
ent processor. A protocol designer must anticipate the . ;
. - State machine versions of those protocols. In the next
arrival of such unsolicited messages and handle them in_~_: o .
. . section, we highlight the features of Teapot that aid a
an appropriate manner. It may be tempting to not takerotocol roarammer
such messages out of the network while they are ndt prog '
welcome: this, however, is not an option on most sys-
tems, because messages must constantly be draingd
Teapot

from the network to avoid deadlock in the network fab-

ric [27]. The Teapot language resembles Pascal with extensions
Message reordering in the network adds to the woes offar protocol programming support, but fewer built-in
protocol programmer. For example, processors mayypes. Space does not permit a complete description of
appear to request copies of cache blocks which thethe language; the reader is referred to the original paper
already have, if a read request message overtakes Bfj for further language details. The Teapot compiler
invalidation acknowledgment message in the networkcan generate executable C code from a protocol specifi-
The protocol might have to await delayed messagesation, and can also translate it to code that can be fed to
before deciphering the situation and determining théhe Muid® verification system [10].

1. State Stache.Home_Exclusive{}

2. Begin

3 Message GET_RO_REQ(id:ID; Var info:INFO; src: NODE)

4. Var

5. itor : SHARER_LIST_ITOR;

6 j : NODE;

7 Begin

8 Send(GetOwner(info), PUT_DATA_REQ, id);

9. IncSharer(info, src);

10. Suspend (L, SetState(info, Home_Excl_To_Sh{L}));

11. -- send out a readable copy to all nodes that want a copy
12. -- (more nodes might want a copy while you were waiting)
13. Init(itor, info, NumSharers(info));

14. While (Next(itor, j)) Do

15. SendData(j, GET_RO_RESP, id, TPPI_BIk_No_Tag_Change);
16. End,;

17. End,;

18. -- other messages ...

19. Message DEFAULT(id:ID; Var info: INFO; src: NODE)

20. Begin

21. Error(“Invalid message %s to Home_Exclusive”,Msg_To_Str(MessageTag));
22. End,;

23. End;

Figure 3: Teapot example



1. State Stache.Home_Excl_To_Sh{C:CONT}

2. Begin

3 Message PUT_DATA_RESP (id: ID; Var info: INFO; src: NODE)
4. Begin

5. RecvData(id, TPPI_BIk_Validate_RW, TPPI_BIk_Downgrade_RO);
6 SetState(info, Home_RS{});

7 Resume(C);

8. End,;

9. -- other messages

10. Message DEFAULT (id: ID; Var info: INFO; src: NODE)

11. Begin

12. Enqueue(MessageTag, id, info, src);

13. End,;

14. End;

Figure 4: Teapot example (cont'd)

3.1 Language Features of requesters (see Figure 3 again, lines 13-16). Continu-
AT . ¢ ¢ ] h ations in Teapot let us avoid having to manually decom-
eapot program consists of a set of states; eac Stag%se a handler into atomically executable pieces and

specifies a set of message types and the actions to gquencing them. Further advantages oSingpend/
taken on receipt of each message, should it arrive for B

cache block in that state. We exhibit some of the features
of Teapot using an example. The Teapot code ifeapot provides a mechanism for handling unexpected
Figure 3 implements coherence actions for a block irmessages by queuing. It does not solve the problem of
the Exclusivestate at the home node. Suppose the blocReadlocks directly, but facilitates deadlock detection via
receives the request mess&eT RO_REQusking for  Verification. In lines 10-13 of Figure 4, all messages not

a readable copy. The action code for this message firgirectly handledEFAULT are queued for later execu-
sends #UT_DATA_REQ@nessage to the current owner tion—these messages are appropriately dispatched once
(note that the variablieafo is a pointer to the directory the system moves out of an intermediati@niien)

data structure). Next, it executeSaspend statement.  State™ Teapot relies on a small amount of system-spe-

A Suspend statement is much like a “call-with-cur- cific dispatch code to deliver incoming network mes-
rent-continuation” of functional programming lan- sages and previously queued messages, based on a state
guages. Syntactically, it takes a program labg) &nd  lookup and the message tag. Note that DiEAULT

an intermediate statéHome_Excl_To_Sh ) which it ~messages in Figure 3 flag an error because these mes-
visits “in transition”. The second labdl,} , specifies Sages cannot occur in a correctly functioning system.
where execution should resume upon return, and can

differ from the first argument. Operational8spend e

saves the environmer%[ at the poliont it appegfs 51 a handl’égr'2 Verification Support

body and effectively puts the handler to sleep. ThisTeapot makes no attempt to verify protocols, but trans-
mechanism is used to provide a blocking primitivelates protocols into code for the Miautomatic verifi-
inside a handler, which physically needs to relinquiskcation system [10]. M@ explores all possible protocol
the processor every time it is invoked actions by effectively simulating streams of shared-

What happens in the intermediate state? Figure 4 sho/R8MOYY references, and ensuring that no system-wide
the Teapot code executed wherPHT DATA RESP invariants are violated. If unanticipated messages arrive
message arrives. The handler receives the up-to-dafé deadlock occurs, Teapot transforms the derror
content of the cache block from the network, sets itd09 INto @ stylized diagram of the protocol events lead-
own state tiReadSharedand executesResume state- N9 10 the violation.

ment. TheResume is the equivalent of a “throw” for a Three basic components are required for verification: A
“call-with-current-continuation” of functional program- Murd description of the protocol under test, Muzode
ming. Syntactically, it takes a continuation parameteimplementing all types and subroutines used by the pro-
(C) as an argument. (Note from line 1 in Figure 4 thatocol, and aulesetdescribing legal sequences of proto-
the continuation variabl€ is a state parameter and is acol events. While only the first component is generated
part of the environment visible to all the message hanby Teapot, examples of the remaining pieces are
dlers in that state.) Operationally, it restarts a suspendeflcluded with Teapot and can often be reused without
handler immediately after th&uspend statement modification. User intervention is required only if new
whose label is captured @ Thus, after thd&Resume
statementGET_RO_RESPnessages are sent to the set

esume primitives are brought out in the case studies.

1. Users must declare which states are transient.



types or routines are added, or the protocol being develt took several months for a single graduate student,
oped only handles stylized streams of protocol eventsvorking full-time, to complete the basic protocol modi-
The latter scenario is described in more detail in the folfications, after which a debugging phase began. It took
lowing section. roughly as long to debug the modified protocol as it did
to write it in the first place, since the protocol was rid-
dled with subtle timing-related bugs, the result of the
4 LCM unpredictable effects of our modifications. A suite of
applications was used to debug the protocol—each

The L Iv Coh tM LCM h _application exercising a new set of path-specific bugs in
@ Loosely Coherent Memory ( ) coherence pro LCM which had to be isolated, understood, and

tocol [16] provides sequentially-consistent distributed . : P
shared memory as a default, and is similar in mamr/epalred. It often took days to identify infrequently-

respects to protocols like DASH [18], Alewife [1], and oceurring bugs, and the resulting “fixes” many times

Stache [24]. The key difference is that LCM allows glo_lntrqduced new bugs..I.Even after th? LCM _prptocol had

bal memory to become temporarily inconsistent unde";1ch|eved relative stability, user confidence in its correct-

program control. During such phases, a given data iterfjeSS Was low.

may intentionally have different values on different pro-

Cessors. This mal_<es management of shared dqta mMAE2 Teapot and LCM

difficult. Memory is returned to a globally-consistent

state by merging distinct versions of each data item anfin early version of the Teapot system was ready for

ensuring that all processors see the new values. Thigsting as debugging of the hand-written LCM protocol

requires coordination among all processors in the sysvas being completed, and LCM was reimplemented

tem, and mixes computation (merge functions) with trawith Teapot to more thoroughly evaluate the system.

ditional protocol actions. The Teapot environment was a vast improvement over
the hand-coded approach. We found two language fea-

LCM implements the semantics of the data-parallel protures of Teapot particularly useful: the “state-centric”

gramming language C** [17] faster than conservative programming model, and the use of continuations to

compiler-implemented approaches. C** semantics speallow blocking operations in handler code.

ify that parallel function invocations on aggregate datal_ea ot enforces a protocol proaramming stvle that is
do not interact. LCM enforces these semantics by keep- p b prog 9 sty

) P . . easier to read and debug than that we used in C. Teapot
ing shared-data modifications private until all parallel . . ;
. . code is organized by protocol states, each of which con-
invocations complete, then returns the system to a con-. . oL

; . tains a list of handlers to be run for messages arriving in
sistent state. Processes can still collaborate to produ

. . . . : . _That state. This contrasts with the handwritten protocol’s
values via a rich set of reduction operations (including,

r . message-centric” approach, where large handlers were
user-specified reductions), but the results of these reduc- 9 bp g

. . . . “written for each message type and selected different
tions are not available until after all parallel function _ . ;

. . . action code to run based on the protocol’s state. Orga-
invocations finish.

nizing the protocol by states makes it easier to express
and implement for several reasons. First, each handler is
now a smaller unit of code, since a self-contained han-
dler is written for each combination of message and

Our first LCM implementation effort was undertaken block state. Second, grouping handle_rs by state instead
of message type keeps related information close

without the support of any formal methods or tools. The[ gether: A state’s behavior can be understood by scan-
C-code source of the Stache (ordinary shared memor . : X
ing a set of consecutive handlers, instead of looking

protocol was available to us, so we used it as a Startlnt%rough the entire protocol. Of course, in retrospect, we

point, adding extra LCM functionality as required. In . o
. . could have adopted a state-centric organization in the
retrospect, starting with Stache was an unfortunate decj-

sion. Stache, while a relatively simple protocol design andwritten protocol, but the C language did not make
o ' y e p 9Mihe benefits of doing so immediately obvious while the
is still a large and complex piece of software. AddlngTea ot system enforced a disciplined programming style
LCM functionality required both that the behavior of POt Sy P prog 9

existing protocol states be altered and that new states ltaheat utilized the better design choice.

added—a difficult proposition for the unaided program-Teapot’s continuations also made an enormous improve-
mer. Small changes in existing states (and the additioment in handler legibility. Even for handlers using a sin-
of a new states) often had far-reaching effects that wergle Suspend statement, keeping the code on either side
difficult to fully anticipate. of the call in the same handler dramatically increased

4.1 Initial Implementation



1. State LCM.Home_Excl {}

2 ... other messages

3 Message GET_RO_REQ (id: ID; Var info: INFO; src: NODE)

4 Begin

5. [-]

6 If (SameNode(src, GetOwner(info))) Then

7 Suspend (L, SetState(info, Home_Excl_To_ldle{L}));
8 If (SameState(GetState(info), Home_ldle{})) Then

9. SetState(info, Home_RS{});

10. AccChg(id, TPPI_BIk_Downgrade_RO);

11. Else

12. If (InSharers(info, src)) Then

13. Suspend (L2, SetState(info, Home_Await_ PUT_ACCUM{L2}));
14. Endif;

15. Endif;

16. [..]

17. Else

18. Send(GetOwner(info), PUT_DATA_REQ), id);

19. Suspend (L1, SetState(info, Home_Excl_To_Sh{L1}));
20. IncSharer(info, src);

21. [..]

22. Endif;

23. [..]

24. End;

Figure 5: Teapot handler code containing multiflespend statements

readability. Some handlers used as many as Buee copy of the block home. This data can be used by the
pend statements, and therefore had to be split into mulhome to respond to requests for the block from other
tiple code fragments in the handwritten version.processors. The block is returned home vitkUd_MOD
Figure 5 shows part of an LCM handler with threemessage when the cache side is finished. The second
Suspend statements. Without continuations, this codeLCM madification then faults and requests the block
would have been split into at least four distinct handlerack from the homéMessages have been reordered in
making it much harder to write and debug. Teapot alsthe network such that the first to appear at the home is
allows dynamic nesting of continuations, a feature usethe request for data. The home detects the reordering,
numerous times during the specification of LCM. Forsince it knows the requestor alreduys a copy of the
example, the firsBuspend in Figure 5 moves to the block. The correct action in this case is to await the
Home_Excl_To_ldle  state, where other handlers SHARE_DATAmessage, then satisfy the request. The
(not shown) may suspend again to await delayed mesiome leaves the block in théiome_LCMstate to denote
sages. the fact that at least one processor has created its own

) ) version of the block.
Even with the cleaner design, we uncovered a total of 25

errors using automatic verification. (Each error wagpjtially, we thought the arrival of thé ET_RO_RE@
fixed as soon as it was detected and understood, and tﬂ'f’eHome_Excl state always implied the_message reor-
verification step was repeated.) Many of these were Sujering scenario in Figure 6a, and both the hand-written
tle bugs that were unlikely to occur often in practice, bul,ersion of LCM and the first Teapot version encoded
were all the more dangerous as a result. Figure 6 illugyjs assumption. Unfortunately, in the more complicated
trates an LCM bug that is representative of those found;se shown in Figure 6b, this caused the protocol to
through verification. Both diagrams show messagesespond incorrectly. The home should instead await the
being exchanged between a pair of processors, with time T pATA RESP message, transition to the
increasing from top to bottom. In each case, a precedindgme Idle state, and satisfy the request. Correcting
exchange of messages (not shown) has left the cachigs protocol is straightforward once the two scenarios
(non-home) side with the exclusive copy of a givenpaye heen identified, but it is unreasonable to expect an
coherence block. unaided programmer to have foreseen such a bug, due to
Mhe complexity of the cases involved. Enumerating all

In Figure 6a, the caching processor performs an LC _ .
J gp P chains of protocol events and ensuring that they are

modification of the block, creating a version that is

inconsistent with respect to other copies in the system. 1. This scenario arises frequently in applications where a given

However, since the cache side held the exclusive copy at processor handles several of a set of parallel tasks consecu-
S e e tively.

the time it performed the modification, it first sends a y




[Home_Excl] [Cache_RW]
LCM Modify

Home_Excl] [Cache_RW] LCM Modify Done w/Mod

LCM Modify Done w/Mod Write Fault

Done w/Mod [Home_ idle]

LCM Modify [Home._Excl]

[Cache_RW]

Read Fault

@) (b)
Figure 6: Two different scenarios in which GET_RO_REQurrives in stattHome_Exclusive . The appropriate
response to the message is different in each case.

properly handled is a job much better handled througlthis code is outside the scope of the Teapot protocol
verification. specification and therefore cannot be verified. The

Using Teapot, the new version of the LCM protocol Wasworkaround in Teapot was to structure the #uuleset

written, verified, and running applications in two weeks' SO that, during a reconciliation, it invoked the handlers

time. Only one bug was uncovered during field testinc_{or each glg]Ck n thel “S.i' Tr;ltshrestrluctutnngdstlgn|f|]c(:antlt);]
of the new protocol, and it occurred in a simple suppor nereased the compiexity of the ruleset and theretore the

routine that was intentionallyot simulatedt Also, chances that it could contain an error.

because of Teapot, we were able to implement easilgven without operations on sets of blocks, the ruleset
three variants of LCM: one that eagerly sends updates for LCM was already much more complicated than
consumers at the end of an LCM phase, another th#tose for our previous protocols. Unlike Stache, where
manages extra, distributed copies of some data as a pamny arbitrary stream of interleaved loads and stores to
formance optimization, and a version that incorporateshared memory must be handled, LCM only properly
both of these features. handles stylized sequences of loads and stores. There
are distinct phases that all processors must agree to ini-
. tiate, in which only certain access patterns are legal.
4.3 Teapot Shortcomings Encoding this into a ruleset was a lengthy, complicated,
While Teapot made it significantly easier to get LCMand potentially error-prone process, and represented a
written and working, it fell short of our needs in severalsignificant fraction of the work required to implement
respects. One significant obstacle is Teapot's inability t&CM. It would be preferable to generate such rulesets
perform actions acrosssatof blocks. A message han- automatically from a high-level description of a proto-
dler, for example, can only update the state of the blockol's memory model, but we currently are unaware of
to which a message is directed. In LCM, action mus&ny techniques for doing so.

periodically bg taken across a collection of blocks. FORpa |ast shortcoming was relatively minor. Teapot cur-
example, during a merge phase, a processor relimns rgnily does not allow the testing of a pair of expressions
modified blocks to their homes, where they are comyo gquality. There were several places in the protocol
bined with copies from other processors. An event hanyhere pairs of states or node identifiers needed to be
dler was written to carry out this flushing operation for 8o mnared, and an external routine had to be written to
single block, but the handler must somehow be invokedla torm these tests. Future releases of Teapot should
for each block retuned. As an application runs, thgonsider extending the language such that simple com-

LCM protocol constructs a list of modified blocks that y5isons can be done without resorting to external pro-
require flushing at the next reconciliation. This list isgqyres.

traversed when the reconciliation phase begins, and the
appropriate event handler invoked on each block. Addi-
tional C code was written to traverse the list and invok&s xFS

handlers in the executable version of the protocol, but
XFS, a network file system described in several previous

papers [2,9], is designed to eliminate all centralized bot-

1. The routine was deemed too simple to be hiding any bugs.



[ } [ } metadata manager is tracking locations of file data
Manager Manager . .
blocks and forwarding requests from clients to the

[ Client } [ Client } [ Client } [Manage,} appropriate destinations. Its functionality is similar to
the directory manager in traditional DSM systems.

ﬁ ﬁ ﬁ ﬁ Finally, the storage servers collectively provide the illu-

sion of a striped network disk.

XFS employs a directory-based invalidate cache coher-
« ence protocol. This protocol, while similar to those seen
in traditional DSM systems, exhibits four important dif-
/ ‘ ‘ \ ferences that prevent xFS from using previously devel-
% E=——=¢ E—=——=% E——F  oped protocols and that complicate the design of xFS.
Storage Storage Storage Storage (1) xFS separates de_lta management from_ data storage.
[ Server } [ Server } [ Server } [ Server } Although this separation allows better locality and more
flexible configuration, it splits atomic operations into
different phases that are more prone to races and dead-
locks. (2) xFS manages more storage levels than tradi-
tional DSM systems. For example, it must maintain the
coherence of the kernel caches, write-ahead logs, and
tlenecks and efficiently use all resources in a network odecondary storage. (3) xFS must maintain reliable data
workstations. One of the most important features of XF%torage in the face of node failures, requiring protoco|
is its separation of data storage from data managemenfodifications that do not apply to DSM systems. For
This separation, while offering superior performanceexample, a client must write its dirty data to storage
and scalability compared to traditional file systems, als@ervers before it can forward it to another client. (4) The
requires a more sophisticated cache coherence protoc@ks client is heavily multi-threaded and it includes
In addition, other aspects of the cluster file system envipotentially blocking calls into the operating system,

ronment—such as multi-level storage and reliabilityintroducing more chances for synchronization errors not
constraints—further complicate the system compared tgeen in DSM systems.

more traditional DSM coherence protocols. Due to these
aspects of the design, we found it difficult to implement )
a correct protocol with traditional methods. The use 0b.2 Implementation Challenges

T h resul in clearer raction level . . .
. eapot has resu ted' clearer abstraction le ' SfThe XFS design and environment make the implementa-
increased system confidence, and reduced complexity

the implementation of cache coherence in XFS. At th ﬁ]on and testing of cache coherence in xFS more difficult

same time, there are significant differences between Xl%an in most systems. The usual problems of prolifera-

A 2 . . Hon of intermediate states and subtle race conditions
and the original applications which Teapot was designe X
. Wyere even worse for XFS, as described below.
to support. These differences have revealed some short-
comings of Teapot.

Figure 7: A sample xFS configuration. Clients,
managers, and storage servers provide a global
memory cache, a distributed metadata manager, and a
striped network disk respectively.

5.2.1 Unexpected Messages and Network
Reordering

5.1 Caching in xFS .

An xFS node can receive messages that cannot be pro-
The three main components of an XFS system are theessed in its current state. This is also a problem in most
clients the managers and thestorage servetsUnder DSM coherence systems, but it is particularly pervasive
the xFS architecture, any machine can be responsible for xFS because xFS separates data storage and control,
caching, managing, or storing any piece of data or metahereby making it difficult to serialize data transfer mes-
data by instantiating one or more of these subsystemsages and control messages with one another: data trans-
Figure 7 shows a sample xXFS installation. fer messages pass between clients and storage servers or

between clients and clients, while control messages pass

.E ach of the three subsystems implements a SpeCIf%etween clients and managers or storage servers and
interface. A client accepts file system requests fronﬁ] anagers

users, sends data to storage servers on writes, forwards

reads to managers on cache misses, and receives replidse XFS protocol also suffers from the message reorder-
from storage servers or other clients. It also answerigg problems mentioned in Section 2. Further com-
cooperative cache forwarding requests from the marpounding the problem, this protocol often allows
ager by sending data to other clients. The job of thenultiple outstanding messages in the network to maxi-
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Figure 8: A sample deadlock disc(oa\)/ered by the protocol verifier. The three clients are Iabe(léd with “A”, “B”, and “C”.
The manager is labeled with “M”. In Figure (a), arrows denote the directions of the messages. The numbers denote the
logical times at which messages are sent and/or received. Shown to the left of each host is a message queue, which
holds the requests that are waiting to be processed. Messages that are not queued are processed immediately. In Figure
(b), arrows denote the wait-for relationship, and the presence of a cycle indicates a deadlock.

mize performance. For example, an XFS manager doegher DSM protocols, we have found it non-trivial to
not wait until a client completes a forwarding request tareuse or modify existing codes, due to their ties to their
continue, so a subsequent invalidate message can poterative environments.

tially reach the same client out of order. Although such

ordering can be enforced at the communication layer

[5], recent research has argued that this ordering is be§t3 Teapot and xXFS

expressed with application state [8]. Furthermore, evelafter several unsuccessful attempts at completing the
if the network ensured in-order messages betweegyche coherence protocol using traditional development
nodes, the causes mentioned in the previous paragraghbthods, we decided to rewrite the system with Teapot.
would still re.quire XFS to explicitly handle unexpected g, experience with this domain specific language has
message arrivals. been positive. In particular, the close ties between Tea-
pot and the Mup verification system have provided us
5.2.2 Software Development Complexity with an effective testing tool for attacking the problem
. . of unexpected event ordering; many of the bugs we
Managing the large number of states needed to ImpI%und and corrected would have been extremely difficult

_mer_lt_ the xFS state machine was a challenge. AIthouglPo isolate through field testing alone. Furthermore, sev-
intuitively, each block can be in one of only four

. . ) eral aspects of the Teapot language have simplified the
states—Read SharedPrivate Clean Private Dirty, or P b guag P

Invalid—the system must, in fact, use various transientenglneerlng complexity in our system.
states to mark progress during communication with th . .

operating system and the network. Dealing with unex(-?‘:"&1 Testing for Unexpected Event Orderings
pected or out of order messages, handling the separati@igure 8 shows an example of a bug in an early version
between data storage and data management, maintainiofithe xFS protocol that would have been difficult to iso-
multiple levels of storage hierarchy, and ordering eventate via field testing, but which Mdreasily discovered.

to ensure reliable data storage increases the number Iof this version of the protocol, we saw no need for the
transient states needed to handle xFS events. Evenn@anager to maintain sequence numbers for its outgoing
simplified view of the xFS coherence engine containgnessages. If a receiver of a manager request was not
twenty-two states. One needs a systematic approagbady to act upon it, it simply queued it for later process-
when dealing with such a large state space. ing. Mur® found the following deadlock bug:

As we were implementing the protocol, it became cleainitially, client B is the sole cacher of a clean block. (1)
that the C language was too general. Despite our be€lient C sends a read request to the manager. (2) The
intentions, aspects of implementations that were nomanager forwards the request to client B. To indicate
related to protocol specification were mixed in. Thethat Client B should send the data to Client C via coop-
result was less modular, harder to debug, and harder &vative caching, the manager also updates its state to
maintain. Although the xFS protocol is similar to manyindicate that both client B and C are caching the data.



(3) Meanwhile, client A sends a write request to theTeapot that were not apparent in its original application
manager. (4) The manager sends a revoke request to adiemain.

ent B which arnves at (_:Iler_1t B_before the previous for'The first shortcoming is the lack of support for multi-
warding message, invalidating its data. (5) The manag reading. An xFS client is heavily multithreaded to
sends a second revoke request to client C, which client 9. y

queues, because its requested data has not arrived. port concurrent users and react to concurrgnt
equests from the network, but the coherence engine

Client B sends a write request to the manager, which the nerated by Teapot has a large amount of global state

X . e
manager queues, because its previously sent revolls 1o A0 X .
message has not been acknowledged. (7) The delayg(gd is difficult to make thread-safe. Transforming the

: . . ’resulting Teapot coherence engine into a monitor was
forward message from step 2 finally arrives, which cli-
uafuccessful, as subtle thread deadlocks occurred when
[

entB queues, because its rquest o the manager hasa erent xFS threads enter the coherence engine and
been satisfied. Now we have finally reached a deadlock:

. ; " other xFS modules in different orders.

client A is waiting for the manager to complete the

revoke operations; the manager is waiting for client C torhe second shortcoming concerns blocking operations
acknowledge the revoke request; client C is waiting foilon local nodes, which occur frequently in xFS coher-
client B to supply the desired data; and client B is waitence handlers. For example, when an xFS client needs to
ing for the manager to process its write request. Onivalidate a cached file data block, it makes a system
solution is to use sequence numbers to order the outgoall to invalidate the data cached in the kernel. This sys-
ing messages for a particular block from the manager, sem call might block, waiting for some other event that
the sequence of events seen by any client is consisterdquires the attention of the coherence engine. Although

with the manager’s view. Teapot provides good support for blocking operations
waiting for remote messages, using the same mecha-

5.3.2 Reduced Software Development nism to handle local blocking operations is tedious. In

Complexity the above example, one must split the synchronous sys-

tem call into asynchronous phases, invent a new node to
Several aspects of the Teapot language simplified thepresent the kernel, invent new states for the kernel
engineering of xFS. Teapot's continuations significantlynode, invent new messages the kernel must accept and
reduced the number of states needed by XFS’s protocgknerate, and write to tie all these elements together.
by combining each set of similar transient states into &etter support for local blocking operations would have

single continuation state. By being more restrictive assignificantly eased the xFS protocol implementation.
well as more stylized than C, Teapot eliminated a source ) ) . N
of programming errors. The domain-specific Ianguagérhe third shortcoming concerns users’ inability to add

also forced the decoupling of the coherence algorithrfl€W arguments to Teapot handlers. We were faced with
from other details of the system. This resulted in mordN€ unpleasant dilemma of either modifying Teapot
modular protocol code that is well isolated from the res{!Self or simulating additional arguments via global vari-
of the file system. Finally, the domain-specific languagé®!es- The former suggests a limitation of the model; the
encouraged software reuse by isolating features that af@t€r work around is bad software engineering and, in
common to the class of problems they are designed farticular, it make; the multlthreadmg problem worse. A
solve. In our case, we were able to borrow many suppofioT@ Severe restriction is Teapot's lack of support for

structures, such as message queues and state tapfierations that affect blocks other than the block on
from other protocols supplied with the Teapot releaseWhich the current message arrives. The problem arises,

further reducing complexity and chances of errors. for example, when servicing the read fault of one block
by an xFS client requires the eviction of a different

block. This is similar to the problem encountered by
5.4 Teapot Shortcomings LCM during its merging phase.

Teapot was designed and is best suited for DSM envi-

ronments in which the primitives available to protocolg Related Work

handler writers are limited and simple. The xFS coher-

ence engine, on the other hand, must interact with othé@the Teapot work most closely resembles the PCS sys-
components of the system such as the kernel and tihem by Uehara et al. at the University of Tokyo [26].
active message subsystem via more powerful operatiofighey described a framework for writing coherence pro-
like system calls and thread synchronizations. This diftocols for distributed file system caching. Unlike Teapot,
ference in terms of the power and expressiveness of hathiey use an interpreted language, thus compromising
dler primitives has revealed some shortcomings oéfficiency. Like Teapot, they write protocol handlers



with blocking primitives and transform the program into The design and implementation of domain-specific lan-
a message-passing style. Our work differs in severajuages has spurred considerable interest in the systems
aspects. Teapot's continuation semantic model is mongrogramming community. Recent work includes
general than PCS’s, which is a message-driven interpréastruction-set description languages [3,23], a specifica-
tation of a protocol specification. PCS’s applicationtion language for automatically generating network
domain is less sensitive to protocol code efficiency, spacket filters [22], and compiler optimizations for inter-
they do not explore optimizations. Finally, we exploit face description languages [11].

verification technology by automatically generating an

input specification for the Mdr verification system.

Synchronous programming  languages, such Co.nlclusmn: Implications for Domain-
ESTEREL [4] and the Statecharts formalism [14], areSP€Cific Languages for Systems Software

usef_ul f_or describing r_eact|ve systems an_d real—tlm(?t would be gratuitous to reiterate the successes and
applications. The most important commonality between

: . ﬁhortcomings of Teapot. Instead, we present some gen-
these programming languages and Teapot is that they all _ . LY : .
: . - eralized insight gained from using Teapot. Although our
are ways of expressing complicated fmne—stateex erience is with one domain-specific language, we
machines more intuitively than feat automaton. They P P guage,

: ) hope that our observations will be useful for designers
all support some mechanism for composing smaller

X X - of oth in- ific | icularly f -
simpler state machines at the language level. A compil Of other domain-specific languages, particularly for sys

r
; o Yems software.
then converts this composition into a flat automaton,

which the programmer never has to deal with directly.

ESTEREL supports decomposition of a larger state. 1 How big to make the language?

machine into smaller, concurrently-running state

machines that communicate synchronously. Statecharf§" important consideration when designing a domain-
support the notions of depth and orthogonality to buildsPecific language is: how general should the language
large state machines out of smaller ones. Teapot maRe€? Teapot leans heavily to a minimal language and
ages the cross-product interaction (and the resultin§e|ies on externally-written routines. For example, it has
state-space bloat) ekplicit protocol states and pending t0 call a functiorSameNodeto compare two values of
events by factoring the pending events into statefle typeNODEbecause we could not decide how far, if
implicit in the continuations stack. Teapot sharest all, we wanted to support equality on opaque types in

another feature with ESTEREL and Statecharts in it$he language. Another example is whether procedure
support for automatic verification. calls should be a part of the language? If so, are there

_ ) any restrictions to be observed in the code for the proce-
Teapot differs from synchronous languages in severgy ,;as? For example, Teapot does not alBwspend
respects. It does not have a notion of time, so it is N} qiqe called procedtjres

suitable for programming real-time applications. The

notion of concurrency in synchronous languages is alsblore comprehensive languages have the advantage that
different from that in Teapot. In synchronous languagedess code needs to be written in external routines. How-
logical concurrency of state machines is convenient fogver, a larger language is harder to learn, harder to
expressing interacting sub-components; such concuimplement fully, and could be harder to optimize. While
rency is later compiled away to obtain a single-threagmallness has virtues, a designer should not go over-
program. A Teapot program logically specifies only oneboard and apply senseless restrictions. In Teapot, for
state machine. The need for concurrency arises becaugxample, most users were unhappy about the fixed set of
several such programs are required to run on the sanaguments that appeared as handler parameters.
processing resource—they have to interleave their ex

%Capturing the commonly-occurring programming sce-
cution (essentially as coroutines). P g y g prog g

narios is an important role of domain-specific lan-
Wing et al. [28] present an eloquent case for usinguages. Teapot, for example, incorporates carefully
model checking technology with complex software sys-designed abstractions for waiting for asynchronous mes-
tems, such as a distributed file system coherence proteages. However, these abstractions were less effective at
cols. We also use model checking technology, but oucapturing the scenario of waiting for asynchronous
primary focus is on a language for writing coherencesventsin general. This kind of waiting in XFS had to be
protocols, and on deriving executable code as well as theast into the waiting-for-messages idiom using extra
verification system input from a single source. Theymessages. In hindsight, the language could have been
write the input to the model checker separately frondesigned to support asynchronous events, with messages
their code, which introduces the possibility of errors.  as a special case of events.



For problem domains where it makes sense, it is imperattention to thread support. Even when the language
tive to think about automatic verification from the very does not currently support threads, if it is successful,
beginning. In Teapot, for example, we maintained asooner or later users will want multithreading support.
clear distinction between opaque types and their implefhe DSL designer, due to her unique knowledge of the
mentation. In fact, the language has no mechanism taternals, should be prepared to provide recommenda-
describe the implementation of opaque types. This watsons, if not a full implementation, of thread support.
done so the verification system and C code could pro-
vide an implementation suitable for their purpose, rathef he first observation from our experience is that thread
than providing a common base implementation whichsupport cannot be treated as an afterthought; instead it
may be poor for both purposes. An example of such amust be an integral part of the early language design.
abstract type is a list of sharers, which is implementedVhen we attempted to make Teapot thread-safe as an
using low-level bit manipulation in C, but using an arrayadd-on, we quickly discovered that global state made
of enumerated type 0..1 in Mbr The cost of this this an error-prone process. Even though we only intro-
approach is that a programmer (not compiler writer)duced a small number of coarse grain locks, they fre-
must supply the implementations, which, fortunately,quently led to subtle synchronization problems because
are reusable. these locks were not exposed at the interface level. They
broke abstractions and could easily lead to deadlocks.
o The second observation concerns the different alterna-
7.2 Compiler issues tives that can enable a module written in a domain-spe-

Ideally, language users should only need to know th&ific language to interact with othgr muItithrea_ded
language definition, not the details of the |anguagé:omponents. We have found that a viable alternative to

implementation. Even popular general-purpose |anmaking Teapot thread-safe is to turn the generated code

guages fall short of this ideal by great distances, at leaf{tC @ Single threadeevent loof21]. Instead of allow-
for systems software. We have three observations in th{89 Multiple threads to execute concurrently in the cache
regard. First, a language’s storage allocation po"q;:oherence state machine, these threads interact with the

should be made clear—programmers generally like t§ingle thread of the state machine via events. This
know where in memory particular variables live and@PProach eliminates unnecessary thread synchroniza-
what their lifetime is. In Teapot, the storage for statdions inside the state machine.

parameters was not clearly defined. It was also not clear

to programmers how the memory management of con- o

tinuation records happened. In fact, in the current imple?-4 Distribution and cost of entry

mentation, unless Suspends and Resumes

dynamically match, continuation records leak, as we dd10st users are reluctant to even install a new program-
not provide garbage collection. Fortunately, most protoMing language, much less learn it. Thus, designers of

cols naturally have such balance8uspend and domain-specific languages should be prepared for con-
Resume paths. siderable hand-holding: provide a very complete set of

examples, documentation, and a distribution that builds
Second, compiler optimizations should be explicitly 5,t-of-the-box. The XFS group found that a set of com-
specified and should be under user control. Even with aﬂlete examples was a crucial aid to adopting Teapot.
the virtues of verification, a systems programmer may g yever, Teapot faced two stumbling blocks: we asked
need low-level debuggers (perhaps for reasons unrelategl, ,sers to go pick up SML/NJ compiler from Bell
to the coherence protocol). A restructuring compilen gporatories, and the Mar system from Stanford.
such as Teapot's makes the generated code harder l\t/%ny people quit at this point, even when we offered to
trace at runtime. Finally, despite these complicationsiegq them through obstacles. Perhaps clpeerscripts
we believe that aggressive optimizations are essential. g4 pick up the right software from web. Adding to
our experience, users are unwilling to compromise effiy, difficulties, all pieces of our system—SML com-
ciency for ease of programming, particularly consider-p”er’ Murd compiler, and the Teapot source—were
ing that speed is often the main purpose for distributingnstantly in flux, and it was very difficult to maintain

a computation. coherence. We see no easy way out of this situation.
From the point of view of distribution, it would be best
7.3 Threads to provide everything in portable C code. However,

without drawing upon previously distributed software,
As thread programming becomes commonplacewe could not have built Teapot in a reasonable amount
domain-specific language designers must pay closef time.



75 A spade is not a general-purpose earth- ernmental purposes notwithstanding any copyright nota-
shattering device tion thereon. The views and conclusions contained
herein are those of the authors and should not be inter-

A tool-builder should be up front about what a tool doespreted as necessarily representing the official policies or
and does not do. Despite our efforts, several peoplendorsements, either expressed or implied, of the
thought of Teapot as a verification system, which it iswright Laboratory Avionics Directorate or the U.S.
not. In fact, we got an inquiry about Teapot whichGovernment.
implied that we have discovered a more practical way of
doing model-checking than brute-force state-space
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