
USENIX Association

Proceedings of BSDCon ’03

San Mateo, CA, USA
September 8–12, 2003

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2003 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.



build.sh: Cross-building NetBSD

Luke Mewburn, Matthew Green

The NetBSD Foundation

lukem@NetBSD.org, mrg@eterna.com.au

Abstract
NetBSD has a cross build infrastructure which allows
cross-building of an entire NetBSD release including
bootable distribution media. The build process does not
require root privileges or writable source directories.
The build process works on many POSIX compatible
operating systems. This paper explains the changes
made to NetBSD to enable this build process, enumer-
ates benefits of the work, and introduces future work
enabling cross building of any software for NetBSD.

1.  Introduction
NetBSD [1] is the most portable Unix operating system
in common use. It is freely available and redistributable,
and runs on a broad variety of platforms from modern
desktop systems and high end servers that can build an
entire release in less than an hour, to embedded systems
and older machines that may take several days to build a
release.

In late 2001, work began on changes to improve the
ability of NetBSD to be cross built, especially an entire
release. This system is referred to as “build.sh”, because
that is the name of the script that is the user-visible
front-end to the infrastructure.

NetBSD 1.6 was the first release to be shipped with
build.sh, and the Release Engineering group of the Net-
BSD Project took advantage of it to cross-build binary
releases for 39 platforms on a near daily basis during the
release cycle for NetBSD 1.6 [2]. Previous releases
required access to each of the various platforms by
release engineers, or co-ordination with developers with
that hardware. While that method works for a moderate
number of platforms (NetBSD 1.5 released binaries for
20 platforms), it does not scale, especially as the number
of platforms in NetBSD is growing (54 as of June 2003).

2.  Background

2.1.  NetBSD
Since the NetBSD project was started in 1993 it has had
a goal of being portable [3] to many target platforms.
There has been significant effort in designing, imple-
menting, and improving NetBSD to make it easier to
“port” to a new target platform [4]. Device drivers are
written in a way that permits easy sharing between plat-
forms without unnecessary code replication [5].

The source code portability of NetBSD did not equate to
“ease of use” when building the system on a host other
than the target platform, or indeed, natively.

Prior to build.sh a NetBSD release for a given platform
was built “natively” on that platform on a version of the
operating system that was “close” to the target release.
There were exceptions, but these alternate processes
were not simple to use nor easily automated, and had a
variety of other limitations which build.sh addresses.

build.sh offers a level of flexibility in building NetBSD
that has not been addressed by other open source operat-
ing systems.

2.2.  Cross compiling Unix
Unix was cross-compiled from the beginning, but when
native hosting was available, that became the main
development methodology and has remained so.

Cross-compilation is the technique of running programs
on a “host” system to generate object code for a differ-
ent “target” system. This has not been an easy task for
most system builders and has generally not been inte-
grated into operating system build processes as used by
open source operating systems.



Freely available software projects such as GCC [6] have
supported being cross-compiled for a long time, and
GCC is part of the GNU toolchain which NetBSD uses
and is heavily dependent upon for cross-compiling.

2.2.1.  An introduction to cross-compiling
There are many parts to a full cross compiler environ-
ment. Besides the compiler itself, many others tools and
files are required to create functional programs. Every-
thing that a normal compiler needs must be present. For
the GNU toolchain, this includes:

• The compiler - gcc.

• The assembler - as.

• The linker - ld.

• The “binutils”; size, nm, strip, ar, etc.

• Header files (provided by NetBSD).

• Libraries (provided by NetBSD and the GNU tool-
chain).

Following is a quick overview of how it all works. This
is basically the same for any compiler; in this example
the details are from the GCC C compiler:

1. The C compiler front-end gcc calls the C pre-
processor cpp on an input source file, usually a 
“.c” file, producing a “.i” file. This is still valid C 
code but will now be devoid of C pre-processor 
directives. (Actually in modern GCC, the cpp pass 
is done inside the cc1 pass to speed up the process 
and provide better error reporting. This process is 
largely invisible to the user.)

2. gcc calls the back-end cc1 with the output of cpp 
producing a “.s” file. This is a assembler source file 
corresponding to the input C file.

3. gcc calls the assembler as with the output of cc1 
producing a “.o” file. This is an object file 
corresponding to the input assembler file.

4. gcc calls the linker ld with the output of as plus 
several other files (sometimes collectively called 
the “crtstuff”), to produce an executable.

In addition to creating executables, archive and 
shared libraries are built. Archive libraries are usu-
ally created with the ar binutils program from 

object files. Shared libraries are created by calling 
gcc with the -shared option, which calls ld with 
various options to create a shared library.

gcc’s -v flag may be used to see exactly what external
programs are called. For example, cross-compiling a
simple NetBSD/sparc “hello world” C program on a
NetBSD/macppc box gives:

what-time-is-love ~> /tools/bin/sparc--netbsde
lf-gcc -I/dest/usr/include -L/dest/usr/lib -B/
dest/usr/lib/ -v -save-temps -o hello.x hello.
c
Reading specs from /tools/lib/gcc-lib/sparc--n
etbsdelf/2.95.3/specs
gcc version 2.95.3 20010315 (release) (NetBSD
nb4)
/tools/lib/gcc-lib/sparc--netbsdelf/2.95.3/cp
p0 -lang-c -v -I/dest/usr/include -isystem /de
st/usr/lib/include -D__GNUC__=2 -D__GNUC_MINOR
__=95 -D__sparc__ -D__NetBSD__ -D__ELF__ -D__s
parc__ -D__NetBSD__ -D__ELF__ -Asystem(unix) -
Asystem(NetBSD) -D__GCC_NEW_VARARGS__ -Acpu(sp
arc) -Amachine(sparc) -D__sparc hello.c hello.
i
GNU CPP version 2.95.3 20010315 (release) (Net
BSD nb4) (sparc-netbsdelf)
#include "..." search starts here:
#include <...> search starts here:
/dest/usr/include
/tools/lib/gcc-lib/sparc--netbsdelf/2.95.3/in
clude
/tools/lib/gcc-lib/sparc--netbsdelf/2.95.3/..
/../../../sparc--netbsdelf/include
End of search list.
The following default directories have been om
itted from the search path:
/tools/lib/gcc-lib/sparc--netbsdelf/2.95.3/..
/../../../include/g++-3
/tools/lib/gcc-lib/sparc--netbsdelf/2.95.3/..
/../../../sparc--netbsdelf/sys-include
End of omitted list.
/tools/lib/gcc-lib/sparc--netbsdelf/2.95.3/cc
1 hello.i -quiet -dumpbase hello.c -version -o
hello.s
GNU C version 2.95.3 20010315 (release) (NetBS
D nb4) (sparc-netbsdelf) compiled by GNU C ver
sion 2.95.3 20010315 (release) (NetBSD nb4).
/tools/sparc--netbsdelf/bin/as -32 -o hello.o
hello.s
/tools/lib/gcc-lib/sparc--netbsdelf/2.95.3/co
llect2 -m elf32_sparc -dy -dc -dp -e __start -
dynamic-linker /usr/libexec/ld.elf_so -o hello
.x /dest/usr/lib/crt0.o /dest/usr/lib/crti.o /
dest/usr/lib/crtbegin.o -L/dest/usr/lib -L/des
t/usr/lib -L/tools/lib/gcc-lib/sparc--netbsdel
f/2.95.3 -L/tools/sparc--netbsdelf/lib hello.o
-lgcc -lc -lgcc /dest/usr/lib/crtend.o /dest/
usr/lib/crtn.o



The output shows the cpp0, cc1, as and ld programs
being called in succession. An object file is created and
the sundry “crtstuff” is added to the final ld line.

If gcc is passed the -save-temps option the output of
each program will be saved rather than deleted after it
has been processed. In the above example, the following
files were created:

what-time-is-love ~> ls -l hello.?
-rw-rw-r-- 1 mrg mrg 57 Jun 5 2001 hello.c
-rw-rw-r-- 1 mrg mrg 7820 Jul 7 15:01 hello.i
-rw-r--r-- 1 mrg mrg 872 Jul 7 15:01 hello.o
-rw-rw-r-- 1 mrg mrg 408 Jul 7 15:01 hello.s
-rwxr-xr-x 1 mrg mrg 68638 Jul 7 15:01 hello.x

These are the source file and the cpp, cc1, as and ld
outputs, respectively.

For a cross compiler the assembler, linker and binutils
must also be “cross” tools. For the GNU toolchain these
are normally called “$target-$tool”. For example
powerpc-eabi-ld is the linker for the “powerpc-eabi”
target.

Each cross compile environment needs to provide
header files and libraries appropriate to the target plat-
form. These may be provided either as a static set of
files or the build process may produce them as part of its
bootstrap. The NetBSD process uses both of these tech-
niques for header files and builds libraries from source.

2.2.2.  Targets, hosts, and build hosts
One part of cross compilers that is often confusing is the
difference between a “target”, a “host” and a “build
host”. These are:

The three normal ways to build the GNU compiler are:

1. A native build is when all three host types are the 
same:

./configure && make bootstrap

2. A normal cross compile is when the “build host” is 
the same as the “host”:

./configure --target=powerpc-eabi && make

3. A “Canadian cross compile” is when “build host”, 
“host”, and “target” are all different:

./configure --build=i386-netbsdelf \
--host=i686-pc-cygwin \
--target=powerpc-eabi && make

This strange beast is called a “Canadian cross com-
piler”, because when a name was needed there were 
three political parties in Canada. It is most often 
found when dealing with pre-built toolchains. The 
above example would produce a toolchain that will 
run on a i686-pc-cygwin host (i.e., a Windows sys-
tem with Cygwin installed) and will target embed-
ded PowerPC platforms. The toolchain would be 
built on a NetBSD/i386 machine.

A normal cross-compiler is required to build a 
Canadian cross-compiler.

Most people who build software use a native build in all
cases. Usually people using cross compilers use the
same “build host” and “host”.

The host compiler is the compiler used to bootstrap the
cross compiler, and to build any other host tools that
need to run on the build host.

3.  Feature set
The features of the build.sh system are detailed below.
Other systems have addressed some of these issues but
not all of them.

3.1.  Cross compilation of a NetBSD release
This is a huge benefit to developers who wish to use
NetBSD on a target platform (often an embedded sys-
tem) but prefer to use a different host development sys-
tem.

This feature is dependent upon toolchain support as
described earlier.

Suitable build systems include:

• Current and previous NetBSD releases.

• Other Unix-like systems, such as Darwin (Mac OS 
X), FreeBSD, HP-UX, Linux, and Solaris.

• Windows with Cygwin.

target The platform the toolchain creates out-
put for.

host The platform that runs the toolchain.

build host The platform that builds the toolchain.



3.2.  Simplicity
build.sh needs to be simple to use while retaining
enough flexibility to allow advanced users and develop-
ers to customize their build environment.

NetBSD has a finite amount of volunteer resources, so
simplifying the build process reduces the support load.

3.3.  Read-only source trees
The source tree can be read-only and can be shared
between builds for different target NetBSD platforms.
This permits building directly from read-only media or
“mirrors” of source code without causing unnecessary
mirroring conflicts. In this case the build output is writ-
ten to a separate writable section of the file system.

There are no restrictions besides path-name length on
the file system location of the source tree or the object
tree.

3.4.  Root privileges are not necessary
No root or other special privileges are required in order
to build distribution media. Previous build processes
required privileges to create tar files or file systems that
contained devices, files owned by other users, set-ID
files, etc.

Most other build systems require special privileges. For
example, the Debian fakeroot [7] mechanism requires
the host operating system to support shared object
libraries with $LD_PRELOAD functionality (where a
shared object is loaded after the main program but
before the program’s shared object dependencies), and
this breaks the next requirement.

3.5.  Avoid non-portable OS features
Prior to build.sh, the creation of NetBSD boot media
required root privileges to create a “loopback vnode
disk device” (vnd), install boot blocks, create a file sys-
tem on the vnd, mount the file system, and create file
system entries owned by the non-building user. Most
other systems still build their distribution media in this
manner.

build.sh does not require host operating system features
such as: virtual disk devices, loopback file systems,
chroot cages, shared objects/libraries, or dynamically
loaded modules.

3.6.  Segregated build tools
build.sh builds “host” tools to $TOOLDIR, which is a
location separate to the host system’s native tools.
build.sh uses the tools in $TOOLDIR to build the Net-
BSD system installing to a separate $DESTDIR loca-
tion. This removes the “chicken & egg” problem that
can occur when the host platform’s in-tree tools would
need to be upgraded to build a newer source tree.

The older technique using the in-tree toolchain had the
drawbacks:

• Without massive contortions, the build host had to 
be running NetBSD of the same architecture and 
similar software vintage.

• The in-tree toolchain required periodic updating.

• Updating the in-tree toolchain often required spe-
cial handling that could not be easily automated. 
For example, at one time /usr/share/mk needed 
make, and at another time make needed 
/usr/share/mk to be updated.

3.7.  Minimize impact on NetBSD source
There was minimal impact on the existing NetBSD
sources and build infrastructure.

We did not want to change the NetBSD source tree to
support being built by foreign compilers. Accordingly
the host’s native toolchain is only used to build the Net-
BSD host tools.

It was necessary to improve the portability of the Net-
BSD host tools to non-NetBSD platforms. These
changes were not significant.

3.8.  Don’t special-case cross-compiles
It was a requirement that build.sh was usable for native
builds as well as for cross compiling.

This feature is another component of the effort to reduce
the support overhead of building NetBSD, whilst retain-
ing our desired flexibility.



4.  Results

4.1.  Benefits

4.1.1.  Regular automated builds
During the NetBSD 1.6 release engineering process, 39
platforms had near daily builds of the base operating
system release, ensuring that at least all build problems
were well known every day, and that up to date builds
were available for testing by anyone. The majority (37)
of these builds were performed on a dual processor
AMD MP2000+ machine generously donated by AMD
and Wasabi Systems, and the alpha and sparc64 plat-
forms were built on Matt Thomas’ CS20 alpha.

This contrasts with the NetBSD 1.5 release where 20
platforms had a binary release; all of them were built
natively on the particularly port, requiring each port to
have a dedicated person to build it, with 12 days time
from when the first port was finished and available to
the last port.

4.1.2.  Simplicity of use
The new build.sh is very simple and easy to use, yet
powerful. Anybody can build a kernel, userland or full
release for most platforms on the fastest machine they
have available.

4.1.3.  More portable source code
It has identified every tool in NetBSD used for building.
We know what tools we need and what features these
tools must support. We had to make sure these tools
were portable programs that would build and run cor-
rectly on other platforms.

4.1.4.  Cross-platform builds
We no longer require running a particular version of
NetBSD in order to be able to build it. Building NetBSD
1.6 from a NetBSD 1.5 machine is now supported, as is
building from Solaris, Linux and more. Gone are the
days of source build bootstrap problems that has
plagued NetBSD since day one.

4.2.  Costs

4.2.1.  Teething problems
build.sh took a long time to settle down and be stable
and useful. On the other hand, adding new platform sup-
port is no deal now, this is a one time cost that has been
paid.

4.2.2.  Cross-unfriendly software
Much software is written without consideration to cross
compiling and thus makes it very difficult to cross com-
pile. Not only the way the software itself is written, but
the way the software is actually built. Many software
build processes build helper programs to generate real
code, and so these programs must not only work cor-
rectly for the target system rather than the native system,
they must be built by the “host” compiler. The auto-
mounter amd was affected by this, as the build process
assumed the local host architecture was the same as the
program being built, causing a sparc binary built on i386
to incorrectly byte swap data into little endian for pro-
cessing.

4.2.3.  CPU endianness and word size issues
Endianness and CPU word size issues within the tool-
chain can cause problems. Due to bugs in the version of
GCC that we use (2.95.3), NetBSD/alpha can not be
cross compiled from a 32-bit host, and NetBSD/i386
can not be cross compiled from a 64-bit host.

Fortunately, we know that with GCC 3.3, NetBSD/alpha
can be built on 32-bit platforms, and NetBSD’s version
of GCC will be upgraded to 3.3.x before NetBSD 2.0 is
branched.

4.2.4.  Overhead in converting a platform
Not every platform has been converted to build.sh yet.
In some cases (e.g., pc532, playstation2) the in-tree
toolchain does not support those platforms in the
build.sh framework, whilst in others the platforms may
not have had a complete build infrastructure before
build.sh was integrated, and there were limited
resources prior to the NetBSD 1.6 release.

4.2.5.  Performance implications
There is a time cost in compiling the host tools, but it is
not considered significant enough to pose a problem.
For example, on an AMD XP2500+, the times for the
various methods of building an i386 release are:

Time to build tools with build.sh:
./build.sh -U tools

5m 6s

Time to build a release with build.sh:
./build.sh -U release

1h 28m

Time unsuccessfully spent attempting to 
make release with the old build process 
on a two month old system, which failed 
due to problems with out-of-date tools.

> 2h



5.  Implementation
The implementation of the build.sh infrastructure com-
prises of a variety of elements.

The build process uses various environment variables to
control its operation, including:

5.1.  src/build.sh
build.sh is a Bourne shell script designed to build the
entire NetBSD system on any host with a POSIX com-
pliant Bourne shell in /bin/sh. It creates a directory for
various host tools uses to cross build the system
(referred to as $TOOLDIR), creates a “wrapper” to
make to pass in various settings, builds the host tools
with the make wrapper, and uses the host tools to build
the rest of the system, into a staging area referred to as
$DESTDIR.

build.sh is very flexible and can be used to build an
entire release, a specific kernel, just the tools or make
wrapper, or even upgrade the installed system from a
previously populated $DESTDIR.

The order of operation of build.sh is:

1. Validate arguments including the target platform 
(which defaults to the host platform) which is 
stored in $MACHINE, and the target machine 
(CPU) architecture which is stored in 
$MACHINE_ARCH.

2. Build a host binary of make and install as 
$TOOLDIR/bin/nbmake.

3. Create the “make wrapper” shell script that 
contains various (environment variable) settings 
which control the build and install as 
$TOOLDIR/bin/nbmake-$MACHINE. (This may 
be the last operation performed for this invocation 
of build.sh.)

4. Build the host tools to generate the binaries for the 
target $MACHINE and install under $TOOLDIR, 
with the executable host binaries available in 
$TOOLDIR/bin.

5. Perform any other operations requested using the 
$TOOLDIR host tools, including:

• Build a NetBSD distribution into $DESTDIR.

• Build all the kernels for a specific NetBSD 
release and package those and the contents of 
the $DESTDIR into a release under 
$RELEASEDIR.

• Build a specific kernel.

• Create the release “sets” from $DESTDIR or 
the source “sets” from the source tree.

• Upgrade a directory (usually “/”) from $DEST-
DIR.

Certain $MACHINE platforms support more than one
$MACHINE_ARCH CPU architectures (a bi-endian
processor or are processor with more than one word size
are considered to be separate CPU machine architec-
tures), and build.sh supports building the different target
CPU architectures as separate releases.

5.2.  src/BUILDING
In-tree documentation for build.sh.

5.3.  src/Makefile
This Makefile at the top-level of the source tree contains
various targets to facilitate building the entire NetBSD
source tree, including:

TOOLDIR Pathname to host tools for a given 
host platform.

DESTDIR Pathname to built NetBSD system.

RELEASEDIR Pathname to resulting NetBSD 
release files.

build Build the entire NetBSD system, in an
order that ensures that prerequisites
are built in the correct order.

distribution, 
buildworld

Perform make build and then install 
a full distribution into $DESTDIR, 
including the contents of $DEST-
DIR/etc and $DESTDIR/var.

release Perform make distribution, then 
builds kernels, distribution media, 
install “sets”, and then packages the 
system under $RELEASEDIR.

installworld Install the distribution from $DEST-
DIR to $INSTALLWORLDDIR 
(which defaults to “/”).



5.4.  src/share/mk
To simplify the build process, NetBSD uses a library of
make Makefile include files (with the suffix “.mk”) in
src/share/mk. This was inherited from the 4.3BSD Net-
working/2 and 4.4BSD Lite releases, and has been sig-
nificantly enhanced in the decade since.

5.5.  src/tools
Traditionally, BSD systems are built using in-tree tools,
compilers, include files and libraries. This isn’t usable
for cross-compilation, and has many other problems
which this new infrastructure fixes, as documented in
section 3.

src/tools contains the make infrastructure required to
build various host tools used during the build. These
tools are built using an autoconf-built compatibility
frame-work, and use “reach over” Makefiles into the
rest of the NetBSD source tree to minimize replication
of code. The source code for these host tools have been
slightly modified to allow them to be built in as a nor-
mal NetBSD (target) program, as well as a host tool.

The host tools are installed into $TOOLDIR, and the
BSD make “.include” infrastructure in src/share/mk
selects the various host tools in preference to the “stan-
dard” versions. For example, for an i386 target $CC will
be set to $TOOLDIR/bin/i386--netbsdelf-gcc instead of
cc.

There is support for using an external toolchain rather
than the in-tree versions of binutils and gcc. This is use-
ful when there isn’t yet support in the in-tree toolchain
for a target platform.

The host tools currently consist of:

as asn1_compile binutils cap_mkdb cat cksum 
compile_et config crunchgen ctags db dbsym 
file gcc gencat groff hexdump install 
installboot ld lex lint lorder m4 makefs 
makewhatis mdsetimage menuc mkcsmapper 
mkdep mkdep mkesdb mklocale mktemp msgc 
mtree pax pwd_mkdb rpcgen sunlabel texinfo 
tsort uudecode yacc zic

The majority of the host tools are installed with an “nb”
prefix, to differentiate them from similarly named com-
mands on the host. The exceptions are the GNU tool-
chain programs, which already have a name such as
i386--netbsdelf-gcc.

5.6.  METALOG support
Traditionally, install is run as root to install paths into
the appropriate location under $DESTDIR (which
defaulted to “/”), with the appropriate ownership and
permissions.

This prevents non-root users from building a full distri-
bution, as many files need specific permissions, such as
setting set-user-ID root on /usr/bin/su.

To solve this issue, we enhanced the specification file
for the existing mtree tool to support a full path name
(versus a context-sensitive relative path name), and
referred to the result as a “metalog” entry. An example
entry is:

./usr/bin/su type=file mode=04555 \
uname=root gname=wheel \
time=1057493599.102665

For a given build, a METALOG file is created, with a
“metalog” line for each installed path name. The META-
LOG file is manipulated and parsed by various tools as
necessary throughout the full build process.

install was modified to optionally install the paths as
the current user and without any special permissions,
and instead log the requested permissions to the META-
LOG. The “.mk” files in src/share/mk and a small num-
ber of special case Makefiles were all that needed to be
modified to take advantage of this support in install.

pax was modified to support parsing a METALOG for
the list of paths to add to an archive, and even add
“fake” entries for devices which may not have been cre-
ated in $DESTDIR. This is used to build tar.gz files
which contain the correct ownership and permissions
from a METALOG and $DESTDIR populated by a build
by an unprivileged user. The scripts that create the
“installation sets” were enhanced to parse the META-
LOG and invoke pax appropriately.

5.7.  makefs
Various platforms use distribution media which require
a ffs file system to boot from. Previously, NetBSD built
these using a “loopback vnode disk driver” (vnd), which
is not available on many other systems, and requires
root privileges to mount and write to in any case.

makefs was added to create a file system image from a
directory tree and optionally a METALOG. It is concep-
tually similar to mkisofs, a GPL-ed application which
creates ISO-9660 file system images.



With makefs, an unprivileged user can create a ffs file
system, complete with device nodes (with the latter
being specified in a METALOG).

While makefs has been written in a manner that easily
supports the addition of different file system types, it
currently only supports creating ffs file systems, in
either little or big endian (since NetBSD’s ffs code sup-
ports opposite endian ffs file systems, c.f. the “FFS_EI”
kernel option, and support in userland tools such as
newfs and fsck_ffs). Support for other file systems
such as iso9660, ext2fs, and FAT has been considered,
but is not a high priority at this time.

The implementation of the ffs back-end re-uses a rea-
sonable amount of the existing source code in the cur-
rent NetBSD kernel implementation of ffs (in
src/sys/ufs/ffs), but for simplicity, functions such as the
block allocation code were re-implemented in a simpler
manner. Various assumptions were made as part of this
process, including that block reallocation would not be
necessary, since the size of all files and directories (as
files) is known at file system creation time.

While ffs was originally implemented as a user process
before its integration into the 4.2BSD kernel, after two
decades of kernel hacking it is heavily tied to the buffer
cache and other kernel sub-systems, which makes it
more difficult to use in a stand-alone program.

5.8.  installboot
Most platforms need boot blocks on their distribution
media, and these are installed with installboot. Pre-
viously, each platform had its own version of install-
boot in /usr/mdec/installboot, which was compiled as
part of, and heavily dependent upon, the kernel sources
for that platform. They also required root privileges and
generally required kernel support for specific disk-label
ioctl()’s and only worked on actual disk devices.

/usr/sbin/installboot is a replacement for the machine-
dependent versions of installboot. It can function on
file system images, and doesn’t need root privileges or
kernel support for specific ioctl()’s to do so. The
design of the boot blocks between the various platforms
has been standardized as well, even if the actual imple-
mentation is different due to obvious differences in plat-
form hardware.

All platforms that shipped with binary releases for Net-
BSD 1.6 (except i386) were converted to this new infra-
structure. i386 was a special case due to the baroqueness
of the implementation of installboot for that plat-

form, but as the “cross build” host for the i386 release
was a dual processor i386 box, it could run the tool
“natively”. This has been resolved in NetBSD-current.

On a related note, it is possible to make CD-ROMs that
boot NetBSD on multiple platforms. For example, i386,
sparc64, and macppc can boot off the same disk, and
there’s ample room for other platforms. NetBSD 1.6,
with the 39 platforms that shipped with a binary release
and associated source, fit on 4 CD-ROMs and booted on
9 of them.

5.9.  src/etc/postinstall
postinstall is a script that checks for and/or fixes
configuration changes that have occurred as NetBSD
has evolved.

postinstall was added to the build system to detect,
and in most cases, automatically fix, changes to config-
uration that must be performed due to software changes.

The tests that postinstall supports are:

postinstall /etc/postinstall is up to date

defaults /etc/defaults is up to date

mtree /etc/mtree is up to date

gid /etc/group contains required groups

uid /etc/passwd contains required users

periodic /etc/{daily,weekly,monthly,security} 
is up to date

rc /etc/rc* and /etc/rc.d is up to date

ssh ssh and sshd configuration update

wscons wscons configuration file update

makedev /dev/MAKEDEV is up to date

postfix /etc/postfix is up to date

obsolete obsolete file sets

sendmail sendmail configuration is up to
date



6.  Future Work

6.1.  xsrc
NetBSD does not currently support a cross-build of
“xsrc” (our copy of X11R6 / XFree86 4.x), but this will
be fixed eventually. XFree86 4.3 added its own support
for cross-compiling. We may implement our own
method of cross compiling X11 for better integration
with our build system. XFree86’s cross-build solution
does not address all of our requirements, especially the
removal of the need for root privileges.

6.2.  pkgsrc
“pkgsrc” (the NetBSD packages collection) is not cross
buildable. A smaller number of particular, probably
smaller packages would probably fairly easy to get cross
buildable, but the vast majority would each require sig-
nificant effort.

There have been two suggestions to simplifying the
solution to this problem:

1. Krister Walfridsson has proposed building the 
packages natively in an emulator, using 
optimizations such as only emulating user-mode, 
and capturing system calls and running those 
natively (after manipulating the arguments).

An enhancement to that is to detect if an emulated 
program is gcc (for example), and invoking the 
host's cross-compiler natively for that case.

The initial progress looks very promising, with an 
arm emulator compiling six times faster than the 
native platform.

This proposal would be acceptable for solving the 
“xsrc” problem in section 6.1.

2. Use a tool such as distcc [8] to distribute the 
compilation of C or C++ code to (faster) remote 
systems, even if those systems are different to the 
current system, as long as an appropriate cross-
compiler is available. This would still require the 
use of the native system for part of the build 
process.

7.  Conclusion
build.sh has been an extremely useful solution to a vari-
ety of problems. It’s now much simpler to build NetBSD
releases from systems running earlier NetBSD releases,
and even build on other systems such as Darwin /
MacOS X, FreeBSD, Linux, and Solaris.

Generally, the support issues in NetBSD using build.sh
have been less than for previous releases, especially
considering the number of platforms now supported.
Previously, it was extremely important to upgrade vari-
ous in-tree tools, includes, and libraries in a specific
order (that often changed) before completing the rest of
the build. Now, a full build can be made without impact-
ing the running system, and then an upgrade easily per-
formed once a successful build is available.

The authors regularly use build.sh to cross-build entire
releases on our (faster) alpha, i386, macppc, and
sparc64 systems for platforms such as alpha, i386,
macppc, pmax, shark, sparc, sparc64, and vax, as an
unprivileged user using read-only source.

Acknowledgements
Todd Vierling wrote the original version of build.sh, and
setup the src/tools framework.

Jason Thorpe does a lot of work in the toolchain and
associated build.sh infrastructure.

Erik Berls wrote and maintains the autobuild script that
is used on the NetBSD Release Engineering machines to
automatically build multiple release branches for multi-
ple target platforms on multiple build machines.

Wasabi Systems, Inc. funded a lot of the development of
this work by paying the salaries of various developers.

FSF provides the GNU toolchain which is so nicely por-
table and cross compile friendly.



References
[1] Welcome to the NetBSD Project, 

http://www.NetBSD.org/

[2] NetBSD Project Autobuild [for NetBSD 1.6],
http://releng.NetBSD.org/ab/B_netbsd-1-6/

[3] Portability and supported hardware platforms,
http://www.NetBSD.org/Goals/portability.htm
l

[4] Frank van der Linden, Porting NetBSD to the AMD 
x86-64: a case study in OS portability, BSDCon 
2002,
http://www.usenix.org/events/bsdcon02/full_
papers/linden/linden_html/

[5] Jason R. Thorpe, A Machine-Independent DMA 
Framework for NetBSD, Usenix 1998 Annual 
Technical Conference,
http://www.usenix.org/publications/library/
proceedings/usenix98/freenix/thorpe.dma.ps

[6] Welcome to the GCC home page, 
http://gcc.gnu.org/

[7] Package: fakeroot 0.4.4-9.2
http://packages.debian.org/stable/utils/fak
eroot.html

[8] distcc: a fast, free distributed C/C++ compiler,
http://distcc.samba.org/


