
The following paper was originally published in the
Proceedings of the Third USENIX Conference on Object-Oriented Technologies and Systems

Portland, Oregon, June 1997

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

Obtuse, a scripting language for migratory applications

Robert P. Cook
Dept. of Computer and Information Science

University of Mississippi

Obtuse, a scripting language for migratory applications

Robert P. Cook
Dept. of Computer and Information Science

University of Mississippi
www.cs.olemiss.edu/~bobcook; bobcook@cs.olemiss.edu

Abstract
This paper discusses the design and implementation of
Obtuse, a scripting language for migratory
applications. The paper reviews the pertinent ActiveX
technology that provides the runtime object
infrastructure. Then we discuss the Obtuse object
model and present an overview of the language. Next,
several sample programs are used to illustrate the
concepts. Finally, we review some of the problems
with DCOM, based on our experience.

Keywords: scripting language, Obtuse, migratory
applications, Obliq, distributed systems

1. Introduction
Obtuse was designed by the author, inspired by
Cardelli’s Obliq [1] and Bharat’s Visual Obliq[2]
systems, and implemented as part of a summer
research appointment at Microsoft Corporation. The
goal was to explore the potential of several core
ActiveX technologies [3,4,5], including COM
(Component Object Model), Automation, and DCOM
(Distributed Component Object Model).

Obtuse is unique in two respects; first, in its synergistic
use of ActiveX technology and second, in its ability to
transfer the state of a Visual Basic form from one
machine to another. A migratory application is one
that can transfer program state (including the user
interface) to different Internet locations under program
control. Other terms used in the literature are mobile
or transportable agents. Obtuse is also a scripting
language; that is, it defines sentences capable of being
executed as fine-grained code fragments.

As an example of transferring UI state from one
machine to another, consider the Visual Basic (VB)
form in Figure 1, which consists of an edit control and
a button. The form is used in a simple, routing-slip
application. The user can type a command line, such as
“obtuse poll m1 m2 m3” to initiate execution. The list
(a routing slip) represents a sequence of computers to
visit. The DCOM infrastructure is utilized by the

Obtuse runtime to implement the remote activation
that is necessary to support the routing-slip application.

The form is circulated to the machines in the order
listed. The accumulated comments are available to
each recipient and the completed form, with all
comments, is returned to the source machine. When
one user clicks the OK button, the form is moved to the
screen of the next computer in the list.

Figure 1. User Interface for a Roving Poller

We refer to programs, such as the routing-slip
example, as in-your-face applications. When one user
clicks the routing slip’s OK button, the document
appears instantaneously on the screen of the next
recipient. Most word processors also support routing
slips by using e-mail as the transport mechanism.
However, users are only notified if an e-mail client is
executing at a site and if they decide to read their mail.

In the routing-slip application, the code, together with
its execution state, can also migrate from one machine
to another with the form. Obtuse implements program
migration by exposing threads and contexts (a
program’s global variables) as COM objects.

Figure 2 lists a simple Obtuse program that moves
itself from one machine to another. In Obtuse, a
running program is a collection of COM objects, which
support an Automation interface. The sample program
creates a thread and a context object on a remote
machine. Next, the Fork method of the running-thread
object is invoked to clone the program’s state. At this

point, there are two threads executing, one locally and
one remotely. However, since they have duplicate
contexts, any object references in one are duplicated in
the other. As a result, the remote thread can access
objects on the parent machine in a location-opaque
fashion.

// Note that variables are “typed” at runtime
var me, thread, context, where;
me := self; // a reference to the executing
thread
print(“parent process starting”);
where := “louie.cs.olemiss.edu”;

// create a remote thread
thread := object("Bob.Thread", where);

//create a remote context
context := object("Bob.Context", where);

//duplicate myself at “where”
if me.Fork{thread, context}=1 then
 print(“ parent stopping”);
 quit; // 1 returned to parent; it
quits
end;
print(“we made it to”, where);
quit;

Figure 2. A Sample Obtuse Program

Obtuse is unique in that the mechanisms to support the
runtime (threads, contexts, stacks) are all COM
objects. Another unique aspect is that Obtuse uses
Visual Basic forms to implement user interfaces.
These forms can also be marshaled in order to
transport their state from one machine to another.
Since Obtuse is based on COM, it can be used to
manipulate any COM Automation object, which
includes all Office applications and ActiveX controls.
The DCOM infrastructure supports the remote location
and activation of COM objects.

Other features of Obtuse include support for script-
based execution, support for multiple threads, runtime
strict typing, and a machine-invariant program
representation. An Obtuse program can consist of a
sequence of expressions with no variables, a series of
statements on a set of global variables, or a collection
of procedures. Furthermore, an Obtuse program can
invoke an Automation object’s methods and access its
properties at runtime; it is not necessary to “import” or
“include” interfaces.

Obtuse does not support compile-time type binding.
The type checking in expressions and procedure calls
is performed at runtime. However, Obtuse is “strict”;
that is, types must match exactly on operations such as
comparison or multiplication. Variables are bound to a

type on runtime assignment. From that point on, until
another assignment occurs, that variable must be type
compatible with every operator that is applied to it.

Programs are UNICODE-based and compile to a
machine-invariant representation that encodes the
source program. That is, the object code can be
inverted to recover the original source, including
comments.

The paper first presents an overview of ActiveX
technology. Then we discuss the Obtuse object model
and present an overview of the language. Next, several
sample programs are introduced to illustrate the
concepts. Also, we present some performance
measurements for Obtuse/ActiveX. Finally, we review
some of the problems with DCOM based on our
experience.

2. ActiveX—COM and DCOM
The two most important aspects of ActiveX for
scripting support are its implementation of dynamic
method binding and invocation, as well as self-
describing types. Dynamic method binding is the
technology (Automation) that enables Visual Basic
applications to manipulate Office documents, such as
spreadsheets or slide presentations. It also enables
HTML scripting support (VBScript) in Microsoft’s
Internet Explorer 3.0.

The dynamic, or late, binding technology enables an
object to expose methods and properties for use by
other objects. The technology also supports the lookup
of method and property names and a mechanism to
build and execute a procedure call at runtime. It is a
separate set of code from COM.

Self-describing types (or variants as they are termed in
COM), are the key, underlying representation for data
types in the Visual Basic language common to
VBScript and VB. In the next sections, we present an
overview of COM and DCOM.

2.1 COM – Component Object Model
An “object” in COM typically has a document type,
such as .xls, .ppt, .doc. Each document type can have a
registered server. For example, winword.exe is the
server for *.doc objects. Objects also have a registered
application name (e.g. “Microsoft Word Document”)
and a globally-unique identification number, called a
class id (CLSID).

The association between a class and its server is
maintained in a persistent store called the registry.

There is one registry per machine and there is
currently no “yellow pages” server to support object
lookup for distributed services, although one is reputed
to be available shortly.

The COM model is language independent; it may have
a concrete implementation in a particular language,
such as C++, but the relationship between COM and
different languages is orthogonal. For example,
Obtuse is implemented in C++ but it uses COM
objects, which are implemented in Visual Basic, to
define its user interface.

A COM object is defined by its support for a collection
of interfaces, each is which is tagged by a 128-bit
globally unique interface identifier (IID). The
interfaces that an object supports can vary over time;
and the interfaces need not have any other relationship
(such as inheritance). There is only one requirement
i.e. EVERY COM INTERFACE MUST INHERIT
FROM THE IUnknown INTERFACE, which is
listed in Figure 3.

virtual HRESULT QueryInterface (
InterfaceID & riid,
LPVOID * ppvObj)=0;

virtual HRESULT AddRef(void) = 0;
virtual HRESULT Release(void) = 0;

Figure 3. COM IUnknown Interface

The power of COM derives from several of the
requirements satisfied by the IUnknown
implementation. First, QueryInterface must be used to
obtain an object handle for an instance variable x (as in
x.Queryinterface) that supports a particular interface
(identified by the InterfaceID argument). If the object
x does not support the interface, the HRESULT
returned indicates an error. In C++, a COM object
handle is a “pointer to a pointer to a vTable”. The
vTable is generated in C++ because the interface is
“pure virtual”, as are all COM interfaces.

Since every interface is required to inherit from
IUnknown, any object handle can be used to retrieve a
handle for any interface that the object supports by
calling QueryInterface at any time. Further, the object
handles are reference counted. QueryInterface
increments an object’s reference count and so does
AddRef. A Release call decrements an object’s
reference count.

2.2 DCOM – Distributed COM
DCOM extends COM in a number of ways. First,
objects can be remotely activated and a handle returned

to the activating site. The returned object handle can be
used by a program in a location-opaque fashion; that
is, the programmer need not be aware of the object’s
location. Second, DCOM imposes location, security
and identity restrictions on COM objects. Each site
has total control over who can activate an object, how
objects are activated, and with what permissions object
servers can execute. Third, DCOM implements
reference counting across machine boundaries and
garbage collection. Finally, DCOM automatically
remotes calls to COM interfaces that are supported by
remote objects. For user-defined interfaces, an IDL
compiler must be used to generate proxy stubs for the
client/server sides. Typically, both stubs are included
in a single DLL.

2.2.1 Remote activation
The DCOM method to activate (cause its server to be
loaded) a remote object is CoCreateInstanceEx. The
arguments to the method are the object’s class id, a
machine name, and a list of interface ids.

Machines are identified using the naming scheme of
the network transport layer. By default, all UNC
(\\chairpc) and DNS names (“chair.com” or
“135.9.19.33”) are supported. Object search is
restricted to a single machine at present. DCOM has
no notion of distributed scope or of distributed search
paths.

To optimize network performance, the CoCreate call
may specify a list of interface ids. Thus, N object
handles can be retrieved in a single round-trip to the
server site. Conceptually, this is analogous at runtime
to the “import java.lang.*” convention in Java, which
can be used to import all of the classes in a package at
compile-time.

2.2.2 Access control
Access to objects can be regulated under program
control using the NT security API; however for most
Obtuse users, the utility program dcomcnfg is the point
of control. This program lists the application objects
that are “registered” on a particular machine. The
Location, Security, and Identity of each object can be
separately controlled. The Location options are “run
here” or “run there”. The latter option supports
forwarding a requested activation from one computer
to another. The Security option supports editing the
access control lists (ACLs) for activation, access and
configuration. NT provides very fine-grained access
control so that individual users, or groups, can be
specified.

The Identity option designates the protection domain in
which a server is executed. The choices are the
domain of the interactive user, the launching user, a
particular user, or a system service. For example, the
“particular user” option can be used to solve the “game
accounting” problem, which is to let a user run a game
program that can write its list of winners to a file that
is not accessible to one of the players. The appropriate
protection domains can be created by having one
DCOM object (player’s domain) to play the game
communicating with another DCOM object (game’s
domain) to record the scores.

2.2.3 Reference counting
As we discussed in Section 2.1, COM defines a
mechanism to reference count object handles. If a
program fails, any cross-process links must be broken
to properly release objects. Similarly for DCOM, the
system must account for inter-machine links and must
break links when processes terminate or fail. For
distributed systems, there are also the possibilities of
node crashes and communication outages. The DCOM
implementation addresses these problems.

2.2.4 Remote procedure call
DCOM automatically remotes inter-node calls on
COM interfaces. The arguments are marshaled
through the normal remote procedure call (RPC)
mechanism. RPC on user-defined interfaces requires
the use of the IDL compiler to generate client- and
server-side proxy stubs.

The automation interface (IDispatch) can be used to
“late bind” a procedure call; that is, a program can
build a procedure call at runtime. The automation
interface provides the object-access infrastructure for
any scripting language, such as Obtuse, VBScript,
JavaScript or AppleScript.

COM supports the registration of type libraries that
describe an object’s properties and methods (also
argument lists and return values). As a property
example, a button object might have BackgroundColor
and Text properties, which could be accessed or
modified remotely using Obtuse. The IDispatch
interface includes methods to “query” for the id of a
method or property name and then to “invoke” that
method or “access” that property. The Automation
runtime builds the argument list in a format that is
compatible with the target language and handles the
call/return processing.

2.2.5 Variant data
Another aspect of the automation solution is a
“universal” data type termed a variant. A variant is a
“union” of about 40 different base types that also
includes arrays of those types, and arrays of arrays. An
array can be created with homogeneous elements of a
particular type or with variant-type elements, each of
which can be of any type.

IDispatch and IUnknown object handles are two of the
possible variant-record base types. Since IDispatch is
one of the “builtin” COM interfaces, it is remoted
automatically by DCOM. In Obtuse, all argument lists
to procedures, return values, and property values are
encoded as variant data.

3. Obtuse Language Overview
The Obtuse system consists of a compiler and an
interpreter, and a collection of COM objects. The
compiler’s output is a UNICODE text string that
encodes the source program, including comments. The
executable can be inverted to produce the original
source program. Thus, after a program is initially
compiled, there is only one representation, which can
be used for both execution and symbolic debugging.

Obtuse supports only one data type (variant), so a
variable declaration is just a list of identifiers. The
type is implicit. A form of type checking is supported
based on the notion of assignment-typing. Basically,
every assignment statement binds a new type to an
identifier as well as a new value. Expression
evaluation is type checked at runtime. There is no
implicit conversion as in VB; that is, type checking is
“strict”.

In Obtuse, the “object” built-in function maps a
registered object name at a particular machine to an
object reference. For example, the function call
object(“Bob.Thread”, “foo.univ.edu”) would check
the registry on the designated machine and then load
the server if necessary.

Once an object reference is obtained, the program can
manipulate the properties of that object or invoke its
methods. Assignment of object references copies the
reference, not the value, even if the assignment crosses
machine boundaries. The DCOM reference counting
infrastructure tracks each copy. For assignment of
other variant values, including arrays, Obtuse copies
the value. The rule is simple: sharing can only be
accomplished through COM objects.

Obtuse implements a common set of statements such as
if , loop, for , case, in addition to variable and method

declarations. Pointer, structure and class declarations
are not supported. A qualified reference can be used to
access an object’s properties. Since an object’s methods
are dynamically bound using the IDispatch automation
interface, the compiler cannot perform checking for
undefined names or mismatched argument lists. To
facilitate some checking, calls to Obtuse procedures are
delineated with the traditional “()” and calls to an
object’s methods use “{ }”.

As mentioned earlier, Obtuse programs are encoded as
UNICODE strings. Sufficient information is retained
in the encoding to invert the object code to the source.
The opcodes were designed to use a character encoding
so that program fragments could be embedded in
documents, sent as mail messages, or be applied as
drag-and-drop operators on user-interface objects.
Figure 4 lists several example encodings. The blank,
tab, and new-line opcodes are no-operations.

The “ opcode designates a constant. Constants are
translated at runtime so the opcode includes a type
designator, the length of the string, and the text
constant. This is not very efficient but it does avoid
representation issues, such as for floating-point
numbers. Small integers are encoded as individual
opcodes. The opcode design also took into account the
requirements for the next version of Obtuse in which
type modules, such as Complex numbers, could be
called upon to parse their own constant representation.

Code Fragment Encoding
print(3/24/76); “ D073/24/76 p0 q
print (3+45); 3 ” L0245 + p0 q
if a>3 then y := 6; Y3 L1 3 : > I005

6 S2 J015
elsif a>2 then y := 8; Y4 L1 2 : > I005

8 S2 J007
else y := 9; end; Y5 9 S2 Y6

OpCode Key
“ Load Constant
Y Syntax Marker
L Load Variable
S Store Variable
: Compare

I/J Forward Jumps

Figure 4. Program Encoding Example

The Y opcodes encode the syntax of the source
program. Even the comments in the source are
encoded, but the comment opcode is treated as a no-op
at runtime. The compiler attempts to generate code for

branch instructions so that syntax markers are not
included in loops.

4. Obtuse Object Model
The initial Obtuse implementation supports FORM,
FILE, MUTEX, THREAD, CONTEXT, and STACK
objects. FORM objects are Visual Basic forms, which
can contain any VB control. Each FORM object
represents one VB form. Since there are hundreds of
different VB controls, the Obtuse user interface model
has a broad range of capabilities. As a result, forms
can be constructed as the user interface for almost any
application.

The FORM interface is implemented as a Visual Basic
program. VB supports the creation of programs that
support COM interfaces (particularly IDispatch, the
Application Automation interface). As a result, these
programs, can be activated remotely using DCOM.
We implemented (in VB) a form-server object that
supports Form, Item, Save and Restore methods. The
Form and Item functions return object references to a
form or to any of the controls on that form. Once an
object reference is obtained, Obtuse can set or retrieve
the properties of a form or control. For example, the
“value” property of a scroll bar is a numeric quantity
that can be used to get/set the thumb position.

In the current prototype, a programmer constructs a
user interface with a VB program called GenForm,
which is part of the Obtuse system. When GenForm is
executed, it writes a file that contains a text array
constant that “defines” a form. The array constant is
then inserted into an Obtuse program as a “resource”.
The Restore method causes the VB form-server object
to display the previously-saved “look”. A VB form is
encoded/decoded by Save/Restore as a text array.
Figure 5 illustrates the encoding of the Roving Poller
form that was displayed in Figure 1.

[12345, 12, 3, 15, 4, 5535, 1, 2145,5,
16776960, 2, "Roving Poller", 23456,
14,3, 72, 4, 144, 0, 89, 1, 41, 5,
-2147483633, 2, "OK", 45678, 12, 3, 0,
4, 88, 0, 125, 5, -2147483633, 2,
"Enter your comments below:",
56789, 12, 3, 16, 4, 0, 0, 361, 1, 49, 6,
""]

Figure 5. Array Constant for a VB Form

To save space when creating a new form, the GenForm
program only saves the differences between a canonical

set of control values and those specified by the user.
For example, the “top” and “left” properties are almost
always changed; the “visible” property is rarely
changed. Since VB has a large number of properties
for each control, this convention saves considerable
space.

Obtuse has the unusual property that the mechanisms
of the language implementation are objects, in fact
DCOM objects. Remember that a DCOM object can be
activated on any machine. The Obtuse interpreter is
only required to run Obtuse code, not remote objects.
This is one of the main differences with Obliq and
other distributed application systems, which require an
instance of their interpreter at each node.

A FILE object supports I/O on files and directories
anywhere in the Internet. Interestingly, DCOM can
pass a file handle from one machine to another and the
handle retains its validity. This is not possible with
NT, the host operating system. Since activating a
FILE object is necessary to access files and since
DCOM implements per machine and per object access
controls, the user has full control over the safety of the
system.

A MUTEX object is used to implement critical section
synchronization for shared variables or resources. The
supported methods are Enter and Leave.

The Obtuse object model takes unique advantage of
DCOM’s capabilities. First, thread and context (a
program’s global variables) objects can be created on
any DCOM machine on the Internet so that a thread on
one machine can opaquely access variables on any
other machine’s context. Figure 6 lists the attributes of
the three Obtuse program objects – Thread, Context,
and Stack.

A context can be shared among any number of threads,
local or remote. For example, a master debug console
can easily be constructed to monitor the modification
of contexts located all over the world. Finally, a thread
can migrate by simply forking its state to a new
machine and killing the parent thread. Since a context
is one of the arguments to the Fork method, the new
thread can be created with its own copy of the parent’s
context or it can share the parent’s context. All object
references are marshaled properly by DCOM on inter-
machine transfers so that programs remain completely
location opaque.

STACK objects are always co-located with their thread
objects; however, they still are DCOM objects. There is
no requirement that execution be “procedure based”.
The interpreter can evaluate formulas with only a stack
and a code string. When a thread is marshaled to be

transferred to another machine, the stack content,
including return addresses, is converted to a portable
format.

In the COM model, objects are normally created by
server front-ends called class factories. The separation
of request and creation on a per-type basis provides a
way to create many different types of servers for each
object type. Remember that in COM an object is
defined by the interfaces that it supports, not by its data
structures or algorithms.

4.1 The thread object
In the current implementation, a THREAD object
contains a code string, an IDispatch object handle to a
context object, two object handles to a stack object, and
type information (used by IDispatch, described later).
The IOperator interface defines methods such as Add
and Subtract; the IProcedure interface defines methods
such as Frame and Return (used for procedure
call/return). The latter interface may be omitted for
calculations that do not involve procedure calls.

DATA OBJECT
INTERFACES

THREAD Code string
Context
Stack
Type Info

Com.IUnknown
Com.IDispatch
IThread

CONTEXT Array Variants
Type Info
Persist flag

Com.IUnknown
Com.IDispatch
IObject

STACK TopOfStack
ProcFrameIndex
FrameTopStack
Array of Frames
Array Variants

Com.IUnknown
Com.IDispatch
IOperator
IProcedure

Figure 6. Obtuse Program Objects

When a thread starts execution, it binds to an IObject
handle. For efficiency (since a context holds global
variables), the IObject interface was compiled by the
IDL compiler to generate proxy stubs. As a result,
references to a remote context, must pass through a
proxy DLL, which must be registered at that site.
Accessing global variables using the IObject interface
is much faster than using IDispatch.

Figure 7 lists the IThread interface, which contains
methods for creating a thread, marshaling its state, and
controlling its execution. Migrating a thread or object
depends on support for marshaling its state. In theory,

any system, such as C++ or Java, could support
migration.

4.2 The context object
A context object is a vector of global variables. Since
all variables in Obtuse are represented using the
variant data type, a context is just an array of variants.
Further, since an array of variants is also a variant
type, a context is marshaled automatically by DCOM
when passed from one machine to another.

METHOD ARGUMENTS USE
Open Code string Start a thread with a

default context
OpenEx Code string

Initial pc value
Initial context
State to restore
Suspend flag

Restart a thread
from a saved state

Fork Thread object
Context object

Clone the current
thread and context

Join Timeout value Wait for a thread to
terminate

Suspend Stop a thread
Resume Start a thread
Sleep Delay value Timed delay
Code Retrieve code string
Context Retrieve context

handle
Stack Retrieve stack

handle

Figure 7. The IThread Interface

The IObject interface, which is listed in Figure 8,
describes the methods to store and retrieve Obtuse
variables. The Get/Put methods access simple
variables; GetIndex/PutIndex access arrays. Since all
Obtuse variable locations are the same size, variable
addresses are just indices (e.g. 0,1,2 etc.).

Array access is implemented by passing the entire
subscript list as an argument. This approach is more
efficient for remote access than evaluating one
subscript at a time. In Obtuse, array assignment is “by
value”. The only way to generate a “reference” in
Obtuse is by creating a COM object.

The context class interface contains a number of helper
functions (save, restore, persist, sweep) that are
intended only for local use. The “save” and “restore”
functions are used to clone a context. The “persist”
helper function toggles a flag that indicates whether a
context should be retained after its thread terminates.

This option is useful for debugging and also for writing
programs that inter-operate by passing contexts back
and forth. Used in this way, a context is somewhat like
a COMMON block in FORTRAN.

METHOD ARGUMENTS USE
Get Index Access a variable
GetIndex Index

Subscript list
X[a, b, c]

Put Index Store a variable
PutIndex Index

Subscript list
X[a, b, c] = 3

Figure 8. The IObject Interface

The “sweep” helper was introduced after we discovered
that many of our early programs were leaving objects
scattered all over the network. The program in Figure
1 illustrates the problem. A remote context is created
and then the local context is “cloned” into it.
However, the new context now has a reference to itself,
since its handle was in the original context. As a result
of this circular reference, DCOM never called the
destructor for the context when the thread terminated.
The “sweep” method addresses the problem by clearing
all object handles in a context when its thread
terminates.

4.3 The stack object
As mentioned earlier, there is a one-to-one relationship
between a stack and a thread. By design, a stack can
never contain a reference to itself so circular references
are prevented. Stacks and threads are always co-located
for efficiency. In Obtuse, a stack is a vector of variant
values and may also have an associated vector of
frames (if procedures are used by the code fragment).

This design is somewhat unconventional in that most
systems embed the call chain within the evaluation
stack. The disadvantage is that the chain typically uses
pointers, which we avoid by inverting the list. As a
result, the frame stack is a separate array. When a
thread migrates, there are no restrictions on its state. It
can be arbitrarily nested within procedure calls.

Each call frame contains an argument count for the
procedure, a count of local variables, the evaluation
stack index for the previous frame, and the index of the
call point in the thread’s code string. Another
advantage of inverting the frame stack is that
arguments and locals are adjacent so indexing is
trivial.

Figure 9 lists the IOperator and IProcedure interfaces.
The stack class includes two helper functions: Save and
Restore. The “Save” procedure produces an array of
variants that represents the “state” of the stack,
including procedure nesting. The “Restore” procedure
returns a stack to a previous state. Since program state
is a first-class object in Obtuse, it should be possible to
support fault-tolerant algorithms through various
checkpointing schemes; however, we have not explored
this idea further.

IOperator
Add 3 + 4
Subtract 3 - 4
Multiply 3 * 4
Divide 3 / 4
Compare < <= = >= >
Mod 3 % 4
Invert - or !
And 3 & 4
Or 3 | 4
Load VariantÇconstant

string
Print StringÇvariant
Push StackÇvariant
Pop VariantÇstack

IProcedure
Frame Call procedure
Return Return from procedure
Get Get local/argument
GetIndex Get local array
Put Store local/argument
PutIndex Store local array

Figure 9. The IOperator/IProcedure Interfaces

4.4 Type information
The power of the Obtuse object model derives from
DCOM, particularly when combined with IDispatch.
In this section, we illustrate how a dynamic procedure
call can be accomplished. As is illustrated in Figure 1,
the “object” statement in Obtuse can be used to create
an object on any machine. In COM, an object handle
is created by asking if the object supports a particular
interface. Obtuse always queries for the IDispatch
interface.

Thus, the “me” variable in Figure 1 is a variant record
with a value that is an object handle of type IDispatch.
The code “me.Fork{a, b}” translates to interpreter byte
codes that indicate a method invocation. When the

Obtuse interpreter encounters an “invoke” opcode
(actually properties work the same way), it first has to
bind the method name (Fork) to a method id code.
Automation does not support a call by name option.
As a result, it takes two round-trip calls to the server
per method call.

After getting the method id, the interpreter calls the
“Invoke” method in the IDispatch interface of the “me”
object. The arguments to “Invoke” are a vector of
variants (the argument list) and the method id. The
return value from “Invoke” is a variant that encodes
the result of the “Fork” call.

The remaining part of the puzzle is a discussion of how
IDispatch actually constructs a method call to “Fork”
in whatever language “Fork” is implemented, and with
the appropriate calling convention. Figure 10
illustrates the solution used in Obtuse.

static PARAMDATA
rgpdataCBobContextPersist[] =

{
 { "onOff", VT_LONG }
};

static METHODDATA rgmdataCBobContext[] =
{ // void CBobContext::Persist(long onOff)
 {

"Persist",
rgpdataCBobContextPersist,
IDMEMBER_CBOBCONTEXT_PERSIST,
IMETH_CBOBCONTEXT_PERSIST,
CC_STDCALL,
DIM(rgpdataCBobContextPersist),
DISPATCH_METHOD,
VT_VOID

 },
};

static INTERFACEDATA g_idataCBobContext=
{
 rgmdataCBobContext,
 DIM(rgmdataCBobContext)
};

Figure 10. Encoding an IDispatch Interface

The data structure encodes the “type information”
referred to in Figure 6 for thread and context objects.
The “interface data” structure contains a count of the
number of methods, and pointers to method
descriptors. Each method descriptor contains the name
of the method, a pointer to a vector of parameter
descriptors, a method id number, an index into the
vTable for the class, a count of the number of

parameters, a code to indicate the calling convention,
and the type of the return value.

Thus, for the “me.Fork{}” example, the arguments
(encoded as an array of variants) are converted to the
parameter types specified, pushed on the stack in a
calling-convention and language-specific way, then the

vTable index is used to make the call. The return
value is removed from the stack (or registers) and is
encoded as a variant. The Obtuse interpreter then
pushes the return value on its stack and execution
continues.

5. Sample Programs
We have identified three classes of distributed
applications that can be programmed using Obtuse –
Migratory, Synchronized, and Cooperative. A
migratory application moves object state from one
machine to another. This may involve moving all of a
program, or only a part, such as the user interface.
Implementing routing slips for documents is an
example of a migratory application. A synchronized

application is one in which the actions at one site are
duplicated at another. For example, a debug console
might be synchronized to the program or UI state of a
distributed application. Finally, a cooperative
application requires that multiple sites participate to
solve problems. Decision-making tasks, such as

preparing budgets for instance, are usually
accomplished in a cooperative fashion.

Figure 11 lists the code for the Roving Poller example
discussed in Section 1. It is an example of a migratory
application. The program transfers itself to every
machine in a list, which is specified on the command
line, so that each user can enter comments in an edit
control. The completed form, together with the
accumulated comments, is displayed at the last
machine in the list. A return-to-sender convention
could be implemented by placing the name of the
originating machine last in the argument list.

The second example, which is listed in Figure 12, is a
simple, synchronized application that was written as a
UI performance test. The idea was to synchronize a

 var resource; //set from a VB form
 var a, b, c, where, me, thread, context;

 resource :=
[12345,12,3,-15,4,5535,1,2145,5,16776960,2,
"Roving Poller",23456,14,3,72,4,144,0,89,1,41,5,-2147483633,2,
"OK",45678,12,3,0,4,88,0,125,5,-2147483633,2,
"Enter your comments below:",56789,12,3,16,4,0,0,361,1,49,6,
""];
 foreach where in argv do //iterate command line arguments
 me := self; //a reference to the running thread
 thread := object("Bob.Thread", where); //create a remote thread
 context := object("Bob.Context", where); //create a remote context
 if me.Fork{thread, context}=1 then //duplicate myself at “where”
 quit; //1 returned to parent thread; it quits
 end; //-------child thread starts here
 a := object("Bob.Form", “”); //create a VB form at the child site
 b := a.Restore{resource}; //method call to VB form server
 c := a.Item{"button0"}; //get object reference to the button
 loop
 if c.tag = "1" then exit; end; //delay until a button click
 end;
 resource := a.Save{}; //save the current look and content of form
 end; //loop until all the sites have been visited
 quit;

Figure 11. A Migratory Application – Roving Poller

scroll bar on one machine with an arbitrary number of
scroll bars on a second machine. The objective was to
increase the number (NBARS) of scroll bars, and then
to observe the impact on responsiveness.

The program actually does not scale very well, but the
problem is with the algorithm, not DCOM.
Distributing a signal to a large number of recipients
should not be performed with a simple for loop, but
rather with a distribution hierarchy.

The final example, which is listed in Figures 13 and
14, implements a cooperative application that supports

a common decision-making task performed by three
co-workers; that is, deciding where to go to lunch in a
timely, and fair, fashion. When the application is
initiated, it displays a form containing three edit
controls at each site. The participants can type in their
choice for lunch and can observe, but not modify, the
other choices. Each user can change their mind
arbitrarily, but at the instant that a majority has agreed
on a choice, input is frozen and the consensus is
displayed for all to see.

var a, b, c, e, old, i, NBARS;
var aa, cc;
var resource;
resource :=
[12345,14,3,6120,4,6600,0,2880,1,1110,5,8454143,2,
"Scroll Test",23456,4,5,8454016,89013,8,3,16,4,16,0,153];
NBARS := 9;
aa := [0]; //create an array dynamically
for i :=0 to NBARS-2 do // should probably be a function to do this
 aa := aa & [0];
end;
cc := aa;
a := object("Bob.Form"); //create the master scroll bar
for i:=0 to NBARS-1 do
 aa[i] := object("Bob.Form, "a-bobc-1"); //create N remote scrollbars
 b := aa[i];
 c := b.Restore{resource};
 c := b.Form{}; //get an object reference to the form
 c.Top := (i%8)*1000; //place the scroll bars in a grid pattern
 c.Left := (i/8)*4000;
 cc[i] := b.Item{"hscroll0"}; //object reference to each scroll bar
end;
b := a.Restore{resource};
c := a.Item{"hscroll0"};
old := c.value;
loop
 e := c.value;
 if (e > 30000) then exit; end; //exit when thumb moved to far right
 if e != old then //wait for a state change
 for i:=0 to NBARS-1 do //update all the other scroll bars
 b := cc[i];
 b.value := e;
 end;
 old := e;
 end;
end;
quit;

Figure 12. A Synchronized Application – Master/Slave Scroll Bars

6. Performance Measures
Obtuse implements late binding of procedure calls and
property access by using the Automation IDispatch
technology. Obtuse marshals program and user
interface state by encoding values in variant arrays.
There is the question of what penalty is paid for the
additional complexity.

We conducted performance tests in order to quantify
some of the costs. The tests were conducted on two
166 Mhz Pentiums, which were on the same 10mb
Ethernet segment, and which were running Windows
NT 4.0. Table 1 lists the results of the tests. Each test
program was run several times to verify that the results
were stable and each test loop was repeated 100 to
10,000 times, depending on the amount of time
involved. The test programs are listed at the Obtuse
web site: obtuse.cs.olemiss.edu.

Figure 13. The Eat-Lunch User Interface

Obtuse has no program library to provide timing
functions so the interpreter was modified such that a
reference to the first global variable in a context
returned the current time in milliseconds. Thus, two
references to the same variable could be used as a
timing function.

The test results require some explanation. First, there
is a distinct time difference between variable
access/function calls and invoking a method on an
Automation object. The latter operation is slower
because Obtuse must do a symbol table lookup to bind
the method name to a method index. Access to Visual
Basic properties or methods takes even longer, up to
1.6ms. Since there is no difference in the Obtuse
runtime code between accessing a VB object and an
Obtuse object (like Event), we can assume that the VB
runtime contributes to the factor of 25 performance
decrease.

The remote variable access only takes 4ms, versus
11ms for the function call, because context object
access is routed though a proxy DLL on each machine
whereas access to other Obtuse objects, such as
EVENT or FILE, must use the IDispatch
infrastructure. IDispatch requires two separate calls to
the remote node for each method call: one call to bind
the name and one to make the call.

Table 1. Obtuse Performance
Measurements

Function Timing Software Layers

Global variable

(in a Context)

0.016 ms 1:in-process proc call

2: array access

Local Obtuse

function call

0.025 1:in-process proc call

2: variant copies

Local COM object
function call

0.069 1:in-process call

2:COM runtime
3:IDispatch runtime

Local Visual
Basic COM object
function call

1.543 1:cross-process call

2:COM runtime
3:IDispatch runtime
4:VB runtime

Local VB property
reference

1.610 1:cross-process call

2:COM runtime
3:IDispatch runtime
4:VB runtime

Local Clone task

(one cycle)

4.400 1:variant copies(lots)

2:memory allocation
3:new OS thread
4:kill OS thread
5:memory free
(all in process)

Remote global
variable access

(in a Context)

4.600 1:cross-machine call

2:COM runtime
3:DCOM runtime
4:net transport

Remote COM
object function
call

11.020 1:cross-machine call

2:COM runtime
3:DCOM runtime
4:IDispatch runtime
5:net transport (2)

Remote VB
property reference

11.820 1:cross-machine call

2:COM runtime
3:DCOM runtime
4:IDispatch runtime
5:net transport (2)
6:VB runtime

Remote Visual
Basic COM object
function call

12.000 1:cross-machine call

2:COM runtime
3:DCOM runtime
4:IDispatch runtime
5:net transport (2)
6:VB runtime

Local Restore and
Save of VB Form 43.760 1:cross-process call

2:COM runtime
3:IDispatch runtime
4:VB runtime

Remote Restore
and Save of VB
Form

81.100 1:cross-machine call

2:COM runtime
3:DCOM runtime
4:IDispatch runtime
5:net transport (2)
6:VB runtime

Remote Clone
task and then
remote clone back
to the source

(one cycle)

266.400 1:variant copies(lots)

2:COM runtime
3:DCOM runtime
4:IDispatch runtime
5:net transport (2)
6:new OS thread
7:kill OS thread
8:memory free

The final set of tests involved cloning a task to a target
machine and then cloning that task back to the source.
This provides an indication of the costs to migrate a
process from one machine to another. The migration
test was performed without also moving a user
interface. The local test (in which the target and
source were the same machine) took 4.4ms and the
remote test took 266ms

7. Observations
The Obtuse system was designed and implemented by
the author in eight weeks as part of a summer research
appointment at Microsoft Corporation. As a result,
both the language and runtime lack a number of
features that can be found in more mature languages
such as C++ or Java. Nevertheless, there are some
lessons that can be shared based on the experience to
date.

First, migrating a thread or object depends on support
for marshaling its state. In theory, any system, such as
C++ or Java, could support migration, and probably
should.

The ability to transmit a user interface’s state from one
machine to another is also a useful capability. Visual
Basic and its competitors could easily be extended to
support persistence. The VB property model even
lends itself to simple encoding strategies.

We found that support for marshaling the state of
forms was essential to the implementation of migratory
applications. Most Office applications, for example,
marshal (or save) the current user interface state on
exit, and restore it on startup. Java has provided entry
points for marshaling UI state with the Applet methods
init/destroy and start/stop. JDK 1.1 has additional
support for serialization. Client-side Java has been
joined by server-side Java. The next evolution should
be mobile Java.

The most difficult implementation problems involved
reference counting, which resulted in objects that never
got released. For example, in testing the Roving Poller
example, it was discovered that context objects were
being activated, but never deleted, on machines all over
our building. The problem turned out to be a circular
reference; that is, the context objects had references to
themselves. The problem was addressed by checking
for circular references in both the stack and context
object of a terminated thread. However, this approach
would not handle indirect recursion through other
context objects.

DCOM provides an excellent infrastructure for writing
distributed applications. However, its OLE legacy is
the source of a number of serious problems. The first,
and most serious, problem is the OLE registry, which
is used to store app/server/classId associations and
access control information. As a result, Windows NT
has two object information systems—the file system
and the registry. Even worse, the DCOM
configuration information can only be manipulated by
the system administrator. Also, the tools that support
changes to the registry are neither user friendly nor

fault tolerant. As a result, for multi-user systems, such
as all the machines in the CS department, no students
can create objects. This situation must be resolved
before DCOM can find wide acceptance.

A less severe problem is the current specification of
IDispatch/Variants, which were designed to support
Visual Basic, and were later modified slightly to
support Visual Basic for Applications. The design is
not well-suited for supporting distributed applications.
The concepts are correct, but the requirements have
changed. As a result, the design needs to be upgraded.
For example, the Variant value types are not
extensible; variants only support what was required to
implement Visual Basic. There is no reason to require
reference counting for value-based types, such as
complex numbers or x-y coordinates.

8. Related Work
Obliq depends on Modula-3 for its runtime support;
Obtuse depends on COM/DCOM. Bharat’s Visual
Obliq also supports migrating user interfaces. Obtuse
is unique in its integration of the COM object model in
its design and in the support for persistent VB objects.
Hirano’s [6] HORB system is a Java superset that can
be used to write distributed applications. Gray[7] has
implemented a transportable agent system, Agent Tcl,
and maintains an extensive “related work” site[8].

9. Acknowledgements
At Microsoft, Tony Williams conceived of, and
initiated, the Obliq/DCOM summer project, which was
supported by Nat Brown and Dennis Adler.

10. Availability
The Obtuse system is available for experimentation at
the web site www.obtuse.cs.olemiss.edu.

References
1) Cardelli, L., Obliq: A language with distributed

scope. Report No. 122, Digital Equipment
Corporation, Systems Research Center, (1994).

2) Krishna Bharat and Luca Cardelli, Migratory
Applications, Proceedings of ACM Symposium on
User Interface Software and Technology '95,
Pittsburgh, PA, (Nov 1995).
http://www.cc.gatech.edu/gvu/people/Phd/Krishna/
VO/Migration.html

3) Distributed COM, Microsoft Corporation
(1996).http://www.microsoft.com/windows/commo
n/aa2399.htm

4) The Component Object Model Specification,
Microsoft Corporation (1996).
http://www.microsoft.com/oledev/olecom/title.htm

5) Brown, Nat, and Kindel, Charlie. Distributed
Component Object Model Protocol -- DCOM/1.0,
(1996). http://ds.internic.net/internet-drafts/draft-
brown-dcom-v1-spec-01.txt.

6) Hirano, Satoshi, The HORB System, (1996).
http://ring.etl.go.jp/openlab/horb/

7) Gray, R.S. et al,. Mobile agents for mobile
computing. Technical Report PCS-TR96-285,
Department of Computer Science, Dartmouth
College, 1996.

8) Related Work,
http://www.cs.dartmouth.edu/~agent/

var resource, a, b, c, d, e, f, g, h, i;
resource :=
[12345,12,3,-15,4,5535,1,2085,5,8454016,2,
"Where Do We Go For Lunch?",45678,12,2,
"Enter your choice below:",4,32,3,0,0,117,5,-2147483633,45679,14,2,
" ",4,234,3,16,0,9,1,25,5,-2147483633,45680,12,2,
"",4,232,3,48,0,3,5,-2147483633,45681,12,2,
"",4,232,3,80,0,3,5,-2147483633,56789,12,3,16,4,0,0,225,1,25,6,
"",56790,12,3,48,4,0,0,225,1,25,6,
"",56791,12,3,80,4,0,0,225,1,25,6,""];
a := [["daddyo", "rob book"], ["monroe", "salt will"],
 ["a-bobc-1", "wispy well"]];
g := [["label1", "text0"], ["label2", "text1"], ["label3", "text2"]];
b := [0,0,0]; i := [0,0,0];
for c:=0 to 2 do
 b[c] := object("Bob.Form", a[c,0]); //create the form at each machine
 d := b[c];
 e := d.Restore{resource};
 e := d.Item{g[c,0]}; //get an object reference to each label control
 e.caption := a[c,1]; //set the “caption” property to the user’s name
 for h:=0 to 2 do //lock all the edit fields except the user’s
 f := d.Item{g[h,1]};
 f.locked := h!=c;
 end;
end;
loop
 for c:=0 to 2 do
 d := b[c];
 f := d.Item{g[c,1]}; //retrieve the choices of the other users
 i[c] := f.text;
 for h:=0 to 2 do //update my controls to display their latest
 if h!=c then
 d := b[h];
 f := d.Item{g[c,1]};
 f.text := i[c];
 end;
 end;
 end; //as soon as 2-of-3 match, let majority rule
 if (i[0]!="") & (i[0]=i[1]) then i[2] := i[1]; h := 2; exit; end;
 if (i[1]!="") & (i[1]=i[2]) then i[0] := i[1]; h := 0; exit; end;
 if (i[0]!="") & (i[0]=i[2]) then i[1] := i[0]; h := 1; exit; end;
end;
for c:=0 to 2 do //lock every control, display consensus everywhere
 d := b[c];
 f := d.Item{g[c,1]};
 f.locked := true;
 f.text := i[c];
 f := d.item{g[h,1]};
 f.text := i[c];
end;

Figure 14. Where-To-Eat-Lunch Application

