i

The following paper was originally published in the
Proceedings of the Third USENIX Conference on Object-Oriented Technologies and Systems
Portland, Oregon, June 1997

A Tool for Constructing Safe Extensible C++ Systems

Christopher Small
Harvard University

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org

4. WWW URL: http://www.usenix.org

A Tool for Constructing Safe Extensible C++ Systems

Christopher Small
Harvard University

Abstract each read, write, and jump instruction is analyzed and, if

o necessary, transformed to ensure that it will not reach
The boundary between application and system qytside the memory region assigned to the code.
pecoming increasingly permeable. Extensible applici Two other techniques for ensuring the safety of
tions, such as web browsers, database systems, iode aresafe languagesndinterpreted systemsSafe
operating systems, demonstra_te the value _of aHOW"Ianguages, such as Java and Modula-3, are designed to
end-users to extend and modify the behavior of whingke it difficult or impossible to write code that per-
was formerly considered to be a static, inviolate systerforms illegal or unsafe operations. By definition, safe
Unfortunately, flexibility often comes with a cost: SyS-languages are restricted; C++, which allows unchecked
tems unprotected from misbehaved end-user extensicarray accesses, pointer arithmetic, and arbitrary casting,
are fragile and prone to instability. is implicitly unsafe.

Object-oriented programming models are a good f gcripting languages, such as Tcl and Perl, enforce
for the development of this kind of system. An extensafety by validating each data access as it takes place.
sions can be deS|gned as a_refmement of an eX'St'AIthough great strides are being made to improve the
class, and loaded into a running system. In our mod¢erformance of interpreted languages through the use of
when code is downloaded into the system, it is used dynamic code generation [Holze94], the performance
replace a virtual function on an existing C++ objectoyerhead is at least a factor of two to ten over native
Because our tool is source-language neutral, it can compiled code.
used to build safe extensible systems written in othi In earlier work [Small96], we measured byte-code
languages as well. interpreted Java taking ten to seventy times longer than

There are three methods commonly used to ma'compiled C code performing the same lagkhe over-
end-user extensions safe: restrict the extension languénead of software fault isolation is an order of magnitude
(e.g., Java), interpret the extension language (€.9., T(ess than that of interpretation, and SFI techniques have
or combine run-time checks with a trusted environmenyyg advantage of operating on assembler-level code, so
The third technique is the one discussed here; it Oﬁethey can be used with any source language.
the twin benefits of the flexibility to implement exten- Although a small number of software fault isolation
sions in an unsafe language, such as C++, and the fiools exist, and the underlying techniques are not com-
formance of compiled code. ~ plex, no tools have been made freely available on com-

MISFIT, the Minimal i386 Software Fault Isolation mqgity platforms such as the x86. MiSFIT, the Minimal
Tool, can be used as the central component of a tool 386 Software Fault Isolation Tool, developed for use
for building safe extensible systems in C++. MiSFITith the VINO extensible operating system, is such a
transforms C++ code, compiled by g++, into safe binaryog|. VINO is a new operating system, written in C++,
code. Combined with a runtime support library, thigesigned around the idea that system policies can be
overhead of MiSFIT is an order of magnitude lower thamodified, and kernel components reused, by download-
the overhead of interpreted Java, and permits safe extning extensions written by untrusted end-users and pro-

sible systems to be written in C++. tected by MiSFIT.
) MISFIT includes runtime support necessary to cre-
1 Introduction ate asandboxin which the downloaded code will run.

Software fault isolatioris a technique for transforming Additional code (not provided as part of MiSFIT) is
code written in an otherwise unsafe language (e.g., C needed to load the extension into the base system, verify
C++) into safe compiled code. At transformation time

This work was supported by a grant from Sun Microsystems. The tests run in that paper were re-run with MiSFIT for this
Laboratories and by the John Parker Scholarship Fund. paper. The results are found in Section 6.1.

that the code was processed by MiSFIT, and offer ¢he extension fails to release it in a reasonable amount of
library of routines that can be called by the extension. time. In related work [Seltzer96], we explored wrapping
MISFIT accepts x86 assembler code, produced bgach extension invocation in a transaction; if the exten-
the Gnu C++ compiler, as input, and produces fault-isosion aborted, or failed to complete promptly, our system
lated x86 assembler code as output. MiSFIT can be usexuld abort the transaction and nullify any changes
as a component of a safe code system, allowing othemade by the extension.
wise untrusted code to be linked to and run in the con- The third way in which MiSFIT is not a complete
text of an extensible application or system. For examplesolution is that it, by itself, does not ensure that a given
MiSFIT can fault isolate dynamically linked extensionspiece of binary code has been processed by MiSFIT.
to world-wide web browsers (e.g., Netscape Navigator)There are at least two methods for solving this problem.
kernel extensions (which are supported by a variety oFirst, extension writers can distribute source code for
current systems, such as Solaris, NetBSD, MS-DOS antheir extensions, and the person installing the extension
Windows/NT), and client code linked to a databasecould compile and MiSFIT the code before installing it.
server (e.g., the lllustra database server [Bloor96]). This technique may be reasonable for installing operat-
Software fault isolation techniques can be imple-ing system extensions, as is done now with loadable ker-
mented in a compiler pass [Silver96], a filter betweemel modules in NetBSD and Linux.
the compiler and assembler (as in the case of MiSFIT), The second method is more end-user-friendly, but is
or a binary editing tool [Wahbe93]. MiSFIT works as anlogistically more complex. Code processed by MiSFIT
assembler-level filter for several reasons. First, not writwould be given a cryptographic digital signature, either
ing a binary editing tool simplified the task tremen-by the tool itself or by a signing authority. This signature
dously, as there was no need to parse, disassemblgould then be checked at load time. In order to support
patch, and reassemble x86 binary code. Another motivdhis scheme it would be necessary to find a trustworthy
tion was that it conforms to the Unix tool-oriented authority willing to MiSFIT and sign code, or somehow
approach for building systems. By not adding it to g++safely hide the apparatus for generating the signature
MIiSFIT has a degree of compiler independencewithin MiSFIT itself.
Although MISFIT makes a (small) number of assump- Although there are pieces missing from MiSFIT to
tions about the format of its input, it could easily bemake it a complete environment for building extensible
modified to work with output from other compilers, systems, they are both technically tractable and applica-
such as Icc or Microsoft C++. tion specific. For our project (the VINO extensible oper-
MISFIT takes the strategy of being platform spe-ating system [Seltzer94]), we have developed a
cific and language neutral; the Java Virtual Machine igrotected runtime environment, resource management
both platform neutral and language neutral. We foundnfrastructure, and code signature schefoe use with
that any need we had for platform independence waBliSFIT. Other applications of MiSFIT would necessar-
outweighed by our need for high performance and thdy have a different safe runtime environment and

ability to write extensions in C++. resource management infrastructure.

The remainder of this paper focuses on related
2 SFIl Is Not Enough work, the architecture of MiSFIT, and its runtime sup-
MiSFIT is not a complete solution to the problem ofport. Section 3 contains a discussion of related work in
protection from misbehaved extensions. extension technology. Section 4 discusses the design

First, protection from errant writes and calls is notand implementation of MiSFIT, and Section 5 covers the
sufficient; the application or kernel must provide a safé€lated runtime support. Section 6 includes the overhead
interface to the extension, or a safe environment i®f MiSFIT on benchmark programs. Section 7 discusses
which it can run. Protection against illegal stores is usewhat has been left out of MiSFIT, and the paper con-
less if the extension can cadicopy() with arbitrary clude in Section 8.
arguments. Safe equivalents of many other commonly
used routines, such asad(), write(), andprintf() will 3 Related Work
also be needed. The term Software Fault Isolation was introduced by

Second, and more importantly, software fault isola-Wahbe et al. [Wahbe93]. They proposed a type of soft-
tion (or any other memory protection mechanism) is noware fault isolationsandboxing which has low over-

a substitute for a resource management strategy. Amead on a processor with a large number of registers.
extension should not be allowed to allocate memory,
obtain a lock for a critical data structure, or even be

given the freedom to run on the CPU, unless somé- Our code signat.ure implementation uses the RSAREF
mechanism is provided for the resource to be revoked {23y [RSA], which is export controlied.

Their tool was originally targeted for the MIPS andtecture than to develop or port an interpreter and runtime
Alpha processors. The initial results for this work showenvironment.
overheads of roughly five percent to ten percent. Although in previous work we have measured inter-
A follow-on to that work is the Omniware Portable preted Java as running ten to seventy times slower than
Code system. The Omniware compiler generates porta@ompiled C, several companies plan to release “just-in-
ble code for an abstract virtual machine (OmniVM)time” native code compilers for Javarhese compilers
which is translated to native fault-isolated code at runtwould convert Java bytecode into native code as it is
ime [AdI96]. Along with the source language indepen-loaded (or first run). The overhead of running “just-in-
dence provided by software fault isolation techniquestime” compiled code has been measured at two to ten
the Omniware system also offers target-independentmes that of regular compiled code [H6lze94], which
portable code. would give Java roughly the same performance as soft-
Silver has developed a version of gcc which generware fault isolated code.
ates software fault isolated code for the DEC Alpha pro- Microsoft offers the ActiveX extension mechanism,
cessor [Silver96]. Most of the modifications to gcc werewhich provides no technical guarantee of safety, but
made in the machine-independent portion of the cominstead supplies only a method for verifying the identity
piler, although some changes were needed in thefthe provider of the code through the use of digital sig-
machine dependent portion of the code. The authamatures. Software fault isolation can work in concert
reports that the implementation is dependent upon with digital signatures, to guarantee both the identity of
large number of registers being available for use by théhe provider and the safety of the code.
tool; a port to x86, which has a severely limited register The design of the VINO extensible operating sys-
set, appears to be difficult, if not impossible. tem, which is the primary testbed for MIiSFIT, is
Several other researchers in the area of extensibiescribed in more detail in other work [Seltzer94,
operating systems have developed one-off software faufieltzer96].
isolation tools, including Banerji [Banerji96], Engler
[Engler95], and Mazieres [Mazieres96]. Unfortunately4 MIiSFIT Design and Implementation
these tools suffer from working on less widely used platSoftware fault isolation can be used to protect against
forms, working only with domain-specific languages, orillegal jumps, stores, and loads. Protecting against ille-
not being publicly available. gal stores and jumps is necessary for correctness, but
Some extensible systems designers have followed grotection from illegal reads is usually a security issue,
different route, proposing that extensions be written in ot a correctness issue. (If an extension can read outside
safe language (e.g., the SPIN operating systems memory bounds, it may be able to find data it should
[Bershad95], which uses Modula-3 [Nelson91], andnot be allowed to see, but if an extension can write or
Netscape Navigator, which uses Java [Gosling96]). Saffimp to an arbitrary location in memory, the stability
languages can perform as well or better than SOftW&r%nd correctness of the host program can be compro-
fault-isolated unsafe languages, but have the two disaqlnisedfl)
vantages that there is no possibility of reusing existing C MiSFIT can be used to fault isolate indirect loads,
or C++ code, and that programmers need to develogiores, and calls. It acts as a filter, sitting between the
extensions in the safe language, and not the more famitompiler and the assembler. MiSFIT scans the output of
iar and common unsafe languages. The performanage compiler and builds an in-memory representation for
overhead of Modula-3 relative to compiled C or C++the module. It then processes each instruction of the
appears to be negligible, but Java (which is most ofteodule in turn. If any implicitly unsafe instruction (e.g.,
interpreted by a virtual machine) is 20 to 50 timeshalt) appears, the module is rejected. The arguments for
slower than equivalent compiled C code [Small96]. each store, call, and (optionally) load instruction are
The Netscape Navigator world-wide web browser isexamined. (Constants and general-purpose registers are
an interesting example of an extensible system. The cujmplicitly safe.) Once the module has been processed,

rent release (3.0) supports two types of extensions: thosgmple peephole optimization is performed (to remove
written in Java (a safe language) and JavaScript (an

interpreted scripting language). In order for Netscape

Navigator to support extensions written in Java on all

platforms, a complete implementation of the Java inter3. Symantec has shipped a just-in-time compiler, and Sun has
preter and runtime environment must be developed ofnhounced plans to do so.

each platform. It is arguably less work to construct a. This is not necessarily the case inside the operating system

simple software fault isolation tool for a hardware archi-kernel; on some hardware, such as the x86, device registers are
mapped into memory and reset themselves after being read.

moM eax(edx) ; do the store

Original address Region tag is transformed into:
0x00000000 Oxabced---— and| $0xfff,edx : clear old region tag
orl destmask,edx ; set our region tag
movl eax,0(edx) : do the store
Offset into region Fault-isolated address
movl eax,12(ebx,ecx) ; do the store
Original address Region tag is transformed into:

Oxabcd— pushl edx ; obtain scratch register
leal 12(ebx,ecx),edx ; load target address
andl $0xfff,edx ; clear old region tag

orl destmask,edx ; set our region tag
Offset into region Fault-isolated address movl eax,O(edx) - do the store
popl edx ; restore scratch register

Figure 1: Example Transformations.In this example, the
region tag is the top sixteen bits of the address and has the
value Oxabcd. In the first example, the original address is
invalid, so the fault-isolated address is different. In the
second example, the original address is within the region,
so the fault-isolated address is the same as the original
address.

Figure 2: Sandboxing transformations for a store
instruction. In the first case the target is a simple
indirection through a register; in the second case it is a
complex indirection, so a scratch register is first made
available and the target is loaded into the scratch register
before sandboxing. In this example, the size of the assigned
memory region is 64KB (the argument to the andl is
0xffff). Note that all of the added instructions take one

. ._.cycle on the Pentium (assuming that the stack targets of the
any redundancies introduced by the SFI transformatmn)push and pop are in the first level cache). Note: the general

and a new copy of the module is written out. format of x86 assembler instructionsristr src, dest

4.1 Indirect Loads and Stores
Loads and stores that use an indirect address that & de space assianed to the extension
computed at run-time are potentially unsafe. MiSFIT b 9 '

inserts code t@andboxWahbe93] arguments of these in V'\\:I'SFIL-:—rTOi?'iﬂnes :?e Iozdstar;d ‘ngtrhes tmrthef[foolllg;/v-
instructions to force the indirect address fall within a'" Way- FIrSt It InSerts code 16 joad the larget adaress
legal range. into a register (if it is not already in a register). The high

Each user extension is assigned a contiguous regiQ[|tes ;;stz(;;fgésﬁgﬂgrthreen gﬁ?get?]’einggfg iﬁ%‘?ﬁ;ig cff
of memory into which it can write, and a region from ister. The register is th>e/n ugsed in place of the o erandgin
which it can read. (These regions would normally a ' 9 P P

least overlap, if not be the same, but it is not necessary. € gglgildlirrllswu;:oc\/.hether the target address was
MiSFIT requires that the size of each memory P 9 9

region be a power of two; because of this, the high bit Iready in a register, this technique adds either two or

of each adress i he memary regon fegon 1ag ' LY IS0UELOTS e ol oprend s o e
will be the same. To sandbox a memory reference, MiS- 9 9 9

only two instructions are needed, an AND to clear the

FIT simply sets the high bits of the reference to thenigh bits of the register and an OR to set the region tag.

region tag of its associated memory region. Any load o .)) .
sore at would e accessed memory side 1% 0l 045S 8 et sy 3 g MoET
region is thus forced to fall somewhere inside the exten- L) 9

ter (by pushing its current value on the stack), loads the

sion's memory region. Note that if the fault isolated tar-effective target address into the scratch register, masks
get address was already in the extension’s memor arg 9 ' .
F\ the region tag as above, and restores the scratch regis-

riggion should be chosen so that it does not overlap the

region, it does not change. The fault isolated address di or
fers from the original target address only if the original ™~ : .
9 9 y 9 Examples of these transformations are shown in

target address was outside the extension's MeMOR gure 2. Note that in the second case it would be possi-
region (and therefore illegal). Examples of this transfor- 9 ‘ P

mation are given in Figure 1. ble to save the scratch register push and pop if MiSFIT

There is one more detail: in order to preclude the
code from (unsafely) modifying itself, the writable

5. Each instruction is executed in one cycle on the Pentium,
assuming all memory references hit in the L1 cache.

were able to determine that there was a dead rébisteapproximately ten to fifteen cycles to each indirect func-
available that could be used as a scratch register. Thien call.
MiSFIT performance impact is low enough that we have Indirect calls are common in C++ code, as virtual

not yet been tempted to perform this optimization. functions are implemented as indirect calls. When pro-
tecting C++ code with MiSFIT the table of valid func-
4.2 Virtual Function Calls tion targets can become quite large, but the per-

When a virtual function call takes place MiSFIT mustinvocation cost remains low, because the number of
verify that the target address is one that the extension @obes into the table is independent of the size of the
permitted to call. If the extension were allowed to indi-table, depending only on its density, which is under
rectly call to any address, it not only might obtain accesMiSFIT’s control.
to an unsafe function, it also might jump into the middle
of an instruction or into data space, which would opert.3 Global Data, Virtual Function Tables
all sorts of security and safety holes. Because MISFIT sandboxes global memory references,
MIiSFIT restricts the extension by searching a tableany data accessible to the extension must be placed in
of valid function targets on each indirect call from anthe memory region assigned to the extension. If there is
extension. The builder of the base system provides a filglobal data that the extension should be able to access,
with the names of the functions that an extension maghe data should be placed in the memory region assigned
call; an auxiliary tool (provided with MiSFIT) deter- to the extension. This applies not only to global program
mines the start address of each of these functions at lidata, but other shared state, such as virtual function
time, and places the addresses into a table that is linkedbles.
into the base system. The restriction on global program data is a problem
Although there may be an arbitrarily large numberif multiple extensions are to be granted access to the
of valid target addresses, the tool greatly limits searckame datum. A work-around is for the application to
time by storing the valid addresses in a sparsely popyprovide functions to access the data; each extension will
lated open addressed hash table [Cormen90]. An opdye given permission to call these accessor functions, and
addressed hash table is implemented as an array; thee them instead of directly reading and writing the
hash value of the key gives the index of the array talata.
check. When the tool adds items to the hash table, if the This technigue has an impact on performance that is
key hashes ta and locatiom of the table is already in difficult to quantify, as the cost is a function of the
use, it check locationst+1, n+2, and so on, until it finds amount of data that is protected in this way, the fre-
a free slot for the value. When searching for a key in thguency of access, and the type of interface the functions
table, the search function hashes the key, yieldjrqnd provide. In two of the three tests discussed in this paper
then check locatiom of the table. If locatiom has a this cost is not to quantified; in the third, the cost is built
value (but not the key) it checks locationl, n+2, and in to the overall model, but not factored and measured
so on, until it either find the key (signifying success) orseparately.
find an empty slot (signifying failure). Virtual function tables are a different matter. If
One subtle advantage of using an open address@diSFIT is configured to use read protection, virtual
hash table is that if the search function does not find thieinction tables need to be in a region of memory that is
key at locatiom, because the next location checked (atreadable by the extension. The solution we have chosen
indexn+1) is at an adjacent memory location, it is likely for VINO is to store all virtual function tables in a con-
to be in the cache. So, even if it fails on the first probe ofiguous region of memory (by making a one-line change
the table, the cost of subsequent probes is reduced. to g++), and mapping that region into each extensions
By decreasing the density of the table, it is possibleead-only region.
to reduce the number of probes needed nearly to unity
(the theoretical minimum). With a table that has a 50%.4 Block Instructions
density (half the slots are empty) an average of fewefhe x86 instruction set includes memory-to-memory
than 1.5 probes per indirect call are required. The ovemove and comparison instructionsiovs and cmps
head of each probe is roughly six to ten cycles (assunwhich take four or five clock cycles on the Pentium. The
ing everything hits in the L1 cache), adding, on averagesame goal can be accomplished by four one cycle
instructions (assuming a scratch register is available).
However, the memory to memory instructions have the
advantage that they can be used to condtdock move
6. A dead register is one that will not be read again before it iand compare sequences. The r86 instruction can be
written. used as a prefix to the memory-to-memory instructions;

therep prefix instructs the processor to repeat the mem- To solve the problem of an extension overwriting a
ory-to-memory instruction focounttimes, whereount return address on the stack, MiSFIT replaces eatth
is the value in the %ecx register. The block movenstruction within the extension with a call to a support
instruction sequence has a lower per-move overheawutine that saves the return address in a separate stack
than a sequence or loop of individual memory-to-memsoutside the extension’s memory region and then jumps
ory move instructions, and can be generated by compito the called function. MiSFIT then replaces eaeh
ers to perform structure copies and in-line expansions ofstruction with a jump to a second support routine that
common C library functions such agrcmp() and loads the saved return address and jumps to it. In this
bcopy). way, even if the extension misbehaves and overwrites
MISFIT transforms the base addresses and repe#te return address, the system returns to the correct loca-
count of arguments to the block instruction, sandboxindion. To ensure that register values are preserved across
the compound instruction as a whole. Although thisthe invocation of the extension, MiSFIT stores the con-
adds a high fixed overhead to the block instructiortents of all callee-saved registers on entry to the exten-
(roughly 26 cycles), there is no per-element cost. Thsion, and reloads these values when it returns.
alternative, transforming the block instruction into a
loop and sandboxing the instructions in the loop, has 4.6 Dynamic Linking
high per-element overhead; the break-even point for theiSFIT modifies the operands of load, store, and call
two techniques is at three or four iterations. Blockinstructions that are computed at runtime. It does not
instructions are typically used for copying or moving modify operands that are labels, assuming that refer-
more than four elements, so the fixed overhead imposezhces to addresses within the module (i.e. local jumps,

by MiSFIT’s technique is preferable. and loads and stores of module-level variables) are
implicitly safe (generated by the compiler), and refer-
4.5 Saved Registers and Return Addresses ences to addresses outside the module will be checked

Protecting the contents of the stack is also problematidy the dynamic linker when they are resolved. This
The stack is used not only for local variables (whichimplies that the dynamic linker is responsible for keep-
must be accessible to the user extension) but also saved track of which symbols may be linked to by an
registers and the function return address (which shouldxtension. Under some circumstances it may be the case
not be accessible to the user extension). If the usehat not all extensions will be given access to the same
extension could write to arbitrary locations on the stackset of entrypoints. If this is the case, the dynamic linker
the return address of the function could be overwrittens responsible for determining to which entrypoints a
and set to an arbitrary value, circumventing the call progiven extension should be given access.
tection offered by MiSFIT. Relinquishing responsibility for protecting external
A second problem is that the process stack is norsymbols has a limitation. The assembler does not mark
mally not in the same region of memory as the heap anekternal symbols as being for read or write use; a single
global data; MiSFIT’s technique depends on all validexternal reference is generated for all reads and writes.
memory references falling within a single region ofIf there is no read protection, but there is write protec-
memory. In a multi-threaded environment (either ation, there is no way for the linker to discern which ref-
multi-threaded operating system kernel or multi-erences are source (read) references and which are
threaded end-user application) each thread of control destination (write) references — in other words, which
assigned its own stack. In environments where thshould be allowed, and which should be disallowed.
extension can be run as a separate thread of control, To solve this problem, MiSFIT generates a table of
MiSFIT can co-locate the stack assigned to the threadddresses of instructions that write operands that are
(i.e. assigned to the extension) with the memory regioftabels. The dynamic linker can use the information in
assigned to the extension. Then all valid memory referthis table, in addition with the external reference table,
ences made by the extension will fall within a singleto differentiate between read references and write refer-

region. ences at link time.
In environments where there is a single thread of
control, MiSFIT can provide the same type of protectiord.7 An Alternative to Sandboxing on the x86

by providing each extension with its own stack, located On the x86, an alternative to sandboxing exists. The
in its memory region. When the extension is invokedpound instruction checks that a value falls within a
the application switches to the stack associated with thepecified range; if it does not, a trap occurs. If this trap
extension. When the extension returns to the applicazan be caught, the ill-behaved extension can be stopped
tion, the process switches back to the original stack. before it does any damage. It appears thatbthend
instruction was designed to be used for array bounds

checking. since it performs a signed (rather tharonto the extension’s stack. It switches to the extension’s

unsigned) comparison. This does not preclude using gtack, and jumps to the extension.

for SFI. MiSFIT might arrange for all parts of the region When the extension completes, it jumps to the

of memory assigned to an extension have the same sigeturns stub (remember that the extensiosfsnstruc-

(i.e. not cross the border between location fiiff fand tion was replaced by this jump, as described in Section

location 0x80000000), so the signed nature of the com4.5), which switches to the regular stack, loads the saved

parison would not be a problem. The bound instructiomegisters, and returns to the base system.

takes more cycles than the instructions needed to set the The runtime support code also includes the function

high bits of a register (eight vs. two); however, insteadhat implements safe indirect calls (as described in Sec-

of neutering an illegal load or store the bound instruction 4.2). MiSFIT replaces indirect calls with code that

tion would trap an illegal memory access. loads the target function address and calls the hash table
This paper includes results of running tests compartookup function. If the function address is not found in

ing the performance of MISFIT using thieound the hash table by the lookup function, the function calls

instruction and the sandboxing technique described ianabort function, which is responsible for cleaning up

Section 4.1. The results show that the sandboxingfter the extension.

method has superior performance, which is not surpris-

ing, considering the cost of tH®und instruction in 5.3 Extension Free Store Management

comparison with the cost of sandboxing. As the code running in an extension cannot reach out-
side its bounds, if it were to allocate storage usieqy

5 Runtime Support it would not be able to read from nor write to that stor-

MiSFIT includes runtime support for linking extension age. MISFIT provides a small heap in the data area
code as new virtual functions to existing objects, settingssigned to the extension, and simple implementations
up the state of an extension, and managing free store féf the built-innew anddeletefunctions. When MiSFIT

the extension. is processing an extension, it replaces any calls to the
built-in new anddeletefunctions with calls to the MiS-
5.1 Virtual Function Table Manipulation FIT versions.

In the MiSFIT model, an extension is used to modify the
behavior of a single object, by replacing a virtual func-6 ~MISFIT Overhead
tion of that object. MiSFIT accomplishes this by makingThis section compares the performance of unprotected
a copy of the virtual function table for that object andcode (written in C or C++) with the MiSFIT-protected
writing a new value into the slot corresponding to theversions. Times are reported as a percentage of the
replaced function. unprotected versions. Performance numbers for both

The process by which an extension is called iswrite-call (where store and call instructions are pro-
somewhat baroque. MISFIT can not just replace theected) and read-write-call (where load, store, and call
address of the old function with the address of the newljnstructions are protected) tests are included. As pointed
loaded function in the virtual function table. As outlined out above, read protection is typically a requirement for
above, when an extension is called its sandbox needs $ecurity, not for correctness.
be configured.

6.1 Operating System Extensions

5.2 Calling The Extension In previous work [Small96], we examined the suitability
When an extension is installed, a small assembler stulif various extension technologies for constructing oper-
function (similar to a closure) is created. This stub isating system extensions. Three tests were developed and
responsible for configuring the sandbox and calling theised, with each test representing a class of possible OS
extension. The stub is specific to the particular extenextensions. Following is a short description of each test;
sion, because it includes the addresses of the extensiofite@ more detail, the reader is directed to the earlier
sandbox regions, as well as the address of the extensipaper.
function itself. hotlist: choose which page to evict from a linked list

The stub sets up the sandbox for the extension. It of page descriptors.
first saves callee-saved registers (as MISFIT does net lld: simulate the operation of a logical disk layer
trust the extension to do so). The stub sets up the global [DeJon93].
variables that hold the region tags for the read and write md5: compute the MD5 checksum [RFC1321] of
(source and destination) regions assigned to the exten- 1MB of data.
sion, and copies any arguments passed to the extension The tests were run on a 120MHz Pentium with

64MB of EDO memory, running BSD/OS 2.1. Each test

and its data fit into main memory. Times are reported MiSFIT MiSFIT

relative to the unprotected version of the code. The Write-Call Read-Write-Call
results are found in Table 1. Test Protected Protected
The write-call overhead for these tests is low, at (MiSFIT/ (MiSFIT/
most 10%. The overhead for read-write-call protection unprotected) unprotected)
can be much higher, over 200%. compress 1.09 1.26
In our earlier work we computed a break-even point espresso 1.15 1.76
for each operating system extension. If the cost of using eqntott 1.02 1.68
the extension is below the break-even point, the exten- i 1'17 1.61

sion will improve overall system performance; if it
above this point, it will degrade system performancelable 2: Overhead of protection on SPECInt benchmarks for
The three write-call protected tests fall below the brealMiSFIT, relative to unprotected code. MiSFIT times are the
even point, as do the read-write-call versionicbind ~ mean of ten runs. Standard deviations were less than 1%,
md5 but the read-write-call version bbtlistdoes not. ~ €xCcept focompresswhere it was 2.6%.

MISFIT MISFIT server, these results give a feeling for the overhead
Tost VF\)/”tf'ciag ReaF():i—Vt\/ntte—éjaII imposed by MiSFIT on “typical” code. (To better esti-
rotecte rotecte - :
X X te th h
(MISFIT/ (MISFIT/ mate the overhead imposed by MiSFIT, the tables only

include time spent at user level.)

_ unprotected) unprotected) The write-call MiSFIT overhead for the SPEC92Int

hotlist 1.00 3.2 code is comparable to that of MiSFIT on the operating
lid 1.07 14 system extension benchmarks, ranging from a factor of
md5 1.09 1.7 1.02 to a factor of 1.17. As is seen above, the overhead

Table 1: Relative overhead of MiSFIT-protected code to of read-write-call protection is higher than the overhead

unprotected code on operating system extension benchmar@r write-call protection, on the order of 1.26 to 1.76.

The cost of isolating writes and indirect writes is low, underThis overhead is large, but still substantially less than

10%, but the cost of protecting reads as well can bdhat of an interpreted language.

prohibitively high. For memory-intensive applications, such as data

copies, a higher overhead should be expected. The over-
The performance of the write-call protecteatlist head seen is, of course, a function of the ratio of pro-

is equivalent to the unprotected version. This is becaudected instructions to unprotected instructions.

there are very few protected write instructions executed

during the test. Because the kernel of the test repeatedby3 VINO Kernel Extensions

scans a linked list of page descriptors, the number dfliSFIT is used to protect the VINO operating system

read instructions executed is very high. This bias ikernel from misbehaved end-user extensions. We mea-

reflected in the performance of the read-write-call prosured the performance overhead of MiSFIT on four ker-

tected version of this test, where the overhead is moreel extensions [Seltzer96], and include these results

than 200%. here. For these tests we used MiSFIT for read-write-call
The lld test has a noticeable but small write-call protection, and the overhead shown is in line with the

overhead of 7%; read protection adds another 33%. Thidverhead seen above.

test is not as read-intensivelatlist, so the added over- The Read-aheadextension specifies which disk

head of read protection is much lower. Thé5test has block to read next, by returning a value found in its

similar performance characteristics, with a sub-10%memory region. This code performs little computation,

write-call overhead, and an additional 60% overhead foso the overhead imposed by protecting its loads and

read protection. stores dominate its performance.
The Page Evictiorextension is similar to thieotlist
6.2 SPECInt92 extension described in Section 6.1, but instead of

This experiment shows the results of several SPECInt9gearching a linked list it searches an array. Because there

benchmarks processed by MiSFIT, using write-call ands less pointer chasing, the overhead imposed by MiS-

read-write-call protection. The performance of the MiS-FIT is lower.

FIT-protected code relative to native code is reported in Each time theSchedulingextension is called it

Table 2. searches a list of 64 process IDs. Because the code that
Although it is unlikely that anyone would want to traverses the list is trusted code (is part of the base sys-

load a SPEC benchmark into a web browser or database

tem, outside the extension itself, unlike in the case of What Is Missing

hotlis), the overhead of using MiSFIT is much loker As shown in Section 2, SFI is not a complete solution.
The fourth extension, which performs a simple The MiSFIT package does not include a safe runtime

encryption of a data stream, is data intensive. It copiesupport library, which would be specific to the base sys-

8KB of data from an input buffer to an output buffer, tem. This support library would be responsible for

applying a trivial (XOR-style) encryption to the data. ensuring that extensions do not violate their resource
This extension was designed to be a worst-case tegitations.

for MiSFIT, with little computation done between each Extensions do not have access to the g|0ba| heap; a
data load and store. The MiSFIT version of the COdQ/ersion of malloc (or new) is needed that allocates

takes slightly more than twice as long as the unprotecteghemory from a pool inside the extension’s writable
code. It is theoretically possible for MiSFIT-protected memory region.

code of this form to take as much as six times as long as MiSFIT does not include a dynamic linker.

protected code (remember MiSFIT can add five inStrUCDepending on its app"cation’ a dynamic linker may

tions for each load and store), but it is difficult, if not already be part of the system (e.g., NetBSD). The
impossible, to construct a real-world example whergjynamic linker, or some code-signing tool, would be
every instruction is a load or store. One possible case fg@sponsible for verifying that the loaded code had been
when data is being copied directly from one buffer toprocessed by MiSFIT.

another (as is done in this example), but the overhead One restriction that is not currently addressed, but
seen here is 100%, not 500%. In the case of a straighhould be, is the difficulty of passing arguments and
data copy (using the x8@p; movs instruction pair), returns by reference. When calling an extension, the
MIiSFIT uses a different technique for fault isolation calling stub pushes arguments onto the extension’s

which has lower overhead (see Section 4.4). stack, but these arguments are currently restricted to
MiSEIT immediate values. If the base system wants to pass an
Read-Write-Call argument by reference (via a pointer) there is currently
Test Protected no way to do so. Additionally, there is no way for an
(MiSFIT/unprotected) extension to pass back data other than as the return value
Read-ahead 25 of the function or by storing the results in its writable
Page Eviction 1.2 memory region for later retrieval by the base system.
i The solution to this limitation is the application of
Schedu!mg L1 standard techniques for marshalling and unmarshalling
Encryption 2.1 arguments for remote procedure calls. By specifying the

Table 3: VINO Kernel Extensions: MiSFIT was used to number and types of parameters to the extensions with
apply read-write-call protection, which causes overhead in lin@n interface definition language, extension-specific stub
with the results seen above. Each test was run between 3fUnctions could be generated that would copy arguments
and 3000 times; the standard deviation of each result was leggto the extension’s address space when it is called, and

than 2.5%. copy results back to the base system when it returns.

8 Conclusions

6.4 Performance Summary The overhead imposed by MiSFIT when it is used for
With read-write-call protection MISFIT protected code jte and call protection is small. It allows applications

can take from 1.4 to 3.2 times as long as unprotecteghy emels to be protected from end-user extensions

code. Although this overhead may seem large, it shoulfiten in otherwise unsafe languages. Unlike other
be compared to the overhead of an interpreted safe lagsgs it is freely available. As part of an end-to-end

guage, such as current Java implementations (which amy|tion to the problem of constructing an extensible

20 to 50 times slower than compiled C code), or the diséystem MiSFIT can provide safety at low cost.
advantage of writing extensions in an unfamiliar, but ’

safe, compiled language, such as Modula-3. 9 Availability

MiSFIT is covered by a BSD-style license, and is avail-
able for public use without fee. Contact the author
(chris@eecs.harvard.edu) to obtain a copy of the code.

7. Calling trusted code outside the extension is analogous to a
Java application calling native methods, which are
implemented in compiled C or C++.

10 Acknowledgments and Apology [HO1ze94] Holze, U., Ungar, D., “Optimizing Dynami-
The members of the VINO Operating System project, ~cally-Dispatched Calls with Run-Time Type Feed-
Prof. Margo Seltzer, Keith Smith, Yasuhiro Endo, and back”, PLDI ‘94, Orlando, FL, June 1994.

David Holland, are implicitly included and thanked [Mazieres96] Mazieres, D., personal communication.
wherever first-person plural is used in this paper. KeitrlNelsongl] Nelson, G., edSystems Programming with

Smith’s eagle-eyed proofreading of the final draft was Modula-3 Prentice Hall, Englewood Cliffs, NJ
greatly appreciated by the author. 1991 ’ B

To circumvent use of both the awkward-sounding
first-person singular and the royal “we,” work done by) N .
the author has been ascribed either to the paper itself or ﬁlgﬁr;gg]z’ Network Working Group RFC 1321,
directly to MiSFIT. Only where completely unavoidable pri :
was passive voice used. The author apologizes, prdRSA] ftp:/ftp.rsa.com/rsaref

[RFC1321] Rivest, R., “The MD5 Message-Digest

fusely, to the linguistically offended. [Seltzer94] Seltzer, M., Endo, Y., Small, C., Smith, K.,
“An Introduction to the VINO Architecture,” Har-
Bibliography vard University Computer Science Technical Report

. TR-34-94, 1994.
[AdI96] AdI-Tabatabai, A., Langdale, G., Lucco, S.,

Wahbe, R., “Efficient and Language—lndependem[se,litzerg_e] Se!tzer,_M., EI’.]dO, Y_.,_Smal_l, C., Smith. K.,
Mobile Programs,PLDI ‘96, Philadelphia, PA, 127- Dealing With Disaster: Surviving Misbehaved Ker-
136, May 1996 ’ ' Y nel Extensions,Proc. 2nd OSDISeattle, WA, 213—

228, October 1996.
[Banerji96] Banerji, A., Panteleenko, V., Wyant, G., __. . B . .
Cohn, D., “Quantitative Analysis of Protection [Silver96] Silver, S., “Implementation and Analysis of
) P A - Software-Based Fault Isolation,” Dartmouth College
Options,” University of Dame Technical Report TR- . !
o020 1oe P Technical Report PCS-TR96-287, 1996.
’ “ Ty - [Small96] Small, C., Seltzer, M., “A Comparison of OS
Bloor96] Bloor, R., “The Capabilities of lllustra and its [))
[] pabim . ! Extension TechnologiesProc. 1996 USENIX Tech-

Integration with Informix DSA," ;
http://www.informix.com/informix/corpinfo/zines/ ngé ConferenceNew Orleans, LA, 41-54, January

whitpprs/bloor/contents.htm
: hbe93] Wahbe, R., Lucco, S., Anderson, T., Gra-
Bersh Bershad, B. . P K, P. a » R e b 1
[Bershad9d] Bershad, B., Savage, S., Pardyak, ’Slréy’vham, S., “Efficient Software-Based Fault Isola-

E. G., Fiuczynski, M., Becker, D., Eggers, S., Cham- ~ " :

bers, C., “Extensibility, Safety, and Performance in Eon' ;roi'gégth SOSHsheville, NC, 203-216,
the SPIN Operating SystenPtoc. 15th SOSRCop- ecember :
per Mountain, CO, 267-284, December 1995.

[Cormen90] Cormen, T., Leiserson, C., Rivest,|Rrp-
duction to Algorithms 232-241, The MIT Press,
Cambridge MA, 1990.

[DeJonge93] de Jonge, W., Kaashoek, M. F., Hsieh, W.,
“The Logical Disk: A New Approach to Improving
File Systems,Proc. 14th SOSFAsheville, NC, 15—
28, December 1993.

[Engler95] Engler, D., Kaashoek, M. F., O'Toole, J.,
“Exokernel: An Operating System Architecture for
Application-Level Resource Managemengroc.
15th SOSP Copper Mountain, CO, 251-266,
December 1995.

[Fall93] Fall, K., Pasquale, J., “Exploiting In-Kernel
Data Paths to Improve I/O Throughput and CPU
Availability,” 1993 Winter USENIX Conference,
San Diego, CA, 327-334, January 1993.

[Gosling96] Gosling, J., Joy, B., Steele, Ghe Java
Language SpecificatipmAddison-Wesley, Reading,
MA, 1996.

