
USENIX Association

Proceedings of the
6th USENIX Conference on Object-Oriented

Technologies and Systems
(COOTS '01)

San Antonio, Texas, USA
January 29 - February 2, 2001

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2001 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Using Accessory Functions to Generalize Dynamic Dispatch

in Single-Dispatch Object-Oriented Languages

David Wonnacott

Department of Computer Science

Haverford College

Haverford, PA 19041

davew@cs.haverford.edu

http://www.cs.haverford.edu/people/davew

Abstract

Object oriented languages generally include some
form of dynamic dispatch; that is, in the absence
of precise compile-time type information, they per-
form a run-time selection of the appropriate func-
tion body (or method) from a set of candidates.
Existing single-dispatch languages restrict dynamic
dispatch to the object receiving the message.

Such languages exhibit a con
ict between the goals
of providing an extensible a set of types and provid-
ing an extensible the set of operations that can be
performed on these types. We show that this con-

ict is a consequence of the restriction of dynamic
dispatch to the receiver object. We also demon-
strate that this con
ict can be resolved by introduc-
ing a generalized form of single dispatch (thus avoid-
ing the complexity of multiple dispatch). On this
evidence, we argue that dispatch technique should
be decoupled from membership in a class and access
to its representation.

1 Introduction

Inheritance helps a programmer create a set of
classes for distinct yet similar types of objects.
When inheritance is used for subtyping [13], the su-
perclass lists the messages that must be handled by
its subclasses. Code that uses superclass messages
will work for subclass objects, as long as these ob-
jects respond properly to all messages listed in the
superclass. Such code will also work without modi-
�cation (or even recompilation) with objects of sub-
classes that are added to the system later.

This ability to reuse code as new kinds of objects are
added to the system is touted as one of the major
advantages of the object-oriented approach. How-
ever, it comes at the expense of our ability to reuse
code as new operations are added to a system. Con-
sider the general problem of designing software in
which various interpretations (i.e. methods or func-
tions) are de�ned for various kinds of objects (i.e.
classes), as discussed by Harrison and Ossher [10],
Krishnamurthi, Felleisen, and Friedman [11], and
Appel [2, Section 4.2]. For example, Appel focuses
on the design of an abstract syntax tree (A.S.T.)
for a compiler: The di�erent kinds of objects corre-
spond to various program structures including ex-
pressions, statements, and declarations, while the
di�erent interpretations include static checks (such
as type checking), various optimizations, or code
generation for various architectures.

Such a system can be designed in the traditional
object-oriented style, which lets us add new kinds
of objects. However, new interpretations must be
added to the superclass, requiring modi�cation of
existing source code and recompilation. The need
to add operations to the class also violates a ba-
sic principle of data encapsulation, that each class
should be de�ned with a minimal set of operations
and edited only for a redesign, not a reuse.

We could, of course, abandon the object-oriented
style, and adopt a style in which each function con-
tains code for every type of object it could operate
on. This lets us add new interpretations, but the in-
troduction of a new kind of object forces us to edit
each of the existing functions. We have once again
prevented encapsulation and reuse without recom-
pilation, and lost other bene�ts of object-oriented
style as well. Appel argues that the latter style
is more appropriate for his A.S.T. example, while

the former is more appropriate for classic object-
oriented systems (such as graphical user interfaces).

We demonstrate that this choice of styles represents
a limitation of traditional object-oriented languages,
not a fundamental design choice. Speci�cally, it is a
consequence of the restriction of dynamic dispatch
to the methods listed in a class. If we relax this
restriction, we can create a system in which exist-
ing code can be reused (without access to source
code) as both new kinds of objects and new inter-
pretations are added. We show that it is possible
to allow dynamic dispatch for functions not listed
in a class (which we call accessory functions of the
class), and demonstrate that accessory functions can
be implemented eÆciently.

This paper is organized as follows: We begin, in
Section 2, with a brief review of the use of dynamic
dispatch and its impact (both positive and negative)
on code reuse. This section also covers the imple-
mentation of dynamic dispatch in C++. In Section
3, we spell out the goals that we intend to achieve
by generalizing dynamic dispatch, describe the se-
mantics (and C++ syntax) for accessory functions,
and show that accessory functions can be used to
enhance reuse in our example program. We then
discuss, in Section 4, the relationship of accessory
functions to other language properties such as sup-
port for data encapsulation. In Section 5, we brie
y
discuss the implementation of accessory functions in
C++. Finally, we discuss related work in Section 6,
and give our conclusions in Section 7.

2 Dynamic Dispatch and Reuse

One argument made by advocates of object-oriented
languages is that object-oriented programming can
facilitate code reuse. A well-designed class or hier-
archy of classes can be reused without knowledge
of, or access to, its implementation (just as a well-
designed function or procedure can be reused in
other languages). In this paper, we will be con-
cerned with two types of reuse of classes. In the
�rst, which we call reuse by inheritance, a program-
mer represents a new kind of data by making an
extension of some existing data type. In the sec-
ond, which we call reuse in a function, a programmer
uses a class in the implementation of a new function
(perhaps for a local variable or parameter).

We will focus on reuse that can be accomplished
without modi�cation of the source code that is to
be reused. This is obviously important if software
is distributed without source code, or if program-
mers are not able to modify the source code. It
also prevents unnecessary code management com-
plexities when source code is available. If several
groups of programmers each reuse the same class,
their modi�cations to that class must be merged,
and the merged code must be tested, if these exten-
sions are ever to be used together.

Note that reuse by inheritance (as de�ned above)
can occur even in languages that do not support in-
heritance directly. Consider for example the task of
representing various kinds of expression nodes in a
compiler's abstract syntax tree (A.S.T.). (This ex-
ample was adapted from [2]; we have focused on a
simple method that can be understood with minimal
knowledge of compiler construction.) In languages
like C, the programmer can use a single struct to
represent all kinds of expression nodes, distinguish-
ing among the di�erent kinds of nodes by including
a kind �eld in the struct and using a switch state-
ment to select code that is appropriate for each kind
of expression node. Reuse by inheritance occurs
if the programmer adds a new kind of expression
node (perhaps because a new kind of expression has
been added to the language). However, this reuse
requires access to (and modi�cation of) the exist-
ing code { the programmer must add a new case to
the switch statements in existing functions, even if
existing cases do not need to be modi�ed.

In an object-oriented language like C++, the pro-
grammer can de�ne the original kinds of expression
nodes with a collection of classes, each of which in-
herits from an \abstract superclass" Exp (shown in
C++ in Figure 1). The abstract superclass gives
methods that are shared by all kinds of expressions,
such as a print rep method to produce a string
that gives a printable representation for any kind of
expression node. These methods must be de�ned for
every subclass of Exp, and we can therefore request
the printable representation of any object denoted
by a reference of type Exp & (which must be of a
class derived from Exp). Methods that are speci�c
to one kind of node are de�ned only in the appropri-
ate subclass (and thus cannot be requested through
references of type Exp & in statically checked lan-
guages like C++).

We rely on the fact that we can request the
print rep for any object referred to by an Exp & in

class Exp { // abstract superclass

public:

virtual string print_rep() = 0;

private:

...

};

class Num : public Exp {

public:

int value();

virtual string print_rep();

private:

...

};

string Num::print_rep()

{

// convert integer

// to ASCII string

return itoa(value());

}

class Plus : public Exp {

public:

Exp &lhs();

Exp &rhs();

virtual string print_rep();

private:

...

};

string Plus::print_rep()

{

return

``('' + lhs().print_rep() +

``+'' + rhs().print_rep() + ``)'';

}

Figure 1: Dynamic Dispatch Example

the print rep method for class Plus. This method
uses the printable representation for the left and
right operands of the sum. Dynamic dispatch en-
sures that the print rep method for the correct
class is used, even though the compiler cannot deter-
mine statically which method will be chosen. This
approach lets the programmer add new kinds of
nodes by deriving a new class (with an appropri-
ate print rep) for each new kind of node. This
does not require any modi�cation of existing source
code, and dynamic dispatch will ensure that the new
class's print rep is used for the new nodes, even in
existing code (such as the print rep method for
class Plus).

Dynamic dispatch shifts the responsibility of select-
ing the appropriate print rep code from the pro-
grammer to the programming language. In single-
dispatch languages like C++ and Java, dynamic dis-
patch can be implemented by associating, with each
object, a table of pointers to the code for each of
the object's methods. In our example, each object
of a class that inherits from Exp has a pointer to its
print rep method at a �xed o�set in its dispatch
table { to perform a call to print repwhen the type
of object is not known, the compiler can generate an
indirect function call using the table.

Note that it is possible for the programmer to imple-
ment dynamic dispatch in non-object-oriented lan-
guages that allow pointers to functions, such as C.
However, this requires that the programmer under-
take the tedious and potentially error-prone task of
initializing using the tables of function pointers.

Unfortunately, the use of inheritance and dynamic
dispatch inhibits reuse in a function. This is a con-
sequence of the fact that only methods listed in a
class can be dynamically dispatched based on that
class. Consider what would happen if we wish to
add a new pass to our compiler (such as an opera-
tion to interpret an expression), rather than a new
type of expression node. If we had used a single
class with a kind �eld, we could simply create a new
function that takes an expression node, checks the
kind �eld, and interprets the node in the appropri-
ate way. However, if we wish to add this operation
to the collection of classes in Figure 1, me must edit
the class de�nitions to add an interpret method.

Editing the existing class de�nitions would be
appropriate if we were redesigning, rather than
reusing, these classes. However, we do not believe
that every new use that requires dynamic dispatch

should be considered a redesign: If this were the
case, the author of a class would have the respon-
sibility of enumerating all cases in which dynamic
dispatch is needed for objects of that type.

There are a number of other ways to add an
interpret method, each of which we consider
unsatisfactory. First, we could introduce an
interpret function that is not part of the Exp

classes (in Java, it must be a method of some other
class, such as a class Interpreter). This function
could use typeid (in C++) or instanceof (in Java)
in a series of if statements to select the appropri-
ate code for the kind of node being interpreted. In a
language without an equivalent of typeid, the pro-
grammer can add a kind �eld (or operation). In
either case, this approach simply sets up a future
problem with reuse by inheritance { any program-
mer adding a new kind of expression node must edit
the code for interpret to work with the new type.

We could also use inheritance to produce new sub-
classes that add an interpret operation (deriving
a class Exp with interpret from class Exp). How-
ever, this introduces spurious uses of multiple inheri-
tance, which we consider highly undesirable (though
we have no problem with legitimate uses of multiple
inheritance): If we are to apply interpret to each
new kind of node through an Exp reference, then
the new node classes must share a common super-
class with an interpret function, which introduces
a second superclass for the new node classes.

Thus, if dynamic dispatch is provided only to func-
tions listed in the class, we are forced to choose
between allowing reuse in functions (if we use an
explicit switch) or reuse by inheritance (if we use
dynamically dispatched methods). To allow both
kinds of reuse, we must allow dispatch for functions
outside of the class. This is allowed in some lan-
guages that provide multiple dispatch [3, 9]. How-
ever, multiple dispatch has a higher run-time cost
than single dispatch: techniques based on complete
dispatch tables may require large tables, and other
methods do not provide constant-time dispatch [1].
Accessory functions provide both kinds of reuse
without the added complexity and cost of multiple
dispatch.

Multiple dispatch can also be introduced as a pro-
gramming technique rather than a language feature
(for example, by using the visitor design pattern).
This also introduces unnecessary overhead, and is
less
exible than a compiler-generated dispatch, as

// "pure virtual" accessory function

// for superclass

int interpret(virtual Exp &) = 0;

int interpret(virtual Num &n)

{

return n.value();

}

int interpret(virtual Plus &p)

{

return interpret(p.lhs())

+ interpret(p.rhs());

}

Figure 2: Accessory Function Example

we will see in Section 6.

3 Accessory Functions

Although no current single-dispatch language does
so, it is in principle possible to allow dynamic dis-
patch on a parameter other than the receiver of the
message. We call a function that does so an acces-
sory function of the class involved in dispatch. Fig-
ure 2 shows how accessory functions can be used to
add a dynamically dispatched interpret function
to our A.S.T. example of Figure 1 (using a nota-
tion based on C++). The rest of this section gives
our design goals, and gives possible syntax and se-
mantics for integrating accessory functions into a
C++ -like language.

Our goal is to provide the following properties of
programs written with accessory functions:

� Accessory functions can be added to a group
of classes without editing (or even reading) the
source for the classes. To avoid violated the
principle of data encapsulation, accessory func-
tions do not have access to the private data of
any classes they are not listed in. For exam-
ple, the interpret functions of Figure 2 do not
have access to the private data of any class, in-
cluding the classes for the abstract syntax tree.

� New classes can be added to a program that
uses accessory functions without any need to
edit existing functions or classes. In other

words, we wish to allow both reuse in a function
(the previous item) and reuse by inheritance.

� Accessory functions can be dispatched as eÆ-
ciently as other single dispatch functions, such
as virtual functions in C++.

� Except for the change in which argument is
used for dynamic dispatch, function dispatch
should follow the rules that exist in the lan-
guage.

� The system must be able to produce errors
about dispatch before the program is executed:
A user must not see \method not found" errors
while running a program (this was a design goal
of C++).

3.1 Syntax

We need syntactic mechanisms to identify the pa-
rameter to be used in dynamic dispatch and to spec-
ify that a superclass function should be selected dur-
ing a call in a subclass function. In this article, we
give a syntax that is an extension of C++, and fo-
cus on de�nitions that are appropriate for C++,
though accessory functions could be added to other
statically typed single-dispatch object-oriented lan-
guages.

We identify an accessory function by using the key-
word virtual in the declaration of a parameter. We
consider virtual to be an attribute of a parame-
ter rather than an attribute of the function itself.
When virtual is used in the traditional way, we
say that the member function has a virtual receiver
(rather than a virtual parameter). Accessory func-
tions for C++ may be created outside of any class,
as in Figure 2, or they may be created as members
(or friends) of one (or more) classes.

When an accessory function for a subclass needs to
make use of the superclass function, it gives explicit
type information for the virtual parameter. We use
syntax that is similar to type casting for this pur-
pose (we chose this notation because it produces
the result that type casting of a reference produces
for a statically dispatched function). To avoid in-
troducing a new keyword, we reuse the word \vir-
tual" for this purpose, i.e. the interpret func-
tion for Num could call the superclass function (were
it not pure virtual) with the syntax interpret(

(virtual Exp) n). This is only legal if the new

type is a public superclass of the argument type; its
e�ect is analogous to using interpret((Exp &) n

) for a statically dispatched function.

3.2 Restrictions

We place several restrictions on the de�nition of ac-
cessory functions. Most are needed to prevent am-
biguities that prevent us from selecting between dy-
namic and static dispatch at compile time.

� For any function, at most one parameter (in-
cluding the receiver object) may be virtual.
This is necessary to ensure that we do not need
multiple dispatch. Here and in the remainder
of this paper, we count the receiver object of a
method as a parameter.

� No single scope can contain two functions that
di�er only in the dispatch mechanism of a
parameter: We cannot have f(Exp &) and
f(virtual Exp &). This restriction is neces-
sary because it would not be possible to distin-
guish calls to the two functions. C++ has an
analogous rule for virtual functions.

� In any one scope, no two functions with the
same name and arity (number of arguments)
are dynamically dispatched on di�erent param-
eters. This will play an important role in our
function selection semantics below.

� All functions with parameters of class C must
be de�ned before the execution of code that cre-
ates an object of class C. In traditional C++
environments, all functions are de�ned before
program execution begins, and this restriction
always holds. In environments that allow dy-
namic loading of classes (such as Java) this
places restrictions on the relative timing of ob-
ject creation and the loading of functions.

� To ease implementation in C++, we only allow
accessory functions for classes that already have
at least one virtual function: For example, we
cannot have f(virtual int &), as int has no
dispatch table.

3.3 Function Selection Semantics

Function dispatch based on the types of multiple
arguments, whether static or dynamic, raises two

challenges: We must specify which function body is
considered the correct choice for any given call, and
we must provide a way for the program to branch
to this code eÆciently. In this section, we consider
the question of how to adapt the existing dispatch
rules of C++ for accessory functions, leaving the
the question of how to branch to this function for
Section 5.

The traditional choice of static vs. dynamic dis-
patch, and the new decision of which argument is
to be used for dynamic dispatch, must be made at
compile-time. These decisions are thus based on the
types of the references used in the call (rather than
the types of the objects they refer to), and the set of
functions that are in scope at the point of the call.
Once the compiler has selected dynamic dispatch on
a particular object, the true \run-time" type of the
object will be used in the actual call.

We ensure that we can statically determine which
argument is to be used in dynamic dispatch by re-
quiring that, in any one scope, no two functions with
the same name and arity (number of arguments)
are dynamically dispatched on di�erent parame-
ters. Essentially, we consider dispatch mechanism
to be an attribute of the message (function name)
rather than method (function body). Con
icts that
might arise when two independent projects happen
to use the same function names must be resolved
via namespaces.

This restriction allows us to use the traditional C++
approach to dispatch: We select, from the set of
functions that are in scope, the one with parame-
ters types that best match the compile-time type
information about the arguments used in the call.
If there is no unique best match, we generate an
error message. We then generate either a dynamic
dispatch (based on the appropriate parameter type,
if one parameter is virtual) or static dispatch (if no
parameter is virtual).

Thus, if a group of functions of a given name and
arity are dispatched on argument a, we produce a
branch to the function that would have been called
if all functions with this name and arity had been
written as (possibly virtual) member functions of
the classes of their ath arguments. In other words,
we generate a branch to the function that would
have been called if we had violated the encapsula-
tion of the classes.

As we will see in Section 5, our implementation al-

lows us to produce warnings for certain surprising
behavior that is a consequence of this combination
of static and dynamic information.

3.4 Type Casting

The compiler will not produce a virtual argument by
applying an implicit type cast to a value (though
it may still convert a subclass type reference (or
pointer) to a superclass reference (or pointer)). This
is an extension of the existing C++ rule that the
compiler will not apply an implicit cast to produce
the receiver object. Virtual is generally used in the
declaration of a pointer or reference type parameter:
When applied to the declaration of a value param-
eter, it a�ects type casting, but not dispatch (since
complete type information must be present at com-
pile time).

The lack of casting for virtual arguments means that
adding virtual to a parameter of an existing func-
tion may interfere with the compilation of code that
had used this function: It may be necessary to add
an explicit cast where an implicit one had been used
previously to produce the (non-virtual) argument.
We believe it would be possible to implement a sys-
tem that allows implicit casting for accessory func-
tions, but that such a system could produce highly
confusing results, as casting is based on the func-
tions that are in scope, but dispatch is based on all
compatible functions in the �nal program.

3.5 Default Arguments

The above discussion ignores the issue of default ar-
guments in C++. We believe these can be handled
by treating a declaration with a default argument
as if it were a group of declarations of overloaded
functions, all but one of which simply supply extra
arguments and call the original function.

4 Encapsulation

Existing single-dispatch object-oriented languages
link together the following three properties: (1) The
class(es) in which a function is de�ned, (2) The
class(es) representation(s) that a function can ac-

cess, and (3) The class that is used in dynamic dis-
patch of the function. In many languages, these
three properties uni�ed in the concept of \the" class
of a method. C++ allows slightly more
exibility by
allowing a function to access the representations of
several classes if it is listed as a friend (or member)
in each of them, though it can only be dynamically
dispatched based on the (single) class of which it is
a member. Even some multiple-dispatch languages
unify the concept of access and dispatch: For exam-
ple, in Cecil \a multi-method is granted privileged
access to all objects of which the multi-method is
a part, i.e., of the objects that are the method's
argument constraints" [5, Section 1.5].

The uni�cation of properties (1) and (2) essentially
de�nes data encapsulation, which plays an essen-
tial role in reuse of classes. Since direct access to
a class's representation is allowed only from those
functions included in the class itself, we can rest as-
sured that uses of the class by other functions (in-
cluding all \reuse") will not corrupt any properties
guaranteed by the class as it was originally writ-
ten. Implicit in the idea of data encapsulation is
the principle that programmers will not rampantly
add operations to a completed class. If new opera-
tions are added to a class, and thus granted access
to its representation, we can no longer guarantee
that the representation cannot be corrupted. To re-
tain this important property, accessory functions do
not have access to classes involved in their dispatch
(unless they are listed as friends of that class, for
some reason).

We have proposed that the property of dynamic dis-
patch be separated from the property of inclusion in
(and access to) a class. While we originally argued
that this be done to support reuse, we �nd it ap-
pealing for several other reasons. First, it provides
greater orthogonality of language features. Proper-
ties (1) and (2) above must remain uni�ed, but dy-
namic dispatch is now fully independent. Second,
we believe that accessory functions strengthen lan-
guage support for data encapsulation. One tenet of
data encapsulation is that each class should be de-
�ned with a set of operations that is both adequate
and minimal:

There can also be too many operations in
a type... In this case, the abstraction may
be less comprehensible, and implementa-
tion and maintenance are more diÆcult.
The desirability of extra operations must
be balanced against the cost of implement-

ing these operations. If the type is ade-
quate, its operations can be augmented by
procedures that are outside the type's im-
plementation. [14, Section 4.9.3]

Stroustrup also discusses this principle [17, Sec-
tion 11.5.2]. Thus, it can be argued that both the
interpret and print rep functions belong outside
the A.S.T. classes in our motivating example, as
both can be written eÆciently in terms of existing
operations. However, without accessory functions,
these operations must be placed inside the class.

Note that our need for dynamic dispatch for our
A.S.T. example is not simply an artifact of the fact
that we have not provided a more abstract way of
traversing an abstract syntax tree. If we provide
either an iterator or a traversal function to apply
arbitrary code to each element of the tree, we still
�nd the need to associate certain code with certain
kinds of A.S.T. nodes. Dynamic dispatch provides
a simple and eÆcient mechanism for doing so. Only
the restriction of dispatch to members of the class
keeps us from using it in these cases.

Since accessory functions do not have access to the
private data of the data structure to which they
are applied, they cannot save state information in
this structure. We must, therefore, accumulate any
needed information in some other way. In our \in-
terpret" example, information is kept as temporary
values in the C++ run-time stack; this works be-
cause we only need to produce a single �nal value
(the result of the expression). If we need more com-
plex information, such as a value associated with
each node in the tree, we can build up an auxil-
iary data structure (for example, a second tree that
contains values that correspond to the nodes in the
A.S.T.). If we wish to traverse the data structure
and modify it, we must modify the class (by us-
ing traditional virtual functions instead of acces-
sory functions, or making the accessory functions
into friends of the class). This is consistent with
the principle that only operations listed in the class
can access the class's private data.

5 Implementation for C++

Given the de�nitions and rules of Section 3, the im-
plementation of accessory functions does not pose
many interesting technical challenges. We simply

move the existing algorithms for building dispatch
tables from compile-time to link-time, retaining the
general principles used for virtual functions in C++:
each object contains a pointer to a table of all func-
tions that may be dynamically dispatched based on
its type, and the compiler statically produce code
that will locate a given function with a (constant
time) table lookup (for single inheritance, we sim-
ply use a �xed o�set into the table).

The restrictions in Section 3.2 can be checked
trivially as function declarations are processed at
compile-time. To compile a (possibly dynamically
dispatched) function call, we start by applying the
C++ rules for overloaded function selection [17, Sec-
tion 7.4] to the set of functions that are in scope and
have the correct name and number of parameters,
with the restriction that type casting of values can-
not be used to create a match with a virtual param-
eter. If there is not a unique match, a compile-time
error is produced. If there is a unique best match,
we generate either a regular function call (if the best
match has no virtual parameter) or a dynamic func-
tion dispatch.

If the best match had a virtual parameter, the dy-
namic dispatch is very much like a C++ virtual
function call. We know that the virtual argument
will contain a pointer to a table of dynamically dis-
patched functions, and generate a load of a func-
tion pointer from this table, and a branch to this
address. The presence of accessory functions means
that we no longer know the size or layout of this ta-
ble when compiling a single �le, but we handle this
by treating the o�set into the table as an unde�ned
reference that will be �lled in later by the linker.

Note that we need a separate entry in the dispatch
table for each virtual parameter position, function
name, and arity. A group of three-parameter func-
tions may be dispatched di�erently from some two-
parameter functions of the same name; di�erent
three-parameter functions may have di�erent vir-
tual parameters (as long as they are not in the same
scope).

We rely on the compiler to give the linker a complete
description of the DAG describing the class inheri-
tance structure, and a list of all functions (complete
with parameter types and information about which
parameters are virtual). We topologically sort the
inheritance DAG and we apply the algorithm used
to build C++ virtual function tables, using a new
o�set for each set of statically distinct functions.

Since the o�sets are determined at this stage, we can
resolve the unde�ned references produced at com-
pile time.

This implementation places an increased load on the
linker, and thus may increase link times. However,
this is a fundamental consequence of the fact that
declarations of accessory functions for a given class
may be spread across several �les (unlike the class'
virtual functions), not a weakness of our implemen-
tation. The distribution of accessory functions over
di�erent �les prevents detection by the compiler of
certain errors that could be detected by traditional
C++ compilers, such as the instantiation of a class
with a pure virtual accessory function (one �le may
instantiate an object of a class for which pure virtual
accessory functions are created in another �le).

It may be possible to reduce the link-time overhead
somewhat by replacing our implementation with a
version of Millstein and Chambers' techniques for
modular multimethod dispatch [15], restricted to
the case of single dispatch. We have not investi-
gated this possibility, since some degree of link-time
overhead is unavoidable, and our main goal is to
present a simple implementation that demonstrates
that we can retain the constant-time nature of the
dynamic dispatch used in C++.

6 Related Work

Snyder [16] and Liskov [13] have also studied con-

icts between data encapsulation and other aspects
of object-oriented programming. They discuss prob-
lems that arise when subclass operations are given
access to superclass data or private operations, and
Snyder [16] observes that a class's superclasses can-
not be considered an implementation detail of the
class in a system that allows multiple inheritance
without replicating common superclasses.

Appel [2, Section 4.2], Harrison and Ossher [10],
Krishnamurthi, Felleisen, and Friedman [11], and
possibly many others have noted the con
ict that
arises between reuse by inheritance and reuse in a
function. There are a number of approaches to re-
solving this problem, which we discuss in order of
increasing familiarity for programmers familiar with
C++.

Some techniques for multiple dispatch (also known

as multi-methods) [3, 9, 5, 4] could be used to pro-
vide dispatch on a parameter other than the re-
ceiver of an object, or by including the type needed
for dispatch in a new tuple type [12]. However,
general multi-method dispatch either requires more
than constant time per dispatch or excessively large
dispatch tables [1]. However, recent techniques for
multimethod dispatch [6] have very low overhead,
and we believe they would be at least as eÆcient as
our system for the case of single dispatch (which, as
we have noted, is all that is needed to resolve the
con
ict between di�erent kinds of reuse).

Work on multiple dispatch also di�ers from ours in
that it not focused on the separation of dispatch and
access. Cecil explicitly retains the uni�cation of dis-
patch and access, though a change to this rule would
probably not have any impact on performance. We
believe the main barrier to the widespread use of
these techniques to enable both kinds of reuse is the
tendency of programmers to prefer familiar tech-
niques and languages. The other approaches to
solving this problem (including ours) focus on tech-
niques or language extensions that can be applied to
C++ or Java. General discussions of techniques for
multi-method dispatch can be found in [1, Section
3.2] and [6, Section 3.7].

The visitor pattern could be applied to our ab-
stract syntax tree example: Each tree class
(such as Plus) would provide a \visit" opera-
tion that takes a \visitor" parameter, and sends
the visitor a message that is speci�c to the tree
subclass (e.g. Plus::visit(visitor &v) sends
v.visitPlus(this)). This approach still interferes
with the addition of new subclasses, since the visitor
class must be extended to include a new method for
each new subclass. The \Extended Visitor" pro-
tocol [11] �xes this problem, but still has higher
overhead than a single dispatch accessory function,
and to some degree shifts the burden of perform-
ing dispatch back from the compiler onto the pro-
grammer. It thus creates unnecessary opportunities
for programmer error, and su�ers from limitations
due to the lack of compiler support. Krishnamurthi,
Felleisen, and Friedman have developed a language
named Zodiac to simplify the use of the extended
visitor pattern, but it is not clear how quickly it
will be adopted by programmers who are familiar
with C++ or Java.

Harrison and Ossher [10] proposed the \Subject-
Oriented Programming" style. This approach, like
our accessory functions, can serve as the basis for

extension of an existing language like C++ (it is
currently available as a preprocessor for C++ in
IBM's Visual Age for C++ Version 4). Instead of
separating the property of dispatch from presence
in a class, subject-oriented programming facilitates
the decomposition of a class into di�erent \subjects"
that can be developed independently and then com-
posed. A subject can correspond to one of our ac-
cessory functions, a group of functions, or functions
together with associated data (like a class). This ap-
proach is more general than ours (though not more
general than some of the multimethod systems), and
correspondingly raises more new issues for program-
mers, such as the selection of composition system.

We have focused on providing a resolution to the
con
ict between reuse by inheritance and reuse in
a function, while creating the minimal impact on
programmers who are familiar with the traditional
object-oriented style. Our extensions can be added
to C++ by relaxing a single rule (that dynamic dis-
patch must be based on the receiver of the message).
A preliminary description of accessory functions ap-
peared at MASPLAS '99 [7]. We have also explored
the possibility of allowing multiple virtual parame-
ters [8], though this work does not make a signi�cant
contribution to the existing literature on multiple
dispatch.

7 Conclusions

Current single-dispatch object-oriented languages
provide dynamic dispatch only for functions listed
in the class involved in dispatch, even if overloading
is allowed for other parameters. This property gives
the author of a class the responsibility of enumer-
ating all cases in which dynamic dispatch is needed
for objects of this type. This hinders code reuse
by forcing the designer of a set of types to choose
between allowing reuse by inheritance (by using dy-
namic dispatch) and reuse in a function (by using
explicit switches on the kind of object).

It is possible and (we believe) desirable to provide
dynamic dispatch to users of a class hierarchy. In
other words, we should eliminate the coupling be-
tween dispatch method and membership in (and ac-
cess to) a class. This decoupling lets programmers
achieve both reuse by inheritance and reuse in a
function. Thus, our \accessory functions" improve
the support for both reuse and data encapsulation,

and can be implemented with the same eÆcient dis-
patch algorithms used in current C++ virtual func-
tion selection.

8 Acknowledgments

This work is supported by NSF grant CCR-9808694.

References

[1] E. Amiel, O. Gruber, and E. Simon. Optimiz-
ing multi-method dispatch using compressed
dispatch tables. In OOPSLA'94 { Object Ori-
ented Programming Systems, Languages and
Applications, pages 244{258, Oct. 1994. Pub-
lished as SIGPLAN Notices Vol. 29, No. 10.

[2] A. W. Appel. Modern Compiler Implemen-
tation in Java. Cambridge University Press,
1998.

[3] D. G. Bobrow, K. Kahn, G. Kiczales, L. Mas-
inter, M. Ste�k, and F. Zdybel. Common-
loops: merging lisp and object-oriented pro-
gramming. In OOPSLA'86 { Object Oriented
Programming Systems, Languages and Appli-
cations, pages 17{29, 1986.

[4] J. Boyland and G. Castagna. Parasitic meth-
ods: an implementation of multi-methods for
java. In OOPSLA'97 { Object Oriented Pro-
gramming Systems, Languages and Applica-
tions, pages 66{76, Oct. 1997. Published as
SIGPLAN Notices Vol. 32, No. 10.

[5] C. Chambers. Object-oriented multi-methods
in cecil. In ECOOP '92 Conference Proceed-
ings, July 1992.

[6] C. Chambers and W. Chen. EÆcient multi-
ple and predicate dispatching. In OOPSLA'99
{ Object Oriented Programming Systems, Lan-
guages and Applications, pages 238{255, Oct.
1999. Published as SIGPLAN Notices Vol. 33,
No. 10.

[7] C. B. Flynn and D. Wonnacott. Encapsulation,
extension, and function dispatch in C++. In
The 1999 Mid-Atlantic Student Workshop on
Programming Languages and Systems (MAS-
PLAS '99), Apr. 1999.

[8] C. B. Flynn and D. Wonnacott. Recon-
ciling encapsulation and dynamic dispatch
via accessory functions. Technical Report
DCS-TR-387, Dept. of Computer Sci-
ence, Rutgers U., June 1999. Available
as ftp://www.cs.rutgers.edu/pub/technical-
reports/dcs-tr-387.ps.Z.

[9] J. Guy L. Steele. Common Lisp: The Language
(second edition). Digital Press, 1990.

[10] W. Harrison and H. Ossher. Subject-oriented
programming (a critique of pure objects). In
OOPSLA'93 { Object Oriented Programming
Systems, Languages and Applications, Sept.
1993. Published as SIGPLAN Notices Vol. 28,
No. 10.

[11] S. Krishnamurthi, M. Felleisen, and D. P.
Friedman. Synthesizing object-oriented and
functional design to promote reuse. In Pro-
ceedings of the Twelfth European Conference
on Object-Oriented Programming ECOOP '98,
Apr. 1998.

[12] G. T. Leavens and T. D. Millstein. Multiple
dispatch as dispatch on tuples. In OOPSLA'98
{ Object Oriented Programming Systems, Lan-
guages and Applications, pages 374{387, Oct.
1998. Published as SIGPLAN Notices Vol. 33,
No. 10.

[13] B. Liskov. Data abstraction and hierar-
chy (keynote address). In OOPSLA'87 {
Object Oriented Programming Systems, Lan-
guages and Applications (Addendum), pages
17{34, Oct. 1987. Published as SIGPLAN No-
tices Vol. 23, No. 5.

[14] B. Liskov and J. Guttag. Abstraction and Spec-
i�cation in Program Development. The MIT
Press, Cambridge, Mass., 1986.

[15] T. Millstein and C. Chambers. Modular stat-
ically typed multimethods. In Proceedings of
the Thirteenth European Conference on Object-
Oriented Programming ECOOP '99, pages
279{303, June 1999. Published as Springer-
Verlag LNCS 1628.

[16] A. Snyder. Encapsulation and inheritance in
object-oriented programming languages. In
OOPSLA'86 { Object Oriented Programming
Systems, Languages and Applications, pages
38{48, Oct. 1986.

[17] B. Stroustrup. The C++ Programming Lan-
guage. Addison-Wesley, Reading, MA, 1997.

