
The following paper was originally published in the
Proceedings of the Third USENIX Conference on Object-Oriented Technologies and Systems

Portland, Oregon, June 1997

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

A Tool for Constructing Safe Extensible C++ Systems

Christopher Small
Harvard University

A Tool for Constructing Safe Extensible C++ Systems
Christopher Small
Harvard University

Abstract

The boundary between application and system is
becoming increasingly permeable. Extensible applica-
tions, such as web browsers, database systems, and
operating systems, demonstrate the value of allowing
end-users to extend and modify the behavior of what
was formerly considered to be a static, inviolate system.
Unfortunately, flexibility often comes with a cost: sys-
tems unprotected from misbehaved end-user extensions
are fragile and prone to instability.

Object-oriented programming models are a good fit
for the development of this kind of system. An exten-
sions can be designed as a refinement of an existing
class, and loaded into a running system. In our model,
when code is downloaded into the system, it is used to
replace a virtual function on an existing C++ object.
Because our tool is source-language neutral, it can be
used to build safe extensible systems written in other
languages as well.

There are three methods commonly used to make
end-user extensions safe: restrict the extension language
(e.g., Java), interpret the extension language (e.g., Tcl),
or combine run-time checks with a trusted environment.
The third technique is the one discussed here; it offers
the twin benefits of the flexibility to implement exten-
sions in an unsafe language, such as C++, and the per-
formance of compiled code.

MiSFIT, the Minimal i386 Software Fault Isolation
Tool, can be used as the central component of a tool set
for building safe extensible systems in C++. MiSFIT
transforms C++ code, compiled by g++, into safe binary
code. Combined with a runtime support library, the
overhead of MiSFIT is an order of magnitude lower than
the overhead of interpreted Java, and permits safe exten-
sible systems to be written in C++.

1 Introduction
Software fault isolation is a technique for transforming
code written in an otherwise unsafe language (e.g., C or
C++) into safe compiled code. At transformation time,

each read, write, and jump instruction is analyzed and, if
necessary, transformed to ensure that it will not reach
outside the memory region assigned to the code.

Two other techniques for ensuring the safety of
code aresafe languages and interpreted systems. Safe
languages, such as Java and Modula-3, are designed to
make it difficult or impossible to write code that per-
forms illegal or unsafe operations. By definition, safe
languages are restricted; C++, which allows unchecked
array accesses, pointer arithmetic, and arbitrary casting,
is implicitly unsafe.

Scripting languages, such as Tcl and Perl, enforce
safety by validating each data access as it takes place.
Although great strides are being made to improve the
performance of interpreted languages through the use of
dynamic code generation [Hölze94], the performance
overhead is at least a factor of two to ten over native
compiled code.

In earlier work [Small96], we measured byte-code
interpreted Java taking ten to seventy times longer than
compiled C code performing the same task1. The over-
head of software fault isolation is an order of magnitude
less than that of interpretation, and SFI techniques have
the advantage of operating on assembler-level code, so
they can be used with any source language.

Although a small number of software fault isolation
tools exist, and the underlying techniques are not com-
plex, no tools have been made freely available on com-
modity platforms such as the x86. MiSFIT, the Minimal
i386 Software Fault Isolation Tool, developed for use
with the VINO extensible operating system, is such a
tool. VINO is a new operating system, written in C++,
designed around the idea that system policies can be
modified, and kernel components reused, by download-
ing extensions written by untrusted end-users and pro-
tected by MiSFIT.

MiSFIT includes runtime support necessary to cre-
ate asandbox in which the downloaded code will run.
Additional code (not provided as part of MiSFIT) is
needed to load the extension into the base system, verify

1. The tests run in that paper were re-run with MiSFIT for this
paper. The results are found in Section 6.1.

This work was supported by a grant from Sun Microsystems
Laboratories and by the John Parker Scholarship Fund.

that the code was processed by MiSFIT, and offer a
library of routines that can be called by the extension.

MiSFIT accepts x86 assembler code, produced by
the Gnu C++ compiler, as input, and produces fault-iso-
lated x86 assembler code as output. MiSFIT can be used
as a component of a safe code system, allowing other-
wise untrusted code to be linked to and run in the con-
text of an extensible application or system. For example,
MiSFIT can fault isolate dynamically linked extensions
to world-wide web browsers (e.g., Netscape Navigator),
kernel extensions (which are supported by a variety of
current systems, such as Solaris, NetBSD, MS-DOS and
Windows/NT), and client code linked to a database
server (e.g., the Illustra database server [Bloor96]).

Software fault isolation techniques can be imple-
mented in a compiler pass [Silver96], a filter between
the compiler and assembler (as in the case of MiSFIT),
or a binary editing tool [Wahbe93]. MiSFIT works as an
assembler-level filter for several reasons. First, not writ-
ing a binary editing tool simplified the task tremen-
dously, as there was no need to parse, disassemble,
patch, and reassemble x86 binary code. Another motiva-
tion was that it conforms to the Unix tool-oriented
approach for building systems. By not adding it to g++,
MiSFIT has a degree of compiler independence.
Although MiSFIT makes a (small) number of assump-
tions about the format of its input, it could easily be
modified to work with output from other compilers,
such as lcc or Microsoft C++.

MiSFIT takes the strategy of being platform spe-
cific and language neutral; the Java Virtual Machine is
both platform neutral and language neutral. We found
that any need we had for platform independence was
outweighed by our need for high performance and the
ability to write extensions in C++.

2 SFI Is Not Enough
MiSFIT is not a complete solution to the problem of
protection from misbehaved extensions.

First, protection from errant writes and calls is not
sufficient; the application or kernel must provide a safe
interface to the extension, or a safe environment in
which it can run. Protection against illegal stores is use-
less if the extension can callbcopy() with arbitrary
arguments. Safe equivalents of many other commonly
used routines, such asread(), write(), andprintf() will
also be needed.

Second, and more importantly, software fault isola-
tion (or any other memory protection mechanism) is not
a substitute for a resource management strategy. An
extension should not be allowed to allocate memory,
obtain a lock for a critical data structure, or even be
given the freedom to run on the CPU, unless some
mechanism is provided for the resource to be revoked if

the extension fails to release it in a reasonable amount of
time. In related work [Seltzer96], we explored wrapping
each extension invocation in a transaction; if the exten-
sion aborted, or failed to complete promptly, our system
could abort the transaction and nullify any changes
made by the extension.

The third way in which MiSFIT is not a complete
solution is that it, by itself, does not ensure that a given
piece of binary code has been processed by MiSFIT.
There are at least two methods for solving this problem.
First, extension writers can distribute source code for
their extensions, and the person installing the extension
could compile and MiSFIT the code before installing it.
This technique may be reasonable for installing operat-
ing system extensions, as is done now with loadable ker-
nel modules in NetBSD and Linux.

The second method is more end-user-friendly, but is
logistically more complex. Code processed by MiSFIT
would be given a cryptographic digital signature, either
by the tool itself or by a signing authority. This signature
would then be checked at load time. In order to support
this scheme it would be necessary to find a trustworthy
authority willing to MiSFIT and sign code, or somehow
safely hide the apparatus for generating the signature
within MiSFIT itself.

Although there are pieces missing from MiSFIT to
make it a complete environment for building extensible
systems, they are both technically tractable and applica-
tion specific. For our project (the VINO extensible oper-
ating system [Seltzer94]), we have developed a
protected runtime environment, resource management
infrastructure, and code signature scheme2 for use with
MiSFIT. Other applications of MiSFIT would necessar-
ily have a different safe runtime environment and
resource management infrastructure.

The remainder of this paper focuses on related
work, the architecture of MiSFIT, and its runtime sup-
port. Section 3 contains a discussion of related work in
extension technology. Section 4 discusses the design
and implementation of MiSFIT, and Section 5 covers the
related runtime support. Section 6 includes the overhead
of MiSFIT on benchmark programs. Section 7 discusses
what has been left out of MiSFIT, and the paper con-
clude in Section 8.

3 Related Work
The term Software Fault Isolation was introduced by
Wahbe et al. [Wahbe93]. They proposed a type of soft-
ware fault isolation,sandboxing, which has low over-
head on a processor with a large number of registers.

2. Our code signature implementation uses the RSAREF
library [RSA], which is export controlled.

Their tool was originally targeted for the MIPS and
Alpha processors. The initial results for this work show
overheads of roughly five percent to ten percent.

A follow-on to that work is the Omniware Portable
Code system. The Omniware compiler generates porta-
ble code for an abstract virtual machine (OmniVM)
which is translated to native fault-isolated code at runt-
ime [Adl96]. Along with the source language indepen-
dence provided by software fault isolation techniques,
the Omniware system also offers target-independent
portable code.

Silver has developed a version of gcc which gener-
ates software fault isolated code for the DEC Alpha pro-
cessor [Silver96]. Most of the modifications to gcc were
made in the machine-independent portion of the com-
piler, although some changes were needed in the
machine dependent portion of the code. The author
reports that the implementation is dependent upon a
large number of registers being available for use by the
tool; a port to x86, which has a severely limited register
set, appears to be difficult, if not impossible.

Several other researchers in the area of extensible
operating systems have developed one-off software fault
isolation tools, including Banerji [Banerji96], Engler
[Engler95], and Mazieres [Mazieres96]. Unfortunately
these tools suffer from working on less widely used plat-
forms, working only with domain-specific languages, or
not being publicly available.

Some extensible systems designers have followed a
different route, proposing that extensions be written in a
safe language (e.g., the SPIN operating system
[Bershad95], which uses Modula-3 [Nelson91], and
Netscape Navigator, which uses Java [Gosling96]). Safe
languages can perform as well or better than software-
fault-isolated unsafe languages, but have the two disad-
vantages that there is no possibility of reusing existing C
or C++ code, and that programmers need to develop
extensions in the safe language, and not the more famil-
iar and common unsafe languages. The performance
overhead of Modula-3 relative to compiled C or C++
appears to be negligible, but Java (which is most often
interpreted by a virtual machine) is 20 to 50 times
slower than equivalent compiled C code [Small96].

The Netscape Navigator world-wide web browser is
an interesting example of an extensible system. The cur-
rent release (3.0) supports two types of extensions: those
written in Java (a safe language) and JavaScript (an
interpreted scripting language). In order for Netscape
Navigator to support extensions written in Java on all
platforms, a complete implementation of the Java inter-
preter and runtime environment must be developed on
each platform. It is arguably less work to construct a
simple software fault isolation tool for a hardware archi-

tecture than to develop or port an interpreter and runtime
environment.

Although in previous work we have measured inter-
preted Java as running ten to seventy times slower than
compiled C, several companies plan to release “just-in-
time” native code compilers for Java3. These compilers
would convert Java bytecode into native code as it is
loaded (or first run). The overhead of running “just-in-
time” compiled code has been measured at two to ten
times that of regular compiled code [Hölze94], which
would give Java roughly the same performance as soft-
ware fault isolated code.

Microsoft offers the ActiveX extension mechanism,
which provides no technical guarantee of safety, but
instead supplies only a method for verifying the identity
of the provider of the code through the use of digital sig-
natures. Software fault isolation can work in concert
with digital signatures, to guarantee both the identity of
the provider and the safety of the code.

The design of the VINO extensible operating sys-
tem, which is the primary testbed for MiSFIT, is
described in more detail in other work [Seltzer94,
Seltzer96].

4 MiSFIT Design and Implementation
Software fault isolation can be used to protect against
illegal jumps, stores, and loads. Protecting against ille-
gal stores and jumps is necessary for correctness, but
protection from illegal reads is usually a security issue,
not a correctness issue. (If an extension can read outside
its memory bounds, it may be able to find data it should
not be allowed to see, but if an extension can write or
jump to an arbitrary location in memory, the stability
and correctness of the host program can be compro-
mised.4)

MiSFIT can be used to fault isolate indirect loads,
stores, and calls. It acts as a filter, sitting between the
compiler and the assembler. MiSFIT scans the output of
the compiler and builds an in-memory representation for
the module. It then processes each instruction of the
module in turn. If any implicitly unsafe instruction (e.g.,
halt) appears, the module is rejected. The arguments for
each store, call, and (optionally) load instruction are
examined. (Constants and general-purpose registers are
implicitly safe.) Once the module has been processed,
simple peephole optimization is performed (to remove

3. Symantec has shipped a just-in-time compiler, and Sun has
announced plans to do so.

4. This is not necessarily the case inside the operating system
kernel; on some hardware, such as the x86, device registers are
mapped into memory and reset themselves after being read.

any redundancies introduced by the SFI transformation)
and a new copy of the module is written out.

4.1 Indirect Loads and Stores
Loads and stores that use an indirect address that is
computed at run-time are potentially unsafe. MiSFIT
inserts code tosandbox[Wahbe93] arguments of these
instructions to force the indirect address fall within a
legal range.

Each user extension is assigned a contiguous region
of memory into which it can write, and a region from
which it can read. (These regions would normally at
least overlap, if not be the same, but it is not necessary.)

MiSFIT requires that the size of each memory
region be a power of two; because of this, the high bits
of each address in the memory region (theregion tag)
will be the same. To sandbox a memory reference, MiS-
FIT simply sets the high bits of the reference to the
region tag of its associated memory region. Any load or
store that would have accessed memory outside its
region is thus forced to fall somewhere inside the exten-
sion’s memory region. Note that if the fault isolated tar-
get address was already in the extension’s memory
region, it does not change. The fault isolated address dif-
fers from the original target address only if the original
target address was outside the extension’s memory
region (and therefore illegal). Examples of this transfor-
mation are given in Figure 1.

There is one more detail: in order to preclude the
code from (unsafely) modifying itself, the writable

region should be chosen so that it does not overlap the
code space assigned to the extension.

MiSFIT modifies the loads and stores in the follow-
ing way. First, it inserts code to load the target address
into a register (if it is not already in a register). The high
bits of the register are then cleared, and the region tag of
the associated memory region is then OR’d into the reg-
ister. The register is then used in place of the operand in
the original instruction.

Depending on whether the target address was
already in a register, this technique adds either two or
five instructions5. If the original operand is an indirec-
tion through a single register (with no constant offset)
only two instructions are needed, an AND to clear the
high bits of the register and an OR to set the region tag.
If the target address is not already in a register, MiSFIT
inserts five instructions: MiSFIT obtains a scratch regis-
ter (by pushing its current value on the stack), loads the
effective target address into the scratch register, masks
in the region tag as above, and restores the scratch regis-
ter.

Examples of these transformations are shown in
Figure 2. Note that in the second case it would be possi-
ble to save the scratch register push and pop if MiSFIT

5. Each instruction is executed in one cycle on the Pentium,
assuming all memory references hit in the L1 cache.

Figure 1: Example Transformations.In this example, the
region tag is the top sixteen bits of the address and has the
value 0xabcd. In the first example, the original address is
invalid, so the fault-isolated address is different. In the
second example, the original address is within the region,
so the fault-isolated address is the same as the original
address.

0x00000000

0x-----0000

Original address

Offset into region

0xabcd----

0xabcd0000

Region tag

Fault-isolated address

0xabcd1234

0x-----1234

Original address

Offset into region

0xabcd----

0xabcd1234

Region tag

Fault-isolated address

movl eax,0(edx) ; do the store
is transformed into:

andl $0xffff,edx ; clear old region tag
orl destmask,edx ; set our region tag
movl eax,0(edx) ; do the store

movl eax,12(ebx,ecx) ; do the store
is transformed into:

pushl edx ; obtain scratch register
leal 12(ebx,ecx),edx ; load target address
andl $0xffff,edx ; clear old region tag
orl destmask,edx ; set our region tag
movl eax,0(edx) ; do the store
popl edx ; restore scratch register

Figure 2: Sandboxing transformations for a store
instruction. In the first case the target is a simple
indirection through a register; in the second case it is a
complex indirection, so a scratch register is first made
available and the target is loaded into the scratch register
before sandboxing. In this example, the size of the assigned
memory region is 64KB (the argument to the andl is
0xffff). Note that all of the added instructions take one
cycle on the Pentium (assuming that the stack targets of the
push and pop are in the first level cache). Note: the general
format of x86 assembler instructions isinstr src, dest.

were able to determine that there was a dead register6

available that could be used as a scratch register. The
MiSFIT performance impact is low enough that we have
not yet been tempted to perform this optimization.

4.2 Virtual Function Calls
When a virtual function call takes place MiSFIT must
verify that the target address is one that the extension is
permitted to call. If the extension were allowed to indi-
rectly call to any address, it not only might obtain access
to an unsafe function, it also might jump into the middle
of an instruction or into data space, which would open
all sorts of security and safety holes.

MiSFIT restricts the extension by searching a table
of valid function targets on each indirect call from an
extension. The builder of the base system provides a file
with the names of the functions that an extension may
call; an auxiliary tool (provided with MiSFIT) deter-
mines the start address of each of these functions at link
time, and places the addresses into a table that is linked
into the base system.

Although there may be an arbitrarily large number
of valid target addresses, the tool greatly limits search
time by storing the valid addresses in a sparsely popu-
lated open addressed hash table [Cormen90]. An open
addressed hash table is implemented as an array; the
hash value of the key gives the index of the array to
check. When the tool adds items to the hash table, if the
key hashes ton and locationn of the table is already in
use, it check locationsn+1, n+2, and so on, until it finds
a free slot for the value. When searching for a key in the
table, the search function hashes the key, yieldingn, and
then check locationn of the table. If locationn has a
value (but not the key) it checks locationn+1, n+2, and
so on, until it either find the key (signifying success) or
find an empty slot (signifying failure).

One subtle advantage of using an open addressed
hash table is that if the search function does not find the
key at locationn, because the next location checked (at
indexn+1) is at an adjacent memory location, it is likely
to be in the cache. So, even if it fails on the first probe of
the table, the cost of subsequent probes is reduced.

By decreasing the density of the table, it is possible
to reduce the number of probes needed nearly to unity
(the theoretical minimum). With a table that has a 50%
density (half the slots are empty) an average of fewer
than 1.5 probes per indirect call are required. The over-
head of each probe is roughly six to ten cycles (assum-
ing everything hits in the L1 cache), adding, on average,

6. A dead register is one that will not be read again before it is
written.

approximately ten to fifteen cycles to each indirect func-
tion call.

Indirect calls are common in C++ code, as virtual
functions are implemented as indirect calls. When pro-
tecting C++ code with MiSFIT the table of valid func-
tion targets can become quite large, but the per-
invocation cost remains low, because the number of
probes into the table is independent of the size of the
table, depending only on its density, which is under
MiSFIT’s control.

4.3 Global Data, Virtual Function Tables
Because MiSFIT sandboxes global memory references,
any data accessible to the extension must be placed in
the memory region assigned to the extension. If there is
global data that the extension should be able to access,
the data should be placed in the memory region assigned
to the extension. This applies not only to global program
data, but other shared state, such as virtual function
tables.

The restriction on global program data is a problem
if multiple extensions are to be granted access to the
same datum. A work-around is for the application to
provide functions to access the data; each extension will
be given permission to call these accessor functions, and
use them instead of directly reading and writing the
data.

This technique has an impact on performance that is
difficult to quantify, as the cost is a function of the
amount of data that is protected in this way, the fre-
quency of access, and the type of interface the functions
provide. In two of the three tests discussed in this paper
this cost is not to quantified; in the third, the cost is built
in to the overall model, but not factored and measured
separately.

Virtual function tables are a different matter. If
MiSFIT is configured to use read protection, virtual
function tables need to be in a region of memory that is
readable by the extension. The solution we have chosen
for VINO is to store all virtual function tables in a con-
tiguous region of memory (by making a one-line change
to g++), and mapping that region into each extensions
read-only region.

4.4 Block Instructions
The x86 instruction set includes memory-to-memory
move and comparison instructions,movs and cmps,
which take four or five clock cycles on the Pentium. The
same goal can be accomplished by four one cycle
instructions (assuming a scratch register is available).
However, the memory to memory instructions have the
advantage that they can be used to constructblock move
and compare sequences. The x86rep instruction can be
used as a prefix to the memory-to-memory instructions;

therep prefix instructs the processor to repeat the mem-
ory-to-memory instruction forcount times, wherecount
is the value in the %ecx register. The block move
instruction sequence has a lower per-move overhead
than a sequence or loop of individual memory-to-mem-
ory move instructions, and can be generated by compil-
ers to perform structure copies and in-line expansions of
common C library functions such asstrcmp() and
bcopy().

MiSFIT transforms the base addresses and repeat
count of arguments to the block instruction, sandboxing
the compound instruction as a whole. Although this
adds a high fixed overhead to the block instruction
(roughly 26 cycles), there is no per-element cost. The
alternative, transforming the block instruction into a
loop and sandboxing the instructions in the loop, has a
high per-element overhead; the break-even point for the
two techniques is at three or four iterations. Block
instructions are typically used for copying or moving
more than four elements, so the fixed overhead imposed
by MiSFIT’s technique is preferable.

4.5 Saved Registers and Return Addresses
Protecting the contents of the stack is also problematic.
The stack is used not only for local variables (which
must be accessible to the user extension) but also saved
registers and the function return address (which should
not be accessible to the user extension). If the user
extension could write to arbitrary locations on the stack,
the return address of the function could be overwritten
and set to an arbitrary value, circumventing the call pro-
tection offered by MiSFIT.

A second problem is that the process stack is nor-
mally not in the same region of memory as the heap and
global data; MiSFIT’s technique depends on all valid
memory references falling within a single region of
memory. In a multi-threaded environment (either a
multi-threaded operating system kernel or multi-
threaded end-user application) each thread of control is
assigned its own stack. In environments where the
extension can be run as a separate thread of control,
MiSFIT can co-locate the stack assigned to the thread
(i.e. assigned to the extension) with the memory region
assigned to the extension. Then all valid memory refer-
ences made by the extension will fall within a single
region.

In environments where there is a single thread of
control, MiSFIT can provide the same type of protection
by providing each extension with its own stack, located
in its memory region. When the extension is invoked,
the application switches to the stack associated with the
extension. When the extension returns to the applica-
tion, the process switches back to the original stack.

To solve the problem of an extension overwriting a
return address on the stack, MiSFIT replaces eachcall
instruction within the extension with a call to a support
routine that saves the return address in a separate stack
outside the extension’s memory region and then jumps
to the called function. MiSFIT then replaces eachret
instruction with a jump to a second support routine that
loads the saved return address and jumps to it. In this
way, even if the extension misbehaves and overwrites
the return address, the system returns to the correct loca-
tion. To ensure that register values are preserved across
the invocation of the extension, MiSFIT stores the con-
tents of all callee-saved registers on entry to the exten-
sion, and reloads these values when it returns.

4.6 Dynamic Linking
MiSFIT modifies the operands of load, store, and call
instructions that are computed at runtime. It does not
modify operands that are labels, assuming that refer-
ences to addresses within the module (i.e. local jumps,
and loads and stores of module-level variables) are
implicitly safe (generated by the compiler), and refer-
ences to addresses outside the module will be checked
by the dynamic linker when they are resolved. This
implies that the dynamic linker is responsible for keep-
ing track of which symbols may be linked to by an
extension. Under some circumstances it may be the case
that not all extensions will be given access to the same
set of entrypoints. If this is the case, the dynamic linker
is responsible for determining to which entrypoints a
given extension should be given access.

Relinquishing responsibility for protecting external
symbols has a limitation. The assembler does not mark
external symbols as being for read or write use; a single
external reference is generated for all reads and writes.
If there is no read protection, but there is write protec-
tion, there is no way for the linker to discern which ref-
erences are source (read) references and which are
destination (write) references – in other words, which
should be allowed, and which should be disallowed.

To solve this problem, MiSFIT generates a table of
addresses of instructions that write operands that are
labels. The dynamic linker can use the information in
this table, in addition with the external reference table,
to differentiate between read references and write refer-
ences at link time.

4.7 An Alternative to Sandboxing on the x86
On the x86, an alternative to sandboxing exists. The

bound instruction checks that a value falls within a
specified range; if it does not, a trap occurs. If this trap
can be caught, the ill-behaved extension can be stopped
before it does any damage. It appears that thebound
instruction was designed to be used for array bounds

checking. since it performs a signed (rather than
unsigned) comparison. This does not preclude using it
for SFI. MiSFIT might arrange for all parts of the region
of memory assigned to an extension have the same sign
(i.e. not cross the border between location 0x7fffffff and
location 0x80000000), so the signed nature of the com-
parison would not be a problem. The bound instruction
takes more cycles than the instructions needed to set the
high bits of a register (eight vs. two); however, instead
of neutering an illegal load or store the bound instruc-
tion would trap an illegal memory access.

This paper includes results of running tests compar-
ing the performance of MiSFIT using thebound
instruction and the sandboxing technique described in
Section 4.1. The results show that the sandboxing
method has superior performance, which is not surpris-
ing, considering the cost of thebound instruction in
comparison with the cost of sandboxing.

5 Runtime Support
MiSFIT includes runtime support for linking extension
code as new virtual functions to existing objects, setting
up the state of an extension, and managing free store for
the extension.

5.1 Virtual Function Table Manipulation
In the MiSFIT model, an extension is used to modify the
behavior of a single object, by replacing a virtual func-
tion of that object. MiSFIT accomplishes this by making
a copy of the virtual function table for that object and
writing a new value into the slot corresponding to the
replaced function.

The process by which an extension is called is
somewhat baroque. MiSFIT can not just replace the
address of the old function with the address of the newly
loaded function in the virtual function table. As outlined
above, when an extension is called its sandbox needs to
be configured.

5.2 Calling The Extension
When an extension is installed, a small assembler stub
function (similar to a closure) is created. This stub is
responsible for configuring the sandbox and calling the
extension. The stub is specific to the particular exten-
sion, because it includes the addresses of the extension’s
sandbox regions, as well as the address of the extension
function itself.

The stub sets up the sandbox for the extension. It
first saves callee-saved registers (as MiSFIT does not
trust the extension to do so). The stub sets up the global
variables that hold the region tags for the read and write
(source and destination) regions assigned to the exten-
sion, and copies any arguments passed to the extension

onto the extension’s stack. It switches to the extension’s
stack, and jumps to the extension.

When the extension completes, it jumps to the
returns stub (remember that the extension’sret instruc-
tion was replaced by this jump, as described in Section
4.5), which switches to the regular stack, loads the saved
registers, and returns to the base system.

The runtime support code also includes the function
that implements safe indirect calls (as described in Sec-
tion 4.2). MiSFIT replaces indirect calls with code that
loads the target function address and calls the hash table
lookup function. If the function address is not found in
the hash table by the lookup function, the function calls
anabort function, which is responsible for cleaning up
after the extension.

5.3 Extension Free Store Management
As the code running in an extension cannot reach out-
side its bounds, if it were to allocate storage usingnew
it would not be able to read from nor write to that stor-
age. MiSFIT provides a small heap in the data area
assigned to the extension, and simple implementations
of the built-innew anddelete functions. When MiSFIT
is processing an extension, it replaces any calls to the
built-in new anddelete functions with calls to the MiS-
FIT versions.

6 MiSFIT Overhead
This section compares the performance of unprotected
code (written in C or C++) with the MiSFIT-protected
versions. Times are reported as a percentage of the
unprotected versions. Performance numbers for both
write-call (where store and call instructions are pro-
tected) and read-write-call (where load, store, and call
instructions are protected) tests are included. As pointed
out above, read protection is typically a requirement for
security, not for correctness.

6.1 Operating System Extensions
In previous work [Small96], we examined the suitability
of various extension technologies for constructing oper-
ating system extensions. Three tests were developed and
used, with each test representing a class of possible OS
extensions. Following is a short description of each test;
for more detail, the reader is directed to the earlier
paper.
• hotlist: choose which page to evict from a linked list

of page descriptors.
• lld: simulate the operation of a logical disk layer

[DeJon93].
• md5: compute the MD5 checksum [RFC1321] of

1MB of data.
The tests were run on a 120MHz Pentium with

64MB of EDO memory, running BSD/OS 2.1. Each test

and its data fit into main memory. Times are reported
relative to the unprotected version of the code. The
results are found in Table 1.

The write-call overhead for these tests is low, at
most 10%. The overhead for read-write-call protection
can be much higher, over 200%.

In our earlier work we computed a break-even point
for each operating system extension. If the cost of using
the extension is below the break-even point, the exten-
sion will improve overall system performance; if it
above this point, it will degrade system performance.
The three write-call protected tests fall below the break-
even point, as do the read-write-call versions oflld and
md5, but the read-write-call version ofhotlist does not.

The performance of the write-call protectedhotlist
is equivalent to the unprotected version. This is because
there are very few protected write instructions executed
during the test. Because the kernel of the test repeatedly
scans a linked list of page descriptors, the number of
read instructions executed is very high. This bias is
reflected in the performance of the read-write-call pro-
tected version of this test, where the overhead is more
than 200%.

The lld test has a noticeable but small write-call
overhead of 7%; read protection adds another 33%. This
test is not as read-intensive ashotlist, so the added over-
head of read protection is much lower. Themd5 test has
similar performance characteristics, with a sub-10%
write-call overhead, and an additional 60% overhead for
read protection.

6.2 SPECInt92
This experiment shows the results of several SPECInt92
benchmarks processed by MiSFIT, using write-call and
read-write-call protection. The performance of the MiS-
FIT-protected code relative to native code is reported in
Table 2.

Although it is unlikely that anyone would want to
load a SPEC benchmark into a web browser or database

server, these results give a feeling for the overhead
imposed by MiSFIT on “typical” code. (To better esti-
mate the overhead imposed by MiSFIT, the tables only
include time spent at user level.)

The write-call MiSFIT overhead for the SPEC92Int
code is comparable to that of MiSFIT on the operating
system extension benchmarks, ranging from a factor of
1.02 to a factor of 1.17. As is seen above, the overhead
of read-write-call protection is higher than the overhead
for write-call protection, on the order of 1.26 to 1.76.
This overhead is large, but still substantially less than
that of an interpreted language.

For memory-intensive applications, such as data
copies, a higher overhead should be expected. The over-
head seen is, of course, a function of the ratio of pro-
tected instructions to unprotected instructions.

6.3 VINO Kernel Extensions
MiSFIT is used to protect the VINO operating system
kernel from misbehaved end-user extensions. We mea-
sured the performance overhead of MiSFIT on four ker-
nel extensions [Seltzer96], and include these results
here. For these tests we used MiSFIT for read-write-call
protection, and the overhead shown is in line with the
overhead seen above.

The Read-ahead extension specifies which disk
block to read next, by returning a value found in its
memory region. This code performs little computation,
so the overhead imposed by protecting its loads and
stores dominate its performance.

ThePage Eviction extension is similar to thehotlist
extension described in Section 6.1, but instead of
searching a linked list it searches an array. Because there
is less pointer chasing, the overhead imposed by MiS-
FIT is lower.

Each time theScheduling extension is called it
searches a list of 64 process IDs. Because the code that
traverses the list is trusted code (is part of the base sys-

Test

MiSFIT
Write-Call
Protected
(MiSFIT/

unprotected)

MiSFIT
Read-Write-Call

Protected
(MiSFIT/

unprotected)
hotlist 1.00 3.2

lld 1.07 1.4

md5 1.09 1.7

Table 1: Relative overhead of MiSFIT-protected code to
unprotected code on operating system extension benchmarks.
The cost of isolating writes and indirect writes is low, under
10%, but the cost of protecting reads as well can be
prohibitively high.

Test

MiSFIT
Write-Call
Protected
(MiSFIT/

unprotected)

MiSFIT
Read-Write-Call

Protected
(MiSFIT/

unprotected)
compress 1.09 1.26

espresso 1.15 1.76

eqntott 1.02 1.68

li 1.17 1.61

Table 2: Overhead of protection on SPECInt benchmarks for
MiSFIT, relative to unprotected code. MiSFIT times are the
mean of ten runs. Standard deviations were less than 1%,
except forcompress, where it was 2.6%.

tem, outside the extension itself, unlike in the case of
hotlist), the overhead of using MiSFIT is much lower7.

The fourth extension, which performs a simple
encryption of a data stream, is data intensive. It copies
8KB of data from an input buffer to an output buffer,
applying a trivial (XOR-style) encryption to the data.

This extension was designed to be a worst-case test
for MiSFIT, with little computation done between each
data load and store. The MiSFIT version of the code
takes slightly more than twice as long as the unprotected
code. It is theoretically possible for MiSFIT-protected
code of this form to take as much as six times as long as
protected code (remember MiSFIT can add five instruc-
tions for each load and store), but it is difficult, if not
impossible, to construct a real-world example where
every instruction is a load or store. One possible case is
when data is being copied directly from one buffer to
another (as is done in this example), but the overhead
seen here is 100%, not 500%. In the case of a straight
data copy (using the x86rep; movs instruction pair),
MiSFIT uses a different technique for fault isolation
which has lower overhead (see Section 4.4).

6.4 Performance Summary
With read-write-call protection MiSFIT protected code
can take from 1.4 to 3.2 times as long as unprotected
code. Although this overhead may seem large, it should
be compared to the overhead of an interpreted safe lan-
guage, such as current Java implementations (which are
20 to 50 times slower than compiled C code), or the dis-
advantage of writing extensions in an unfamiliar, but
safe, compiled language, such as Modula-3.

7. Calling trusted code outside the extension is analogous to a
Java application calling native methods, which are
implemented in compiled C or C++.

7 What Is Missing
As shown in Section 2, SFI is not a complete solution.
The MiSFIT package does not include a safe runtime
support library, which would be specific to the base sys-
tem. This support library would be responsible for
ensuring that extensions do not violate their resource
limitations.

Extensions do not have access to the global heap; a
version of malloc (or new) is needed that allocates
memory from a pool inside the extension’s writable
memory region.

MiSFIT does not include a dynamic linker.
Depending on its application, a dynamic linker may
already be part of the system (e.g., NetBSD). The
dynamic linker, or some code-signing tool, would be
responsible for verifying that the loaded code had been
processed by MiSFIT.

One restriction that is not currently addressed, but
should be, is the difficulty of passing arguments and
returns by reference. When calling an extension, the
calling stub pushes arguments onto the extension’s
stack, but these arguments are currently restricted to
immediate values. If the base system wants to pass an
argument by reference (via a pointer) there is currently
no way to do so. Additionally, there is no way for an
extension to pass back data other than as the return value
of the function or by storing the results in its writable
memory region for later retrieval by the base system.

The solution to this limitation is the application of
standard techniques for marshalling and unmarshalling
arguments for remote procedure calls. By specifying the
number and types of parameters to the extensions with
an interface definition language, extension-specific stub
functions could be generated that would copy arguments
into the extension’s address space when it is called, and
copy results back to the base system when it returns.

8 Conclusions
The overhead imposed by MiSFIT when it is used for
write and call protection is small. It allows applications
and kernels to be protected from end-user extensions
written in otherwise unsafe languages. Unlike other
tools, it is freely available. As part of an end-to-end
solution to the problem of constructing an extensible
system, MiSFIT can provide safety at low cost.

9 Availability
MiSFIT is covered by a BSD-style license, and is avail-
able for public use without fee. Contact the author
(chris@eecs.harvard.edu) to obtain a copy of the code.

Test

MiSFIT
Read-Write-Call

Protected
(MiSFIT/unprotected)

Read-ahead 2.5

Page Eviction 1.2

Scheduling 1.1

Encryption 2.1

Table 3: VINO Kernel Extensions: MiSFIT was used to
apply read-write-call protection, which causes overhead in line
with the results seen above. Each test was run between 300
and 3000 times; the standard deviation of each result was less
than 2.5%.

10 Acknowledgments and Apology
The members of the VINO Operating System project,
Prof. Margo Seltzer, Keith Smith, Yasuhiro Endo, and
David Holland, are implicitly included and thanked
wherever first-person plural is used in this paper. Keith
Smith’s eagle-eyed proofreading of the final draft was
greatly appreciated by the author.

To circumvent use of both the awkward-sounding
first-person singular and the royal “we,” work done by
the author has been ascribed either to the paper itself or
directly to MiSFIT. Only where completely unavoidable
was passive voice used. The author apologizes, pro-
fusely, to the linguistically offended.

Bibliography

[Adl96] Adl-Tabatabai, A., Langdale, G., Lucco, S.,
Wahbe, R., “Efficient and Language-Independent
Mobile Programs,”PLDI ‘96, Philadelphia, PA, 127-
136, May 1996.

[Banerji96] Banerji, A., Panteleenko, V., Wyant, G.,
Cohn, D., “Quantitative Analysis of Protection
Options,” University of Dame Technical Report TR-
96-20, 1996.

[Bloor96] Bloor, R., “The Capabilities of Illustra and its
Integration with Informix DSA,”
http://www.informix.com/informix/corpinfo/zines/
whitpprs/bloor/contents.htm

[Bershad95] Bershad, B., Savage, S., Pardyak, P., Sirer,
E. G., Fiuczynski, M., Becker, D., Eggers, S., Cham-
bers, C., “Extensibility, Safety, and Performance in
the SPIN Operating System,”Proc. 15th SOSP, Cop-
per Mountain, CO, 267–284, December 1995.

[Cormen90] Cormen, T., Leiserson, C., Rivest, R.,Intro-
duction to Algorithms, 232-241, The MIT Press,
Cambridge MA, 1990.

[DeJonge93] de Jonge, W., Kaashoek, M. F., Hsieh, W.,
“The Logical Disk: A New Approach to Improving
File Systems,”Proc. 14th SOSP, Asheville, NC, 15–
28, December 1993.

[Engler95] Engler, D., Kaashoek, M. F., O’Toole, J.,
“Exokernel: An Operating System Architecture for
Application-Level Resource Management,”Proc.
15th SOSP, Copper Mountain, CO, 251–266,
December 1995.

[Fall93] Fall, K., Pasquale, J., “Exploiting In-Kernel
Data Paths to Improve I/O Throughput and CPU
Availability,” 1993 Winter USENIX Conference,
San Diego, CA, 327–334, January 1993.

[Gosling96] Gosling, J., Joy, B., Steele, G.,The Java
Language Specification, Addison-Wesley, Reading,
MA, 1996.

[Hölze94] Hölze, U., Ungar, D., “Optimizing Dynami-
cally-Dispatched Calls with Run-Time Type Feed-
back”, PLDI ‘94, Orlando, FL, June 1994.

[Mazieres96] Mazieres, D., personal communication.

[Nelson91] Nelson, G., ed.,Systems Programming with
Modula-3, Prentice Hall, Englewood Cliffs, NJ,
1991.

[RFC1321] Rivest, R., “The MD5 Message-Digest
Algorithm,” Network Working Group RFC 1321,
April 1992.

[RSA] ftp://ftp.rsa.com/rsaref

[Seltzer94] Seltzer, M., Endo, Y., Small, C., Smith, K.,
“An Introduction to the VINO Architecture,” Har-
vard University Computer Science Technical Report
TR-34-94, 1994.

[Seltzer96] Seltzer, M., Endo, Y., Small, C., Smith. K.,
“Dealing With Disaster: Surviving Misbehaved Ker-
nel Extensions,”Proc. 2nd OSDI,Seattle, WA, 213–
228, October 1996.

[Silver96] Silver, S., “Implementation and Analysis of
Software-Based Fault Isolation,” Dartmouth College
Technical Report PCS-TR96-287, 1996.

[Small96] Small, C., Seltzer, M., “A Comparison of OS
Extension Technologies,”Proc. 1996 USENIX Tech-
nical Conference, New Orleans, LA, 41-54, January
1996.

[Wahbe93] Wahbe, R., Lucco, S., Anderson, T., Gra-
ham, S., “Efficient Software-Based Fault Isola-
tion,” Proc. 14th SOSP, Asheville, NC, 203–216,
December 1993.

