
USENIX Association

Proceedings of the
BSDCon 2002

Conference

San Francisco, California, USA
February 11-14, 2002

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2002 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Flexible Packet Filtering: Providing a Rich Toolbox

Kurt J. Lidl
Zero Millimeter LLC

Potomac, MD
kurt.lidl@zeromm.com

Deborah G. Lidl
Wind River Systems

Potomac, MD
deborah.lidl@windriver.com

Paul R. Borman
Wind River Systems

Mendota Heights, MN
paul.borman@windriver.com

Abstract

The BSD/OS IPFW packet filtering system is a well engineered, flexible kernel framework for filtering (accepting,
rejecting, logging, or modifying) IP packets. IPFW uses the well understood, widely available Berkeley Packet Filter
(BPF) system as the basis of its packet matching abilities, and extends BPF in several straightforward areas. Since the
first implementation of IPFW, the system has been enhanced several times to support additional functions, such as rate
filtering, network address translation (NAT), and traffic flow monitoring. This paper examines the motivation behind
IPFW and the design of the system. Comparisons with some contemporary packet filtering systems are provided.
Potential future enhancements for the IPFW system are discussed.

1 Packet Filtering: An Overview

Packet filtering and packet capture have a long history
on computers running UNIX and UNIX-like operating
systems. Some of the earliest work on packet capture
on UNIX was the CMU/Stanford Packet Filter [CSPF].
Other early work in this area is the Sun NIT [NIT] device
interface. A more modern, completely programmable
interface for packet capture, the Berkeley Packet Filter
(BPF), was described by Steve McCanne and Van Ja-
cobson [BPF]. BPF allows network traffic to be cap-
tured at a network interface, and the packets classified
and matched via a machine independent assembly pro-
gram that is interpreted inside the kernel.

1.1 BPF: An Overview

BPF is extremely flexible, machine independent, rea-
sonably high speed, well understood, and widely avail-
able on UNIX operating systems. BPF is an interpreted,
portable machine language designed around a RISC-like
LOAD/STORE instruction set architecture that can be
efficiently implemented on modern computers.

BPF only taps network traffic in the network interface
driver. One important feature of BPF is that only pack-
ets that are matched by the BPF program are copied into
a new buffer for copying into user space. No copy of
the packet data needs to be made just to run the BPF
program. BPF also allows the program to only copy
enough of a packet to satisfy its needs without wasting
time copying unneeded data. For example, 134 bytes is
sufficient to capture the complete Ethernet, IP, and TCP
headers, so a program interested only in TCP statistics

might choose to copy only this data.

A packet must be parsed to determine if it matches a
given set of criteria. There are multiple ways of doing
this parsing, but a great deal of it amounts to looking
at a combination of bits at each network layer, before
the examination of the next layer of the packet. There
are multiple data structures designed for efficient repre-
sentation of the parsing rules needed to classify packets.
BPF uses a control flow graph (CFG) to represent the cri-
teria used to parse a packet. The CFG is translated into
a BPF machine language program that efficiently prunes
paths of the CFG that do not need to be examined during
the parsing of a packet.

Ultimately, a standard BPF program decides whether
a packet is matched by the program. If a packet is
matched by the program, the program copies the spec-
ified amount of data into a buffer, for return to the user
program. Whether or not the packet was matched, the
packet continues on its normal path once the BPF pro-
gram finishes parsing the packet.

BPF also has a limited facility for sending packets
out network interfaces. BPF programs using this fa-
cility must bind directly to a particular network inter-
face, which requires that the program know what inter-
faces exist on the computer. This allows for sending any
type of network packets directly out an interface, with-
out regard to the kernel’s routing table. This is how the
rarpd and dhcpd daemons work on many types of
UNIX computers.

BPF, as originally described, does not have a facil-

ity for rejecting packets that have been received. BPF,
although described as a filter, can match packets, copy
them into other memory, and send packets, but it cannot
drop or reject them.

2 Motivation

The need for a powerful and flexible packet matching
and filtering language had been evident for a long time.
The basic ideas for the BSD/OS IPFW system were the
result of several years of thought about what features and
functions a packet filtering system must provide. Having
highly flexible packet filtering for an end system would
be mandatory, and that same filtering system should be
applicable for filtering traffic that was being forwarded
through a computer.

The immediate need for a flexible packet filtering
framework came from a desire to run an IRC client in
a rigidly controlled environment. This environment con-
sisted of a daemon that could be run in a chroot’d direc-
tory structure, as well as a highly restrictive set of packet
filters. These filters could not just prevent unwanted
inbound packets, but perhaps more importantly, could
also discard unwanted outbound packets. The BSD/OS
IPFW system was thus originally intended to filter both
the inbound and outbound traffic for a particular host.

Many of the most popular contemporary packet fil-
tering systems of the initial design era (circa 1995)
were incapable of filtering packets destined for the lo-
cal computer or originating from the local computer.
The available filtering systems concentrated on filtering
traffic that was being forwarded through the computer.
Other major problems with the existing packet filter-
ing systems were the inability to do significant stateful
packet forwarding and unacceptably low performance
[screend]. screend does keep track of IP fragments,
which is a limited form of stateful packet filtering.

Further motivation for a flexible packet filtering sys-
tem was the lack of any other standard packet filtering
in the stock BSD/OS system of that era. There was
customer demand for a bundled packet filtering system,
which was not fully met by the other widely available
packet filtering systems [ipfilter]. screend, the most
widely available contemporary packet filtering system,
provided many good lessons in packet filtering technol-
ogy. The BSD/OS IPFW system was designed with the
lessons learned from screend in mind.

A consideration for the implementation of a new,
flexible packet filtering framework was the realization
that as the Internet grew, the number of attacks from
other locations on the Internet would also grow. Hav-
ing a powerful matching language tied to the filtering

capabilities would allow for a single BSD/OS computer
acting as a router to protect any other computers behind
the filter.

3 Need for Flexibility

An early design decision for IPFW was that the sys-
tem should present as flexible a matching and filtering
framework as possible. As few filtering rules as possi-
ble should be directly embedded in the kernel. As much
as possible, filtering configuration and policy should be
installed into the kernel at runtime, rather than compiled
into the system. This decision has reaped many bene-
fits during the lifetime of this system. Because IPFW
is extremely flexible, it has been applied to many prob-
lems that were not in mind at the time it was designed.
To borrow Robert Scheifler’s quote about the X Window
System Protocol, IPFW is “intended to provide mecha-
nism, not policy.” [RFC1013]

4 Other Packet Filters

As was noted earlier, there were several other packet
filtering technologies when IPFW was first envisioned.
In the years since, other filtering technologies have been
developed, some specific to a particular operating sys-
tem and others available on a variety of platforms. A
comparative analysis with these other packet filters al-
lows one to more fully appreciate the flexibility of IPFW.

One of the most important differences between IPFW
and these other filtering systems is that IPFW actually
downloads complete programs to be evaluated against
the packets. The other filtering systems are all rules-
based. By evaluating an arbitrary program, an entirely
new methodology of packet filtering can be installed
without rebooting the system. In a rules based system,
any new type of rules requires code changes to the fil-
tering system, as well as a reboot to make it active. Dy-
namic loadable kernel modules can approximate the pro-
gram download facility as modules could be replaced
with new filtering rule capabilities without requiring a
system reboot.

4.1 Darren Reed’s ipfilter

The ipfilter package is available on many versions of
many UNIX-like operating systems, from BSD/OS to
older systems such as IRIX to small-footprint systems
like QNX to frequently updated systems like FreeBSD.
It supports packet filtering, provides a Network Ad-
dress Translation (NAT) implementation, and can per-
form stateful packet filtering via an internal state table.
Like the other examined packet filters, ipfilter is a rules
based system. It can log packet contents to the pseudo-
device “ipl.” [ipfilter] [ipfilterhowto]

4.2 FreeBSD’s ipfirewall System

FreeBSD provides a packet filtering interface, known
as ipfirewall. This system is often referred to as ipfw,
which is the name of the management command.1 This
is a rules based packet filtering mechanism, which is
manipulated internally by socket options. There is an
additional kernel option (IPDIVERT) to add kernel di-
vert sockets, which can intercept all traffic destined for
a particular port, regardless of the destination IP address
inside the packet. The divert socket can intercept either
incoming or outgoing packets. Incoming packets can be
diverted after reception on an interface or before next-
hop routing. [FreeBSD]

4.3 Linux 2.2: ipchains

The Linux ipchains implementation provides three
different services: packet filtering, NAT (called mas-
querading), and transparent proxying. The packet fil-
tering capabilities are based on having “chains” of rules,
which are loaded at three different filtering locations: in-
put, forward and output. Each “chain” location can have
multiple rules appended, inserted or deleted from that
location. The rules are relatively simple and allow for
chaining to another named rule if a particular criteria is
matched. Arbitrary data inspection of packets is not per-
mitted. [ipchains]

4.4 Linux 2.4: iptables

The Linux iptables implementation (sometimes re-
ferred to as “netfilter”) is a complete rewrite and exten-
sion of the ipchains filtering system. Substantial cleanup
and fixing of multiple idiosyncrasies in handling how
packets destined for the local computer are processed
have been made. Support for stateful packet filtering has
also been added to the system. The command line syn-
tax for specifying packet headers for each rule has been
changed since the ipchains release. A QUEUE disposi-
tion for a packet has been added, which specifies that
the packet will be transferred to a user process for addi-
tional processing, using an experimental kernel module,
ip queue. [iptables]

4.5 OpenBSD’s “pf” System

OpenBSD 3.0 includes pf, a packet filter pseudo-
device. As a rules-based filter, users are restricted to
the available set of rules included with pf. Manipu-
lation of the pf pseudo-device is managed through the
pfctl command. Internally, the system is controlled
by ioctl calls to the pf device. Rules can be applied
on an in or out basis, and can be tied to a specific in-
terface as well. As a very new packet filtering mecha-
nism (it was written from scratch, starting in June 2001)

it does not have an established track record, and is still
undergoing change. [OpenBSD]

4.6 TIS Firewall Toolkit

The TIS Firewall Toolkit (fwtk) and other proxy fire-
walls not only examine the source and destination of
packets, but also the protocol being sent. New applica-
tion proxies that understand the protocol must be written
for each new type of service. While this approach does
allow for additional levels of security as the proxy can
watch for attack methods that exploit a particular proto-
col, it requires a much deeper understanding of each new
protocol before filtering that type of traffic. [fwtk]

5 Design Elements

Several elements of the overall design and implemen-
tation of the BSD/OS IPFW system are worth a de-
tailed examination. Some of the more interesting design
choices are discussed below.

5.1 BPF Packet Matching Technology

Because of the many fine matching properties of BPF
system, as noted in Section 1, it was selected as the core
technology for packet matching and classification in the
BSD/OS IPFW system.

5.2 Download Filter Programs into Kernel

The concept of downloading filters into the kernel
was not a novel idea. The IPFW author was familiar
with a few obscure packet filter technologies that had
the filter coded directly into the network stack.2 While
highly inflexible in operation, this type of filter system
did make an attacker work harder when attempting to
subvert or weaken an installed filter. The marginal se-
curity benefit of a filter compiled into the kernel was
dwarfed by the numerous advantages of a downloadable
packet filter. Early versions of IPFW had the ability
to both password protect filters as well as make down-
loaded filters immutable. Both of these features were
eventually dropped as the additional security provided
only came into effect once the computer running the
filter was compromised. Once the computer has been
compromised to that extent, the added security was not
considered to be valuable enough to warrant the costs of
maintaining the implementation.

5.3 IPFW Kernel Socket

Prudent reuse of kernel facilities is always a goal
when designing a new subsystem for the UNIX kernel.
The BSD/OS IPFW system needed a method for trans-
mitting data about packets and filter programs from the

kernel to programs running in userspace. In some other
historic packet filters, this would have been done via
the ioctl system call, which requires some artificial
file to open. Adding a new system call for this purpose
might be justified, but every new system call is generally
viewed with suspicion.

Instead of adding a new system call, a new instantia-
tion of a kernel socket was made. A new pseudo-IP pro-
tocol was defined, which is accessed via a raw internet
domain socket. Because sockets were defined to provide
an efficient mechanism of moving streams or packets of
data to and from the kernel, they are appropriate for the
task of moving data about packet filtering to a user ap-
plication. In the case of the IPFW socket, the data is
always generated by the kernel.

The raw IPFW socket provides important function-
ality in a standard interface with which programmers
are familiar. The socket interface also provides for zero
(or many) readers of the data. An IPFW filter can send
packets or data about packets it has matched back to a
userspace program, regardless of the final disposition of
the packet. The userspace program may then log the
packet, or it might further process a rejected packet, in-
cluding re-insertion of a possibly modified packet back
into the network via a raw IP socket.

High precision timestamps, in the form of a time-
spec structure, are available on packets read from the
kernel socket, if the user has requested them. This times-
tamp is added during the logging operation, so the user
application does not have to worry about getting an accu-
rate timestamp when it reads the packets from the socket.

IPFW uses the sysctl system call to pass informa-
tion about filter programs back and forth between the
kernel and userspace programs. sysctl is used to copy
the filter programs into the kernel as they are installed.
It is also used for gathering statistics about the IPFW fil-
ters installed on the computer. The sysctl interface is
another example of a flexible programming paradigm. It
provided a natural expression of hierarchy that was eas-
ily expandable, did not require artificial files to open and
reused an existing kernel interface.

5.4 Multiple Filtering Points

One of the unique features of the BSD/OS IPFW sys-
tem at the time it was designed was the inclusion of mul-
tiple filtering points in the kernel. The original BPF sys-
tem only allowed for tapping of packet traffic at each
physical interface. The BSD/OS IPFW system provides
five logical points where filters may be installed in the
kernel.

Table 1 lists each filtering location in the kernel. Each

Location Modify? Default Action
pre-input yes accept
input no reject
forward yes reject
pre-output yes accept
output no reject

Table 1: IPFW Filtering Locations

filtering location has an associated default action. When
a filtering location has at least one filter installed, if no
explicit disposition for a packet is provided by the filter,
the default action will be applied to the packet. The pas-
sage of packets through the various filtering locations is
described in detail in Section 6 of this paper.

5.5 Stackable Filters

Each filtering point in the kernel is actually the attach-
ment point for a stack of filter programs. Filter programs
can easily be pushed onto the stack, popped off the stack,
or inserted into the middle of the stack for each filtering
point. Individual filters each have a priority (a signed 32
bit number) that determines where the in the stack the
filter is actually placed. Multiple filters installed at the
same priority, at the same filtering location, operate as a
traditional stack.

Filters may also have a symbolic tag to aid in their
identification, replacement, or deletion.

5.6 Flexibility of Actions

After classifying a packet according to whatever rules
are in place, a packet filtering system has to perform an
operation on the packet. A simple packet filtering sys-
tem has just two operations, “accept” and “reject.” The
BSD/OS IPFW system has three additional operations.
The log action takes a specified amount of the packet
and copies it to the IPFW kernel socket. The call ac-
tion allows the current packet to be passed to a different
named filter for further processing. The next action
calls the next filter in the stack of filters installed at the
current filter location. In addition, the BSD/OS IPFW
system allows packets to be modified explicitly by the
filter program, or as the consequence of calling another
filter program. The classic “accept” and “reject” actions
have been extended so they can also optionally log the
packet to the kernel socket.

5.7 Filter Pool

In addition to the explicit filtering points in the kernel
a pool of filter programs can be installed into the ker-

nel, not associated with a particular filtering point. This
allows common filter programs to be installed into the
filter pool and then be referenced from any of the other
filters installed in the running system. Currently only
BPF based filters have the ability to call a filter from the
pool. The filter called may delete the packet or return a
value associated with the packet. Typically this value is
boolean. The called filter might also be used to record
some state that can later be accessed.

Unlike BPF programs, it is possible to create an in-
finite loop of called filters. There is no loop detection
in the filter software, which could be considered a flaw.
Users of the IPFW system are obligated to understand
the interactions between all their filter programs.

5.8 Circuit Cache

Although BPF filters themselves are stateless, by us-
ing custom coded filters, such as the circuit cache, the
filters can access saved state about a connection. The
circuit cache provides the system with two features. The
first is the ability of a BPF program to request the circuit
described by a packet be added to the cache. A circuit is
defined as the combination of the source and destination
addresses, along with the source and destination ports
for the upper level protocol, if relevant. The second is
the ability to pass a packet to the cache for it to determine
if that session has been seen before. For example, TCP
packets can be divided into “Initial SYN” packets and
“Established” packets. Initial SYN packets are subject
to potentially complicated rules to determine if the ses-
sion should be allowed. If the packet is to be accepted,
it is passed to the circuit cache asking for an entry to
be added for its circuit. Any Established packet is sim-
ply passed to the circuit cache for query. If the packet
does not match an existing session, it is rejected. The
circuit cache understands the TCP protocol and when
caching TCP circuits it can optionally monitor FIN and
RST packets and automatically terminate a circuit when
the TCP session is shut down. Circuits may also auto-
matically be timed out to reclaim kernel resources after
a configuration period of inactivity.

5.9 Custom Coded Filters

While BPF-based filters are the most flexible and
commonly used filters within the BSD/OS IPFW sys-
tem, they are not the only method of defining a filter.
There are a variety of custom coded filters available.
Custom coded filters are C modules that are compiled
into the kernel. These typically provide a very rigid set
of filtering capabilities. Some non-BPF filters included
with IPFW can be used to write traditional, rules based
filters. These non-BPF filters may not be able to make

IPFW

incoming packet outgoing packet

pre-input

forward

output

input

local
packet

forwarded packet

Network
Interface

pre-output

Local Host

Figure 1: IPFW Filtering Locations

use of the advanced features of IPFW due to limitations
in their design. Several examples of custom coded filters
are described in Section 10 of this paper.

5.10 Transparent Proxying

IPFW’s ability to force any packet to be delivered to
the local computer allows for the creation of transpar-
ent proxies for multiple services. An additional small
change to the TCP stack in BSD/OS complements this
ability. The SO BINDANY socket option allows a pro-
gram to listen on a particular port, and bind to whatever
IP address for which the connection request was origi-
nally intended. This happens regardless of whether the
IP address is bound to one of the computer’s interfaces.
This support makes writing transparent proxies straight-
forward.

6 How it Works

IPFW operates on Internet Protocol (IP) packets that
are received or sent by the computer running IPFW. In
general there are three types of packets: packets that
were sent to the computer, packets that were generated
by the computer, and packets for which the computer is
acting as a forwarder.

When a packet arrives on the computer (the packet is
either sent to this computer or this computer is forward-
ing the packet), the network driver copies that packet
into an mbuf. If the packet is an IP packet, it is placed on
a queue of IP packets to be processed by the kernel. The
interface on which the packet arrived is also recorded in
the mbuf and can be retrieved by any called IPFW filter.

The ip input() routine in the kernel then de-
queues the packet, performs sanity checks on the packet
and determines the destination for the packet. If the
destination is the local computer, the kernel will per-
form packet reassembly. IP packets may be broken
into smaller packets (fragmented) if a network element
in the path between the source and destination is not
able to handle the entire packet as a single datagram.
Finally, once the packet is complete, the kernel will
queue the packet on the correct IP protocol queue (such
as TCP or UDP). Packets that are to be forwarded
are not re-assembled. These packets are sent on to
ip forward() and eventually on to ip output()
for transmission to the destination.

When IPFW is used, ip input() will call the pre-
input filter chain, if present, just after performing basic
sanity checks. This filtering is performed prior to de-
termining the destination of the packet. Because very
little examination of the packet has been performed, and
no extra state about the packet is stored in the kernel,
it is safe for the IPFW filter to modify the packet con-
tents. It may even force a packet to be delivered to
the local computer, even if the destination address does
not match the address of any of the interfaces on the
computer. The most basic modification is to delete the
packet, which causes ip input() to stop processing
the packet. Allowing modification of any type at this
point allows for various specialty filters such as NAT and
packet reassembly. Packet reassembly can be performed
explicitly by calling the “rewrite” named filter. Packet
reassembly is useful so that following filters will always
see complete IP packets and not IP fragments. The abil-
ity to modify the packet is the reason that the pre-input
filter point was added to IPFW.

Once any filters on the pre-input filter point have been
executed, ip input() continues with normal process-
ing, which is to determine the destination of the packet.
If the packet is to be delivered locally, then processing
continues normally up until the point where the packet
would be queued for an upper level protocol. The fully
formed packet is passed to the input filter chain. No
modification of the packet contents is allowed at this
point as significant sanity checks have been performed
on the packet. The packet may still be dropped, logged,
or both dropped and logged. Once the packet completes
the input filter processing, it is either discarded (rejected)
or queued for an upper level protocol as normal.

Received packets that are not to be delivered locally
are to be forwarded and are passed to ip forward().
The ip forward() routine determines if the packet
can be forwarded by the computer. This decision is made
by ensuring a route exists for the destination address and

the packet’s time to live has not expired. The packet
is then passed to the forward filter chain. The forward
filters have access to the interface indexes for both the
input and probable output interfaces. It is possible for
the output interface to change between ip forward()
and ip output(), though typically this is not the
case. Knowledge of the input and output interfaces pro-
vides assistance in filtering packets with spoofed ad-
dresses. The forward filter, like the pre-input filter, is
allowed to modify the packet. The main restriction on
modifications is that a forwarded packet should not be
modified into a local packet. The packet should either
still be destined for an external computer after modi-
fication or it should be deleted. Once the forward fil-
ter chain has been called the rest of ip forward()
is executed and eventually the packet is passed on to
ip output().

Packets passed to ip output() are either locally
generated or being forwarded through this computer. In
both cases, ip output() verifies that a route exists for
the destination address and (re)determines the destina-
tion interface for the packet. The pre-output filter chain
is then called. This filter, much like the pre-input filter,
may modify the packet. In addition, it may specify a dif-
ferent IP address to be used for the next-hop routing of
this packet. This override of the next-hop routing desti-
nation is done through an out-of-band mechanism. This
capability allows the pre-output filter to actually deter-
mine which interface the packet should be sent out when
there are multiple possible output interfaces. If an IP
address is provided via the out-of-band method, or the
destination IP address inside the packet is changed, the
routing lookup is repeated. The pre-output filter is not
called a second time.

For forwarded packets, all filtering is now complete.
For packets that were locally generated the output fil-
ter chain is called immediately after the pre-output fil-
ter. Like the input filter chain, the packet may not be
modified by the output filter chain. The ip output()
routine will eventually call the network interface’s out-
put routine. If IPFW rate filtering (as discussed in Sec-
tion 10) is being used, the ip rateoutput() routine
is actually called instead of the interface’s output rou-
tine. The ip rateoutput() routine is responsible
for eventual delivery of the packet to the network inter-
face or dropping of the packet.

7 BPF Language Overview

The most used and most flexible filter type in IPFW
is the BPF filter. As mentioned earlier, this type of fil-
ter uses the BPF pseudo-machine. The BPF pseudo-
machine has been enhanced for use with IPFW. Only one

totally new BPF instruction was added for IPv4 packet
processing. A new memory type was added, as well as
the ability to modify the packet being processed. IPv6
enhancements have been added and are discussed at the
end of this section.

The new BPF instruction, CCC, enables the calling of
a filter on the “call filter chain.” While it might seem
that the acronym stands for “Call Call Chain,” it was
actually derived from “Call Circuit Cache.” The circuit
cache was the reason for the creation of the call chain.
The CCC instruction returns the result of the call in the
A register.

The new memory type is called ROM and is an addi-
tional memory area to the original BPF memory spaces.
The original memory spaces included the packet con-
tents as well as the scratch memory arena. While the first
implementation did in fact store read only information,
the term ROM is now a misnomer as the ROM locations
can be modified by the filter. This space, called “prom”
in the source code, is used to pass ancillary information
in and out of the BPF filter.

While the bpf filter() function does not have
any innate knowledge of the meaning of these memory
locations, IPFW assigns meanings to several locations:

0 IPFWM_AUX An auxiliary return
value (for errors)

1 IPFWM_SRCIF The index of the source
interface (if known)

2 IPFWM_DSTIF The index of the
destination interface
(if known)

3 IPFWM_SRCRT The index of the
interface for return
packets

4 IPFWM_MFLAGS The mbuf flags
5 IPFWM_EXTRA Bytes of wrapper that

preceeded this packet
6 IPFWM_POINT What filter point was

used
7 IPFWM_DSTADDR New address to use for

routing to destination

The BPF filter is intelligent about setting these val-
ues. As some of these values, such as IPFWM SRCRT,
can be expensive to calculate, the filter is examined when
passed into the kernel. A bitmap is built of all ROM lo-
cations referenced by the program and only those loca-
tions are initialized.

In order to support the ROM memory space, the call-
ing convention of the bpf filter() function was
changed to pass three additional parameters:

int32_t *prom; /* ptr to ROM memory */
int promlen; /* count of valid bytes */

/* in the memory space */
int modify; /* boolean to indicate */

/* whether packet */
/* can be modified */
/* by bpf_filter() */

All existing calls to bpf filter() were modified to
pass NULL, 0, 0 for these three values.

IPFW has been adapted for use with IPv6. This work
was implemented with the NRL version of IPv6. More
recent releases of BSD/OS use the KAME IPv6 imple-
mentation. The changes to support IPFW in the KAME
IPv6 stack have not yet been written.

In order to support IPv6, several other new enhance-
ments were made to the BPF pseudo-machine. Triple
length instructions were added. A “classic” BPF instruc-
tion is normally 64 bits in size: 16 bits of opcode, two
8 bit jump fields, and a 32 bit immediate field. A triple
length instruction has 128 bits of additional immediate
data (the length of an IPv6 address). A new register,
A128, was also added. The load, store, and jump in-
structions now have 128 bit versions. The scratch mem-
ory locations have been expanded to 128 bits, though
traditional programs only use the lower 32 bits of each
location. An instruction to zero out a scratch memory
location (ZMEM) was added. Because BPF was not ex-
tended to handle 128 bit arithmetic, a new jump instruc-
tion was created that allowed for the comparison of the
A register to a network address, subject to a netmask.
The netmask must be specified as a CIDR style netmask,
specifically a count of the number of significant bits in
the netmask.

ROM locations only have 32 bit values and it is in the
ROM that a new destination routing address is passed.
Currently it is not possible to use the next-hop routing
capability with IPv6.

8 IPFW Filtering Language

Initially BPF filters were written in BPF assembly3

with the aid of the C pre-processor (cpp). It was thought
that many assembly fragments would be written for var-
ious needs and that the final filter would include these
fragments. It was quickly determined this was not a
very user friendly way of programming filters. It yielded
opaque filters such as:

// IP header length into X
ldx 4 * ([0] & 0xf)
// Protocol of packet

ld [9 : 1]
// Is it UDP? Jump to L1 if not
jeq #17 - L1
// Move ip length into A
txa
// Add 8 bytes to skip UDP header
add #8
jmp L3

L1:
// Is it TCP? Jump to L2 if not
jeq #6 - L2
// Load TCP flags into A
ld [x + 13 : 1]
// Jump to L11 if SYN bit is set
jset #2 L11 -
// If SYN is not set, just accept it
ret #IPBPF_ACCEPT

L11:
// Move ip length into A
txa
// Add 20 bytes to skip TCP header
add #20
jmp L3

L2:
// Just move ip header length into A
txa

L3:
or #(IPBPF_ACCEPT | IPBPF_REPORT)
// Accept the packet and report it
ret A

A new language was clearly needed.4 Existing filter-
ing languages were of little help as they were rules based
and not programmatic. The ability to use the program-
able features of BPF was a key design goal of IPFW.
Since BPF does not allow reverse jumps, there is no fa-
cility for loop constructs. This results in two possible
constructs: a sequence of instructions, and if/then/else
clauses. The IPFW filtering language was designed with
this in mind. The general form of the language is:

condition {
true action

} else {
false action

}

The false action is optional and typically omitted in
normal filter programs. Note that “if” is implied. Ini-
tially “else” was also implied, however, this reduced
readability so it was added back into the language.

In addition to this generic construct, there is a block
statement, which is essentially a series of “if” and
“else if” statements. There is also a “case” statement
which is similar, but not identical, to a C “switch” state-
ment.

Most actions are either another construct or a termi-
nating condition, such as “accept” or “reject.”

9 End-User’s Perspective

From the end-user’s perspective, creating a packet fil-
ter involves writing a text file that contains the filter,
compiling the filter from the command line, and load-
ing the compiled filter into the kernel from the command
line. A user could create the following sample filter in a
file called forward:

#define SERVER 192.168.1.10
#define MAILHOST 192.168.1.15

switch ipprotocol {
case tcp:

// TCP packets should never come in
// as fragments
ipfrag {

reject;
}
// TCP packets need at least 20 bytes
iplen (<20) {

reject;
}
// We just accept established
// connections
established {

accept;
}
// Allow incoming services to
// some computers
switch dstaddr {

case SERVER:
dstport(ssh/tcp, telnet/tcp,

ftp/tcp, http/tcp) {
accept;

}
break;

case MAILHOST:
dstport(smtp/tcp) {

accept;
}
break;

}
// All other requests are rejected
// and logged to the kernel socket
reject[120];
break;

case udp:
// Accept non-first fragments
ipfrag && !ipfirstfrag {

// But don’t allow fragmented
// UDP headers
ipoffset(<8) {

reject;

}
accept;

}
// UDP packets need at least 8 bytes
iplen(<8) {

reject;
}
// We just accept all UDP packets
accept;
break;

case icmp:
// We just accept all ICMP packets
accept;
break;

default:
// We reject any other protocols
// and log them to the socket
reject[120];

}

The user could then compile and load the filter on the
forward location in the kernel:

ipfwcmp -o /tmp/ipfw.forward forward
ipfw forward -tag fwd-filt \\

-push /tmp/ipfw.forward

If the user wanted to examine the effectiveness of their
filter program, they could:

ipfw forward -stats
forward filter statistics:

3068169 packets rejected
3033113 reported

19496389 packets accepted
0 reported

14 errors while reporting
0 unknown disposition

10 IPFW Specialty Filters

The fact that IPFW is a general filtering framework
allows very specialized filters, written in C, to be linked
into the kernel. Some examples of this are NAT, IP flow
monitoring, and rate filtering. Since IPFW filters have
the ability to call other filters, it is possible to use an
IPFW filter to do the bulk of the work, but still use a
fast C-based hashed lookup scheme on a large pool of
addresses.

Rate filtering provides a mechanism that controls how
quickly packets are allowed to leave a computer. Dif-
ferent classes of packets can be assigned different rates.
Each class of packets is determined by an IPFW classi-
fication filter. For example, it is easy to create a class

for all outbound http traffic and assign a particular band-
width limit to it. Additional rate classes could be de-
fined for other protocols and different bandwidth limits
applied to each class.

Protocol rate filtering is used in conjunction with a
modified circuit-cache to impose a rate limit on individ-
ual remote hosts, rather than on a class of packets leav-
ing a computer. For example, a DNS server may limit
the number of requests that a particular client can make
in a given time period.

The NAT filter provides IP address and port transla-
tion services for TCP and UDP traffic. This transparent
filtering provides the usual benefits of network address
translation.

Flow monitoring gathers data on TCP and UDP traffic
between two computers. A TCP flow is a TCP session,
while a UDP flow is a series of UDP packets that share
the same source and destination address and port. The
flow monitoring facility provides data similar to Cisco’s
NetFlow implementation. This data is useful for net-
work capacity planning as well as high level network
protocol analysis.

11 Real World Examples

IPFW has many potential uses for anyone who has IP
connectivity. Given the multitude of potential filtering
operations available, it is instructive to see how IPFW is
used by three sample installations.

11.1 Home User

The first sample installation uses a small set of the
IPFW capabilities. This installation has two network
connections, one via a dialup modem using PPP, and a
second connection via an IDSL modem. The BSD/OS
computer running as a router uses the IPFW capabilities
to perform three distinct tasks.

The first is the next-hop routing of outgoing traffic to
select between the IDSL and PPP outgoing interfaces,
based on the source address of the packet. The second is
packet filtering of inbound traffic to the servers located
behind the filtering computer. The last is to provide NAT
services for other client computers behind the filtering
computer.

11.2 Shared Corporate Network

The second sample installation uses a larger set of
the IPFW capabilities. This installation has only one up-
stream connection, but multiple different client networks
behind the filtering host. The filtering host is also used

as a filtering gateway between the different client net-
works.

The filtering host has a forward filter that allows in-
bound access for a select number of protocols, to a
rigidly defined list of servers on the different client net-
works. This filter is rather complicated, as it must treat
each of the client networks attached to the filtering com-
puter with a different set of filtering options, specified
for each of the clients.

The filtering host has a pre-input filter that terminates
outbound http requests on the filtering computer, so that
a transparent http cache can operate for all the different
client networks behind this host. There is also an input
filter in use to prevent external users from connecting to
the http cache. The input location filtering is done to
prevent any inbound TCP connections from ever being
established directly to the cache daemon.

The filtering host also has a set of rate filters, to limit
how much bandwidth certain network protocols (for ex-
ample, nntp) are allowed to use at any given time. The
rate filtering capability has proven very useful for simu-
lating low-bandwidth links for testing during debugging
of network tools that must transfer large quantities of
streaming information over long-haul networks. Some
of the server computers behind the filtering host also use
rate filters to limit the amount of outbound http traffic
that may be sent. This is used to enforce bandwidth lim-
its to which the clients have agreed.

The filtering host also has a set of filters in place to fil-
ter connections from the “nimda” worm first noted in au-
tumn 2001. This worm attacks web servers and attempts
14 different accesses, probing for known security holes.
While none of the servers at this location are vulnera-
ble to this worm, the attacks still cause a great number
of extraneous log entries to be made on each web server.
There are so many log entries from the attack probes that
the normal log entries are drowned out in the noise of the
attack entries.

Three filters are used to combat this worm. The first
is the system provided, custom filter called “rewrite,”
which allows sending RST packets to one end of a TCP
connection. The second filter is a custom, hand-coded
BPF assembler filter that is installed into the filter pool
with the name “src dst swap.” This filter swaps the
source and destination IP addresses in a packet, as well
as the source and destination port addresses. The final
filter is an IPFW filter that examines the interior of pack-
ets destined for the protected clients’ web servers. If
the filter detects the “nimda” attack signature after the
TCP session has gone through the three-way handshake,
the filter calls the “src dst swap” filter and then calls the

“rewrite” filter. The “rewrite” filter sends a TCP RST
packet to the internal web server, which will cause it to
tear down the just established TCP session. By reset-
ting the TCP connection on only the protected client web
server, but not that of the attacking computer, the client
web server’s kernel resources are immediately freed for
reuse. The attacker’s kernel resources are intentionally
left occupied. By resetting the TCP connection before
any data is sent to the web server, no error message is
logged by web server. This neatly solves the problem
of the extraneous log messages caused by the “nimda”
worm. It could be trivially enhanced to deal with other
such attacks in the future.

11.3 Corporate Firewall

The last sample installation of the IPFW system is
a special purpose corporate firewall. A very successful
firewall has been built around the IPFW system to dy-
namically protect a group of servers from malicious di-
alup users. It uses the IPFW kernel socket and a simple
filter at the forward location to read all TCP SYN packets
coming from a list of CIDR blocks that represent the di-
alup modem pools. A continually updated database of IP
addresses assigned to legitimate dialup users is queried
to determine if the SYN packet should be allowed. If the
packet is permitted, a copy of the packet is sent out a dif-
ferent interface, to the servers to allow establishment of
the client’s TCP session. Other non-TCP packet filter-
ing is also done on these firewalls using regular packet
matching and filtering.

12 Future Enhancements to IPFW

There are always ample possibilities for expanding
useful software systems, and IPFW is no exception.
Under consideration are structural additions as well as
changes to make IPFW more accessible to a larger num-
ber of people.

Allow loadable kernel modules to implement “Cus-
tom Coded Filters.” This would allow for the speed of
a native implementation of a complex filter, while pre-
serving the ability to reconfigure the filtering system on
the fly.

Implement an in-kernel filter compiler that takes
BPF programs as input and generates a native (non-
interpreted) version of the downloaded BPF filter for ex-
ecution.

On-demand logging would make it easier to debug
filters. This would also allow the assessment of the cost
and benefits of making certain system changes.

IPFW support needs to be added back into the KAME
IPv6 protocol stack. The IPv6 support needs to be com-

pleted, so that next-hop routing can be used with IPv6
addresses.

Expansion of the protocol throttling support. This
would allow limiting the number of responses for a par-
ticular protocol and provide another method for prevent-
ing denial of service attacks.

While the programmable nature of IPFW makes it ex-
tremely flexible, programming is not a strength of all
system administrators. This lack of programming expe-
rience means that some filters are inefficient and others
do not take full advantage of IPFW features. A graphical
user interface could address these issues.

13 Conclusions

The IPFW framework has proven to be extremely
flexible. It has been used for purposes never dreamed
of in the original design. This is often the hallmark of a
good basic design.

IPFW has a complete framework for packet filtering
services. It has been extended several times since the
original implementation but has never needed to be com-
pletely redesigned.

IPFW is very reliable. It has been deployed in ap-
plications that have passed terabytes of information be-
tween reboots. Machines executing IPFW filters have
uptimes in excess of one year, even after multiple filter
changes and updates during that time period.

Appropriate documentation is crucial to wide accep-
tance of a new technology. While the IPFW system has
been available for several years and has many power-
ful and useful features, its acceptance has been slow be-
cause of incomplete and opaque documentation.

14 Availability

Additional documentation, as well as some of
the filters described in this paper, is available at
http://www.pix.net/software/ipfw/.

15 Acknowledgments

The contributions of several people are hereby ac-
knowledged in their efforts to make this a better paper.
Jack Flory and Mike Karels for numerous conversations
about packet filtering prior to the first line of the IPFW
code being written. Bill Cheswick for prompting the
need for the circuit cache, which led to the ability to
chain filters and the ability to call other filters from a
filter. Dave MacKenzie, Josh Osborne, and Chris Ross,
for reading draft copies and making useful suggestions.

Donn Seely, for guiding this paper through the submis-
sion and review process. The staff at the USENIX Asso-
ciation, for they make this conference possible.

Notes

1Even though FreeBSD’s ipfirewall is often referred
to as ipfw it is unrelated to the BSD/OS IPFW system,
except in name.

2In order to change the filter, one would have to re-
compile the kernel and reboot the computer with the new
kernel.

3When work on coding IPFW started, the author
searched for the BPF assembler that was described in
the original BPF paper. After learning that no actual as-
sembler was ever written, a standalone BPF assembler
was written for IPFW.

4A language similar to the IPFW filtering lan-
guage was independently developed for the Ascend GRF
router. While the GRF used BSD/OS as the basis of its
embedded operating system, the GRF filtering system
was independently developed.

References

[BPF] McCanne, Steve, and Van Jacobson, “The BSD
Packet Filter: A New Architecture for User-level
Packet Capture,” Proceedings of Winter 1993
USENIX Annual Technical Conference. (January,
1993).

[CSPF] Mogul, J.C., and R.F. Rashid, and M.J. Ac-
cetta. “The packet filter: An efficient mechanism
for user-level network code.” 11th ACM Sympo-
sium on Operating System Principles, November,
1987.

[FreeBSD] The FreeBSD Project. ipfire-
wall(4); FreeBSD 4.4-stable Manual Page.
http://www.freebsd.org, June, 1997.

[fwtk] Trusted Information Systems, Inc.
TIS Internet Firewall Toolkit
ftp://ftp.tislabs.com/pub/firewalls/toolkit/, March,
1997.

[ipchains] Russell, Rusty.
http://netfilter.samba.org/ipchains/, October,
2000.

[ipfilter] Reed, Darren. http:///www.ipfilter.org/,
November, 2001.

[ipfilterhowto] Conoboy, Brendan and Erik Ficht-
ner. IP Filter Based Firewalls HOWTO

http://www.obfuscation.org/ipf/ipf-howto.pdf,
July, 2001.

[iptables] Russell, Rusty. http://netfilter.samba.org/,
August, 2001.

[NIT] Sun Microsystems, Inc. NIT(4P); SunOS 4.1.1
Reference Manual. Mountain View, California,
October, 1990. Part Number 800-5480-10.

[OpenBSD] The OpenBSD Project. pf(4); OpenBSD
3.0 Manual Page. http://www.openbsd.org, July,
2001.

[RFC1013] Scheifler, Robert W. X Window System
Protocol, Version 11. Cambridge, Massachusetts,
June, 1987.

[screend] Mogul, Jeffrey C. “Using screend to imple-
ment IP/TCP security policies.” Technical Note
TN-2, Digital Equipment Corporation Network
Systems Lab, 1991.

